Air Pollution Fundamentals

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

ABET Course Syllabus

Course Information, Textbook and Supplementary Materials	Capstone Course

Course Description: Air pollution effects on man, vegetation, materials; pollutant sampling and analysis; air quality standards and criteria; meteorological factors and dispersion modeling. Prerequisite: Senior standing.

Required for: BSCE Environmental, and BSENE

Prerequisites: ENE 400 Environmental Engineering Principles

Co-Requisite: None

ENE 428

Required Textbook: Seinfeld and Pandis, Atmospheric Chemistry and Physics, 2nd Ed., John Wiley, 2006

Reference: None

Topics Covered	Learning Outcomes
The basic principles of air	Students will understand the basic principles of air quality science and regulations
regulations	1. Temperature and Winds Temperature structure of the atmosphere Definition of troposphere, stratosphere Hydrostatic equation for pressure change with altitude Global wind circulation Geostrophic wind Sea-land breeze, mountain valley flows
	 Global Radiation Balance Zero layer model of equilibrium temperature of the earth atmosphere system One and two layer atmospheric temperature models Zero layer model of equilibrium temperature of the earth atmosphere system Global climate change basics
	3. Atmospheric Stability and Vertical Movement of Air Paracels Stability and Vertical Movement of Air Parcels Dry adiabatic lapse rate formula Equations of temperature change of a rising or falling air parcel. Definition of stable, neutral, unstable layers Inversion height or the depth of the well-mixed layer
	4. Air Pollution Regulation Roles of local, state, and federal government in the air quality regulatory process Meaning of NAAQS, SIP
The basic principles of atmospheric chemistry	Students will understand the basic principles of atmospheric chemistry:
	5. Atmospheric Chemistry of the Stratosphere Chapman Mechanism for ozone formation Role of CFC's in ozone depletion Importance of polar stratospheric clouds

6. Atmospheric
Chemistry of the Troposphere
Hagen-Schmidt Mechanism for ozone formation
Lifetimes of chemicals in the atmosphere
Systems of rate equations and the pseudo-steady state assumption
Role of hydroxyl radical in atmospheric chemistry
Importance of organic gases in forming ozone

ENE 428

Air Pollution Fundamentals

3 Units

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Lecture and Lab Schedule					
Lecture		Lab			
Sessions per Week	Duration per Session	Sessions per Week	Duration per Session		
	2 hours	n/a			

Relation of Course Objectives to Program Outcomes

The Civil Engineering program is designed to teach beyond the technical content of the curriculum and prepare the students to utilize what they learn in a professional setting.

This course contributes to the program outcomes as outlined in the adjacent table.

	Course Contribution to Program Outcomes (a-k)	√ Key
k.	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	

 Prepared by:
 Dr. Ronald Henry

 Professor of Civil and Environmental Engineering

Date: Fall 2014