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Abstract 

Shear structure models are widely used to model the dynamics of building structures; 

therefore, developing the techniques that can accurately identify the parameters of a shear 

structure plays a vital role in establishing efficient and reliable structural health 

monitoring systems for building structures. 

In this dissertation, applying the “divide and conquer” strategy of substructure 

identification (SI), a series of innovative SI methods for shear structure are developed. A 

shear structure is divided into many two-story standard substructures. A novel inductive 

identification procedure is applied to identify the parameters of the whole structure from 

top to bottom. Numerical simulations verify that these substructure identification 

methods provide accurate identification results.   

One of the most important features of these SI methods is that an approximate 

analytical expression for the identification error is obtained, which demonstrates that the 

identification accuracy is simply controlled by the frequency responses of the 

substructure near the substructure natural frequency. This important discovery provides 

the ability to easily improve the identification accuracy by appropriately changing the 

substructure responses via specially designed structural control systems. Several 

controlled substructure identification methods are proposed, using different structural 

control systems to improve the accuracy of the SI method. Furthermore, since the 

accuracy of the proposed controlled SI methods directly depends on the close-loop 

controlled structural responses rather than on the control systems themselves, these 

controlled SI methods are proven to be quite robust to possible control system errors. 



xviii 

To expand the applicability of the SI methods, a loop substructure identification 

method is proposed which makes use of the dynamic equilibrium of only one standard 

substructure to formulate a loop identification sequence and identify all parameters of 

that substructure once. Compared with the previous SI methods, the loop SI method is 

able to perform the structural identification of any part of a shear structure with only 

three floor acceleration responses; also importantly, the loop substructure identification 

can be carried out without knowing structural mass information.  

Several shake table experiments are conducted on a two-story bench-scale test 

structure; the results show that the proposed SI methods can accurately identify the 

structural parameters and that, by using appropriately designed passive control system, 

the identification accuracy can be further improved. 

Finally, a new approach is proposed to extend the SI methods originally developed 

for shear structures to more realistic frame structures. The study shows that the proposed 

approach is able to accurately structural damage of columns in a frame structure. 

In summary, the SI methods developed in this dissertation are able to accurately 

identify the structural parameters of a shear structure, forming a solid foundation to 

design efficient SHM systems for building structures. Furthermore, combined with 

structural control systems, the proposed controlled SI methods not only further improve 

the accuracy of damage detection but also have a potential to enhance the performance of 

control systems to reduce the structural vibration by providing more accurate structural 

model for control algorithms design, both of which greatly enhance the safety and 

reliability of the structures.  
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Chapter 1   

Introduction 

Civil structures, such as high-rise buildings, bridges, dams, etc., begin to deteriorate 

once they are built and used. They may also be damaged in severe events like strong 

earthquakes. Due to the essential roles of civil structures in our modern society, it is vital 

to frequently check the health status of structures and detect damage, if any has occurred, 

at the earliest possible stage so that timely repair work can be made to ensure the safe and 

reliable operation of the structures. According to a recent report from Federal Highway 

Administration (FHWA, 2008), 15% percent of the nearly 600,000 highway bridges in 

the United States are rated as “structural deficient”, requiring signification maintenance 

and repair to remain in service. Clearly, there is urgent need to develop efficient 

techniques that can accurately detect damage in aging civil structures nationwide. Recent 

catastrophes such as the collapse of the I-35W Bridge in Minneapolis are another 

reminder that frequent and rapid assessment of structural health is a vital need. 

 

Figure 1.1 The collapse of the I-35W Bridge in Minneapolis (August 1, 2007) 

<http://www.america2050.org/2007/08/minnesota-bridge-collapse-unde-2.html> 
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Visual inspection, which is labor-intensive and expensive, is still the most widely 

used method to date to check structural safety. However, it is a very subjective process as 

the accuracy of the damage detection depends highly on the expertise of the inspection 

staff. Moreover, many instances of structural damage, like the corrosion of steel bars in 

reinforce concrete structure, are hidden inside the structure and cannot be observed from 

the outside; under such circumstances, visual inspection cannot accomplish its mission. 

Hence, in research communities there is intensive interest in developing efficient 

structural health monitoring (SHM) techniques, which provide an objective way to assess 

the structural health condition and detect the existence of the damage. Generally, SHM 

techniques are classified into two large categories. The first kind of techniques is also 

known as nondestructive evaluation (NDE), including acoustic emission monitoring, 

ultrasonic wave, radiography imagining, eddy current detection, and many other methods 

(Chang et al., 2003). These techniques need to carry out some experiment tests in the 

immediate vicinity of the damage locations to detect the damage. In order to perform 

NDE testing, the locations of the damage must be known a priori and be accessible for 

testing, making these methods unsuitable to detect structural damage in the entirety of a 

complex structure. The second kind of techniques, also known as vibration-based 

structural health monitoring methods, makes use of structural vibration responses to 

detect and locate structural damage on a global structure basis. The basic premise of these 

SHM methods is that structural damage will alter the structural stiffness, mass and/or 

energy dissipation, which in turn change the dynamic behaviors of structures (Farrar et al., 

2001). Thus, by tracking these changes SHM systems can theoretically detect the 
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occurrence of structural damage, and even locate and quantify them. Relative to NDE 

tools, vibration-based SHM methods have the advantages of discovering and locating 

multiple structural damage locations across the entire structure. In order to make the 

notation simpler, hereafter SHM methods will exclusively refer to the vibration-based 

SHM methods unless otherwise stated.  

1.1 The State-of-art of Vibration Based SHM 

Many SHM techniques utilize structural modal features, such as natural frequencies, 

mode shapes and modal flexibility, to detect damage in the structure. These techniques 

are usually realized via system and/or parameter identification techniques. A structural 

model, often a finite element model, is selected to represent the behavior of the real 

structure; the parameters of the structural model, such as structural mass, stiffness and 

damping, are estimated by minimizing the difference between the modal features of the 

structural model and that of real structure derived from the measured structural responses. 

By comparing the values of these identified parameters before and after the damage, the 

structural damage can be detected, located and quantified. 

Unfortunately, current global vibration-based SHM techniques cannot yet be 

considered sufficiently accurate, efficient and robust for real applications. Many factors 

contribute to the failure, including: 

1. Structural modal properties such as natural frequency and mode shape are 

generally not sensitive to structural damage, which makes the inverse problems 

associated with SHM methods ill-conditioned, resulting in inaccurate identified 

structural parameters and, thus, inaccurate damage detection results. 
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2. In order to represent the behavior of a large structure, usually a complex model 

with tens or even hundreds of parameters is needed. Solving the inverse 

identification problem for damage detection with this kind of model is very 

challenging. Ill-condition and non-global identifiability features for this kind of 

identification problem pose huge challenges to correctly identifying the 

structural damage. Thus, the complexity of a real structure becomes one of the 

most difficult challenges for SHM methods. 

3. The structure model is only an approximation of a real structure; it may not 

exactly describe the full behavior of the real structure. Efficient SHM methods 

must be able to accommodate the modeling errors caused by the imperfect match 

between the structural model and the real structure. 

4. Other factors like the periodic variation of environmental effects (e.g., 

temperature) also induce changes in the structure modal properties, masking the 

effect of real damage. 

5. Since controlled excitation experiments are quite expensive for the long-term 

structural health monitoring of civil structures, ambient excitation tests usually 

have to be adopted to identify the structural modal properties. However, it is 

much more challenging to perform SHM identification using ambient excitation 

than using controlled force excitation. First, ambient excitation cannot be 

directly measured in most cases, which requires that the SHM methods be 

performed without the information of the excitation. Several methods have been 

proposed to carry out structural identification without excitation information, 
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such as the natural excitation technique (James et al., 1993; Caicedo et al., 2004), 

random decrement (Yang et al., 1976, Huang et al., 1999). Second, ambient 

excitation is generally very small, resulting in small structural responses; thus, 

usually the measured structural responses will be significantly corrupted by 

measurement noise, resulting in large identification errors for SHM. 

To the best of the author’s knowledge, there is not an all-in-one solution to all 

challenges previously mentioned. Many researchers have proposed some new techniques, 

trying to solve one or several above problems and increase the accuracy for damage 

detection. Two of these techniques, substructure identification methods and controlled 

identification methods, are discussed herein. 

1.1.1 Substructure Identification 

Substructure identification methods provide an effective means for SHM systems to 

tackle the difficulty of identifying complex real structures. A substructure identification 

method, applying a “divide and conquer” strategy (Koh, 1991), divides a large complex 

structure into many simple substructures and carries out system identification and 

damage detection for each substructure as an independent structure. Since the 

identification problem of each substructure is much simpler than that of the whole 

structure, the convergence and ill-conditioning problems frequently encountered in global 

SHM methods are alleviated; more accurate damage detection and localization can be 

achieved. In additional to the improvement of identification accuracy, substructure 

identification methods have many other promising features.  
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1. The identification of one substructure generally does not require measuring the 

excitation forces applied outside this substructure; thus, substructure 

identification methods partially solve the common difficulty facing many SHM 

methods – how to perform the identification without excitation information.  

2. Each identification step in a substructure identification method only utilizes the 

structural responses related to one substructure and can be carried out almost 

independently. Consequently, substructure identification methods do not need to 

simultaneously measure all structural responses of a large structure, which may 

greatly reduce the cost of SHM systems especially when power-limited wireless 

sensors are used to collect and transmit the measured data.  

3. Since structural damage inside one substructure usually only affects the 

identified parameters of that substructure, substructure identification methods 

make it easy to detect structural damage at the substructure level.  

1.1.2 Controlled Identification 

Another promising technique is to use structural control (SC) systems to improve the 

accuracy of SHM. These techniques try to change the structural responses by some 

specially designed structural control strategies, so that either SHM methods are more 

sensitive to the damage or multiple information sets of structural features are available to 

improve the identification accuracy.  

Traditionally, structural control systems are designed and installed to reduce the 

excessive structural vibration due to strong earthquakes or high-speed winds. However, 

compared with the whole service life of structures, such large natural hazards occur rarely 
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and only last for very short durations; the remainder of the time, the expensive structural 

control system remains unused in an idle state. When no external hazard is present, the 

capacity of the control system to measure and control structural responses may be re-

tasked to monitor the structural health and detect potential structural damage. 

Incorporating SHM functionality into current structural control systems not only adds 

useful functions to current control systems at a very small cost, making control systems 

more cost-efficient, but also has potential to enhance the performance of control systems 

to reduce structural vibration by providing a more accurate structural model for the 

control algorithm. As shown in Figure 1.2, the synergy of structural control (SC) systems 

and structural health monitoring (SHM) systems leads to more reliable and safe structures. 

 
Figure 1.2 Mutual benefit of combining structural control and structural 

health monitoring systems 

1.2 Overview of This Dissertation Work 

A shear structure, shown in Figure 1.3, is widely used to model the dynamic 

behaviors of building structures. Therefore, developing efficient identification methods, 

which can accurately identify the parameters of a shear model, plays a vital role in 

establishing efficient and accurate SHM systems for building structures. 
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Figure 1.3 (a) An n-story shear structure (b) the two-story standard 
substructure 

 

1.2.1 Substructure Identification for Shear Structures 

Following the “divide and conquer” strategy, a substructure identification method 

for shear structures is developed in this study. A standard two-story substructure, shown 

in Figure 1.4, is used to divide a large shear structure into many small substructures. An 

inductive identification method is formulated in which the parameters of the whole 

structure are identified from top to bottom iteratively. In each step of the substructure 

identification, only two or three floors’ acceleration responses are needed for the 

identification procedure, making this method easy to be implemented.  

When long stationary structural responses are available and there is only one 

excitation source in the structure, a more accurate transfer-function based substructure 

identification method (FT_SUBID), formulated by using the transfer functions among 

different substructure responses, can be adopted to improve the identification accuracy. 
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Moreover, a cross power spectrum based substructure identification (CSD_SUBID) 

method is developed from the differential equation governing random structural 

responses to stochastic excitation; not only does this approach overcome the limitation of 

only one excitation source required for the FT_SUBID approach, it also further improves 

the identification accuracy. This substructure identification method possesses some 

superb properties compared with its two predecessors. 1) It is an asymptotically unbiased 

and consistent estimator for structural parameters, being able to provide arbitrarily 

accurate identification results given that sufficiently long stationary structural response 

measurements are available. 2) The explicit formulae to calculate the approximate 

variance of identification errors are developed, which provide the confidence level along 

with the estimated parameters, crucial information for damage detection tasks. 3) 

Although this new SI method is first developed assuming that the structural responses are 

wide sense stationary (WSS), it is proved theoretically as well as through simulation that 

this method, with little modification, can be directly extended to perform the 

identification tasks with non-stationary structural responses and still provide very 

accurate identification results. 

  Numerical simulations demonstrate that all proposed substructure identification 

methods offer good estimation results as expected.  

1.2.2 Controlled Substructure Identification for Shear Structures 

In contrast with previous work on substructure identification, which have mainly 

focused on reducing the size of the identification problem to increase the accuracy and 

efficiency of the system identification, this study also makes some important attempts to 
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discuss how the uncertain factors in the identification process, such as measurement noise, 

will influence the accuracy of the identification result. To accomplish this goal, an 

approximate identification error analysis for a least-square-error (LSE) identification 

problem is proposed and applied to the proposed substructure methods. A simple 

analytical result of the identification error is obtained, which demonstrates that the 

identification accuracy is simply controlled by two substructure responses within a very 

narrow frequency band centered at the substructure natural frequency. This important 

discovery provides the ability to easily improve the identification accuracy by 

appropriately changing the substructure responses via specially designed structural 

control systems.  

Several controlled substructure identification methods are proposed herein, using 

different structural control systems to improve the accuracy of the substructure 

identification methods. Furthermore, since the accuracy of the proposed controlled 

substructure identification methods directly depend on the close-loop controlled 

structural responses rather than on the control systems themselves, these controlled 

substructure identification methods are proven to be quite robust to possible control 

system errors, making them excellent candidates to provide accurate and reliable 

identification results with imperfect structural control systems.  

Combined with the controlled substructure identification methods, a fast 

substructure identification method is also developed, which only makes use of the 

responses of one standard two-story standard substructure to formulate a loop-

identification sequence and identify all four parameters of that substructure once together 

even without knowing structural mass. This new method can directly, quickly and 
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accurately identify any structural parameters in a large shear structure with as few as one 

set of substructure response data and no information about the structural mass, making it 

a very promising technique for real-world applications, like immediate post-earthquake 

damage evaluation for buildings. 

1.2.3 Damage Detection in Frame Structures via Substructure Identification  

The proposed substructure identification methods and their identification error 

analyses are all based on a fundamental assumption that the identified structure is a shear 

model structure. Although the shear model is widely used to model the dynamic behavior 

of frame structures, it is only a simplification of a complex real building structure. 

Furthermore, finding the damage in complex real building structures, like the frame 

structure in Figure 1.5, is of much more practical interest than just identifying the 

parameter values in a shear model structure (Yan et al., 2006). However, directly 

performing identification in a complex structure model to find damage is often in vain 

due to the greater complexity of the search space in the identification problems. 

Using the methodology of substructuring, a substructure identification method for 

frame structures is successfully developed. The dynamic equilibrium of one floor 

substructure is used to formulate the identification problem, in which the equivalent story 

stiffness parameters are identified. In addition to the horizontal floor responses, the 

rotational responses at beam-column joints are needed in the new formulation. 

Surprisingly, the new substructure identification method for frame structures has a similar 

format as the substructure identification methods for shear structures. As a consequence, 

the results of the identification error analysis can also be applied to the new substructure 
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identification methods with some modifications. This new method can identify the 

structural damage occurring in the columns of the structure.  

 

        

 

 

 

 

 

 

 

 

 

Figure 1.4 A simple one-bay frame structure 

In summary, the substructure identification methods developed in this work are able 

to accurately identify the structural parameters of a shear structure, forming a solid 

foundation to design efficient SHM systems for building structures. Furthermore, 

combined with structural control systems, the proposed controlled SI methods not only 

further improve the accuracy of damage detection but also have the potential to enhance 

the performance of control systems to reduce the structural vibration by providing more 

accurate structural models for control algorithm design, both of which greatly raise the 

safety and reliability of the structures.  
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Chapter 2   
Background and Literature Review 

Aging of civil structures gradually deteriorates the load-resistant capacity of 

structures. The need for assessing the health status of structures and detecting structural 

damage, if present, at the earliest possible stage has urged development of research in 

structural health monitoring.  

Generally, structural health monitoring methods fall roughly into two categories: one 

is localized experimental methods, also known as nondestructive evaluation (NDE) 

techniques, including acoustic emission monitoring, ultrasonic wave, radiography 

imagining, eddy current detection, and many other methods (Chang et al., 2003); the 

other is global vibration-based methods which make use of the change of structural 

vibration features (frequency, mode shape, etc.) to identify the onset, location and 

severity of the damage.  

NDE methods typically require carrying out some experiment near the damage 

location to test the physical properties of the structural materials and detect the onset and 

severity of the damage inside the structure. For example, ultrasonic methods will generate 

incident ultrasonic sound waves on the surface of a structural component and measure the 

reflective waves from the structure. If there are cracks inside the structure, some 

additional reflective waves will be produced by these cracks and captured by sensors. 

Therefore, by analyzing the reflective waves, the hidden structural damage will be 

detected. Usually, such a method will provide accurate information about the structural 

damage. However, because NDE methods require a priori knowledge of likely damage 

locations and also need to carry out experiments near every possible damage location, 
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they are, by themselves, impractical for detecting structural damage in the entirety of a 

complex structure. A good review of local SHM methods is given by Rens et al. (1997). 

This chapter will only focus on global vibration-based SHM methods.  

In this chapter, first a brief review of the major vibration-based global structural 

health monitoring methods is given. Then the common deficiencies of these methods are 

summarized. Last, some recently developed methods are introduced that intend to 

overcome some of the deficiencies and improve the accuracy of damage detection. 

2.1 Major Structural Health Monitoring Methods 

Structural health monitoring and damage detection have been hot research topics for 

several decades; hundreds of approaches have been proposed using various hardware and 

algorithms. This chapter will only refer to a few representative approaches; extensive 

reviews could be found in Doebling et al. (1996) and Sohn et al. (2003).  

Rytter (1993) proposed to classify the damage identification methods into four levels: 

• Level 1: Determination if damage is present in the structure 

• Level 2: Determination of the geometric location of the damage 

• Level 3: Quantification of the severity of the damage 

• Level 4: Prediction of the remaining service life of the structure 

The vibration-based SHM methods generally fall into Level 1, Level 2, or Level 3 

methods because they are directly associated with structural dynamics testing, modeling 

and structure identification. While Level 4 methods, predicting the effect of structural 

damage on the structural loading-resistant capacity given that structural damage have 
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been identified, are related to the fields of fracture mechanics, fatigue life analysis, or 

structural design assessment. 

In general, damage can be defined as changes within a structural system which 

adversely affect its current and future performance (Farrar et al., 2000). Accordingly, 

structural damage is usually associated with changes to geometric and material properties 

of the structure, such as the occurrence of cracks in structural components, gradual 

deterioration of Young’s module of the structural materials and the yielding of some 

structural components. Some structural damage is caused by unexpected excessive 

loadings such as strong earthquakes and blast loading; others are the result of 

accumulated corrosion caused by environment factors such as humidity. However, 

structural damage is difficult to directly measure and quantify; therefore, most 

researchers tend to use the change in the mechanical properties of the structure, which 

could be directly measured or indirectly estimated from structural responses, to represent 

the existence of structural damage. The general mechanical properties used for damage 

detection can be classified in two categories: structural modal parameters (e.g., natural 

frequency, damping ratio and mode shape) and structural model parameters like the 

stiffness of structural components. Structural damage is detected and evaluated by 

monitoring the changes of these parameters before and after damage. Hence, identifying 

these features or parameters becomes an essential step for SHM. 

Usually a mathematical or computational prediction model that replicates the 

behavior or features of the structure system is needed first; then, by applying system 

identification techniques that fit the model to experimental data, the optimal model 

parameters can be estimated. Different types of structural models are most amenable to 
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different system identification techniques, which can be roughly divided into the methods 

based on structural modal properties, frequency domain, time domain, and ERA and other 

subspace identification. 

2.1.1 Structural Modal Property Based Methods 

Structural modal methods are probably the most abundant of SHM methods. They 

typically use structural modal parameters, such as natural frequency and mode shape, to 

detect the damage in the structure. These methods can be further classified, by how the 

modal characteristics are used, as forward methods and inverse methods. For the forward 

methods, some damage indices are calculated from structural modal parameters. Large 

changes in these indices are used to indicate the occurrence of damage. Usually this kind 

of method can only suggest whether or not there is some damage, and cannot provide 

information such as the location and severity of the damage. Inverse methods typically 

use the structural modal parameters as the prediction model; by solving some inverse 

problem, the parameters of the physical structural model (like stiffness) are estimated. 

Hence, inverse methods can offer information about the location and severity of the 

damage. 

a) Natural Frequency Based Methods 

The tangible relation between the changes of structural stiffness and the changes of 

structural natural frequency makes it a natural choice to use the estimated structural 

frequencies to identify damage. Another reason that the structural frequency based 

identification methods prevail is the ease of identifying the natural frequencies (in many 



17 

cases only a single sensor is required). Salawu (1997) reviewed 65 publications dealing 

with the detection of structural damage through frequency changes. 

Most of the early work was based on very simple structures and structural elements. 

Adams et al. (1978) and Cawley et al. (1979) demonstrated that the ratio of the frequency 

changes in two modes is only a function of damage location. A collection of possible 

damage points was considered, and an error term was constructed that relates the 

measured frequency shifts to those predicted local stiffness reduction. A number of mode 

pairs were considered for each potential damage location, and the pair that give the 

lowest error indicated the location of the damage. 

Stubbs et al. (1990a,b) discussed a method for damage identification which relates 

changes in the structural frequencies to changes in the stiffness of structural members by 

using a sensitivity relation. The sensitivity matrix of structural frequency with respect to 

both structural stiffness and mass was constructed and used to calculate the changes of 

structural stiffness and mass.  

Brincker et al. (1995) applied a statistical analysis method to detect damage in two 

concrete beams using changes in the measured vibration frequencies. The authors 

introduced a significance indicator for the ith modal frequency, defined by scaling the 

observed change in modal frequency by the estimated standard deviation of the 

frequencies. A similar significance indicator was defined for the measured modal 

damping ratio. By summing the frequency and damping significance indicators over 

several measured modes, a unified significance indicator was defined and used to detect 

damage. This significance indicator was a sensitive indicator of structural damage, but it 

was not able to provide an estimate of damage location. 
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It is worth pointing out that structural frequency shifts have some significant 

limitations for detecting the structural damage in real complex structures. The low 

sensitivity of frequency shifts to damage requires either very precise measurements or 

large levels of damage, in order to accurately detect the occurrence of structural damage. 

For example, in offshore platforms, frequency shifts resulting from mass changes due to 

marine growth are much larger than damage-induced frequency shifts (Whittome et al., 

1983). Tests conducted on the I-40 Bridge (Farrar et al., 1994) also demonstrated this 

point. When the cross-sectional stiffness at the centre of a main plate girder had been 

reduced by 96%, reducing the bending stiffness of the overall bridge cross section by 

21%, no significant reductions in the modal frequencies were observed. 

b) Mode Shape Based Methods 

Since the structural natural frequency is insensitive to structural damage, researchers 

turned to more damage-sensitive modal properties (i.e., mode shape) for help. The Modal 

Assurance Criterion (MAC) (Allemeng et al., 1982) and Coordinate Modal Assurance 

Criterion (COMAC) (Lieven et al., 1988) are two commonly used methods to compare 

two sets of mode shapes. The MAC value is a measure of the similarity of two mode 

shape vectors. A MAC value of 1 means a perfect match (exactly parallel vectors) and a 

value of 0 means they are completely dissimilar (orthogonal). Thus, the reduction of a 

MAC value may be considered as an indication of damage. The COMAC is a pointwise 

measure of the difference between two sets of mode shapes and takes a value between 1 

and 0. A low COMAC value would indicate discordance at a point and, thus, is also a 

possible damage location indicator.  
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West (1984) demonstrated the possibility of using mode shape information for 

locating structural damage. The modal assurance criterion (MAC) was used to determine 

the correlation of the modes before and after damage. The mode shape was partitioned 

using various schemes and the change in the MAC across the different partitioning 

techniques was used to localize the structural damage.  

Salawu et al. (1995) tested a reinforced concrete bridge before and after repair. 

Although the natural frequency shift, due to structural damage, was less than 3% for each 

of the first seven modes, the MAC values show substantial change, which indicated that 

comparison of mode shapes is a more sensitive and robust technique for damage 

detection than shifts in natural frequencies. 

Frỳba et al. (2001) used the COMAC method for checking the quality of the repair 

of a pre-stressed concrete bridge segment after part of the superstructure had 

spontaneously slid off its bearings. The COMAC analysis was used to confirm that the 

repaired segment responses were consistent with the undamaged segment. 

Williams et al. (1999) formulated a frequency Multiple Damage Location Assurance 

Criterion (MDLAC) method. In this method, a correlation coefficient MDLAC was 

calculated, which compared changes in a structure’s resonant frequencies with 

predictions based on a frequency-sensitivity model derived from a finite element model. 

When the MDLAC approaches 1, it implies that the frequencies calculated from the 

damage scenario of the finite element model match very well with the structural 

frequencies estimated from measured quantities. 

In addition to these methods, several other assurance criteria have also been 

proposed to assess the consistence of modal shapes and other structural dynamic 
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properties like frequency response function as well. These techniques include the 

frequency response assurance criterion (Heylen et al., 1996), coordinate orthogonality 

check (Avitabile et al., 1994), frequency scaled modal assurance criterion (Fotsch et al., 

2001), partial modal assurance criterion (Heylen, 1990), scaled modal assurance criterion 

(Brechlin et al., 1998), and modal assurance criterion using reciprocal modal vectors 

(Wei et al., 1990). 

c) Mode Shape Curvature Based Methods 

Since structural damage in simple structures, like a beam, causes larger local 

changes of the mode shape curvatures than that of mode shapes, many researchers 

propose to use mode shape curvatures, instead of mode shapes, to detect structural 

damage. The curvature is often calculated from the measured displacement mode shapes 

using a central difference approximation, 
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where i = mode shape number; j = node number; L is the distance between the nodes 

(assuming equidistant). 

Pandey et al. (1991) presented a method to detect damage in a beam structure by 

using absolute changes in mode shape curvatures. The curvature values were computed 

from the displacement mode shape using a central difference approximation. Chance et al. 

(1994) found that curvature calculated numerically from mode shapes resulted in 

unacceptable errors. They proposed using measured strains instead to infer curvature, 

which dramatically improved results. 
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Wahab et al. (1999) successfully applied a curvature based method to the Z24 

Bridge in Switzerland. They introduced a damage indicator which is determined by the 

difference in curvature before and after damage averaged over a number of modes. They 

concluded that the use of modal curvature to locate damage in civil engineering structures 

seems promising. 

d) Modal Strain Energy Based Methods 

When a particular vibration mode stores a large amount of strain energy in some 

structural members, the frequency and shape of that mode are highly sensitive to the 

changes in those structural members. Thus, changes in modal strain energy might be 

considered as logical choice of the indicator of damage location. 

Kim et al. (1995) applied a damage identification algorithm to locate and quantify a 

single crack in an experimental plate girder. Cubic spline functions were used to 

interpolate the incomplete mode shapes and produce a curvature function to calculate the 

modal strain energy. A damage indicator was proposed based on the ratio of modal strain 

energy of elements before and after the damage. A statistical hypothesis technique was 

applied to classify the significance of the value of the damage indicator. The method was 

also demonstrated to locate up to two damage sites in a simulated plate girder. 

Law et al. (1998) proposed to use the elemental energy quotient (EEQ), defined as 

the ratio of the modal strain energy of an element to its kinetic energy, to detect the 

damage in structural members. The difference in the EEQ before and after damage was 

normalized and averaged over several modes and used as a damage location indicator. 

This method was demonstrated on a simulated space frame. The method was also 
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successfully applied to an experimental two-story plane frame with up to two joints 

loosened to simulate damage. 

e) Dynamically Measured Flexibility Matrix Based Methods 

Another class of damage identification methods uses the dynamically measured 

flexibility matrix to estimate changes in the static behavior of the structure. The measured 

flexibility matrix is estimated from the mass-normalized measured mode shapes and 

frequencies as 

 
T

2
1

ii
i i

φφG ∑=
ω  (2.2) 

where G is the flexibility matrix of the structure; ωi is the natural frequency of the ith 

mode; and φi is the ith mass normalized mode shape. This formulation indicates that only 

the first few modes of the structure (typically the lowest-frequency modes) are needed to 

construct the flexibility matrix. 

Li et al. (1999) proposed an approach for damage identification by utilizing the 

flexibility matrix in slender structures, such as tall buildings and chimneys. The method 

assumed that damage in each story of a building could be represented by just two 

variables and, thus, only a minimal number of modes were needed for successful 

identification. However, the authors did not tackle any issues of sparse measurements or 

compare cantilever models to more complex models.  

Bernal (2000, 2006, 2010) pointed out that changes in the dynamic flexibility matrix 

are sometimes more desirable to monitor than changes in the stiffness matrix. Since the 

dynamic flexibility matrix is dominated by the lower modes, and good approximations 
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can be obtained even when only a few lower modes are measured. Bernal outlines a state-

space realization procedure to identify the modes at sensor locations and presents closed 

form solutions for computing mass normalized mode shapes when classical damping is 

assumed. 

2.1.2 Frequency Domain Techniques 

Frequency domain identification techniques refer to the methods that employ a 

transfer function (TF) or frequency response function (FRF) to identify the damage in a 

structure. Because the TF or FRF cannot be measured directly, many methods (e.g., 

empirical transfer function estimate (ETFE), correlation method, etc.), which calculate 

the FRF from measured structural time history responses, have been proposed. Detailed 

information about these methods is found in Ljung (1999). 

As Lee and Shin (2002) pointed out, there are two main advantages of using the FRF 

data. Firstly, modal data can be contaminated by modal extraction errors in addition to 

measurement errors, because they are derived data sets. Secondly, a complete set of 

modal data cannot be measured in all but the simplest structures. FRF data can provide 

much more information on damage in a desired frequency range compared to modal data 

that is extracted from a very limited range around resonances. 

Crohas et al. (1982) described a “vibro-detection device” that was attached to 

structural members of an offshore oil platform. The device was able to apply an 

excitation to the structure and simultaneously measure its response. Frequency response 

functions were then determined for the measured the acceleration response that results 

from the excitation. 
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Park et al. (1999) observed that the changing environmental and operational 

conditions will alter the structure’s vibration signals, which often lead to false 

assessments of structural damage for conventional modal-based SHM. They used a 

piezoelectric transducer (PZT) bonded to the structure as an actuator and sensor 

simultaneously, and carry out damage detection via the transfer function obtained from 

PZT. Many related studies are reported in the literature. 

Fanning et al. (2003) proposed a damage detection method based on a single-input 

single-output (SISO) measurement. A numerically efficient method was proposed to 

calculate a single FRF from the SISO measurements. The method requires a correlated 

numerical model of the structure in its initial state and a single measured FRF of the 

damaged system sampled at several frequencies to detect structural changes. The method 

successfully detected stiffness changes in a numerically simulated 2-D frame structure 

(Fanning et al., 2004). 

2.1.3 Time Domain Techniques 

Time domain identification techniques here refer to the methods that directly make 

use of the structural time history response to detect structural damage. These methods 

typically first select a mathematical model to represent the structure; then, the parameters 

of the model are identified by minimizing the difference between the measured structural 

responses and that predicted by the model.     

Auto regressive (AR) and auto regressive moving average (ARMA) are probably 

two of the most adopted models for time domain methods. By minimizing the error 

between the measured and computed structural time history responses, the parameters of 
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these models are estimated. Structural damage is detected by relating the identified 

parameters to the structural model parameters, such as stiffness of structural members. 

However, for a complex structure, the relation between the parameters of an ARX or 

ARMA model and that of structural model becomes so complicated that detecting the 

damage becomes a non-trivial task. 

Shinozuka et al. (1982) demonstrated a method of parameter estimation for linear 

multi-degree-of-freedom structural dynamical systems based on observed records of the 

external forces and the structural responses. The ARMA model was used for simulating 

the dynamic response of the structure. The parameter values of the ARMA model were 

estimated using least-square-error criterion. To check the estimation accuracy, analytical 

simulation studies were performed on the basis of simulated data dealing with the 

aerodynamic coefficient matrices that appear in the equations of motion of a two-

dimensional model of a suspension bridge. Then, these methods were applied to the same 

equations to identify the coefficient matrices using the field measurement data, yielding 

good estimates of the system parameters even under large output noise conditions. 

Beck (1978) proposed a method applying a minimum output error approach to 

identify the modal parameters of the structure from earthquake records. Beck (1998) also 

extended his method with a Bayesian probability framework, which treats the identified 

parameter as random variables rather than fixed value parameters. By applying Bayesian 

updating techniques, the probability density function (PDF) of the identified parameters 

was calculated. This method gave not only the optimal values of the identified parameters, 

but also quantified uncertainty in the identified parameters, which is of great importance 

for evaluating the credibility of the identification results. 
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Zheng et al. (2008) introduced a new damage indicator, denoted by the distance 

between ARMA models, to identify structural damage including its location and severity. 

They pointed out that two commonly used distances, the cepstral metric and subspace 

angles, of ARMA models have limitation in accurately predicting the damage when there 

are multiple inputs with strong correlations. To overcome this difficulty, a pre-whitening 

filter was applied. Therefore, the proposed damage indicator was applicable for varieties 

of excitation types in civil engineering, such as wind, traffic loading and earthquake 

excitations. A five-story building model was used for performance verification when 

subjected to different excitations.  

The state-space model is another commonly used model especially for multivariable 

input/output systems to model the dynamics behaviors of structures. A variety of methods, 

such as extended Kalman filter, unscented Kalman filter, ensemble Kalman filter etc., 

have been proposed to estimate the state space response of the model as well as the 

parameters of the model.  

Hoshiya et al. (1984) utilized extended Kalman filter (EKF) to perform system 

identification of seismic structural systems. To obtain the stable and convergent solutions, 

a weighted global iteration procedure with an objective function was incorporated into 

the extended Kalman filter algorithm for stable estimation. The effectiveness of this 

present method was verified on multiple degree-of-freedom linear systems, bilinear 

hysteretic systems, and equivalent linearization of bilinear hysteretic systems. 

Yang et al. (2007) proposed an EKF approach with unknown inputs (EKF-UI) to 

identify the structural parameters, such as the stiffness, damping and other nonlinear 

parameters, as well as the unmeasured excitations. An analytical solution for the proposed 
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EKF-UI approach was derived and presented. An adaptive tracking technique was also 

implemented in the proposed EKF-UI approach to track the variations of structural 

parameters due to damages. Simulation results for linear and nonlinear structures 

demonstrated that the proposed approach was capable of identifying the structural 

parameters and their variations due to damage and unknown excitations. 

Ghanem et al. (2006) pointed out that the accuracy of EKF relies on the simple 

structure of linear dynamical systems excited by Gaussian noise. In situations where 

either the noise is significantly non-Gaussian or the dynamics is highly non-linear, the 

accuracy associated with filtering the linearized system may not be acceptable. To tackle 

the above challenges, they presented a combination of the ensemble Kalman filter (EnKF) 

and non-parametric modelling techniques. EnKF relies on the traditional corrector 

equation of the standard Kalman filter, except that the gain is calculated from the error 

covariance provided by the ensemble of model states. Both location and time of 

occurrence of damage were accurately detected in spite of measurement and modeling 

noise. A comparison between ensemble and extended Kalman filters was also presented, 

highlighting the benefits of the approach. 

Another technique to handle the difficulty of EKF in dealing with strong nonlinear 

system is the unscented Kalman filter (UKF). The  UKF uses a deterministic sampling 

technique known as the unscented transform to pick a minimal set of sample points 

(called sigma points) around the mean. These sigma points are then propagated through 

the non-linear functions, from which the mean and covariance of the estimate are then 

recovered. Compared with EKF, UKF more accurately captures the true mean and 

covariance of the estimation. In addition, UKF removes the requirement to explicitly 

http://en.wikipedia.org/w/index.php?title=Unscented_transform&action=edit&redlink=1�
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calculate Jacobian, which for complex functions can be a difficult task in itself. Wu et al. 

(2007) compared EKF and UKF in estimating the dynamic responses of nonlinear 

structures, whose results show that the UKF produces better state estimation and 

parameter identification than the EKF and is also more robust to measurement noise 

levels.  

2.1.4 ERA and Subspace Identification Methods 

The Eigensystem Realization Algorithm (ERA), one of most commonly used 

subspace identification methods, was proposed by Juang and Pappa (1985). ERA uses a 

singular-value decomposition to derive a minimum-order state-space representation of a 

linear time-invariant system. First, a Hankel matrix is assembled by arranging the 

structure’s impulse responses into the blocks of the Hankel matrix. The order of the 

structural system is determined by examining the magnitude of the singular values of the 

Hankel matrix. A state-space realization is constructed by using the shift block Hankel 

matrix. After obtaining the state-space representation, all modal parameters can be easily 

calculated. 

Later Juang et al. (1988) also introduced a modification to the ERA algorithm, 

called the ERA data correlation algorithm (ERA/DC). ERA/DC uses correlation data of 

structure responses rather than the impulse response to formulate the Hankel matrix. It 

was found that ERA/DC can reduce the effects of measurement noises without over-

specification. 

Caicedo et al. (2004) combined the Natural Excitation Technique (NExT) (James et 

al., 1993) and the ERA to study the phase I IASC-ASCE benchmark structure. The 
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benchmark structure is a 22×  bays 4-story braced frame structure. The damage is 

simulated by removing some story braces. The NExT technique was first used to obtain 

the cross-correlation function from ambient vibration, which in turn served as input to 

ERA. After natural frequency and mode shape data of the structure were calculated from 

ERA, the least-square criterion was then applied to identify the structure stiffness. The 

simulation results showed that the NExT and ERA are successful in identifying the 

structural damage. 

De Callafon et al. (2008) developed a generalized realization algorithm (GRA) to 

identify the modal parameters of linear multiple-degrees-of-freedom dynamic systems 

subject to measured arbitrary input from known initial condition. The GRA extends the 

eigensystem realization algorithm by allowing an arbitrary input signal in the realization 

algorithm. This generalization was obtained by performing a weighted Hankel matrix 

decomposition, where the weighting was determined by the loading. The state-space 

matrices were identified in a two-step procedure that includes a state reconstruction 

followed by a least-squares optimization to get the minimum prediction error for the 

response. The statistical properties of the modal parameter estimators provided by the 

GRA were investigated through numerical simulation based on a benchmark problem. 

2.2 Challenges for SHM 

Although many vibration-based SHM methods have been developed so far, no 

method could be regarded sufficiently accurate, efficient and robust to widely apply to 

real applications. The reasons are discussed in the following subsections. 
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2.2.1 Modeling for SHM 

Picking the right model is crucial in SHM. The model is used to mimic the responses 

or behaviors of the structure; thus, the model should closely replicate the behaviors of the 

real structure. However, due to simplifications in the modeling process and the inherent 

structural uncertainties like material property variation, the model cannot be expected to 

perfectly predict the full behavior of the structure. Moreover, a model which can predict 

the structural behavior very well may be so complicated that it will generate very large 

errors in a subsequent identification procedure (discussed further in the next subsection). 

A trade-off between the accuracy in predicting the structural behavior and the simplicity 

of the model must be made to select an appropriate model for SHM.  

2.2.2 Identifiability and Ill-Conditioning in Identification Optimization 

Usually a large complex structure requires a complicated model with many unknown 

parameters to simulate its full behavior. Solving an identification optimization problem 

with a large number of unknown parameters poses significant challenges. First, the 

optimization problem may possess many local minima/maxima, causing the result of 

gradient-based optimization algorithms to be largely dependent on the (guessed) initial 

searching point. Improper selection of the initial point will result in completely wrong 

identified structural parameters and, thus, incorrect conclusions for the damage detection. 

With an increase in the numbers of unknown parameters, this problem becomes more 

significant. Second, when the number of unknown parameters becomes large, the 

identification problem is prone to be ill-conditioned, meaning that small noise in the 

measured responses will generate very large identification errors in the identified 
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parameters, which of course is a disaster for any structural health monitoring and damage 

detection method. 

2.2.3 Insensitivity to Structural Damage 

Commonly used methods for damage detection, such as structural natural frequency, 

mode shape and so forth, are not very sensitive to local structural damage. As a result, 

small or moderate structural damage are very difficult, if at all possible, to detected. In 

addition, other factors (like environmental temperature) may often lead to larger changes 

in the structural frequency and mode shape than those caused by the damage, making the 

damage detection even more difficult. 

2.3 Methods to Improve the Accuracy of SHM 

In order to improve the accuracy of the damage detection for SHM, some new 

methods have been proposed recently. 

2.3.1 Substructure Identification 

Substructure identification methods, which apply a ‘divide and conquer’ strategy, 

provide a feasible solution to identify a large complex structure. Basically, the 

substructure identification method divides a large structure into many manageable 

smaller substructures, each of which has far fewer DOFs and unknown parameters, and 

carries out system identification for each substructure independently. Frequently, the 

response of the interface DOFs between adjacent substructures are needed to account for 

the interaction force at the interface. Since substructure identification methods greatly 

reduce the number of unknown parameters for the optimization, the aforementioned 

problems of identifiability and ill-condition are alleviated. 
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Koh et al. (1991) first proposed a substructure system identification method in the 

time domain. A large structure is divided into many smaller substructures and an 

extended Kalman filter (EKF) is used to identify the unknown structural parameters of 

each substructure separately. 

Yun et al. (1997) applied a discrete auto-regressive and moving average (ARMAX) 

model to simulate the structural time history responses. The sequential prediction error 

method is used for the estimation of unknown parameters of each substructure with noisy 

measurements. Example analyses are given for idealized structural models of a multistory 

building and a truss bridge. The results indicate that the method is effective for local 

damage estimation of complex structures. 

Tee et al. (2005) presented both first and second-order models for substructure 

identification. The eigensystem realization algorithm (ERA) and the observer/Kalman 

filter identification are used for the first order model, and a least-square method for 

structural time history responses is used for second order model. Numerical examples of 

a 12-DOF system and a larger structural system with 50 DOFs are conducted with the 

effects of noisy responses. Laboratory experiments involving an eight-story frame model 

are performed to illustrate the performance of the proposed method. The identification 

results show that the proposed methodology is able to locate and quantify damage fairly 

accurately. 

Hou et al. proposed to isolate the concerned substructures from the global structure 

via adding virtual forces on the boundary of the substructure. The values of the virtual 

forces are calculated from the measured substructure response in a way that the 

substructure responses on the boundary are zero. The original substructure is converted 
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into an equivalent substructure with the fixed boundary. Then Eigensystem Realization 

Algorithms is applied to identify the model parameters of the fixed boundary substructure, 

which in turn is used to detect the damage in the substructure. 

In order to overcome the difficulties of substructure identification that the responses 

of some boundary DOFs (like rotation) of the substructures cannot be measured and thus 

the interaction forces between adjacent substructures cannot be calculated, Koh et al. 

(2003) proposed a frequency-domain approach for substructure identification without the 

need for measuring of the interface responses. This method uses the product of measured 

substructure responses and the transfer function from boundary interaction force to these 

responses to replace the interaction forces calculated by substructure boundary responses. 

Several numerical examples are given, demonstrating that this method works well when 

the structure is simple and input/output measurement noises are too large. Yuen et al. 

(2006) further combined this method with a Bayesian identification framework to provide 

a probability measure of the identification accuracy. 

2.3.2 Controlled Identification Methods 

To increase the accuracy of damage detection, some researchers have turned to 

structural control techniques for help. The basic idea underlying these methods is that, 

since a structure control system can change the behavior of the structure, by carefully 

choosing the configuration of the control system either more information about the 

structure could be obtained or the sensitivity of the model to the structural damage can be 

improved. 
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Lew et al. (2002) presented an approach to structural damage detection using virtual 

passive controllers attached to a structure. The authors formulate an inverse problem that 

uses n measured frequencies to identify the stiffness of r elements. When n<r, this 

inverse problem becomes intractable. To solve this rank deficiency problem, m virtual 

passive controllers are introduced into structure. A direct output feedback algorithm is 

used to drive the virtual passive controllers. The frequencies of both open-loop and close-

loop systems are measured. Therefore, the total number of the original system’s 

frequencies and the feedback loop frequencies becomes n(m+1), which is greater than r. 

Then, the frequency changes are approximated as linear functions of the element stiffness 

using a truncated Taylor expansion, and this inverse problem is solved by a least squares 

projection. 

Elmasry and Johnson (2002) and Elmasry (2005) utilized variable stiffness and 

damping devices (VSSD) to greatly increase the stiffness and damping of certain parts of 

a structure, and use the frequency response function (FRF) to identify the structural 

parameters. Both numerical and experiment results show that this technique can increase 

the accuracy of the identification. However, while that research has established that there 

are controllable passive strategies that can improve structural parameter identification, 

means of determining where or how much change in VSDD parameters has not yet been 

developed. 

Koh and Ray (2004) proposed using state-feedback control to shift lower structural 

frequencies downward so that the sensitivity of the frequency to the structural damage is 

increased and the damage can be more accurately detected. However, decreases in natural 

frequencies are likely not welcomed by owners of civil structures and could not be easily 
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achieved with controllable passive (semiactive) devices; further, it is well established that 

natural frequencies are less sensitive to damage than other measured or computed 

quantities. 

Jiang et al. (2007) showed that the sensitivity of the natural frequency shift to the 

damage in a multi-degree-of-freedom structure can be significantly influenced by the 

placement of both the eigenvalues and the eigenvectors. And a method is proposed to find 

the optimal assignment of both the closed-loop eigenvalues and eigenvectors and achieve 

the desired closed-loop eigenstructure. 

However, none of these controlled identification studies addresses the question of 

how an imperfect control system will affect the identification results. In reality, there 

always exists some kind of error in the control system, such as time delay for 

computation, measurement noise in the feedback, etc. Since the structural control system 

is involved in the system identification procedure for the aforementioned methods, it is 

inevitable that these errors will affect the final estimates. Indeed, small error in the 

control system may completely offset all of the benefit obtained from the close-loop 

control system identification. 

2.4 Parameter Identification of Shear Structures 

A shear structure, as shown in Figure 2.1, is widely used to model the dynamic 

behavior of building structures. Thus, accurately identifying the parameters of shear 

structures plays a vital role in evaluating the building’s health status and discovering the 

potential damage in the structure.  
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Figure 2.1 A shear structure  

Udwadia et al. (1987) studied the uniqueness of the identification of stiffness and 

damping distribution of a shear structure. An induction procedure was developed to 

estimate structural stiffness and damping from the measured excitation and structural 

responses. Although the authors discussed the uniqueness of the identified parameters for 

the proposed method, they did not investigate the effect of measurement noise on the 

accuracy of identified parameters. 

Masri et al. (1982) proposed a non-parametric identification method for chain-like 

structures (e.g., shear structure). The internal forces between any two adjacent floors 

were represented as nonlinear functions of the interstory displacement and velocity 

responses. These internal forces were expanded in terms of two-dimensional orthogonal 

polynomials. The parameters of the expansion were estimated via a recursive procedure. 

The technique was applied to a model of a steel frame to demonstrate its effectiveness. 

Hernandez-Garcia et al. (2010) applied this method to a three-story test structure; both 
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simulation and experimental results showed that the approach was able to detect the 

presence of structural changes, accurately locate the structural section where the change 

occurred, and provide an accurate estimate of the actual level of change. Nayeri et al. 

(2008) also applied this method to estimate the structural modal properties of a full-scale 

17-story building based on ambient vibration measurements; the estimated structural 

natural frequencies and mode shapes were consistent with the modal parameters 

estimated using the NExT/ERA method. 

In this dissertation, the author will present new identification methods for shear 

structures, developed based on the substructuring methodology. The analyses and 

simulations in this study will show that this method, and some variants of this method, 

can provide very accurate estimation for the parameters of a shear structure. Moreover, 

the accuracy of this method can be further improved by changing the structural responses 

via some specifically designed structural control systems. 
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Chapter 3 

Fourier Transform Based Substructure Identification Method  

By applying “divide and conquer” strategy of substructure identification, an 

innovative substructure identification method, named FFT_SUBID, is proposed in this 

chapter to identify the parameters of a shear structure as shown in Figure 3.1a. 

 

 

 

 

 

 

 

 

 

Figure 3.1 (a) An n-story shear structure (b) the equivalent mechanics model 
of the shear structure 

This chapter is organized as follows. First, the FFT_SUBID identification method is 

formulated, using the Fourier transform of structure floor acceleration responses, to 

identify the parameters of a shear structure (e.g., the story stiffness and damping). Second, 

an approximate method to analyze the identification error of least-square-error 

identification problem is developed and applied to the proposed FFT_SUBID method. 

The results reveal the most important factors determining the identification accuracy for 

the proposed substructure method. Next, by using the results of the identification error 
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analysis, the statistical moments of the identification error are analyzed. A damage 

detection strategy is proposed based on the identified structural parameters. Finally, a 

numerical example of a 5-story building is used to illustrate the efficacy of the proposed 

substructure identification method and the damage detection strategy. 

3.1 Method formulation 

Figure 3.1a shows an n-story shear structure and Figure 3.1b shows the equivalent 

mechanics model of this shear structure. When the inertial coordinate is used to quantify 

the motion of the structure, the dynamic equation of the structure subject to ground 

motion ug can be written in separate equation forms as follows: 

Top floor (i=n): 

 0)()( 11 =−+−+ −− nnnnnnnn xxkxxcxm   (3.1) 

Middle floor (2≤i≤n-1): 

 0)()()()( 111111 =−+−+−+−+ ++++−− iiiiiiiiiiiiii xxkxxcxxkxxcxm   (3.2) 

Bottom floor (i=1): 

 0)()()()( 212212g11g1111 =−+−+−+−+ xxkxxcuxkuxcxm   (3.3) 

where mi is the mass of the ith floor; ci and ki are the damping coefficient and stiffness of 

the ith story; xi is the displacement of the ith floor relative to an inertial reference frame; ug 

is the displacement of the ground; overdots represent derivative with respect to time; and 

n is the number of floors in the structure. It is assumed herein that the mass of the 

structure is known, though a similar analysis with unknown mass is possible.  
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The motion of the top floor is affected only by the top story structural parameters as 

well as by the motion of the top two floors. The proposed substructure identification 

method begins with the top story. Adding 1−− nn xm  to both sides of Equation (3.1) gives 

 1111 )()()( −−−− −=−+−+− nnnnnnnnnnn xmxxkxxcxxm   (3.4)                                   

Taking Fourier transform of Equation (3.4) 

 1111 )()()( −−−− −=−+−+− nnnnnnnnnnn XmXXkXXcXXm   (3.5) 

where iii XXX  ,,  are the Fourier transforms (or the frequency responses) of the ith floor 

displacement, velocity and acceleration responses iii xxx  ,, , respectively. ( iii XXX  ,,  are 

functions of frequency jω which is omitted for notational simplicity.) Assuming that the 

structure is stationary at the beginning and the ending time when the structural responses 

are recorded, we can obtain the following two relations that 2)( ωjXX ii
=  and

ωjXX ii
 = , where j2=–1. Substituting these two relations back into Equation (3.5) 

gives  
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Rearranging Equation (3.5), it can be obtained that 
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The right side of Equation (3.7) only involves the frequency responses (Fourier 

transforms) of the structural acceleration responses, which can be calculated from the 

measured acceleration responses. Then, the structural parameters of the top story [kn cn]T 

can be identified by solving the following optimization problem, which minimizes the 
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second norm of the difference between the two sides of Equation (3.7) over all possible 

frequencies.  

 ( ) ( )∑
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liX ,
̂  stands for the frequency response of the ith measured floor acceleration at frequency 

ωl; ( )Nlll ,,2,1 =∆⋅= ωω  are the discrete frequencies at which the discrete Fourier 

transform of the structural responses are calculated; and Δω is the frequency interval. 

After the top story parameters [kn cn]T are identified, the following induction method 

can be applied to identify the structural parameters of other stories iteratively. Adding the 

term 1−− ii xm   to both sides of Equation (3.2) and following a procedure similar to that for 

Equation (3.7) will give: 
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 (3.9) 

Assuming that structural parameters [ki+1 ci+1]T in the equation are known, the right side 

of the equation can be directly calculated from the measured acceleration responses. Then, 

a similar optimization problem, shown in Equation (3.10), is formulated to identify 

structural parameters [ki  ci]T on the left side of the equation. 
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Since identification problem (3.10) is applicable to the parameter identification of 

every story in the structure except for the top (nth) story, an induction identification step is 

essentially established by Equation (3.10) in which the parameters of any ith story [ki  ci]T 

can be identified if the parameters of the story above (the (i+1)th story) [ki+1 ci+1]T are 

known. The top story structural parameters [kn cn]T  identified from the optimization 

problem (3.8) are already available to initiate the above induction identification process. 

Thus, all structural parameters [ki  ci]T  (i=1,…,n) can be identified iteratively by 

following the identification procedure in Equation (3.10). It is noted that when the 

parameters of the first floor are to be identified, a simple replacement of 1
ˆ
−iX  by gÛ  in 

the optimization problem (3.10) is needed.  

The proposed substructure identification method has several advantages.  

1) It is not required in the method formulation that the substructure identification for 

every floor be performed at the same time; thus, there is no need to 

simultaneously measure the acceleration of all floors. For each step of the 

substructure identification, only the acceleration responses of two or three floors 

are needed.  This potentially reduces the cost of SHM systems, particularly in the 

case of wireless sensor networks when the number of sensors may be limited but 

moving sensors is relatively easy.  

2) In each step of the optimization procedure, there are only two optimization 

variables, making the optimization procedure much easier to execute and much 
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more likely to converge. Moreover, the formulation of each substructure 

identification step is simple and similar (except for the top story substructure 

identification), making it very convenient to analyze which are the most important 

factors that control the accuracy in the identification process (discussed in more 

detail in a subsequent section).  

3) Since each substructure identification step only makes use of the dynamic 

equilibrium of a certain floor substructure in formulating the identification 

problem, the excitation forces, not directly applied on this floor, do not need to be 

measured and will not affect the accuracy of this step identification. This property 

provides two additional attractive features for the proposed method. First, the 

excitation force generated by normal use of the building (such as the movement of 

people in buildings) is usually very difficult to measure. But the unknowns of 

these forces will not affect identification accuracy of the substructure method 

unless they directly apply on the floor where the substructure identification is 

being performed. Therefore, if properly scheduled, the proposed substructure 

method can be implemented with a little interference of the normal use of the 

building: when the substructure identification is performed on a certain floor, only 

this floor will be restricted for the use while other floors can still be accessed as 

normal. Second, as discussed in the chapter 6, the proposed substructure 

identification method is combined with structural control techniques to further 

improve the accuracy. When the control forces are not directly applied on the 

floor where the substructure identification is carried out, the measurement errors 

in the control forces will not directly affect the accuracy of the identification. 
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Thus, the proposed controlled substructure identification is robust to the side 

effects of control system errors. 

However, there is an obvious drawback for this method: since, for each 

identification step (except for the top story), the previous identification results are used as 

known parameters, the uncertainty in the previous identification step(s) will be 

accumulated for later identification, which may result in large identification error in the 

lower floors. This possible error accumulation problem is discussed in more detail in the 

following identification error analysis section; however, first the methodology for 

approximating the error for a general Least-square-error identification is proposed in the 

following section, which will be applied later to derive the identification error for the 

proposed substructure method. 

3.2 Approximate Error Analysis for Least-square-error Identification  

Least-square-error (LSE) identification is one of the most widely used identification 

methods. Through minimizing the second norm of the difference between the prediction 

of a representative model and the measurement of a real system, the system parameters 

are estimated. A LSE identification problem usually has the following form: 
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where )(θlM  is the lth output of the model used to predict the behaviors of the real 

system and is a function of parameter vector T
1 ]  [ Mθθ =θ  to be identified, assumed to 

be real (non-complex); )ˆ(ˆ xlM  is the lth measurement of the system which is a function of 

the direct measurement of the structural responses  T
1 ]ˆ  ˆ[ˆ pXX =x , assumed to be equal 
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to true responses T
1 ]  [ pXX =x  plus some random measurement noises T

1 ]ˆ ˆ[ˆ
pNN =N  

(i.e., NXX ˆˆ += ). 

Assume that the true values of the system parameters are 0θ  and there is no 

modeling error for the system; thus, 

 ( ) ( )xθ ll MM ˆ
0 =  (3.12) 

Using a Taylor series to expand )(θlM  about point 0θ  and )ˆ(ˆ xlM  about point x , 

respectively, and neglecting the second and higher order terms gives: 
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where 0θθθ −=∆  is defined as the parameter identification error, and 
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Substituting Equation (3.12) ~ (3.14) back into Equation (3.11), the original 

optimization problem can be approximated by 
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To solve the optimization problem (3.15), take the derivative of (3.15) with respect 

to θ∆  and set those equations to zero 
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Noting that the terms in parentheses are scalars, transposing and rearranging gives 

 1
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where superscript “*” stands for complex conjugate, superscript “T” stands for transpose 

and superscript “H” stands for complex conjugate transpose. Noting that ∗∗ = )( HT
llll hhhh   

and ∗∗∗ = )ˆˆ(ˆˆ HT NhhNhh llll , the imaginary parts of the terms in parentheses cancel and 

(3.17) simplifies to 
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where Re(·) stands for the real part of a complex number. Then the identification error 

θ∆  could be obtained 
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Although the identification error (3.19) is an approximation, valid only under the 

condition that the measurement noise of the structural response N̂  is not too large and the 

solution θ  of optimization problem (3.8) is near the true value 0θ , it does provide a way 

to estimate the accuracy of the identification method without resorting to time-consuming 

numerical simulations. 
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3.3 Identification Error Analysis for FFT_SUBID Method 

The parameters to be identified in the substructure identification method belong to 

different categories with different units and vastly different magnitudes (e.g., stiffness 

and damping coefficient). To fairly evaluate the efficiency of the identification method 

for every parameter, it is better to compare the identification error on a relative basis. 

Define the integrity index as 

 ( )nicckk iiiciiik ,,1,ˆandˆ === ββ  (3.20) 

where ki and ci are the true (unknown) values of the stiffness and damping coefficients of 

the ith story; ik̂  and iĉ  are the corresponding estimated parameter values. Instead of using 

absolute error value )ˆ( ii kk −  and )ˆ( ii cc −  in analyzing the identification error, relative 

error )1( −ikβ  and )1( −icβ  will be used herein. 

3.3.1 Top Story Identification Error 

  Using the relative parameter values, the identification problem (3.8) is rewritten as 
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Following the procedure proposed in section 3.2, 
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where 1=•β  is the abbreviation for 1=knβ and 1=cnβ ; •• = XX ̂  is the abbreviation of 

lnln XX ,1,1
ˆ

−− =   and lnln XX ,,
ˆ  =  for the sake of notational simplicity. Rearranging Equation 

(3.7) gives 

 )]()()(1[ ,,1
2

,1 lnlnlnnlnnln XXmkmcjX  −−−= −− ωω  (3.24) 

Using the right side of Equation (3.24) to replace the terms in Equation (3.23) that 

equal the left side of Equation (3.23), Equation (3.23) is simplified as  
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Using the result of Equation (3.19), the approximate relative identification error of 

the top story parameters [kn  cn]T becomes 
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where θkn=βkn-1 and θcn=βcn-1 are the relative identification error of the nth story 

parameters kn and cn respectively; lilili XXN ,,,
ˆ  −=  (i=1,…,n) are the Fourier transform 
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of the measurement noise of the ith floor acceleration at frequency ωl; Wij,l are some 

deterministic factors which are the functions of the substructure parameters mn, cn and kn 

as well as frequency ωl. The expression of Wij,l are listed as follows,   

 
[ ]

42

22

1
,11

)()(1

)()()(1

lnnlnn

lnnlnnlnn
l

mkmcj

mkmcjmk
A

W
ωω

ωωω

−−

+⋅
⋅=  

 
[ ]

42

2

2
,21

)()(1

)()()(1

lnnlnn

lnnlnnlnn
l

mkmcj

mkmcjmjc
A

W
ωω

ωωω

−−

+⋅−
⋅=  

 
[ ])()(1)()(1

)(1
222

2

1
,12

lnnlnnlnnlnn

lnn
l

mkmcjmkmcj

mk
A

W
ωωωω

ω

−+−−
⋅=  

 
[ ])()(1)()(1

)(1
222

2
,22

lnnlnnlnnlnn

lnn
l

mkmcjmkmcj

mjc
A

W
ωωωω

ω

−+−−

−
⋅=  

where |·| stands for the magnitude of a complex number and  
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Note that the off-diagonal terms of ∗
ll hhT  are purely imaginary and the diagonal 

terms are purely real. Thus, the inverse in Equation (3.19) is straightforward with the 

diagonal terms of 1/A1 and 1/A2 and zero off-diagonal terms. 

Figure 3.2 shows how the magnitude of four factors Wij,l changes with different 

frequency ωl. In the figure, instead of plotting the magnitude of the factors with respect to 

the absolute frequency ωl, the normalized frequency ωl/ωn0 is used, where ωn0 is the 

natural frequency of the nth story substructure ωn0, defined as nnn mk=0ω . Figure 3.2 

shows an interesting phenomenon that all four weighting factors are significantly large 
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near frequency 0nω  and diminish quickly moving away from 0nω . For this example, the 

structural parameters of the top story substructure are chosen here: 02 nnnn mc ωξ=  and

1.0=nξ . Changing the values of the damping coefficient nc  or damping ratio nξ  only 

affects the sharpness of the peak near the frequency 0nω , but does not invalidate the 

location of the peak (unless the damping is significantly large, which seldom occurs for 

civil structures). 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Magnitude of factors Wij 

Equation (3.26) suggests several insightful points regarding the relationship between 

measurement noise and identification error. First, the terms )( ,1,,1 lnlnln XXN −− −   and 

)( ,1,, lnlnln XXN −−   can be considered as the measurement uncertainty of the structural 

responses, which lead to the identification errors. Since the true structural response of the 

nth interstory acceleration )( ,1, lnln XX −−   is in the denominator of all uncertainty terms, 
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larger nth interstory acceleration response gives smaller measurement uncertainty and, 

thus, more accurate identification. Second, Wij,l can be treated as weighing factors that 

represent the relative importance of the measurement uncertainty in determining final 

parameter identification errors; the uncertainty terms with larger weighting factor 

contribute more to the identification error than those with smaller weighting factor. Since 

all four weighting factors, as shown in Figure 3.2, are significantly large near the 

substructure natural frequency of the top story, 0nω , and diminish quickly when moving 

away from 0nω , the identification errors are mainly determined by the measurement 

uncertainty near the frequency 0nω . Furthermore, if compared with the factors W1j,l and 

W2j,l, which represent the contributions to the identification error of stiffness and damping 

parameters respectively from the same measurement uncertainty term, the magnitude of  

W1j,l is much smaller than that of W2j,l, indicating that the damping estimate of the top 

story will be less accurate than the stiffness estimate of the same floor. Third, while the 

measurement noises lnN ,1−  and lnN ,  can be reduced by using more expensive sensor, 

cable and data acquisition systems, they cannot be eliminated and the cost to reduce them 

significantly may be prohibitive. However, the structural responses could be controlled or 

adjusted by some structural control techniques less expensively, if such a structural 

control system has been installed in the structure to mitigate structural responses due to 

earthquake or high wind. Equation (3.26) suggests that if the structural response is 

controlled such that )( ,1, lnln XX −−   is large within some frequency range around 0nω , an 

equivalent or even better reduction of measurement uncertainty can be achieved relative 
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to an expensive measuring system and, thus, more accurate identification results can be 

obtained. 

3.3.2 Non-top Story Identification Error 

In the parameter identification of the ith story ( ni < ), the identified parameters of 

the (i+1)th story are used as known input; thus, the identification error of these parameters 

from the previous step will inevitably affect the accuracy of the current identification step. 

Therefore, besides the structural response noises, the uncertainties of identification results 

from previous identification steps must be considered. Using the relative parameters βki 

and βci, the identification problem in (3.10) could be rewritten as  
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Following a procedure similar to the top story gives 
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 (3.29) 

Rearranging Equation (3.9) gives 
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Using the right side of (3.30) to replace the terms in (3.29) that equal the left side of (3.30) 

and simplifying will give 
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Then the relative identification error of the optimization problem (3.10) can be 

obtained as 
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where θk(i+1)=βk(i+1)-1 and θk(i+1)=βc(i+1)-1 are the relative identification error of the (i+1)th 

story parameters ki+1 and ci+1, respectively. Uij,l are deterministic factors as follows, 
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The identification error in Equation (3.32), indeed, does come from two kinds of 

uncertainty sources: The first part of the right side of the equation is directly related to 

measurement noise and the second is due to the uncertainty from parameter estimates of 

the story above. As shown in Figure 3.3, all factors lijU ,  possess characteristics similar to 

factors lijW , : the magnitudes of the factors have peaks near the natural frequency of the ith 

story substructure 0iω , defined by iii mk=0ω , and decay very fast when moving to 

lower and higher frequency. (It is assumed in Figure 3.3 that 1+= ii kk , 1+= ii cc  and 

02 iiii mc ωξ=  where 1.0=iξ .)  As in the top story identification, the weighting factor 

ljU ,1  has a much smaller magnitude than that of ljU ,2 , which indicates a similar 

conclusion that the damping estimates are less accurate than the stiffness estimates. 

Following an analysis methodology similar to that used in the top story case, it can 

be easily concluded that the identification error of the ith story parameters can be reduced 

by (a) maximizing the frequency response of the ith interstory acceleration )( ,1, lili XX −−   

in a frequency range around the ith story substructure natural frequency 0iω , which 

reduces the errors due to the measurement uncertainty; (b) minimizing the frequency 
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response ratio between the (i+1)th interstory acceleration and the ith interstory acceleration, 

)()( ,1,,,1 lililili XXXX −+ −−  , in the same frequency range, which reduces the propagation 

errors caused by the parameter estimate errors of the (i + 1)th story.  

 
Figure 3.3 Magnitude of factors Uij 

3.4 Statistical Moments for Identification Error 

Since the proposed substructure identification method uses LSE identification to 

estimate structural parameters, it only offers the optimal estimate of these parameters, but 

does not provide much information as to how accurate their estimates will be, which is of 

importance for giving users confidence in the identification results. Based on the previous 

result of the approximate identification error analysis, a method to estimate the first two 

statistical moments (mean and variance) of the identification error is studied in this 

section. The result not only helps to better comprehend the performance of the proposed 
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substructure method in real uncertain circumstances, but also provides some important 

suggestions to further improve its accuracy. 

3.4.1 Top Story Identification Case 

From the result of Equation (3.25), identification errors of top story parameters are 

associated with three kinds of terms: Fourier transforms of noise ljN , , Fourier transforms 

of the nth true (noiseless) interstory acceleration )( ,1, lnln XX −−  , and the weighting factors

lijW , . Factors lijW ,  are only related to the structural parameters of the top story and, 

thereby, are deterministic values; in contrast, the measurement noise terms and the 

structural response terms change for every identification and are considered to be random 

in nature. For the sake of notational simplicity, define complex noise vector 

[ ] N
NnNnnnn NNNN 2

,,11,1,1 CN ∈= −−   and structural response vector 

[ ] N
Nnnn CX ∈∆∆= ,1,   where lnlnln XX ,1,, −−=∆  . Since the true structural responses 

ln,∆  appear in the dominator of the uncertainty terms in Equation (3.25), if the magnitude 

of any of them is zero the identification error given in Equation 3.25 will tend to infinity. 

In order to prevent the occurrence of such a situation, an event A, which occurs when the 

magnitude of all structural responses ln,∆   ( )Nl 1=  are no less than a very small 

positive value ln,ε ( )Nl 1= , is defined. Instead of directly calculating the statistic 

moments of the identification error θ (for notational simply, generic symbol θ  is 

introduced here to represent the identification errors of stiffness θkn and damping θcn) 
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with respect to all possible realization of random variables nN  and nX , the statistical 

moments conditional on event A is computed as follows,  
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 (3.33) 

where g(θ) equals θ when calculating the mean and equals (θ-E[θ|A])2 when computing 

the variance; ( )ΑXNXN |,A|, nnnn
p  is the joint probability distribution function of noises 

nN  and structural responses nX conditional on the event A; ( )AXNXN ,|A,| nnnn
p  is the 

conditional probability of noise nN  on given structural response nX  in the event A, 

which equals ( )nn
p NN  due to the assumption that the measurement noise and structural 

responses are independent; ( )AXX |A| nn
p  is the conditional probability distribution 

function of structural responses nX  in event A; ( )[ ]AX ,|E nθg  is the conditional statistic 

moment of identification error θ on given structural response nX  in the event A. 

In order to simplify the analysis, three assumptions are made hereafter: 

1. The measurement noise and the true structural response are statistically 

independent. 

2. The measurement noise is a zero-mean white Gaussian vector process and the 

measurement noises of different structural responses are statistically independent. 
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3. The true structural responses can be modeled as one or several independent zero-

mean white Gaussian processes passing through a linear time invariant (LTI) 

system.  

Based on the above three assumptions, it is shown in the Appendix A that (a) any 

element in the random vector nX  (and nN ) is a zero-mean circular complex Gaussian 

random variable, which implies that the real and imaginary part of a complex random 

variable are independent zero-mean Gaussian variables with the same variance, equal to 

one half of the variance of the magnitude of the complex variable; and (b) any two 

elements in the vector nX  (and nN ) are independent of each other.  

Define two new complex random variables, 
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Obviously, the identification errors of top story parameter ncθ  and  ncθ  just become the 

real part of the newly defined complex variable nkΘ  and ncΘ , respectively. Applying the 

result of Lemma 1 in Appendix A, it can be easily shown that, for a given deterministic 

realization of structural response nX  in the event A, the conditional random variables 

“ A,| nnk XΘ ” and “ A,| nnc XΘ ” become zero-mean complex circular Gaussian random 

variables. Therefore, the conditional mean and variance of the identification error on 

given structural responses nX  in the event A can be calculated as 
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where 



= −−

2
,1

2
,1 E lnln Nσ  and 



=

2
,

2
, E lnln Nσ . 

Furthermore, integrating Equation (3.35)~(3.38) with respect to all structural 

responses X  in event A gives 
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Since the structural responses ( )Nlln 1  , =∆  are mutually independent zero-mean 

circular complex Gaussian variables, the probability density function (PDF) of the 

random variable ln,∆  follows Rayleigh distribution 
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where 



 ∆=∆

2
,

2
, lnln Eσ ; then, the conditional PDF of ln,∆ given that ε≥∆ ln,  becomes 
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where ( )2
,

2
,, 2exp)(P lnlnlnn xC ∆−=≥= σεε . Therefore, the expectation value in the right 

side of Equation (3.40) and (3.41) can be computed as 
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Changing the integration variable, define lnxz ,∆= σ . Then,  
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Putting the result of Equation (3.45) back into Equation (3.40) and (3.41), the 

conditional variance of the identification errors, [ ]A|VAR knθ  and [ ]A|VAR cnθ , will be 
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The conditional variance in Equation (3.46) & (3.47) for the top story substructure 

depict the scatter of the identification error given that the event A occurs. Clearly, we 

need to pick the values for ( )Nlln ,,1, =ε  such that event A is very likely to occur; 

thus, the conditional variances in Equation (3.46) and (3.47) approximately reflect the 
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real situation of the scatter of the identification error. One of simplest ways to select ln,ε  

values is that let  lnln ,, ∆= ασε  l∀ , where α  is a very small positive scalar value that 

reflects the user-chosen possibility of the occurrence of event A. Then, the probability of 

event A can simply be calculated as 
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and lQ  in Equation (3.44) and (3.45) are also simplified as 
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3.4.2 Non-top Story Identification Case 

Similar to the top story analysis case, two new complex random variables are 

defined for the non-top story identification as 
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 (3.50) 

Then, the identification errors, kiθ  and ciθ , become the real parts of these newly defined 

complex variables. For the sake of notational simplicity, define complex noise vector 

[ ] N
NiNiNiiiii NNNNNN 3

,1,1,11,11,1,1 CN ∈= −−−−−   and structural response 

vector [ ] N
Niii CX ∈∆∆= ,1,   where lilili XX ,1,, −−=∆  . Similar as in the analysis of the 
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top story, an event B, which occurs when the magnitude of any structural responses li,∆  

is no less than a very small positive value li,ε , is introduced. li,ε  is equal to the standard 

deviation of the structural response li,∆σ  multiplied by a positive number α . The mean 

and variance of identification error conditional on the event B are calculated. 

As seen from Equation (3.50), the identification errors of the ith story parameters, 

kiθ  and ciθ , are related to the measurement uncertainty as well as the identification errors 

from the (i+1)th story. In order to reduce the problem difficulty to a manageable level, 

besides the three assumptions previously made in the top story identification analysis, 

two additional more restrictive assumptions are made here. 

4. The identification error of the (i+1)th story parameters, )1( +ikθ  and )1( +icθ , are 

considered to be deterministic values when calculating the statistical moments of 

the identification errors of the ith story parameters. 

5. There is only one independent excitation in the structure, other excitations (e.g., 

control forces from structural control systems in the subsequent chapter of 

controlled substructure identification), if existed, can be determined by this 

independent excitation. 

Since the PDF of the identification errors of the (i+1)th story parameters are 

unknown and difficult to obtain, the first assumption provides a solution to overcome 

such a difficulty. As for the second assumption, it is shown that, based on this assumption, 

the ratio between the (i+1)th and ith interstory acceleration responses, 

)()( ,1,,,1 lililili XXXX −+ −−  , become a function of the structural parameters only that 
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will not change under different random excitations (assuming infinitely long records to 

determine the Fourier transforms). Therefore, the second part of Equation (3.50), related 

to the (i+1)th story parameter errors, becomes a deterministic value during different 

identifications.  

The estimate error (3.50) has two parts: the first part, related to the errors from the 

measurement uncertainty, is a random term with characteristics similar to those on the 

right side of Equation (3.34); the second part turns out to be some deterministic values in 

this analysis because of assumption 4 and 5. Applying a technique similar to that for the 

top story, the conditional mean and variance of the identification errors can be computed 

as   

  [ ] [ ]








+= ∑
=

++

N

l
iclikllki UUH

1
)1(,15)1(,14ReB|E θθθ  (3.51) 

 [ ] [ ]








+= ∑
=

++

N

l
iclikllci UUH

1
)1(,25)1(,24ReB|E θθθ  (3.52) 

 [ ] ( )α
σ

σ

σ

σ

σ

σ
θ QUUU

N

l li

li
l

li

li
l

li

li
lki ⋅












++= ∑

= ∆

+

∆∆

−

1
2

,

2
,12

,132
,

2
,2

,122
,

2
,12

,112
1B|VAR  (3.53) 

 [ ] ( )α
σ

σ

σ

σ

σ

σ
θ QUUU

N

l li

li
l

li

li
l

li

li
lci ⋅












++= ∑

= ∆

+

∆∆

−

1
2

,

2
,12

,232
,

2
,2

,222
,

2
,12

,212
1B|VAR  (3.54) 

where )()( ,1,,,1 lilililil XXXXH −+ −−=   is the transfer function from the ith interstory 

acceleration response ( )1−− ii xx   to the (i+1)th interstory acceleration response ( )ii xx  −+1 ; 





=

2
,

2
, E ljlj Nσ  ( )1,,1 +−= iiij  is the variance of measurement noise; 



 ∆=∆

2
,

2
, E liliσ is 

the variance of the ith interstory acceleration response; )(αQ  is given in Equation (3.49).  
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Different from the result of the top story case, the conditional means for the non-top 

story estimate errors are not zeros, so there exists a bias in the estimates of non-top story 

parameters, which are related to the parameter estimate errors of the story above as well 

as the frequency response ratio between two adjacent interstory accelerations 

)()( ,1,,,1 lililili XXXX −+ −−  . The smaller this response ratio, the smaller the bias will be. 

The conditional variances possess similar features as that of top story estimate; the 

variance of interstory acceleration responses near this story substructure natural 

frequency 0iω  plays a critical role in determine the variance of identification errors, with 

larger response variance leading to smaller variance of identification errors. 

3.4.3 Comments on Statistical Moments of Identification Error 

The conditional variances in Equations (3.46) & (3.47) for the top story substructure 

and Equations (3.53) & (3.54) for the non-top story substructure depend on the value of 

α . As α  goes to zero the probabilities of the events A and B, P(A) and P(B), approaches 

to unity and the conditional variances in Equations (3.46) & (3.47) and Equations (3.53) 

& (3.54) will converge to the (unconditional) variances of the identification error. 

However, as shown in Figure 3.4, the integral value ( )αnQ  increases with the decrease of 

α value. Moreover, it can also be shown that as α  goes to zero, the value ( )αnQ  tends to 

infinity. Does this result really imply that the variance of the identification errors for the 

identification problems (3.8) & (3.10) is infinity? (This is a horrible conclusion if it were 

true.) In author’s opinion, the answer should be negative. Because the conditional 

variance in Equations (3.46) & (3.47) and Equations (3.53) & (3.54) are derived on the 
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basis of the result of the identification error analysis shown in Equations (3.26) and (3.32) 

which are obtained based on the assumption that the identification error is not too large. 

Recall that these estimates of the relative identification errors are approximate due to the 

first-order truncation of the Taylor series expansion in Equations (3.13) and (3.14). Thus, 

if the identification error is too large, Equations (3.26) and (3.32) are not appropriate to 

exactly calculate the distribution of the identification errors. Therefore, the conditional 

variance in Equations (3.46) & (3.47) and Equations (3.53) & (3.54) can only offer good 

approximation of the error variance when the identification errors are not too large. If 

Equations (3.46) & (3.47) and Equations (3.53) & (3.54) provide very large variance 

estimation, that results may not be reliable. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 The value of function Q(α)  

However, the analysis of the identification error variances does point out an 

important fact that the proposed substructure identification method in (3.8) and (3.10) 

may give estimation results with very large errors, when some of the interstory 

acceleration responses ),...,1(  nii,l =∆   are very small. If many substructure 
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identification tests have been carried out, it is very likely that some tests provide outlier 

results that are far away from the true values of the structural parameters.  

Furthermore, since all weighting factors lijW ,  and lijU ,  are significantly large near 

the substructure natural frequency and diminish very fast when moving away from that 

frequency, the variances of the identification errors are mainly determined by the 

variances of the magnitude of the interstory acceleration responses near the key 

substructure natural frequency. The larger structural responses, the smaller identification 

error variances are. This result complies well with the identification error analysis (3.26) 

in the previous section, except that the previous result depicts the identification error in 

one identification experiment while this result offers the statistics of many random 

experiments. Moreover, this result also implies that magnifying the variance of the 

magnitude of the nth interstory acceleration responses near the key frequency 0nω  (e.g., 

by some structural control technique) can significantly reduce the variance of 

identification error and, thus, improve identification accuracy. 

3.5 Damage Detection Strategy 

Structural damage is often associated with the reduction of the stiffness of structural 

members and the increase of structural damping. Thus, continuously monitoring the 

change of the structural stiffness and damping parameters, identified by the proposed 

substructure identification method, provides a way to detect the onset and location of 

structural damage. However, due to the existence of inevitable uncertain factors, like 

measurement noise, in the identification process, there are always some variations in the 

identification results among different tests even for the same structure. In order to 
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discriminate whether the change of the identified parameters results from the normal 

variation of the identification results or is caused by the onset of structural damage, a 

statistical hypothesis test is performed. It is assumed herein that before conducting any 

damage detection, many substructure identification tests have been carried out for the 

healthy (undamaged) structure, providing data of “normal” scatter of parameter estimates, 

particularly the mean and the standard deviation of the identified structural parameters 

from the undamaged structure.  

A hypothesis, H0, is established which states that the structure being tested is 

undamaged or, equivalently, the structural stiffness and damping parameters are not 

changed compared with that of the undamaged structure. To verify the correctness of this 

hypothesis, the structural parameters are estimated via the substructure identification 

method for the structure of unknown condition (damaged or undamaged). If one observes 

a significant decrease in the estimated structural stiffness parameters and/or a 

considerable increase of the estimated structural damping parameters, compared with the 

normal distribution of parameters form the undamaged structure, then the hypothesis will 

be rejected, indicating that damage has occurred in the structure; otherwise the hypothesis 

will be accepted, implying that the structure is undamaged.  

Let θ̂  denote the estimated values of the structural parameter vector θ  used to 

detect structural damage; let θm  be the mean vector, and  θS  be the variance matrix of 

the parameter vector θ  for the undamaged structure. The conclusion about the hypothesis 

test is made as follows: if the Mahalanobis distance (Mahalanobis, 1936) between the 

estimated parameters θ̂  and the mean value of the parameters θm are large, i.e.,
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β>−− − )ˆ()ˆ( 1T
θθθ mθSmθ , then the hypothesis is rejected, indicating the occurrence 

of the structural damage; otherwise the hypothesis is accepted, implying that the structure 

is intact. β  is a positive scalar parameter, which is adjustable to reflect the user’s 

preferences in the damage detection process. 

There are two kinds of errors associated with this hypothesis test. The first error is 

miss detection, that is, when the structure is damaged but the hypothesis is accepted, 

indicating that the structure is undamaged. The failure to detect the existent damage may 

pose a great threat to the structural safety and lead to catastrophic results, which should 

definitely be avoided. The second error is faulty detection, that is, when the structure is 

undamaged but the hypothesis is rejected, implying the occurrence of the damage in the 

structure. Although the consequence of the faulty detection is not as severe as the miss 

reporting, this error should also be avoided as much as possible. Too many false alarms 

about the structural damage will quickly make the damage detection system lose the trust 

of the public, leading to the system being abandoned. Changing the β value mentioned in 

the last paragraph can adjust the probability of these two errors. However, no matter how 

one changes the parameter β, when the probability of one error decreases, the probability 

of the other increases. 

In order to improve the accuracy of damage detection and reducing both kinds of 

possible errors in the process, a new hypothesis test procedure, the majority vote of n 

tests, is proposed herein. In the new procedure, n (n is an odd number) substructure 

identification tests are carried out and a hypothesis test with the same β is performed for 

each identification results independently. Then, the final decision of the hypothesis for 
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the damage detection is determined by the majority results of all individual hypothesis 

testing. For example, if three individual hypothesis tests are carried out and the two of 

them suggest rejecting the hypothesis (indicating the structure is damaged), then final 

decision is to reject the hypothesis. 

The performance of newly proposed hypothesis testing method is analyzed as 

follows. Let p be the probability that one individual hypothesis test will make the wrong 

decision and Pn be the probability that the majority of n hypothesis tests will make the 

wrong decision. Since all n tests are independent each other, the probability Pn follows a 

binomial distribution. Thus, one can easily calculate the probability Pn  with n=1,3,5 as 

 ( ) ppP =1  (3.55) 

 ( ) ( ) 32
3 1

2
3

ppppP +−







=  (3.56) 

 ( ) ( ) ( ) 5423
5 1

4
5

1
3
5

ppppppP +−







+−








=  (3.57) 

It is worth pointing out that Pn is a function of the error probability p and P1 

corresponds to the error probability of the original hypothesis test when only one test is 

performed. Figure 3.5 shows the value Pn/P1 (n=3,5) changes with different p value, 

which demonstrates that if p is less than 0.5, the value Pn/P1 are always less than unity, 

indicating the improvement of the detection accuracy. Moreover, when the p value is 

close to zero, Pn/P1 are very small, which suggests the great reduction in the probability 

that the majority of n test will make the wrong decision. For example, if p=0.1,   

P3/P1=28% and P5/P1=9%, implying the 72% and 91% reduction in the error probability, 
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respectively, if 3 or 5 tests are performed together to make the decision about the 

structural damage instead of only one test being performed. 

Since p can be the error probability for either the first or the second kind of error of 

the hypothesis testing, the newly proposed the hypothesis testing method, majority vote 

of n tests, can simultaneously reduce both kind of errors in the hypothesis testing if p is 

less than 0.5. 

 
 
 

 

 

 

 

 

 

 

 

Figure 3.5 How Pn/P1 changes with different p values 

 

3.6 Illustrative Examples 

A 5-story uniform shear structure excited by ground acceleration is used to illustrate 

the effectiveness of the proposed substructure identification method. The parameters of 

the structure are chosen to be mi=1×105 kg, ci=8×105 N·sec/m, and ki=16×107 N/m 

(i=1…5). The natural frequencies and damping ratios of the structure are listed in Table 

3.1.  
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The ground excitation gu  is generated by a Gaussian random pulse process passing 

through a 4-th order band pass Butterworth filter with the low cut-off frequency at 1Hz 

and the high cut-off frequency at 12Hz. 

Table 3.1 Modal properties of the 5-story structure 

Mode Number 1 2 3 4 5 

Frequency 
(radian/second) 11.3 33.2 52.4 67.3 76.8 

Damping Ratio 
(%) 

2.85 8.31 13.1 16.8 19.2 

 

3.6.1 Substructure Identification with Undamaged Structure 

To check if the proposed identification method works consistently well, 100 

identification tests are performed. In each test, 120 second ground and floor acceleration 

responses, with a sampling rate of 200Hz, are generated and used to carry out 

substructure identification. Substructure identification is carried out using the Fourier 

transform of the noisy floor accelerations up to 12Hz. 

Two levels of noise, 5% and 20%, are added to the simulated structural responses to 

mimic the effect of the measurement noise. 5% (or 20%) noise means that the root-mean-

square (RMS) value of the measurement noise is equal to 5% (or 20%) of the RMS of the 

ground excitation. It is also assumed herein that magnitude of the measurement noise of 

all acceleration responses is the same. The measurement noise is modeled by a band-

limited Gaussian white noise with the cut-off frequency at 100Hz. Figure 3.6 shows an 

example of first two seconds of the 5th story acceleration response, which demonstrates 

how much the structural response is distorted by the measurement noise. From the figure, 



 
 

73 

it can be seen that 5% noise represents a relatively small level of the disturbance, which 

is almost unnoticeable without zooming in; 20% noise represents a medium level of 

disturbance which does not greatly change the structural responses but can be easily 

observed. 

 
Figure 3.6 The 5th floor noisy acceleration response with and without 

measurement noise 

When identifying the ith story parameters [ki  ci]T (i≠n, thus not the top story), the 

parameters of the (i+1)th story [ki+1 ci+1]T are needed. Hence, two identification scenarios 

are considered here: 1) 100 tests are carried out independently, that is, the jth 

identification test result (j=1,…,100) for the (i+1)th story parameters are used to perform 

the  jth identification test for the ith story parameters; 2) To reduce the identification errors 

in the ith story parameters caused by the identification of the (i+1)th story parameters, in 

the second scenario, the mean values of 100 substructure identification results for the 
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(i+1)th story parameters are used to perform all 100 substructure identification tests for 

the ith story parameters. 

a) Identification Results with 5% Noise  

The statistics of the identification results of the 100 tests with 5% noise disturbance 

are listed in Tables 3.2 and 3.3 for the above two scenarios respectively. From the 

identification results of both scenarios, it can be seen that with 5% measurement noise the 

proposed substructure identification provides quite accurate estimates for the stiffness 

parameters. For example, the largest relative root-mean-square-error (RMSE) of the story 

stiffness estimate (RMSE value divided by the true parameter value) is only about 3.8%. 

However, the accuracy of the identified damping parameter is just mediocre, which 

attests numerically to the error analysis result that the damping estimates are less accurate 

than stiffness estimates. For the results of the second identification scenario, since instead 

of all 100 estimates of the (i+1)th story parameters, the more accurate mean values of 

these estimates are used to perform substructure identification for the ith story parameters, 

which actually reduces the identification error in the ith story parameters caused by the 

errors in the (i+1)th story estimated parameters. Therefore, almost all identified 

parameters become more accurate in the second scenario compared with those in the first 

scenario except for the top story parameters. 
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Table 3.2 The statistics of the identification results with 5% noise (scenario 1: all 
substructure identification are carried out independently) 

Story 
number 

Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 
1626 

(1.6%)* 
2.5% 1.9% 

7.84 
(-2.0%)* 7.5% 7.3% 

2 
1633 

(2.0%) 
2.7% 1.8% 

8.11 
(1.3%) 

7.1% 7.0% 

3 
1633 

(2.1%) 
3.8% 3.2% 

9.64 
(20.1%) 

25.7% 16.0% 

4 
1604 

(0.2%) 
1.1% 1.0% 

8.62 
(7.9%) 

10.9% 7.6% 

5 
1602 

(0.2%) 
0.8% 0.8% 

8.33 
(4.1%) 

6.8% 5.5% 

*: relative error for mean estimate 

 
Table 3.3 The statistics of the identification results with 5% noise (scenario 2: the 

parameters of the (i+1)th story are taken as the average of all previous identification results) 

Story 
number 

Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 
1626 

(1.7%) 1.8% 0.6% 
7.84 

(-2.0%) 3.3% 2.7% 

2 
1635 

(2.2%) 
2.3% 0.5% 

8.12 
(1.5%) 

3.5% 3.2% 

3 
1635 

(2.2%) 
2.8% 1.8% 

9.61 
(20.0%) 

24.3% 13.7% 

4 
1601 

(0.1%) 
0.6% 0.6% 

8.60 
(7.6%) 

8.5% 3.8% 

5 
1601 

(0.1%) 
0.8% 0.8% 

8.34 
(4.2%) 

8.0% 6.8% 
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Figure 3.7 Magnitude of the transfer functions from ground excitation to 
interstory acceleration 

 

Figure 3.8 Magnitude of the frequency response ratio between the third and 
second interstory acceleration 

Comparing the accuracy of the parameter estimates in different stories in both 

scenarios shows an interesting phenomenon. Although the proposed substructure method 

has a drawback of identification error accumulation from the top story to the bottom as 
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previously mentioned in the identification error analysis section, in the simulation the 

largest parameter identification error in terms of relative RMSE value does not occur in 

the first story but in the third story. 

To explain this phenomenon, first recall the results of the previous identification 

error analysis, which states that the identification accuracy of the ith story (i≠n) 

parameters are significantly influenced by two structural responses: 1) the frequency 

response of ith interstory acceleration )( 1−− ii XX 
 near the substructure natural frequency, 

which affects the identification error due to the measurement uncertainty; 2) the 

frequency response ratio between two adjacent interstory acceleration 

)()( 11 −+ −− iiii XXXX   near the same substructure natural frequency, which affects the 

identification error caused by the error accumulation from the estimates of the story 

above. As shown in Figure 3.7, the transfer function from ground excitation to the third 

interstory acceleration has a relatively small magnitude near the story substructure natural 

frequency 40 radian/sec, which indicates that the third interstory acceleration response is 

small near the story substructure natural frequency. Therefore, it is expected that the third 

story estimates should contain much larger error. Moreover, Figure 3.8 shows the 

magnitude of the frequency response ratio between the third and second interstory 

acceleration, which is very small magnitude near the substructure natural frequency 40 

radian/sec. This observation in Figure 3.8 explains the fact that although the estimated 

third story parameters contain large errors, their error accumulation to the second story 

parameter estimation will still be quite small due to the small frequency response ratio 
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)()( 1223 XXXX  −−  near the substructure natural frequency and, thus, the largest 

identification error occurs in the third but not in the second or first story. 

Table 3.4The statistics of the identification results with 20% noise (scenario 1: all 
substructure identifications are carried out independently) 

Story 
number 

Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 
1785 

(11.6%) 
12.5% 5.0% 

10.9 
(36.6%) 42.7% 22.2% 

2 
1754 

(9.6%) 
10.2% 3.3% 

11.9 
(48.5%) 

51.5% 17.2% 

3 
1601 

(0.1%) 
12.6% 12.6% 

15.9 
(99.4%) 

99.4% 3.7% 

4 
1570 

(-1.9%) 
4.1% 3.7% 

11.4 
(43.3%) 

47.2% 18.8% 

5 
1589 

(-0.7%) 
1.8% 1.6% 

9.1 
(13%) 

16.4% 9.6% 

 

Table 3.5 The statistics of the identification results with 20% noise (scenario 2: the 
parameters of the (i+1)th story are taken as the average of all previous identification results) 

Story 
number 

Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 
1769 

(10.6%) 
11.0% 3.0% 

10.61 
(32.6%) 35.0% 12.7% 

2 
1750 

(9.4%) 
9.7% 2.5% 

11.64 
(45.5%) 

47.0% 11.9% 

3 
1601 

(0.1%) 
5.4% 5.4% 

15.71 
(96.4%) 

96.9% 10.0% 

4 
1560 

(-2.4%) 
3.2% 2.0% 

11.29 
(41.1%) 

42.5% 10.8% 

5 
1587 

(-0.8%) 
1.6% 1.4% 

9.06 
(13.3%) 

14.7% 6.2% 
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b) Identification Results with 20% Noise  

The statistics of the identification results of the tests with 20% noise disturbance are 

listed in Tables 3.4 and 3.5 for the both identification scenarios respectively. As the noise 

level increases 4 times from 5% to 20%, the RMSE of the identified parameters are also 

drastically increased, indicating very large errors in the identified parameters. Hence, 

under the medium level (20%) of noise disturbance, the proposed substructure 

identification method cannot provide any accurate results for the parameter identification. 

3.6.2 Damage Detection via Substructure Identification 

In this section, the damage detection strategy proposed in the section 3.5 is applied 

to perform the damage detect for the structure. It is assumed that the structural damage 

occurs at the first, third and fifth stories, which results in the reduction of the story 

stiffness by 5% and the increase of the story damping by 20%.  

The results of the substructure identification of the undamaged structure show that 

with 5% noise the substructure identification method provides relatively good estimation 

results, while with the noise increasing to 20% the identification results become very 

noisy. Therefore, the damage detection tests are only performed at the 5% noise level, 

which means that the noise level in the substructure identification tests are all 5% for 

both undamaged and damaged structure. 

To establish the “normal” distribution of the identified parameters for the 

undamaged structure, 100 substructure identifications are performed on the undamaged 

structure under the same level of noise disturbance. The identification results of these 

tests are used to calculate the mean and covariance of the identified structural parameters, 
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which, in turn, are used to carry out the hypothesis tests. In order to test the performance 

of the proposed damage detection strategy to correctly identify the health status of the 

structure, 1500 independent substructure identifications are carried out on the damaged 

structure and used in the hypothesis test to determine whether or not the structure is 

damaged. To see the effect of the number of identifications used for each hypothesis test, 

these 1500 identifications are grouped as 1500 sets of one identification each (n=1), 500 

sets of three identifications each (n=3), and 300 sets of five identification each (n=5). A 

hypothesis test is performed for each group using the method proposed in section 3.5. 

The percentages of the hypothesis tests that give the correct health status of the structure 

are shown in Table 3.6. The β value is selected as 3 in the hypothesis tests (i.e., “damage” 

is assumed if the parameter vector has changed by more than three standard deviations 

from the healthy state). 

The results in Table 3.6 shows that when only one identification is used in the 

hypothesis testing, the damage in each of the first and the fifth stories is almost 100% 

percent correctly identified; however, there is about a 15% chance that the undamaged 

second and fourth story are mistakenly reported as the damaged, and 20% chance that the 

damage at the third story are not detected. As the number of the identifications used in 

each hypothesis test increases, the chances that hypothesis tests make the corrected 

decision also increase, verifying that the proposed hypothesis test method, using n 

identifications together to make the decision, is effective in improving the probability to 

make the right decision about the health status of the structure.  
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Table 3.6 The percentage of the hypothesis tests which give the corrected conclusion about 
the structural health status 

Floor Number 
n 

1 3 5 

1 99% 100% 100% 

2 84% 94% 96% 

3 80% 90% 94% 

4 85% 94% 98% 

5 100% 100% 100% 
    

Although using more identification results to perform the hypothesis test improves 

the accuracy of the damage detection, it does requires more substructure identifications 

be carried out, increasing the costs of running the SHM system. Moreover, as shown in 

Figure 3.5, if the error probability p is close to 0.5, the improvement of the accuracy of 

the hypothesis test by using more identification results is very limited. 

Thus, the key to increasing the accuracy of damage detection lies in improving the 

accuracy of parameter identification in substructure identification method.    
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Chapter 4 

 Transfer Function Based Substructure Identification Method  

It is well known that structural acceleration measurements are generally very noisy, 

which will have a large effect on identification accuracy, especially when the frequency 

response of the interstory acceleration of the story being identified is very small near its 

substructure natural frequency. To reduce the effect of the noise and improve the 

identification accuracy, an improved transfer function based substructure identification 

method, TF_SUBID, is proposed in this chapter. Instead of directly using the Fourier 

transform of noisy acceleration response, this method utilizes transfer functions of 

structural response at different times, averaged together in the frequency domain, to 

formulate the identification problem. Although the TF_SUBID method can only be 

applied if certain constraints are satisfied (discussed later), it is shown herein that the 

improved method does greatly reduce the identification error caused by measurement 

noise. 

4.1 Using Transfer Functions to Formulate Substructure Identification 

Equation 4.1 shows the key identification equation for the top story substructure 

identification in the Fourier transform based method in Chapter 3.  
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− −
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 (4.1) 

Dividing both numerator and denominator of the right side of Equation (4.1) by 1−nX  

gives 
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where 11 −=
− nnxx XXH

nn


 . 

11 −=
− nnxx XXH

nn


  can be interpreted as the transfer function from the (n-1)th floor 

acceleration response 1−nx  to the nth floor acceleration response nx , if such a transfer 

function exists. This observation inspires the author to think of using the transfer 

function(s) between structural acceleration responses rather than the Fourier transform of 

the acceleration responses to formulate the identification problem. There is an averaging 

technique which can provide more accurate estimation of the transfer function, compared 

with the above method of calculating the transfer function by directly taking the 

frequency response ratio between input and output of the system. More accurate 

estimation of the transfer function will, in turn, lead to more accurate estimation of the 

structural parameters in the substructure identification. However, to apply this averaging 

technique requires that 1) the estimated transfer function should not change with different 

inputs and 2) long stationary input and output responses are available. In order to satisfy 

these requirements, the following three assumptions are made in this study. 

1. There is only one excitation source in the structure. As a consequence, the 

frequency response ratios between any two noise-free structural responses 

become a deterministic transfer function, which is a function of the structural 

parameters only and is independent of the excitation. 

2. The noise measurements of different sensors are wide sense stationary (WSS) (i.e., 

the first and second moments of the noise do not vary with respect to time), zero-
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H 

unuu +=ˆ

un−

û u y ŷ

yn
ynyy +=ˆLTI 

mean, independent of one another and also independent of the true structural 

responses. 

3. All structural responses involved in each substructure identification step are 

required to be jointly wide sense stationary, which ensures that the power 

spectrum and cross power spectrum of structural responses do not change with 

time. Therefore, by averaging the structural response at various times, the effects 

of measurement noise can be reduced and, thus, more accurate transfer functions 

can be obtained. 

4.2 Transfer Function Estimation via Averaging Method 

A review of the method for estimating the transfer function of a single-input-single-

output (SISO) system using long stationary noisy measurements is given in this section. 

 

 

 

 

Figure 4.1 shows a linear SISO time-invariant system (LTI) H.  u and y here are the 

true (noiseless) input and output of the system respective. Let H(jω) denote the transfer 

function (or frequency response function) of the system H that satisfies the equation: 

( )UjHY ω= , where U and Y are the Fourier transforms of the input u and output y, 

respectively. The measurements of the input and output signals are corrupted by additive 

white noise, such that uNUU +=ˆ  and yNYY +=ˆ , where uN  and yN  are the Fourier 

Figure 4.1 The flowchart of a linear SISO system H 
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transforms of the measurement noises. It is assumed here that measurement noises are 

white noises that are statistically independent of the true structural responses and 

mutually statistically independent of each other; i.e., 

 [ ] [ ] [ ] [ ] [ ] 0EEEEE ===== ∗∗∗∗∗
yuyuyu NNYNYNUNUN   (4.3) 

Then, the transfer function H(jω) can be estimated by the following method 

(Pintelon et al., 2001) 
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where )(ˆ ωjH  denotes the estimated transfer function from the noisy measurements, E[·] 

is the expectation operator, and ][E][E)( ∗∗= UUNNj uuu ωα  is the noise-to-signal-ratio 

(NSR) of the input u at the frequency ω. The derivation of Equation (4.4) uses the 

conclusions from Equation (4.3), which states that by averaging long stationary structural 

responses some noise effects are eliminated.  

It is worth pointing out that the error of the estimated transfer function from (4.4) is 

only related to the input noise uN  and has nothing with the output noise yN . Reducing 

the NSR of the input u can improve the accuracy of the estimated transfer function. 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Rik%20Pintelon�
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4.3 Transfer Function Based Substructure Identification (TF_SUBID) 

Using the result from section 4.2, the transfer functions among different responses 

are estimated and used to formulate the identification problems in the new transfer 

function based substructure identification method. 

4.3.1 Top Story Identification  

Equation (4.1), the key identification equation for the top story substructure, is 

related to two structural responses, 1−nx  and nx , on its right side. Treating either of these 

two responses as the input and the other as the output when calculating the transfer 

functions used in the substructure identification problem, the key identification equation 

can be rewritten as either of the following two equations  
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where 
1−nn xxH   and 

nn xxH  1−
 stand for the transfer function from 1−nx  to nx  and the transfer 

function from nx  to 1−nx , respectively.  

When there is no measurement noise, both transfer functions 
1−nn xxH  and 

nn xxH  1−
 are 

equal to their true value, so using either Equation (4.5) or (4.6) to formulate the 

identification problem will give the same and exact results of the structural parameters. 

However, if the noisy structural responses are used to estimate these transfer functions, 

the accuracy of the two transfer functions will be different. According to the results from 

the last section that the accuracy of the estimated transfer function is determined by the 
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NSR of the input )( ωα ju  (with a smaller value of )( ωα ju  leading to a more accurately 

estimated transfer function), it would be wise to select the transfer function that is more 

accurate than the other (or, in another words, which has smaller input NSR), to formulate 

the substructure identification problem to improve the accuracy of the parameter 

identification. Furthermore, since the NSR )( ωα ju   is a function of the frequency ω, the 

above selection procedure can be carried out at each frequency individually. Therefore, 

the new substructure identification problem for the top story substructure is formulated 

via the transfer functions between the structural responses,  
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 and lxx nn

H ,1
ˆ

 −
 stand for the estimated transfer functions from the noisy 

measurements 1
ˆ

−nx  and nx̂  using the method given in Equation (4.4) at frequency lω . At 

the frequency ωl, which measurement, )ˆ(ˆ
,

1
1 lxxl nn

Hf
−

 or )ˆ(ˆ
,

2
1 lxxl nn

Hf  −
, will be used in the 

identification problem (4.7) depends on which structural response, nx  or 1−nx , has 

smaller NSR at that frequency. If it is assumed that the noise level for every measured 

structural responses are same (the term in the numerator of NSR), then the above 

criterion can be simplified to chose the structural response which has larger power 
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spectrum (the term in the denominator of NSR) at the frequency ωl in formulating the 

identification problem (4.7). 

4.3.2 Non-top Story Identification 

Following a similar procedure, the key identification equation for the ith non-top 

story substructure (Equation 3.9) can be rewritten into the following three equations by 

using different structural responses as the system input.    
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where
jk xxH   denotes the transfer function from the response jx  to the response kx . Based 

on these three equations, the new substructure identification problem for the ith non-top 

story substructure can be formulated as. 
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where lxx jk
H ,
ˆ

 denotes the estimated transfer function from the measured response jx̂  to 

the measured response kx̂  at frequency lω  by using the averaging method in Equation 

(4.4). Which measurement ( )ˆ,ˆ(ˆ ,,
1

111 lxxlxxl iiii
HHg

−+−  , )ˆ,ˆ(ˆ ,,
2

11 lxxlxxl iiii
HHg  +−

 or 

)ˆ,ˆ(ˆ ,,
3

111 lxxlxxl iiii
HHg

++−  )  will be used in the identification problem (4.11) at the frequency 

ωl depends on which structural response ( 1−ix  , ix  or 1+ix ) has the largest power 

spectrum at that frequency. 

4.4 Identification Error Analysis 

In this section, the identification error analysis method proposed in section 3.2 is 

used to analyze the identification error of the newly proposed TF_SUBID method. 

4.4.1 Top Story Identification Error  

Since the optimization problem (4.7) has two possible measurements, )ˆ(ˆ
,

1
1 lxxl nn

Hf
−

 

and )ˆ(ˆ
,

2
1 lxxl nn

Hf  −
, that can be used in the identification at each frequency, and since a 

different choice may be used in the identification at different frequencies, the 

identification error analysis method proposed in the section 3.2 cannot be directly applied 

here. However, the proposed selection algorithm, choosing which transfer function is 

used in the identification at each frequency, is designed to make the identification results 
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more accurate. Therefore, the identification errors for identification problem (4.7) should 

be less than the errors if either of the two transfer functions ( )ˆ(ˆ
,

1
1 lxxl nn

Hf
−

 and 

)ˆ(ˆ
,

2
1 lxxl nn

Hf  −
) were used exclusively. Using the error analysis method proposed in the 

section 3.2, the identification errors using either of the two measurement exclusively in 

the identification could be calculated, which will serve as some upper bound of the 

identification error for identification problem (4.7). 

Similar to the identification error analysis for the Fourier transform based method in 

Chapter 3, the error analysis for the new method is also carried out for the relative 

identification errors of the structural parameters. Using the relative parameter values, 

identification problem (4.7) is rewritten into two separate identification problems (4.12 

and 4.13), in each of which one of the two transfer functions is exclusively used. 
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a) The identification errors for identification problem 4.12 

Following the error analysis procedure proposed in section 3.2, 
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Rearranging Equation (4.5) gives both to the following 
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Put the result of Equations (4.16) and (4.17) back into Equation (4.15) to get 
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Using the results of the identification error analysis in Equation (3.19) as well as the 

relation that the true transfer function equals the ratio between the Fourier transform of 

the noiseless input and output signals, the approximate relative identification errors of 

identification problem (4.12) becomes 

 
[ ]

∑
= −

−−













−

−
⋅








≈







 N

l lnln

lnln

l

l

cn

kn

XX
X

W
W

1 ,1,

,1,1

,21

,11
)1(

)1(

)(
1

Re


 γ
θ
θ

  (4.19) 



92 

where the superscript (1) on the left side of the above equation is used to denote that this 

identification error is calculated by exclusively using the transfer function )ˆ(ˆ
,

1
1 lxxl nn

Hf
−

. 

The expressions of the deterministic factors lW ,11  and lW ,21  are give in Equation (3.26).  

From the results of the transfer function estimation in the section 4.2, it can be 

obtained that )1/(1 ,1,1 lnln −− += αγ , where [ ] [ ]2
,1

2
,1,1 ||E||E lnlnln XN −−− = α

 
is the NSR of 

the structural response 1−nx  at the frequency ωl. Using the approximation that 

 1)1/(1 ,1,1 lnln −− −≈+ αα  if 1 ,1 <<− lnα , the identification errors in Equation (4.19) are 

simplified as 
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b) The identification errors for problem 4.13 

Following a similar procedure, the identification error for problem (4.13) can be 

derived as follows. 
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Rearranging Equation (4.6) gives both of the following 
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Put the result of Equations (4.22) and (4.24) back into (4.22)  
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Using the result of (3.19), the approximate relative identification error of the 

identification problem (4.13) becomes 
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where the superscript (2) on the left side of Equation (4.26) is used to denote that this 

identification error is calculated by only using the second transfer function ( )lxxl nn
Hf ,

2
1

ˆˆ
 −

; 

[ ] [ ]2
,

2
,, ||E||E lnlnln XN =α  is the NSR of the structural response nx  at the frequency ωl; 

the expressions of the deterministic factors lW ,11  and lW ,21  are given in Equation (3.26). 

c) Comments on the results of the identification error analysis 

As noted in Chapter 3, factors W11,l and W21,l  in Equation (4.20) and (4.26) are 

significantly large only near the nth story substructure natural frequency inn mk=0ω ; 

thus, the identification errors are mainly determined by the measurement uncertainties 

near frequency 0nω . To reduce the identification error, the uncertainty terms, ln ,1−α  and 

ln,α , should be as small as possible in that frequency range; alternately, the corresponding 

structural responses [ ]2
,1 ||E lnX −

  and [ ]2
, ||E lnX  (the denominator of the uncertainty 

terms) should be as large as possible in the same frequency range. 
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Moreover, Equations (4.20) and (4.26) contain some of the same terms such as 

deterministic factors lW ,11  and lW ,21  as well as the frequency response ratio

)( ,1,,1 lnlnln XXX −− −  ; hence, comparing the magnitude of the identification errors 

calculated by these two equations simplifies to comparing the magnitudes of the 

uncertainty terms ( ln ,1−α  and ln,α ) in these equations. Assuming that the power spectra of 

measurement noise at different locations are same (the numerator of the uncertainty terms 

ln ,1−α  and ln,α , [ ] [ ]2
,

2
,1 ||E||E lnln NN =− , are same), the identification errors in the two 

equation are  determined by the magnitudes of power spectra [ ]2
,1 ||E lnX −

  and [ ]2
, ||E lnX  

(the denominators of ln ,1−α  and ln,α ). 

From Equation (3.7), it can be easily derived that 
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Then, the power spectra [ ]2
,1 ||E lnX −

  and [ ]2
, ||E lnX  have the following relation 
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Since the deterministic transfer function on the right side of Equation (4.28) (the part in 

front of [ ]2
,1 ||E lnX −

 ) is significantly larger than one near the substructure natural 

frequency 0nω ,  the power spectrum of the top story response, [ ]2
, ||E lnX , is much larger 

than that of the story below [ ]2
,1 ||E lnX −

  near the substructure natural frequency 0nω . As 

a result, the top story response lnX ,
  will be exclusively selected as the system input to 
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formulate the identification problem near the substructure natural frequency 0nω  (the key 

frequency range to determine the identification errors). 

Moreover, using the relation given in Equation (4.27), Equation (4.26) can be 

rewritten as 
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where the expressions of the deterministic factors lW ,12  and lW ,22  are give in Equation 

(3.26). 

d) Comparison of the Identification Errors between TF_SUBID and 
FFT_SUBID methods (non-top story) 

Comparing the identification errors of the TF_SUBID method for the top story 

parameters in Equations (4.20) and (4.29) with the corresponding identification errors of 

the FFT_SUBID method in Equation (3.26), it is found that the identification errors in 

both methods share the same weighting factors (W11,l, W21,l, W12,l and W22,l) as well as the 

frequency response of interstory acceleration )( ,1, lnln XX −−   in the denominator of the 

uncertainty terms. Therefore, the comparison of the two methods simplifies to comparing 

the numerator of the uncertainty terms in these two methods,

),1(  and ,,, nnj αXN ljljlj −= . Because these two quantities are both zero-mean complex 

random variables, the variances of these random variables are compared by computing 

their ratio:  

 [ ] [ ] [ ] [ ] lj
lj

lj
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2
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,
2

,
2

,
2

,
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,, ||E||E||E||E ==⋅=   (4.30) 



96 

where Equation (4.30) uses the definition of the noise-to-signal ratio (NSR), 

[ ] [ ] ljljlj NX ,
2

,
2

, 1||E||E α= , in Chapter 3. Since lj,α  is, in general, much smaller than 

unity, the variance of ljlj αX ,,
  is much smaller than that of ljN , , implying that for the top 

story parameter identification, the TF_SUBID method will provide much more accurate 

identification results than the FFT_SUBID method. 

Moreover, there is a common term, the frequency response of the top story interstory 

acceleration )( ,1, lnln XX −−  , in the numerator of all uncertainty terms. Al factors lijW ,  are 

significantly large near the substructure natural frequency 0nω . Hence, significantly 

amplifying the interstory response )( ,1, lnln XX −−   near the substructure natural frequency 

0nω  will greatly improve the identification error. This is the same conclusion that was 

obtained for the FFT_SUBID method. 

4.4.2 Non-top Story Identification Error 

Similar to what has been done for the top story substructure identification problem, 

Equation  (4.11) can be rewritten into the following three separate identification problems, 

each of which exclusively uses one of the three measurements in the identification 

process. 

In the parameter identification of the ith story ( ni < ), the identified parameters of 

the (i+1)th story are used; thus, the parameter identification error of the (i+1)th story from 

the previous step will inevitably affect the accuracy of the current step identification and 

should be included in the identification error analysis. Using the relative parameters βki 
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and βci, the identification problem in (4.11) that uses the first transfer function forms 1ˆ lg

exclusively could be rewritten as  
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From the results of the transfer function estimation in section 4.2, it can be shown that 
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Then, identification problem (4.31) can be simplified as  
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Similarly, the other two identification problems for identification problem (4.11), 

exclusively using the second and third transfer function forms, can be formulated as 
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Using the identification error analysis method proposed in section 3.2, the 

identification errors of problems (4.32) ~ (4.34) are obtained respectively. 

a) The identification errors of identification problem 4.32 
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 (4.36) 

Rearranging Equation (4.8) gives 
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Replacing the terms in Equation (4.36), which equal the right side of Equation (4.37), by 

the left side of Equation (4.37), Equation (4.36) are simplified as 
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Using the results of the identification error analysis in Equation (3.19) as well as the 

relation that the true transfer function equals the ratio between the Fourier transform of 

the noiseless input and output signals, the identification error for problem (4.32) can be 

obtained as 
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where the expressions of factors U11,l, U21,l, U14,l, U24,l, U15,l and U25,l are given in 

Equation (3.32).

 
b) The identification errors of identification problem 4.33 
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 (4.41) 

Rearranging Equation (4.9) gives 
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Replacing the terms in Equation (4.41), which equals the right side of Equation 

(4.42), by the left side of Equation (4.42), Equation (4.31) are simplified as 
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Using the result of the identification error analysis in Equation (3.19) as well as the 

relation that the true transfer function equals the ratio between the Fourier transform of 

the noiseless input and output signals, the identification error for the problem (4.33) can 

be obtained as 
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 (4.44) 

where the expressions of factors U12,l, U22,l, U14,l, U24,l, U15,l and U25,l are given in 

Equation (3.32).

 
c) The identification errors of identification problem 4.34 
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 (4.46) 

Rearranging Equation (4.10) gives 
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Replacing the terms in Equation (4.46), which equals the right side of Equation (4.47), by 

the left side of Equation (4.47), Equation (4.46) are simplified as 
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Using the results of the identification error analysis in Equation (3.19) as well as the 

relation that the true transfer function equals the ratio between the Fourier transform of 

the noiseless input and output signals, the identification error for the problem (4.34) can 

be obtained as 
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where the expressions of factors U13,l, U23,l, U14,l, U24,l, U15,l and U25,l are given in 

Equation (3.32).

 
d) Comparison of the Identification Errors between TF_SUBID and 

FFT_SUBID methods (non-top story) 

Comparing the identification errors of the TF_SUBID method for the non-top story 

parameters (in Equations (4.39), (4.44) and (4.49)) with the corresponding identification 

errors of the FFT_SUBID method (in Equation (3.32)), it is found that the second part of 

the identification errors of the TF_SUBID method, due to the estimation errors of the 

(i+1)th story parameter, is same as that of the FFT_SUBID method. This suggests that the 

TF_SUBID method does not reduce the identification errors propagated from errors in 

the parameter estimates for the story above. 

However, if the first part of the identification errors for both methods are compared, 

which are due to the measurement noise of structural responses, the TF_SUBID method 

does improve the identification accuracy for the same reason as discussed in the analysis 

of the top story parameter identification. Furthermore, all measurement uncertainty terms 

in the transfer function based method share the same denominator terms, )( ,1, lili XX −−  , 

and all factors lijU ,  are significantly large only near the substructure natural frequency 

0iω ; therefore, significantly amplifying the interstory response, )( ,1, lili XX −−  , near the 
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substructure natural frequency 0iω  will greatly improve the identification error. This is 

the same conclusion that was obtained for the FFT_SUBID method. 

4.5 Illustrative Examples 

The same 5-story shear structure used in Chapter 3 is used again here to demonstrate 

the effectiveness of the TF_SUBID method. The parameters of the structure are mi=1×105 

kg, ci=8×105 N·sec/m, ki=16×107 N/m (i=1…5). 

4.5.1 Substructure Identification with Undamaged Structure 

The TF_SUBID method requires long stationary structural responses to calculate the 

transfer functions used to formulate the identification problems. Thus, 1800 second 

structural responses, with a sampling rate of 200Hz, are simulated to calculate the 

transfer functions between different structural responses. The 1800 second responses are 

divided into many shorter response segments, each of which is 60 seconds in length. 

Welch’s method (see section 5.2 for detailed information about this method) is applied to 

compute the power spectral densities of the responses, which is in turn used to calculate 

the transfer functions needed for the substructure identification. The MATLAB® routines 

pwelch and cpsd are used to calculate the power spectral densities of the structural 

responses; Hamming windows are applied to filter the structural response with a 25% 

overlap between the adjacent frames of the response. 

Since it is expected, according to the identification error analysis, that the 

TF_SUBID method will provide much more accurate results than the FFT_SUBID 

method, larger levels of noise, 20% and 40%, are added to the simulated structural 

responses to mimic the effect of the measurement noise. 20% (or 40%) noise means that 
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the root-mean-square (RMS) value of the measurement noise is equal to 20% (or 40%) of 

the RMS of the ground excitation. It is also assumed herein that the magnitude of the 

measurement noise of all acceleration measurement is the same. The measurement noise 

is modeled by a band-limited Gaussian white noise with a cut-off frequency at 100Hz. 

Figure 4.2 shows an example of first two second of the response of the 1st story 

acceleration, which demonstrates how much the structural response is distorted by the 

measurement noise. It is easily seen that 40% noise largely distorts the true structural 

response, posing a big challenge for the identification method to give accurate estimation 

of the structural parameters. 

 

Figure 4.2 The 1st floor noisy acceleration response with and without 
measurement noise 
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Using “scenario 1” of Chapter 3, 100 independent substructure identifications via 

the TF_SUBID method are performed with 20% and 40% noise respectively. The 

statistics of the identification results are listed in Tables 4.1 and 4.2 respectively.  

Compared with the identification results of the FFT_SUBID method in Table 3.4, 

the TF_SUBID provides much more accurate identification results: when the medium 

level  (20%) of noise are existed in the measured structural responses, the TFF_SUBID is 

simply not able to give any sufficiently accurate results for damage detection tasks; while, 

with 20% noise disturbance the TF_SUBID method provides excellent identification 

results, with accuracy even better than that of the FFT_SUBID method with much 

smaller (5%) noise disturbance (compared Table 4.1 with Table 3.2). Moreover, even for 

the story damping parameters, which are much difficult to accurately identify than the 

story stiffness parameters, the TF_SUBID method manages to give quite accurate 

estimates (the maximum relative RMSE value of all damping parameters is only 3.5%). 

As measurement noise increases to a fairly large level (40%), the accuracy of TF_SUBID 

method decreases to some extent but is still able to provide acceptably good identification 

results. 

The error analysis in section 4.4 shows that, similar to the FFT_SUBID method, the 

accuracy of the TF_SUBID method is largely affected by the frequency response of the 

interstory acceleration ),1(  )( ,1, n,...iXX lili =− −
  near the substructure natural frequency

0iω , with larger response corresponding to smaller identification errors. As shown in 

Chapter 3, that the third interstory acceleration is significantly smaller near its 

substructure natural frequency (40 rad/sec), so it is expected that the identification error 
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of the third story parameters is much larger than that of others, which is verified by the 

simulation results.  

Table 4.1 The statistics of the identification results with 20% noise  

Story 
number 

Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 
1600 

(0.0%)* 
0.3% 0.3% 

8.09 
(1.2%)* 1.7% 1.2% 

2 
1602 

(0.1%) 
0.3% 0.3% 

8.07 
(0.9%) 

1.7% 1.4% 

3 
1587 

(-0.8%) 
0.9% 0.5% 

8.20 
(2.5%) 

3.5% 2.5% 

4 
1595 

(-0.3%) 
0.4% 0.2% 

7.97 
(-0.3%) 

1.0% 0.9% 

5 
1601 

(0.1%) 
0.1% 0.1% 

7.95 
(-0.6%) 

0.9% 0.6% 

*: relative error for mean estimate 

 
Table 4.2 The statistics of the identification results with 40% noise  

Story 
number 

Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 
1597 

(-0.2%) 
0.7% 0.7% 

8.38 
(4.8%) 5.8% 3.3% 

2 
1604 

(0.1%) 
0.7% 0.7% 

8.22 
(2.8%) 

5.3% 4.5% 

3 
1559 

(-2.6%) 
3.1% 1.8% 

8.62 
(7.8%) 

10.4% 6.8% 

4 
1585 

(-0.9%) 
1.0% 0.5% 

7.99 
(-0.2%) 

2.0% 2.0% 

5 
1604 

(0.3%) 
0.4% 0.3% 

7.82 
(-2.3%) 

2.6% 1.3% 
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4.5.2 Effects of Structural Response Length on Identification Accuracy 

Since the TF_SUBID method uses long stationary structural responses to estimate 

the transfer functions, needed to formulate the substructure identification problems, this 

section investigates the effects of the length of stationary structural responses on the 

accuracy of the substructure identification. 

 

 

 

 

 

 

 

 

Figure 4.3 The relative mean of the estimated stiffness with different 
length of the structural responses 

 

 

 

 

 

 

 

 

Figure 4.4 The relative mean of the estimated damping with different 
length of the structural responses 
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Figure 4.5 The relative standard deviation of the estimated stiffness with 
different length of the structural responses 

 

 

 

 

 

 

 

 

 

Figure 4.6 The relative standard deviation of the estimated damping with 
different length of the structural responses 

Figures 4.3~4.6 show the changes of relative mean error and standard deviation of 

the estimated stiffness and damping parameters, respectively, with different length of the 

structural responses being used to perform the substructure identification. As longer 
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structural responses are used, the estimated transfer functions, used in the substructure 

identification, have smaller variance, leading to smaller variances of the estimated 

structural parameters as shown in Figures 4.5 and 4.6. However, the transfer function 

estimation method in section 4.2 is a biased estimation method, which means that the 

estimated transfer function does not converge to its true value as the length of structural 

responses increases; thus, the TF_SUBID method is also a biased estimator for the 

structural parameter. This is verified by the Figures 4.3 and 4.4, showing that the mean 

errors of the estimated parameters do not decrease as additional structural responses are 

used in the identification. 

4.5.3 Damage Detection Results 

Applying the damage detection strategy proposed in section 3.5, damage detection 

tests are performed by using structural parameters estimated by the TF_SUBID method.  

The damage scenario of the structure is the same as that in Chapter 3: the structural 

damage occurs at the first, third and fifth stories, which results in a reduction of the story 

stiffness by 5% and an increase of the story damping by 20%. Since the TF_SUBID 

method is able to provide quite good estimates of the structural parameters with both 20% 

and 40% noise disturbance, damage detection tests are carried out at both noise levels.  

In order to test the ability of the proposed damage detection strategy to correctly 

identify the health status of the structure, 600 independent substructure identifications 

using the TF_SUBID method are carried out on the damaged structure; the results are 

used in the hypothesis test to determine whether or not the structure is damaged. The 

number of the substructure identifications that each hypothesis test uses to reach the 
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conclusion is selected as 1,3 or 5 respectively. According to the number of the tests each 

hypothesis test uses, the identification results of 600 tests are divided into groups and a 

hypothesis test is performed for each group using the method proposed in section 3.5. 

Since the identified structural parameters of the undamaged structure have quite small 

variances, a larger β value, 5, is selected in the hypothesis tests to reduce the probability 

of the second kind error of the hypothesis test – faulty detection. The percentage of the 

hypothesis tests that give the correct health status of the structure with two different 

levels of noise disturbance are shown in Tables 4.3 and 4.4 respectively.  

Table 4.3 The percentage of the hypothesis tests which give the correct 
conclusion about the structural health status with 20% noise 

Floor Number 
n 

1 3 5 

1 100% 100% 100% 

2 92% 96% 100% 

3 100% 100% 100% 

4 87% 96% 98% 

5 100% 100% 100% 
 

Table 4.4 The percentage of the hypothesis tests which give the correct 
conclusion about the structural health status with 40% noise 

Floor Number 
n 

1 3 5 

1 100% 100% 100% 

2 91% 97% 100% 

3 100% 100% 100% 

4 61% 67% 73% 

5 100% 100% 100% 
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Due to the smaller variance of the identified structural parameters of the undamaged 

structure, the proposed damage detection procedure perfectly accurately identifies all 

structural damage under both levels of noise disturbance. However, in some cases the 

damage detection procedure does make some mistakes of labeling the undamaged 

structural members as being damaged, especially when the measurement noise level is 

high. This is partially due to the fact that large noises in the measured structural responses 

cause the estimated transfer functions used in formulating the substructure identification 

problems to have large bias, leading to a biased estimation of the structural parameters. 

When structural damage occurs, structural responses will be changed according, which 

results in the change of the noise level relative to the structural response and, thus, leads 

to the migration of the bias of the estimated parameters. Such a migration may cause the 

misdetection of the healthy structural members.    

Moreover, as the number of the identifications, n, that each hypothesis test uses to 

make the decision increases, the chances that hypothesis tests make the correct decision 

also increase, which verifies that the proposed hypothesis test method, using n 

identifications together to make the decision, is effective in improving the probability to 

make the right decision about the health status of the structure. However, the derivation 

of this technique in Chapter 3 observed that if the probability that the hypothesis test with 

one identification result is large and close to 50%, increasing the number of identification 

results used in each hypothesis test can only provide limited improvement in increasing 

the accuracy of the hypothesis test. This is verified by the hypothesis test result of the 

fourth story structure under 40% noise disturbance. In that case, the error probability of 

the hypothesis test with one identification result is quite large (100%–61%=39%); thus, 
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using more identification results in each hypothesis test only provides quite moderate 

improvement of the accuracy of the hypothesis test: the error probability of the 

hypothesis test only decreases from 39% with one identification result to 27% with five 

identification results. 

The results of the hypothesis test in this section imply that it is important to reduce 

the bias in the estimate of structural parameters in order to further improve the accuracy 

of hypothesis test.  
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Chapter 5 

Cross Power Spectral Density Based Substructure Identification 
Method  

In Chapter 3, an innovative substructure identification method (FFT_SUBID), 

formulated by using the Fourier transform of floor acceleration responses, is proposed to 

identify the parameters of a shear structure. However, due to the noisy nature of the 

acceleration measurements, this method cannot provide accurate results when the 

measurement noise is not small. To improve identification accuracy in larger noise cases, 

an improved transfer function based substructure method (TF_SUBID) is put forward in 

Chapter 4, which does greatly improve the identification accuracy. However, the 

implementation of the TF method requires that 1) there is only one excitation source 

affecting the structure, and 2) very long stationary structural responses are available. 

These constraints, especially the first one, severely restrain the wide application of the 

TF_SUBID method.  

In this chapter, a new substructure identification method based on a cross power 

spectral density (CSD_SUBID) is derived from the differential equation governing the 

structural random responses. This method not only overcomes the previous constraints 

required by TF_SUBID method but also further improves the identification accuracy. A 

reference response, which is jointly wide sense stationary (WSS) with all structural 

responses, is introduced. The cross power spectral density (CSD) between the 

acceleration responses of the substructure and this reference response, calculated by 

averaging long stationary responses in the frequency domain, are used in formulating the 

new substructure method. Since the new CSD_SUBID method is just like the 
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FFT_SUBID method with the exchange of some structural response parameters, an 

identification error analysis for the CSD_SUBID method is directly obtained by 

accordingly modifying the results of the error analysis of the FFT_SUBID method 

presented in Chapter 3. Based on the error analysis of the CSD_SUBID method, a smart 

selecting algorithm is proposed to determine the optimal reference response candidate 

that can further reduce the effect of measurement noise and improve identification 

accuracy. Moreover, the explicit formulas to calculate the variances of the estimated 

parameters are derived for the CSD_SUBID method, which makes it possible for this 

method to provide the optimal identified parameters as well as the confidence interval of 

these estimates. Although the CSD_SUBID method is originally derived under the 

assumption that the structural responses are wide sense stationary, it is subsequently 

shown that, with little change, the CSD_SUBID method can be directly extended to 

handle the identification with non-stationary responses. Finally, the proposed 

CSD_SUBID method is tested on two shear structures; the results demonstrate the 

efficacy of this new method and verify many analysis results for this method.  

5.1 Method Formulation 

The dynamic equation of an n-story shear structure subject to ground excitation can 

be written for each story substructure as follows: 

Top floor (i = n): 

 0)]()([)]()([)( 11 =−+−+ −− txtxktxtxctxm nnnnnnnn   (5.1) 

Middle floor (2≤i≤n-1): 
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Bottom floor (i = 1): 
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 (5.3) 

where im  is the mass of the ith floor; ic  and ik are the damping coefficient and stiffness 

of the ith story; ( )txi  and ( )tug  are the displacements of the ith floor and ground relative 

to an inertial reference frame at time t; and overdots represent the derivatives with respect 

to time t. It is assumed here that the mass of the structure is known. 

The motion of the top floor is affected only by the top story structural parameters as 

well as by the motion of the top two floors. Thus, the substructure identification will start 

with the top floor as follows. Adding )(1 txm nn −−   to both side of Equation (5.1), 

multiplying both sides by a reference response at an earlier time )( τ−ty  and taking the 

expectation will give 

 )()()()(
1111 )()()( ττττ
−−−−

−=++ −−− nnnnnnn xynyxxnyxxnyxxn RmRkRcRm   (5.4) 

where [ ])()(E)( ττ −= tytxRxy  is cross correlation function between the responses )(ty

and )(tx . Here it is assumed that the reference response )(ty  and all structural responses 

are jointly WSS. 

When  )(ty  and )(tx  are joint WSS process, their cross correlation function satisfies 

the following equation (Bendat et al., 2000) 

 )()( )(
)( ττ m

xyyx RR m =  (5.5) 
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Let )(mx  denote the mth derivative of random process )(tx  with respect to time, and 

)()( τm
xyR  denotes the mth derivative of the correlation function )(τxyR with respect to τ.  If 

the mean square derivatives exist, Equation (5.4) can be rewritten as 

 ( ) ( ) ( ) )()()()(
1111
ττττ yxnyxxnyxxnyxxn nnnnnnn

RmRkRcRm
−−−−

−=++ −−−
  (5.6) 

Taking a two sided Fourier transform of both sides of (5.6), rearranging the order of 

the terms and exploiting the property )()()( 2 RFjRF ω=  (where F denotes the Fourier 

transform operator and  j2=−1) gives 
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 (5.7) 

where )( ωjSS yxyx jj  = , the Fourier transform of the cross correlation function )(τyx j
R  , 

is the cross power spectral density (CSD) function between the reference response y and 

the structural acceleration response jx  (herein, jω is often omitted for notational 

simplicity).  

Since the right side of Equation (5.7) only involves the CSD between the structural 

acceleration responses and the reference response, all of which can be calculated directly 

from the measurements, the structural parameters T]  [ nn ck   can be identified by solving 

the following optimization problem that minimizes the difference between the two sides 

of Equation (5.7) over all frequencies. 

 ∑
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where 
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and where )(ˆˆ
, lyxlyx jSS

ii
ω =  (i=1,…,n) stands for the CSD at frequency ωl between the 

ith floor acceleration ix  and the reference response y as estimated from the measured 

(noise contaminated) responses; ),...,1(   Nlll =∆⋅= ωω  are discrete frequencies at 

which the CSD are calculated and Δω  is the frequency interval. 

After T]  [ nn ck  have been identified, the following induction method can be used to 

identify structural parameters of other stories in the following manner. Adding 1−− ii xm   

to both sides of Equation (5.2) and following a similar procedure as in the top story 

parameter identification gives 
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Assuming that structural parameters T
11 ]  [ ++ ii ck  in Equation (5.9) are known, the right 

side of the equation can be directly calculated from the measured acceleration responses. 

Then, a similar optimization problem, shown in Equation (5.10), is formulated to identify 

the structural parameters T]  [ ii ck  on the left side of Equation (5.9): 
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Since the identification problem (5.10) is applicable to the parameter identification 

of every story in the structure except for the top (nth) story, an induction identification 

step is essentially established by Equation (5.10) in which the parameters of any ith story 

T]  [ ii ck  can be identified if the parameters of the story above (the (i+1)th story) 

T
11 ]  [ ++ ii ck  are known. The top story structural parameters T]  [ nn ck   identified from 

optimization problem (5.8) are already available to initiate the above induction 

identification process. Thus, all structural parameters T]  [ ii ck (i=1,…,n) can be identified 

iteratively by following the identification procedure in Equation (5.10). Note that when 

the parameters of the first story are to be identified, a simple replacement of yxi
S

1

ˆ
−

 with 

yuS
g

ˆ
  is needed in Equation (5.10).  

5.1.1 Relation to the FFT_SUBID Method 

Comparing the two key identifications in the CSD_SUBID method, Equation (5.8) 

for the top story substructure and Equation (5.10) for the non-top story substructure, with 

the corresponding key identification equations, Equation (3.8) and (3.10), of the 

FFT_SUBID method, it is found that the CSD_SUBID method looks like the 

FFT_SUBID method with the replacement of all Fourier transforms of the responses jX  

by the cross power spectral density yx j
S  . This observation provides an easy way to 

analyze the properties (i.e., the identification error analysis) of the new CSD_SUBID 

method by reutilizing the analysis results from the FFT_SUBID method with the simple 

change of corresponding terms from the Fourier transform of the responses to their 

corresponding cross power spectral densities with the reference response y(t). 
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5.1.2 Relation to the TF_SUBID Method 

In addition to the estimation method of a transfer function describe in the section 

4.2, Equation (5.11) shows another way of calculating the deterministic transfer function 

from structural response ix  to  response jx , assuming that such a transfer function exists:  

 [ ] [ ] yxyxijijijxx ijij
SSYXYXYXYXXXH 

 ==== **** EE)()(   (5.11) 

where ji XX   and   are the Fourier transforms of the responses ix  and jx , respectively; Y 

is the Fourier transform of an arbitrary reference response y, which is wide sense 

stationary with the responses  ix  and jx ; “*” denotes the complex conjugate; E[·] is the 

ensemble average operator; yxi
S   and yx j

S  are the cross power spectral density between 

the structural acceleration responses ix  and jx , respectively, and the reference response 

y. 

If the reference response y is selected as the response ix , then the transfer function 

estimation method in Equation (5.11) is the same as used in section 4.2. In this sense, the 

TF_SUBID method is just a special case of CSD_SUBID method in which the reference 

response y(t) is fixed as a specific response. 

However, it is worth mentioning that the derivation of the CSD_SUBID method 

does not have the restriction that there must be one excitation source in the structure as 

the TF_SUBID method did, which greatly extends the applicability of this new 

identification method. 
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5.2 Estimation of Cross Power Spectral Density: Welch Method 

Since the cross power spectral density between structural responses and reference 

y(t) are needed in the CSD_SUBID method, a power spectrum estimation method, the 

Welch average periodogram method (Welch, 1967) is introduced for calculating the cross 

power spectra. 

 

 

 

 

 

 
Figure 5.1 Partition responses x(t) and y(t) into overlapped short segments 
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Let x(t) and y(t) be two continuous stationary signals. As shown in Figure 5.1,  x(t) 

and y(t) are partitioned into Q overlapping short segments of the same length T, xi(t) and 

yi(t), and the successive segments are offset by D (D≤T).  
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To reduce the leakage problem, sometimes the segment signals are multiplied by a 

window function, such as hanning window, before being used to calculate the cross 

power spectrum. The expression of a hanning window of length T is given in Equation 

(5.13). 
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Then the Welch method calculates the cross power spectral density by averaging the 

cross power spectral density of the windowed segments signals as follows, 
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where ∫=
T

T dttwU
0

21 )( . 

One of the important properties of the Welch average periodogram method is that as 

the length of each segment L and the number of segments Q tend to infinity, the Welch 

method becomes an asymptotically unbiased and consistent estimator of the cross power 

spectrum (Hayes, 1996). 

5.3 Identification Error Analysis 

As stated in section 5.1, the CSD_SUBID method is like the FFT_SUBID method 

with the simple replacements of the Fourier transforms of structural responses by the 
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corresponding cross power spectral densities; thus, the identification errors of the 

CSD_SUBID method can be easily obtained by using the identification error analysis 

results of the Fourier transform based method with similar replacements. 

5.3.1 Top Story Identification Case 

The parameter identification error of the top story identification in the CSD_SUBID 

method can be written as 
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where θkn and θcn are the relative identification errors of the nth story parameters kn and cn, 

respectively; ),...,1(  ˆ
,,, niSSN lyxlyxlyx iii

=−=   are the measurement uncertainties of the 

CSD estimation, which equals the difference between the CSD estimated from the noise-

contaminated measured responses and the CSD of the true (noiseless) responses at 

frequency ωl; lyxx nn
S ,)( 1−−   is the CSD between the interstory acceleration of the ith story 

)( 1−− ii xx   and the reference response )(ty ; lijW ,  are the same factors in Equation (3.26). 

All factors lijW ,  are significantly large near the natural frequency of the nth story 

substructure 0nω  )( 0 nnn mk=ω , and very small when far away from this frequency; 

thus, the uncertainty measurement terms, lyxxlyx nnn
SN ,)(, 11 −− −  and lyxxlyx nnn

SN ,)(, 1−−  , near 

the substructure natural frequency 0nω  play a dominant role in determining the parameter 

identification accuracy; dramatically reducing these values can significantly improve the 

identification accuracy. 
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Since both numerator and denominator of the measurement uncertain terms, 

lyxxlyx nnn
SN ,)(, 11 −− −  and lyxxlyx nnn

SN ,)(, 1−−  , are related to the reference y(t), selecting 

different responses as the reference will lead to different measurement uncertainty and, 

thus, different accuracy of the identified parameters. Therefore, the CSD_SUBID 

method, compared with the FFT_SUBID method, provides an opportunity to improve the 

identification accuracy by choosing an appropriate reference (see section 5.4 for more 

detailed information).     

5.3.2 Non-top Story Identification Case 

The parameter identification errors of the ith non-top story of the CSD_SUBID 

method can be written as 
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where θk(i+1) and θc(i+1) are the relative identification errors of the (i+1)th story parameters 

ki+1 and ci+1, respectively. Uij,l are the same factors as in Equation (3.32). 

 The identification errors of the ith story parameters [θki  θci]T in Equation (5.16) 

consist of two kinds of errors: the errors (the first part of the right side) directly related to 

the measurement uncertainty of the structural responses ( yxxyx iii
SN )( 11 −− −  , 

yxxyx iii
SN )( 1−−   and yxxyx iii

SN )( 11 −+ −  ) and the accumulation errors (the second part) due 
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to the uncertainty in the identified structural parameters of the story above                         

( yxxyxxik iiii
SS )()()1( 11 −+ −−+ θ and yxxyxxic iiii

SS )()()1( 11 −+ −−+ θ ). All factors Uij,l are significantly 

large in magnitude near the natural frequency of the ith story substructure natural 

frequency iii mk=0ω  and decay very fast when moving to lower and higher 

frequencies. Therefore, both the measurement uncertainties and the upper story parameter 

uncertainties near the substructure natural frequency 0iω  play an important in 

determining error; significantly reducing their values can greatly reduce identification 

errors.  

Another interesting observation of this result is that the magnitudes of both kinds of 

uncertainties are not only related to the sources of these uncertainties – the measurement 

uncertainties ( yxi
N

1−
, yxi

N   and yxi
N

1+
) and the identification errors of the upper story 

parameters ( )1( +ikθ and )1( +icθ ) – but also are affected by two important structural 

responses: yxx ii
S )( 1−−   and yxxyxx iiii

SS )()( 11 −+ −−  . Since yxx ii
S )( 1−−  serves as the common 

denominator for all three measurement uncertainty terms, amplifying yxx ii
S )( 1−−   near the 

substructure natural frequency 0iω  will lead to smaller measurement uncertainties and, in 

turn, smaller identification errors. Similarly, reducing the cross power spectral density 

ratio yxxyxx iiii
SS )()( 11 −+ −−   near the frequency 0iω will result in smaller upper story 

parameter uncertainties and, thus, smaller identification errors.  

5.4 Selection of the Reference Response 

The choice of the reference y(t) affects the accuracy of the identification. From the 

error analysis results of the previous section, it becomes obvious that the best reference 
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response should be the one that minimizes both kinds of uncertainties near the 

substructure natural frequency. In order to make the reference selection procedure 

simpler, three assumptions are made herein: 

1. The measurement noise of structural responses is zero-mean and independent of 

the true (noiseless) structural response.  

2. The noises of different structural response measurements are mutually 

independent.  

3. There is only one excitation source in the structure. 

Based on the third assumption, it can easily be shown that the cross power spectral 

density ratio yxxyxx iiii
SS )()( 11 −+ −−  , which affects the accumulation error of the 

substructure identification, is not changed by selecting different reference responses. That 

is, the accumulation error will be independent of the selection of the reference response. 

Therefore, the selection of the reference response only needs to focus on minimizing the 

measurement uncertainty near the substructure natural frequency. If the third assumption 

is relaxed, the selection of reference signal y(t) can still be made but the process is 

somewhat more complicated and may not give the global optimum.   

From the error analysis results in the previous section, the measurement uncertainty 

for the ith story parameter identification will have the general form of yxxyx iij
SN )( 1−−   

where },1{ iij −∈  if i = n (top story identification) or }1,,1{ +−∈ iiij  if i ≠ n (for non-

top story identification). To make this ratio small, the reference response y(t) should be 

chosen such that the numerator of this ratio is small and, simultaneously, the denominator 

is large. The numerator of this ratio can be evaluated as 
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where Y  and jX  are the Fourier transforms of the responses y(t) and )(tx j , respectively; 

and yN  and 
jxN   are the Fourier transforms of the measurement noises of )(ty  and )(tx j , 

respectively. The third and the fourth equality in Equation (5.17) are obtained by using 

the first and second assumption given previously. It is obvious that if the response )(ty  is 

not the structural response )(tx j , yx j
N   becomes zero. Therefore, the first rule for 

selecting the response )(ty  is that )(ty  should not be any of the structural responses 

involved in this step of the substructure identification. More specifically, )(ty  is not none 

of the following: )(1 txi− , )(txi  and, for the non-top story, )(1 txi+ . By choosing )(ty  

using this principle, the numerators of all measurement uncertainty terms will be zeros. 

However, it is worth emphasizing that the expected value in Equation (5.17) requires, 

theoretically, infinite long structural responses; in practice, the measurements are always 

of finite duration and, thus, the expected value in Equation (5.17) calculated from finite 

responses will usually be small but not zero. So the denominator of the measurement 

uncertainty, yxx ii
S )( 1−−  , still needs to be considered to further reduce the measurement 

uncertainty.  

Since the goal of reference response selection is to minimize the measurement 

uncertainty near the substructure natural frequency 0iω , the denominator of the 
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measurement uncertainty should be maximized near 0iω . Define a performance function 

for the kth candidate reference response ky . 

 ωω d
S

jWyJ
kii yxx
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2

0
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− −
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 (5.18) 

where )( ωjW  is a frequency weighting function, having the following expression, 
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As shown in Figure 5.2, the magnitude of the frequency weighting function peaks around 

frequency 0iω  and quickly vanishes when further away. Hence, the reference ky  

minimizing the performance function in Equation (5.18) will minimize measurement 

uncertainty yxxyx iij
SN )( 1−−   near the substructure frequency 0iω . 

 

 

 

 

 

 

 

 

 

Figure 5.2 Magnitude of frequency weighting function W(jω) 
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To summarize the selection rules of the reference response y(t): y(t) will be selected 

among all possible structural responses that are not involved in this step of the 

substructure identification and which gives the smallest value of Equation (5.18). 

5.5 Statistical Moment Estimation for Identification Error 

In practice, it is of great value to provide some kind of uncertainty measurement for 

the identified parameters. Such information plays an important role in the case of 

structural damage detection, helping to determine if the change of the estimated 

parameters is caused by structural damage or simply by the inherent randomness of the 

estimation results. In this section, an approach to approximately estimate the first two 

statistical moments (mean and variance) of the identification error is proposed based on 

the results of identification error analysis developed in a prior section. The result of this 

analysis not only helps provide better comprehension of the performance of the proposed 

substructure method in real uncertain circumstances, but also provides some important 

suggestions to further improve its accuracy. 

5.5.1 Top Story Identification Case 

From the result of Equation (5.15), the identification errors of the top story 

parameters are influenced by three kinds of terms: 1) the measurement uncertainty of the 

cross power spectral density estimations { }nnjN lyx j
,1,, −∈ ; 2) the cross power spectral 

density between the nth interstory acceleration and the reference response lyxx nn
S ,)( 1−−  ;  and 

3) factors lijW , . The lijW ,  are only related to the structural parameters of the top story and, 

thereby, have deterministic values for a given structure; in contrast, the measurement 
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noise terms and the structural response terms change from one identification to another 

and are considered to be random variables.  

For notational simplicity, two sets of complex random variables are defined as: 

 
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Using these newly defined random variables, the relative identification errors of the top 

story parameters in Equation (5.15) can be expressed as 
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Four assumptions are made in this moment estimation: 

1. The measurement noise and the true structural response are statistically 

independent. 

2. The measurement noise is a zero-mean white Gaussian process and the 

measurement noises of different structural responses are statistically 

independent. 

3. The true structural responses can be modeled as one or several independent zero-

mean white Gaussian processes passing through a linear time invariant system.  

4. When calculating cross power spectrum densities by the Welch average 

periodogram method, there is on overlap between two adjacent short segments 

(i.e., D≥T); therefore, the measurement noise in different segments are 

independent one another. If the segments overlap, the noise from one segment 

and the noise histories from the previous or following segments – or several 

previous or following segments if the overlap is significant – now overlap, 
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causing their Fourier transforms to possibly be correlated.  As a result, it 

becomes very difficult to estimate the variance of the parameter estimates in 

Equations (5.21) and in Equations (5.24) and (5.25).  Thus, only for the 

estimation of the statistical moments, it is assumed that the segments do not 

overlap; this assumption does not restrict the substructure identification base on 

the cross power spectral density, which can be used with non-overlapping 

segments. 

Based on above four assumptions, the following properties of random variables lkn,ε  and 

lcn,ε  can be obtained as:  

 [ ] Nlllkn 1,for 0E , =∀=ε  (5.21a) 

 [ ] Nlllcn 1,for 0E , =∀=ε  (5.21b) 
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 [ ] [ ] mlNZmlmcnlkn ≠∈∀=  and ,1 ,for 0E ,, εε  (5.21g) 
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where Z[1,N] denotes a set containing natural numbers from 1 to N; lmδ  is Kronecker 

delta function. 

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The proofs of Equation (5.21a)~(5.21i) are given in Appendix B. Using the results 

from Equation (5.21a)~(5.21i), the mean and the variance of the identification error for 

the top story structural parameters [kn  cn]T can be calculated as 

  [ ] 0E ≈knθ  (5.22) 

  [ ] 0E ≈cnθ  (5.23) 
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 [ ] 0COV =cnknθθ  (5.26) 

The proofs of Equations (5.22)~(5.26) are given in Appendix C. The results in 

Equations (5.22) ~ (5.23) show that the CSD_SUBID method is an approximately 

unbiased estimator of structural parameters with finite length structural responses. 
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The values of  ( )nnjSN lyxxy,lx nnj
,1  }||||{E 2

,)(
2

1
−=

−−  , needed for the calculation 

of the identification error variances in Equations (5.24)~(5.25), are computed using the 

following approximation: the random variable 2
,)(

2 ||||
1 lyxxy,lx nnj

SN
−−   is first expanded 

into a Taylor series up to the second order with respect to the mean value }|{|E 2
y,lx j

N   

and }|{|E 2
,)( 1 lyxx nn

S
−−  ; then, take the expectation of this Taylor expansion to obtain the 

following result.  
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Due to the difficulty in directly evaluating the covariance term

}||,|{|COV 2
,)(

2
1 lyxxy,lx nnj

SN
−−  , the upper bound values of }||||{E 2

,)(
2

1 lyxxy,lx nnj
SN

−−  , 

calculated via inequality relation shown in Equation (5.28), are used to calculate the 

variances of identification errors in Equations (5.24) & (5.25). 
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The values of }|{|E 2
y,lx j

N  , }|{|E 2
,)( 1 lyxx nn

S
−−  , }{VAR

2

,)( 1 lyxx nn
S

−−   and 

}|{|E 2
,)( 1 lyxx nn

S
−−   needed for the computation of Equation (5.29) can be evaluated as 

follows. 
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According to the central limit theorem for weakly dependent random variables 

(Billingsley, 1995), as Q – the number of the structural response segments used in 

calculating power spectral in Welch method – becomes large, the probability distribution 

of ,lxy j
N   is approximated by a complex Gaussian distribution with the mean 

][E ,,,,, lxlyljlylxl jj
NNXNNY 

 ∗∗∗ ++ and the variance QNNXNNY lxlyljlylxl jj
][VAR ,,,,, 

 ∗∗∗ ++ . 

(The superscript p is dropped here due to the stationary condition for both the structural 

responses and the measurement noise. Note that the variance need not include covariance 

between segments as the noises in non-overlapping segments are independent.) Similarly, 

as Q becomes large, the probability distribution of lyxx nn
S ,)( 1−−   can be approximated by a 

complex Gaussian distribution with the mean ])[(E ,1,
∗

−− llnln YXX   and the variance 

QYXX llnln ])[(VAR ,1,
∗

−−  . The means and variances of y,lx j
N   and lyxx nn

S ,)( 1−−  , which 

completely define the probability distribution functions of these Gaussian random 

variables, can be evaluated from the statistics of the structural response and the 

measurement noise. Therefore, all values of }|{|E 2
y,lx j

N  , }|{|E 2
,)( 1 lyxx nn

S
−−  , 
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}|{|VAR 2
y,lx j

N   and }|{|VAR 2
,)( 1 lyxx nn

S
−−   needed in Equation (5.29) can be then 

calculated from the probability distribution functions of y,lx j
N   and lyxx nn

S ,)( 1−−  . 

Since the variances }|{|VAR 2
y,lx j

N   and }|{|VAR 2
,)( 1 lyxx nn

S
−−   vanishes in the 

Welch average periodogram method as Q tends to infinity. The limit of Equation (5.29), 

as Q tends to infinity, becomes 
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The last step in Equation (5.31) is due to the facts that y,lx j
N   is a zero-mean complex 

random variable with infinite small variance (as Q→∞) and lyxx nn
S ,)( 1−−   is a non zero-mean 

complex random variable with infinite small variance (as Q→∞). Thus, the limit in 

Equation (5.31) becomes the ratio of the magnitude square of the complex random 

variables y,lx j
N   and lyxx nn

S ,)( 1−−  , which obviously equal zero. 

 Thus, as Q tends to infinity, the values of ( )nnjSN lyxxy,lx nnj
,1  }||||{E 2

,)(
2

1
−=

−−   

converge to zero, implying that the variance of estimated structural parameters converge 

to zero. Therefore, the CSD_SUBID method is also an asymptotically consistent 

estimator for the top story structural parameters.  

5.5.2 Non-top Story Identification Case 

As suggested by Equation (5.16), the identification errors for the ith (non-top) story 

substructures [θk(i+1)  θc(i+1)]T equal  the combination of  two kinds of identification errors. 
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where [θki
(1)  θci

(1)]T are the identification errors caused by the measurement uncertainty of 

the cross power spectral density as defined in Equation (5.33); and [θki
(2) θci

(2)]T are the 

identification errors due to the uncertainty of the structural parameters of the story above 

as defined in Equation (5.34).  
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Since the identification error [θk(i+1) θc(i+1)]T is a real-value vector, Equation (5.34) can be 

further simplified as  
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where lyxxlyxxlii iiii
SS ,)(,)(,)1( 11 −+ −−+ =∆  . 

Following derivations, similar to those in subsection 5.5.1, it can be easily shown 

that the statistical moments of the error [θki
(1)  θci

(1)]T in Equation (5.33) can be evaluated 

as,  

 [ ] 0E )1( ≈kiθ  (5.36a) 
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  [ ] 0E )1( ≈ciθ  (5.36b) 
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 [ ] 0COV )1()1( ≈ciki θθ  (5.36e) 

The proofs for Equations (5.36a)~(5.36e), which are similar to those of Equations 

(5.22) ~ (5.26), are omitted here. 

Due to the third assumption in the choice of reference selection in section 5.4 that 

there is only one excitation source in the structure, the terms 
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SS ,)(,)(,1 11 −+ −−+ =∆  become deterministic values. Then, the mean of the 

second kind of identification errors   [θki
(2)  θci

(2)]T are calculated as follows 
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Combining the results from Equation (5.36a), (5.36b) and (5.37), the mean of the 

identification error for the ith story parameters becomes 
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Given that the mean of the identification errors of the top story parameters [θkn  θcn]T 

are zero as shown in Equations (5.25a) and (5.25b), the mean of the identification errors 

of other story parameters all (approximately) become zero. 
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Putting the result of Equation (5.39) back to Equation (5.37), the covariance matrix 

of the second kind identification error [θki
(2) θci

(2)]T becomes 
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Then, the covariance matrix of the identification errors [θki  θci]T are evaluated as shown 

in Equation (5.41). 
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Since the two kinds of the identification error – [θki
(1)  θci

(1)]T and [θki
(2)  θci

(2)]T – are 

all related to some common structural responses (e.g., lyxx ii
S ,)( 1−−  ),  they are generally 

correlated; thus, the covariance matrix between the two kinds of the identification error – 

the third term in Equation (5.40) – is not a zero matrix. However, due to the great 

complexity involved in obtaining the analytical expression for this covariance matrix, two 

alternative methods are discussed herein to evaluate the third term in Equation (5.41). 

The first method simply assumes that the two kinds of identification error are 

uncorrelated. Then the third matrix on the right of Equation (5.41) equals a zero matrix 

and the covariance matrix in Equation (5.41) is further simplified as Equation (5.42). But 

such an assumption may sometimes lead to an under-estimation of the identification error 

variance, which is undesirable in real applications.  
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The second method utilizes the inequality in Equation (5.43).  
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where “≥” denotes the semi-positiveness of the matrix relationship. 

Then, the upper bound values of the covariance matrix of the identification errors 

[θki  θci]T are evaluated as 
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 (5.44) 

where “≤” denotes the semi-negative nature of the matrix. 

However, if Equation (5.44) is adopted to calculate the variance of the parameter 

identification error, the variances are over-estimated. Moreover, the over-estimated 

variances will propagate to the variance estimation of the identification error of the lower 

story parameters. Therefore, Equation (5.44) will lead to large over-estimation of the 

identification error variance for the structural parameters in the lower stories, which, of 

course, is also undesired. In this study, Equation (5.42), assuming the two errors are 

uncorrelated, will still be used to calculate the variance of the identification error; 

Equation (5.44), assuming the two errors are fully correlated, is only treated as the 

conservative upper bound for the variance estimation. 

5.6 CSD_SUBID with Non-stationary Response 

The derivation of the CSD_SUBID method in section 5.1 requires that the structural 

responses are wide sense stationary. In order to achieve accurate identification results 

when the noise level in the measurements is large, very long stationary structural 

responses are usually needed by the CSD_SUBID method. However, since most ambient 

excitation sources, e.g., micro ground tremor, are not wide sense stationary in the long 

run, the structural responses due to ambient excitations are, strictly speaking, not 

stationary. Can CSD_SUBID method be used to identify the structural parameter when 

the structure is subject to ambient excitations? In this section, it will be shown that, with 
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little modification, the CSD_SUBID method can be applied to perform the identification 

with non-stationary structural responses. 

Assume that there are Q groups of the structural responses available, each of which 

contains the structural acceleration responses ),...,1(  )( nitxi = and a reference response 

)(ty of the same duration T. The structural responses in these Q groups are not 

necessarily stationary; they can be obtained by partitioning a set of long structural 

response records into Q non-overlapped/overlapped segments or by recording the 

structural responses of the same duration T at Q different times. 

5.6.1 Top Story Identification  

Since the structural responses in each group satisfy the dynamic equations of the 

structure, these responses are also governed by the dynamic equation of the top story 

substructure as follows,  

 0)()( )(
1

)()(
1

)()( =−+−+ −−
q

n
q

nn
q

n
q

nn
q
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where ),...,1(  )( Nix q
i = is the ith floor displacement response relative to an inertial 

reference frame in the qth group responses; the superscript q (q=1,…,Q) denotes the 

number of group responses. Adding )(
1

q
nn xm −−  to both sides of Equation (5.45) gives 

 ( ) ( ) ( ) )(
1

)(
1

)()(
1

)()(
1

)( q
nn

q
n

q
nn

q
n

q
nn

q
n

q
nn xmxxkxxcxxm −−−− −=−+−+−   (5.46)                                   

Take Fourier transform of Equation (5.46) 
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where )()()( ,, q
i

q
i

q
i XXX   are the Fourier transforms (or the frequency responses) of the 

displacement, velocity and acceleration responses of the ith floor )()()( ,, q
i

q
i

q
i xxx   in the qth 

group, respectively. Using the rule of integration by parts, it can be shown that 

)()()(  and , q
i

q
i

q
i XXX  have the following relations. 
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Substituting the results of Equations (5.48) & (5.49) back to Equation (5.47) leads to 
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Rearrange the order of Equation (5.50). 
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Multiply both the numerator and denominator of the right side of Equation (5.51) by the 

conjugate of the Fourier transform of the reference response )(qy . It is worth pointing out 

here that there is not any specific requirement for the reference response, as opposed to 

the CSD_SUBID method which requires the reference response be wide sense stationary 

with respect to other structural responses. 
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An identity in fraction number analysis is shown in Equation (5.53),  
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where A/B and C/D are two fraction numbers. 

Since Equation (5.52) is true for any q (q=1,…,Q), by using the equality in Equation 

(5.53), Equation (5.52) can be rewritten into a new equation, whose right side involves all 

Q groups of structural responses together. 
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Divide the numerator and denominator of the right side of Equation (5.54) by QT. 
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Then, an identification problem can be formulated by minimizing the second norm 

of the difference between the two sides of Equation (5.55) over all possible frequencies, 

in which the structural parameters of the top story [kn  cn]T are identified. 
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P̂ are the variables yxi
P  and yf n

P  in Equation (5.55), respectively, calculated 

from the noise contaminated measurements. 

5.6.2 Non-top Story Identification 

After the structural parameters of the top story [kn cn]T have been identified, a 

similar induction method as in the CSD_SUBID method is established to identify 

structural parameters of other stories in the following manner. 

The dynamic equation of the ith (i<n) story substructure can be written as  
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where )1,...,1(  )( −= Nix q
i is the ith floor displacement response relative to an inertial 

reference frame in the qth group responses; the superscript q (q=1,…,Q) denotes the group 

response number. Adding )(
1

q
ii xm −−   to both sides of Equation (5.57) and taking the 

Fourier transformation gives 
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 Using the relations between )()()(  and , q
i

q
i

q
i XXX  , shown in Equations (5.48) and 

(5.49), the following equation is obtained 
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Multiplying both the numerator and denominator of the right side of Equation (5.60) by 

the conjugate of the Fourier transform of the reference response )(qy and using the 

equality condition of fraction numbers given in Equation (5.52), the following equation is 

obtained  
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Divide the numerator and denominator of the right side of Equation (5.61) by QT. 
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Assuming that the structural parameters of the (i+1)th story are known, an 

identification problem can be formulated to identify the structural parameters of the non-

top story [ki  ci]T, which minimizes the difference between two sides of Equation (5.61) 

over all possible frequencies. 
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Since the identification parameters of the top story have been identified from the 

previous step, which can be used to initiate the induction identification process described 

in this section, by repeating the identification problem (5.63), the structural parameters of 

all stories can be identified from top to bottom iteratively. 

5.6.3 Comparison of CSD_SUBID Method with Stationary and Non-
stationary Responses 

Comparing the CSD_SUBID method using non-stationary structural responses, 

shown in Equations (5.57)&(5.63), with the method using stationary structural responses, 
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shown in Equations (5.8)&(5.10), it is found that the two identification problems differ in 

the following two aspects: 

1. The terms yxi
P , used in the identification with non-stationary responses, 

replace the cross power spectral yxi
S   used in the identification with stationary 

responses. 

2. There are new terms yfi
P  involved into the identification with non-stationary 

responses, which does not exist in the identification with stationary responses. 

The terms yxi
P  can be considered a pseudo cross power spectral density between the 

structural response )(txi  and the reference responses )(ty , estimated by the Welch 

average periodogram method without window function as introduced in section 5.2.  If 

the structural responses )(txi and the reference response )(ty are jointly wide sense 

stationary, yxi
P  just becomes the cross power spectrum yxi

S   in the original derivation of 

the CSD_SUBID method. 

The terms yfi
P  are introduced into the identification process due to the fact that the 

structural displacement and velocity may not be zero at the beginning (t=0) and the 

ending (t=T) in the recorded responses. Next, it will be shown that if the structural 

responses )(txi and the reference response )(ty  are jointly wide sense stationary, yfi
P̂  

will converge to zero as the number of group responses Q and the length of the responses 

T tends to infinity. For simplicity, only the proof of the top story substructure case (i=n) 

will be given below; the proof for other story substructures (i≠n) can be easily obtained 

by following a similar procedure. 
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The last step in the proof uses the results that the terms ∫ ⋅−
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ω . Therefore, it 

is proved that 0=yfn
P  as both Q and T tend to infinity. 

The above proof provides some insightful information about the CSD_SUBID 

method with non-stationary responses: 

1. When the structural responses are stationary, the pseudo cross power spectrum 

terms yxi
P  become the cross power spectrum yxi

S  ; thus, the new CSD_SUBID 

method using non-stationary structural responses, in Equations (5.56) and (5.63), 

converges to the original method in Equations (5.8) and (5.10) with a little 
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modification, which accounts for the effect that the structural responses are not 

zero at the beginning (t=0) and the ending (t=T) in the recorded responses. 

2. Since, in most practical cases, the structural displacement and velocity are not 

measured, the terms yfi
P become unknown and have to be omitted in the 

formulation of the identification. Under such a situation, elongating the length of 

the measurements T will reduce the identification errors caused by neglecting the 

terms yfi
P  in the identification. 

5.6.4 Identification Error of CSD_SUBID with Non-stationary Response 

Applying the identification error analysis method in section 3.2, the identification 

error of the CSD_SUBID method with non-stationary structural responses for both top nth 

story and the non-top ith story can be obtained as 
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 (5.67) 

where lyflyflyf iii
PPN ,,,

ˆ −= . The proofs of Equations (5.66) and (5.67) are given in 

Appendix D. It is worth pointing out that all factors lijlij UW ,,  and  in the above two 

equations are the same factors in Equation (5.15) and (5.16) (the identification errors of 



  

150 

the CSD_SUBID method with stationary responses), except for the four factors 

)( 26,162616 ,ll,l,l  and U, U, WW  that do not exist in Equations (5.15) and (5.16).  

It is interesting that the identification errors of CSD_SUBID method with non-

stationary responses and with stationary responses are so similar that the only difference 

is the additional error terms caused by the introduction of the extra uncertainty terms 

lyfi
N ,  in the case of non-stationary responses. Thus, many results of error analysis of the 

CSD_SUBID method using stationary structural responses can be conveniently re-

utilized. 

As shown in Figures 5.3 and 5.4, the magnitude of all factors lijlij UW ,,  and  in 

Equations (5.66) and (5.67) are significantly large near the story substructure natural 

frequency and decay very fast when moving to lower and higher frequencies. Therefore, 

the parameter identification errors are mainly determined by the uncertainty terms in 

Equations (5.66) and (5.67)  near the substructure natural frequency; largely reducing the 

uncertainty terms near the substructure natural frequency can significantly improve the 

identification accuracy.  

Moreover, all uncertainty terms in Equation (5.66) and (5.67) are also related to two 

important structural responses: lyxx ii
P ,)( 1−−   and lyxxlyxx iiii

PP ,)(,)( 11 −+ −−  . Since  ,)( 1 lyxx ii
P

−− 

serves as the common denominator for all measurement uncertainty terms, larger 

 ,)( 1 lyxx ii
P

−−   leads to smaller measurement uncertainties and, in turn, smaller identification 

errors. The terms including lyxxlyxx iiii
PP ,)(,)( 11 −+ −−   are proportional to the uncertainty of 
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the upper story parameters; smaller lyxxlyxx iiii
PP ,)(,)( 11 −+ −−   will result in smaller upper 

story parameter uncertainties and, thus, smaller identification error. 

 

 

 

 

 

 

 

 

Figure 5.3 Magnitude of the factors Wij,l 

 
 

 

 

 

 

 

 

Figure 5.4 Magnitude of the factors Uij,l 

5.7 Illustrative Examples 

5.7.1 CSD_SUBID Method with Stationary Response 

In this section, the CSD_SUBID method is first tested on the same 5-story shear 

structure used in the third and fourth chapters with stationary structural responses. Then, 
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a large 10-story uniform shear structure is used to check if the CSD_SUBID method can 

be scaled well to deal with larger shear structures. The parameters of the 10-story shear 

structures are picked as mi=1×105 kg, ci=8×105 N·sec/m, ki=16×107 N/m (i=1,…,10). It is 

assumed that both structures are subject to ground excitation only. 

The ground excitation gu  is modeled by a Gaussian random pulse process passing 

through a 4th order band-pass Butterworth filter with 1Hz low cut-off frequency and 

12 Hz high cut-off frequency. 3600-second ground and floor acceleration responses, 

sampled at 200Hz, are simulated to perform the identification with the CSD_SUBID 

method. The Welch average periodogram method is applied to calculate the cross power 

spectral densities needed to formulate the identification problem: the 3600-second long 

structural responses are partitioned into short segments of 30 seconds each. A Hanning 

window is applied to each segment response to reduce the effect of leakage. To increase 

the number of averages and reduce the variance of the estimated power spectral, two 

adjacent segments are overlapped by 25% of the frame length. The measurement noise is 

also assumed to be band-limited Gaussian white noise with the cut-off frequency at 

100Hz. To test the effectiveness of the proposed method as would be typical with only 

ambient excitation sources, fairly large measurement noise is added to the true structural 

response. It is assumed herein that the magnitude of the measurement noise of all 

acceleration responses is the same, with root-mean-square (RMS) value equal to 50% of 

the RMS value of the ground excitation. Figure 5.5 shows an example of the first two 

seconds of response of the 5th story acceleration, which demonstrates how significantly 

the measurements are distorted by the added noise. 
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Figure 5.5 The 5th floor acceleration response with and without measurement noise  

To examine the effect of choosing different reference responses )(ty on the 

identification accuracy, two scenarios are considered here: 1) for each step of 

substructure identification the reference )(ty  is selected among the measured floor 

accelerations and ground acceleration, using the reference selection rules in section 5.4; 

and 2) The reference )(ty  is fixed as the top floor acceleration for all story substructure 

identification, chosen because the top floor acceleration has the largest response in terms 

of RMS value among all floor acceleration responses. 

a) Identification Results 

100 identification tests, using the CSD_SUBID method, are performed on the 5-

story and 10-story structures. The statistics of the identification errors of the 5-story 

structure in both scenarios are listed in Tables 5.1 and 5.2. 

Table 5.1 shows that the CSD_SUBID method, coupled with the proposed reference 

response selection rule, provides excellent identification results: i) the means of the 
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identification errors of both stiffness and damping parameters are all very close to zero 

even with quite large (50%) noise disturbance, which verifies the analysis result that the 

CSD_SUBID method is an asymptotically unbiased estimator for structural parameters. 

ii) the CSD_SUBID method can still provide very consistently accurate results under the 

disturbance of quite large measurement noise (50%). The largest relative root-mean-

square-error (RMSE) of all story stiffnessees is just 1.1%; even for damping parameters, 

usually difficult to accurately identify, the largest relative RMSE is only 5.3%.  

However, the results in Table 5.2 show that if the top story acceleration response is 

chosen to be the reference response for all substructure identifications in scenario 2, the 

identification accuracy decreases drastically. As shown in section 5.4, if the reference 

response is one of the structural responses involved in the substructure identification 

process, the expected values of measurement uncertainty terms will no longer be zeros, 

which leads to the biased estimation of structural parameters. Moreover, the noisier the 

reference and structural responses are, the larger the biased estimation will be. Since the 

story acceleration 5x  is involved in the identification of the 4th and 5th story parameters 

and the measured structural responses are quite noisy in this case (50%), using 5x  as the 

reference in that identification results in large identification error for the 4th and 5th story 

parameters, which consequently causes the large identification errors for the structural 

parameters in lower stories due to error accumulation. 

Table 5.3 shows the statistics of the identification results of the 10-story structure 

using the optimal reference selection rules in the section 5.4, which demonstrates results 

similar to the 5-story structure. For the larger 10-story structure, the CSD_SUBID 
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method is still able to provide very accurate identification results when subject to a quite 

high level of noise disturbance: the largest relative RMSE of all stiffness estimates is only 

2.1% and the largest relative RMSE of all damping estimates is only 9.2%.  

Table 5.1 The identification result statistics of the 5-story structure with 50% noise 
(scenario 1: using the optimally selected responses as the references) 

Story 
number 

y(t) 
Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 5x  1601 
(0.1%)* 

0.5% 0.5% 8.03 
(0.4%)* 2.7% 2.7% 

2 gx  1600 
(0.0%) 

0.5% 0.5% 
8.02 

(0.3 %) 
2.4% 2.4% 

3 gx  1597 
(-0.2%) 

1.1% 1.1% 
7.97 

(-0.3%) 
5.3% 5.3% 

4 2x  
1600 

(0.0%) 
0.4% 0.4% 

7.99 
(-0.1%) 

1.5% 1.5% 

5 2x  
1600 

(0.0%) 
0.2% 0.2% 

8.00 
(0.0%) 

1.1% 1.1% 

*: relative error for mean estimate 

 
Table 5.2 The identification result statistics of the 5-story structure with 50% noise 

(scenario 2: using the top the story accelerations as the references) 

Story 
number 

y(t) 
Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 5x  1551 
(-3.1%)* 

3.3% 1.2% 8.48 
(5.9%)* 8.6% 6.3% 

2 5x  1539 
(-3.8%) 

4.1% 1.4% 
7.59 

(-5.1%) 
8.7% 7.1% 

3 5x  1634 
(2.1%) 

3.7% 3.1% 
4.61 

(-42.4%) 
44.6% 14.0% 

4 5x  1683 
(5.2%) 

5.2% 0.4% 
7.97 

(-0.3%) 
1.9% 1.9% 

5 5x  1609 
(0.6%) 

0.6% 0.2% 
7.72 

(-3.3%) 
3.5% 1.0% 
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Table 5.3The identification result statistics of the 10-story structure with 50% noise 
(scenario 1: using the optimally selected responses as the references) 

Story 
number 

y(t) 
Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 5x  1598 
(0.1%) 

0.8% 0.8% 7.97 
(-0.3%) 3.9% 3.9% 

2 gx  1600 
(-0.1%) 

0.8% 0.8% 
7.91 

(-1.1 %) 
4.2% 4.0% 

3 1x  
1601 

(-0.1%) 
0.8% 0.8% 

7.97 
(-0.3%) 

4.0% 4.0% 

4 1x  
1602 

(0.1%) 
0.8% 0.8% 

8.01 
(0.1%) 

4.4% 4.4% 

5 1x  
1601 

(0.1%) 
1.1% 1.1% 

8.05 
(0.6%) 

5.3% 5.3% 

6 1x  
1598 

(-0.1%) 
0.8% 0.8% 

8.05 
(0.6%) 

4.7% 4.7% 

7 1x  
1598 

(-0.1%) 
0.9% 0.9% 

8.02 
(0.3%) 

4.8% 4.8% 

8 1x  
1599 

(-0.1%) 
2.1% 2.1% 

7.84 
(-1.9%) 

9.2% 9.0% 

9 1x  
1600 

(0.0%) 
0.5% 0.5% 

8.00 
(0.1%) 

2.5% 2.5% 

10 1x  
1600 

(0.1%) 
0.4% 0.4% 

8.00 
(0.0%) 

1.8% 1.8% 

  

Similar to the 5-story structure, if the top floor (the 10th floor) acceleration response 

is chosen to be the reference response for all substructure identifications as in scenario 2, 

the CSD_SUBID method will no longer provide accurate identification results, which is 

verified by the identification results in Table 5.4. 
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Table 5.4 The identification result statistics of the 10-story structure with 50% noise 
(scenario 2: using the top the story accelerations as the references) 

Story 
number 

y(t) 
Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 10x  1570 
(-1.8%) 

1.9% 0.4% 741 
(-7.4%) 

8.0% 3.1% 

2 10x  1609 
(0.6%) 

0.9% 0.7% 
690 

(-13.8%) 
14.0% 2.2% 

3 10x  1643 
(2.7%) 

2.7% 0.6% 
764 

(-4.5%) 
5.3% 2.9% 

4 10x  1643 
(2.6%) 

2.7% 0.4% 
868 

(8.5%) 
9.4% 4.2% 

5 10x  1587 
(-0.8%) 

1.4% 1.1% 
970 

(21.2%) 
21.4% 2.8% 

6 10x  
1543 

(-3.6%) 
3.6% 0.7% 

848 
(6.0%) 

7.0% 3.6% 

7 10x  
1530 

(-4.4%) 
4.4% 0.7% 

745 
(-6.9%) 

8.6% 5.2% 

8 10x  
1647 

(2.9%) 
3.7% 2.2% 

416 
(-47.9%) 

48.3% 5.7% 

9 10x  
1688 

(5.5%) 
5.5% 0.4% 

803 
(0.4%) 

2.5% 1.9% 

10 10x  
1607 

(0.4%) 
0.5% 0.2% 

772 
(-3.5%) 

3.6% 0.9% 

b) Variance Estimation of the Identification Errors 

In section 5.6, the formulae to calculate the variances of the identification errors for 

the identified parameters were developed. To test the accuracy of these formulae in 

predicting the variances of the identification errors of the structural parameters, the 

results of the relative standard deviation of the identification errors in the last section 

simulations were compared with that calculated from the formulae given in section 5.6 

(Equations (5.24), (5.25) and (5.41)).  
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As pointed out in section 5.6, the identification errors of the structural parameters 

for a non-top story substructure are the combination of two kinds of errors: the errors due 

to the measurement uncertainty and the errors caused by the uncertainty in the estimated 

structural parameters of the story above. Strictly speaking, these two errors are correlated. 

However, due to the complexity in directly obtaining the explicit expression for the 

covariance matrix between two errors, it is assumed that these two errors are uncorrelated 

when calculating the variance. But such an assumption may sometimes lead to the 

underestimation of the error variances, which is not desirable in real application. Thus, an 

upper bound of the error variance is calculated by assuming the two errors are fully 

correlated.  In addition, this example uses segments that overlap by 25% of their lengths; 

since the approximate formulae for the variances of the parameter estimations were 

derived assuming no segment overlap and no correlation between segments, the predicted 

variance might differ a bit from the actual variance. 

Figures 5.6 and 5.7 show comparisons of the relative standard deviations of the 

estimated story stiffness and damping parameter errors for the 5-story structure, 

respectively. It is found that the formulae provide reasonably good prediction of the 

relation standard deviation of the estimated structural parameters, while the upper bound 

predictions significantly over-estimate the standard deviation of the identification error in 

the lower stories. 
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Figure 5. 6 The comparison of the relative standard deviation of the stiffness 
parameters for the 5-story structure 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 The comparison of the relative standard deviation of the damping 
parameters for the 5-story structure 
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Figure 5.8 The comparison of the relative standard deviation of the stiffness 
parameters for the 10-story structure 

 
 

 

 

 

 

 

 

 

 

Figure 5.9 The comparison of the relative standard deviation of the damping 
parameters for the 10-story structure 

Similar results with the relative standard deviations of the estimated parameter 

errors in the 10-story structure are shown in Figures 5.8 and 5.9. It is worth pointing out 

that there are some cases (i.e., the 8th story parameters) that the predicted standard 
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deviations are less than that obtained from the simulation, though the differences are not 

very large. This does recall the aforementioned concern that the assumption of no 

correlation between the two kinds of errors may lead to the underestimation of the 

variance of some structural parameters. However, overall, the assumption of no 

correlation between the two errors provides reasonably good prediction of the standard 

deviation of the identification errors. 

Another important observation is that the factors Wij,l and Uij,l in the  formulae of the 

identification error variances are functions of the structural parameters [ki ci]T and [ki+1 

ci+1]T , whose values, of course, are unknown at the time of the variance estimation; thus, 

the formulae of the identification error variance could not be directly calculated. 

However, since the estimated structural parameters by the CSD_SUBID method are 

unbiased estimations of the structural parameters, it is recommended in practice to use the 

estimated values of the structural parameters to calculate the factors Wij,l and Uij,l , which 

then can be used to calculate the variance of the identification errors. 

c) Damage Detection 

Applying the damage detection strategy proposed in section 3.5, damage detection 

tests are carried out on the 5-story structure by using structural parameters estimated by 

the CSD_SUBID method. The damage scenario of the structure stays the same as in the 

third and fourth chapters: the structural damage occurs at the first, third and fifth stories, 

which results in the reduction of story stiffness by 5% and the increase of story damping 

by 20%. Damage detection tests are carried out with 50% noise (in terms of RMS).  
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In order to test the ability of the proposed damage detection strategy to correctly 

identify the health status of the structure, 600 independent substructure identifications 

using the CSD_SUBID method are carried out on the damaged structure; these results are 

used in the hypothesis test to determine whether or not the structure is damaged. The 

number of the substructure identifications that each hypothesis test uses to reach the 

conclusion is selected as 1, 3 and 5, respectively. According to the number of the tests 

each hypothesis test uses, the identification results of 600 tests are divided into groups 

and a hypothesis test is performed for each group using the majority vote method 

proposed in section 3.5. Since the identified structural parameters of the undamaged 

structure have quite small variances, a larger β value, 6, is selected in the hypothesis tests 

to reduce the probability of the second kind of error of the hypothesis test – faulty 

detection. The percentage of the hypothesis tests which give the corrected health status of 

the structure are shown in Table 5.5.  

Table 5.5 The percentage of the hypothesis tests which give the corrected conclusion 
about the structural health status 

Floor Number 
n 

1 3 5 

1 100% 100% 100% 

2 96% 100% 100% 

3 100% 100% 100% 

4 72% 79% 88% 

5 100% 100% 100% 
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Due to the smaller variances of the identified structural parameters of the 

undamaged structure, the proposed damage detection procedure 100 percentage 

accurately picks out all structural damage. However, in some cases the damage detection 

procedure does make some mistakes of labeling the undamaged structural members as 

being damaged. This is partially due to the fact that the occurrence of structural damage 

changes the structural responses, resulting in the change of the variances of the identified 

parameters.  

5.7.2 CSD_SUBID Method with Non-stationary Response 

As shown in section 5.6, the CSD_SUBID method can be used to perform 

identification with non-stationary structural responses by replacing the cross power 

spectral density of the stationary responses by the pseudo cross power spectral density of 

the non-stationary responses. To verify this result, an ensemble of the structural responses 

due to many small earthquakes is used to carry out the identification. 

It is assumed that the ground excitation during earthquakes can be modeled by a 

band-pass Gaussian random process times a time variant envelop function a(t) (Amin et 

al., 1968). The band-pass Gaussian random process is assumed to be a white Gaussian 

process passing through an 4th order Butterworth filter with 1Hz low cut-off frequency 

and 12 Hz high cut-off frequency. The expression of the envelop function a(t) is given in 

Equation (5.65) and its shape is shown in Figure 5.10. The nominal values of the 

parameters in the envelop function are selected as A=1, B=1/7, t1=3 and t2=9. To simulate 

the variations among different earthquakes, the parameter values of the envelop function 
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for each earthquake is assumed to be the nominal parameter values multiplied by some 

random variables which are uniformly distributed from 0.9 to 1.1.  

100 identification tests are performed on the 5-story and 10-story structures. For 

each test, 120 micro-tremor excitations and the corresponding structural responses are 

simulated to perform the identification via the CSD_SUBID method and the length of the 

responses is 30 second. It is assumed that the magnitudes of the measurement noises of 

all acceleration responses are the same, with root-mean-square (RMS) value equal to 

50% of the RMS of the ground excitation. 
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Figure 5.10 The envelop function a(t) for earthquake excitations 

The statistics of the identification results of the 5-story and the 10-story structures 

are listed in Tables 5.6 and 5.7, respectively. 
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Table 5.6 The identification result statistics of the 5-story structure with non-
stationary structural responses and 50% noise 

Story 
number 

y(t
) 

Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 5x  1604 
(0.3%) 

0.6% 0.5% 7.96 
(-0.4%) 2.5% 2.5% 

2 gx  1604 
(0.3%) 

0.6% 0.5% 
7.81 

(-2.3 %) 
3.6% 2.8% 

3 gx  1618 
(1.1%) 

2.6% 2.4% 
8.17 

(2.1%) 
8.7% 8.5% 

4 2x  
1602 

(0.1%) 
0.6% 0.6% 

7.97 
(-0.4%) 

2.8% 2.8% 

5 2x  
1601 

(0.1%) 
0.3% 0.3% 

7.81 
(-2.3%) 

3.0% 1.9% 

 

The identification results in Tables 5.6 and 5.7 show that the CSD_SUBID method 

is able to provide very accurate results with non-stationary structural responses, which 

numerically verifies that the CSD_SUBID method is applicable to non-stationary 

structural responses, though with a bit less accurate than stationary cases. 
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Table 5.7 The identification result statistics of the 10-story structure with non-
stationary responses and 50% noise  

Story 
number 

y(t) 
Story stiffness ik̂ (×105N/m) Story damping iĉ (×105N·sec/m) 

mean 
relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 5x  1608 
(0.5%) 

0.8% 0.6% 7.89 
(-1.4%) 3.5% 3.2% 

2 gx  1606 
(0.3%) 

0.8% 0.7% 
7.90 

(-1.1 %) 
3.0% 2.7% 

3 1x  
1605 

(0.3%) 
0.6% 0.5% 

7.96 
(-0.5%) 

2.8% 2.8% 

4 1x  
1606 

(0.4%) 
0.8% 0.7% 

7.85 
(-1.8%) 

4.2% 3.8% 

5 1x  
1607 

(0.5%) 
1.2% 1.1% 

7.89 
(-1.4%) 

6.4% 6.3% 

6 1x  
1604 

(0.2%) 
0.9% 0.8% 

7.95 
(-0.6%) 

3.7% 3.7% 

7 1x  
1604 

(0.3%) 
1.0% 1.0% 

7.79 
(-2.5%) 

5.4% 4.7% 

8 1x  
1617 

(1.0%) 
4.4% 4.3% 

8.63 
(7.9%) 

17.3% 15.5% 

9 1x  
1601 

(0.0%) 
0.9% 0.9% 

8.00 
(0.0%) 

4.7% 4.7% 

10 1x  
1603 

(0.2%) 
0.6% 0.5% 

7.82 
(-2.3%) 

3.5% 2.7% 
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Chapter 6 

Controlled Substructure Identification for Shear Structures  

Due to the great potential to improve structural safety and reliability as well as to 

lower structural maintenance cost, many researchers have studied global vibration-based 

structural health monitoring (SHM) methods to detect (and localize and quantify) 

damage, often by examining changes in the identified structural parameters or modal 

properties. The identification process inherent in such approaches often suffers from 

difficulties, such as insufficient excitation energy at high frequency, sensor noise, lower 

sensitivity of the measurements to structural damage, ill conditioning in the inverse 

problem to be solved, and so forth. 

In order to overcome some of these difficulties, some researchers attempted to 

utilize structural control (SC) systems to improve the accuracy of the damage detection. 

Many reasons are behind this trend: first, the SC system and the SHM system contain 

many similar components that can be shared by both systems, such as sensors, data 

acquisition systems, central computers and so forth. The synergy of the two systems fully 

utilizes these components and, thus, makes the whole system more cost-efficient. Second, 

generally the SC system is designed and implemented to mitigate large structural 

vibrations caused by strong earthquakes or high speed winds. However, due to the 

infrequent occurrence of such natural hazards compared with the whole service life of the 

structure, actually the SC system remains in idle status most of the time. Incorporating 

SHM functions into the SC system not only makes the SC system more cost-effective by 

providing important structural health information but also has the potential to improve the 

SC performance of reducing structure vibration (because SHM provides the SC system 
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with a more accurate structural model which facilitates the design of efficient control 

algorithms). Third, the SC system is capable of intentionally changing the structural 

responses and/or other features (e.g., natural frequency and mode shape etc.) in some 

specific ways such that the structural damage can be more accurately detected from the 

modified structural responses and/or features. 

Recently, many new techniques have been developed to use SC systems to improve 

the accuracy of SHM. These techniques can be classified into two categories: multiple 

configuration and sensitivity improvement. For multiple configuration methods, different 

control algorithms are often used in SC systems to tune the structural modal properties of 

the original structure to different configurations. Since the controlled structure in each 

configuration contains some information about the uncontrolled structure, combining the 

information from the controlled structure in all configurations provides much more 

information about the uncontrolled structure, which helps to solve rank deficiency 

problem in SHM identification (Lew et al., 2002) and, thus, improves the identification 

accuracy. Sensitivity improvement methods (Koh et al., 2004) utilize some specially 

designed control algorithms to shift structural modal properties and make these properties 

more sensitive to structural damage; therefore, structural damage can be more accurately 

identified. 

However, there is a problem often ignored by the above methods: how will the 

imperfections in the control system affect the identification results? Some control system 

error always exists, such as time delay for computation, unmodeled actuator dynamics, 

measurement noise in feedback and so forth. Since SC systems are deeply involved in the 

system identification procedure in the above methods, it is inevitable that the control 
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system errors will affect their identification accuracy, possibly even eliminating the 

identification benefits of using control. Moreover, because of the complexity of the 

closed-loop control system, the effects of control system error on the identification 

accuracy usually become extremely difficult to analyze and predict. Thus, it would be 

beneficial to develop some new approaches in which control improves the identification 

accuracy but the identification results are robust to errors in the control forces. 

In the third, fourth and fifth chapters, three interrelated substructure identification 

methods have been proposed for shear structures. The error analyses for these 

identification methods demonstrate that the identification errors are closely related to two 

important structural responses: 1) the frequency responses of the interstory acceleration 

of the story being identified and 2) the frequency response ratio between two adjacent 

interstory accelerations, the story being identified and the story above it. The accuracy of 

these substructure identification methods can be improved by significantly changing 

these two responses accordingly near the substructure natural frequency. This result 

provides an easy way to make use of control systems to change structural responses and 

improve the identification accuracy.  

In this chapter, two kinds of structural control (SC) systems, an active mass driver 

(AMD) system and a semi-active interstory brace system, are used to induce the 

aforementioned structural response changes and to improve the accuracy of the 

substructure identification methods. The accuracy of the substructure identification 

method proposed in the previous chapters does not directly depend on the SC system but 

only indirectly on the performance of SC system, that is, the response of the closed-loop 

controlled structure; any control system errors (such as feedback measurement noise, 
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time delay and so forth) that do not significantly deteriorate this performance of the 

designed control system should not have a large side effect on the accuracy of the 

controlled identification. Therefore, the proposed substructure controlled identification 

should be quite robust to the possible control system errors. 

This chapter is organized as follows: first the identification error analyses of the 

proposed three substructure identification methods are reviewed. Then, based on the 

results of the error analyses, some optimization problems are formulated, in which the 

optimal parameters of two control systems are obtained. Next, a three-stage structural 

control system design strategy is proposed to overcome the difficulty that the true 

structural parameters are unknown when designing the control system for the 

identification purpose. Moreover, a study is carried out to demonstrate that the proposed 

controlled substructure identification method is very robust to one very common 

uncertainty in the control system – measurement noise. Finally, several numerical 

examples demonstrate that both control methods greatly improve the identification 

accuracy and are robust to fairly large feedback measurement noise. 

6.1 Review of Identification Error Analysis Results of Three 
Substructure Identification Methods 

In this section, the results of the identification error analysis of the previously 

proposed three substructure identification methods are briefly reviewed, which provides 

the foundation as to how to design structural control systems to change structural 

responses and improve the identification accuracy. As shown in Figure (6.1), the top (nth) 

story substructure can be considered a special case of the general non-top (ith) story 

substructure in which the fictitious upper (n+1th) structural parameters [kn+1 cn+1]T and the 
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fictitious upper structural responses 1+nx  are all zero. Therefore, only the identification 

error of the general non-top (ith) will be reviewed; the results of the identification error 

analysis of the top story can be easily derived based on the results of the non-top 

substructure and the simple substitution.  

 

 

 

 

 

 

 

 

Figure 6.1 Comparison of top story substructure and non-top story substructure 

6.1.1 Identification Error of FFT_SUBID Method 

As stated in section 3.3.2, the relative identification errors of the ith non-top story 

parameters [ ]Tii ck in FFT_SUBID method can be obtained as, 
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where θk(i+1) and θk(i+1) are the relative identification errors of the (i+1)th story parameters 

ki+1 and ci+1, respectively; the expression of all factors Uij,l are given in Equation (3.32). 

As shown in section 3.3.2, the magnitude of all factors Uij,l are significantly large 

near the ith story substructure natural frequency ωi0 and decay very fast when the 

frequency moves to both lower and higher frequency; hence, the uncertainty terms near 

the substructure natural frequency dominate the identification errors.   

Moreover, the frequency response of the ith interstory acceleration  )( ,1, lili XX −−   is 

in the denominator of all measurement uncertainty terms and the frequency response ratio 

between the two adjacent interstory accelerations, )()( ,1,,,1 lililili XXXX −+ −−  , 

multiplies the uncertainty terms related to the errors in the (i+1)th story parameters; 

therefore, the identification errors of the ith story parameters can be reduced by (a) 

maximizing the frequency response of the ith interstory acceleration )( ,1, lili XX −−   in a 

frequency range around the ith substructure natural frequency 0iω , which will reduce the 

identification error due to measurement uncertainty; (b) minimizing the frequency 

response ratio between the (i+1)th interstory acceleration and the ith interstory 

acceleration, )()( ,1,,,1 lililili XXXX −+ −−  , in the same frequency range, which reduces the 

error caused by the parameter estimate errors from the (i + 1)th story.  

6.1.2 Identification Error of TF_SUBID Method 

As analyzed in section 4.4.2, the relative identification errors of the ith non-top story 

parameters [ ]T
ii ck in the TF_SUBID method should be less than the following three 

identification errors, each of which assumes that only one of floor acceleration responses 
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is used as the pseudo input to calculate the transfer functions needed in the identification 

process. 
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As in the FFT_SUBID method, in the TF_SUBID method, the frequency response 

)( ,1, lili XX −−   shows up in the denominator of all measurement uncertainty terms and the 

frequency response ratio )()( ,1,,,1 lililili XXXX −+ −− 
 multiplies the uncertainty terms 

related to the errors of the upper (i+1)th story parameters; hence, largely maximizing the 

frequency response )( ,1, lili XX −−  and minimizing the frequency response ratio 

)()( ,1,,,1 lililili XXXX −+ −−   in a frequency range around the ith substructure natural 

frequency 0iω  can significantly reduce of the identification errors of the TF_SUBID 

method. 
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6.1.3 Identification Error of CSD_SUBID Method 

As analyzed in section 5.3.2, the relative identification errors of the ith non-top story 

parameters [ ]T
ii ck in the CSD_SUBID method can be expressed as, 
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Since the identification errors of the CSD_SUBID method has a format similar to 

that of the FFT_SUBID method, a similar conclusion about how to change the structural 

responses to improve the identification accuracy is obtained: the identification errors of 

the CSD_SUBID method can be reduced by maximizing the cross power spectral density, 

lyxx ii
S ,)( 1−−  , and minimizing the cross power spectral density ratio, lyxxlyxx iiii

SS ,)(,)( 11 −+ −−  ,  

in a frequency range around the ith substructure natural frequency 0iω . 

If it is assumed that there is only one excitation source (e.g., ground excitation gu ) 

forcing in the structure, then the cross power spectral density ratio, yxxyxx iiii
SS )()( 11 −+ −−  , 

will become independent of the selection of the reference response y(t) and can be 

simplified as 
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where 
guyH   is the transfer function from the ground excitation gu  to the reference 

response  )(ty ; 
g1 )( uxx ii

H  −− is the transfer function from the ground excitation gu  to the ith 

interstory acceleration )( 1−− ii xx  ;
g1 )( uxx ii

H  −+
is the transfer function from the ground 

excitation gu  to the (i+1)th interstory acceleration )( 1 ii xx  −+ . Therefore, in the case of 

one excitation, the cross power spectral density ratio yxxyxx iiii
SS )()( 11 −+ −−   equals the 

frequency response ratio )()( ,1,,,1 lililili XXXX −+ −−  .  

If the structure is only subjected to the ground excitation, the magnitude of the cross 

power spectral density yxx ii
S )( 1−−   can be evaluated as 
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 (6.8) 

Equation (6.8) shows that the magnitude of the cross power spectrum –  )( 1−− ii xxyS   – is 

closely related to the power spectrum density of the ith interstory acceleration )( 1−− ii xxS  , 

larger )( 1−− ii xxS   leads to larger )( 1−− ii xxyS   and, thus, more accurate identification results of 

the CSD_SUBID method. Moreover, since 



 −= −− −

2
,1,)( E

1 lilixx XXS
ii


 , large )( 1−− ii xxS   

implies larger average frequency response )( 1−− ii XX  . 

6.2 Design for Controlled Substructure Identification Systems 

Based on the error analysis results of all three substructure identification methods, it 

becomes obvious that the goal of an identification-focused control system is to increase 
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the frequency response of the interstory acceleration )( 1−− ii XX   and simultaneously to 

reduce the frequency responses ratio )()( 11 −+ −− iiii XXXX   near the story substructure 

natural frequency 0iω  as much as possible.  

To achieve the goal of improving the parameter identification accuracy, two 

structural control systems are studied: a semi-active brace system and an active mass 

damper system (AMD). Figure 6.2 shows an example of the active AMD system and the 

semi-active brace system. New control algorithms for these two systems are designed to 

attain the desired structural response changes previously mentioned so that the structural 

parameters can be more accurately identified. It is worth emphasizing that the proposed 

identification-facilitated control algorithm will be implemented with a fail-safe 

mechanism, that is, if excessive excitation is detected the control system will immediately 

switch back to the original control algorithm that is designed to mitigate the structural 

vibration. Therefore, the new algorithm will not weaken the main function of the control 

system, vibration mitigation, but add extra value to the installed control system. 

 

 

 

 

 

 

 

 

Figure 6.2 Illustration of semi-active brace systems and AMD system 
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For the simplicity of designing control algorithms to improve substructure 

identification accuracy, it is assumed herein that  

1. The structure is excited only by the ground motion in addition to the control 

system force(s). 

2. The control system is ideal and no control system errors (such as feedback 

measurement noise, actuator time delay and so forth) exist. 

Based on these assumptions, it can be easily shown that 1) the frequency response 

ratio )()( 11 −+ −− iiii XXXX   equals the transfer function from the ith interstory 

acceleration response to the (i+1)th  interstory acceleration response and does not change 

with different ground excitation inputs, and 2) the frequency response of the interstory 

acceleration )( 1−− ii XX   is equal to the frequency response of the ground excitation 

multiplied by the closed-loop transfer function from ground excitation to the ith interstory 

acceleration. Hence, instead of directly utilizing the frequency response of the interstory 

acceleration, which is random in nature due to the random ground excitation, the control 

system is designed by using the deterministic transfer functions of the closed-loop 

controlled structure, as shown subsequently in Equations (6.9), (6.11) and (6.12). 

 The control systems need to simultaneously achieve two goals: amplifying 

)( 1−− ii XX   and reducing )()( 11 −+ −− iiii XXXX   near the story substructure natural 

frequency, which may be competing goals in some situations; to overcome this problem, 

the above two-objective optimization problem is converted into a single objective 

optimization problem by assigning some importance weighting factors for each goal as 

shown in Equations (6.9), (6.11) and (6.12). Moreover, the goal of amplifying response 
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)( 1−− ii XX   is replaced by an equivalent goal of reducing the inverse of the response, 

)(1 1−− ii XX  . 

6.2.1 AMD System 

The linear state-feedback control method is adopted for designing the active AMD 

system to improve the parameter identification accuracy. Let L denote the state feedback 

gain matrix of the AMD system. The optimal L matrix can be obtained by solving the 

following optimization problem in Equation (6.9). Since the AMD control system has the 

potential to destabilize the controlled structure system, a stability constraint is imposed 

on the optimization problem to require that the damping ratio of the closed-loop 

controlled system be greater than a given threshold. 
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where 
g1 )( uxx ii

H  −−  and ))(( 11 −+ −− iiii xxxxH  are the closed-loop transfer functions from the 

ground excitation gu  to the ith interstory acceleration response ( )1−− ii xx   and from the ith 

interstory acceleration response ( )1−− ii xx   to the (i+1)th interstory acceleration response 

( )ii xx  −+1 , respectively; kξ  is the damping ratio of the kth root of the closed-loop system 

and 0ξ  is a positive real number, taking the value of 0.02 in the following numerical 

examples; ul ωω  and  are the lower and upper frequency bounds of the integration, herein 

taken to be 0.8ωi0 and 1.2ωi0; α  is a weighting factor that balances the role of the SC 

system in achieving the two possibly competing control goals of changing structural 
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responses; α takes the value of 0.8 in the following examples. )( ωjW  is a frequency 

weighting function 
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As shown in Figure 6.3, the magnitude of )( ωjW  peaks at around the ith story 

substructure natural frequency 0iω  and quickly vanishes when further away. The role of 

this frequency weighting function is to implicitly force the control system to focus on 

changing the two interested structural responses, )( 1−− ii XX  and 

)()( 11 −+ −− iiii XXXX  , only around the substructure natural frequency 0iω , so that the 

identification error can be greatly reduced.  

 

Figure 6.3 Magnitude of frequency weighting function W(jω) 

 



  

180 

6.2.2 VSDD Brace System 

Two kinds of control strategies to design a variable stiffness damping device 

(VSDD) brace system are studied herein. First, the VSDD braces are used as passive 

devices that add fixed stiffness and damping to the structure. Second, in a semiactive 

strategy, the VSDD braces try to mimic, as closely as possible, the control force 

trajectory of an optimally designed active control system. 

a) Passive Control Algorithm Design 

Let T
1 ]    [ pθθ …=θ  be a vector composed of the stiffness and damping parameters 

of the semiactive braces. The following optimization problem is posed to minimize the 

inverse of the frequency ith interstory acceleration )(1 1−− ii XX 
 as well as the frequency 

ratio  )()( 11 −+ −− iiii XXXX   near the ith story substructure natural frequency 0iω . 
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where  lω  and uω  are the lower and upper limit of the integration frequency range, 

respectively; ),,2,1( max pkk =θ  are the upper limit of the corresponding stiffness or 

damping parameters of the braces; all design variables kθ  should be non-negative due to 

the passive nature of the devices; p is the number of the braces; and α and )( ωjW  are the 

same as given in Equation (6.9). 

b) Semiactive Control Algorithm Design 

A clipped optimal control strategy (Dyke et al., 1996; Ramallo et al., 2002) is used 

to design a semiactive algorithm to enhance the identification accuracy. The clipped 
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optimal control is composed of two controllers in series: the primary controller is 

designed by a linear state feedback control algorithm assuming that the actuators are fully 

active, and a clipping algorithm is used as a secondary controller to make the semiactive 

brace mimic the control force commanded by the primary controller.  

Due to the dissipative nature of semiactive braces, a semiactive brace cannot always 

provide the exact control force as calculated by the primary controller. The performance 

of the clipped optimal control system, compared with the corresponding fully active 

system, is largely dependent on the dissipativity of the control forces from the primary 

controller (Johnson et al., 2007). Therefore, a dissipativity constraint for the primary 

controller is integrated into the optimization procedure of the algorithm design (6.12) to 

assure that the control forces applied to the structure are dissipative during most of the 

time history, so that the semiactive system effectively tracks the active system. 

Let G be the state feedback gain matrix of the primary controller in a clipped 

optimal semiactive control system. An approximate optimal semiactive strategy can be 

found by solving for an active primary controller state feedback gain subject to a 

constraint that it be dissipative much of the time 

( ) ( ) ( ) ( )
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where 
llvuρ is the correlation coefficient between the control force ul and the velocity vl 

across the lth semi-active brace; ε is a negative number between 0 and –1, with smaller ε 

requiring the control force be more dissipative; ε is chosen to be –0.5 in the numerical 

examples herein. The weighting function )( ωjW  is the same as given in Equation (6.9). 
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After the primary controller is designed, a secondary clipped optimal controller is 

concatenated afterward to form the full controller, where desired control force ul(t) is 

exerted at time t if ul(t)·vl(t) ≤ 0 for velocity vl(t)  across the lth device (i.e., if it is 

dissipative), and zero force otherwise. 

Since the accuracy of substructure identification does not directly depend on the SC 

system but only indirectly on the performance of the SC system – the ability to change 

the structural response – any control system errors, like feedback measurement noise, 

which do not significantly weaken this performance of the designed control system will 

not have a large side effect on the final identification results. Therefore, the proposed 

controlled substructure identification should be quite robust to the possible control 

system errors.  

6.3 Control System Design with Unknown Structural Parameters 

To optimally design a control system, the exact structural parameters are required to 

accurately evaluate the performance of the closed-loop controlled system. However, the 

whole purpose for designing control systems herein is to improve parameter 

identification; thus, these parameter values, at least their exact values, should not be 

available for control design. To overcome this difficulty, a three-stage design strategy can 

be adopted. Figure 6.4 shows the flowchart of this three-stage design method. At the first 

stage, several substructure identifications with no control forces are performed to initially 

estimate structural parameters. In the second stage, a probabilistic model for the structural 

parameters will be constructed from the previous step identification results to describe the 

uncertainty of the structural parameters. Given the limited number of identification 
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results from the first stage, only the first two statistical moments (mean and variance) of 

structural parameters can be computed accurately. Thus, based on the maximum entropy 

theorem (Jaynes, 1968), a Gaussian probability model is selected in this study to keep the 

maximum uncertainty of the random parameters when only their means and variances are 

given. The parameters (statistics) of this Gaussian model are estimated from the previous 

step identification results. Based on the probability model of the structural parameters, a 

sampling technique is applied to generalize many realizations of the structural 

parameters, each of which is used to create a structure model. In the final stage, instead of 

using the best guess model of the structure, whose parameters are the mean estimates of 

the structural parameters, to design the control system, all structural models generated by 

the sampling are used together to evaluate both the objective function and the constraints 

in the optimization. 

Let L denote the design parameters of the control system, which is the state 

feedback gain matrix for the AMD system or the added story stiffness and damping for 

semiactive brace system; let θ = [k1 … kn   c1 … cn]T  be the uncertain structural 

parameter vector with probability distribution obtained in the second stage. The 

optimization problem used to design control system with uncertain structural parameters 

can be written as, 
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where subscript θ  denotes that the expectation operator is taken with respect to the 

uncertain structural parameters; [ ])(E θθ c  stands for the mean value of the constraint 
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function )(θc , whose value must be less than zero (i.e., )0)( <θc  in the original control 

system design with deterministic structural parameters; [ ])(θθ cσ  denotes the standard 

deviation of the constraint function )(θc  due to the uncertainty in the structural 

parameters. The factor of 2 in front of ][⋅θσ  is used to ensure that the constraint is 

satisfied most of the time (larger values than 2 would be used to ensure a higher 

likelihood of satisfying the constraint). 

  

Figure 6.4 Flowchart of three stage control system design strategy 
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6.4 Effect of Feedback Measurement Noise on Controlled 
Substructure Identification  

Using structural control systems to amplify the response )( 1−− ii XX   and reduce the 

response ratio )()( 11 −+ −− iiii XXXX   near the story substructure natural frequency can 

significantly improve substructure identification accuracy. Further, since each step of the 

substructure identification method only involves the dynamic response of a certain floor 

substructure, a control force applied on one floor will not enter into most of the 

identification steps and, thus, the error in control force will not directly affect the 

accuracy of these identifications and the side effect of the control system error is 

minimized. Moreover, because the control system error affects the identification accuracy 

by diverting the controlled structural responses from the optimally designed responses, 

the effect of the control system error can be easily analyzed and predicted by observing 

the responses of the controlled structure. Therefore, the proposed controlled substructure 

identification methods will improve identification accuracy and also be robust to the 

errors in the control forces. 

The control algorithm in the previous section is designed on the assumption of an 

ideal control system. However, some control system errors always exist and will 

inevitably affect, more or less, the performance of the designed control system to 

improve identification accuracy. In this section, an analysis is made to examine how one 

of the common control system errors, feedback measurement noise, will affect the 

performance of the control system. Since the identification accuracy of substructure 

identification directly depends on two closed-loop substructure responses, )( 1−− ii XX   
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and )()( 11 −+ −− iiii XXXX  , the effect of feedback measurement noise on the accuracy 

of the substructure identification can be analyzed by examining how the noise will 

change these responses from what was originally designed. 

 

Figure 6.5 Control system with state feedback measurement noise 

It can be shown that both active AMD and semiactive brace systems can be 

represented by the flowchart in Figure 6.4, where gu  is the ground excitation; cu are the 

control system force(s) applied on the structure; z represents the structural state-space 

response vector, containing the displacement and velocity responses of all floors; zn is 

the measurement noise vector of the state space response, assumed to be band-limited 

Gaussian random processes; H1 and H2 are the structure transfer functions from ground 

excitation and control forces to the structural state-space responses respectively; C is the 

designed controller; T1 and T2 are the linear matrices that link the state-space response to 

the ith and (i+1)th interstory acceleration respectively. 

Assuming that the controller C is a linear controller, the closed-loop controlled 

structure is a linear time invariant (LTI) system. By applying the superposition principal 

to the output of this system in the frequency domain, the frequency response of the ith 
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interstory acceleration )( 1−− ii XX   and the (i+1)th interstory acceleration )( 1 ii XX  −+ , can 

be calculated as 

 ( ) ( ) iiii RRUXX ∆+=−+−=− −−
− y2

1
21g1

1
211 CNHCHITHCHIT   (6.14) 
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where zN , ,, , g11 UXXX iii


+− are the frequency response of the corresponding time 

domain responses of zn , ,, , g11 uxxx iii  +− , respectively. The responses in Equations (6.14) 

and (6.15) contain two parts: the first part is due to the ground excitation, which is just 

equal to the responses from the ideally controlled system without feedback noise; the 

second part is the responses contributed by the feedback noise. For notational simplicity, 

new variables Ri, ΔRi, Ri+1, ΔRi+1 are introduced to represent these response, respectively. 

a) Feedback Noise Effect on Response )( 1−− ii XX   

In order to perform an analysis, it is assumed that feedback measurement noises nz 

are independent of the ground excitation gu . Therefore, the variance of the frequency 

response of the ith closed-loop controlled interstory acceleration can be calculated as 
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The variance in Equation (6.16) consists of two parts: the first part is due to ground 

excitation, which just equals the variance of the responses from the ideally controlled 

system without feedback noise; the second part is contributed by the feedback noise 

variance. Since the second part is always greater than zero, the variance of the responses 

from the non-ideally controlled system (with feedback noise) will be larger than that from 
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the ideally controlled system; this indicates that from the response )( 1−− ii XX   point of 

view, the feedback noise does not deteriorate but rather improves the performance of the 

control system to amplify the frequency response of the ith interstory acceleration 

)( 1−− ii XX   and , thus, enhance the final identification accuracy. 

b) Feedback Noise Effect on Response )()( 11 −+ −− iiii XXXX   

Using the results from Equations (6.14) and (6.15), the frequency response ratio 

)()( 11 −+ −− iiii XXXX   under feedback noise can be calculated as 
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Treating the variables ΔRi and ΔRi+1 as the increment of the variables Ri and Ri+1 

respectively and applying a first order Taylor expansion with respect to variables Ri and 

Ri+1, the response in Equation (6.16) can be approximated by 
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The ratio Ri+1/Ri is equal to the closed-loop transfer function from the ith interstory 

acceleration to the (i+1)th interstory acceleration ))(( 11 −+ −− iiii xxxxH   of an ideally-controlled 

structure, which is designed to be small near the substructure natural frequency. 

Therefore, if the ith and (i+1)th interstory acceleration ΔRi and ΔRi+1 caused by the 

feedback noise are small compared with the ith interstory acceleration Ri due to the 

ground excitation, the frequency response ratio )()( 11 −+ −− iiii XXXX   with feedback 

noise will not be largely amplified compared with that from the ideally-controlled system 

(without feedback noise). Moreover, the Ri response, equal to the ith interstory 
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acceleration )( 1−− ii XX   in ideally control system, is originally designed to be large near 

the substructure natural frequency; thus, generally, the frequency response ratio 

)()( 11 −+ −− iiii XXXX   should not be largely amplified near the substructure natural 

frequency by the introduction of feedback noise. 

Combining the conclusions from (a) and (b) regarding the feedback noise effect on 

response )( 1−− ii XX  , it can be concluded that the proposed control-facilitated 

identification method designed under ideal conditions (without feedback noise) are quite 

robust to the side effect of the existence of feedback noise and may even have a potential 

to provide more accurate identification results with feedback noise because the noise 

amplifies the structural response )( 1−− ii XX  . 

6.5 A Numerical Example 

The same 5-story shear structure used in the third, fourth and fifth chapters is reused 

here to illustrate the effectiveness of utilizing the control systems to improve the accuracy 

of the structural parameter identification. The parameters of the shear structure are 

mi = 1×105 kg, ci = 8×105 N·sec/m and ki = 16×107 N/m (i = 1,…,5). The structure is 

subject to ground excitation gu , which is modeled by a Gaussian random pulse process 

passing through a 4-th order band pass Butterworth filter with 1Hz low cut-off frequency 

and 12 Hz high cut-off frequency.  

Two control systems, an AMD system installed on the roof (the fifth floor) and a 

VSDD brace system implemented in the first and second stories, are considered 

respectively. The state feedback control strategy is used to design the AMD system; the 

passive and the pseudo-active state feedback control strategies are applied to design the 
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VSDD brace system. The optimal parameters of the control systems are obtained by 

solving the optimization methods proposed in section 6.2. Then, the designed control 

systems are then used to control the structural response when the controlled substructure 

identifications are performed. 

To test the performance of the newly designed control systems in improving the 

parameter identification accuracy, 100 substructure identification tests, via the 

FFT_SUBID method, are carried out for the structure without control, with VSDD brace 

and AMD control systems respectively. It is assumed in the simulation that there is noise 

in the measurements of floor accelerations and control forces, but the control systems 

works ideally and there is no noise in the state feedback measurement. 

Figures 6.6 and 6.7 demonstrate an example of how the control systems change the 

structural responses to improve the parameter identification accuracy. Figure 6.6 shows 

the transfer functions from the ground excitation to the 1st interstory acceleration of the 

uncontrolled and the controlled structures; Figure 6.7 shows the frequency response ratio 

)()( g112 UXXX  −−   between the two adjacent interstory responses of the uncontrolled 

and the controlled structures. It can be seen that two control systems – passive VSDD 

system and AMD system – amplify the 1st interstory acceleration responses, which 

controls the identification error of the 1st story parameters T
11 ][ ck due to the 

measurement noise, and reduce the frequency response ratio )()( g112 UXXX  −− , which 

controls the identification error related to the error propagation effect; thus, it is expected 

that the control systems will improve the accuracy of the substructure identifications. 
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Note that the transfer functions of the VSDD system using pseudo-active control strategy 

are not included in the figures because this control system is not a linear system. 

 

 

 

 

 

 

 

 

 

Figure 6. 6 The transfer functions from ground excitation to the 1st interstory 
acceleration of uncontrolled and controlled structure 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 The frequency response ratio between the 2nd interstory acceleration and the 
1st interstory acceleration 
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In each substructure identification test, 180-second ground and floor acceleration 

responses, with sampling rate 200 Hz, are calculated to carry out the identification. It is 

assumed that the magnitudes of the measurement noises of all acceleration responses ix  

are the same, with root-mean-square (RMS) value equal 5% of the RMS of the ground 

excitation; the measurement of the control force (in controlled identification case) is also 

contaminated by 5% noise, that is, the RMS of the measurement noise of the control 

force is equal to 5% of the RMS of the corresponding control force. 

The relative RMS errors (RMSE) of the identified parameters (in percentage) are 

listed in Table 6.1. From the result, it is clearly seen that all control systems do greatly 

improve the parameter identification accuracy. Taking the third story parameter as an 

example, the RMSEs of stiffness and damping parameter estimates are reduced by a 

factor of 4.7 and 5.4 for the passive control method (VSDD system), by a factor of 3.3 

and 3.9 for the pseudo-active control method (VSDD system), and by a factor of 8.3 and 

11.9 for the active control method (AMD system).  

Table 6.1 Relative (percentage) RMSE of identification results without control and 
with ideally passive, pseudo-active and active control 

floor # 
No control 

VSDD 

(passive) 

VSDD 

(pseudo-active) 
AMD 

ki ci ki ci ki ci ki ci 

1 1.40 3.85 0.22 1.92 0.29 0.99 0.26 2.01 

2 1.90 4.65 0.42 2.18 0.47 1.41 0.41 2.36 

3 2.33 20.59 0.49 3.83 0.71 5.33 0.28 1.73 

4 0.63 6.64 0.20 1.12 0.21 1.17 0.17 1.16 

5 0.39 3.31 0.19 0.78 0.15 0.63 0.19 1.29 
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Table 6.2 Relative (percentage) RMSE of identification result of passive and active 
control with 20% feedback noise 

floor # 

VSDD  

(passive) 

VSDD 

(pseudo-active) 
AMD 

ki ci ki ci ki ci 

1 0.38 2.76 0.31 1.05 0.22 1.72 

2 0.46 1.96 0.42 1.23 0.36 1.95 

3 0.54 4.76 0.63 5.46 0.23 1.50 

4 0.19 1.02 0.21 1.46 0.20 1.05 

5 0.16 0.59 0.14 0.70 0.13 0.67 

 

The analyses in section 6.4 show that the proposed control-identification methods 

are robust to the feedback measurement noise and it is possible that the noise may even 

enhance the identification accuracy. To test this conclusion, fairly large 20% Gaussian 

white control feedback noise is added into the structural state feedback; that is, the RMS 

of noise nz is equal to 20% of the RMS of the corresponding state response. Similarly, 

100 identification tests are performed with the noise-contaminated passive and active 

control systems. The results of these tests are shown in Table 6.2. 

By comparing the corresponding results between Tables 6.1 and 6.2, it is observed 

that there is no obvious deterioration of the identification accuracy due to the addition of 

20% state feedback noise; on the contrary, the identification results for most story 

parameters with feedback noise become more accurate than those without noise. This 

simulation result partially verifies the previous analysis that the controlled identification 

systems are robust to the state feedback noise and the noise may even help to improve the 
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identification accuracy via amplifying structural response )( 1−− ii XX  . However, there are 

some cases that the identification results deteriorate slightly. This may be due to two 

reasons: 1) the introduction of feedback noise may also amplify the response ratio 

)()( 11 −+ −− iiii XXXX   compared with the ideally-controlled case, which in turn 

deteriorates the accuracy. 2) The uncertainty of the measured control forces may 

contribute to the increase of the identification errors. Taking the AMD system as an 

example, the control force (from the actuator) is directly applied on the 5th floor of the 

structure; thus, the measured control force is needed for the identification of the 5th story 

parameters. In the non-ideal control case, the measured control force is also assumed to 

be noise contaminated; thus, the uncertainty in the measured control force will inevitably 

increase the identification error for the 5th story parameters and also affect the 

identification accuracy of other parameters through the error accumulation effect. 

In summary, although the estimates of some parameters with feedback noise 

deteriorates slightly compared with an ideally-controlled case, both control systems do 

still provide quite large improvements for the identification accuracy under fairly large 

feedback noise, compared to uncontrolled identification results. These simulation results 

reconfirm the conclusion of the analysis that the proposed control-identification methods 

are quite robust to the feedback measurement noise. 
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Chapter 7 

Loop Substructure Identification Method  

In the third, fourth and fifth chapters, three substructure identification methods have 

been proposed to identify the structural parameters of a shear structure. These 

identification methods essentially establish an induction identification problem, in which 

the parameters of the whole structure are identified iteratively from top to bottom. 

However, there are two limitations of these substructure identification methods. First, the 

induction process in these methods requires a priori information of the structural floor 

masses. But the structural mass may not be always known in reality, which prevents the 

application of the substructure identification methods. Second, in some cases, such as  

post-earthquake damage evaluation of building structures, people may only care about the 

structural parameters of a few stories where structural damage is most likely to occur 

(e.g., the lower stories). However, to identify the parameters of a lower story in the 

substructure identification methods, the structural parameters of all stories have to be first 

identified in the induction identification process, which requires installation of 

accelerometers on every floor above the story being identified; this may result in 

prohibitive costs for the SHM system if the building has tens of stories. Therefore, it is of 

practical interest to develop some methods that can identify the parameters of any story in 

the structure by only measuring a few structural responses related to that part of the 

structure. 

In this chapter, a new substructure identification method, the LOOP_SUBID method, 

is proposed to address the aforementioned limitations of substructure identification 

methods in Chapters 3~5: how can one perform the identification with unknown 
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structural mass and with only a few measurements in the structure. Different from the 

previous substructure identification methods, in the new LOOP_SUBID method only the 

dynamic equation of one non-top story substructure, containing the story whose 

parameters are to be identified, is used in formulating the identification problem. Two 

substructure identification problems, each of which identifies the parameters of one story 

in the substructure given that the parameters of another story in the substructure are 

known, are alternately used to establish a sequence of loop identification problems, in 

which all four structural parameters [ ]T11 ++ iiii ckck  are identified all together once.  

Moreover, the new method does not need the absolute value of the story mass im  in the 

identification if the mass normalized structural parameters 

[ ]T11 iiiiiiii mcmkmcmk ++   are identified. 

 

Figure 7.1 (a) A shear story (b) two-story standard substructure  
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(b) 
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This chapter is organized as follows. First is to examine how to make use of the 

dynamic equation of one story substructure to formulate the loop identification problems 

in the LOOP_SUBID method. Then, the convergence behavior of the LOOP_SUBID 

method is studied and a numerical example is used to verify the convergence; the results 

show that not all identification estimates of the LOOP_SUBID method converge. Next, 

an analysis is made to explain why the LOOP_SUBID method fails to converge, leading 

to the proposal of a modification of the LOOP_SUBID method to fix the problem by 

using two sets of special structural responses in formulating the loop identification 

problems. Moreover, a method of designing some control system is proposed to change 

structural responses so that the convergence of the loop identification in the 

LOOP_SUBID method can be achieved. Finally, the same 5-story example is used to 

show that by utilizing the specially designed control systems, the LOOP_SUBID method 

is able to achieve converged identification results.  

7.1 Method Formulation 

Figure 7.1a shows an n-story shear structure; Figure 7.1b shows a standard two-story 

substructure that will be used in formulating the LOOP_SUBID method. The dynamic 

equation of a middle floor of this substructure can be written as  

[ ] [ ] [ ] [ ] 0)()()()()()()()()( 111111 =−+−+−+−+ ++++−− txtxktxtxctxtxktxtxctxm iiiiiiiiiiiiii 

 (7.1) 

where mi is the mass of the ith floor; ci and ki are the damping coefficient and stiffness of 

the ith story; xi is the displacement of the ith floor relative to an inertial reference frame. 
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Adding )(1 txm ii −−   to both side of Equation (7.1), pre-multiplying both sides by a 

reference response at an earlier time )( τ−ty  and taking the expectation will give 

yxiyxxiyxxiyxxiyxxiyxxi iiiiiiiiiii
RmRkRcRkRcRm

111111 )(1)(1)()()( −++−−−
−=++++ −+−+−−−   (7.2) 

where [ ])()(E)( ττ −= tytxRxy  is cross correlation function between the responses )(tx  

and )(ty . It is assumed here that the reference response )(ty  and all structural responses 

are jointly wide sense stationary (WSS). When  )(ty  and )(tx  are joint WSS process, 

their cross correlation function satisfies the following equation (Bendal et al., 2000) 

 )()( )(
)( ττ m

xyyx RR m =  (7.3) 

Let )(mx  denote the mth derivative of the random process )(tx  with respect to time, and 

)()( τm
xyR  denote the mth derivative of the correlation function )(τxyR with respect to τ. If 

the mean square derivatives exist, Equation (7.2) can be rewritten as 

yxiyxxiyxxiyxxiyxxiyxxi iiiiiiiiiii
RmRkRcRkRcRm

111111 )(1)(1)()()( −++−−−
−=++++ −+−+−−−

  (7.4) 

Taking a two sided Fourier transform of both sides, rearranging the order of the equation 

and exploiting the property of )()()( 2 RFjRF ω=  (where F denotes Fourier transform 

operator and  j2=−1) gives 

])()()[()()(1
1

2
11

2
11

1

ωωωω iiiiyxyxyx

yxyx

iiii mkmjcSSS
SS

mkmcj
iii

ii

++ +−+

−
=

−−
+−

−



  (7.5) 

where yx j
S  , the Fourier transform of the cross correlation function )(τyx j

R  , is the cross 

power spectral density function between the structural acceleration response jx  and the 

reference response  y. 
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If the structural parameters of the (i+1)th story  [ki+1 ci+1]T are known, then the right 

side of Equation (7.5) can be calculated from the measured structural responses and the 

following the optimization problem is formulated to identify the parameters of the ith 

story [ki  ci]T. 

 ∑
=

+−
−=

N

l
yxyxyxliilii

ck
iii

ii

SSSgckgckJ
1

2

,
)ˆ,ˆ,ˆ(ˆ),(),(minarg

11   (7.6) 

where  
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1),( 2
liilii

iil mkmcj
ckg

ωω −−
= , 

])()()[ˆˆ(ˆ

ˆˆ
)ˆ,ˆ,ˆ(ˆ

2
11,,,

,,
,,,

11

1

11

liiliilyxlyxlyx

lyxlyx
lyxlyxlyxl mkmjcSSS

SS
SSSg

iii

ii

iii ωω ++ +−+

−
=

+−

−

+−




   

(The derivation in Equations (7.1)~(7.6) is nothing but a duplication of the derivation of 

the non-top story identification in the CSD_SUBID method in section 5.1). In order to 

solve the optimization problem (7.6), the value of the (i+1)th story parameters [ki+1 ci+1]T 

have to be known. To identify parameters [ki+1 ci+1]T, the CSD_SUBID method in 

Chapter 5 uses the dynamic equation of the (i+1)th floor shown in Equation (7.7), which 

results in the establishment of an induction identification problem.    

( ) ( ) ( ) ( ) 0212212111111 =−+−+−+−+ ++++++++++++ iiiiiiiiiiiiii xxkxxcxxkxxcxm   (7.7) 

Unlike the CSD_SUBID method, the LOOP-SUBID method utilizes a different approach 

to identify the parameters [ki+1 ci+1]T, one based on the dynamic equation of the ith floor, 

Equation (7.1), rather than that of the  (i+1)th floor.  

One interesting property of Equation (7.1) is that the equation remains unchanged 

with the structural parameters swapped (ki, ci  ki+1, ci+1) and structural responses 

swapped ( 11,1 , −−− iii xxx   11,1 , +++ iii xxx  ), which implies that the ith story substructure and 
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(i+1)th story substructure have some symmetry in the identification process. This 

symmetry provides a way of developing a symmetric identification method similar to that 

of Equation (7.6), in which that the parameters of the (i+1)th story T
11 ]  [ ++ ii ck  can be 

identified given that the parameters of the ith story T]  [ ii ck  are known. This symmetric 

identification method is developed as follows,  

Adding the term 1+− ii xm   to both sides of Equation (7.1) and following a procedure 

similar to that in Equations (7.2)~(7.5), another key equation can be obtained as follows 

])()()[()()(1
1

22
11 11

1

ωωωω iiiiyxyxyx

yxyx

iiii mkmjcSSS

SS

mkmcj
iii

ii

+−+

−
=

−−
−+

+

++ 

  (7.8) 

If the structural parameters of the ith story  [ki  ci]T are known, then the right side of 

Equation (7.8) can be calculated from the measured structural responses and the 

following the optimization problem can be formulated to identify the parameters of the 

(i+1)th story T
11 ]  [ ++ ii ck . 

 ∑
=

++++ +−
++

−=
N

l
lyxlyxlyxliilii

ck
iii

ii

SSShckhckJ
1

2
,,,1111

,
)ˆ,ˆ,ˆ(ˆ),(),(minarg

11
11

  (7.9) 
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  . 

Thus far, two identification problems, Equation (7.6) and (7.9), for the two-story 

substructure in Figure 7.1b are established, each of which can identify the parameters of 

one story in the two-story substructure by using the parameters of the other. By 
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connecting these two identification problem in a loop as shown in Figure (7.2), a loop 

identification sequence is established in which all four structural parameters 

[ ]T11 ++ iiii ckck  are identified once together. It is worth pointing out here that 

although the LOOP-SUBID method is developed by using the cross power spectral 

densities between structural acceleration responses and the reference response, it can also 

be formulated by using the Fourier transform of structural responses or using the transfer 

functions among different structural responses as in Chapter 3 or 4.  

 

 

Compared with the previous substructure identification methods, the LOOP_SUBID 

method has several advantages. 

1. Different from the previous substructure identification methods which require of 

measuring the structural responses of all floors above the story being identified, 

the LOOP_SUBID method only needs four structural responses to formulate the 

identification problems: three floor accelerations and one reference response. 

This may greatly reduce of the costs of SHM systems, especially in the case that 

the structure has many stories but only the health status of a few lower stories 

are of interest.  

11, ++ ii ckii ck ,

Identification (7.9) 

Identification (7.6) 

Figure 7.2 Loop identification sequence in the LOOP_SUBID method 



  

202 

2. The LOOP_SUBID method essentially forms a loop identification sequence as 

shown in Figure 7.2. It can be imagined that if the parameter identification errors 

for each step in the sequence are small enough, the sequence of identifications 

will perform like a contraction mapping such that after a sufficient number of 

steps, the sequence will always give the identification near their true values no 

matter what the initial structural parameters are. 

3. If the mass normalized structural parameters [ki/mi ci/mi ki+1/mi ci+1/mi]T
 are 

treated as the variables to be identified in the optimization problems (7.6) and 

(7.9), the value of the ith floor mass is no longer needed in the identification, 

which means that the LOOP_SUBID can be performed without structural mass 

information. 

4.  If the LOOP_SUBID identification is carried out twice, once on each of the two 

adjacent two-story substructures, i.e., the ith and (i+1)th floor substructures, two 

sets of mass normalized parameters [ki/mi ci/mi ki+1/mi ci+1/mi]T and [ki+1/mi+1 

ci+1/mi+1 ki+2/mi+1 ci+2/mi+1]T
 will be identified. The mass ratio mi/mi+1 between 

these two floors can be calculated by using these identified parameters as shown 

in Equation (7.10); hence, the results of LOOP_SUBID identification is also able 

to provide information about the relative distribution of structural mass on 

different floors. 

 )()( 1111 ++++ = iiiiii mkmkmm  (7.10) 

Even though the LOOP_SUBID method possesses many attractive features, how to 

implement it to ensure the convergence of the identification sequence is still a big 
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challenge. In the next section, the condition under which the identification sequence will 

converge near true structural parameters is first studied. 

7.2 Convergence Condition of LOOP_SUBID Method  

Comparing the two identification problems, (7.6) and (7.9), involved in the 

identification sequence of the LOOP_SUBID method, it is found that these two problems 

are essentially the same with the structural parameters swapped ( 11,, ++⇔ iiii ckck ) and 

structural responses swapped (
11 +−

⇔
ii xyxy SS  ); thus, all identification analysis results of 

(7.6), developed in the fifth chapter, can be also applied to that of (7.9) with the same 

variable exchange. 

According to the results of identification error analysis of the CSD_SUBID method 

in the fifth chapter, following Equations (5.37) and (5.38), the relative parameter 

identification errors of identification problem (7.6) can be approximated as, 

 11 +⋅+≈ iii θTεθ  (7.11) 

where T]  [ cikii θθ=θ  and T
)1()1(1 ]  [ +++ = iciki θθθ ; ciki θ and θ  are the relative errors of the 

ith story parameters T]  [ ii ck ; )1()1(  and ++ icik θθ  are the relative errors of the (i+1)th story 

parameters T
11 ]  [ ++ ii ck ; the first term on the right side of Equation (7.11), 

 ]  [ T
cikii εε=ε , is the identification error due to the measurement uncertainty of the 

structural responses, calculated by Equation (7.12); the second term on the right side of 

Equation (7.11),  11 +⋅ iθT , is the identification errors caused by the propagation of  

parameter errors of the (i+1)th story parameters. The expression of the matrix T1 is shown 

in Equation (7.13). 
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where ( ) lyxxlyxxlii iiii
SS ,)(,)(,1 11 −+ −−+ =∆  ; the expressions of factors lijU ,  are given in 

Equation (3.32). 

Using the structural parameter and response swap previously mentioned, the 

identification error of identification problem (7.9) can be written as 

 iii θTεθ ⋅+≈ ++ 211  (7.14) 

where  ]  [ T
)1()1(1 +++ = iciki εεε is the identification error due to the measurement 

uncertainty of the structural responses, calculated by Equation (7.15). The expression of 

the matrix T2 is shown in Equation (7.16). 
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where factors lijU ,
~  has the same expression as factors lijU ,  (in Equation 3.32) with the 

structural parameter swap ( 11,, ++⇔ iiii ckck ); liilyxxlyxxlii iiii
SS ,)1(,)(,)(),1( 1

11 +−−+ ∆==∆
+−  . 
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To start the sequence of identifications in the LOOP_SUBID method, an initial 

guess of the parameters of one of the two stories, T]  [ ii ck  or T
11 ]  [ ++ ii ck , is needed. It is 

assumed herein that an initial guess of the (i+1)th story parameters is given and used to 

start the loop identification sequence. Let )0(
1+iθ  denote the relative error of the initial 

guess of the (i+1)th story parameters. The superscript (0) standards for the step number in 

the loop sequence identification. It is also assume herein that only one set of structural 

responses is used in performing the sequence identifications in the LOOP_SUBID 

method. Therefore,  iε and  1+iε , the identification errors due to the measurement 

uncertainty, are unchanged during the whole sequence identification process. Moreover, 

the matrices T1 and T2 are also unchanged during the whole identification process. 

Utilizing the relative parameter identification error in each step of the sequence 

identification can be expressed by the following two equations, 

 )2(
11

)12( q
ii

q
i +

+ ⋅+= θTεθ  (7.17) 

 )12(
21

)22(
1

+
+

+
+ ⋅+= q

ii
q

i θTεθ  (7.18) 

where q=0,1,2,3,…. Substituting Equation (7.17) into (7.18), a difference equation in the 

relative identification errors of the (i+1)th story parameters 1+iθ  is established. 
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+  (7.19) 

Similarly, a difference equation in the relative identification error of the ith story 

parameters iθ  can also be obtained as 
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q
i εTεθTTθ  (7.20) 
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The initial conditions of these two difference equations are )0(
1+iθ  and 

)0(
11

)1(
+⋅+= iii θTεθ , respectively. 

Difference equation (7.19) can be solved as follows 
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The value of ∑ == lq
lS )( 120 TT  can be further evaluated as follows  

 1
1212

1
112012 )()()()( ++
== −=−=− ∑∑ qlq

l
lq

lS TTITTTTTTI  (7.22) 

where I is the identity matrix of the same size as the matrix T2T1.  Assuming that matrix 

(I-T2T1) is invertible,  
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12120
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= −−== ∑ qlq

lS TTITTITT  (7.23) 

Therefore, the final solution to the difference equation (7.19) is obtained by substituting 

Equation (7.23) into Equation (7.24) to give 
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Similarly, assuming that matrix (I–T1T2) is invertible, the solution to difference 

equation (7.20) can be written 
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The results of the identification errors in Equation (7.24) and (7.25) clearly indicate 

that the identification errors )22( +q
iθ  and )32(

1
+

+
q

iθ   converge as q goes to infinity if the 

following two conditions are satisfied, 
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 0)(lim   , 0)(lim 1221 ==
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q

q

q

q
TTTT  (7.26) 

From linear algebra (Wylie et al., 1982), the conditions (7.26) hold if the maximum 

eigenvalues of both matrices, T1T2 and T2T1, have magnitudes less than unity. 

Since T1 and T2 are 2×2 square matrices, the products of these matrices, T1T2 and 

T2T1, are also 2×2 square matrices. By directly solving for the eigenvalue of the matrix 

T1T2 and T2T1 symbolically via the matlab® Symbolic Math Toolbox, it can be proven 

that the eigenvalue of these two square matrices are equal. As a result, the identification 

sequence in the LOOP_SUBID method converges to the values near the true structural 

parameters if the magnitude of the maximum eigenvalue of the matrix T1T2 is less than 

unity. 

If the magnitude of the maximum eigenvalue of the matrix T1T2 is less than unity, 

after a sufficiently large number of loop identifications have been carried out, the 

identification errors of the structural parameters in the identification sequence, the 

solutions to difference equations (7.24) and (7.25), will converge to 
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Thus, it becomes clear that the key to the success of the LOOP_SUBID method, the 

convergence of the identification sequence, is that the magnitude of the maximum 

eigenvalue of the matrix T1T2 in the identification needs to be less than unity. 

Matrices T1 and T2 are related to the structural response 

lxxylxxylii iiii
SS ),(),(),1( 11 +− −−+ =∆   as well as deterministic factors lijU ,  and lijU ,

~ , which are 
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the functions of structural parameters. If there is only one excitation, response lii ),1( +∆ will 

be independent of the excitation and become a function of structural parameters only. 

Under such a circumstance, matrices T1 and T2 become deterministic functions of the 

structural parameters and can be directly evaluated. In the following subsection, the 5-

story shear structure used in the previous chapters is reutilized to check if the 

LOOP_SUBID method will lead to converged identification results for that structure. 

7.2.1 An Illustrative Example 

The parameters of the 5-story shear structure are mi=1×105 kg, ci=8×105 N·sec/m, 

ki=16×107 N/m (i=1,…,5). The structure is only subject to ground excitation which is 

modeled as a Gaussian random pulse process passing through a 4th order band-pass 

Butterworth filter with 1Hz low cut-off frequency and 12 Hz high cut-off frequency.  

In this 5-story structure, four standard two-story substructures can be formulated, 

each of which uses one of the non-top story floors as the middle floor in the standard 

two-story substructure. The maximum eigenvalues of the matrix T1T2 for the four 

substructures are calculated and listed in Table 7.1. All four eigenvalues are larger than 

unity, indicating that the identification using the LOOP_SUBID method will not 

converge for any of these substructures.  

Table 7.1 Maximum eigenvalue of the matrix T1T2 of each substructure  

Number of middle 
floor in the two-

story substructure 
1 2 3 4 

Largest magnitude 
eigenvalue of 
matrix T1T2 

1.97 1.22 1.18 1.41 
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To verify this conclusion, the LOOP_SUBID method is carried out for all four 

substructures. In the simulation, it is assumed that a set of 1800-second long structural 

responses, sampled at 200Hz, are used to perform the loop identification. The Welch 

average periodogram method is applied to calculate the cross power spectral densities 

needed in the identification: the 1800-second long structural responses are partitioned 

into short segments of 30 seconds each. Adjacent segments are overlapped by 25% of the 

segment length to increase the number of CSDs averaged. The magnitudes of the 

measurement noises of all acceleration responses are assumed to be the same, with RMS 

equal to 50% of the RMS of the ground excitation. 

Figures (7.3)~(7.7) show how the relative errors of the identified parameters change 

as the loop identification progresses. It is easily seen that the identified parameters do not 

converge to near their true values in all four identification cases, consistent with 

expectations from the eigenvalue analysis.  

 

 

 

 

 

 

 

 

 

Figure 7.3 Relative identification errors of loop identification for the 1st floor 
substructure 
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Figure 7.4 Relative identification errors of loop identification for the 2nd floor 
substructure 

 
 

 

 

 

 

 

 

 

 

Figure 7.5 Relative identification errors of loop identification for the 3rd floor 
substructure 
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Figure 7.6 Relative identification errors of loop identification for the 4th floor 
substructure 

In the next subsection, the reason that the LOOP_SUBID fails to provide converged 

results is analyzed. Based on that result, a new measure is proposed to modify the 

LOOP_SUBID method so that the loop identification sequence converges to near the true 

structural parameters. 

7.2.2 Analysis of the Identification Results of LOOP_SUBID Method 

In the previous subsection, the simulation results show that the LOOP_SUBID 

method fails to give corrected identification results for all four substructures. In this 

subsection, a qualitative explanation of this result is provided which reveals the in-depth 

reason behind the failure of the LOOP_SUBID method.   

The LOOP_SUBID method consists of two basic identification steps. Each step 

identifies the parameters of one story in the two-story substructure given the parameter 

values of the other story. The identification errors of these two steps are composed of two 

parts as shown in Equations (7.11) and (7.14): the first part is due to the measurement 
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uncertainty of structural responses; the second part is related to the parameter errors of 

the other story. The analysis in section 7.2 also demonstrates that if the second part 

converges to zero as the loop identification is continuously carried out, the loop 

identification sequence will converge. Therefore, to simplify the analysis of the lack of 

the convergence, assume that the first part of the identification error (from measurement 

uncertainty) is just zero. Then, the identification error in each step is only from the error 

accumulation. 

For the step which identifies the ith story parameters T]  [ ii ck , it has been shown in 

the fifth chapter that the second part of the identification error is significantly affected by 

the ratio of two cross power spectral densities, lxxylxxylii iiii
SS ),(),(,)1( 11 −+ −−+ =∆  ,  near the 

substructure natural frequency ii mk . If this ratio is very small near frequency ii mk , 

the identification error of the parameters T]  [ ii ck  in this identification step will be much 

smaller than the identification error of the parameters T
11 ]  [ ++ ii ck  in the previous 

identification step. 

Since the step to identify parameters T
11 ]  [ ++ ii ck  is identical to the step for 

identifying parameters T]  [ ii ck  with the structural parameters swapped 

( 11,, ++⇔ iiii ckck ) and structural responses swapped (
11 +−

⇔
ii xyxy SS  ), a similar 

conclusion as to the identification error can be obtained: the second part of the 

identification error is greatly affected by the cross power spectral density ratio 

lxxylxxylii iiii
SS ),(),(),1( 11 +− −−+ =∆    near the substructure natural frequency ii mk 1+ . If this 
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ratio is very small near the frequency ii mk 1+ , the identification errors of the 

parameters T
11 ]  [ ++ ii ck in this identification step will be much smaller than the 

identification error of the parameters T]  [ ii ck  in the previous identification step. 

Since the shear structure used in the illustrative example has uniform stiffness along 

the height of the structure, the two substructure natural frequencies, ii mk  and

ii mk 1+ , are equal. Therefore, to make the identification error in the two identification 

steps both small, the two cross power spectral ratios, lii ,)1( +∆  and lii ),1( +∆ , must be small 

near the same frequency ii mk  (or ii mk 1+ ). However, since only one set of 

structural responses are used in formulating the loop identification sequence, lii ,)1( +∆  and 

lii ),1( +∆  are inverses of each other; that is, if one of them is small near the frequency 

ii mk , the other will be large near the same frequency. Hence, there exists a 

conflicting relation between the identification errors in the two identification steps: if one 

of them is smaller, then the other will be large. It is impossible to make the identification 

errors in the two steps both small simultaneously. This conflict leads to the failure of the 

LOOP_SUBID method in the example. 

As previously analyzed, the key to making the loop identification sequence converge 

is to simultaneously reduce two cross power spectral ratio, lii ,)1( +∆  and lii ),1( +∆ , near the 

same substructure natural frequency ii mk  (or ii mk 1+ ). In order to achieve this goal, 

some modifications to the original LOOP_SUBID method are needed. In the original 

method, one set of structural responses is used repeatedly to carry out the loop 
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identification, leading to the problem that the two responses lii ,)1( +∆  and lii ),1( +∆ cannot 

both be very small in the same frequency range (because they are inverse of each other). 

In the modified LOOP_SUBID method, two sets of structural responses are required: one 

in which key response ratio lii ,)1( +∆  is small and the other in which lii ),1( +∆  is small near 

the substructure natural frequency. These two sets of responses are used in an alternating 

order to formulate the two identification steps in the loop identification sequence. Since 

both response ratios, lii ,)1( +∆  and lii ),1( +∆ , are very small in their own identification step, 

the identification error of the loop identification sequence is guaranteed to continuously 

decrease until it converges. 

Clearly, the success of the modified LOOP_SUBID depends on finding two sets of 

structural responses in which the key response ratios, lii ,)1( +∆  or lii ),1( +∆ , are very small 

near the substructure natural frequency in one of them. However, in the illustrative 

example it is assumed that there is only one excitation source (ground excitation); 

therefore, the two key response ratios, lii ,)1( +∆  and lii ),1( +∆ , are independent of the 

excitation and become functions of the structural parameters only; that is, lii ,)1( +∆  and

lii ),1( +∆  will not change due to changes in the single excitation. In order to change lii ,)1( +∆  

and lii ),1( +∆ , some effects from an outside system (e.g., control systems) must be applied 

to the structure. 

In the next section, an AMD control system (assumed to be installed on the top floor) 

is utilized to change structural responses so that two sets of structural responses can be 
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achieved, in which lii ,)1( +∆  and lii ),1( +∆  are very small near the substructure natural 

frequency in one of them. 

7.3 Controlled LOOP_SUBID Method  

As stated in the last section, to ensure the convergence of the loop identification 

sequence in LOOP_SUBID method, two control algorithms are needed to be designed, 

each of which makes one of the response ratios  lii ,)1( +∆  and lii ),1( +∆  as small as possible 

near the corresponding frequencies ii mk  and ii mk 1+ , respectively. However, the 

convergence of the loop identification sequence does not necessarily mean that the 

converged identified parameters are accurate. As shown in Equations (7.17) and (7.18), 

the identification errors of the converged identified parameters are related to iε  and 1+iε , 

the part of the identification errors due to the measurement uncertainties. It has been 

shown in section 7.2 that iε  and 1+iε  are mainly determined by two structural responses  

yxx ii
S )( 1−−   and yxx ii

S )( 1+−  : the larger these two responses near the substructure natural 

frequencies ii mk  and ii mk 1+ , the smaller the measurement uncertainties will be; 

leading to smaller identification errors. Therefore, in addition to reducing the response 

ratios lii ,)1( +∆  and lii ),1( +∆ , a control system must also amplify the two structural 

responses )( 1−− ii xxyS   and  )( 1+− ii xxyS   near the frequencies ii mk  and ii mk 1+ , 

respectively. 

In the sixth chapter, an optimization method is proposed to design the control 

systems to achieve two similar goals of changing structural responses. That method 
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assigns the importance weighting factors for each of the objective functions in the 

optimization and converts a multi-objective optimization problem into a single-objective 

optimization problem. In this chapter, a different approach is proposed to design the 

control system to achieve the two goals of simultaneously changing the response ratio 

lii ,)1( +∆  (or lii ),1( +∆ ) and the response )( 1−− ii xxyS   (or )( 1+− ii xxyS  ) in favor of more accurate 

parameter identification. 

Since the two identification steps involved in the LOOP_SUBID are essentially the 

same, only the control to improve the identification accuracy of the ith story parameters 

T]  [ ii ck  is introduced. The key equation to identify parameters T]  [ ii ck  is Equation (7.5), 

repeated here: 
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Introduce a new variable 
11 )( −+ − iii xxxH   as 

 111111 )()( )(
−+−+−+ −− =−=

iiiiiiiii xyxxyxyxyxyxxx SSSSSH   (7.30) 

If there is only one independent excitation, the newly defined variable 
11 )( −+ − iii xxxH  can be 

interpreted as the transfer function from the response 1−ix  to the response )( 1 ii xx  −+  in 

either uncontrolled or controlled structural systems. Using the newly defined variable, 

key identification equation (7.29) is rewritten as 
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Assuming that 1) the magnitude of
11 )( −+ − iii xxxH   is far less than unity in a narrow 

frequency range around ii mk  and 2) the structure has uniform story stiffness and 

damping coefficient (i.e., 11  and  ++ == iiii cckk ), then Equation (7.31) near the 

frequency ii mk  is approximated by 
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Since the magnitude of the transfer function on the left side of the equation is large 

near the frequency ii mk , the structural response )( 1−− ii xxyS  , which is closely related to 

the measurement uncertainties in the identification, will not be small near the frequency 

ii mk  as long as the response 
1−ixyS   is not very small near the same frequency. 

Therefore, largely reducing the magnitude of the transfer function 
11 )( −+ − iii xxxH   to some 

very small value (by control systems) near the frequency ii mk  has some potential for 

amplifying the structural response yxx ii
S )( 1−−   near the frequency ii mk , which controls 

the identification errors due to the measurement uncertainties. (It is assumed that the 

control systems do not significantly reducing the response yxi
S

1−
 near the frequency

ii mk .) 

Moreover, another key component of controlling the identification errors of T]  [ ii ck ,

)()()1( 11 −+ −−+ =∆
iiii xxyxxyii SS  , can also be changed in favor of more accurate parameter 
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identification by greatly reducing the magnitude of the transfer function 
11 )( −+ − iii xxxH   near 

the frequency ii mk . Rewrite the response ratio ii )1( +∆  in a different way 
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Using the definition of 
11 )( −+ − iii xxxH   and the approximate relation in Equation (7.32), 

Equation (7.33) becomes 

 ])()(1[ 2
)()1( 11

ωω iiiixxxii mkmcjH
iii

−−⋅−≈∆
−+ −+   (7.34) 

Since both 
11 )( −+ − iii xxxH   and ])()(1[ 2ωω iiii mkmcj −−  are very small near the 

frequency ii mk , ii )1( +∆  becomes very small near the frequency ii mk . 

In summary, greatly reducing the (closed-loop) transfer function  
11 )( −+ − iii xxxH   near 

the frequency ii mk  by some control system will lead to small response ratio ii )1( +∆  

and large response yxx ii
S )( 1−−  . Hence, it becomes clear that the ultimate goal the control 

system is to minimize the (closed-loop) transfer function 
11 )( −+ − iii xxxH   near the 

substructure natural frequency. 

7.3.1 AMD System 

In order to implement the controlled LOOP_SUBID method, an active mass damper 

(AMD) control system, installed at the top floor of the shear structure, is used in this 

study. For each standard two-story substructure, two control system algorithms are 

designed: one is to minimize transfer function 
11 )( −+ − iii xxxH   near the frequency ii mk ; 



  

219 

the other is to minimize transfer function 
11 )( +− − iii xxxH    near the frequency ii mk 1+ . It is 

assumed herein that 1) only the three floor acceleration responses, related to the two-story 

substructure being identified, and the control force of the AMD system are measured; 2) 

the three measured floor acceleration responses are used as the feedback signals to design 

the linear feedback algorithms, which are to achieve the previously mentioned goal of 

changing the closed-loop transfer functions of the structure. The optimal gain matrices of 

the two control systems, L1 and L2, are obtained by solving the following two 

optimization problems respectively. 
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where 
11 )( −+ − iii xxxH    is the closed-loop transfer function from the (i-1)th floor acceleration 

1−ix  to the (i+1)th interstory acceleration response ( )ii xx  −+1 ; 
11 )( +− − iii xxxH  is the closed-

loop transfer functions from (i+1)th floor acceleration 1+ix  to the ith interstory acceleration 

response ( )1+− ii xx  ; kξ  is the damping ratio of the kth root of the closed-loop system and 

0ξ  is a positive real number, taking the value of 0.02 in the following numerical 

examples; ul ωω  and  are the lower and upper frequency bounds of the integration, herein 

taken to be 0.8 and 1.2 times the corresponding substructure frequencies respectively; and 

)(1 ωjW  and  )(2 ωjW  are frequency weighting functions 
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The magnitudes of )(1 ωjW  and )(2 ωjW  are very large only near the frequencies ii mk  

and ii mk 1+ , respectively, and quickly vanish when departing from these frequencies. 

The role of these frequency weighting functions is to implicitly force the control systems 

to focus on changing the transfer functions, 
11 )( −+ − iii xxxH  and 

11 )( +− − iii xxxH  , only around the 

frequencies ii mk  and ii mk 1+ . 

7.3.2 Revisit the Illustrative Example 

The 5-story shear structure in subsection 7.2.2 is used to demonstrate the 

effectiveness of the controlled LOOP_SUBID method. It is assumed that there is an 

AMD system installed on the fifth floor of the structure. As in the illustrative example, 

the structure is only subject to ground excitation in addition to the control force from the 

AMD system. The ground excitation is modeled as a Gaussian random pulse process 

passing through a 4th order band-pass Butterworth filter with 1Hz low cut-off frequency 

and 12 Hz high cut-off frequency.  

In this 5-story structure, four standard two-story substructures can be formulated, 

each of which uses one of the non-top story floors as its middle floor in the standard two-

story substructure. For each two-story substructure, the two optimal feedback gain 

matrices of the control system are designed by utilizing the optimization methods 
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proposed in the previous subsection. One is to minimize transfer function 
11 )( −+ − iii xxxH   

near the frequency ii mk ; the other is to minimize transfer function 
11 )( +− − iii xxxH    near 

the frequency ii mk 1+ . The matrices T1 and T2 from Equations (7.13) and (7.16) for the 

corresponding closed-loop controlled structure are calculated. The largest eigenvalue 

magnitudes of the matrix T1T2 of the four controlled structures are calculated and listed 

in Table 7.2. All are smaller than unity, indicating that the identification using the 

controlled LOOP_SUBID method will converge for all these substructures. 

Table 7.2 Largest magnitude eigenvalues of the matrix T1T2 of each controlled 
substructure 

Number of middle 
floor in the two-

story substructure 
1 2 3 4 

Largest magnitude 
eigenvalue of 
matrix T1T2 

-0.05 -0.0006 -0.6×10-6 -2×10-6 

  

To verify this conclusion, controlled LOOP_SUBID method is carried out for the all 

four substructures. In the simulation, it is assumed that a set of 3600-second long 

structural responses, sampled at 200Hz, are used to perform the loop identification. The 

Welch average periodogram method is applied to calculate the cross power spectral 

densities needed in the identification: the 3600-second long structural responses are 

partitioned into short segments of 30 seconds each. Adjacent segments are overlapped by 

25% of the segment length to increase the number of CSDs in the average. The 

magnitudes of the measurement noises of all acceleration responses are assumed to be the 

same, with RMS equal to 50% of the RMS of the ground excitation. 
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Figures 7.7~7.10 show how the relative errors of the identified parameters change as 

the loop identification progresses. When choosing the initial values of the parameters 

T
11 ]  [ ++ ii ck  to start the loop identification sequence, very large errors are given: the 

initial value of the stiffness parameter ki+1 is 150% of its true value and the initial value of 

the damping parameter ci+ is 50% of its true value. It is easily seen that, even with such 

large errors in initial parameter values in the loop identification, the identified parameters 

still quickly converge as expected from the eigenvalue analysis. 

 

 

 

 

 

 

 

 

 

Figure 7.7 Relative identification errors of loop identification for the 1st floor 
substructure with control 
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Figure 7.8 Relative identification errors of loop identification for the 2nd floor 
substructure with control 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 Relative identification errors of loop identification for the 3rd floor 
substructure with control 
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Figure 7.10 Relative identification errors of loop identification for the 4th floor 
substructure with control 

To evaluate the identification accuracy of the proposed controlled LOOP_SUBID 

method, 100 similar controlled identification tests are carried out. The statistics of the 

identification errors of the converged identified parameters, relative mean estimate error 

and relative root-mean-square-error (RMSE), are calculated and listed in Tables 7.3 ~ 7.6. 

Table 7.3 The statistics of the identification errors of the 1st floor substructure 

 1̂k  1ĉ  2k̂  2ĉ  

relative mean 
error 0.0% 0.0% -0.1% 0.2% 

relative 
RMSE 

0.1% 0.3% 0.3% 1.2% 

 

Table 7.4 The statistics of the identification errors of the 2nd floor substructure 

 2k̂  2ĉ  3k̂  3ĉ  

relative mean 
error 0.0% 0.5% 0.1% 0.6% 

relative 
RMSE 

0.3% 2.0% 0.1% 0.6% 
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Table 7.5 The statistics of the identification errors of the 3rd floor substructure 

 3k̂  3ĉ  4k̂  4ĉ  

relative mean 
error -0.1% 0.0% 0.0% 0.1% 

relative 
RMSE 

0.4% 1.9% 0.5% 1.8% 

 

Table 7.6 The statistics of the identification errors of the 4th floor substructure 

 4k̂  4ĉ  5k̂  5ĉ  

relative mean 
error 0.0% 0.1% 0.2% 0.1% 

relative 
RMSE 

0.3% 1.3% 1.5% 7.8% 

 
As shown in Equations (7.27) and (7.28), the relative errors of the converged 

identified parameters are related to iε  and 1+iε ，the parts of the identification errors due 

to the measurement uncertainties. Since it has been shown in the fifth chapter that iε  and 

1+iε  are zero-mean random variables, the means of the parameter identification errors in 

the controlled LOOP_SUBID method are zeros, verified by the simulation results here. 

The controlled LOOP_SUBID method provides very accurate identification results under 

the inference of fairly large measurement noise: in most cases the relative RMSE of the 

stiffness estimates are far less than 1% and the relative RMSE of the damping estimates 

are around 1~2%. 
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Chapter 8 

Substructure Identification for Frame Structures 

The substructure identification methods and controlled substructure identification 

methods in the previous five chapters are based on a fundamental assumption that the 

identified structure is a shear model structure. Although the shear model is widely used to 

model the dynamic behavior of building structures, it is only a simplification of real 

complex structures. As shown in Figure 8.1, a simple one-bay n-story frame structure has 

three times as many DOFs as an n-story shear model structure; the dynamic behaviors of 

the frame structure will be different from that of the shear structure. Furthermore, finding 

damage in real complex structures, like the frame structure in Figure 8.1, is of much more 

practical interest than just identifying the parameter values in a shear model structure 

(Yan et al., 2006). However, directly performing identification in a complex structure to 

find damage is often fruitless due to the greater complexity of the search space. 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 A frame structure vs. a shear structure 
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In this chapter, a new approach is proposed, using substructure identification 

methods, to locate and quantify damage in complex frame structures. First, a direct 

method is attempted in section 8.1 simply treating the frame structure as a shear model 

structure and directly applying the substructure identification method (for shear structures) 

to identify story stiffness ki from the floor acceleration measured on the frame structure. 

However, it is found that this method only works when the beam-to-column stiffness 

ratio of the frame structure is very large and the frame structure essentially behaves like a 

shear structure. If the beam-to-column stiffness ratio is not very large, which is typical for 

real frame structures, the rotation of the beam-column joints in the frame structure will 

lead to significant errors in the identification and the direct method will not give accurate 

results. In order to overcome this difficulty and extend the substructure identification 

methods to frame structures with moderate or small beam-to-column stiffness ratios, a 

new substructure identification method for frame structures is proposed in section 8.2. 

This new method utilizes the exact dynamic equation of one floor substructure of a frame 

structure to formulate the identification problem, in which the equivalent story stiffness 

of the frame structure is identified. The “equivalent” story stiffness here refers to the 

story stiffness of the frame structure when fictitious constraints are added such that all 

rotational responses at beam-to-column joints vanish. This stiffness can also be thought 

as the story stiffness of a frame structure when its beam-to-column ratio is infinite or, or 

in other words, the frame structure approaches a shear structure. The new substructure 

method transforms the frame structure into a beam-like structure. Then, the substructure 

identification method developed for shear structures is modified and used to identify the 

equivalent story stiffness of this beam-like structure. 
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8.1 Directly Apply Substructure Identification Method for Shear 
Structures to Frame Structures 

The substructure identification method for shear structures is derived based on the 

dynamic Equation (8.1) of one floor substructure in a shear structure. Various 

transformations result in key identification Equation (8.2) for the substructure 

identification. 

 0)()()()( 111111 =−+−+−+−+ ++++−− iiiiiiiiiiiiii xxkxxcxxkxxcxm   (8.1) 
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where xi is the ith floor displacement relative to an inertial reference frame; the overdots 

denote derivatives with respect to time; and iX  denotes the Fourier transform of the ith 

floor acceleration.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 A five-story one-bay frame structure 
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When a frame structure replaces the shear structure, the equilibrium condition in 

Equation (8.1) no longer holds true, nor does Equation (8.2). However, if the difference 

between the two sides of Equation (8.2) is small, Equation (8.2) perhaps can still be used 

to form the substructure identification optimization. Therefore, this section will focus on 

testing how well the equilibrium of Equation (8.2) is satisfied for a frame structure. 

A simple 5-story one-bay uniform frame structure, shown in Figure 8.2, is used as a 

test. It is assumed herein that the axial rigidities of the columns and floor labs are infinite 

and the mass of both columns and beams are negligible relative to the mass of the floor 

slabs. Therefore, there are 3 DOFs for each floor, two rotation and one horizontal 

translation, for total of 3n DOFs for the whole structure. The parameters of the frame 

structure are set as follows: the height of each story of the structure is H=3m; the span of 

the bay is L=3m; the mass of each floor slab is mi=1×105 kg; and the flexural rigidity of 

each column EIc= 18×107 N·m2. If the frame structure moves in pure shear, the equivalent 

story stiffness would be ki=2×12EIc/H3=16×107 N/m, which is the same as the story 

stiffness of the 5-story structure used elsewhere herein; the floor mass is also the same in 

this frame structure as in the shear structure example. It is assumed that the damping of 

the frame structure is the same as the damping of the previous 5-story shear structure (i.e., 

ci=8×105 N·sec/m). The flexural rigidity of each beam is EIb=βEIc, where β is the beam-

to-column stiffness ratio. It is well known that stiffness ratio β greatly affects how well 

the frame structure behaves like a shear structure; larger β value implies that the frame 

structure behave more like a shear structure. Three scenarios, corresponding to different 

levels of the relative stiffness of the beams, are studied herein: 1) the beams and the 

columns have the same flexural rigidity (β=1); 2) the beams have large flexural rigidity 
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relative to that of the columns (β=10), but not rigid enough that its flexibility can be 

neglected; 3) the flexural rigidity of the beams is very large (β=100). 

Figures 8.3~8.7 show the magnitudes of the right side of the key identification 

equation (8.2) of the five story substructures with three different beam-to-column 

stiffness ratios β. The magnitude of the left side of Equation (8.2) is also shown in the 

plots with red solid lines for comparison. The stiffness and damping parameters in the left 

side of Equation (8.2) are the “equivalent” story stiffness and damping of the frame 

structure, defined as the story stiffness and damping when the frame structure behave like 

a pure shear structure (when the beam-to-column stiffness ratio is infinite).  

 

 

 

 

 

 

 

 

 

 

Figure 8.3 Magnitude plot comparison for the 1st story substructure 
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Figure 8.4 Magnitude plot comparison for the 2nd story substructure 

 
 

 

 

 

 

 

 

 

 

Figure 8.5 Magnitude plot comparison for the 3rd story substructure 
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Figure 8.6 Magnitude plot comparison for the 4th story substructure 

 

 

 

 

 

 

 

 

 

Figure 8.7 Magnitude plot comparison for the 5th story substructure 

A good match between the magnitudes of the left and right sides of Equation (8.2) 

indicates that the substructure identification methods for shear structures can be applied 

to the identification of the frame structure; on the contrary, a bad match indicates that the 

substructure identification methods for shear structures are not suitable for the 

identification of the frame structures. 
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Several important observations can be made from Figures 8.3~8.7.1) For structures 

with small and moderate beam-to-column stiffness ratios (β=1 and β=10), the magnitudes 

of the two sides of Equation (8.2) do not match very well, indicating that the substructure 

identification methods for shear structures are not applicable to these frame structures. 2) 

For a structure with a quite large beam-to-column ratio (β=100), the magnitude plots 

match very well in most cases. However, there are some exceptional cases (e.g., for the 

magnitudes of the 3rd story substructure terms). Thus, even though it seems reasonable 

that the substructure identification methods for shear structures can be directly applied to 

the frame structures with very large beam-to-column ratios, unexpected identification 

errors will likely occur in some cases. 

8.2 Substructure Identification Method for Frame Structures 

 

 

 

 

 

 

 

 

 

Figure 8.8 The two-story substructure of a non-top floor in a frame structure 

As demonstrated in section 8.1, directly applying the substructure identification 

methods of shear structures to frame structures is infeasible unless the beam-to-column 
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ratio of the frame structure is extremely large. However, the beam-to-column ratio of 

most real frame structures is far from what can be considered extreme large. Therefore, 

some modifications must be made to the original substructure identification methods for 

shear structures so that they can be applied to most frame structures. In this section, a 

new substructure identification method for frame structures is proposed, derived based on 

the dynamic equation of one floor substructure in a frame structure. In order to make the 

illustration simpler, a simple n-story one-bay structure is used to demonstrate how to 

formulate the substructure identification for frame structures. 

Figure 8.8 shows a standard two-story substructure of the frame structure. 

According to Lagrenge-d’Alembert’s principle, the dynamic equation of the ith floor in 

the horizontal translational direction can be written as 

 4321 VVVVxm ii +++=  (8.3) 

where V1, V2, V3 and V4 are the elastic restoring shear forces that the columns in the ith 

and (i+1)th stories apply on the ith floor. From structural analysis, these shear forces at the 

ends of the column elements can be calculated as 
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where 1iEI , 2iEI , 1)1( +iEI  and 2)1( +iEI  are flexural rigidities of the columns in the ith and 

(i+1)th stories; and 1iθ  and 2iθ  (i=1,...,n) are the rotational responses of the two beam-

column joints at the ith floor. 

Substituting Equations (8.4)~(8.7) back into Equation (8.3) gives 
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 (8.8) 

For the sake of notational simplicity, a reference flexural rigidity, EI, is introduced. The 

ratios between the flexural rigidities of the columns and the reference flexural rigidity are 

defined as 
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Equation (8.8) can be transformed into 
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Define four new rotational responses as follows 
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These rotational responses are the average floor rotational responses weighted by the 

relative flexural rigidity of the columns in the same story. Superscripts (1) and (2) 

indicate which story columns are used to calculate the weighting factors: (1) for the 

flexural rigidity of the columns below the floor; (2) for the flexural rigidity of the 

columns above the floor. If the stiffness of the columns in the ith and (i+1)th stories are the 

same, i.e., 11 βα =  and 22 βα = , the two rotational responses of a floor will be equal and 

become one rotational response (i.e., )2()1(
ii θθ = ). 

Using the weighted average rotational responses, Equation (8.10) is rewritten as 
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Define the equivalent story stiffness of the ith and (i+1)th  stories as 
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which is just the story stiffnesses when the beam-to-column stiffness ratio of the frame 

structure is infinite and the frame structure behaves like a pure shear structure. Then, 

Equation (8.15) can be rewritten by using the equivalent story stiffness as 

 [ ] [ ] 01111 =−−++−+ +++− iiiiiiiiii xxkxxkxm δδ  (8.18) 
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If it is assumed that the damping matrix of the frame structure has a format similar to that 

of the stiffness matrix, the dynamic equation of the ith floor, including the effects of the 

structural damping, can be written as 
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where ci and ci+1 are the equivalent story damping of the frame structure. 

Adding the term )( 1 iii xm δ +− −  to both sides of Equation (8.19), taking the Fourier 

transform and rearranging gives 
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where i∆  and 1+∆ i
 are the Fourier transforms of the responses iδ  and 1+iδ , respectively; 

iX  is the Fourier transform of the ith floor acceleration ix . Assuming that structural 

parameters T
11 ]  [ ++ ii ck  in Equation (8.20) are known, the right side can be directly 
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calculated from the measured acceleration responses. Then, an optimization problem 

similar to Equation (3.10) is formulated to identify structural parameters T]  [ ii ck . 
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Similar to the substructure identification methods for shear structures, Equation 

(8.21) establishes an induction identification problem which can identify the equivalent 

story stiffness and damping coefficient of the ith story T]  [ ii ck  given that the parameters 

of the (i+1)th story T
11 ]  [ ++ ii ck  are known. Since the top-floor substructure could be 

considered as a special case of the general non-top two-story substructure, shown in 

Figure (8.8), wherein both parameters of the fictitious story (n+1)th T
11 ]  [ ++ nn ck and the 

response of the fictitious (n+1)th  floor are zero, a simple top-story identification problem 

can be formulated as 
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In Equation (8.22), the equivalent parameters of the nth story T]  [ nn ck are identified, 

which in turn can be used to start the induction identification problem in Equation (8.21). 

By continuously repeating the induction problem in Equation (8.21), the equivalent story 

parameters of the whole frame structures are identified from top to bottom iteratively. 

Compared with the substructure identification method for shear structure in Chapter 

3, the proposed substructure identification method for frame structure has some 

additional terms ( 1 , +∆∆ ii
 ) that account for the effects of the rotation responses in 

formulating the identification problems. Moreover, although this derivation of the 

substructure identification method for frame structures utilizes the Fourier transform of 

the structural responses, it can be easily shown that, if a reference response y(t) is 

introduced, the two key identification equations in the power spectral densities between 

the structural responses and the reference are  
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 By utilizing these two key equations, a new power spectral density based substructure 

identification method can be formulated as follows. 
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where 
)()(1

1),( 2
lnnlnn

nnl mkmcj
ckf

ωω −−
= ,  

lylyx

lylyxlyx
yyxyxl

nn

nnn

nnn SS

SSS
SSSf

,,

,,,

ˆˆ

ˆˆˆ
)ˆ,,ˆ,ˆ(ˆ

1

1

1

∆

∆
∆ −

+−
=

−

−

−






.
  

 ∑
=

∆∆ ++−
−=

N

l
yyyxyxyxliilii

ck iiiii
ii

SSSSSgckgckJ
1

2

,
)ˆ,ˆ,ˆ,ˆ,ˆ(ˆ),(),(minarg

111   (8.26) 

where  
)()(1

1),( 2
liilii

iil mkmcj
ckg

ωω −−
= , 

])()()[ˆˆˆ()ˆˆ(

ˆˆˆ

)ˆ,ˆ,ˆ,ˆ,ˆ(ˆ

2
11,,,,,

,,,

1111

1

111

liiliilylyxlyxlylyx

lylyxlyx

yyyxyxyxl

mkmjcSSSSS

SSS

SSSSSg

iiiii

iii

iiiii

ωω ++∆∆

∆

∆∆

++−+−

−−

=

++−−

−

++−







. 

The derivation of the substructure identification method for frame structures 

essentially converts one frame substructure, shown in Figure 8.1, into a beam-like 

structure, shown in Figure 8.9 with (3n–1) DOFs (each floor has one translation and two 

weighted rotation responses; the top floor is an exception which only has one rotation 

response). The two rotation responses of each floor are the weighted average rotation 

responses of all beam-column joints in the same floor; the weighting factors are 

determined by the relative flexural rigidities of the columns in the story above and the 

story below the floor being identified. 
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Figure 8.9 The equivalent beam-like structure for an n-story frame structure 

Although this substructure identification method for frame structures is derived from a 

simple one-bay frame structure, it is easily shown that this method can be extended to 

more general multiple-bay frame structures by calculating the two average rotation 

responses from all beam-column joint rotation responses for each floor. Therefore, the 

proposed substructure identification method is applicable to general frame structures. 

However, there is one disadvantage of the newly proposed substructure identification 

method: it does require measuring the rotation responses of the beam-column joints in the 

frame structure, which may be difficult to realize. Further research, beyond the scope of 

this dissertation, is needed to relax this requirement and only utilize the floor acceleration 

responses to perform the substructure identification.   
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8.3 Identification Error Analysis 

Utilizing the method of the identification error analysis, proposed in the third 

chapter, the identification errors of cross power spectrum density based method for frame 

structures are derived in this section. 

8.3.1 Top Story Identification Case 

The parameter identification error of the top story identification in the power 

spectral density based method (for frame structures) can be obtained as 
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 (8.25) 

where θkn and θcn are the relative identification errors of the nth story parameters kn and cn, 

respectively; ),...,1(  ˆ
,,, niSSN lyxlyxlyx iii

=−=    is the measurement uncertainty of cross 

power spectrum density (CSD) estimation, given by the difference between the CSD 

estimated from the noise-contaminated measured responses and the CSD of the true 

(noiseless) responses at frequency ωl; lyxx nnn
S ,)( 1 ∆+− −

  is the CSD between the response of 

the ith story )( 1 iii xx ∆+− −
  and the reference response y(t); the derivation of the factors 

lijW ,   is given in Appendix E. 

As shown in Figure 8.10, all factors lijW ,  are significantly large near the natural 

frequency of the nth story substructure nnn mk=0ω , and very small when far away 

from this frequency. Thus, the uncertainty measurement terms ( lyxxlyx nnnn
SN ,)(, 11 ∆+− −−

 ,

lyxxlyx nnnn
SN ,)(, 1 ∆+− −

  and lyxxly nnnn
SN ,)(, 1 ∆+−∆ −

 ) near the substructure natural frequency 
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0nω  play a dominant role in determining the parameter identification accuracy. Largely 

reducing these terms near the substructure natural frequency 0nω  will significantly 

reduce the identification errors and improve the identification accuracy.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10 Magnitude of weighting factors Wij,l 

 

8.3.2 Non-top Story Identification Case 

The parameter identification errors of the ith non-top story in the power spectral 

density based method (for frame structures) can be obtained as 
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where θk(i+1) and θc(i+1) are the relative identification error of the (i+1)th story parameters 

ki+1 and ci+1, respectively; the derivation of the factors lijU ,  is given in Appendix E. 

The identification errors of the ith story parameters [θki  θci]T in Equation (8.26) 

consist of two parts: the errors (the first part of the right side) directly related to the 

measurement uncertainty of the structural responses ( yxxyx iiii
SN )( 11 ∆+− −−

 ,

yxxyx iii
SN )( 11 ∆+− −

 , yxxyx iiii
SN )( 11 ∆+− −+

 , yxxy iiii
SN )( 1 ∆+−∆ −

 and yxxy iiii
SN )( 11 ∆+−∆ −+

 )  and 

the accumulation errors (the second part) due to the uncertainty in the identified structural 

parameters of the story above ( )1()()( 111 +∆+−∆+− −++ ikyxxyxx iiiiii
SS θ and 

)1()()( 111 +∆+−∆+− −++ icyxxyxx iiiiii
SS θ ). As shown in Figure 8.11, all factors lijU ,  are 

significantly large in magnitude near the natural frequency of the ith story substructure 

iii mk=0ω  and decay very fast when moving to lower and higher frequency. 

Therefore, both the measurement uncertainties and the upper story parameter 

uncertainties near the substructure natural frequency 0iω  play an important in 
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determining error; significantly reducing their values can greatly reduce identification 

error.  

 

 

 

 

 

 

 

 

 

 

Figure 8.11 Magnitude of weighting factor Uij,l 

Another interesting observation of this result is that the magnitudes of both kinds of 

uncertainties are not only related to the sources of these uncertainties – the measurement 

uncertainties ( yxi
N

1−
, yxi

N
1−

, yxi
N

1−
, yi

N∆  and yi
N

1+∆ ) and the identification errors of the 

upper story parameters ( )1( +ikθ and )1( +icθ ) – but also are affected by two important 

structural responses: yxx iii
S )( 1 ∆+− −

 and yxxyxx iiiiii
SS )()( 111 ∆+−∆+− −++

 . Since yxx iii
S )( 1 ∆+− −

 serves 

as the common denominator for all three measurement uncertainty terms, amplifying 

yxx iii
S )( 1 ∆+− −

  near the substructure natural frequency 0iω  will lead to smaller 

measurement uncertainties and, in turn, smaller identification errors. Similarly, reducing 
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)()( 111 iiiiii xxyxxy SS ∆+−∆+− −++
 near the frequency 0iω will result in smaller upper story 

parameter uncertainties and, thus, smaller identification errors. 

8.4 An Illustrative Example 

In this section, the power spectral density based substructure identification method 

for frame structures, shown in Equations (8.25) and (8.26), is used to identify the 

equivalent story stiffness and damping parameters of a simple 5-story one-bay uniform 

frame structure. The parameters of the test structure are picked as: the height of each 

story of the structure is H=3m; the span of each bay is L=3m; the mass of each floor slab 

is mi=1×105 kg (chosen so that the mass of the frame structure the same as the 5-story 

shear structure used in Chapters 3~7); the flexural rigidity of each column is EIc= 18×107 

N·m2 (which gives the same story stiffness in the frame structure as the 5-story shear 

structure if the beam flexibility is negligible); and the flexural rigidity of each beam is 

EIb=EIc=18×107 N·m2. It is assumed that the damping of the frame structure has a format 

similar to that of the stiffness matrix, that is, 

 ][][ KC α=  (8.27) 

where [C] and [K] are the damping and stiffness matrices of the frame structure; the 

coefficient α is selected such that the damping ratio of the first mode of the structure is    

2% (the equivalent story damping coefficient is ci=8.89×105 N·sec/m). The frame 

structure is shaken by ground excitation gu , modeled by a Gaussian random pulse 

process passing through a 4th order band-pass Butterworth filter with 1Hz low cut-off 

frequency and 12 Hz high cut-off frequency. 
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8.4.1 Estimation of Equivalent Story Stiffness and Damping Parameters 

The identification results in Table 8.1 show that the largest identification error 

occurs at the 4th story but not at the 3rd story as would be in the shear structure (in 

Chapter  5) that has similar story stiffness. This result can be explained as follows. Based 

on the identification error analysis results previously derived in Equation (8.26), the two 

important substructure responses that determine the accuracy of the substructure 

identification method are the cross power spectral density of the modified interstory 

acceleration responses, yxx iii
S )( 1 ∆+− −


, and the ratio between the cross power spectral 

densities between two modified interstory acceleration responses,

yxxyxx iiiiii
SS )()( 111 ∆+−∆+− −++


, near the story substructure natural frequency iii mkω =0 . As 

discussed in section 6.1.3, these two responses are directly related to the frequency 

responses lilili XX ,,, ∆+− −
  and the frequency response ratio 

)()( ,,,,1,,1 lililililili XXXX ∆+−∆+− −++
 , respectively. The larger the first response and 

the smaller the second response near frequency ωi0, the more accurate the identification 

results will be. As shown in Figure 8.12 and 8.13, the inaccurate identification results of 

the 4th story parameters are due to the two undesirable responses controlling the 4th story 

parameters identification: compared to the substructure responses related to other story 

identifications, the power spectral density of the modified 4th story interstory acceleration 

is very small near the substructure natural frequency (40 radian/sec); simultaneously, the 

frequency response ratio is very large near the substructure natural frequency (40 

radian/sec). 
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Table 8.1 Statistics of relative identification errors of the 5-story frame structure  

Story 
number 

y(t) 
Story stiffness ik̂  Story damping iĉ  

mean 
error 

relative 
RMSE 

relative 
STD 

mean 
relative 
RMSE 

relative 
STD 

1 5x  -0.5% 1.0% 0.9% 0.1% 4.3% 4.3% 

2 gx  0.3% 1.6% 1.6% -3.0% 7.0% 6.3% 

3 gx  0.4% 1.0% 1.0% 0.1% 4.7% 4.7% 

4 2x  -0.3% 3.2% 3.2% 6.1% 14.6% 13.3% 

5 2x  0.0% 0.4% 0.4% 0.2% 1.7% 1.7% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.12 Auto power spectra of the modified interstory acceleration 
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Figure 8.13 The frequency response ratio between the two modified interstory 
accelerations 

 

8.4.2 Damage Detection in the Frame Structure 

The proposed substructure identification method for frame structures identifies the 

equivalent story stiffness of the structure, which is determined by the flexural rigidity of 

the columns. If the occurrence of structural damage results in the decrease of a column’s 

flexural rigidity, it will be possible for the substructure identification method to detect 

this change and, thus, detect the damage. In this section, the proposed substructure 

identification method is used to detect the damage of columns in  

frame structures. It is assumed that the damage occurs at the first story of the 5-story one-

bay frame structure, resulting in the reduction of the flexural rigidity of one column by 

10%, which is equivalent to the reduction of the equivalent story stiffness by 5%. 

Moreover, since it is assumed in this chapter that the damping matrix of the structure is 

iiii XXD ∆+−= −


1
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proportional to the stiffness matrix of the structure, the equivalent damping coefficient of 

the 5th story is also decreased by 5%. 

The damage detection method proposed in section 3.5 is used to detect the structural 

damage previously mentioned. The identification results of 100 tests for the undamaged 

structure in subsection 8.4.1 are reused to calculate the mean and variance of the 

identified parameters for the undamaged structure. In order to test the performance of the 

proposed damage detection strategy to correctly identify the health status of the structure, 

300 independent substructure identification are carried out on the damaged structure; the 

results are used in the hypothesis test to determine whether or not the structure is 

damaged. The number of the substructure identifications that each hypothesis test uses to 

get the conclusion is selected as 1, 3 and 5. According to the number of tests each 

hypothesis test uses, the identification results of 300 tests are divided into groups and a 

hypothesis test is performed for each group using the method proposed in section 3.5. 

The percentages of the hypothesis tests which give the correct health status of the 

structure are shown in Table 8.2. The β value is selected as 5 in the hypothesis tests. 

The results in Table 8.2 show that when only one identification is used in the 

hypothesis testing, the damage at the first story is almost 100% percent correctly 

identified; however, there are about a 10% chance that the undamaged stories are 

mistakenly reported as damaged. As the number of the identifications, n, that each 

hypothesis test uses to make the decision increases, the chance that hypothesis tests make 

the corrected decision also increase, which verifies that the proposed hypothesis test 

method, using n identifications together to make the decision, is effective in improving 

the probability to make the right decision about the health status of the structure.  
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Table 8.2 The percentage of the hypothesis tests which give the correct conclusion 
about the structural health status 

Floor Number 
n 

1 3 5 

1 99.7% 100% 100% 

2 91.3% 99% 100% 

3 89.3% 97% 99% 

4 91.3% 99% 99% 

5 87.7% 97% 100% 
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Chapter 9 

Experimental Verification of Controlled Substructure Identification  

9.1 Introduction 

 

 

 

 

 

 

 

 

Figure 9.1 Small scale test system 

A laboratory experiment is an important step to verify theories and the assumptions 

used in their derivations as well as to test how the theories work in the real world with all 

kinds of uncertainties. In the previous chapters, theoretical developments and simulation 

results have demonstrated that the proposed substructure identification methods 

successfully identify the parameters of shear structures and that the controlled 

substructure identification methods further improve the identification accuracy by 

changing the structural dynamic responses via specially designed structural control 

systems. In order to experimentally verify these results, a series of experiments are 

carried out on a small-scale test system, located in the SHM and Control Lab at the 

University of Southern California. The whole test system, shown in Figure 9.1, includes 

the following. a) A two-story shear building model structure, made of aluminum and 

2-DOF 
Structure 

Quanser 
shake table 

AMD 
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plexiglass plates, serves as the test structure. b) A small-scale Quanser® uniaxial shake 

table provides the necessary ground excitations to the test structure. c) A small active 

mass driver (AMD) control system can be used to change the dynamic responses of the 

structure to verify the effects of the control system for improving the identification 

accuracy (not used in this study that only reports the results of passive control strategies; 

active strategies are left for future research). d) A digital controller board provides the 

functions of collecting measured response data and of commanding the AMD control 

device. e) A personal computer, installed with the software MATLAB® and QuaRC®, 

controls the movement of the shake table as well as the AMD device. On this test bed, 

several experiments are performed to test the proposed substructure identification 

methods as well as the controlled substructure identification methods which improve the 

identification accuracy by changing the structural dynamic responses via specially 

designed control systems. 

9.2 Experiment Overview 

In the area of control and SHM of civil structures, it is well recognized that 

experimental verification is necessary to focus research efforts in the most promising 

directions (Housner et al., 1994; 1997). Therefore, to experimentally verify the 

effectiveness of the proposed substructure identification methods and controlled 

substructure identification methods is an essential step before these techniques can be 

advanced towards practical use. The goal of the experiments are 1) to check the 

effectiveness of the substructure identification methods for identifying the structural 

parameters of the 2DOF test structure and 2) to verify that the accuracy of the identified 
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parameters can be improved by changing the structural responses via some specially 

designed control systems. To test the effectiveness of the substructure identification 

methods, the 2DOF shear structure is mounted on the shake table and excited by band-

pass Gaussian white ground accelerations. The measured acceleration responses are used 

in the substructure identification algorithms to identify the structural parameters.  

To verify the efficiency of the controlled substructure identification, using control 

systems to further improve the identification accuracy, some simple passive control 

methods are tested in this study. The effects of the control systems are replicated by 

changing the story stiffness via adding/removing diagonal springs installed into the 

structure and by changing the structure floor mass via adding/removing the additional 

mass attached to the structure. (The reasons that passive control methods are first adopted 

here are that the passive control system is easy to realize and, yet, can still serve as a first 

step in verifying the effectiveness of the controlled substructure identification. More 

advanced active control methods, implemented by the aforementioned AMD system, will 

be investigated in future studies.) The specially designed passive control systems are used 

to change the structural dynamics to improve the substructure identification accuracy. 

Then, the controlled structure with the passive control devices is excited by the shake 

table again; the measured structural acceleration responses are fed into the substructure 

identification algorithms to identify the structural parameters, which will be compared 

with the identification results of the (uncontrolled) substructure identification methods 

and check if the expected improved identification accuracy is achieved.  
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9.3 Description of Testing System 

Before discussing the details of the experiments, the properties of each component 

in the experiments are first introduced in detail in the following subsections. 

9.3.1 2DOF Test Structure 

A 2DOF shear building structure, shown in Figure 9.2, is the test structure of this 

experiment (Quanser, 2010). The structure is composed of two vertical aluminum plates, 

connected with three horizontal thick plexiglass plates at the bottom, first and second 

story positions. The horizontal plexiglass plates and the vertical aluminum plates are 

fixed to each other by three UNC #8 bolts in each side at each level. The interstory height 

is 490 mm. 

At each floor level of the experimental structure, several small aluminum plates with 

holes (see Figure 9.3) are attached to the structure, which allow us to change structural 

story stiffness by adding or removing some diagonal springs to the structure. The test 

structure by itself is quite soft; the first two frequencies are 1.9Hz and 5.2Hz. A pair of 

diagonal springs is attached to each story of the structure to increase the structural 

stiffness.  

Prior to experimentation, the 2DOF structure was disassembled so that its 

dimensions and weight could be measured. An electronic scale, with measurement 

sensitivity 1 gm, was used to weigh each component of the structure. Table 9.1 lists the 

measured dimensions and masses of the structure (Elmasry, 2005). Using the lumped 

mass method, the equivalent floor mass of the shear model for the testing structure is 

calculated and shown in the Table 9.2. The calculation of the equivalent floor mass 
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includes the mass of the springs, screws, washers, fastener plates, and accelerometers 

located at the corresponding level. 

 

 

  

 

 

Table 9.1 Dimension and mass of test structure  

 Mass (kg) Length (cm) Width (cm) Height (cm) 

plexiglass plate at 
shake table level 0.654 30.48 10.80 1.24 

plexiglass plate at 
1st story level 0.654 30.48 10.80 1.24 

plexiglass plate at 
2nd story level 0.654 30.48 10.80 1.24 

vertical aluminum 
plate in 1st story 0.236 50.17 10.80 0.18 

vertical aluminum 
plate in 2nd story 0.236 50.17 10.80 0.18 

 
Table 9.2 the equivalent concentrated floor mass of test structure 

 m1 (kg) m2 (kg) 

equivalent concentrated 
floor mass 1.217 0.934 

Figure 9.2 The two-story 
test structure 

Connection Details  

Figure 9.3 Aluminum and plexiglass 
connection details 
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In order to determine the approximate “true” values of the structure story stiffness 

and damping coefficients, the test structure is dissembled and only one story substructure 

(with the pair of springs) is put on the shake table. A sine sweep test was carried out on 

this one story structure and the natural frequency corresponding to the maximum 

acceleration response was identified along with the half power bandwidth frequencies. 

Since the mass of this one story substructure is known (0.934 kg), the story stiffness and 

damping coefficient of this one story structure can be estimated to be 572 N/m and 

0.29 N·sec/m, respectively, which are treated as the approximate true values of the story 

stiffness and damping coefficient of the original two-story test structure. Since both 

aluminum plates and diagonal springs are almost identical, hence, it is reasonable to 

assume that the story stiffness and damping coefficients of both stories in the test 

structure are the same, with values identified from the sine sweep test of the one-story 

structure. 

9.3.2 Shaking Table 

One of the key components of the experiments is a bench-scale shake table, shown 

in Figure 9.4. The shaking table is a small-scale uniaxial earthquake simulator 

manufactured by Quanser Consulting Inc. The table is located in the SHM and Control 

Lab at the University of Southern California (USC). The Quanser Shake Table is an 

instructional shake table device that was originally developed for the University 

Consortium on Instructional Shake Tables (UCIST). It can be used to teach structural 

dynamics, vibration isolation, feedback control, and various other topics for mechanical, 

aerospace, and civil engineers. The shake table is controlled by a personal computer with 
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the interface software QuaRC® also provided by Quanser Consulting Inc. The design 

specifications of the shaking table, as supplied by the manufacturer, are shown in Table 

9.3. The nominal operational frequency range of the simulator is 0–20 Hz. Because the 

shake table motor is inherently open loop unstable, position feedback, measured from the 

shake table motor, is employed to stabilize the table (Christenson et al., 2003). 

Table 9.3 Design specification of the shaking table 

Specification Value Unit 

Shake table system overall dimensions 
(L×W×H) 61×46×13 cm 

Shake table system mass 27.2 kg 

Table dimensions (payload area) (L×W) 46×46 cm 

Maximum payload at 2.5g 15 kg 

Peak displacement ±7.5 cm 

Operational bandwidth 20 Hz 

Peak acceleration 24.5 m/s2 

Accelerometer range ±49 m/s2 

Accelerometer sensitivity 1/9.81 Vs2/m 

Lead screw spread pitch 12.7 mm/rev 

Brushless servo motor power 745.7 W 

Maximum continuous current 12.5 A 

Motor maximum torque 1.65 Nm 

Linear bearing load carrying 131.5 kg 

Linear bearing life expectancy (total 
travel) 6350 km 

Lead screw encoder resolution 
4096 counts/rev 

3.1 μm/count 
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Figure 9.4 Quanser uniaxial shake table 

 

9.3.3 Digital Control and Data Acquisition System 

 

 

 

 

 

 
Figure 9.5 External connection board of Quanser Q4 board 

The digital control and data acquisition system, used in the experiment, consists of 

both the hardware and the software. The main hardware of the system is Quanser Q4 

hardware in the loop board (http://www.quanser.com/english/html/solutions/fs_Q4.html). 

This board supports 4×14 bits input analogue signal, 4×12 bits D/A analogue output, 4 

quadrature encoder inputs, and 16 programmable I/O channels. It provides an ideal 

http://www.quanser.com/english/html/solutions/fs_Q4.html�
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single-board solution for use in control system and complex measurement applications. 

There is another external board connecting the Quanser Q4 board via a ribbon cable to 

the outside input/output equipments, such as sensors, power module and electrical motor 

in the AMD system. The external board of the Quanser Q4 interface board, as shown in 

Figure 9.5, has six input and six output analog channels. Eight digital encoders are also 

available. The major software of this test system is the real time control software 

QuaRC® (http://www.quanser.com/english/html/solutions/fs_soln_software.html), also 

produced by Quanser Consulting Inc. QuaRC supports Matlab Simulink® models. The 

table control algorithm is developed using Simulink® under MATLAB 2009b and 

executed in real time using the QuaRC software. The Simulink code is converted to C++ 

code using the Real Time Workshop in MATLAB and interfaced through QuaRC® 

software to run the control algorithms on the CPU of the computer. 

9.3.4 Accelerometer 

The acceleration response of the structure during the experiment is measured by 

accelerometers. There are three accelerometers installed in the test systems. One is fixed 

to the table base level. Another two are fixed, one to each of the two stories in the middle 

bottom of the plexiglass plates at each floor. The range of the accelerometers is ± 5g with 

an output of ± 5 volts. Each accelerometer is connected via cable to the power module 

which is, in turn, connected to the external connection board. 

 

 

 

http://www.quanser.com/english/html/solutions/fs_soln_software.html�
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Figure 9.6 the accelerometer installed at the floor level 

 

9.4 Design of Passively Controlled Substructure Identification 

9.4.1 Selection of Shake Table Excitation 

During the shake table experiments, the test structure is assumed to be subject to the 

ambient ground excitation, induced by the shake table. The excitation of the shake table 

is determined by letting a white Gaussian process passing through a band-pass filter. The 

transfer function is shown in Equation (9.1).  
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where ω1=12.6(radian/sec) and ω2=27.7(radian/sec) are the low and high cut-off 

frequency of the band-pass filter respectively; ζ1=0.6 and ζ2=0.6 are the damper ratios of 

the filter. The magnitude of the ground band-pass filter is shown in Figure 9.7. 

According to the previous theoretical analyses, the identification accuracy of 

proposed substructure identification methods is largely determined by the frequency 

responses of the interstory acceleration near the story substructure natural frequency. 
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Since the nominal values of the floor mass and story stiffness of the test structure are 

known, it is easy to calculate that the substructure natural frequencies of the two 

substructures, the first story substructure and the second story substructure, are around 

21.6 (radian/sec) and 24.7 (radian/sec) respectively. The low and high cut-off frequencies 

of the bass-pass filter are selected such that both substructure natural frequencies are 

located in the pass-band frequency range of the filter. Therefore, the structural responses 

near the substructure natural frequencies can be fully excited, which will lead to more 

accurate estimation of the structural parameters. 

 

 

 

 

 

 

 

 

Figure 9.7 Magnitude of the band-pass filter 

 

9.4.2 Design of Passive Control System 

From the error analysis results, any control method that can amplify the interstory 

acceleration and minimize the interstory acceleration ratio (for non-top story 

identification only) near the story substructure natural frequency is theoretically able to 

improve the accuracy of substructure identification. Another important feature for the 
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controlled substructure identification of a particular floor is that if the control force(s) 

does not directly apply on the floors being identified, the value of the control force will 

not be needed in the identification; as a result, the measurement error in the control force 

will not affects the accuracy of the controlled substructure identification and the 

controlled substructure identification at this floor will be very robust to such control 

system errors. Therefore, to ensure the robustness of the controlled identification, no 

control forces will be applied in the floor to be identified. 

With this constraint, the possible selection of the passive control strategies that can 

be applied is limited in this simple structure. Three passive control system scenarios are 

considered in the experiments: to improve the accuracy of the second story parameter 

estimates, (1) the stiffness of the first story will be changed and (2) the mass of the first 

floor will be changed; when identifying the first story parameters, (3) the mass of the 

second floor will be changed. The reasons for these choices of “control” are explained 

above. It is worth pointing out here that, in full scale systems, these passive measures will 

be replaced by active or semiactive control systems, like an active mass driver (AMD) or 

variable stiffness and damping devices (VSDDs), which can apply similar control forces 

on the structure. However, in this simple study, equivalent passive methods will be used. 

To guide the control system design procedure, two performance indexes are created 

as follows: 
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where yxS   is the cross power spectral density between structural response x  and the 

reference y (y is fixed as the base excitation of the structure in this study); Pi(L) is the 

performance index of the ith story substructure identification, with smaller values 

indicating better identification accuracy; L denotes the control system parameters to be 

designed (here, these are the changes of the second floor mass and the first story stiffness 

or of the first floor mass); α is a weighting factor that balances the role of the SC system 

in achieving the two possible competing goals of changing structural responses, taken to 

be 0.8 in the following examples; and Wi(jω) is a frequency weighting function, given as 

follows 
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The magnitude of this weighting function peaks around the story substructure natural 

frequency iii mk=0ω  and quickly vanishes when further away. The role of this 

weighting function is to implicitly emphasize the importance of the structural responses 

yxxi
S )( 1-i −  and yxxyxx iii

SS )()( 1-i1  −−+
around the frequency ωi0 and not attempt to change the 

response overall. Therefore, a smaller performance index corresponds to the large 

interstory acceleration and the small interstory acceleration ratio near its substructure 

natural frequency, which further corresponds to improved identification accuracy. 

Figure 9.8 shows the change of the simulated performance index Pi with the change 

of the controlled structural parameters, more specifically the first story stiffness, the first 

floor mass and the second floor mass. Decreasing the first story stiffness and increasing 
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the second story mass both decrease the performance indexes for the second and first 

story identification, respectively; this should result in more accurate identification. 

Changing the mass of the first floor has negligible effect on the performance index 

compared with the other two methods. Therefore, the final strategies for the control 

identification of the first and second story parameters are as follows. First, when 

identifying the second story parameters, additional stiffness will be added to the first 

story. Second, while identifying the second story parameters, the partial mass of the 

second floor will be removed. Both of these should decrease the performance index. 

However, in the original test structure no mass on the second floor can be taken off (since 

the floor mass is a solid plexiglass block and connection hardware). Therefore, an 

additional 0.62 kg mass is attached to the second floor of the structure. The structure with 

this additional mass will serve as the baseline (uncontrolled) structure. Then, when the 

first story parameters are to be identified, this additional mass will be removed to 

simulate the effect of the control systems.   

 

 

 

 

 

 

 

 

Figure 9.8 The change of the performance index 
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9.4.3 Experimental Procedure 

The goal of this experiment is to verify that, by using several control systems, the 

substructure identification accuracy can be improved. Three groups of shake table 

experiments were performed with different configurations of the test structure. 

1) Baseline structure: the original test structure with an additional mass attached on 

the second floor is used as the baseline (uncontrolled) structure — thus, the 

baseline structure has a second floor mass about 65% larger than the original test 

structure; 

2) Control-1 structure: the additional mass on the second floor is removed (to help 

identify the first story parameters);  

3) Control-2 structure: some additional springs are installed in the first story of the 

baseline structure (to help identify the second story parameters) — these newly-

installed springs increase the first story stiffness by about 180%. 

The baseline structure is used to identify the structural parameters of both stories, 

whereas the controlled structures 1 and 2 are only used to identify the first and second 

story parameters, respectively. For each structural configuration, ten independent shake 

table experiments are performed. 

Tables 9.4, 9.5 and 9.6 show the (approximate) mass, stiffness and damping of the 

baseline, controlled 1 and controlled 2 structures respectively. Note that due to the 

limitation of the experiments the true values of the structure are indeed unknown; 

therefore, the structural parameters listed in the Tables, especially for stiffness and 

damping parameters, can by no means be regarded as the true parameter values of the 
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structure. They only serve to point out the approximate range where the true structural 

parameters are located. 

Table 9.4 The approximate structural parameter values of the baseline structure 

story number mass (kg) stiffness (N/m) damping (N·s/m) 

1 1.217 572 0.29 

2 1.549 572 0.29 
 

Table 9.5 The approximate structural parameter values of the control-1 structure 

story number mass (kg) stiffness (N/m) damping (N·s/m) 

1 1.217 572 0.29 

2 0.934 572 0.29 
 

Table 9.6 The approximate structural parameter values of the control-2 structure 

story number mass (kg) stiffness (N/m) damping (N·s/m) 

1 1.217 n/a* n/a* 

2 1.549 572 0.29 

* Additional springs are added to the 1st story, the exact stiffnesses of which are 
not measured. It is estimated that the combined stiffness of the added springs is 
around 180% of the story stiffness. 

 

The commanded shake table excitation for all experiments is a white Gaussian 

random process passed through a band-pass filter with low-pass and high-pass cutoff 

frequencies at 2 Hz and 8 Hz, respectively. About 1800 seconds of structural responses, 

sampled at 1000 Hz, are measured and recorded. The reference response y(t) is chosen to 

be the second floor acceleration because it has the largest responses near the substructure 

natural frequency of all three measurements (shaking table acceleration, the first and 

second floor accelerations). The MATLAB® function cpsd is used to calculate the power 

spectra of structural responses, which, in turn, are utilized to perform the substructure 

identification by using cross power spectral based substructure identification method. 
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When identifying the first story parameters, the second story parameters are required. 

Therefore, the mean values of the second story parameter estimates will be used in 

identifying the first story parameters. The statistics of the story stiffness estimates from 

all experiments are shown in Table 9.7. 

9.5 Experimental Results 

The identification error analysis of the substructure identification methods showed 

that the identification accuracy is closely related to the frequency response of the 

interstory acceleration near the story substructure natural frequency; larger response gives 

more accurate identification. Figures 9.9 and 9.10 show the changes of the frequency 

responses of the first and second interstory accelerations by the control systems. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.9 The power spectrum of the 1st interstory acceleration response of 
the uncontrolled and controlled structures 
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Figure 9.10 The power spectrum of the 2nd interstory acceleration response 
of the uncontrolled and controlled structures 

 
Using the structural parameters of the baseline structure, it can be easily calculated 

that the substructure natural frequencies of the first and second story substructure are 3.4 

and 3.1 Hz respectively. As shown in Figures 9.9 and 9.10, the two control systems 

largely amply the interstory acceleration response near those frequencies. Therefore, it is 

expected that the control systems will improve the identification accuracy. 

Table 9.7 Statistics of the story stiffness estimates 

Test 
Structure 

k1 [N/m] k2 [N/m] 

Mean COV Mean COV 

baseline 660 12.7% 530 2.5% 

control_1 538 2.9% n/a n/a 

control_2 n/a n/a 542 2.2% 

            COV: coefficient of variation 
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The results in Table 9.7 show that, compared with the baseline, the two control 

identification cases greatly reduce the variation in the identification results. Moreover, if 

the story stiffness of 572 N/m that was identified from the sine sweep excitation test is 

treated as an approximate true value for the stiffness of each of the two stories, the mean 

values of the story stiffness estimated from the controlled identification are closer to this 

“true” value. Therefore, the experimental results verify that the controlled substructure 

identification does provide more accurate estimates of the structural parameters than 

uncontrolled identification. 

It is worth pointing out here that the passive control strategies used in these 

experiments, increasing the 1st story stiffness by about 180% and decreasing the 2nd floor 

mass by about 33%, do not represent feasible full scale control strategies. However, the 

experimental results do prove the validity of the theories of the substructure identification 

and the controlled substructure identification in a real application. Future experimental 

studies will focus on more realistic and efficient control strategies, such as using the 

AMD system to control the structural responses and improve the identification accuracy. 
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Chapter 10   

Conclusion and Future Research  

A shear structure, shown in Figure 10.1, is widely used to model the dynamic 

behaviors of building structures. Thus, developing efficient identification methods, which 

can accurately identify the parameters of a shear model, plays a vital role in establishing 

efficient and accurate SHM systems for building structures. 

In this study, several innovative substructure identification and controlled 

substructure identification methods are proposed to accurately identify the parameters of 

shear structures, which form a solid foundation to design future efficient and accurate 

SHM system for building structures. The major achievements of this study are 

summarized in the following sections. 

 
Figure 10.1 A shear 

structure 

Figure 10.2 The two-story 
standard substructure 
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10.1 Summary of the Dissertation Work 

10.1.1 Substructure Identification Methods for Shear Structures 

Using the ‘divide and conquer’ strategy of substructure identification, a substructure 

identification method (FFT_SUBID) for shear structures is first developed in Chapter 3. 

A standard two-story substructure, shown in figure 10.2, is used to divide a large shear 

structure into many small substructures. An induction identification method is proposed 

from which the parameters of a shear structure are identified from top to bottom 

iteratively. In each sub-step of the identification, the Fourier transforms of two or three 

floor accelerations are utilized to formulate the substructure identification problem.  

Due to the noisy nature of acceleration measurements, it turns out that FFT_SUBID 

method can provide accurate parameter estimation only when the noise level in the 

measurement is low. To improve the identification accuracy, a transfer function based 

method (TF_SUBID) is proposed in Chapter 4, which makes use of the transfer functions 

among different structural responses to construct the substructure identification problems. 

Simulation results show that the TF_SUBID method significantly improves the 

identification accuracy compared with the FFT_SUBID method, providing quite accurate 

estimates even when the measurement noise is fairly large (40% in terms of RMS value). 

Nonetheless, there are some shortcomings for the TF_SUBID method: 1) it requires that 

there be only one excitation sources in the structure. 2) The TF_SUBID method provides 

biased estimation of the structural parameters. 

In order to further increase the identification accuracy, a new power spectrum based 

substructure method, the CSD_SUBID method, is proposed in Chapter 5. A reference 
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response, wide sense stationary (WSS) with other structural responses, is introduced in 

this method. The cross power spectral densities are utilized to form the identification 

problems. Compared with previous two substructure identification methods, the 

CSD_SUBID method possesses some superb features. 1) It is an asymptotically unbiased 

and consistent estimator for the structural parameters, able to provide arbitrarily accurate 

estimates of the structural parameters given that enough long measurement records are 

available. 2) The explicit formulae to calculate the variance of the estimated parameters 

are developed, providing the optimal estimated parameters as well as information about 

their confidence range. 3) Although the CSD_SUBID method is originally developed 

based on the assumption that the reference and the structural responses are WSS, it is 

shown that the CSD_SUBID also works with non-stationary structural responses and still 

give very accurate estimates. 

10.1.2 Controlled Substructure Identification  

One of the great features of above three substructure methods is the analytical 

results showing how the identification error in each step is formed. The identification 

errors of these methods are simply controlled by two structural responses within a very 

narrow frequency band, centered at the substructure natural frequency of the story being 

identified. This important discovery gives the ability to easily improve the identification 

accuracy by changing the substructure responses via specially designed structural control 

systems.  

Several controlled substructure identification methods were proposed, using 

different structural control systems to improve the identification accuracy of the 
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substructure methods. Furthermore, since the accuracy of the proposed controlled 

substructure identification methods directly depends on the close-loop controlled 

structural responses rather than on the control systems themselves, it is shown that these 

controlled substructure identification methods are quite robust to possible control system 

errors; moreover, one of common control system errors, feedback measurement noise, 

may even have a tendency to improve the identification accuracy. The simulation results 

demonstrate that the structural parameters are more accurately identified by applying the 

controlled substructure identification methods and the identification results do not 

deteriorate even when large feedback measurement noise is presented. 

10.1.3 Loop Substructure Identification Method 

Two major difficulties of the substructure identification methods proposed in 

Chapters 3~5 are that 1) the structure floor mass must be known and 2) the structural 

responses of all floors above the story being identified must be measured. To overcome 

these two difficulties, a fast substructure identification method is developed in Chapter 7, 

which only makes use of the responses of  the standard two-story standard substructure to 

formulate a loop-identification sequence and identify all four parameters of the 

substructure [ki  ci  ki+1 ci+1] once together even without knowing structural mass. This 

new method can directly, quickly and accurately identify any structural parameters in a 

large shear structure with as few as one set of substructure response data and no 

information about the structural mass, making it a very promising technique for many 

applications, such as immediate post-earthquake damage evaluation for buildings. 

The analysis is carried out to find the convergence condition of the new loop-
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identification method; it is demonstrated that the convergence of the identified parameters 

cannot be achieved in the usual situation. To ensure the convergence of the loop 

identification, the method of controlled substructure identification is applied, in which 

two control systems are designed and used to control the structural response. The two 

controlled structural responses are alternately used in the loop identification, resulting in 

quick convergence of the identified parameters. 

10.1.4 Substructure Identification for Frame Structures  

In Chapters 3–7, the proposed substructure identification methods and their 

identification error analyses are all based on a fundamental assumption that the identified 

structure is a shear model structure. Although the shear model is widely used to model the 

dynamic behavior of frame structures, it is only a simplification of a complex real 

building structure. Furthermore, finding damage in complex real building structures is of 

much more practical interest than just identifying the parameter values in a shear model 

structure. 

 Using the methodology of substructuring, a substructure identification method for 

frame structures is successfully developed. The dynamic equilibrium of one floor 

substructure is used to formulate the identification problem, in which the equivalent story 

stiffness and damping coefficient parameters are identified. In addition to the horizontal 

floor responses, the rotational responses at beam-column joints are needed in the 

formulation of the new method. Surprisingly, the newly-formulated substructure 

identification method for frame structures has a format similar to the substructure 

identification methods for shear structures. As a consequence, the results of the 
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identification error analysis can also be applied to the new frame substructure 

identification methods with some modifications. This new method can identify the 

structural damage occurring in the structural columns. The numerical simulation results 

also verify this conclusion. 

10.1.5 Experiment Verification 

To experimentally verify the effectiveness of the proposed substructure 

identification and controlled substructure identification methods, a series of experiments 

are carried out a bench-scale two-story shear structure model. Two substructure 

identification methods, FT_SUBID and PSD_SUBID, are tested on this structure. The 

results show that these two methods successfully identify the structural parameters. To 

test the effectiveness of the controlled substructure identification, some passive 

approaches are adopted to replicate the effects of the control system. These approaches 

include adding/removing the part of the floor mass and adding/removing the part of the 

structural story stiffness. Experimental results demonstrate that, by using the specially 

designed structural control systems, the identification accuracy of the structural 

parameters can be improved. 

10.2 Future Research 

Although significant improvements have been achieved in this study toward the 

ultimate goal of designing accurate and efficient SHM system for real building structures, 

there are still a lot of challenges ahead. Here are some critical areas needing further 

investigation. 
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10.2.1 Substructure Identification of Three Dimensional Shear Structures 

The substructure identification methods developed in this work apply to general one 

dimensional shear buildings. However, real buildings are 3-dimensional; extending the 

substructure identification method to 3-D shear structure is a very important practical 

issue. 

When the structure is symmetric (the center of gravity and the center of the stiffness 

are coincident for all floors), the structural responses can be decoupled into three 

independent motions (two horizontal and one rotational), and the substructure 

identification method can be used to identify the structural parameters in each direction 

separately. However, if the structure is asymmetric (by design or due to damage), the 

structural vibrations in the three directions will be coupled. How to decouple three 

substructure identifications and accurately identify the structural parameters requires 

further investigation. 

10.2.2 Damage Detection of Frame Structures without Measuring Rotational 
Responses 

The damage detection method for frame structures has been studied in Chapter 8 via 

identifying the equivalent story stiffness of the structure by using the substructure 

identification method. But this identification method requires that the rotational responses 

of all beam-column joints in the structure be measured, which is generally impractical. In 

practice, usually only the floor translational responses are measured. How to perform the 

parameter identification and damage detection in frame structures with only floor 

translational responses is another very important research direction. 
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10.2.3 Experimental Verification of Controlled Substructure Identification 
Using AMD Control System 

In Chapter 9, the passive control approaches, changing the floor mass and the story 

stiffness, are tested to demonstrate that specially designed control systems can improve 

the accuracy of the substructure identification. However, changing the floor mass and the 

story stiffness does not represent a real achievable means of effecting dynamic changes in 

practice. In the future, more realistic control methods, such as controlling structural 

responses via the AMD system, should be conducted. 
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Appendices 

Appendix A: The Properties of Circular Complex Gaussian Random 
Variables 

Lemma 1 

Let x(n) (n=0,…,N−1) be a real zero-mean discrete-time Gaussian white random 

process, then  

1) The discrete Fourier transform Xk of x(n), evaluated at the discrete frequency 

2πk/N, is a circular complex Gaussian variable, which means that the real part 

and the imaginary part of Xk are jointly Gaussian,  independent of each other, 

and with equal variance.  

2) If k≠j are two arbitrary nonnegative integers no more than (N–1)/2, the discrete 

Fourier transform of x(n) evaluated at two different discrete frequencies 2πk/N 

and 2πj/N, Xk and Xj , are independent. 

3) If Xk is a circular complex Gaussian random variable and A be a constant 

complex number, then AXk  is a circular complex Gaussian random variable. 

4) If Xk and Xj are two independent circular complex Gaussian random variables, 

then Xk +Xj is a circular complex Gaussian random variable. 

5) If a real random process y(n) is the combined output of several independent real 

zero-mean white Gaussian processes passing through a linear system, then  

a)  The discrete Fourier transform of y(n) evaluated at certain discrete 

frequency, Yk, is circular complex Gaussian variable;  
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b)  The discrete Fourier transform of y(n) evaluate at two different discrete 

frequencies, Yk and Yj  ( j≠k), are independent.  

Proof: 

Before beginning to prove the lemma, the following Equation (A1) is proved first. 
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QED 

Proof for (1) 

Since x(n) si a zero mean white Gaussian random process, therefore 
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The Fourier transform of process x(n) can be calculated as 
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Since the process x(n) is a Gaussian process, [ ]kXRe  and [ ]kXIm are Gaussian 

random variables and the mean, covariance and covariance of these two random variables 

can be evaluated as follows, 
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According to the results for Equation (A2), (A3) and (A4), [ ]kXRe  and [ ]kXIm  are 

zero-mean and mutually independent Gaussian random variables and their variances are 

[ ]{ } [ ]{ } [ ]2EImVARReVAR 2
kkk XXX == .      
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Proof for (2): 
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Since Xk and Xj are zero-mean complex, the covariance of these two random 

variables is 
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The four expected values of the production of the real and imaginary parts of Xk and 

Xj in the above equation can be calculated as follows 
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Since ( ) ( ) ( ) ( ) { }1,,1,1,,1,,, −−+−∈−−−−+ NNjkkjjkjk  , using the result 

of (A1) it is easy to get the final result of (A6). 
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Putting the results form Equations (A6)~(A8) back into (A5) 

{ } ( )kjXX jk ≠=     0COV  

Therefore, Xk and Xj are independent if j≠k.      

           QED 
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Proof for (3): 

Let A=a+b·i,  

[ ] [ ] [ ]kkk XbXaAX ImReRe −= , [ ] [ ] [ ]kkk XbXaAX ReImIm +=  

Since Xk is a circular complex Gaussian random variable, [ ]kXRe and [ ]kXIm  are 

independent, zero mean, and [ ]{ } [ ]{ } 2ImVARReVAR 2σ== kk XX . 

[ ]{ } [ ]{ } [ ]{ } 0ImEReEReE =−= kkk XbXaAX  

[ ]{ } [ ]{ } [ ]{ } 0ReEImEImE =+= kkk XbXaAX  

[ ]{ } [ ]{ } [ ]{ } ( ) 2ImVARReVARReVAR 22222 σbaXbXaAX kkk +=+=  

[ ]{ } [ ]{ } [ ]{ } ( ) 2ReVARImVARImVAR 22222 σbaXbXaAX kkk +=+=  

Therefore, AXk is a circular complex Gaussian random variable.   

           QED 

Proof for (4): 

Since Xk and Xj are independent, Re[Xk], Re[Xj], Im[Xk] and Im[Xj] are independent 

of one another. 

Re[Xk+Xj]=Re[Xk]+ Re[Xj] are independent of Im[Xk+Xj]=Im[Xk]+Im[Xj]. 

It is also easy to verify that VAR{Re[Xk+Xj]}=VAR{Im[Xk+Xj]}=E{|Xk+Xj|2}/2. 

Therefore, Xk+Xj  is a circular complex Gaussian random variable. 

QED 
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Proof for (5a): 

( )∑
=

⋅⋅ ⋅=
p

m

m
k

Nki
mk XeHY

1

)(2π  

where Hm(e2πik/N) is the transfer function from the mth input to the output evaluated at 

frequency 2πk/N, Xk
(m) is the discrete Fourier transform of the mth input evaluated at 

frequency 2πk/N. 

Using the results from lemmas (1), (3) and (4), it can be easily shown that Yk is a 

circular complex Gaussian random variable with the described properties. 

QED 

Proof for (5b): 

( )∑
=

⋅⋅ ⋅=
p

m

m
k

Nki
mk XeHY

1

)(2π ; ( )∑
=

⋅⋅ ⋅=
p

m

m
j

Nki
mj XeHY

1

)(2π

 

According to the result from Lemma 1(2) that )(m
kX  and )(m

jX  are independent for 

any m if jk ≠ ,  kY  and jX  are independent. 

QED 
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Appendix B: Proof of Equations (5.21a)~(5.21i) 

Before the formal proof of Equations (5.21a)~(5.21e), the following lemma is 

proved first. 

Lemma 1 

 Given the four assumptions in section 5.5, the following properties hold:   
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where Z[1,N] denotes a set containing natural numbers from 1 to N. 

Proof for Lemma 1(a) 
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 (B1)  

The first term in the above equation equals zero, which can be proved as follows 



  

294 

( ) ( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )[ ]

( )

( ) ( ) ( )( )
00E

EEE

1

1
,1,

1
,

1
,1,

1
,1,

1
,

=

























⋅





















−
=

























⋅





















−
=





















−

∑
∑

∑
∑∑

∑

=

=
−

∗

∗

=

=
−

∗

∗

=
−

∗

=

∗

Q

p
Q

q

q
ln

q
ln

q
l

p
l

Q

p

p
lxQ

q

q
ln

q
ln

q
l

p
l

Q

q

q
ln

q
ln

q
l

Q

q

q
lx

q
l

XXY

Y

N
XXY

Y

XXY

NY

j

j








 (B2) 

The first equality in the above equation uses the assumption that the measurement 

noise is independent of the true structural responses. Similarly, the second and third terms 

in Equation (B1) also equal zero, assuming y is not jx  (i.e., following the selection rules 

of section 5.4). 

Therefore,  ( )[ ] { } [ ]NZlnnjSN lyxxlyx nnj
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           QED 

Proof for Lemma 1(b) 
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The first term in the above equation can be simplified as 
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 (B4) 

Applying the assumption that the measurement noise is a white Gaussian process, it can 

easily be shown that 
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Applying the result of Equation B5, Equation B4 can finally be simplified as 
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Following similar steps, it can be shown that other eight terms in Equation B3 are all 

equal to zero.  

Therefore, 
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  QED  

Proof for Lemma 1(c) 
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 (B7) 

Given the assumption that measurement noises are white Gaussian processes and the 

noise from different measurements are statistically independent, it can be easily shown 

that 
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Utilizing the result of Equation (B8), Equation (B7) are simplified as 
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With the results from Lemma 1, Equation (5.21a)~(5.21i) are proved as follows 

Proof for Equation 5.21a 
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Proof for Equation 5.21b 
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Proof for Equation 5.21c 

[ ] ( ) ( )[ ]
( ) ( )[ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

EE

EE

EE

,

,

,

,
,12,12

,

,

,

,
,11,12

,

,

,

,
,12,11

,

,

,

,
,11,11

,,,12,,,11

,,,12,,,11
,,

111

1

1

11

1

1

1

1

1

111

111

=











⋅+












⋅+












⋅+












⋅=













+×

+
=

−−−

−

−

−−

−

−

−

−

−

−−−

−−−

−−−−

−−−−

−−

−−

myxx

myx

lyxx

lyx
ml

myxx

myx

lyxx

lyx
ml

myxx

myx

lyxx

lyx
ml

myxx

myx

lyxx

lyx
ml

myxxmyxmmyxxmyxm

lyxxlyxllyxxlyxl
mknlkn

nn

n

nn

n

nn

n

nn

n

nn

n

nn

n

nn

n

nn

n

nnnnnn

nnnnnn

S
N

S
N

WW
S

N
S

N
WW

S
N

S
N

WW
S

N
S

N
WW

SNWSNW

SNWSNW




































εε

     

Lemma 1(b) is used to simplify the results of the above equation. QED  

Proof for Equation 5.21d 
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Lemma 1(c) is used to obtain the simplified result of the above equation. QED  

The proof of Equation 5.21e is similar to the proof for Equation 5.21c. 

The proof of Equation 5.21f is similar to the proof for Equation 5.21d. 

The proof of Equation 5.21g is similar to the proof for Equation 5.21c. 

The proof of Equation 5.21h is similar to the proof for Equation 5.21d. 

The proof of Equation 5.21i is similar to the proof for Equation 5.21d. 
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Appendix C: Proof of Equation (5.22)~(5.26) 

Proof for Equation 5.22 
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The result of Equation (5.21a) is used for this proof. QED 

Proof for Equation 5.23 
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The result of Equation (5.21b) is used in this proof. QED 

Proof for Equation 5.24 
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The results of Equation (5.21c) & (5.21d) are used for this proof.  QED 

Proof for Equation 5.25 
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The results of Equation (5.21e) & (5.21f) are used for this proof. QED 
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Proof for Equation 5.26 
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The results of Equation (5.21g), (5.21h) and (5.21i) are used in the second-to-last step of 

the proof. Recalling the expression of factors lW ,11 , lW ,12 , lW ,21  and lW ,22  in Equation 

(3.26), it can easily be shown that 
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Therefore, [ ] 0COV =cnknθθ .  QED 

  



  

301 

Appendix D:  Identification Error Analysis of CSD_SUBID Method 
with Non-stationary Response 

a)  Top Story Case: 

Using the integrity indexes to rewrite the optimization problem (5.56) gives 
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[ ] [ ] 








−−−−
=








∂∂
∂∂

=
=•

2222

2T

1 )()(1

)(

)()(1

)(

lnnlnn

lnn

lnnlnn

lnn

ncl

nkl
l

mkmcj

mjc

mkmcj

mk
f
f

ωω

ω

ωω

ω
β
β

β

h

  (D2) 

 

( )

( )
( )

T

2
,,

,,

,,

2
,,

,,

T

ˆ,

,

,

1

1

1

1
1 1

ˆˆ
ˆˆ
ˆˆ

ˆ



























−

−
−
−
−

−

=
















∂∂

∂∂

∂∂

=

−

−

−

−

•

−

=

lyflyx

lyxlyx

lyflyx

lyflyx

lyflyx

PPlyfl

lyxl

lyxl

l

nn

nn

nn

nn

nn

n

n

n

PP

PP
PP

PP

PP

Pf
Pf
Pf















h  (D3) 
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Rearranging Equation (5.55) gives 

 ( )[ ])()(1 2
11

ωω nnnnyxyxyfyx mkmcjPPPP
nnnn

−−−=−
−−   (D4) 



  

302 

Using the right side of (D4) to replace the term in (D3) that equals the left side of 

(D4), and simplifying gives  
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Using the result of (D2), 
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Then, applying the error analysis method in Equation (3.19) with the result of (D2), 

(D5) and (D6), the relative identification error of the top story parameters can be written 

as 
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b) Non-top Story Case: 

Using the integrity index, the identification problem (5.63) can be rewritten as 
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Following a procedure similar to the top story gives 
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Rearranging Equation (5.61) gives 
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Using the right side of (D11) to replace the terms in (D10) that equals to the left side 

of (D11) and simplifying will give 
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Then, applying the error analysis method in Equation (3.19) with the results of 

Equations (D9) and (D12), the relative identification error of the ith story parameters can 

be obtained as 
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where lijU ,  are weighting factors as follows, 
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Appendix E: Identification Error Analysis of Power Spectral Density 
Based Substructure Identification Method for Frame Structures 

a) Top Story Case: 

Using the integrity indexes to rewrite the optimization problem (8.25) gives 
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Using the results of Equations (E4) and (E5) to simplify Equation (E3) gives  

 

[ ]

[ ]

T

22

2

2

22

2

,,,

)()(1

)()(
)()(1

1
)()(1

)()(

)(
1ˆ

1



























−−

+
−−

−
−−

−−

−−
=

∆−

lnnlnn

lnnlnn

lnnlnn

lnnlnn

lnnlnn

lylyxlyx
l

mkmcj

mkmcj
mkmcj

mkmcj

mkmcj

SSS
nnn

ωω

ωω
ωω

ωω

ωω



h  (E6) 

Using the result of (E2), 
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Then, applying the error analysis method in Equation (3.19) with (E2), (E6) and (E7), the 

relative identification error of the top story parameters can be written as 
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b) Non-top Story Case: 

Using the integrity index, the identification problem (8.26) can be rewritten as 

( ) ∑
=

++∆∆ ++−
−=

N

l
icikyyyxyxyxlcikilciki iiiii

ciki

SSSSSggJ
1

2

)1()1(
,

),,ˆ,ˆ,ˆ,ˆ,ˆ(ˆ),(,minarg
111

ββββββ
ββ

 (E9) 

where ( )
)()(1

1, 2
liiciliiki

cikil mkmcj
g

ωβωβ
ββ

−−
= ; 

])()()[ˆˆˆ()ˆˆ(

ˆˆˆ

),,ˆ,ˆ,ˆ,ˆ,ˆ(ˆ

2
1)1(1)1(,,,,,

,,,

)1()1(

111

1

111

liiikliiiclylyxlyxlylyx

lylyxlyx

icikyyyxyxyxl

mkmcjSSSSS

SSS

SSSSSg

iiiii

iii

iiiii

ωβωβ

ββ

++++∆∆

∆

++∆∆

++−+−

−−

=

++−

−

−+−







.  

Following a procedure similar to the top story gives 
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Rearranging Equation (8.24) gives 

 









−−−−

=







++−+−

∆

++
∆∆

−

++−

)()(
1)(

)()(
)()(

2

2
11

1

111

ωω

ωω

i

i

i

i
yyxyx

i

i

i

i
yyxyxyyx

m
k

m
jc

SSS

m
k

m
jc

SSSSS

iii

iiiii





 (E12) 

Using Equation (E12) to simplify Equation (E11) gives 
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Then, applying the error analysis method in Equation (3.19) with Equations (E10) 

and (E13), the relative identification error of the ith story parameters can be obtained as 

( )

( )

∑

∑

=
+

∆+−

∆+−

+
∆+−

∆+−

=

∆+−∆

∆+−∆

∆+−

∆+−

∆+−













































⋅








+



















































⋅







≈









−

++

−

++

−+

−

−+

−

−−

N

l
ic

lyxx

lyxx

ik
lyxx

lyxx

ll

ll

N

l

lyxxly

lyxxly

lyxxlyx

lyxxlyx

lyxxlyx

lllll

lllll

ci

ki

iii

iii

iii

iii

iiii

iiii

iiii

iiii

iiii

S

S
S

S

UU
UU

SN
SN
SN
SN
SN

UUUUU
UUUUU

1
1

,)(

,)(

1
,)(

,)(

,27,26

,17,16

1

,)(,

,)(,

,)(,

,)(,

,)(,

,25,24,23,22,22

,15,14,13,12,11

1

11

1

11

11

1

11

1

11

Re  

Re

θ

θ

θ
θ



















 (E14) 

where lijU ,  are weighting factors as follows, 
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