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Abstract

Shear structure models are widely used to model the dynamics of building structures;
therefore, developing the techniques that can accurately identify the parameters of a shear
structure plays a vital role in establishing efficient and reliable structural health
monitoring systems for building structures.

In this dissertation, applying the “divide and conquer” strategy of substructure
identification (SI), a series of innovative SI methods for shear structure are developed. A
shear structure is divided into many two-story standard substructures. A novel inductive
identification procedure is applied to identify the parameters of the whole structure from
top to bottom. Numerical simulations verify that these substructure identification
methods provide accurate identification results.

One of the most important features of these SI methods is that an approximate
analytical expression for the identification error is obtained, which demonstrates that the
identification accuracy is simply controlled by the frequency responses of the
substructure near the substructure natural frequency. This important discovery provides
the ability to easily improve the identification accuracy by appropriately changing the
substructure responses via specially designed structural control systems. Several
controlled substructure identification methods are proposed, using different structural
control systems to improve the accuracy of the SI method. Furthermore, since the
accuracy of the proposed controlled SI methods directly depends on the close-loop
controlled structural responses rather than on the control systems themselves, these

controlled SI methods are proven to be quite robust to possible control system errors.

XVii



To expand the applicability of the SI methods, a loop substructure identification
method is proposed which makes use of the dynamic equilibrium of only one standard
substructure to formulate a loop identification sequence and identify all parameters of
that substructure once. Compared with the previous SI methods, the loop SI method is
able to perform the structural identification of any part of a shear structure with only
three floor acceleration responses; also importantly, the loop substructure identification
can be carried out without knowing structural mass information.

Several shake table experiments are conducted on a two-story bench-scale test
structure; the results show that the proposed SI methods can accurately identify the
structural parameters and that, by using appropriately designed passive control system,
the identification accuracy can be further improved.

Finally, a new approach is proposed to extend the SI methods originally developed
for shear structures to more realistic frame structures. The study shows that the proposed
approach is able to accurately structural damage of columns in a frame structure.

In summary, the SI methods developed in this dissertation are able to accurately
identify the structural parameters of a shear structure, forming a solid foundation to
design efficient SHM systems for building structures. Furthermore, combined with
structural control systems, the proposed controlled SI methods not only further improve
the accuracy of damage detection but also have a potential to enhance the performance of
control systems to reduce the structural vibration by providing more accurate structural
model for control algorithms design, both of which greatly enhance the safety and

reliability of the structures.
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Chapter 1
I ntroduction

Civil structures, such as high-rise buildings, bridges, dams, etc., begin to deteriorate
once they are built and used. They may aso be damaged in severe events like strong
earthquakes. Due to the essential roles of civil structures in our modern society, it is vital
to frequently check the health status of structures and detect damage, if any has occurred,
at the earliest possible stage so that timely repair work can be made to ensure the safe and
reliable operation of the structures. According to a recent report from Federa Highway
Administration (FHWA, 2008), 15% percent of the nearly 600,000 highway bridges in
the United States are rated as “structural deficient”, requiring signification maintenance
and repair to remain in service. Clearly, there is urgent need to develop efficient
techniques that can accurately detect damage in aging civil structures nationwide. Recent
catastrophes such as the collapse of the 1-35W Bridge in Minneapolis are another

reminder that frequent and rapid assessment of structural health isavital need.

<http://www.america2050.0rg/2007/08/minnesota-bridge-col lapse-unde-2.html >

Figure 1.1 The collapse of the [-35W Bridge in Minneapolis (August 1, 2007)



Visua inspection, which is labor-intensive and expensive, is still the most widely
used method to date to check structural safety. However, it is a very subjective process as
the accuracy of the damage detection depends highly on the expertise of the inspection
staff. Moreover, many instances of structural damage, like the corrosion of steel bars in
reinforce concrete structure, are hidden inside the structure and cannot be observed from

the outside; under such circumstances, visual inspection cannot accomplish its mission.

Hence, in research communities there is intensive interest in developing efficient
structural health monitoring (SHM) techniques, which provide an objective way to assess
the structural health condition and detect the existence of the damage. Generally, SHM
techniques are classified into two large categories. The first kind of techniques is aso
known as nondestructive evaluation (NDE), including acoustic emission monitoring,
ultrasonic wave, radiography imagining, eddy current detection, and many other methods
(Chang et al., 2003). These techniques need to carry out some experiment tests in the
immediate vicinity of the damage locations to detect the damage. In order to perform
NDE testing, the locations of the damage must be known a priori and be accessible for
testing, making these methods unsuitable to detect structural damage in the entirety of a
complex structure. The second kind of techniques, also known as vibration-based
structural health monitoring methods, makes use of structural vibration responses to
detect and locate structural damage on a global structure basis. The basic premise of these
SHM methods is that structural damage will ater the structural stiffness, mass and/or
energy dissipation, which in turn change the dynamic behaviors of structures (Farrar et al.,

2001). Thus, by tracking these changes SHM systems can theoretically detect the



occurrence of structural damage, and even locate and quantify them. Relative to NDE
tools, vibration-based SHM methods have the advantages of discovering and locating
multiple structural damage locations across the entire structure. In order to make the
notation simpler, hereafter SHM methods will exclusively refer to the vibration-based

SHM methods unless otherwise stated.

1.1 The State-of-art of Vibration Based SHM

Many SHM techniques utilize structural modal features, such as natural frequencies,
mode shapes and modal flexibility, to detect damage in the structure. These techniques
are usualy realized via system and/or parameter identification techniques. A structural
model, often a finite element model, is selected to represent the behavior of the rea
structure; the parameters of the structural model, such as structural mass, stiffness and
damping, are estimated by minimizing the difference between the modal features of the
structural model and that of real structure derived from the measured structural responses.
By comparing the values of these identified parameters before and after the damage, the

structural damage can be detected, located and quantified.

Unfortunately, current globa vibration-based SHM techniques cannot yet be
considered sufficiently accurate, efficient and robust for real applications. Many factors

contribute to the failure, including:

1. Structural modal properties such as natural frequency and mode shape are
generally not sensitive to structura damage, which makes the inverse problems
associated with SHM methods ill-conditioned, resulting in inaccurate identified

structural parameters and, thus, inaccurate damage detection results.



2.

In order to represent the behavior of a large structure, usually a complex model
with tens or even hundreds of parameters is needed. Solving the inverse
identification problem for damage detection with this kind of model is very
challenging. IlI-condition and non-global identifiability features for this kind of
identification problem pose huge challenges to correctly identifying the
structural damage. Thus, the complexity of a real structure becomes one of the

most difficult challenges for SHM methods.

The structure model is only an approximation of a rea structure; it may not
exactly describe the full behavior of the rea structure. Efficient SHM methods
must be able to accommodate the modeling errors caused by the imperfect match

between the structural model and the real structure.

Other factors like the periodic variation of environmental effects (e.g.,
temperature) also induce changes in the structure modal properties, masking the

effect of real damage.

Since controlled excitation experiments are quite expensive for the long-term
structural health monitoring of civil structures, ambient excitation tests usually
have to be adopted to identify the structura modal properties. However, it is
much more challenging to perform SHM identification using ambient excitation
than using controlled force excitation. First, ambient excitation cannot be
directly measured in most cases, which requires that the SHM methods be
performed without the information of the excitation. Severa methods have been

proposed to carry out structural identification without excitation information,



such as the natural excitation technique (James et al., 1993; Caicedo et al., 2004),
random decrement (Yang et al., 1976, Huang et al., 1999). Second, ambient
excitation is generally very small, resulting in small structural responses; thus,
usualy the measured structural responses will be significantly corrupted by

measurement noise, resulting in large identification errors for SHM.

To the best of the author’s knowledge, there is not an al-in-one solution to all
challenges previously mentioned. Many researchers have proposed some new techniques,
trying to solve one or several above problems and increase the accuracy for damage
detection. Two of these techniques, substructure identification methods and controlled

identification methods, are discussed herein.

1.1.1 Substructure Identification

Substructure identification methods provide an effective means for SHM systems to
tackle the difficulty of identifying complex real structures. A substructure identification
method, applying a “divide and conquer” strategy (Koh, 1991), divides a large complex
structure into many simple substructures and carries out system identification and
damage detection for each substructure as an independent structure. Since the
identification problem of each substructure is much simpler than that of the whole
structure, the convergence and ill-conditioning problems frequently encountered in global
SHM methods are alleviated; more accurate damage detection and localization can be
achieved. In additional to the improvement of identification accuracy, substructure

identification methods have many other promising features.



1. The identification of one substructure generally does not require measuring the
excitation forces applied outside this substructure; thus, substructure
identification methods partialy solve the common difficulty facing many SHM
methods — how to perform the identification without excitation information.

2. Each identification step in a substructure identification method only utilizes the
structural responses related to one substructure and can be carried out amost
independently. Consequently, substructure identification methods do not need to
simultaneously measure al structural responses of a large structure, which may
greatly reduce the cost of SHM systems especially when power-limited wireless
sensors are used to collect and transmit the measured data.

3. Since structural damage inside one substructure usualy only affects the
identified parameters of that substructure, substructure identification methods

make it easy to detect structural damage at the substructure level.

1.1.2 Controlled Identification

Another promising technique is to use structural control (SC) systems to improve the
accuracy of SHM. These techniques try to change the structura responses by some
specially designed structural control strategies, so that either SHM methods are more
sensitive to the damage or multiple information sets of structural features are available to
improve the identification accuracy.

Traditionally, structural control systems are designed and installed to reduce the
excessive structural vibration due to strong earthquakes or high-speed winds. However,

compared with the whole service life of structures, such large natural hazards occur rarely



and only last for very short durations; the remainder of the time, the expensive structural
control system remains unused in an idle state. When no external hazard is present, the
capacity of the control system to measure and control structural responses may be re-
tasked to monitor the structural headth and detect potential structura damage.
Incorporating SHM functionality into current structural control systems not only adds
useful functions to current control systems at a very small cost, making control systems
more cost-efficient, but also has potential to enhance the performance of control systems
to reduce structura vibration by providing a more accurate structural model for the
control algorithm. As shown in Figure 1.2, the synergy of structural control (SC) systems

and structural health monitoring (SHM) systems leads to more reliable and safe structures.

Higher Reliability

/ contro \

Damage SHM r&ponse > Vlbratlon
detection

W

Figure 1.2 Mutual benefit of combining structural control and structural
health monitoring systems

1.2 Overview of This Dissertation Work

A shear structure, shown in Figure 1.3, is widely used to model the dynamic
behaviors of building structures. Therefore, developing efficient identification methods,
which can accurately identify the parameters of a shear model, plays a vita role in

establishing efficient and accurate SHM systems for building structures.
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Figure 1.3 (@) An n-story shear structure (b) the two-story standard
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1.2.1 Substructure Identification for Shear Structures

Following the “divide and conquer” strategy, a substructure identification method
for shear structures is developed in this study. A standard two-story substructure, shown
in Figure 1.4, is used to divide a large shear structure into many small substructures. An
inductive identification method is formulated in which the parameters of the whole
structure are identified from top to bottom iteratively. In each step of the substructure
identification, only two or three floors acceleration responses are needed for the
identification procedure, making this method easy to be implemented.

When long stationary structural responses are available and there is only one
excitation source in the structure, a more accurate transfer-function based substructure
identification method (FT_SUBID), formulated by using the transfer functions among

different substructure responses, can be adopted to improve the identification accuracy.



Moreover, a cross power spectrum based substructure identification (CSD_SUBID)
method is developed from the differential equation governing random structural
responses to stochastic excitation; not only does this approach overcome the limitation of
only one excitation source required for the FT_SUBID approach, it also further improves
the identification accuracy. This substructure identification method possesses some
superb properties compared with its two predecessors. 1) It is an asymptotically unbiased
and consistent estimator for structural parameters, being able to provide arbitrarily
accurate identification results given that sufficiently long stationary structural response
measurements are available. 2) The explicit formulae to calculate the approximate
variance of identification errors are developed, which provide the confidence level aong
with the estimated parameters, crucial information for damage detection tasks. 3)
Although this new SI method is first developed assuming that the structural responses are
wide sense stationary (WSYS), it is proved theoretically as well as through simulation that
this method, with little modification, can be directly extended to perform the
identification tasks with non-stationary structural responses and <till provide very
accurate identification results.

Numerical simulations demonstrate that all proposed substructure identification

methods offer good estimation results as expected.

1.2.2 Controlled Substructure Identification for Shear Structures

In contrast with previous work on substructure identification, which have mainly
focused on reducing the size of the identification problem to increase the accuracy and

efficiency of the system identification, this study also makes some important attempts to



discuss how the uncertain factors in the identification process, such as measurement noise,
will influence the accuracy of the identification result. To accomplish this goal, an
approximate identification error analysis for a least-square-error (LSE) identification
problem is proposed and applied to the proposed substructure methods. A simple
analytical result of the identification error is obtained, which demonstrates that the
identification accuracy is ssmply controlled by two substructure responses within a very
narrow frequency band centered at the substructure natura frequency. This important
discovery provides the ability to easily improve the identification accuracy by
appropriately changing the substructure responses via specially designed structura
control systems.

Several controlled substructure identification methods are proposed herein, using
different structural control systems to improve the accuracy of the substructure
identification methods. Furthermore, since the accuracy of the proposed controlled
substructure identification methods directly depend on the close-loop controlled
structural responses rather than on the control systems themselves, these controlled
substructure identification methods are proven to be quite robust to possible control
system errors, making them excellent candidates to provide accurate and reliable
identification results with imperfect structural control systems.

Combined with the controlled substructure identification methods, a fast
substructure identification method is also developed, which only makes use of the
responses of one standard two-story standard substructure to formulate a loop-
identification sequence and identify al four parameters of that substructure once together
even without knowing structural mass. This new method can directly, quickly and
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accurately identify any structural parametersin alarge shear structure with as few as one
set of substructure response data and no information about the structural mass, making it
a very promising technique for real-world applications, like immediate post-earthquake

damage evaluation for buildings.

1.2.3 Damage Detection in Frame Structures via Substructure Identification

The proposed substructure identification methods and their identification error
analyses are al based on a fundamental assumption that the identified structure is a shear
model structure. Although the shear model is widely used to model the dynamic behavior
of frame structures, it is only a simplification of a complex rea building structure.
Furthermore, finding the damage in complex rea building structures, like the frame
structure in Figure 1.5, is of much more practical interest than just identifying the
parameter values in a shear model structure (Yan et al., 2006). However, directly
performing identification in a complex structure model to find damage is often in vain
due to the greater complexity of the search space in the identification problems.

Using the methodology of substructuring, a substructure identification method for
frame structures is successfully developed. The dynamic equilibrium of one floor
substructure is used to formulate the identification problem, in which the equivalent story
stiffness parameters are identified. In addition to the horizontal floor responses, the
rotational responses at beam-column joints are needed in the new formulation.
Surprisingly, the new substructure identification method for frame structures has a similar
format as the substructure identification methods for shear structures. As a consequence,

the results of the identification error analysis can aso be applied to the new substructure
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identification methods with some modifications. This new method can identify the

structural damage occurring in the columns of the structure.

U

[¢]
Figure 1.4 A simple one-bay frame structure

In summary, the substructure identification methods developed in this work are able
to accurately identify the structural parameters of a shear structure, forming a solid
foundation to design efficient SHM systems for building structures. Furthermore,
combined with structural control systems, the proposed controlled SI methods not only
further improve the accuracy of damage detection but also have the potential to enhance
the performance of control systems to reduce the structural vibration by providing more
accurate structural models for control agorithm design, both of which greatly raise the

safety and reliability of the structures.
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Chapter 2

Background and Literature Review
Aging of civil structures gradualy deteriorates the load-resistant capacity of

structures. The need for assessing the health status of structures and detecting structural
damage, if present, at the earliest possible stage has urged development of research in
structural health monitoring.

Generdly, structural health monitoring methods fall roughly into two categories: one
is localized experimental methods, also known as nondestructive evauation (NDE)
techniques, including acoustic emission monitoring, ultrasonic wave, radiography
imagining, eddy current detection, and many other methods (Chang et al., 2003); the
other is global vibration-based methods which make use of the change of structura
vibration features (frequency, mode shape, etc.) to identify the onset, location and
severity of the damage.

NDE methods typically require carrying out some experiment near the damage
location to test the physical properties of the structural materials and detect the onset and
severity of the damage inside the structure. For example, ultrasonic methods will generate
incident ultrasonic sound waves on the surface of a structural component and measure the
reflective waves from the structure. If there are cracks inside the structure, some
additional reflective waves will be produced by these cracks and captured by sensors.
Therefore, by anayzing the reflective waves, the hidden structural damage will be
detected. Usually, such a method will provide accurate information about the structural
damage. However, because NDE methods require a priori knowledge of likely damage

locations and also need to carry out experiments near every possible damage location,
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they are, by themselves, impractical for detecting structural damage in the entirety of a
complex structure. A good review of local SHM methods is given by Rens et al. (1997).
This chapter will only focus on global vibration-based SHM methods.

In this chapter, first a brief review of the major vibration-based global structural
health monitoring methods is given. Then the common deficiencies of these methods are
summarized. Last, some recently developed methods are introduced that intend to

overcome some of the deficiencies and improve the accuracy of damage detection.

2.1 Major Structural Health Monitoring Methods

Structural health monitoring and damage detection have been hot research topics for
several decades; hundreds of approaches have been proposed using various hardware and
algorithms. This chapter will only refer to a few representative approaches; extensive
reviews could be found in Doebling et al. (1996) and Sohn et al. (2003).

Rytter (1993) proposed to classify the damage identification methods into four levels:

* Level 1: Determination if damage is present in the structure

* Level 2: Determination of the geometric location of the damage

* Level 3: Quantification of the severity of the damage

* Level 4: Prediction of the remaining service life of the structure

The vibration-based SHM methods generally fall into Level 1, Level 2, or Level 3
methods because they are directly associated with structural dynamics testing, modeling
and structure identification. While Level 4 methods, predicting the effect of structural

damage on the structural loading-resistant capacity given that structural damage have
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been identified, are related to the fields of fracture mechanics, fatigue life anaysis, or
structural design assessment.

In general, damage can be defined as changes within a structural system which
adversely affect its current and future performance (Farrar et al., 2000). Accordingly,
structural damage is usually associated with changes to geometric and materia properties
of the structure, such as the occurrence of cracks in structural components, gradua
deterioration of Young's module of the structura materials and the yielding of some
structural components. Some structural damage is caused by unexpected excessive
loadings such as strong earthquakes and blast loading; others are the result of
accumulated corrosion caused by environment factors such as humidity. However,
structural damage is difficult to directly measure and quantify; therefore, most
researchers tend to use the change in the mechanical properties of the structure, which
could be directly measured or indirectly estimated from structural responses, to represent
the existence of structural damage. The general mechanical properties used for damage
detection can be classified in two categories: structural modal parameters (e.g., natural
frequency, damping ratio and mode shape) and structural model parameters like the
stiffness of structura components. Structura damage is detected and evauated by
monitoring the changes of these parameters before and after damage. Hence, identifying
these features or parameters becomes an essential step for SHM.

Usualy a mathematical or computational prediction model that replicates the
behavior or features of the structure system is needed first; then, by applying system
identification techniques that fit the model to experimental data, the optima model
parameters can be estimated. Different types of structural models are most amenable to
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different system identification techniques, which can be roughly divided into the methods
based on structural modal properties, frequency domain, time domain, and ERA and other

subspace identification.

2.1.1 Structural Modal Property Based Methods

Structural modal methods are probably the most abundant of SHM methods. They
typically use structural modal parameters, such as natural frequency and mode shape, to
detect the damage in the structure. These methods can be further classified, by how the
modal characteristics are used, as forward methods and inverse methods. For the forward
methods, some damage indices are calculated from structural modal parameters. Large
changes in these indices are used to indicate the occurrence of damage. Usually this kind
of method can only suggest whether or not there is some damage, and cannot provide
information such as the location and severity of the damage. Inverse methods typically
use the structural moda parameters as the prediction model; by solving some inverse
problem, the parameters of the physical structural model (like stiffness) are estimated.
Hence, inverse methods can offer information about the location and severity of the

damage.

a) Natural Frequency Based Methods
The tangible relation between the changes of structura stiffness and the changes of
structural natura frequency makes it a natura choice to use the estimated structural
frequencies to identify damage. Another reason that the structura frequency based

identification methods prevail is the ease of identifying the natura frequencies (in many
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cases only a single sensor is required). Salawu (1997) reviewed 65 publications dealing
with the detection of structural damage through frequency changes.

Most of the early work was based on very simple structures and structural elements.
Adamset al. (1978) and Cawley et al. (1979) demonstrated that the ratio of the frequency
changes in two modes is only a function of damage location. A collection of possible
damage points was considered, and an error term was constructed that relates the
measured frequency shifts to those predicted local stiffness reduction. A number of mode
pairs were considered for each potential damage location, and the pair that give the
lowest error indicated the location of the damage.

Stubbs et al. (1990a,b) discussed a method for damage identification which relates
changes in the structural frequencies to changes in the stiffness of structura members by
using a sensitivity relation. The sensitivity matrix of structural frequency with respect to
both structura stiffness and mass was constructed and used to calculate the changes of
structural stiffness and mass.

Brincker et al. (1995) applied a statistical analysis method to detect damage in two
concrete beams using changes in the measured vibration frequencies. The authors
introduced a significance indicator for the i modal frequency, defined by scaling the
observed change in moda frequency by the estimated standard deviation of the
frequencies. A similar significance indicator was defined for the measured modal
damping ratio. By summing the frequency and damping significance indicators over
several measured modes, a unified significance indicator was defined and used to detect
damage. This significance indicator was a sensitive indicator of structural damage, but it
was not able to provide an estimate of damage location.
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It is worth pointing out that structural frequency shifts have some significant
limitations for detecting the structural damage in real complex structures. The low
sensitivity of frequency shifts to damage requires either very precise measurements or
large levels of damage, in order to accurately detect the occurrence of structural damage.
For example, in offshore platforms, frequency shifts resulting from mass changes due to
marine growth are much larger than damage-induced frequency shifts (Whittome et al.,
1983). Tests conducted on the 1-40 Bridge (Farrar et al., 1994) also demonstrated this
point. When the cross-sectiona stiffness at the centre of a main plate girder had been
reduced by 96%, reducing the bending stiffness of the overall bridge cross section by

21%, no significant reductions in the modal frequencies were observed.

b) Mode Shape Based Methods

Since the structural natural frequency is insensitive to structural damage, researchers
turned to more damage-sensitive modal properties (i.e., mode shape) for help. The Modal
Assurance Criterion (MAC) (Allemeng et al., 1982) and Coordinate Modal Assurance
Criterion (COMAC) (Lieven et al., 1988) are two commonly used methods to compare
two sets of mode shapes. The MAC vaue is a measure of the similarity of two mode
shape vectors. A MAC value of 1 means a perfect match (exactly paralle vectors) and a
value of 0 means they are completely dissimilar (orthogonal). Thus, the reduction of a
MAC vaue may be considered as an indication of damage. The COMAC is a pointwise
measure of the difference between two sets of mode shapes and takes a value between 1
and 0. A low COMAC value would indicate discordance at a point and, thus, is also a

possible damage location indicator.
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West (1984) demonstrated the possibility of using mode shape information for
locating structural damage. The modal assurance criterion (MAC) was used to determine
the correlation of the modes before and after damage. The mode shape was partitioned
using various schemes and the change in the MAC across the different partitioning
techniques was used to localize the structural damage.

Salawu et al. (1995) tested a reinforced concrete bridge before and after repair.
Although the natural frequency shift, due to structural damage, was less than 3% for each
of the first seven modes, the MAC values show substantial change, which indicated that
comparison of mode shapes is a more sensitive and robust technique for damage
detection than shiftsin natural frequencies.

Fryba et al. (2001) used the COMAC method for checking the quality of the repair
of a pre-stressed concrete bridge segment after part of the superstructure had
spontaneoudly dlid off its bearings. The COMAC analysis was used to confirm that the
repaired segment responses were consistent with the undamaged segment.

Williams et al. (1999) formulated a frequency Multiple Damage Location Assurance
Criterion (MDLAC) method. In this method, a correlation coefficient MDLAC was
calculated, which compared changes in a structure's resonant frequencies with
predictions based on a frequency-sensitivity model derived from a finite element model.
When the MDLAC approaches 1, it implies that the frequencies calculated from the
damage scenario of the finite element model match very well with the structura
frequencies estimated from measured quantities.

In addition to these methods, several other assurance criteria have aso been
proposed to assess the consistence of modal shapes and other structural dynamic
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properties like frequency response function as well. These techniques include the
frequency response assurance criterion (Heylen et al., 1996), coordinate orthogonality
check (Avitabile et al., 1994), frequency scaled modal assurance criterion (Fotsch et al.,
2001), partial modal assurance criterion (Heylen, 1990), scaled modal assurance criterion
(Brechlin et al., 1998), and modal assurance criterion using reciprocal modal vectors

(Wei et al., 1990).

¢) Mode Shape Curvature Based Methods

Since structural damage in simple structures, like a beam, causes larger local
changes of the mode shape curvatures than that of mode shapes, many researchers
propose to use mode shape curvatures, instead of mode shapes, to detect structural
damage. The curvature is often calculated from the measured displacement mode shapes

using a central difference approximation,

. Pii — 205 + Doy
¢ji - 2
L (2.1
where i = mode shape number; j = node number; L is the distance between the nodes

(assuming equidistant).

Pandey et al. (1991) presented a method to detect damage in a beam structure by
using absolute changes in mode shape curvatures. The curvature values were computed
from the displacement mode shape using a central difference approximation. Chance et al.
(1994) found that curvature calculated numerically from mode shapes resulted in
unacceptable errors. They proposed using measured strains instead to infer curvature,

which dramatically improved results.
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Wahab et al. (1999) successfully applied a curvature based method to the Z24
Bridge in Switzerland. They introduced a damage indicator which is determined by the
difference in curvature before and after damage averaged over a number of modes. They
concluded that the use of modal curvature to locate damage in civil engineering structures

Seems promising.

d) Modal Strain Energy Based Methods

When a particular vibration mode stores a large amount of strain energy in some
structural members, the frequency and shape of that mode are highly sensitive to the
changes in those structural members. Thus, changes in modal strain energy might be
considered as logical choice of the indicator of damage location.

Kim et al. (1995) applied a damage identification algorithm to locate and quantify a
single crack in an experimental plate girder. Cubic spline functions were used to
interpolate the incomplete mode shapes and produce a curvature function to calcul ate the
modal strain energy. A damage indicator was proposed based on the ratio of modal strain
energy of elements before and after the damage. A statistical hypothesis technique was
applied to classify the significance of the value of the damage indicator. The method was
also demonstrated to locate up to two damage sites in asimulated plate girder.

Law et al. (1998) proposed to use the elemental energy quotient (EEQ), defined as
the ratio of the modal strain energy of an element to its kinetic energy, to detect the
damage in structural members. The difference in the EEQ before and after damage was
normalized and averaged over several modes and used as a damage location indicator.

This method was demonstrated on a simulated space frame. The method was aso
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successfully applied to an experimental two-story plane frame with up to two joints

loosened to simulate damage.

e) Dynamically Measured Flexibility Matrix Based Methods

Another class of damage identification methods uses the dynamically measured
flexibility matrix to estimate changes in the static behavior of the structure. The measured
flexibility matrix is estimated from the mass-normalized measured mode shapes and
frequencies as

G= Z%‘P. (PiT
i O (2.2
where G is the flexibility matrix of the structure; w; is the natural frequency of the i
mode; and ¢; is the i"™ mass normalized mode shape. This formulation indicates that only
the first few modes of the structure (typically the lowest-frequency modes) are needed to
construct the flexibility matrix.

Li et al. (1999) proposed an approach for damage identification by utilizing the
flexibility matrix in slender structures, such as tall buildings and chimneys. The method
assumed that damage in each story of a building could be represented by just two
variables and, thus, only a minima number of modes were needed for successful
identification. However, the authors did not tackle any issues of sparse measurements or
compare cantilever models to more complex models.

Bernal (2000, 2006, 2010) pointed out that changes in the dynamic flexibility matrix
are sometimes more desirable to monitor than changes in the stiffness matrix. Since the

dynamic flexibility matrix is dominated by the lower modes, and good approximations
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can be obtained even when only afew lower modes are measured. Bernal outlines a state-
space redlization procedure to identify the modes at sensor locations and presents closed
form solutions for computing mass normalized mode shapes when classical damping is

assumed.

2.1.2 Frequency Domain Techniques

Frequency domain identification techniques refer to the methods that employ a
transfer function (TF) or frequency response function (FRF) to identify the damage in a
structure. Because the TF or FRF cannot be measured directly, many methods (e.g.,
empirical transfer function estimate (ETFE), correlation method, etc.), which calculate
the FRF from measured structural time history responses, have been proposed. Detailed
information about these methods is found in Ljung (1999).

As Lee and Shin (2002) pointed out, there are two main advantages of using the FRF
data. Firstly, moda data can be contaminated by modal extraction errors in addition to
measurement errors, because they are derived data sets. Secondly, a complete set of
modal data cannot be measured in all but the ssimplest structures. FRF data can provide
much more information on damage in a desired frequency range compared to modal data
that is extracted from avery limited range around resonances.

Crohas et al. (1982) described a “vibro-detection device” that was attached to
structural members of an offshore oil platform. The device was able to apply an
excitation to the structure and simultaneously measure its response. Frequency response
functions were then determined for the measured the acceleration response that results

from the excitation.
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Park et al. (1999) observed that the changing environmental and operational
conditions will alter the structure’'s vibration signals, which often lead to false
assessments of structural damage for conventional modal-based SHM. They used a
piezoelectric transducer (PZT) bonded to the structure as an actuator and sensor
simultaneously, and carry out damage detection via the transfer function obtained from
PZT. Many related studies are reported in the literature.

Fanning et al. (2003) proposed a damage detection method based on a single-input
single-output (SISO) measurement. A numerically efficient method was proposed to
calculate a single FRF from the SISO measurements. The method requires a correlated
numerical model of the structure in its initial state and a single measured FRF of the
damaged system sampled at severa frequencies to detect structural changes. The method
successfully detected stiffness changes in a numerically ssimulated 2-D frame structure

(Fanning et al., 2004).

2.1.3 Time Domain Techniques

Time domain identification techniques here refer to the methods that directly make
use of the structural time history response to detect structural damage. These methods
typically first select a mathematical model to represent the structure; then, the parameters
of the model are identified by minimizing the difference between the measured structural
responses and that predicted by the model.

Auto regressive (AR) and auto regressive moving average (ARMA) are probably
two of the most adopted models for time domain methods. By minimizing the error

between the measured and computed structural time history responses, the parameters of
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these models are estimated. Structural damage is detected by relating the identified
parameters to the structural model parameters, such as stiffness of structural members.
However, for a complex structure, the relation between the parameters of an ARX or
ARMA model and that of structural model becomes so complicated that detecting the
damage becomes a non-trivia task.

Shinozuka et al. (1982) demonstrated a method of parameter estimation for linear
multi-degree-of-freedom structural dynamical systems based on observed records of the
external forces and the structura responses. The ARMA model was used for ssmulating
the dynamic response of the structure. The parameter values of the ARMA model were
estimated using least-square-error criterion. To check the estimation accuracy, analytical
simulation studies were performed on the basis of simulated data dealing with the
aerodynamic coefficient matrices that appear in the equations of motion of a two-
dimensional model of a suspension bridge. Then, these methods were applied to the same
eguations to identify the coefficient matrices using the field measurement data, yielding
good estimates of the system parameters even under large output noise conditions.

Beck (1978) proposed a method applying a minimum output error approach to
identify the modal parameters of the structure from earthquake records. Beck (1998) aso
extended his method with a Bayesian probability framework, which treats the identified
parameter as random variables rather than fixed value parameters. By applying Bayesian
updating techniques, the probability density function (PDF) of the identified parameters
was calculated. This method gave not only the optimal values of the identified parameters,
but also quantified uncertainty in the identified parameters, which is of great importance
for evaluating the credibility of the identification results.
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Zheng et al. (2008) introduced a new damage indicator, denoted by the distance
between ARMA models, to identify structural damage including its location and severity.
They pointed out that two commonly used distances, the cepstral metric and subspace
angles, of ARMA models have limitation in accurately predicting the damage when there
are multiple inputs with strong correlations. To overcome this difficulty, a pre-whitening
filter was applied. Therefore, the proposed damage indicator was applicable for varieties
of excitation types in civil engineering, such as wind, traffic loading and earthquake
excitations. A five-story building model was used for performance verification when
subjected to different excitations.

The state-space model is another commonly used model especially for multivariable
input/output systems to model the dynamics behaviors of structures. A variety of methods,
such as extended Kalman filter, unscented Kalman filter, ensemble Kalman filter etc.,
have been proposed to estimate the state space response of the model as well as the
parameters of the model.

Hoshiya et al. (1984) utilized extended Kaman filter (EKF) to perform system
identification of seismic structural systems. To obtain the stable and convergent solutions,
a weighted global iteration procedure with an objective function was incorporated into
the extended Kaman filter algorithm for stable estimation. The effectiveness of this
present method was verified on multiple degree-of-freedom linear systems, bilinear
hysteretic systems, and equivaent linearization of bilinear hysteretic systems.

Yang et al. (2007) proposed an EKF approach with unknown inputs (EKF-UI) to
identify the structural parameters, such as the stiffness, damping and other nonlinear
parameters, as well as the unmeasured excitations. An analytical solution for the proposed
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EKF-UI approach was derived and presented. An adaptive tracking technique was aso
implemented in the proposed EKF-Ul approach to track the variations of structura
parameters due to damages. Simulation results for linear and nonlinear structures
demonstrated that the proposed approach was capable of identifying the structural
parameters and their variations due to damage and unknown excitations.

Ghanem et al. (2006) pointed out that the accuracy of EKF relies on the simple
structure of linear dynamical systems excited by Gaussian noise. In situations where
either the noise is significantly non-Gaussian or the dynamics is highly non-linear, the
accuracy associated with filtering the linearized system may not be acceptable. To tackle
the above challenges, they presented a combination of the ensemble Kaman filter (EnKF)
and non-parametric modelling techniques. EnKF relies on the traditional corrector
eguation of the standard Kalman filter, except that the gain is calculated from the error
covariance provided by the ensemble of model states. Both location and time of
occurrence of damage were accurately detected in spite of measurement and modeling
noise. A comparison between ensemble and extended Kaman filters was also presented,
highlighting the benefits of the approach.

Another technique to handle the difficulty of EKF in dealing with strong nonlinear
system is the unscented Kalman filter (UKF). The UKF uses a deterministic sampling
technique known as the unscented transformto pick a minimal set of sample points
(called sigma points) around the mean. These sigma points are then propagated through
the non-linear functions, from which the mean and covariance of the estimate are then
recovered. Compared with EKF, UKF more accurately captures the true mean and
covariance of the estimation. In addition, UKF removes the requirement to explicitly
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calculate Jacobian, which for complex functions can be a difficult task in itself. Wu et al.
(2007) compared EKF and UKF in estimating the dynamic responses of nonlinear
structures, whose results show that the UKF produces better state estimation and
parameter identification than the EKF and is also more robust to measurement noise

levels.

2.1.4 ERA and Subspace Identification Methods

The Eigensystem Redlization Algorithm (ERA), one of most commonly used
subspace identification methods, was proposed by Juang and Pappa (1985). ERA uses a
singular-value decomposition to derive a minimum-order state-space representation of a
linear time-invariant system. First, a Hankel matrix is assembled by arranging the
structure’s impulse responses into the blocks of the Hankel matrix. The order of the
structural system is determined by examining the magnitude of the singular values of the
Hankel matrix. A state-space realization is constructed by using the shift block Hankel
matrix. After obtaining the state-space representation, all modal parameters can be easily
calcul ated.

Later Juang et al. (1988) aso introduced a modification to the ERA agorithm,
called the ERA data correlation agorithm (ERA/DC). ERA/DC uses correlation data of
structure responses rather than the impulse response to formulate the Hankel matrix. It
was found that ERA/DC can reduce the effects of measurement noises without over-
specification.

Caicedo et al. (2004) combined the Natural Excitation Technique (NEXT) (James et

al., 1993) and the ERA to study the phase | IASC-ASCE benchmark structure. The
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benchmark structure is a 2x2 bays 4-story braced frame structure. The damage is
simulated by removing some story braces. The NEXT technique was first used to obtain
the cross-correlation function from ambient vibration, which in turn served as input to
ERA. After natural frequency and mode shape data of the structure were calculated from
ERA, the least-square criterion was then applied to identify the structure stiffness. The
simulation results showed that the NEXT and ERA are successful in identifying the
structural damage.

De Cadlafon et al. (2008) developed a generalized redlization agorithm (GRA) to
identify the modal parameters of linear multiple-degrees-of-freedom dynamic systems
subject to measured arbitrary input from known initia condition. The GRA extends the
eigensystem redlization algorithm by allowing an arbitrary input signal in the realization
algorithm. This generalization was obtained by performing a weighted Hankel matrix
decomposition, where the weighting was determined by the loading. The state-space
matrices were identified in a two-step procedure that includes a state reconstruction
followed by a least-squares optimization to get the minimum prediction error for the
response. The statistical properties of the modal parameter estimators provided by the

GRA were investigated through numerical simulation based on a benchmark problem.

2.2 Challenges for SHM

Although many vibration-based SHM methods have been developed so far, no
method could be regarded sufficiently accurate, efficient and robust to widely apply to

real applications. The reasons are discussed in the following subsections.
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2.2.1 Modeling for SHM

Picking the right model is crucial in SHM. The model is used to mimic the responses
or behaviors of the structure; thus, the model should closely replicate the behaviors of the
real structure. However, due to ssimplifications in the modeling process and the inherent
structural uncertainties like material property variation, the model cannot be expected to
perfectly predict the full behavior of the structure. Moreover, a model which can predict
the structural behavior very well may be so complicated that it will generate very large
errors in a subsequent identification procedure (discussed further in the next subsection).
A trade-off between the accuracy in predicting the structural behavior and the simplicity

of the model must be made to select an appropriate model for SHM.

2.2.2 Identifiability and Ill-Conditioning in Identification Optimization

Usually alarge complex structure requires a complicated model with many unknown
parameters to simulate its full behavior. Solving an identification optimization problem
with a large number of unknown parameters poses significant challenges. First, the
optimization problem may possess many local minima/maxima, causing the result of
gradient-based optimization algorithms to be largely dependent on the (guessed) initial
searching point. Improper selection of the initial point will result in completely wrong
identified structural parameters and, thus, incorrect conclusions for the damage detection.
With an increase in the numbers of unknown parameters, this problem becomes more
significant. Second, when the number of unknown parameters becomes large, the
identification problem is prone to be ill-conditioned, meaning that small noise in the

measured responses will generate very large identification errors in the identified
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parameters, which of courseis a disaster for any structural health monitoring and damage

detection method.

2.2.3 Insensitivity to Structural Damage

Commonly used methods for damage detection, such as structural natural frequency,
mode shape and so forth, are not very sensitive to local structural damage. As a result,
small or moderate structural damage are very difficult, if at all possible, to detected. In
addition, other factors (like environmental temperature) may often lead to larger changes
in the structural frequency and mode shape than those caused by the damage, making the

damage detection even more difficult.

2.3 Methods to Improve the Accuracy of SHM

In order to improve the accuracy of the damage detection for SHM, some new

methods have been proposed recently.

2.3.1 Substructure Identification

Substructure identification methods, which apply a ‘divide and conquer’ strategy,
provide a feasible solution to identify a large complex structure. Basically, the
substructure identification method divides a large structure into many manageable
smaller substructures, each of which has far fewer DOFs and unknown parameters, and
carries out system identification for each substructure independently. Frequently, the
response of the interface DOFs between adjacent substructures are needed to account for
the interaction force at the interface. Since substructure identification methods greatly
reduce the number of unknown parameters for the optimization, the aforementioned

problems of identifiability and ill-condition are alleviated.
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Koh et al. (1991) first proposed a substructure system identification method in the
time domain. A large structure is divided into many smaller substructures and an
extended Kaman filter (EKF) is used to identify the unknown structural parameters of
each substructure separately.

Yun et al. (1997) applied a discrete auto-regressive and moving average (ARMAX)
model to simulate the structural time history responses. The sequentia prediction error
method is used for the estimation of unknown parameters of each substructure with noisy
measurements. Example analyses are given for idealized structural models of a multistory
building and a truss bridge. The results indicate that the method is effective for local
damage estimation of complex structures.

Tee et al. (2005) presented both first and second-order models for substructure
identification. The eigensystem redization algorithm (ERA) and the observer/Kaman
filter identification are used for the first order model, and a least-square method for
structural time history responses is used for second order model. Numerical examples of
a 12-DOF system and a larger structural system with 50 DOFs are conducted with the
effects of noisy responses. Laboratory experiments involving an eight-story frame model
are performed to illustrate the performance of the proposed method. The identification
results show that the proposed methodology is able to locate and quantify damage fairly
accurately.

Hou et al. proposed to isolate the concerned substructures from the global structure
via adding virtual forces on the boundary of the substructure. The values of the virtual
forces are calculated from the measured substructure response in a way that the
substructure responses on the boundary are zero. The origina substructure is converted
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into an equivaent substructure with the fixed boundary. Then Eigensystem Redlization
Algorithmsis applied to identify the model parameters of the fixed boundary substructure,
which in turn is used to detect the damage in the substructure.

In order to overcome the difficulties of substructure identification that the responses
of some boundary DOFs (like rotation) of the substructures cannot be measured and thus
the interaction forces between adjacent substructures cannot be calculated, Koh et al.
(2003) proposed a frequency-domain approach for substructure identification without the
need for measuring of the interface responses. This method uses the product of measured
substructure responses and the transfer function from boundary interaction force to these
responses to replace the interaction forces calculated by substructure boundary responses.
Several numerical examples are given, demonstrating that this method works well when
the structure is simple and input/output measurement noises are too large. Yuen et al.
(2006) further combined this method with a Bayesian identification framework to provide

a probability measure of the identification accuracy.

2.3.2 Controlled Identification Methods

To increase the accuracy of damage detection, some researchers have turned to
structural control techniques for help. The basic idea underlying these methods is that,
since a structure control system can change the behavior of the structure, by carefully
choosing the configuration of the control system either more information about the
structure could be obtained or the sensitivity of the model to the structural damage can be

improved.

33



Lew et al. (2002) presented an approach to structural damage detection using virtual
passive controllers attached to a structure. The authors formulate an inverse problem that
uses n measured frequencies to identify the stiffness of r elements. When n<r, this
inverse problem becomes intractable. To solve this rank deficiency problem, m virtua
passive controllers are introduced into structure. A direct output feedback agorithm is
used to drive the virtual passive controllers. The frequencies of both open-loop and close-
loop systems are measured. Therefore, the total number of the original system’s
frequencies and the feedback loop frequencies becomes n(m+1), which is greater than r.
Then, the frequency changes are approximated as linear functions of the element stiffness
using a truncated Taylor expansion, and this inverse problem is solved by aleast squares
projection.

Elmasry and Johnson (2002) and Elmasry (2005) utilized variable stiffness and
damping devices (VSSD) to greatly increase the stiffness and damping of certain parts of
a structure, and use the frequency response function (FRF) to identify the structural
parameters. Both numerical and experiment results show that this technique can increase
the accuracy of the identification. However, while that research has established that there
are controllable passive strategies that can improve structural parameter identification,
means of determining where or how much change in VSDD parameters has not yet been
developed.

Koh and Ray (2004) proposed using state-feedback control to shift lower structural
frequencies downward so that the sensitivity of the frequency to the structural damage is
increased and the damage can be more accurately detected. However, decreases in natural
frequencies are likely not welcomed by owners of civil structures and could not be easily
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achieved with controllable passive (semiactive) devices; further, it is well established that
natural frequencies are less sensitive to damage than other measured or computed
guantities.

Jiang et al. (2007) showed that the sensitivity of the natural frequency shift to the
damage in a multi-degree-of-freedom structure can be significantly influenced by the
placement of both the eigenvalues and the eigenvectors. And a method is proposed to find
the optimal assignment of both the closed-loop eigenvalues and eigenvectors and achieve
the desired closed-loop eigenstructure.

However, none of these controlled identification studies addresses the question of
how an imperfect control system will affect the identification results. In redlity, there
aways exists some kind of error in the control system, such as time delay for
computation, measurement noise in the feedback, etc. Since the structural control system
is involved in the system identification procedure for the aforementioned methods, it is
inevitable that these errors will affect the final estimates. Indeed, small error in the
control system may completely offset al of the benefit obtained from the close-loop

control system identification.

2.4 Parameter Identification of Shear Structures

A shear structure, as shown in Figure 2.1, is widely used to model the dynamic
behavior of building structures. Thus, accurately identifying the parameters of shear
structures plays a vita role in evaluating the building's health status and discovering the

potential damage in the structure.
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Figure 2.1 A shear structure

Udwadia et al. (1987) studied the uniqueness of the identification of stiffness and
damping distribution of a shear structure. An induction procedure was developed to
estimate structural stiffness and damping from the measured excitation and structural
responses. Although the authors discussed the uniqueness of the identified parameters for
the proposed method, they did not investigate the effect of measurement noise on the
accuracy of identified parameters.

Masri et al. (1982) proposed a non-parametric identification method for chain-like
structures (e.g., shear structure). The internal forces between any two adjacent floors
were represented as nonlinear functions of the interstory displacement and velocity
responses. These internal forces were expanded in terms of two-dimensional orthogonal
polynomials. The parameters of the expansion were estimated via a recursive procedure.
The technique was applied to a model of a steel frame to demonstrate its effectiveness.
Hernandez-Garcia et al. (2010) applied this method to a three-story test structure; both
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simulation and experimental results showed that the approach was able to detect the
presence of structural changes, accurately locate the structural section where the change
occurred, and provide an accurate estimate of the actual level of change. Nayeri et al.
(2008) also applied this method to estimate the structural modal properties of afull-scale
17-story building based on ambient vibration measurements; the estimated structural
natural frequencies and mode shapes were consistent with the modal parameters
estimated using the NExT/ERA method.

In this dissertation, the author will present new identification methods for shear
structures, developed based on the substructuring methodology. The anayses and
simulations in this study will show that this method, and some variants of this method,
can provide very accurate estimation for the parameters of a shear structure. Moreover,
the accuracy of this method can be further improved by changing the structural responses

via some specifically designed structural control systems.
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Chapter 3

Fourier Transform Based Substructure | dentification M ethod

By applying “divide and conquer” strategy of substructure identification, an
innovative substructure identification method, named FFT_SUBID, is proposed in this

chapter to identify the parameters of a shear structure as shown in Figure 3.1a.
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Figure 3.1 (a) An n-story shear structure (b) the equivalent mechanics model
of the shear structure

This chapter is organized as follows. First, the FFT_SUBID identification method is
formulated, using the Fourier transform of structure floor acceleration responses, to
identify the parameters of a shear structure (e.g., the story stiffness and damping). Second,
an approximate method to analyze the identification error of least-square-error
identification problem is developed and applied to the proposed FFT_SUBID method.
The results reveal the most important factors determining the identification accuracy for

the proposed substructure method. Next, by using the results of the identification error
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anaysis, the statistica moments of the identification error are anayzed. A damage
detection strategy is proposed based on the identified structural parameters. Findly, a
numerical example of a 5-story building is used to illustrate the efficacy of the proposed

substructure identification method and the damage detection strategy.

3.1 Method formulation

Figure 3.1a shows an n-story shear structure and Figure 3.1b shows the equivalent
mechanics model of this shear structure. When the inertial coordinate is used to quantify
the motion of the structure, the dynamic equation of the structure subject to ground
motion ug can be written in separate equation forms as follows:

Top floor (i=n):

m, X, +C, (X, — %, 1) + K, (X, —X,4,) =0 (3.1

Middle floor (2<i<n-1):

M¥ +C (% — Xi_0) + K (% = Xi_0) + Ca (% — Xi10) + Ky (6 = X44) =0 (32)

Bottom floor (i=1):

m X, +C (% —U,) + K (X —Uy) +C, (% —%,) +K, (%, —x%,) =0 (3.3
where m is the mass of the i floor; ¢; and k; are the damping coefficient and stiffness of
thei™ story; x; is the displacement of the i floor relative to an inertial reference frame; ug
is the displacement of the ground; overdots represent derivative with respect to time; and
n is the number of floors in the structure. It is assumed herein that the mass of the

structure is known, though a similar analysis with unknown massis possible.
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The motion of the top floor is affected only by the top story structural parameters as
well as by the motion of the top two floors. The proposed substructure identification
method begins with the top story. Adding — m, %, , to both sides of Equation (3.1) gives

m, (X, — X_1) +Cr (X, — X_g) + K, (X, — X q) = —M X4 (3.4)
Taking Fourier transform of Equation (3.4)

m, (X, = X 1) +C, (X, = Xpg) + Ko (X = Xg) =—-my X, 4 (3.5)
where X;, X;, X; are the Fourier transforms (or the frequency responses) of the i™ floor
displacement, velocity and acceleration responses X;, X, %; , respectively. ( X;, X;, X, are
functions of frequency jo which is omitted for notational simplicity.) Assuming that the

structure is stationary at the beginning and the ending time when the structural responses

are recorded, we can obtain the following two relations that X; = X‘i/(ja))2 and

X; = X;/jw, where j>=—1. Substituting these two relations back into Equation (3.5)
gives

. .. C k ..
(Xn_Xn—l)(mn+j_2)+(ja:)2j:_mnxn—l (3.6)

Rearranging Equation (3.5), it can be obtained that

1 X - X
1-jc,/(m,®) -k, /(m,e?) X1

n (3.7)

The right side of Equation (3.7) only involves the frequency responses (Fourier
transforms) of the structural acceleration responses, which can be calculated from the
measured accel eration responses. Then, the structural parameters of the top story [kn ci] "

can be identified by solving the following optimization problem, which minimizes the
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second norm of the difference between the two sides of Equation (3.7) over all possible

frequencies.
_ N ~( 0 5 2
ergmin I(Kn,Ch)=D"|f (ky,Co) - fl(xn_l,xn] (3.8)
n'Cn =1
crs oy Xy -X
where f (kn,cn) _ L o fl[Xn_l,Xn}M-
-] Cn/(mna)l)_ kn/(mna)l ) Xn—ll

)2” stands for the frequency response of the i™ measured floor acceleration at frequency

oo =1-Aw (1=12,---,N) are the discrete frequencies at which the discrete Fourier

transform of the structural responses are cal culated; and Aw is the frequency interval.
After the top story parameters [k, c;] " are identified, the following induction method

can be applied to identify the structural parameters of other storiesiteratively. Adding the
term —m X;_, to both sides of Equation (3.2) and following a procedure similar to that for
Equation (3.7) will give:

1 X, - X,
- N g T\ : . (3.9
1-jo /(me)—k /(Mo?) X, + (X, -X)|ic../(me)+k,,/(me?)]

Assuming that structural parameters [ki+1 G+1]" in the equation are known, the right side
of the equation can be directly calculated from the measured accel eration responses. Then,
a similar optimization problem, shown in Equation (3.10), is formulated to identify

structural parameters [k c;]" on the left side of the equation.

2

argmin  J(k;,c;) Z|g|| = (3.10)

ki .c

kl ’C ) gl(x —1’X X|+1]

1
where 6,k 6 )= 1o Timan) —k (me?)
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A

v v ) Xig — Xi,l
gl Xi—l1xi’xi+l oA o o . 2
X +(xi+1,l - X )[Jci+1/(ma’|)+ ki+1/(ma’| )]

Since identification problem (3.10) is applicable to the parameter identification of
every story in the structure except for the top (n™) story, an induction identification step is
essentially established by Equation (3.10) in which the parameters of any i" story [k ¢]"
can be identified if the parameters of the story above (the (i+1)" story) [ki«1 Ci1]" are
known. The top story structural parameters [k, c,]" identified from the optimization
problem (3.8) are aready available to initiate the above induction identification process.
Thus, al structural parameters [k ¢]' (i=1,...,n) can be identified iteratively by

following the identification procedure in Equation (3.10). It is noted that when the

parameters of the first floor are to be identified, a ssmple replacement of 52i_1 by Lig in

the optimization problem (3.10) is needed.
The proposed substructure identification method has several advantages.

1) Itisnot required in the method formulation that the substructure identification for
every floor be performed a the same time; thus, there is no need to
simultaneously measure the acceleration of al floors. For each step of the
substructure identification, only the acceleration responses of two or three floors
are needed. This potentially reduces the cost of SHM systems, particularly in the
case of wireless sensor networks when the number of sensors may be limited but
moving sensorsisrelatively easy.

2) In each step of the optimization procedure, there are only two optimization

variables, making the optimization procedure much easier to execute and much
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3)

more likely to converge. Moreover, the formulation of each substructure
identification step is ssimple and similar (except for the top story substructure
identification), making it very convenient to analyze which are the most important
factors that control the accuracy in the identification process (discussed in more
detail in a subsequent section).

Since each substructure identification step only makes use of the dynamic
equilibrium of a certain floor substructure in formulating the identification
problem, the excitation forces, not directly applied on this floor, do not need to be
measured and will not affect the accuracy of this step identification. This property
provides two additional attractive features for the proposed method. First, the
excitation force generated by normal use of the building (such as the movement of
people in buildings) is usualy very difficult to measure. But the unknowns of
these forces will not affect identification accuracy of the substructure method
unless they directly apply on the floor where the substructure identification is
being performed. Therefore, if properly scheduled, the proposed substructure
method can be implemented with a little interference of the normal use of the
building: when the substructure identification is performed on a certain floor, only
this floor will be restricted for the use while other floors can still be accessed as
normal. Second, as discussed in the chapter 6, the proposed substructure
identification method is combined with structural control techniques to further
improve the accuracy. When the control forces are not directly applied on the
floor where the substructure identification is carried out, the measurement errors
in the control forces will not directly affect the accuracy of the identification.
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Thus, the proposed controlled substructure identification is robust to the side
effects of control system errors.

However, there is an obvious drawback for this method: since, for each
identification step (except for the top story), the previous identification results are used as
known parameters, the uncertainty in the previous identification step(s) will be
accumulated for later identification, which may result in large identification error in the
lower floors. This possible error accumulation problem is discussed in more detail in the
following identification error analysis section; however, first the methodology for
approximating the error for a general Least-square-error identification is proposed in the
following section, which will be applied later to derive the identification error for the

proposed substructure method.

3.2 Approximate Error Analysis for Least-square-error ldentification

Least-square-error (LSE) identification is one of the most widely used identification
methods. Through minimizing the second norm of the difference between the prediction
of a representative model and the measurement of a real system, the system parameters

are estimated. A LSE identification problem usually has the following form:

N , N T
argmin e @) = XM, @) - M, R (3.11)
=1 =1

where M, (0) is the I™ output of the model used to predict the behaviors of the real

system and is a function of parameter vector 8 =[6, ---6,,]" to be identified, assumed to
be real (non-complex); |\7|I (X) isthe 1™ measurement of the system which is a function of

the direct measurement of the structural responses x=[X, - X ,]7, assumed to be equal
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to true responses x =[X, --- X ,]" plus some random measurement noises N =[N, Np]T
(i.e, X=X+N).
Assume that the true values of the system parameters are 0, and there is no
modeling error for the system; thus,
M, (85)=M, (x) (312
Using a Taylor series to expand M, (0) about point 6, and I\7I|(§<) about point x,

respectively, and neglecting the second and higher order terms gives:

M (0) = M, 0) + 2L (0-00) = M, (0) +hy 40 (3.13)
0=0,

-~ oA oM, A . .

Ml(x)le(x)+a—5( xX=x)=M,(x)+h/N (3.19)

where A@ =0 -0, isdefined as the parameter identification error, and

;[HILP:

0=0,

_aMI

[hl]lxM _E

oM,
ox

X=X
Substituting Equation (3.12) ~ (3.14) back into Equation (3.11), the original

optimization problem can be approximated by
N N -~ A
arg;)nin IZ”gl (AB)”; ~ Zth - A —h, NHz (3.15)
=1 i=1

To solve the optimization problem (3.15), take the derivative of (3.15) with respect

to A® and set those equations to zero
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ii”gl (202 = izN;(hlAe —h,N)-(h, A0 —h,N)’
2 oNeT

OAO |~
= " (3.16)
=3h,(h,A0 —h,N)" +h; (h,A0 —hN) = 0, ,,
1=1
Noting that the termsin parentheses are scalars, transposing and rearranging gives
N A A
> (h'hi +h'h)A8—(h[h;N* +h'h N) = 0y, (3.17)

=1

where superscript “*” stands for complex conjugate, superscript “T” stands for transpose
and superscript “H” stands for complex conjugate transpose. Noting that h'h; = (h*h,)”
and h[h'N" = (h/'h,N)*, the imaginary parts of the terms in parentheses cancel and

(3.17) simplifiesto
N N A A
> Re(hh)A0 = > Re(h{'h N) (3.18)
1=1 =1

where Re(+) stands for the real part of a complex number. Then the identification error

AO could be obtained
N 1N R
AG{ZRe(hITh;“)} > Re(h{'n,N) (3.19)
=1 =1

Although the identification error (3.19) is an approximation, valid only under the
condition that the measurement noise of the structural response N is not too large and the
solution @ of optimization problem (3.8) is near the true value®, it does provide a way

to estimate the accuracy of the identification method without resorting to time-consuming

numerical simulations.
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3.3 Identification Error Analysis for FFT_SUBID Method

The parameters to be identified in the substructure identification method belong to
different categories with different units and vastly different magnitudes (e.g., stiffness
and damping coefficient). To fairly evauate the efficiency of the identification method
for every parameter, it is better to compare the identification error on a relative basis.

Define the integrity index as
Bu=k/k ad p.=¢/c, (i=1-n) (3.20)
where ki and ¢; are the true (unknown) values of the stiffness and damping coefficients of

the i story; |2i and C. are the corresponding estimated parameter values. Instead of using
absolute error value (l2i —k;) and (¢, —¢;) in analyzing the identification error, relative

error (B —1 and (Bi. —1 will be used herein.

3.3.1 Top Story Identification Error

Using the relative parameter values, the identification problem (3.8) is rewritten as

2

(3.21)

argmln ‘] ﬂnk ﬂnc Z|8I| - ﬂnk ﬂnc) (An l’).znj

nk */“nc

1 Al 5 4
DR X X, = T
- jﬂnc Cn/(rnna)l ) _ﬁnk kn/(mna)lz) I( ' ) Xn—l,l

where f, (ﬂnk !ﬂnc)z

Following the procedure proposed in section 3.2,
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{i i}
| aﬂnk aﬁnc B.=1
(3.22)
[ K,/ (Mye?) o /(Mhe) ]
h-jc,/me) -k, /med)] 1= jc/(mae) -k, /(maed)]
ﬁ.[fi 2 [..X”"z ..1] (3.23)
Xna Xy X=X, X Xl

where B, =1 isthe abbreviation for S, =1and S, =1, >2 = X, is the abbreviation of

Xn1) =Xpq and >'A('n,| = X,,, for the sake of notational simplicity. Rearranging Equation
(3.7) gives

Xoar =[1=j e, /(M) =k, /(M@P)(X ) = X)) (3.24)
Using the right side of Equation (3.24) to replace the terms in Equation (3.23) that

egual the left side of Equation (3.23), Equation (3.23) issimplified as

j Cn/(rnna)l ) + I(n /(mna)lz)
Ao 1 L-jc,/(mo )1— K, /(me)f (3.25)

(X - Xn—l,l)

n,l

|_1_ J Cn/(rnna)l ) - kn/(mna)lz)J
Using the result of Equation (3.19), the approximate relative identification error of

the top story parameters [k, c,]" becomes

|:9kn:| ~ i R |:VV11,I VV:LZ,I :| I\In—l,l /(an - Xn—l,l) (3 26)
ch 1=1 W21,| W22,| Nn,l /(Xn,l - Xn—l,l)
where 6n=fi-1 and =Pl are the relative identification error of the n story

N

parameters k, and c, respectively; N;, = X;, — X;; (i=1,...,n) are the Fourier transform

48



of the measurement noise of the i™ floor acceleration at frequency wi; Wjj, are some
deterministic factors which are the functions of the substructure parameters m,, ¢, and k,

aswell as frequency w,. The expression of W are listed as follows,

W, | = i kn/(mna)lz) i [J Cn/(rnna)l ) + kn/(mna)lz)]
Ai ‘1_ J Cn/(rnna)l ) - kn/(rnna)lz)‘4

W, | = i — J.Cn/(rnna)l ) ) [J Cn/(mna)l ) + kn/(mna)lz)]
A e /me) -k, /(med)|

:i_ kn/(mna)lz)
YA e, ma) -k, (mo?) T+ e, /(me) -k, /(me?)]

Wl

W | =i. —an/(mnC()|)
LA e, /ma) -k, /(med)| L e, /(me) -k, /(mao?)]

where |-| stands for the magnitude of a complex number and

N kn /(Mie’) N cr/(Mier)

CFh-jc/me) -k, /me?) T Fh-ic,/me) -k, /(me?)

Note that the off-diagona terms of h'h’ are purely imaginary and the diagonal

terms are purely real. Thus, the inverse in Equation (3.19) is straightforward with the
diagonal terms of 1/A; and 1/A; and zero off-diagonal terms.

Figure 3.2 shows how the magnitude of four factors W, changes with different
frequency w. In the figure, instead of plotting the magnitude of the factors with respect to
the absolute frequency w;, the normalized frequency w\/wno is used, where wno is the

natural frequency of the n" story substructure wn, defined asw,, = (/k, /m, . Figure 3.2

shows an interesting phenomenon that all four weighting factors are significantly large
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near frequency w,, and diminish quickly moving away froma,,. For this example, the
structural parameters of the top story substructure are chosen here: ¢, /m, = 2&, 0,0 and
&, =0.1. Changing the values of the damping coefficient ¢, or damping ratio &, only

affects the sharpness of the peak near the frequency w,,, but does not invalidate the

location of the peak (unless the damping is significantly large, which seldom occurs for

civil structures).
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Figure 3.2 Magnitude of factors Wi

Equation (3.26) suggests several insightful points regarding the relationship between
measurement noise and identification error. First, the terms N, /(X - X,;,) and
Ny, /(Xqy = X,1)) can be considered as the measurement uncertainty of the structural

responses, which lead to the identification errors. Since the true structural response of the

n™ interstory acceleration (Xm - X'n_l,l) is in the denominator of all uncertainty terms,
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larger N interstory acceleration response gives smaller measurement uncertainty and,
thus, more accurate identification. Second, W, can be treated as weighing factors that
represent the relative importance of the measurement uncertainty in determining fina
parameter identification errors, the uncertainty terms with larger weighting factor
contribute more to the identification error than those with smaller weighting factor. Since

all four weighting factors, as shown in Figure 3.2, are significantly large near the

substructure natural frequency of the top story, @,q, and diminish quickly when moving
away from o,,, the identification errors are mainly determined by the measurement

uncertainty near the frequency @,,. Furthermore, if compared with the factors Wi, and
W1, which represent the contributions to the identification error of stiffness and damping
parameters respectively from the same measurement uncertainty term, the magnitude of
W, is much smaller than that of Wy, indicating that the damping estimate of the top
story will be less accurate than the stiffness estimate of the same floor. Third, while the

measurement noises N, ;; and N, can be reduced by using more expensive sensor,

cable and data acquisition systems, they cannot be eliminated and the cost to reduce them
significantly may be prohibitive. However, the structural responses could be controlled or
adjusted by some structural control techniques less expensively, if such a structura
control system has been installed in the structure to mitigate structural responses due to

earthquake or high wind. Equation (3.26) suggests that if the structural response is

controlled such that ()'('n,I — Xn—l,l) is large within some frequency range around @,,, an

equivaent or even better reduction of measurement uncertainty can be achieved relative
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to an expensive measuring system and, thus, more accurate identification results can be

obtained.

3.3.2 Non-top Story Identification Error

In the parameter identification of the i™ story (i < n), the identified parameters of
the (i+1)" story are used as known input; thus, the identification error of these parameters
from the previous step will inevitably affect the accuracy of the current identification step.
Therefore, besides the structural response noises, the uncertainties of identification results
from previous identification steps must be considered. Using the relative parameters fy
and f, the identification problem in (3.10) could be rewritten as

N 2

argmin J(ﬂki ’ﬁci): Z g (ﬂki B )— of (ﬁi—l’ >2| , >2i+1’ﬁk(i+l)’ﬁc(i+l)J
B B 1=1

(3.27)

1
1-jBg ¢ /(may) - By k; /(m of)

where g, (B, B4 )=

~ ~

Xi—l,l - X-i,l

gl(xi—l’xi’Xi+l1ﬂk(i+1)’ﬂc(i+l)j: A A x ] 5
Xy + (X = X, )[Jﬂk(i+1)ci+l/(mi @)+ By ki+l/(mi 2 )]

Following a procedure similar to the top story gives

_ ki/(mwlz) _ T
h, :{6& 6&} _ _]-_jci/(ma)l)_ki/(mwlz)_z (3.28)
0P 9B B.=1 _ JCi/(mwl) _
__1—ici/(mwn—ki/(mwf)_z_
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ﬁ _ I a?l 89:, ag 6@| a@l
X, X, X, P PBein §.flx.
_{Xi—l,l + (Xiﬂ,l - Xu )[J'Ci+1/(mw| ) +ki+1/(ma’|2)]}_ (Xi—l,l - Xu)
{Xi—l,l + (Xi+1,l — Xu )[jcm/(m o)+ ki+1/_(m a)|2)]}2
14 jci./ (M) +ki+1/(ma)|2)_
_ _ 1- {_Ci/(mw|)—ki/(mw|2)_
{Xi—l,l + (Xi+’1.,l - X )|_jCi+1/(m )+ ki+1/(m a’|2)J}
= (xi,l - Xy )[jci_ﬂ/(maﬁ ) +ki+1/(ma’|2)] ]
{Xi—l,l +_Q.('i+1,|”_ Xu )‘:jci+l/(m o)+ ki+1/(m a)|2)_
(Xi,l - Xi—1,| )(X_i+1,| - Xi,l ) ki+1/(ma)|2) i
{Xi—l,l +..(>'<'i+1,|“_ Xi,l )JC.+1/(m )+ ki+1/(m a)lz)_
(Xi,l = Xy )(Xi+1,l - Xi,|) jc../(Mao)
Kiay + Ko = X lic/(may) +k/(mep) | (3.29)

2

Rearranging Equation (3.9) gives

Xig) + (Xi+1,l - Xi,l )lei+1/(m )+ ki+1/(miw|2)J=

. . (3.30)
(Xiy = X, )[1— 6 /(may) -k /(mw|2)]

Using the right side of (3.30) to replace the termsin (3.29) that equal the left side of (3.30)
and simplifying will give

r T

_ 1__ jci/(ma)|)+ki/(mw|2)_

(Xiy =Xia) b= je /(ma) —k /(mep) |

_ 1 _ 1- ] (Ci+l +G )/(m @) - (ki+1 +ki )_(ma’|2)
(Xiyl _Xiflyl) [1_ jc /(ma’|)_ki/(ma)|2)_2

~ 1 jCa/(may) +k../(Ma?)
= (Xll _X‘i:lyl) [1—J'Ci/(ma>|)—ki/(mw|2)]2 &3Y
(Xiaw = Xiy) ki+1/(ma)|2)
(X =Xi2) - je /(ma) —k /(mo?)
(Xi+1,| - Xi,l) jca/(Mma)
K -Xa) - e /mae) -k /(me))]
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Then the relative identification error of the optimization problem (3.10) can be

obtained as

Ni—ll /(X,| - Xifll)
O N Up, U U, PR
{‘9@} ) Z;R{{U 21 Uz Ug, }{ Niy /(X” - Xi) H

Ni+1,| /(X|| - Xi—l,l)

(Xi+1,l - Xu) 0. (3.32)
+ZN:R U14,| U15,| ) (>.(.i,| - Xi:l,l) KD
=1 U24,| U25,| (Xi+1,| - Xi,l)

(Xi,l - Xi—l,l) D
where Qk(i+1):ﬁk(i+1)-l and Gk(i+1):ﬁc(i+1)-l are the relative identification error of the (i+l)th
story parameters ki+1 and Ci+1, respectively. U;;; are deterministic factors as follows,

:i_ Ki /(mwlz)'ljci/(mwl)+ki/(ma)|2)J

111

B - jo/men) -k /(mae)|
:i_—J'Ci/(mw|)-[ici/(mw|)+ki/(mw.2)l
21 =g _ Ny
2 f-jg/(me)-k/(me)
Uy, L. k /(Mw?)- - ey +¢)/(M@) ~ (kg +k)/ (M)
) 4
5 1-jc/(Me)—k/(me?)
- j& /(M) -1 § (61 +6)/(Mey) (kg +k)/(Med)]
) 4
% - jc/(me) -k /(me)
_ 1 ki /(mw|2)-[JCi+1/(mw|)+ki+1/(mw|2)J
131 — . 5 4
B h-jo/me)-k/(maep)
1 joi /(M) |ic/(M@) + ki /(Mod)]

B - je/ma) -k /(me?)



u. -1 kiki /(M) o 1 —ikae/(Me)
B, ‘1_J.Ci/(ma’|)_ki/(ma)|2)‘4 - B ‘1_Jci/(mia)l)_ki/(ma)|2)‘4

1 jkici+l/(m2a)|3) 1 CiCi+1/(m2w2
1-jc/(may) -k /(mw|2)4‘

B, ‘1—J'Ci/(m0)|)—ki/(m0)|2)‘4, = _B_z.

where B, = i ki2/ (miza’|4) /B, = > Ciz/ (miza)lz) .
Tl o /(ma) -k /(mae)| - /(ma) —k /(mad)|

The identification error in Equation (3.32), indeed, does come from two kinds of
uncertainty sources. The first part of the right side of the equation is directly related to
measurement noise and the second is due to the uncertainty from parameter estimates of

the story above. As shown in Figure 3.3, dl factors U;;, possess characteristics similar to

factors W | : the magnitudes of the factors have peaks near the natural frequency of thei™

story substructure o, defined by @,, = M , and decay very fast when moving to
lower and higher frequency. (It is assumed in Figure 3.3 that k; =k;,;, ¢ =¢C,; and
c /m = 2&m,, where & =0.1.) Asin the top story identification, the weighting factor

U,;, has a much smaller magnitude than that of U,;, , which indicates a similar

conclusion that the damping estimates are less accurate than the stiffness estimates.
Following an analysis methodology similar to that used in the top story case, it can

be easily concluded that the identification error of the i™ story parameters can be reduced
by (a) maximizing the frequency response of the i interstory acceleration (Xu - >'<'i71’|)
in a frequency range around the i™ story substructure natural frequency w;o, Which

reduces the errors due to the measurement uncertainty; (b) minimizing the frequency
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response ratio between the (i+1)™ interstory acceleration and the i interstory acceleration,

(X1 = Xi,)/(X;, = Xiy,), in the same frequency range, which reduces the propagation

errors caused by the parameter estimate errors of the (i + 1) story.

maghnitude of the factors U.

04 0.6 0.8 1 1.2 1.4 1.6
normalized frequency (o)I lmio)

Figure 3.3 Magnitude of factors U;;

3.4 Statistical Moments for Identification Error

Since the proposed substructure identification method uses LSE identification to
estimate structural parameters, it only offers the optimal estimate of these parameters, but
does not provide much information as to how accurate their estimates will be, which is of
importance for giving users confidence in the identification results. Based on the previous
result of the approximate identification error analysis, a method to estimate the first two
statistical moments (mean and variance) of the identification error is studied in this

section. The result not only helps to better comprehend the performance of the proposed
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substructure method in rea uncertain circumstances, but also provides some important

suggestions to further improve its accuracy.

3.4.1 Top Story Identification Case

From the result of Equation (3.25), identification errors of top story parameters are

associated with three kinds of terms: Fourier transforms of noiseN; ,, Fourier transforms

of the n™ true (noiseless) interstory acceleration (>'(',LI - )'<'n_1,, ), and the weighting factors

W,

i - Factors W,

,, are only related to the structural parameters of the top story and,

thereby, are deterministic values; in contrast, the measurement noise terms and the
structural response terms change for every identification and are considered to be random

in nature. For the sake of notational simplicity, define complex noise vector

Nn:[Nn—l,l Noi - Npan Nn’N]eCZN and structural  response  vector

X, = [AM e Ay ]e ch whereA,, = X,,; — X,,1, . Since the true structural responses
A, appear inthe dominator of the uncertainty termsin Equation (3.25), if the magnitude

of any of them is zero the identification error given in Equation 3.25 will tend to infinity.

In order to prevent the occurrence of such a situation, an event A, which occurs when the

magnitude of all structural responses ‘Am‘ (I=1.--N) are no less than a very small

positive value e, (I =1---N), is defined. Instead of directly calculating the statistic

moments of the identification error ¢ (for notational simply, generic symbol 6 is

introduced here to represent the identification errors of stiffness Gk, and damping 6cn)
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with respect to al possible redization of random variables N,, and X ,, the statistical

moments conditional on event A is computed as follows,

El9(0)1A]=[[9(6) Py x a(No X, [AJIN,dX,
—I{[g N|x AN, X, A)N, }px |A( X | AJIX,
= [[9(0)- by, (N, )aN, s s (X, [A)eX,

ZJ{E[g @ |Xn1A]}pin|A( n |A)an

(3.33)

where g(6) equals & when calculating the mean and equals (9-E[6]A])? when computing

the variance; py A (Nn,fn |A) is the joint probability distribution function of noises
N,, and structural responses X, conditional on the event A; py x , (N, IX,,A)is the

conditional probability of noise N, on given structural response X, in the event A,

which equals P, (Nn) due to the assumption that the measurement noise and structural
responses are independent; Py A (Yn |A) is the conditional probability distribution

function of structural responses X, in event A; E[g |Xn,A] is the conditional statistic

moment of identification error & on given structural response X, inthe event A.

In order to simplify the analysis, three assumptions are made hereafter:

1. The measurement noise and the true structural response are statistically
independent.

2. The measurement noise is a zero-mean white Gaussian vector process and the

measurement noises of different structural responses are statistically independent.
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3. Thetrue structural responses can be modeled as one or several independent zero-
mean white Gaussian processes passing through a linear time invariant (LTI)
system.

Based on the above three assumptions, it is shown in the Appendix A that (a) any
element in the random vector X, (andN,,) is a zero-mean circular complex Gaussian

random variable, which implies that the real and imaginary part of a complex random
variable are independent zero-mean Gaussian variables with the same variance, equal to

one half of the variance of the magnitude of the complex variable; and (b) any two
elementsin thevector X,, (and N, ) are independent of each other.

Define two new complex random variables,
{(9 nk} _ ZN: |:W11,I V\/12,I j| ) Nn—l,I /(X nl — X n-11 ) (334)
®nc =1 W21,I VVZZ,I Nn,I /(Xn,l - Xn—l,l )

Obviously, the identification errors of top story parameter 6,. and 6, just become the

rea part of the newly defined complex variable ®,, and ©,., respectively. Applying the
result of Lemma 1 in Appendix A, it can be easily shown that, for a given deterministic
redlization of structural response X, in the event A, the conditional random variables
“Ou | X,,A" and “ O, | X,,,A" become zero-mean complex circular Gaussian random
variables. Therefore, the conditional mean and variance of the identification error on

given structural responses X, in the event A can be caculated as

E[‘gnk |Yn1A]: Re{E[®nk |Yn’A]}: R iwll,l E[Nn_l'l ]+W12,| E[AN L ]} =0 (3.35)
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E[6,. IX,.Al=RefE[0,. |X,.All=R ZWZlI [N ‘1'] N E[AN”" ]}zo (3.36)

,I n,l

2

VAR[enklymA]:% ﬁ nk| I X, A] 12’\N11|‘2‘O-n l‘l MlZI‘ ﬁ (3.37)
nI nI
2

VAR[enclx A] 1 ﬁ®nc| |X A] 1Z’VVZII‘2‘G” = ’VVZZI‘ ‘ ‘ (3-38)
nI n,l

where 7 ;| = EDNn_Ll‘Z} and o}, = EUNM‘Z]

Furthermore, integrating Equation (3.35)~(3.38) with respect to all structural
responses X in event A gives

E[‘9kn | A] =0, E[ecn |A] =0 (3:39)

N - _
Z_’\Nll,l ‘Zgﬁ—u +Waz) ‘ZUr?,l]E ]/‘An,l ‘2 ‘An,l ‘ 2 &n) (3.40)

| [

VAR[f,, |A]=

VAR[G 1A= 30 W[ + W[ |- €Y w20t | @40

Since the structural responses A (I =1---N) are mutually independent zero-mean
circular complex Gaussian variables, the probability density function (PDF) of the

random variable |A,, | follows Rayleigh distribution

2
fla,((9=— exp( 2 J (342)

UAn,I 2O-An,l

wheres},, = EDAnJ ﬂ ; then, the condiitional PDF of |A,, |giventhat |A,, | > & becomes
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0 if x<g,
nI(X”Anl‘>gnl) 1 X exp[ —);2 J if x> ¢, (3.43)

2
Cn O An,| 26An,|

where C, =P(x>¢,,) = exp(— el /202, ) Therefore, the expectation value in the right

side of Equation (3.40) and (3.41) can be computed as

[]/\Am\ ”Anl‘>gn|} [ ii X exp[ _);2 ]dx (3.44)

'X C GAnI 2O-An,l

Changing the integration variable, define z= x/o,,| - Then,
qyaaT]

Putting the result of Equation (3.45) back into Equation (3.40) and (3.41), the

A A

n, n,

1 1 z°
> =— ——exp —— |dz 3.45
8n,|:| Gin‘l ‘Lnl/GAm C 7 p( 2 ] ( )

conditional variance of the identification errors, VAR[6,, |A] and VARI[G,, |A], will be

1N o2 o2
VAR[G,, | A]= _Z Mlll‘z—u+’\N12|‘2 » } Q (3.46)
=1 O An)l o-Anl
13 I ol o
VAR[6,, |A]:§Z MlZI‘Z = +’W22|‘2 - } Q (3.47)
I=1 Anl Anl
1 z°
where Q ——J' Jon &P~ |2

The conditional variance in Equation (3.46) & (3.47) for the top story substructure
depict the scatter of the identification error given that the event A occurs. Clearly, we

need to pick the values for ¢, (I =1,...,N) such that event A is very likely to occur;

thus, the conditional variances in Equation (3.46) and (3.47) approximately reflect the
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real situation of the scatter of the identification error. One of simplest ways to select ¢,
values is that let ¢, =ao,, VI, where a is avery small positive scalar value that

reflects the user-chosen possibility of the occurrence of event A. Then, the probability of

event A can ssimply be calculated as

P(A)= ﬁ Pan |2 60 )= ﬁexp(— e2, [202, )=lexpl- a?/2)]" (3.48)

and Q, in Equation (3.44) and (3.45) are also simplified as

2

2
Q =Q(a)= exp(a?JJ'm1 exp[— Z?sz (3.49)

@z

3.4.2 Non-top Story Identification Case

Similar to the top story anaysis case, two new complex random variables are

defined for the non-top story identification as

N, /(X| I~ Xi—ll)
®ki N Ull,l U12,I Ul3,| ’ ’ '
o]-3 }

LN /K = %)
0, Uy, Uy U RS
o ! = Ni+1,| /(Xi,l - Xi—l,l)
(Xi+l,l B Xi,l) _ (3.50)
+i|:U14,I U, } (X” - XH") (i+)
1=1 U24,| U25,| (Xi+1,l - Xi,l)

()'('H _ )'('HJ) c(i+1)
Then, the identification errors, 6,; and 6, become the real parts of these newly defined
complex variables. For the sake of notational simplicity, define complex noise vector
Ni=[Niys Nig N - Nigy Niay Nian]eC®™ and structural response
vector X, =[A,,; - A, y]eCN wherea,, =X;, - X, . Similar asin the analysis of the
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top story, an event B, which occurs when the magnitude of any structural responses A, |

is no less than a very small positive valueg; |, is introduced. ¢;, is equal to the standard

il
deviation of the structural response o,;, multiplied by a positive number « . The mean

and variance of identification error conditional on the event B are calcul ated.

As seen from Equation (3.50), the identification errors of the i™ story parameters,
0, and 6, are related to the measurement uncertainty as well as the identification errors

from the (i+1)" story. In order to reduce the problem difficulty to a manageable level,
besides the three assumptions previousy made in the top story identification analysis,
two additional more restrictive assumptions are made here.

4. The identification error of the (i+1)™ story parameters, Oy AN Gy, AE

considered to be deterministic values when calculating the statistical moments of
the identification errors of the i™ story parameters.

5. Thereis only one independent excitation in the structure, other excitations (e.g.,
control forces from structural control systems in the subsequent chapter of
controlled substructure identification), if existed, can be determined by this
independent excitation.

Since the PDF of the identification errors of the (i+1)™ story parameters are

unknown and difficult to obtain, the first assumption provides a solution to overcome
such adifficulty. Asfor the second assumption, it is shown that, based on this assumption,

the ratio between the (i+1)™ and ™ interstory acceleration responses,

(Xiyay = Xi))/(X;; = X;_3;), become a function of the structural parameters only that
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will not change under different random excitations (assuming infinitely long records to
determine the Fourier transforms). Therefore, the second part of Equation (3.50), related
to the (i+1)™ story parameter errors, becomes a deterministic value during different
identifications.

The estimate error (3.50) has two parts. the first part, related to the errors from the
measurement uncertainty, is a random term with characteristics similar to those on the
right side of Equation (3.34); the second part turns out to be some deterministic values in
this analysis because of assumption 4 and 5. Applying a technique similar to that for the

top story, the conditional mean and variance of the identification errors can be computed

as
N
E[0; |B]=Re; > H, [U14,|Hk(i+1) +U 15611 ]} (3.51)
I=1
N
E[0 |B]=Re{Y H, [U 241 Oki+1) +U 251 Ocing ]} (3.52)
=1
1N 2 0'2_1| 2 |2+1|
VAR[Hki |B]=EZ ‘Ulll‘ ‘Ulzl‘ ‘Ulsl‘ Q(a) (3.53)
=1 Al,l A|,I A||
N 2 G -~ 2 0y,
VAR[H |B]— 22 ‘U21I‘ ll ‘UZZI‘ ‘U23|‘ 1? Q(a) (3.54)
I=1 AI I AI I Al
where H; = (X;,1, - II)/ i1 — Xi_1,) is the transfer function from the i™ interstory

acceleration response (X — % _; ) to the (i+1)" interstory acceleration response (%, — % );
o) ZEUNJ"‘Z} (j=i-1i,i +1) is the variance of measurement noise; o7, :EDAuHiS
the variance of thei" interstory acceleration response; Q() is given in Equation (3.49).
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Different from the result of the top story case, the conditional means for the non-top
story estimate errors are not zeros, so there exists a bias in the estimates of non-top story
parameters, which are related to the parameter estimate errors of the story above as well
as the frequency response ratio between two adjacent interstory accelerations
(Xiyy = Xi))/(X;; = X;_y;) . The smaller this response ratio, the smaller the bias will be.
The conditional variances possess similar features as that of top story estimate; the
variance of interstory acceleration responses near this story substructure natural

frequency w,, plays acritical role in determine the variance of identification errors, with

larger response variance leading to smaller variance of identification errors.

3.4.3 Comments on Statistical Moments of Identification Error

The conditional variances in Equations (3.46) & (3.47) for the top story substructure
and Equations (3.53) & (3.54) for the non-top story substructure depend on the value of
a . As a goesto zero the probabilities of the events A and B, P(A) and P(B), approaches
to unity and the conditional variances in Equations (3.46) & (3.47) and Equations (3.53)

& (3.54) will converge to the (unconditiona) variances of the identification error.

However, as shown in Figure 3.4, the integral value Q, (a) increases with the decrease of

a value. Moreover, it can also be shown that as o goes to zero, the value Q, (o) tends to

infinity. Does this result really imply that the variance of the identification errors for the
identification problems (3.8) & (3.10) isinfinity? (Thisis a horrible conclusion if it were
true)) In author’s opinion, the answer should be negative. Because the conditional

variance in Equations (3.46) & (3.47) and Equations (3.53) & (3.54) are derived on the
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basis of the result of the identification error analysis shown in Equations (3.26) and (3.32)
which are obtained based on the assumption that the identification error is not too large.
Recall that these estimates of the relative identification errors are approximate due to the
first-order truncation of the Taylor series expansion in Equations (3.13) and (3.14). Thus,
if the identification error is too large, Equations (3.26) and (3.32) are not appropriate to
exactly calculate the distribution of the identification errors. Therefore, the conditional
variance in Equations (3.46) & (3.47) and Equations (3.53) & (3.54) can only offer good
approximation of the error variance when the identification errors are not too large. If
Equations (3.46) & (3.47) and Equations (3.53) & (3.54) provide very large variance

estimation, that results may not be reliable.

Q ()

107
o

10°

10*

Figure 3.4 Thevalue of function Q(a)

However, the analysis of the identification error variances does point out an
important fact that the proposed substructure identification method in (3.8) and (3.10)

may give estimation results with very large errors, when some of the interstory

acceleration responses A;; (i=1..,n) ae very smal. If many substructure
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identification tests have been carried out, it is very likely that some tests provide outlier
results that are far away from the true values of the structural parameters.

Furthermore, since all weighting factors W, and U;; | are significantly large near

ij|
the substructure natural frequency and diminish very fast when moving away from that
frequency, the variances of the identification errors are mainly determined by the
variances of the magnitude of the interstory acceleration responses near the key
substructure natural frequency. The larger structural responses, the smaller identification
error variances are. This result complies well with the identification error analysis (3.26)
in the previous section, except that the previous result depicts the identification error in

one identification experiment while this result offers the statistics of many random

experiments. Moreover, this result also implies that magnifying the variance of the
magnitude of the n™ interstory acceleration responses near the key frequency 0, (eg.,

by some structural control technique) can significantly reduce the variance of

identification error and, thus, improve identification accuracy.

3.5 Damage Detection Strategy

Structural damage is often associated with the reduction of the stiffness of structural
members and the increase of structural damping. Thus, continuously monitoring the
change of the structura stiffness and damping parameters, identified by the proposed
substructure identification method, provides a way to detect the onset and location of
structural damage. However, due to the existence of inevitable uncertain factors, like
measurement noise, in the identification process, there are always some variations in the

identification results among different tests even for the same structure. In order to
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discriminate whether the change of the identified parameters results from the normal
variation of the identification results or is caused by the onset of structura damage, a
statistical hypothesis test is performed. It is assumed herein that before conducting any
damage detection, many substructure identification tests have been carried out for the
healthy (undamaged) structure, providing data of “normal” scatter of parameter estimates,
particularly the mean and the standard deviation of the identified structural parameters
from the undamaged structure.

A hypothesis, Hy, is established which states that the structure being tested is
undamaged or, equivaently, the structura stiffness and damping parameters are not
changed compared with that of the undamaged structure. To verify the correctness of this
hypothesis, the structural parameters are estimated via the substructure identification
method for the structure of unknown condition (damaged or undamaged). If one observes
a gignificant decrease in the estimated structural stiffness parameters and/or a
considerable increase of the estimated structural damping parameters, compared with the
normal distribution of parameters form the undamaged structure, then the hypothesis will
be rgected, indicating that damage has occurred in the structure; otherwise the hypothesis

will be accepted, implying that the structure is undamaged.
Let § denote the estimated values of the structural parameter vector 0 used to
detect structural damage; let m, be the mean vector, and S, be the variance matrix of

the parameter vector 0 for the undamaged structure. The conclusion about the hypothesis

test is made as follows: if the Mahaanobis distance (Mahalanobis, 1936) between the

estimated parameters 0 and the mean vaue of the parameters my are large, i.e,
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\/ 0-m,)TS;t(0-m,) > B, then the hypothesis is rejected, indicating the occurrence

of the structural damage; otherwise the hypothesis is accepted, implying that the structure
IS intact. B is a positive scalar parameter, which is adjustable to reflect the user’s
preferences in the damage detection process.

There are two kinds of errors associated with this hypothesis test. The first error is
miss detection, that is, when the structure is damaged but the hypothesis is accepted,
indicating that the structure is undamaged. The failure to detect the existent damage may
pose a great threat to the structural safety and lead to catastrophic results, which should
definitely be avoided. The second error is faulty detection, that is, when the structure is
undamaged but the hypothesis is rejected, implying the occurrence of the damage in the
structure. Although the consequence of the faulty detection is not as severe as the miss
reporting, this error should also be avoided as much as possible. Too many false aarms
about the structural damage will quickly make the damage detection system lose the trust
of the public, leading to the system being abandoned. Changing the # value mentioned in
the last paragraph can adjust the probability of these two errors. However, no matter how
one changes the parameter 4, when the probability of one error decreases, the probability
of the other increases.

In order to improve the accuracy of damage detection and reducing both kinds of
possible errors in the process, a new hypothesis test procedure, the majority vote of n
tests, is proposed herein. In the new procedure, n (n is an odd number) substructure
identification tests are carried out and a hypothesis test with the same  is performed for

each identification results independently. Then, the final decision of the hypothesis for
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the damage detection is determined by the mgority results of all individua hypothesis
testing. For example, if three individual hypothesis tests are carried out and the two of
them suggest rgecting the hypothesis (indicating the structure is damaged), then final
decision isto regject the hypothesis.

The performance of newly proposed hypothesis testing method is analyzed as
follows. Let p be the probability that one individual hypothesis test will make the wrong
decision and P, be the probability that the maority of n hypothesis tests will make the
wrong decision. Since al n tests are independent each other, the probability P, follows a

binomial distribution. Thus, one can easily calculate the probability P, with n=1,3,5 as

R(p)=p (3.55)
Py(p)= @pz(l— p)+ p’ (3.56)
Rs(p)= @ps(l— p)’ +@p4(1— p)+ p° (357)

It is worth pointing out that P, is a function of the error probability p and P
corresponds to the error probability of the original hypothesis test when only one test is
performed. Figure 3.5 shows the value P,/P; (n=3,5) changes with different p value,
which demonstrates that if p is less than 0.5, the value P,/P; are aways less than unity,
indicating the improvement of the detection accuracy. Moreover, when the p value is
close to zero, P,/P; are very small, which suggests the great reduction in the probability
that the maority of n test will make the wrong decision. For example, if p=0.1,

P3/P1=28% and Ps/P1=9%, implying the 72% and 91% reduction in the error probability,
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respectively, if 3 or 5 tests are performed together to make the decision about the
structural damage instead of only one test being performed.

Since p can be the error probability for either the first or the second kind of error of
the hypothesis testing, the newly proposed the hypothesis testing method, mgority vote
of n tests, can ssimultaneously reduce both kind of errors in the hypothesis testing if p is

lessthan 0.5.
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Figure 3.5 How P,/P; changeswith different p values

3.6 lllustrative Examples

A 5-story uniform shear structure excited by ground acceleration is used to illustrate
the effectiveness of the proposed substructure identification method. The parameters of
the structure are chosen to be m=1x10° kg, ¢=8x10" N-sec/m, and k=16x10" N/m
(i=1...5). The natural frequencies and damping ratios of the structure are listed in Table

3.1
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The ground excitation U, is generated by a Gaussian random pulse process passing

through a 4-th order band pass Butterworth filter with the low cut-off frequency at 1Hz
and the high cut-off frequency at 12Hz.

Table 3.1 Modal properties of the 5-story structure

M ode Number 1 2 3 4 5
Frequency
(raci astond) 11.3 33.2 52.4 67.3 76.8
Damping Ratio 2.85 8.31 13.1 16.8 19.2
(%)

3.6.1 Substructure ldentification with Undamaged Structure

To check if the proposed identification method works consistently well, 100
identification tests are performed. In each test, 120 second ground and floor acceleration
responses, with a sampling rate of 200Hz, are generated and used to carry out
substructure identification. Substructure identification is carried out using the Fourier
transform of the noisy floor accelerations up to 12Hz.

Two levels of noise, 5% and 20%, are added to the ssimulated structural responses to
mimic the effect of the measurement noise. 5% (or 20%) noise means that the root-mean-
square (RMS) value of the measurement noise is equal to 5% (or 20%) of the RM S of the
ground excitation. It is also assumed herein that magnitude of the measurement noise of
all acceleration responses is the same. The measurement noise is modeled by a band-
limited Gaussian white noise with the cut-off frequency at 100Hz. Figure 3.6 shows an
example of first two seconds of the 5™ story acceleration response, which demonstrates

how much the structural response is distorted by the measurement noise. From the figure,
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it can be seen that 5% noise represents a relatively small level of the disturbance, which
is almost unnoticeable without zooming in; 20% noise represents a medium level of
disturbance which does not greatly change the structural responses but can be easily

observed.

acceleration (cm/sz)

1 v 1

true response |
= = = 5% noise
----- 20% noise .

_10 | | | |
0 0.2 0.4 0.6 0.8 1

time (s)

Figure 3.6 The 5" floor noisy acceleration response with and without
measur ement noise

When identifying the it story parameters [k c]' (i#n, thus not the top story), the
parameters of the (i+1)™ story [kis1 Ci+1] " are needed. Hence, two identification scenarios
are considered here: 1) 100 tests are caried out independently, that is, the "
identification test result (j=1,...,100) for the (i+1)™ story parameters are used to perform
the j™ identification test for the i story parameters; 2) To reduce the identification errors
in the i"™ story parameters caused by the identification of the (i+1)™ story parameters, in

the second scenario, the mean values of 100 substructure identification results for the
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(i+1)™ story parameters are used to perform all 100 substructure identification tests for
the i story parameters.
a) ldentification Results with 5% Noise

The statistics of the identification results of the 100 tests with 5% noise disturbance
are listed in Tables 3.2 and 3.3 for the above two scenarios respectively. From the
identification results of both scenarios, it can be seen that with 5% measurement noise the
proposed substructure identification provides quite accurate estimates for the stiffness
parameters. For example, the largest relative root-mean-square-error (RMSE) of the story
stiffness estimate (RM SE value divided by the true parameter value) is only about 3.8%.
However, the accuracy of the identified damping parameter is just mediocre, which
attests numerically to the error analysis result that the damping estimates are less accurate
than stiffness estimates. For the results of the second identification scenario, since instead
of al 100 estimates of the (i+1)™ story parameters, the more accurate mean values of
these estimates are used to perform substructure identification for the i story parameters,
which actually reduces the identification error in the i story parameters caused by the
errors in the (i+1)" story estimated parameters. Therefore, dmost al identified
parameters become more accurate in the second scenario compared with those in the first

scenario except for the top story parameters.
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Table 3.2 The gtatistics of the identification results with 5% noise (scenario 1: all
substructureidentification are carried out independently)

Story Story stiffness Ei (x10°N/m) | Story damping (A:i. (x10°N .wc/rTl)
e | e | e [t | [t |
1 ( 11.23/3* 2.5% 1% | 27.5)2)* 7.5% 7.3%
2 | 22 e | aee | R | am | ros
3 (;iij)) 3.8% 3.2% (22'.?;)) 25.7% 16.0%
4 (;222) 1.1% 1.0% (78..9602) 10.9% 7.6%
5 (;.6200/20) 0.8% 0.8% (2';2) 6.8% 5.5%

*: relative error for mean estimate

Table 3.3 The gatistics of theidentification resultswith 5% noise (scenario 2: the

parameters of the (i+1)" story aretaken asthe average of all previousidentification results)

Story Story stiffness Ei (x10°N/m) | Story damping (A:i. (x10°N .wc/rTl)
e | e | e [t | [t |
1 (1'67202) 1.8% 0.6% (-Z.g;) 3.3% 2.7%
2 (;‘.62?)/50) 2.3% 0.5% (f;;)) 3.5% 3.2%
3 (;‘.62?)/50) 2.8% 1.8% (22'.?)1'/0) 24.3% 13.7%
4 (;iooj(;) 0.6% 0.6% (jg;)) 8.5% 3.8%
5 (;iooj(;) 0.8% 0.8% (2'23;) 8.0% 6.8%
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Figure 3.7 Magnitude of the transfer functionsfrom ground excitation to
interstory acceleration
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Figure 3.8 Magnitude of the frequency responseratio between the third and
second inter story acceleration

Comparing the accuracy of the parameter estimates in different stories in both
scenarios shows an interesting phenomenon. Although the proposed substructure method

has a drawback of identification error accumulation from the top story to the bottom as
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previously mentioned in the identification error analysis section, in the simulation the
largest parameter identification error in terms of relative RMSE value does not occur in
thefirst story but in the third story.

To explain this phenomenon, first recall the results of the previous identification
error analysis, which states that the identification accuracy of the i story (i#n)

parameters are significantly influenced by two structura responses. 1) the frequency
response of i" interstory acceleration (X; — X; ;) near the substructure natural frequency,

which affects the identification error due to the measurement uncertainty; 2) the

frequency response ratio between two adjacent interstory  acceleration
(Xivp = X;)/(X; = X;;) near the same substructure natural frequency, which affects the

identification error caused by the error accumulation from the estimates of the story
above. As shown in Figure 3.7, the transfer function from ground excitation to the third
interstory acceleration has arelatively small magnitude near the story substructure natural
frequency 40 radian/sec, which indicates that the third interstory acceleration response is
small near the story substructure natural frequency. Therefore, it is expected that the third
story estimates should contain much larger error. Moreover, Figure 3.8 shows the
magnitude of the frequency response ratio between the third and second interstory
acceleration, which is very small magnitude near the substructure natural frequency 40
radian/sec. This observation in Figure 3.8 explains the fact that although the estimated
third story parameters contain large errors, their error accumulation to the second story

parameter estimation will still be quite small due to the small frequency response ratio

77



(X5 = X,)/(X, = X,) near the substructure natural frequency and, thus, the largest

identification error occurs in the third but not in the second or first story.

Table 3.4T he statistics of the identification results with 20% noise (scenario 1: all

substructureidentifications are carried out independently)

S Story stiffness k; (x10°N/m) Story damping €, (x10°N-sec/m)
ory
number mean relative relative mean relative relative
RMSE STD RMSE STD
1785 10.9
1 12.5% 5.0% 42.7% 22,2
(11.6%) ‘ | (366%) ] i
1754 11.9
2 10.2% 3.3% 51.5% 17.2%
(9.6%) ° ° | (48.5%) ° ’
1601 15.9
3 12.6% 12.6% 99.4% 3.7%
(0.1%) ° ° | (99.4%) ° °
1570 11.4
4 4.1% 3.7% 47.2% 18.8%
(-1.9%) ° ° | (43.3%) ° ’
1589 0.1
5 1.8% 1.6% 16.4% 9.6%
(-0.7%) ’ ° (13%) ° °

Table 3.5 The statistics of the identification results with 20% noise (scenario 2: the

parameters of the (i+1)" story aretaken asthe average of all previous identification results)

Sory Story stiffness k; (x10°N/m) Story damping & (x10°N-sec/m)
number mean relative relative mean relative relative
RMSE STD RMSE STD
1769 10.61
: 06 | L% | 30% 1 oy | BO% | 127%
1750 11.64
2 9.7% 2.5% 47.0% 11.9%
(9.4%) (45.5%)
1601 15.71
3 (0.1%) 5.4% 5.4% (96.4%) 96.9% 10.0%
1560 11.29
4 3.2% 2.0% 42.5% 10.8%
(-2.4%) (41.1%)
1587 0.06
5 (0.8%) 1.6% 1.4% (13.3%) 14.7% 6.2%
~J.070 3%
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b) Identification Results with 20% Noise
The statistics of the identification results of the tests with 20% noise disturbance are
listed in Tables 3.4 and 3.5 for the both identification scenarios respectively. As the noise
level increases 4 times from 5% to 20%, the RMSE of the identified parameters are also
drastically increased, indicating very large errors in the identified parameters. Hence,
under the medium level (20%) of noise disturbance, the proposed substructure

identification method cannot provide any accurate results for the parameter identification.

3.6.2 Damage Detection via Substructure Identification

In this section, the damage detection strategy proposed in the section 3.5 is applied
to perform the damage detect for the structure. It is assumed that the structural damage
occurs at the first, third and fifth stories, which results in the reduction of the story
stiffness by 5% and the increase of the story damping by 20%.

The results of the substructure identification of the undamaged structure show that
with 5% noise the substructure identification method provides relatively good estimation
results, while with the noise increasing to 20% the identification results become very
noisy. Therefore, the damage detection tests are only performed at the 5% noise level,
which means that the noise level in the substructure identification tests are al 5% for
both undamaged and damaged structure.

To establish the “normal” distribution of the identified parameters for the
undamaged structure, 100 substructure identifications are performed on the undamaged
structure under the same level of noise disturbance. The identification results of these

tests are used to calculate the mean and covariance of the identified structural parameters,
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which, in turn, are used to carry out the hypothesis tests. In order to test the performance
of the proposed damage detection strategy to correctly identify the health status of the
structure, 1500 independent substructure identifications are carried out on the damaged
structure and used in the hypothesis test to determine whether or not the structure is
damaged. To see the effect of the number of identifications used for each hypothesis test,
these 1500 identifications are grouped as 1500 sets of one identification each (n=1), 500
sets of three identifications each (n=3), and 300 sets of five identification each (n=5). A
hypothesis test is performed for each group using the method proposed in section 3.5.
The percentages of the hypothesis tests that give the correct health status of the structure
are shown in Table 3.6. The  value is selected as 3 in the hypothesis tests (i.e., “ damage”
is assumed if the parameter vector has changed by more than three standard deviations
from the healthy state).

The results in Table 3.6 shows that when only one identification is used in the
hypothesis testing, the damage in each of the first and the fifth stories is aimost 100%
percent correctly identified; however, there is about a 15% chance that the undamaged
second and fourth story are mistakenly reported as the damaged, and 20% chance that the
damage at the third story are not detected. As the number of the identifications used in
each hypothesis test increases, the chances that hypothesis tests make the corrected
decision also increase, verifying that the proposed hypothesis test method, using n
identifications together to make the decision, is effective in improving the probability to

make the right decision about the health status of the structure.
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Table 3.6 The percentage of the hypothesis tests which give the corrected conclusion about

the structural health status

Floor Number n
1 3 5
1 99% 100% 100%
2 84% 94% 96%
3 80% 90% 94%
4 85% 94% 98%
5 100% 100% 100%

Although using more identification results to perform the hypothesis test improves

the accuracy of the damage detection, it does requires more substructure identifications

be carried out, increasing the costs of running the SHM system. Moreover, as shown in
Figure 3.5, if the error probability p is close to 0.5, the improvement of the accuracy of
the hypothesis test by using more identification resultsis very limited.

Thus, the key to increasing the accuracy of damage detection lies in improving the

accuracy of parameter identification in substructure identification method.
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Chapter 4

Transfer Function Based Substructure | dentification M ethod

It iswell known that structural acceleration measurements are generally very noisy,
which will have a large effect on identification accuracy, especialy when the frequency
response of the interstory acceleration of the story being identified is very small near its
substructure natural frequency. To reduce the effect of the noise and improve the
identification accuracy, an improved transfer function based substructure identification
method, TF_SUBID, is proposed in this chapter. Instead of directly using the Fourier
transform of noisy acceleration response, this method utilizes transfer functions of
structural response at different times, averaged together in the frequency domain, to
formulate the identification problem. Although the TF _SUBID method can only be
applied if certain constraints are satisfied (discussed later), it is shown herein that the
improved method does greatly reduce the identification error caused by measurement

noise.

4.1 Using Transfer Functions to Formulate Substructure Identification
Equation 4.1 shows the key identification equation for the top story substructure

identification in the Fourier transform based method in Chapter 3.

1 XX
1- an/(mna))_ kn/(rnwa)z) Xn—l

n (4.)

Dividing both numerator and denominator of the right side of Equation (4.1) by X, ,

gives
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H 1 2 =1_Hxnxn—1
1-jc,/(mw) -k, /(mae?)

(4.2)

where H, , =X,/X, ;.
Hyx . = X,/X,., can beinterpreted as the transfer function from the (n-1)" floor

acceleration response ., to the n floor acceleration response ., if such a transfer

function exists. This observation inspires the author to think of using the transfer
function(s) between structural acceleration responses rather than the Fourier transform of
the acceleration responses to formulate the identification problem. There is an averaging
technique which can provide more accurate estimation of the transfer function, compared
with the above method of calculating the transfer function by directly taking the
frequency response ratio between input and output of the system. More accurate
estimation of the transfer function will, in turn, lead to more accurate estimation of the
structural parameters in the substructure identification. However, to apply this averaging
technique requires that 1) the estimated transfer function should not change with different
inputs and 2) long stationary input and output responses are available. In order to satisfy
these requirements, the following three assumptions are made in this study.

1. There is only one excitation source in the structure. As a consequence, the
frequency response ratios between any two noise-free structural responses
become a deterministic transfer function, which is a function of the structural
parameters only and is independent of the excitation.

2. The noise measurements of different sensors are wide sense stationary (WSS) (i.e.,

the first and second moments of the noise do not vary with respect to time), zero-
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mean, independent of one another and also independent of the true structura
responses.

3. All structural responses involved in each substructure identification step are
required to be jointly wide sense stationary, which ensures that the power
spectrum and cross power spectrum of structural responses do not change with
time. Therefore, by averaging the structural response at various times, the effects
of measurement noise can be reduced and, thus, more accurate transfer functions

can be obtained.

4.2 Transfer Function Estimation via Averaging Method
A review of the method for estimating the transfer function of a single-input-single-

output (SISO) system using long stationary noisy measurementsis given in this section.

~

a u y y

U=u+n, LTI y=y+n,

—n, ny

Figure4.1 Theflowchart of alinear SISO system H
Figure 4.1 shows alinear SISO time-invariant system (LTI) H. u andy here are the
true (noiseless) input and output of the system respective. Let H(jw) denote the transfer
function (or frequency response function) of the system H that satisfies the equation:

Y = H(ja))J , Where U and Y are the Fourier transforms of the input u and output v,

respectively. The measurements of the input and output signals are corrupted by additive

white noise, such that U =U + N, and Y =Y + N,,, where N, and N,, are the Fourier



transforms of the measurement noises. It is assumed here that measurement noises are

white noises that are statistically independent of the true structural responses and
mutually statistically independent of each other; i.e.,

EJUN,"|= EJuN, |- E]vN, |- EPN, = BN, N, = 0 (4.3)

Then, the transfer function H(jw) can be estimated by the following method

(Pintelon et al., 2001)

EMGT| E[(Y+N)U+N,)]

Hijo)= EUG] E[U+N)U+N,)]
CEMUT N eNUT NN Euy] 4.
~EJUUC +UN +NU" +N,N; | E[UU"|+E[N,N;] '
Eluy’] 1 (o)1

“Eou ) e e MY e )
whereH (jw) denotes the estimated transfer function from the noisy measurements, E[:]
is the expectation operator, and o, (jw) = E[N,N_] / E[UU "] is the noise-to-signal-ratio
(NSR) of the input u at the frequency w. The derivation of Equation (4.4) uses the
conclusions from Equation (4.3), which states that by averaging long stationary structural
responses some noise effects are eliminated.
It is worth pointing out that the error of the estimated transfer function from (4.4) is

only related to the input noise N, and has nothing with the output noise N, . Reducing

the NSR of the input u can improve the accuracy of the estimated transfer function.

85


http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Rik%20Pintelon�

4.3 Transfer Function Based Substructure Identification (TF_SUBID)
Using the result from section 4.2, the transfer functions among different responses
are estimated and used to formulate the identification problems in the new transfer

function based substructure identification method.

4.3.1 Top Story Identification

Equation (4.1), the key identification equation for the top story substructure, is
related to two structural responses, X, ; and X, on its right side. Treating either of these
two responses as the input and the other as the output when calculating the transfer

functions used in the substructure identification problem, the key identification equation

can be rewritten as either of the following two equations

X . —X
| = AT Tk TR (45)
1-jc,/(mw) -k, /(mo?) X, . et
: 1 —= Xoa =X 4 1 (4.6)
1- J Cn/(mna)) - kn/(mna) ) Xn—l H Kn_1%n

where H, , and H,  stand for the transfer function from X, to X, and the transfer

function from X, to X, , respectively.

When there is no measurement noise, both transfer functions Hm,l and Hx,lxn are

equal to ther true value, so using either Equation (4.5) or (4.6) to formulate the
identification problem will give the same and exact results of the structural parameters.
However, if the noisy structural responses are used to estimate these transfer functions,
the accuracy of the two transfer functions will be different. According to the results from

the last section that the accuracy of the estimated transfer function is determined by the
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NSR of theinput ¢, (jw) (with asmaller value of ¢, (jw) leading to a more accurately

estimated transfer function), it would be wise to select the transfer function that is more
accurate than the other (or, in another words, which has smaller input NSR), to formulate
the substructure identification problem to improve the accuracy of the parameter
identification. Furthermore, since the NSR ¢, (j®) isafunction of the frequency w, the
above selection procedure can be carried out at each frequency individually. Therefore,

the new substructure identification problem for the top story substructure is formulated

viathe transfer functions between the structural responses,

argmin J(kn,cn)zi{

kn \Cn 1=1

f| (kn’cn)_ ﬂl(ﬁ KoK_p.| 12 or ‘ f| (kn’Cn)_ ]E\Iz(l:| Kn_1%n ]2 } ( 4-7)

1 210 -
here f,(k,,c,)= o e | = =1-H,, ,:
W a’e |( n Cn) 1_ J Cn/(mna)l)_kn/(mna)|2) I ( annflvl) ann—ll|

ﬂz(ﬁ Ko 1%l ): 1—]/|:| %o 1%l

where H, , | and "Alxn,lan stand for the estimated transfer functions from the noisy

annfll
measurements in,l and 5A<n using the method given in Equation (4.4) at frequency o, . At

) or f,2(Hy ), will be used in the

the frequency w,, which measurement, f|1(I:I % s

0% 1l
identification problem (4.7) depends on which structural response, X, or X,,, has
smaller NSR at that frequency. If it is assumed that the noise level for every measured

structural responses are same (the term in the numerator of NSR), then the above

criterion can be simplified to chose the structural response which has larger power
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spectrum (the term in the denominator of NSR) at the frequency w, in formulating the

identification problem (4.7).

4.3.2 Non-top Story Identification

Following a similar procedure, the key identification equation for the i™ non-top
story substructure (Equation 3.9) can be rewritten into the following three equations by

using different structural responses as the system input.

1 _ 1- HXiXH (4 8)
1-jc/(Ma) -k /(Mw?)  1+(H, . —Hy,  fic/(Mo)+ k., /(Mo?)] '

1 _ Hxi—lxi -1 (4 9)
1-jc/(ma)-k /(mw?) H, , +(H, , ~1fic./(Mo)+k,./(Meo?)] '

1 HX 1X1_H5§Xi1 (410)

1-jc /(M) -k /(Mw®) H, . +0-H, Jic./(mw)+k,,/(me)]
WhereH denotesthetransfer function from the responseX; to the response X, . Based

on these three equations, the new substructure identification problem for the i non-top

story substructure can be formulated as.

~ 2
9 (k1€ ) =G (Fae i Hy )| or

N = 5
argmin 3(ki,c)= 1[0 (k€)= (H, s Hy )| or (4.11)

ki .C =1

a A - 2
g,(k,c)-§°(H g Hi )

1
h c)=
e gl(k“CI) 1—jCi/(mw|)—ki/(mw|2)

~

6 (A Ae )= P
el (HX Syl H;qsq,lJ )[J'Ci+1/(mw| )+ ki+1/(m a)|2)]

88



N

5,°(H g Hy xo -1
g (H Ki_g %l %% )= = = : -
H*—ﬁﬁ" + (me,l —1)[1%1/(”%@ )+ ki+1/(ma’| )]

A A

A

~ 3

g (':i % . H

)_ X«—lxwlil B H X|5(|+1'|
5<iX1+1v| - 1

H % %l T - H %1 )[J'Ci+1/(ma)| )+ ki+1/(mi a)|2)]

where H.,

5% 1 denotes the estimated transfer function from the measured response 5(]- to

the measured response ;(k at frequency @, by using the averaging method in Equation

~

(4.4). Which measurement ( Qll(ﬁmﬂi,,l—]h%l) , le(HAxilxyl,H or

X1'+1xi ’I )
G°(Hy 4 1 Hyy 1)) will be used in the identification problem (4.11) at the frequency

@, depends on which structural response ( %, , ¥ or X, ) has the largest power

spectrum at that frequency.

4.4 Identification Error Analysis
In this section, the identification error analysis method proposed in section 3.2 is

used to analyze the identification error of the newly proposed TF_SUBID method.

4.4.1 Top Story Identification Error

Since the optimization problem (4.7) has two possible measurements, ﬂl(I-AIXanflJ)

and fAlz(':'xn,lan), that can be used in the identification at each frequency, and since a

different choice may be used in the identification at different frequencies, the
identification error analysis method proposed in the section 3.2 cannot be directly applied
here. However, the proposed selection algorithm, choosing which transfer function is

used in the identification at each frequency, is designed to make the identification results
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more accurate. Therefore, the identification errors for identification problem (4.7) should

be less than the errors if either of the two transfer functions ( ﬂl(l—]mip,) and

ﬂz(l-]xnilm )) were used exclusively. Using the error analysis method proposed in the

section 3.2, the identification errors using either of the two measurement exclusively in
the identification could be calculated, which will serve as some upper bound of the
identification error for identification problem (4.7).

Similar to the identification error analysis for the Fourier transform based method in
Chapter 3, the error analysis for the new method is aso carried out for the relative
identification errors of the structural parameters. Using the relative parameter values,
identification problem (4.7) is rewritten into two separate identification problems (4.12

and 4.13), in each of which one of the two transfer functionsis exclusively used.

S

argmln J(ﬂkn’ﬂcn)zz

Al A 2
f| (,Bkn ’ :Bcn) - f|1(H %n%_q| )‘ (4-12)
ﬁknvﬂcn 1=1

1
- 1_ﬂcnj Cn/(rnna)l ) _lBkn kn/(mna)|2) |

Where fl( kn'ﬂcn)

A

fll(|:| %%l ): 1-H 3500 =1= Vo Hy g 1 where ) = H %%l /H %% 1]

B B = 7| (4.13

argmln ‘]( kn’ﬂcn):i

ﬂkn vﬂcn 1=1

1
1_ﬂcnj Cn/(mna)l ) _ﬂkn kn/(mna)lz) '

where f| (:Bkn ’ ﬂcn ) =

A

f2(Fy 0 )=1-YH, . =1-Y(, H, ), wherey, =Hy o /Hy o)
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a) The identification errors for identification problem 4.12

Following the error analysis procedure proposed in section 3.2,

SR
| a/Bkn aﬁcn B,=1

(4.19)
_ [ Ko/ (My?) i,/ (My)
[1_ J Cn/(mna)l ) - kn/(mna)lz)]2 [1_ J Cn/(mna)l ) - kn/(mna)lz)jl2
ﬁl{ o } =[H. ] (4.15)
a7/n—l,l Y=l m
Rearranging Equation (4.5) gives both to the following
_ - J Cn/(mna)l ) - kn/(mna)lz) (4 16)
o 1- J Cn/(mna)l ) - kn/(mna)lz) .
- 1 =1 (4.17)
(1_ H KKl )|_1_ J Cn/(rnna)l ) - kn /(mna)lz)J '
Put the result of Equations (4.16) and (4.17) back into Equation (4.15) to get
ﬁl - 1 _ jcn/(rma)l)+kn/(mnwlz) _ (418)

A= Hysa) B e, /(m@) -k, /(mef) |

Using the results of the identification error analysis in Equation (3.19) as well as the
relation that the true transfer function equals the ratio between the Fourier transform of
the noiseless input and output signals, the approximate relative identification errors of

identification problem (4.12) becomes

{Qﬁ)} N ZN: R |:W11,I } Xn—l,l [7n-1,| _1] (4.19)
oL | = Wori | (X = X))
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where the superscript (1) on the left side of the above equation is used to denote that this
identification error is calculated by exclusively using the transfer function ﬂl(ﬁ T ).
The expressions of the deterministic factors W,,, and W,,, are givein Equation (3.26).
From the results of the transfer function estimation in the section 4.2, it can be
obtained that 7, ,, =1/(1+a,,,), where a, ,, =E|N, ,, F|/E| X, [}]is the NSR of
the structural response X,, a the frequency w. Using the approximation that
U+a,y))=1-a,q, if a4 <<1, the identification errors in Equation (4.19) are

simplified as
(& N W. X —
F?%zF [m]'w[%ﬁ] (420)
ecn I=1 W21,| (Xn,| - xn—l,l)
b) The identification errors for problem 4.13

Following a similar procedure, the identification error for problem (4.13) can be

derived as follows.

{af. ﬂ}
! aﬁkn aIB(:n B.=1
(4.21)
={ Ka/ (M) iCa/ (M)
L-jc,/(ma) -k, /(med)]  [L-ic,/(mae)-k,/(med)]

A, { of? } “[yH, ] (4.22)

Rearranging Equation (4.6) gives both of the following

1 _ an/(mna)I)_kn/(mna)|2)
H, ,, 1-jc, /(ma)-k, /(maw?)

Kn_1%nl

(4.23)
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1

=1 4.24
(1_]/H KoKl )|_1_ J Cn/(mna)l ) - kn/(mna)lz)J ( )

Put the result of Equations (4.22) and (4.24) back into (4.22)
A| 1 - J Cn/(mna)l)_kn/(mnwlz) (425)

C@-YH ) B o ma) -k, /(med)]
Using the result of (3.19), the approximate relative identification error of the

identification problem (4.13) becomes

Héf) ~ o VV11,| X.nfu [an,l ]
{Gé?} ) ZR{W}W} (4.26)

where the superscript (2) on the left side of Equation (4.26) is used to denote that this

identification error is calculated by only using the second transfer function ﬂz(l-] Y );
a,, = E[l N, |2]/E[| X, |2] is the NSR of the structural response . at the frequency w;
the expressions of the deterministic factors W,,, and W,,, are given in Equation (3.26).
c) Comments on the results of the identification error analysis
As noted in Chapter 3, factors W1, and Wsy, in Equation (4.20) and (4.26) are
significantly large only near the n™ story substructure natural frequency W0 = M ;

thus, the identification errors are mainly determined by the measurement uncertainties

near frequency w,,. To reduce the identification error, the uncertainty terms, «, ,, and

n-11

a,,» should be as small as possible in that frequency range; alternately, the corresponding

structural  responses E[| X |2] and E[| X |2] (the denominator of the uncertainty

terms) should be as large as possible in the same frequency range.
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Moreover, Equations (4.20) and (4.26) contain some of the same terms such as
deterministic factors W,,, and W,,, as well as the frequency response ratio
X1 /(Xoy = X,0) 3 hence, comparing the magnitude of the identification errors

caculated by these two equations simplifies to comparing the magnitudes of the

uncertainty terms («,,_,, and «,,, ) in these equations. Assuming that the power spectra of
measurement noise at different locations are same (the numerator of the uncertainty terms
oy, ad a,,, E[N, , F]=E[N,, ], are same), the identification errors in the two
equation are determined by the magnitudes of power spectra E[| X P ] and E[| X ]
(the denominators of «,,, and «, ).

From Equation (3.7), it can be easily derived that

j Cn/(mnwl ) + kn/(mna)lz)

= 4.27
"1 T, men -k, (me) o
Then, the power spectra E|| X, ,, *| and E|| X, [?] have the following relation
. c,/(Mma)+k,/(Mmaf
ehx,, pl-| LS e ko o) Fejy o] @29

1= jc, /(M) -k, /(m, .)\
Since the deterministic transfer function on the right side of Equation (4.28) (the part in

front of E[| >'('n_1v, |2]) is significantly larger than one near the substructure natura
frequency o,,, the power spectrum of the top story response, E[| Xm |2], is much larger
than that of the story below E[| X, |2] near the substructure natural frequency o,,. As

a result, the top story response Xm will be exclusively selected as the system input to

94



formulate the identification problem near the substructure natural frequency m,, (the key

frequency range to determine the identification errors).
Moreover, using the relation given in Equation (4.27), Equation (4.26) can be

rewritten as

o2 W,, 1 X, [_am]
[95?} ) Z RQ{W&. } W} (4.29)

where the expressions of the deterministic factors W,,, and W,,, are give in Equation
(3.26).

d) Comparison of the Identification Errors between TF_SUBID and
FFT_SUBID methods (non-top story)

Comparing the identification errors of the TF_SUBID method for the top story
parameters in Equations (4.20) and (4.29) with the corresponding identification errors of
the FFT_SUBID method in Equation (3.26), it is found that the identification errors in

both methods share the same weighting factors (W1, Way1 1, Wiz and Way,) as well as the

frequency response of interstory acceleration (X,, — X, ,,) in the denominator of the

uncertainty terms. Therefore, the comparison of the two methods simplifies to comparing

the numerator of the uncertainty terms in these two methods,

N,, and va,aj,l (j =n-1n). Because these two quantities are both zero-mean complex

random variables, the variances of these random variables are compared by computing

their ratio:

2
el X, o, PYEIN, Pl=0,2 €] X, FYEIN,, |2]=0(;L=OLJ,I (4.30)
il
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where Equation (4.30) uses the definition of the noise-to-signal ratio (NSR),

E| X, PI/EIN,, ?|=Y«,, ,in Chapter 3. Since a,, is, in general, much smaller than

unity, the variance of X ;0 ismuch smaller thanthat of N, implying that for the top

il j
story parameter identification, the TF_SUBID method will provide much more accurate
identification results than the FFT_SUBID method.

Moreover, there is acommon term, the frequency response of the top story interstory

acceleration (X, — X, ;) , in the numerator of all uncertainty terms. Al factors W, are

significantly large near the substructure natural frequency w,, . Hence, significantly
amplifying the interstory response (X, — X, ;,) near the substructure natural frequency

o,, Will greatly improve the identification error. This is the same conclusion that was

obtained for the FFT_SUBID method.

4.4.2 Non-top Story Identification Error

Similar to what has been done for the top story substructure identification problem,
Equation (4.11) can be rewritten into the following three separate identification problems,
each of which exclusively uses one of the three measurements in the identification
process.

In the parameter identification of the i™ story (i < n), the identified parameters of
the (i+1)" story are used; thus, the parameter identification error of the (i+1)™ story from
the previous step will inevitably affect the accuracy of the current step identification and

should be included in the identification error analysis. Using the relative parameters S
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and fq, the identification problem in (4.11) that uses the first transfer function forms g,

exclusively could be rewritten as

2} (4. 31)

N ~ ~
arg min  J(5.5.) Z{‘Qh (B Bs)— 6" (H s 10 Hs s Bugsny 1 Begiony)

i +Bii 1=1

1
h c)=
e gl(k“CI) 1—jCi/(ma’|)—ki/(mw|2)

A1 ~ ~
g (H st H s Py s Beoy ):

~

1-H %%q |
-H %%y )[ﬁc(iﬂ) jCi+1/(m o)+ ﬁk(i+1) ki+1/(m a’|2)]

1+(H)q &

l

From the results of the transfer function estimation in section 4.2, it can be shown that

H %%yl /H %l = H %1% 1 /H %.a%a) = il and Yiay = ]/(1+ ) where

= E[| N, ,, |2]/E[| X4, |2] is the NSR of structural response %, at frequency wi.

Then, identification problem (4.31) can be simplified as

N

agmin 35, 0,)= {0, (BB~ 6" Prr P |
BB

1=1

(4.32)

1
h o=
where 6,(4.6) = T e~k /(med)

@|1(7i71,| ’:Bk(i+1) !:Bc(i+1)):
1-7iigHyx

~7i-1) H, X%yl )|_/8c(|+1) J- C|+1/(ma)l ) + /Bk(|+1) |+1/(ma)| )J

1+(7| 1|H %1%l

Similarly, the other two identification problems for identification problem (4.11),

exclusively using the second and third transfer function forms, can be formulated as
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argmln J ﬁk. Z{‘% (,Bknﬂci)—@z(]/i,l'ﬂk(nl)'ﬂc(m))z} (4.33)
where g, (ki,¢;)= — ! 2
1—JCi/(ma’|)—ki/(mw| )
of 2(7i,| !IBk(Hl) 7ﬂc(i+1)):
Vi) H X% -1
vieHg s +(iyH 1)l,3c(|+1)1 C|+1/(mi0)|)+ﬂk(|+1) |+1/(mi60| )J
agmin J(4, .) Z{\g. (BurP) =87 Grs s o) | (4.3

1
where g, (ki’ci)_l—jCi/(mwl)_ki/(mw'z)

Q|3(7i+1,| ’ﬂk(i+1) ’:Bc(i+1)):
7|+1|(H %1%l |-|)<|><|1|)
Vi Hy 50 +@- 7|+1IHX|X|1I)|_ﬂc(|+1)JC|+1/(ma)I)+ﬂk(|+l) |+1/(mia)l )J

Using the identification error anaysis method proposed in section 3.2, the

identification errors of problems (4.32) ~ (4.34) are obtained respectively.

a) The identification errors of identification problem 4.32

i ki/(ma’|2) !
hl{ﬁi 6&} _|B-ie/ma) -k /me)] 439
P OBy p | - jc/(ma,)
1-jc /(me)—k /(med)]
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~ o§; oG g,
i 0%, aﬂk(u-l) aﬁc(m)

Vi =1
B.=1

—Hyyx o —(He 50— Hiax )[jci+l/(rni o)+ ki+1/(rni a’|2):|_T

{1+ (H %ol H %%yl )[jCi+1/(m o)+ ki+1/(mi a’|2)]}2 (4.36)
(1-H %%yl )(H %%l H %%y ) km/(”\ a)|2)

1+ (H, o —Hy, Dlics/(me) +k.,/(med)]f
A-Hyy DH; 5 0 —Hew ) jCi+1/(m o, )

L {1"‘ (H So%l H %%y )[jCi+1/(m @)+ ki+1/(mi wlz)]}Z )

Rearranging Equation (4.8) gives

(1—Hm)[1—iCi/(mw)—ki/(mwz)F (4.37)
L+ (Hy ., ~ i liGa/(Me) +k.y /(mo?)] |

Replacing the terms in Equation (4.36), which equal the right side of Equation (4.37), by

the left side of Equation (4.37), Equation (4.36) are simplified as

I J'Ci_/(mw|)+ki/(mw|2) ] T

(1-H %%yl -ic /(me) -k /(ma)lz)_z

» (H Kahal H %%y ) ki+1/(m a)|2) _ (4.38)
(- Hx,-xi_l,l -jc /(Mmay) -k, /(mw|2)_

(mex,»_l_,l - Hxisq_l,l) ij/(”W%) i

| (-Hy, - ic/(mae) -k /(me)]

Using the results of the identification error analysis in Equation (3.19) as well as the
relation that the true transfer function equals the ratio between the Fourier transform of

the noiseless input and output signals, the identification error for problem (4.32) can be

obtained as
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FEZ}zZR {U}w SR {” U} (X =X)L (439
03 I=1 U12,| (Xi,l_xi—l,l) I=1 U24~' U25»' M _
(X-H —)'(‘i_:u) c(i+1)

where the expressions of factors Ujiy, Uszpy, Uigy, Uy, Uis) and Uasy are given in

Equation (3.32).

b) The identification errors of identification problem 4.33

T

k; /(m a)|2)

h {5& 6&} _| B ic/me) -k /(me))f
Lo 0B, jc /(ma)

L-jc /(ma) -k /(ma?)]

(4.40)

ﬁz a@|2 ag|2 aglz
|
_a7i,| aﬂk(Hl) aﬂc(iﬂ)

Vi =1
o1

H %% T (H %%l T H %_y5% | )[J'Ci+1/(mw| )+ km/(”\ a’|2)]_T
{H % %0 T (H %% _1)[jci+1/(m(0| )+ ki+1/(m a)|2)]}2 (4.41)
(H % 1%l _1)(H %125 | _1) ki+1/(mia)|2)

He s+ Hy o =Dlics/ (M) +k. /(e
(quflsq i _1)(Hxi+1x i _1) J 'Ci+1/(ma)|)

L {H gax T (Hy ) —1)[J'Ci+1/(mw|)+ ki+1/(ma’|2)]}2 |

Rearranging Equation (4.9) gives

(H, « -Dl- jc/(Mw) -k /(mo?)]-

(4.42)
Hy o +(H, o ~D]ic../(Mo)+k../ (M)

Replacing the terms in Equation (4.41), which equals the right side of Equation

(4.42), by the left side of Equation (4.42), Equation (4.31) are simplified as
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- T

1§ (6 +0)/(Me) ~ (ks + )/ (M) |
(Hy 5 —Dl-jc /(M) -k /(ma)|2)_2
~ (Hs_qﬂm -1 ki+1/(ma)|2) _
(Hy o, ~D-jc /(Ma) -k /(Ma?)]
(H_xwlsq | _1) jci+1/(m w)
(Hy o~ ic/mae) -k /(med)]

(4.43)

Using the result of the identification error analysis in Equation (3.19) as well as the
relation that the true transfer function equals the ratio between the Fourier transform of
the noiseless input and output signals, the identification error for the problem (4.33) can

be obtained as
(Xi+1,l - Xi,l)
@7 N U " [ ] N U U 5w ki
- $nd U] Kokl ] gl | X
Hci 1=1 U22,| (X” - Xi_1,|) 1=1 U24,| U25,| (Xi+1,l - Xi,I) .
(Xi,l - Xi—l,l) oD

(4.44)
where the expressions of factors Uia), U2z, Uia, Uay, Uis; and Uasy are given in

Equation (3.32).

c) The identification errors of identification problem 4.34

i ki /(ma)|2) ] !
h, = [ai 8&} _|&-c /(mi of)~ ké/(mi wlz)_z (4.45)
0bq 9P pd |- IG /(mw| ) _
1-jc /(mia’|2) -k /(mw|2)_2
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~ | 067 0g° og;
_67i+1,| aﬂk(iﬂ) a,Bc(i+1)

Vi) =
Bo.=1

(Hy s = His )[JCi+1/(mw| )+ ki+1/(m0)|2)] Ik

{H %1% 1.l + (1_ H %% 41| )[J'Cm/(m 2 ) + ki+1/(m a)|2)]}2 (4'46)
(Hy s —Hyx)(Heg i =1 ki+1/(m of)

Hy s + @y 0o/ (Mo +k ./ (mad)]?
(H %%l H %0l )(H %1 -1 jc,,/(me)

_{H goxa TA=Hgy )[jci+1/(m @)+ ki+1/(mia)|2)]}2 )

Rearranging Equation (4.10) gives

(Hy s~ Hi D 16 /() —k /(mo™)]=

(4.47)
Hy o +@=Hy, li-6u/(Mo)+k . /(Mo?)]

Replacing the terms in Equation (4.46), which equals the right side of Equation (4.47), by

the left side of Equation (4.47), Equation (4.46) are simplified as

1-j(c,+C )/(m o) — (ki +K )/(ma’|2) _

(H %, —H xisq+1,|)_:|-_ jc/(me) -k /(m 6‘)|2)_2

~ (H K1l -1 ki+1/(ma)|2) _

(Hy x. —Hx - ic/(Maey) -k /(ma)lz)_z
(Hix =D jCi+1/(m 0))

(Hy s~ Heu)- 6 /Mo -k /mad)] |

(4.48)

Using the results of the identification error analysis in Equation (3.19) as well as the
relation that the true transfer function equals the ratio between the Fourier transform of
the noiseless input and output signals, the identification error for the problem (4.34) can

be obtained as
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(X|+1I X|I)
©) N % [ ] N 9 k(i+1)
9?3) zZR |:U31,I:|X.i.+l,l Qi) +ZR |: 14, U15,|} (X|| - |1|) (4_49)
0, =1 U32,| (Xi,| Ay 1|) 1=1 U24| U25,| (x|+1| X||)9
( il |1|) ey
where the expressions of factors Uis), Uszs), Uiay, Uy, Uis; and Uas) are given in

Equation (3.32).

d) Comparison of the Identification Errors between TF_SUBID and
FFT_SUBID methods (non-top story)

Comparing the identification errors of the TF_SUBID method for the non-top story
parameters (in Equations (4.39), (4.44) and (4.49)) with the corresponding identification
errors of the FFT_SUBID method (in Equation (3.32)), it is found that the second part of
the identification errors of the TF_SUBID method, due to the estimation errors of the
(i+1)™ story parameter, is same as that of the FFT_SUBID method. This suggests that the
TF_SUBID method does not reduce the identification errors propagated from errors in
the parameter estimates for the story above.

However, if the first part of the identification errors for both methods are compared,
which are due to the measurement noise of structural responses, the TF_SUBID method
does improve the identification accuracy for the same reason as discussed in the analysis

of the top story parameter identification. Furthermore, all measurement uncertainty terms

in the transfer function based method share the same denominator terms, (X'LI - Xi—l,l) ,

and all factors U;;, are significantly large only near the substructure natural frequency

ij,l

w;o; therefore, significantly amplifying the interstory response, (>'('i’I - Xi—l,l)' near the
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substructure natural frequency w,, will greatly improve the identification error. This is

the same conclusion that was obtained for the FFT_SUBID method.

4.5 lllustrative Examples
The same 5-story shear structure used in Chapter 3 is used again here to demonstrate
the effectiveness of the TE_SUBID method. The parameters of the structure are m=1x10°

kg, =8x10° N-sec/m, ki=16x10" N/m (i=1...5).

4.5.1 Substructure Identification with Undamaged Structure

The TF_SUBID method requires long stationary structural responses to calculate the
transfer functions used to formulate the identification problems. Thus, 1800 second
structural responses, with a sampling rate of 200Hz, are simulated to calculate the
transfer functions between different structural responses. The 1800 second responses are
divided into many shorter response segments, each of which is 60 seconds in length.
Welch’'s method (see section 5.2 for detailed information about this method) is applied to
compute the power spectral densities of the responses, which isin turn used to calculate
the transfer functions needed for the substructure identification. The MATLAB® routines
pwelch and cpsd are used to calculate the power spectral densities of the structura
responses; Hamming windows are applied to filter the structural response with a 25%
overlap between the adjacent frames of the response.

Since it is expected, according to the identification error analysis, that the
TF_SUBID method will provide much more accurate results than the FFT_SUBID
method, larger levels of noise, 20% and 40%, are added to the simulated structural

responses to mimic the effect of the measurement noise. 20% (or 40%) noise means that
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the root-mean-square (RMS) value of the measurement noise is equal to 20% (or 40%) of
the RMS of the ground excitation. It is also assumed herein that the magnitude of the
measurement noise of all acceleration measurement is the same. The measurement noise
is modeled by a band-limited Gaussian white noise with a cut-off frequency at 100Hz.
Figure 4.2 shows an example of first two second of the response of the 1% story
acceleration, which demonstrates how much the structural response is distorted by the
measurement noise. It is easily seen that 40% noise largely distorts the true structura
response, posing a big challenge for the identification method to give accurate estimation

of the structural parameters.

acceleration (cm/sz)

true response

-8 || = = —20% noise N ]
----- 40% noise W
_10 | | | |
0 0.2 0.4 0.6 0.8 1
time (s)

Figure 4.2 The 1% floor noisy acceleration response with and without
measur ement noise
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Using “scenario 1" of Chapter 3, 100 independent substructure identifications via
the TF_SUBID method are performed with 20% and 40% noise respectively. The
statistics of the identification results are listed in Tables 4.1 and 4.2 respectively.

Compared with the identification results of the FFT_SUBID method in Table 3.4,
the TF_SUBID provides much more accurate identification results: when the medium
level (20%) of noise are existed in the measured structural responses, the TFF_SUBID is
simply not able to give any sufficiently accurate results for damage detection tasks; while,
with 20% noise disturbance the TF_SUBID method provides excellent identification
results, with accuracy even better than that of the FFT_SUBID method with much
smaller (5%) noise disturbance (compared Table 4.1 with Table 3.2). Moreover, even for
the story damping parameters, which are much difficult to accurately identify than the
story stiffness parameters, the TF_SUBID method manages to give quite accurate
estimates (the maximum relative RMSE value of all damping parameters is only 3.5%).
As measurement noise increases to afairly large level (40%), the accuracy of TF_SUBID
method decreases to some extent but is still able to provide acceptably good identification
results.

The error analysis in section 4.4 shows that, smilar to the FFT_SUBID method, the

accuracy of the TF_SUBID method is largely affected by the frequency response of the
interstory acceleration (X;, — Xi_;;) (i =1...,n) near the substructure natural frequency
@, With larger response corresponding to smaller identification errors. As shown in

Chapter 3, that the third interstory acceleration is significantly smaller near its

substructure natural frequency (40 rad/sec), so it is expected that the identification error

106



of the third story parameters is much larger than that of others, which is verified by the

simulation results.

Table 4.1 The statistics of the identification resultswith 20% noise

S Story stiffness Izi (x10°N/m) Story damping €, (x10°N-sec/m)
ory
number mean relative relative mean relative relative
RMSE STD RMSE STD
1600 8.09
1 . 0.3% 0.3% N 1.7% 1.2%
(0.0%) (1.2%)
1602 8.07
2 0.3% 0.3% 1.7% 1.4%
(0.1%) ° ° (0.9%) ° °
1587 8.20
3 0.9% 0.5% 3.5% 2.5%
(-0.8%) ° ° (2.5%) ° °
1595 7.97
4 0.4% 0.2% 1.0% 0.9%
(-0.3%) (-0.3%)
1601 7.95
5 0.1% 0.1% 0.9% 0.6%
(0.1%) (-0.6%)

*: relative error for mean estimate

Table 4.2 The statistics of the identification resultswith 40% noise

< Story stiffness lzi (x10°N/m) Story damping €, (x10°N-sec/m)
ory
number mean relative relative mean relative relative
RMSE STD RMSE STD
1597 8.38
1 0.7% 0.7% 5.8% 3.3%
(-0.2%) ° ° (4.8%) ° °
1604 8.22
2 0.7% 0.7% 5.3% 4.5%
(0.1%) (2.8%)
1559 8.62
3 3.1% 1.8% 10.4% 6.8%
(-2.6%) ° ° (7.8%) ° °
1585 7.99
4 1.0% 0.5% 2.0% 2.0%
(-0.9%) ’ ° (-0.29%) ° ’
1604 7.82
5 0.4% 0.3% 2.6% 1.3%
(0.3%) ° ° (-2.3%) ° °
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4.5.2 Effects of Structural Response Length on Identification Accuracy

Since the TF_SUBID method uses long stationary structural responses to estimate
the transfer functions, needed to formulate the substructure identification problems, this
section investigates the effects of the length of stationary structural responses on the

accuracy of the substructure identification.
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Figure 4.3 Therelative mean of the estimated stiffnesswith different
length of the structural responses
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Figure4.4 Therelative mean of the estimated damping with different
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Figure 4.6 Thereative standard deviation of the estimated damping with
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Figures 4.3~4.6 show the changes of relative mean error and standard deviation of
the estimated stiffness and damping parameters, respectively, with different length of the

structural responses being used to perform the substructure identification. As longer
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structural responses are used, the estimated transfer functions, used in the substructure
identification, have smaller variance, leading to smaller variances of the estimated
structural parameters as shown in Figures 4.5 and 4.6. However, the transfer function
estimation method in section 4.2 is a biased estimation method, which means that the
estimated transfer function does not converge to its true value as the length of structura
responses increases; thus, the TF_SUBID method is also a biased estimator for the
structural parameter. This is verified by the Figures 4.3 and 4.4, showing that the mean
errors of the estimated parameters do not decrease as additional structural responses are

used in the identification.

4.5.3 Damage Detection Results

Applying the damage detection strategy proposed in section 3.5, damage detection
tests are performed by using structural parameters estimated by the TF_SUBID method.
The damage scenario of the structure is the same as that in Chapter 3: the structural
damage occurs at the first, third and fifth stories, which results in a reduction of the story
stiffness by 5% and an increase of the story damping by 20%. Since the TF_SUBID
method is able to provide quite good estimates of the structural parameters with both 20%
and 40% noise disturbance, damage detection tests are carried out at both noise levels.

In order to test the ability of the proposed damage detection strategy to correctly
identify the health status of the structure, 600 independent substructure identifications
using the TF_SUBID method are carried out on the damaged structure; the results are
used in the hypothesis test to determine whether or not the structure is damaged. The

number of the substructure identifications that each hypothesis test uses to reach the
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conclusion is selected as 1,3 or 5 respectively. According to the number of the tests each
hypothesis test uses, the identification results of 600 tests are divided into groups and a
hypothesis test is performed for each group using the method proposed in section 3.5.
Since the identified structural parameters of the undamaged structure have quite small
variances, a larger f value, 5, is selected in the hypothesis tests to reduce the probability
of the second kind error of the hypothesis test — faulty detection. The percentage of the
hypothesis tests that give the correct health status of the structure with two different
levels of noise disturbance are shownin Tables 4.3 and 4.4 respectively.

Table 4.3 The percentage of the hypothesis tests which give the correct
conclusion about the structural health statuswith 20% noise

Floor Number n
1 3 5
1 100% 100% 100%
2 92% 96% 100%
3 100% 100% 100%
4 87% 96% 98%
5 100% 100% 100%

Table 4.4 The percentage of the hypothesis tests which give the correct
conclusion about the structural health statuswith 40% noise

Floor Number n
1 3 5
1 100% 100% 100%
2 91% 97% 100%
3 100% 100% 100%
4 61% 67% 73%
5 100% 100% 100%
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Due to the smaller variance of the identified structural parameters of the undamaged
structure, the proposed damage detection procedure perfectly accurately identifies al
structural damage under both levels of noise disturbance. However, in some cases the
damage detection procedure does make some mistakes of labeling the undamaged
structural members as being damaged, especialy when the measurement noise level is
high. Thisis partially due to the fact that large noises in the measured structural responses
cause the estimated transfer functions used in formulating the substructure identification
problems to have large bias, leading to a biased estimation of the structural parameters.
When structural damage occurs, structural responses will be changed according, which
results in the change of the noise level relative to the structural response and, thus, leads
to the migration of the bias of the estimated parameters. Such a migration may cause the
misdetection of the healthy structural members.

Moreover, as the number of the identifications, n, that each hypothesis test uses to
make the decision increases, the chances that hypothesis tests make the correct decision
also increase, which verifies that the proposed hypothesis test method, using n
identifications together to make the decision, is effective in improving the probability to
make the right decision about the health status of the structure. However, the derivation
of this technique in Chapter 3 observed that if the probability that the hypothesis test with
one identification result is large and close to 50%, increasing the number of identification
results used in each hypothesis test can only provide limited improvement in increasing
the accuracy of the hypothesis test. This is verified by the hypothesis test result of the
fourth story structure under 40% noise disturbance. In that case, the error probability of
the hypothesis test with one identification result is quite large (100%—61%=39%); thus,
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using more identification results in each hypothesis test only provides quite moderate
improvement of the accuracy of the hypothesis test: the error probability of the
hypothesis test only decreases from 39% with one identification result to 27% with five
identification results.

The results of the hypothesis test in this section imply that it is important to reduce
the bias in the estimate of structural parameters in order to further improve the accuracy

of hypothesis test.
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Chapter 5

Cross Power Spectral Density Based Substructure Identification
Method

In Chapter 3, an innovative substructure identification method (FFT_SUBID),
formulated by using the Fourier transform of floor acceleration responses, is proposed to
identify the parameters of a shear structure. However, due to the noisy nature of the
acceleration measurements, this method cannot provide accurate results when the
measurement noise is not small. To improve identification accuracy in larger noise cases,
an improved transfer function based substructure method (TF_SUBID) is put forward in
Chapter 4, which does greatly improve the identification accuracy. However, the
implementation of the TF method requires that 1) there is only one excitation source
affecting the structure, and 2) very long stationary structural responses are available.
These constraints, especialy the first one, severely restrain the wide application of the
TF_SUBID method.

In this chapter, a new substructure identification method based on a cross power
gpectral density (CSD_SUBID) is derived from the differential equation governing the
structural random responses. This method not only overcomes the previous constraints
required by TF_SUBID method but aso further improves the identification accuracy. A
reference response, which is jointly wide sense stationary (WSS) with all structura
responses, is introduced. The cross power spectral density (CSD) between the
acceleration responses of the substructure and this reference response, calculated by
averaging long stationary responses in the frequency domain, are used in formulating the

new substructure method. Since the new CSD_SUBID method is just like the
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FFT_SUBID method with the exchange of some structural response parameters, an
identification error anaysis for the CSD_SUBID method is directly obtained by
accordingly modifying the results of the error analysis of the FFT_SUBID method
presented in Chapter 3. Based on the error analysis of the CSD_SUBID method, a smart
selecting agorithm is proposed to determine the optimal reference response candidate
that can further reduce the effect of measurement noise and improve identification
accuracy. Moreover, the explicit formulas to calculate the variances of the estimated
parameters are derived for the CSD_SUBID method, which makes it possible for this
method to provide the optimal identified parameters as well as the confidence interval of
these estimates. Although the CSD_SUBID method is originaly derived under the
assumption that the structural responses are wide sense stationary, it is subsequently
shown that, with little change, the CSD_SUBID method can be directly extended to
handle the identification with non-stationary responses. Finally, the proposed
CSD_SUBID method is tested on two shear structures; the results demonstrate the

efficacy of this new method and verify many analysis results for this method.

5.1 Method Formulation
The dynamic equation of an n-story shear structure subject to ground excitation can
be written for each story substructure as follows:
Top floor (i = n):
m, X, (t) + ¢, [X, (1) — X, (O] + K[ %, (t) — X, ()] =0 (5.2)

Middle floor (2<i<n-1):
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m X (t) + ¢ [X (t) — X_1 (O] + ki X () — X4 (1)]

5.2
X (0~ X, 0] + Kl (0 - 4 (0] =0 62

Bottom floor (i = 1):
My, (1) + €[ % (t) = Ug ()] + Ky [ %, (1) — ug (t)] 5.3)

+Co[ Xy (1) — X5 ()] + Ko [ % (1) = X, (1)] =0
where m, is the mass of the i" floor; ¢, and k; are the damping coefficient and stiffness
of the i story; x;(t) and uy(t) are the displacements of the i"" floor and ground relative

to an inertial reference frame at timet; and overdots represent the derivatives with respect
to timet. It is assumed here that the mass of the structure is known.

The motion of the top floor is affected only by the top story structural parameters as
well as by the motion of the top two floors. Thus, the substructure identification will start
with the top floor as follows. Adding —m,X, ;(t) to both side of Equation (5.1),
multiplying both sides by a reference response at an earlier time y(t — ) and taking the
expectation will give

MR, 0y () + CnRes 1y (0 + KRy (= - Ry (@) (5.4
where R, (7) = E[x(t)y(t —z’)] is cross correlation function between the responses Y(t)

and X(t). Here it is assumed that the reference response y(t) and all structural responses
arejointly WSS.

When y(t) and X(t) arejoint WSS process, their cross correlation function satisfies
the following equation (Bendat et al., 2000)

Rmy (1) = RY (2) (55)
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Let x™ denote the m" derivative of random process x(t) with respect to time, and

RU" (z) denotes the m" derivative of the correlation function Ry, (z)with respectto z. If
the mean square derivatives exist, Equation (5.4) can be rewritten as

My R,y () +€aRi oy (D) + KRy (1) = —My R, (7) (5.6)

Taking atwo sided Fourier transform of both sides of (5.6), rearranging the order of

the terms and exploiting the property F(R) = (jw)?F(R) (where F denotes the Fourier

transform operator and j’=—1) gives

1 anfly - SXny
_ —= (5.7)
1- J Cn/(mnw) - kn/(mna) ) an—ly

where ijy = XJy(ja)), the Fourier transform of the cross correlation function ijy(r),
is the cross power spectral density (CSD) function between the reference response y and
the structural acceleration response X; (herein, jo is often omitted for notational

simplicity).
Since the right side of Equation (5.7) only involves the CSD between the structural

acceleration responses and the reference response, all of which can be calculated directly
from the measurements, the structural parameters [k, ¢,]” can be identified by solving

the following optimization problem that minimizes the difference between the two sides

of Equation (5.7) over al frequencies.

) N ~A A~ ~ 2
argmin I(ky,00) = X[y (ko) = i (S50, ) (58)
n:Cn =1
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~ ~

~ A A~ S ‘| _S ,|
fl (any,l ’SXHy,I) = A

anlyrl

1
1- J Ch /(mna)l ) - kn /(mna)lz) ,

where f, (k,.c,) =

and where S, | =S, (jay) (i=1....,n) stands for the CSD at frequency w; between the
i™ floor acceleration % and the reference response y as estimated from the measured
(noise contaminated) responses, o, =1-Aw (I =1,...,N) are discrete frequencies at
which the CSD are calculated and Aw isthe frequency interval.

After [k, c,]" have been identified, the following induction method can be used to
identify structural parameters of other stories in the following manner. Adding - m X;_,

to both sides of Equation (5.2) and following a similar procedure as in the top story
parameter identification gives

1 Shy B Sx|y (59)

1-jc /(M) -k (Mo?) S, ,+(Sy y - Syy)iCh/ (M) + K/ (Ma?)]

Assuming that structural parameters [k, ci+l]T in Equation (5.9) are known, the right

side of the equation can be directly calculated from the measured accel eration responses.

Then, asimilar optimization problem, shown in Equation (5.10), is formulated to identify

the structural parameters [k, ¢.]" on the left side of Equation (5.9):

- N ~ - - by 2
ar% min  J(k;,¢) = Z‘9| (k2 €)= 01 (Sq Ly Sy Siyi) (5.10)
G =
where g, (k;,c) = 1
ST - o fmay) -k /(med)
& & éx_ly,l — é‘rqy,l

61 (Sy 41 SiytrSepn) == - ! ,
SRR TR S (S, — SeynliC /(M) + K (Ma?)]
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Since the identification problem (5.10) is applicable to the parameter identification
of every story in the structure except for the top (n™) story, an induction identification

step is essentially established by Equation (5.10) in which the parameters of any i story

[k, ¢]" can be identified if the parameters of the story above (the (i+1)™ story)

[k, C.,]" are known. The top story structural parameters [k, c,]" identified from
optimization problem (5.8) are aready available to initiate the above induction
identification process. Thus, all structural parameters [k; ci]T(izl,...,n) can be identified
iteratively by following the identification procedure in Equation (5.10). Note that when

the parameters of the first story are to be identified, a smple replacement of éx,ly with

S,,, isneeded in Equation (5.10).

5.1.1 Relation to the FFT_SUBID Method

Comparing the two key identifications in the CSD_SUBID method, Equation (5.8)
for the top story substructure and Equation (5.10) for the non-top story substructure, with
the corresponding key identification equations, Equation (3.8) and (3.10), of the

FFT_SUBID method, it is found that the CSD SUBID method looks like the

FFT_SUBID method with the replacement of all Fourier transforms of the responses X j

by the cross power spectral density ijy. This observation provides an easy way to

anayze the properties (i.e., the identification error analysis) of the new CSD_SUBID
method by reutilizing the analysis results from the FFT_SUBID method with the simple
change of corresponding terms from the Fourier transform of the responses to their

corresponding cross power spectral densities with the reference response y(t).
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5.1.2 Relation to the TF_SUBID Method

In addition to the estimation method of a transfer function describe in the section
4.2, Equation (5.11) shows another way of calculating the deterministic transfer function

from structural response ¥; to response X;, assuming that such atransfer function exists:
Hyy = Xj/Xi = (ij*)/()'(iy*) - E[XJ’Y*]/E[)'('iY*]z SXiy/SXiy (5.11)
where Xi and Xi are the Fourier transforms of the responses %, and X;, respectively; Y

is the Fourier transform of an arbitrary reference response y, which is wide sense

stationary with the responses % and X;; “*” denotes the complex conjugate; E[] is the
ensemble average operator; S, and ijy are the cross power spectral density between

the structural acceleration responses ¥, and X; , respectively, and the reference response

y.

If the reference response y is selected as the response X, then the transfer function
estimation method in Equation (5.11) is the same as used in section 4.2. In this sense, the
TF_SUBID method is just a special case of CSD_SUBID method in which the reference
response y(t) is fixed as a specific response.

However, it is worth mentioning that the derivation of the CSD_SUBID method
does not have the restriction that there must be one excitation source in the structure as
the TF_SUBID method did, which greatly extends the applicability of this new

identification method.
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5.2 Estimation of Cross Power Spectral Density: Welch Method

Since the cross power spectral density between structural responses and reference
y(t) are needed in the CSD_SUBID method, a power spectrum estimation method, the
Welch average periodogram method (Welch, 1967) is introduced for calculating the cross

power spectra.
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Figure 5.1 Partition responses x(t) and y(t) into overlapped short segments
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Let x(t) and y(t) be two continuous stationary signals. As shown in Figure 5.1, x(t)
and y(t) are partitioned into Q overlapping short segments of the same length T, x;(t) and

yi(t), and the successive segments are offset by D (D<T).

x(t)=x(Dxi+t) (te[0,T]
. . (5.12)
yi(t)= y(Dxi+t) (i=01..Q-1

To reduce the leakage problem, sometimes the segment signals are multiplied by a
window function, such as hanning window, before being used to calculate the cross

power spectrum. The expression of a hanning window of length T is given in Equation

(5.13).
wt) = 0.5(1— cos@j, te[0T] (5.13)

Then the Welch method calculates the cross power spectral density by averaging the

cross power spectral density of the windowed segments signals as follows,

8, (e)= Q% _Q [ [ wiox (t)ej“"tdt}[ [ Wy (t)e-jw'tdt] (5.14)

where U =1 J.0T|w(t)|2dt .

One of the important properties of the Welch average periodogram method is that as
the length of each segment L and the number of segments Q tend to infinity, the Welch
method becomes an asymptotically unbiased and consistent estimator of the cross power

spectrum (Hayes, 1996).

5.3 Identification Error Analysis

As stated in section 5.1, the CSD_SUBID method is like the FFT_SUBID method
with the simple replacements of the Fourier transforms of structural responses by the
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corresponding cross power spectral densities; thus, the identification errors of the
CSD_SUBID method can be easily obtained by using the identification error anaysis

results of the Fourier transform based method with similar replacements.

5.3.1 Top Story Identification Case

The parameter identification error of the top story identification in the CSD_SUBID

method can be written as

[ekn} ~ ZN: R W11,| VV12,| . I\IXHyJ / S(><n—><n,1)y,l (5.15)
ch 1=1 W21,| W22,I I\Iiiny.l /S(Xn—xnfl)yyl

where 6y, and 6., are the relative identification errors of the n™ story parameters k, and c,,
respectively; Ny, = éxy,l =Sy, (i=1..,n) are the measurement uncertainties of the
CSD estimation, which equals the difference between the CSD estimated from the noise-

contaminated measured responses and the CSD of the true (noiseless) responses at
frequency wi; Sy _« y, IS the CSD between the interstory acceleration of the i™ story
(% — %_,) and the reference response y(t) ; W, arethe same factors in Equation (3.26).

All factors W;;, are significantly large near the natural frequency of the n™ story
substructure @., (@ =+/kn/m, ), and very small when far away from this frequency;
thus, the uncertainty measurement terms, Ny, /Sy ¢ gy and Ny /S, ), near

the substructure natural frequency w,, play adominant role in determining the parameter

identification accuracy; dramatically reducing these values can significantly improve the

identification accuracy.
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Since both numerator and denominator of the measurement uncertain terms,

Ny v /S(xﬂfxn,l)y,l and N, /S(xn—xn,l)y,l , are related to the reference y(t), selecting

different responses as the reference will lead to different measurement uncertainty and,
thus, different accuracy of the identified parameters. Therefore, the CSD_SUBID
method, compared with the FFT_SUBID method, provides an opportunity to improve the
identification accuracy by choosing an appropriate reference (see section 5.4 for more

detailed information).

5.3.2 Non-top Story Identification Case
The parameter identification errors of the i"™ non-top story of the CSD_SUBID

method can be written as

N, |/S -
0, N U, Uy Uy, Xyl [ (% =%)y
{ :| zZRe<|: ) ny,l/s(x-—xq)y +

0 1=1
Ny i /Ss-x 0y

ci

(%,1—%)y o) (516)
N U U k(l+1)
ZRe< 14 15/ S(x—xfl)y
I=1 U24,| U25,| (%.1=%)y 0
S c(i+1)
(%-%_1)y

where +1) and g1y are the relative identification errors of the (i+1)™" story parameters
ki+1 and ci+1, respectively. U;;; are the same factors asin Equation (3.32).

The identification errors of the i™ story parameters [6 64]" in Equation (5.16)
consist of two kinds of errors: the errors (the first part of the right side) directly related to

the measurement uncertainty of the structural responses ( Ny /S(x—xfl)y ,

Nyy /S 5y @d Ny /Sy 4 ,) and the accumulation errors (the second part) due
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to the uncertainty in the identified structural parameters of the story above
(Ouin S5y / Stz sy A OcinSix 5 )y/Six %y )- All factors Uy, are significantly
large in magnitude near the natural frequency of the i™ story substructure natural
frequency @, =+/k;/m and decay very fast when moving to lower and higher
frequencies. Therefore, both the measurement uncertainties and the upper story parameter
uncertainties near the substructure natural frequency w,, play an important in
determining error; significantly reducing their values can greatly reduce identification
errors.

Another interesting observation of this result is that the magnitudes of both kinds of

uncertainties are not only related to the sources of these uncertainties — the measurement

uncertainties ( N Ny, and N, ,) and the identification errors of the upper story

Xy
parameters ( &y,q and .5 ) — but aso are affected by two important structural
responses: Sy 5 )y ad Sy )y /Si-sx,)y - SiNCe Si_ )y Serves as the common

denominator for all three measurement uncertainty terms, amplifying S 4 ,, near the

substructure natural frequency w,, will lead to smaller measurement uncertainties and, in

turn, smaller identification errors. Similarly, reducing the cross power spectral density

ratio S(x+1—><)y/s(x—x4)y near the frequency w,, will result in smaller upper story

parameter uncertainties and, thus, smaller identification errors.

5.4 Selection of the Reference Response

The choice of the reference y(t) affects the accuracy of the identification. From the
error analysis results of the previous section, it becomes obvious that the best reference
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response should be the one that minimizes both kinds of uncertainties near the
substructure natural frequency. In order to make the reference selection procedure
simpler, three assumptions are made herein:
1. The measurement noise of structural responses is zero-mean and independent of
the true (noiseless) structural response.
2. The noises of different structura response measurements are mutually
independent.
3. Thereisonly one excitation source in the structure.
Based on the third assumption, it can easily be shown that the cross power spectral

density ratio Sy )y /Sx-x,y » Which affects the accumulation error of the

substructure identification, is not changed by selecting different reference responses. That
is, the accumulation error will be independent of the selection of the reference response.
Therefore, the selection of the reference response only needs to focus on minimizing the
measurement uncertainty near the substructure natural frequency. If the third assumption
is relaxed, the selection of reference signal y(t) can still be made but the process is
somewhat more complicated and may not give the global optimum.

From the error analysis results in the previous section, the measurement uncertainty

for the i™ story parameter identification will have the general form of Ny y /S(xfim)y

where j e{i -1} if i =n (top story identification) or j e{i—1i,i+2 if i #n (for non-
top story identification). To make this ratio small, the reference response y(t) should be
chosen such that the numerator of thisratio is small and, simultaneously, the denominator

islarge. The numerator of thisratio can be evaluated as
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5y Siqy _Siqy

= E[(X; + N, )(Y +N,)T-E[X;Y']=E[Y'N, ]+ E[N;X;]+E[NJN, ] (5.17)
= E[Y"]E[N, ]+E[N;]E[X ]+E[N;N, ]=E[N;N, ]

N

where Y and Xj are the Fourier transforms of the responses y(t) and XJ- (t), respectively;
and N, and N, are the Fourier transforms of the measurement noises of y(t) andX; (t),
respectively. The third and the fourth equality in Equation (5.17) are obtained by using
the first and second assumption given previoudly. It is obviousthat if the response y(t) is

not the structural response X; (t), ijy becomes zero. Therefore, the first rule for

selecting the response y(t) is that y(t) should not be any of the structura responses
involved in this step of the substructure identification. More specifically, y(t) isnot none
of the following: X _,(t), ¥ (t) and, for the non-top story, X.,(t). By choosing y(t)
using this principle, the numerators of al measurement uncertainty terms will be zeros.
However, it is worth emphasizing that the expected value in Equation (5.17) requires,
theoretically, infinite long structural responses; in practice, the measurements are aways
of finite duration and, thus, the expected value in Equation (5.17) calculated from finite
responses will usually be small but not zero. So the denominator of the measurement

uncertainty, S ¢ ), Still needs to be considered to further reduce the measurement

uncertainty.
Since the goa of reference response selection is to minimize the measurement

uncertainty near the substructure natural frequency w,, , the denominator of the
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measurement uncertainty should be maximized near @, . Define a performance function

for the K" candidate reference response v, .

i Lot

where W(jw) isafrequency weighting function, having the following expression,

2
do (5.18)

—k; /(ma’z)

W(iw) =
U9 =156 o) -k [(me?)l

As shown in Figure 5.2, the magnitude of the frequency weighting function peaks around
frequency w;, and quickly vanishes when further away. Hence, the reference y,
minimizing the performance function in Equation (5.18) will minimize measurement

uncertainty N , / St —% )y near the substructure frequency .
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To summarize the selection rules of the reference response y(t): y(t) will be selected
among all possible structural responses that are not involved in this step of the

substructure identification and which gives the smallest value of Equation (5.18).

5.5 Statistical Moment Estimation for Identification Error

In practice, it is of great value to provide some kind of uncertainty measurement for
the identified parameters. Such information plays an important role in the case of
structural damage detection, helping to determine if the change of the estimated
parameters is caused by structural damage or simply by the inherent randomness of the
estimation results. In this section, an approach to approximately estimate the first two
statistical moments (mean and variance) of the identification error is proposed based on
the results of identification error analysis developed in a prior section. The result of this
analysis not only helps provide better comprehension of the performance of the proposed
substructure method in rea uncertain circumstances, but also provides some important

suggestions to further improve its accuracy.

5.5.1 Top Story Identification Case

From the result of Equation (5.15), the identification errors of the top story

parameters are influenced by three kinds of terms: 1) the measurement uncertainty of the

cross power spectral density estimationsN,, je {n -1, n} ; 2) the cross power spectral

xjy,l ’

density between the n interstory acceleration and the reference response S and

Xn_xn—l) y;l !

3) factors W, . The W;;, are only related to the structural parameters of the top story and,

thereby, have deterministic values for a given structure; in contrast, the measurement
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noise terms and the structural response terms change from one identification to another
and are considered to be random variables.

For notational simplicity, two sets of complex random variables are defined as:

{8 | } _ {Wll,l Wiy, ]{Nxﬂw /St ~s, ) } (5.19)

€en) W21,| W22,| N %, / S(Xn—in,l)yyl

Using these newly defined random variables, the relative identification errors of the top

story parametersin Equation (5.15) can be expressed as

[an} ZN: {8knl+gknl ] (5.20)

cn I:l Een)l +8cn|

Four assumptions are made in this moment estimation:

1. The measurement noise and the true structural response are statistically
independent.

2. The measurement noise is a zero-mean white Gaussian process and the
measurement noises of different structural responses are dtatisticaly
independent.

3. Thetrue structural responses can be modeled as one or several independent zero-
mean white Gaussian processes passing through alinear time invariant system.

4. When calculating cross power spectrum densities by the Welch average
periodogram method, there is on overlap between two adjacent short segments
(i.e, D>T); therefore, the measurement noise in different segments are
independent one another. If the segments overlap, the noise from one segment
and the noise histories from the previous or following segments — or several
previous or following segments if the overlap is significant — now overlap,
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causing their Fourier transforms to possibly be correlated. As a result, it
becomes very difficult to estimate the variance of the parameter estimates in
Equations (5.21) and in Equations (5.24) and (5.25). Thus, only for the
estimation of the statistical moments, it is assumed that the segments do not
overlap; this assumption does not restrict the substructure identification base on
the cross power spectral density, which can be used with non-overlapping
segments.

Based on above four assumptions, the following properties of random variables &, and

£¢n Can be obtained as:

Elew, |=0 forvi,l=1..N (5.21a)
Ele, ]=0 forvil=1...N (5.21b)
Elsw £mm]=0 forvl,me Z[L,N]andl = m (5.21c)

11|‘ E|: 1y|‘ /‘S(x xnl)yl }
e N[5

|=0 forvi,meZz[,N] andl = m (5.21¢)

21|‘ El: Sa Y| /‘ (%0 =%0_1) ¥l :l
+ 22,|‘2EUany,|‘ /‘S(xnxnl)y,|‘1

]=O for vVI,me Z[L,N]and| = m (5.219)

Ele £inm]= O for vi,me Z[1, N] (5.21d)

E[gcn’I &

cn,m

Ele., e 0= forvl,meZ[LN] (5.21f)

E[‘s‘kn,l ‘c"cn,m
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VVll,IWZlI [ xnyl‘ /‘S(x —X_) Y :|

forvl,me Z[LN]  (5.21h)
. 2 2
+Woy Wy EUNXny,I‘ / ‘S(xn—xn,l)y,l‘ }

E[‘c"kn,l gén,m] = 5|m

. 2 2
Wi Wy, EUNXMy,I‘ / ‘S(xn—xn,l)y,l‘ }

, , forvl,me Z[LN]  (5.21i)
+W2*1,|W22,| EUNXny,I‘ / ‘S(aninfl)y,l‘ }

E[gljn,l gcn,m] = 5Im

where Z[1,N] denotes a set containing natural numbers from 1 to N; o, is Kronecker

1ifl=m

deltafunction. o,,, = {O 1%

The proofs of Equation (5.21a)~(5.21i) are given in Appendix B. Using the results
from Equation (5.21a)~(5.21i), the mean and the variance of the identification error for

the top story structural parameters [k, ¢,]" can be calculated as

E[0a]~0 (5.22)
N [ ‘N 2] ‘N 2

VAR Z N\Ill" ‘2 E e 2 | TV ‘2 E xn—ylz (5.24)
= _‘S(Xn—xn,l)y,l‘ ‘ (xn-xn,l)yJ‘
N [ ‘N 2] ‘N 2

VAR ;2 NVZL' ‘2 E L=l 7 | T Vo ‘2 E Xn—ylz (5.25)
= _‘S(anxn_l)y,l‘ ‘ (Xn—Xn_l)y,l‘

cov|6,.6.,]=0 (5.26)

The proofs of Equations (5.22)~(5.26) are given in Appendix C. The results in
Equations (5.22) ~ (5.23) show that the CSD_SUBID method is an approximately

unbiased estimator of structura parameters with finite length structural responses.
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The values of E{| N, " /IS, 4,y '} (i =n-1n), needed for the calculation

of the identification error variances in Equations (5.24)~(5.25), are computed using the

following approximation: the random variable | N, ,, & / | Six %)y |* is first expanded
into a Taylor series up to the second order with respect to the mean value K| N I}

and E{| Sy I’} : then, take the expectation of this Taylor expansion to obtain the

following resullt.

2 2 ) ,
_ E{‘ Nx,- yl } COV{‘ in yl ‘ "S(X'n*xn_l)y,l ‘ }
‘S(anxn,l)y,l ‘2 E{S(xn,xnfl)w ‘2 } E{S(Xn—xnl)w ‘2 }2

2 2 (5.27)
E{‘ N %yl ‘ }VA R {S(Xn‘xnl) vl ‘ }

SR
E{S(xn—xnl)%' ‘ }

Due to the difficulty in directly evaluating the covariance term

+

COV{|N, ,, >, Sy s yys [} » the upper bound values of E| N, o, |2/|anfxn,l)y,l [},

calculated via inequality relation shown in Equation (5.28), are used to calculate the

variances of identification errorsin Equations (5.24) & (5.25).

2 5 -
}/ \/VAR{‘NW""‘ }VAR{SM—X“)J
‘ij yl ‘2 E{‘ Ny, ‘2} \/VAR{‘ N, ‘Z}VAR{S(%XMM ‘2 }

S +

‘S(xnfxn,l)y,l ‘2 ) E{S(aninfl)y" ‘2} E{S(Xn—xnl)yvl ‘2 }2
2 2
E{‘ijy,l }VAR{S(Xn—an)yJ‘ }

5 12
E{S(xnxnl)%" }

-1scov{‘Nyij }31 (5.28)

‘2

Is

y(xn_xnfl)’l

(5.29)

+
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The vaues of E{IN,, [} , E{ISy x. [T VAR{‘S‘. 1 and

anxn—l) y,l ‘

E{1 S % .y I’} needed for the computation of Equation (5.29) can be evaluated as
follows.
Noys =g 2 NPy (P NP |- S T x(p
p= p=

19 (5.30)
= G2 XN NP NN
-
According to the central limit theorem for weakly dependent random variables
(Billingsley, 1995), as Q — the number of the structural response segments used in
calculating power spectral in Welch method — becomes large, the probability distribution

of Nyxj’I is approximated by a complex Gaussian distribution with the mean

E[Y"N, , +Nj, X, + Ny N, Jand the variance VAR[Y, "N, | +Nj X + Ny, ijyl]/Q.

X

(The superscript p is dropped here due to the stationary condition for both the structural
responses and the measurement noise. Note that the variance need not include covariance

between segments as the noises in non-overlapping segments are independent.) Similarly,

as Q becomes large, the probability distribution of S, ; ., can be approximated by a
complex Gaussian distribution with the mean E[(X,, — X,,,)Y,’] and the variance

VAR[(X,, - X, 4,)Y"]/Q. The means and variances of N, , and S which

(%—S%0-1) Y.l 1
completely define the probability distribution functions of these Gaussian random

variables, can be evauated from the dtatistics of the structural response and the

measurement noise. Therefore, al values of E{I Ny, Y EISk sy I’}
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VAR{|IN, , '} and VAR{|S;  ,y. I’} needed in Equation (5.29) can be then

calculated from the probability distribution functionsof N, and Sy )y, -

Since the variances VAR{|N,, [’} and VAR{|S; , . I’} vanishes in the

WEelch average periodogram method as Q tends to infinity. The limit of Equation (5.29),
as Q tends to infinity, becomes

: lim E{‘NX_ ,lr} E{nm[Nx_yﬂ}
lim E o U e

= ||g 28 |'mE{s Il N
‘ (Xn’xnfl)yvl‘ Ql_)w (Xn’xnfl)yvl‘ E |Im ‘S(Xn—xﬂ_l)y,l‘

‘N

X; vl

(5.31)

Q-0
Thelast step in Equation (5.31) is due to the facts that ij yi 1S azero-mean complex

random variable with infinite small variance (as Q—) and S , Isanon zero-mean

anxn,l)y,
complex random variable with infinite small variance (as Q—w). Thus, the limit in
Equation (5.31) becomes the ratio of the magnitude square of the complex random

variables N, ,, and S which obviously equal zero.

Sy =S 1) Y
Thus, as Q tends to infinity, the values of E{|N, ,, I* /IS, 4,y I} (i=n-1n)

converge to zero, implying that the variance of estimated structural parameters converge

to zero. Therefore, the CSD_SUBID method is aso an asymptotically consistent

estimator for the top story structural parameters.

5.5.2 Non-top Story Identification Case

As suggested by Equation (5.16), the identification errors for the i™ (non-top) story

substructures [fy+1y Oqi+1)] " €qual the combination of two kinds of identification errors.
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Fki}z 0 |, |0 (532)
eci eci @ eci (2)

where[64™ 65" are the identification errors caused by the measurement uncertainty of
the cross power spectra density as defined in Equation (5.33); and [6® 65®]" are the
identification errors due to the uncertainty of the structural parameters of the story above

as defined in Equation (5.34).

Ny 1 /S oyl
0. N Uy, Uy Uy, %yl [ S (%=%4)Y,
{ ‘ }ZR { | Nyyi /Sx-x)vi (5.33)

Ny v /Sts-s i

S. .
(%.,,-%) Yl
gk i+

@1 ~ U U S. . (i+1)
Hkl(z) _ ZR [ 14, 15/ } S(mfm)y,l (5.34)
Os =1 Uss Uz, KXVl g
S c(i+1)
(X7X-1)yv|

Since the identification error [fy;+1) Oei+n)] " iS a real-value vector, Equation (5.34) can be

further smplified as

(5.35)

N N
RelU A i+1)i RelU A i+1)i
I:Hki(Z):IZ E e[ I l)'l] E e[ 1817 l)’l] [ek(ul)}

(2 N N ’ 0 "
Ou zRe[U24,IA(i+l)i,l] ZRe[Uzs,lA(i+1)i,|] c(i+)
=1 =1

where Ay =S5y /S5y, -
Following derivations, similar to those in subsection 5.5.1, it can be easily shown
that the statistical moments of the error [6s® 651" in Equation (5.33) can be evaluated

a5,

Elo,® |~ 0 (5.363)
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Elo,® |~ 0 (5.36h)

U’ EU Ny 0 \2 / ST ﬂ

VAR[QH(l)]z%i +\U12,|\2E:\NW\2 / \S(H_l)y,l\z} (5.360)

1=1
2 2
/‘S(X1_X1—1)yv| ‘

‘U 21,"2E[ Ny .y 2/‘wa_1)y,l H
VAR[,® ]~ %ZN: U ED Nyl /1S ﬂ (5.360)

=
+ ‘U 23] ‘2 EU Ny ‘2/‘8(*’5"’4”" ‘2}

covlg,“0,” |~ 0 (5.366)

+ ‘U 13 ‘2 E:‘ Niﬁﬂyvl

The proofs for Equations (5.36a)~(5.36€), which are similar to those of Equations
(5.22) ~ (5.26), are omitted here.
Due to the third assumption in the choice of reference selection in section 5.4 that

there is only one excitaion source in the dtructure, the terms

A1) = S %)yl /S(x—x,l)y,l become deterministic values. Then, the mean of the

second kind of identification errors [64® 64®]" are calculated as follows

Qki(z) B Oisa)
E{gd 2 |=TE Oy (5.37)

N N
Z Re[U 14, A(i +2)i,| ] E Re[U 15, A(i +2)i ) ]

where T = | 1< N .
E Re[U 241 A1) ) ] I; Re[U 251 A i+2) ]
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Combining the results from Equation (5.36a), (5.36b) and (5.37), the mean of the
identification error for thei"™ story parameters becomes

E[Z: } ~ EB: ((2 } " EB‘:: 2 } -T. E[ZZ;':B} (i=1..n-1) (5.38)

Given that the mean of the identification errors of the top story parameters [0 O] "

are zero as shown in Equations (5.25a) and (5.25b), the mean of the identification errors

of other story parameters all (approximately) become zero.

EF“ } ~ H (i=1..n) (5.39)

0 0

ci
Putting the result of Equation (5.39) back to Equation (5.37), the covariance matrix
of the second kind identification error [0® 64®]" becomes

0,21 [ varjp,®| covlp,® 6,7
0,2 || covlp,?,0,%]  vAR|g,?]

~ { VAR[HK(Hl)] Cov[ek(i+l)16c(i+l)]:|'TT
cov [ek(i+1) J ec(i+1)] VAR[&C(M)]

cov{
(5.40)

Then, the covariance matrix of the identification errors [6 64]" are evaluated as shown

in Equation (5.41).

0.1 [ varjp,®] covlp,® 6,
0, | |covlp,®,6,%] vaRl, (”]

ci C

Cov {

vaRrfg,®]  covlp,®.6,? 541
covlp,®.0,%]  vaRrp,?| '
covlg,®,6.?

cov|g,®,0,?

. o COV|O, @ 6,?
cov|g,?,0,%

f L
 I—
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Since the two kinds of the identification error — [0 05®]" and [6x® 05P]T — are

al related to some common structural responses (e.9., Sy _x )y, ), they are generaly

correlated; thus, the covariance matrix between the two kinds of the identification error —
the third term in Equation (5.40) — is not a zero matrix. However, due to the great
complexity involved in obtaining the analytical expression for this covariance matrix, two
alternative methods are discussed herein to evaluate the third term in Equation (5.41).
The first method simply assumes that the two kinds of identification error are
uncorrelated. Then the third matrix on the right of Equation (5.41) equals a zero matrix
and the covariance matrix in Equation (5.41) is further ssimplified as Equation (5.42). But
such an assumption may sometimes lead to an under-estimation of the identification error

variance, which isundesirable in real applications.
0. ) o 5o
covl % || VA R[gk, ](1) covls, L
0s| |cov[p,®.0,%] vaRJ,

| ovar 0,2]  covlp,?.0,”
covlp,®.6,%]  vaRr[e,? ]

(5.42)

The second method utilizes the inequality in Equation (5.43).

vaRlg,®]  covlp,®,0,® . vAR[p,®|  covlg,®,0,?
covlp,®,6,%]  vaRr[p,® ] covlp,®.6,%]  vaRrlp,® ]

cov|,”,0,?
cov|g,®,6,?

4
)0 g0 (5.49)

2
Hki( ),0 ()

ci

>2

Ccov
cov

where “>” denotes the semi-positiveness of the matrix relationship.
Then, the upper bound values of the covariance matrix of the identification errors

[0 Oc]" are evaluated as
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@ [h) @
COVFM} g 2{ vAR[g,®]  covlg,®.e, ]]

0,|” covlp,®.6,%] var, (”C]

ci Ci

(5.44)

.J VvARp®] cov 0“(2),9.(2’]}

covlp,®.0,?]  varl, <2>C]

where “<” denotes the semi-negative nature of the matrix.

However, if Equation (5.44) is adopted to calculate the variance of the parameter
identification error, the variances are over-estimated. Moreover, the over-estimated
variances will propagate to the variance estimation of the identification error of the lower
story parameters. Therefore, Equation (5.44) will lead to large over-estimation of the
identification error variance for the structural parameters in the lower stories, which, of
course, is also undesired. In this study, Equation (5.42), assuming the two errors are
uncorrelated, will still be used to calculate the variance of the identification error;
Equation (5.44), assuming the two errors are fully correlated, is only treated as the

conservative upper bound for the variance estimation.

5.6 CSD_SUBID with Non-stationary Response

The derivation of the CSD_SUBID method in section 5.1 requires that the structural
responses are wide sense stationary. In order to achieve accurate identification results
when the noise level in the measurements is large, very long stationary structural
responses are usually needed by the CSD_SUBID method. However, since most ambient
excitation sources, e.g., micro ground tremor, are not wide sense stationary in the long
run, the structural responses due to ambient excitations are, strictly speaking, not
stationary. Can CSD_SUBID method be used to identify the structural parameter when

the structure is subject to ambient excitations? In this section, it will be shown that, with

140



little modification, the CSD_SUBID method can be applied to perform the identification
with non-stationary structural responses.
Assume that there are Q groups of the structural responses available, each of which

contains the structural acceleration responses X (t) (i =1...,n) and a reference response
y(t) of the same duration T. The structura responses in these Q groups are not

necessarily stationary; they can be obtained by partitioning a set of long structura
response records into Q non-overlapped/overlapped segments or by recording the

structural responses of the same duration T at Q different times.

5.6.1 Top Story Identification

Since the structural responses in each group satisfy the dynamic equations of the
structure, these responses are also governed by the dynamic equation of the top story

substructure as follows,

M@+ (%@ = %) + K (6P = x4 P) =0 (5.45)
where %@ (i =1,.,N) is the i floor displacement response relative to an inertial
reference frame in the g™ group responses; the superscript q (g=1,...,Q) denotes the
number of group responses. Adding —m, Xn_l(‘*) to both sides of Equation (5.45) gives

m, (xn(m _x @ ) e, (Xn(q) _x @ ) ik (Xn(q) _x, @ )= “m % @ (5.46)
Take Fourier transform of Equation (5.46)

m, (X-n(q) _X, @ ) ‘e, (Xn(m _x, @ ) Tk, (Xn(q) _x, @ ): —m X, @ (5.47)
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where X;@ X, (@ X. are the Fourier transforms (or the frequency responses) of the

(@) (@)

displacement, velocity and acceleration responses of the i floor x, @, %@, % @ in the g™
group, respectively. Using the rule of integration by parts, it can be shown that

X, X, @ and X, have the following relations.

: =0
X, (@ = x @ (t)e—Jth:T +(jo) X, @ (5.48)

. L ot=0 a0
%9 =x @+ (jo)x P e+ (o)X (5.49)

Substituting the results of Equations (5.48) & (5.49) back to Equation (5.47) leads to

(Xn(q)_)-(-n_l(m m +Sn _kn —Cm X, @@ (5.50)
jo (jo)?

. t=0 ) . t=0
where Fn(q) _ Axﬂ(q)efjwt‘ l_(n +A, (q)efjwt‘ { ?n n .kn 2}
=T (jo) 7 =T (jo) (jo)

Axn(q) _ Xn(q) (t) . anl(q) (t) : Axn (@ _ )-(n(Q) (t) . )‘(nfl(q) (t) )
Rearrange the order of Equation (5.50).

1 - >‘<‘n_1(q) _ X'n(q)
1-] Cn/(mna)) - kn /(mna)z) Xn—l(q) _ Fn(q) /mn

(5.51)

Multiply both the numerator and denominator of the right side of Equation (5.51) by the
conjugate of the Fourier transform of the reference response y@ . It is worth pointing out

here that there is not any specific requirement for the reference response, as opposed to
the CSD_SUBID method which requires the reference response be wide sense stationary

with respect to other structural responses.
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1 ~ ()'('n_l(q) _ X'n(q) )Y(q)

_ ST = - (5.52)
1= j ¢y /(M) =Ky /(M@?) (X @ —F, @ /m jy@
An identity in fraction number analysisis shown in Equation (5.53),
A_C _A_C_A+C (553)

B D B D BiD
where A/B and C/D are two fraction numbers.
Since Equation (5.52) istrue for any q (g=1,...,Q), by using the equality in Equation
(5.53), Equation (5.52) can be rewritten into a new equation, whose right side involves al

Q groups of structural responses together.

Q /.. . .
. Z(X @%@ )Y(q)
: — = Qq:1 (5.59)
1-jc,/(ma) -k, /(me?) Z(X-n_l(q) _E@ /mn)Y“*)*
g=1
Divide the numerator and denominator of the right side of Equation (5.54) by QT.
P, ,—P
. 1 . — Xn-1Y XnY (555)
1- J Cn/(mna)) - kn/(mna) ) Pxn,ly - any
1 &y @yv@ : 1 3 @y /
where ny=—TZXi Y (i=1..,n); Pf”yZEZFn Y9 /m, .
g=1 g=1

Then, an identification problem can be formulated by minimizing the second norm
of the difference between the two sides of Equation (5.55) over al possible frequencies,

in which the structural parameters of the top story [k, c,]" areidentified.

) N ~ A ~ A 2
agmin J(k,,c,) = Z‘ (ks ) = Fi (B y B Py ) (5.56)
=1

K, .Cn |
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1 A A A a P, ,—P
where fI (kn’Cn) = . y (P Py, Pf ) = —AX”’ly AX”y :
1-je,/(may) -k, /(mna)lz) e Py~ Pry

A~

P and Isfnyare the variables B, and P; , in Equation (5.55), respectively, calculated
from the noise contaminated measurements.

5.6.2 Non-top Story Identification

After the structural parameters of the top story [k, c,]" have been identified, a
similar induction method as in the CSD_SUBID method is established to identify
structural parameters of other storiesin the following manner.

The dynamic equation of thei™ (i<n) story substructure can be written as

m Xi (@ +¢ (Xi (@ Xi—l(q)) n ki (Xi (@ Xi—l(Q))

" (5.57)
+Ci g (% @ _ Xi+1(q)) +Ki1 (% @ _ Xi+1(q)) =0

where %@ (i =1,..,N—1)is the i floor displacement response relative to an inertial
reference frame in the g™ group responses; the superscript q (g=1,...,Q) denotes the group
response number. Adding —m %Y to both sides of Equation (5.57) and taking the
Fourier transformation gives

m ()’(’i(Q) _ Xi—l(q)) +c (Xi(Q) _ Xi—l(q)) n ki (Xi(q) _ Xi—l(q))

. . . (5.58)
+ Ci+1(xi(q) - Xi+1(q)) + ki+1(xi(q) - Xi+1(Q)) =—-m xi—l(q)

Using the relations between X, XY and X, , shown in Equations (5.48) and

(5.49), the following equation is obtained
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X_(Q) - X. (a) m + Gi + i
( | - jo  (jo)?

(5.59)
. . . C k.
=_rnixi—1(q)+(xi+1(q)_Xi(q) Coa ) Kia |, p@
lo (jo)
- t=0 k. . . t=0| G k.
Fi(q) :A)q(q)e—mt‘ _—'+A)q(q>e‘“"t‘ {_. ! 2}
t=T Jo t=T| |w (ja))
where ’
_A (q)e—jwt‘tzoﬂ_A (q)e—jwt“:o it , Kig
%11 t=T Ja) %11 t=T Ja) (Ja))Z

AX (@ _ X, (a) (t) . Xifl(q) (t) : Axi (@ _ X, (a) (t) . Xifl(q) (t) : AXM(Q) _ Xi+1(q) (t) —X (a) (t) :

A, @ =%, 1) - %@ (). Rearrange the order of Equation (5.59) to get.

1
1-j¢ /(mo) -k /(mae?)

y § (5.60)
~ Xi—l(q) _ xi(Q)

- Xi—l(q) + (Xm(q) - Xi(q))ljci+1/(ma)) + ki+1/(”\0)2)J— F (@ /mi

Multiplying both the numerator and denominator of the right side of Equation (5.60) by
the conjugate of the Fourier transform of the reference response y® and using the
equality condition of fraction numbers given in Equation (5.52), the following equation is
obtained

1
1-j¢ /(M) -k /(ma?)

Q /.. .. *
Z(Xi—l(q) _%@ )Y(Q) (5.61)
g=

1

S %@+ (%4 - %@ o /(M) + K /(me?) [+ @ /m @
g=1

Divide the numerator and denominator of the right side of Equation (5.61) by QT.
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1

1-j¢/(mw) -k /(mw?)
PXi—ly B Pxiy

y+ (P .y~ PG /(Mo) +k .,/ (Ma®)] - P,

(5.62)

PX o

1 &g @v@ g : 1 3 @@ / :
where P*'VZQ_Tin YW (i=1..n); PfIy:Q—_I_ZFi Y /m (i=1..,n-1).
g=1 q=1

Assuming that the structural parameters of the (i+1)" story are known, an
identification problem can be formulated to identify the structural parameters of the non-
top story [ki ¢]', which minimizes the difference between two sides of Equation (5.61)

over all possible frequencies.

~

ar%mln ‘J(k|’c|) Z‘gl(kﬂ |) gl( Xyl xyI’PxHH’ fyl) (5-63)
G
where g,(k,C) = 1
T - e /me) -k (me)
5 FA)MVJ B FA)XyJ

gl( I |,P+1|, tyi) = = : =
vt Byt By« Py yl +(P i~ By)lic./(may) + m/(mwf)]— Pty

Since the identification parameters of the top story have been identified from the
previous step, which can be used to initiate the induction identification process described
in this section, by repeating the identification problem (5.63), the structural parameters of

all stories can beidentified from top to bottom iteratively.

5.6.3 Comparison of CSD_SUBID Method with Stationary and Non-
stationary Responses

Comparing the CSD_SUBID method using non-stationary structural responses,

shown in Equations (5.57)& (5.63), with the method using stationary structural responses,
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shown in Equations (5.8)&(5.10), it is found that the two identification problems differ in
the following two aspects:

1. The terms P,

%y » used in the identification with non-stationary responses,

replace the cross power spectral S;, used in the identification with stationary

responses.

2. There are new terms P, involved into the identification with non-stationary
responses, which does not exist in the identification with stationary responses.

The terms Py Can be considered a pseudo cross power spectral density between the
structural response X; (t) and the reference responses y(t) , estimated by the Welch
average periodogram method without window function as introduced in section 5.2. If
the structural responses X (t) and the reference response y(t) are jointly wide sense
stationary, P, just becomes the cross power spectrum S, in the original derivation of

the CSD_SUBID method.

The terms P, are introduced into the identification process due to the fact that the
structural displacement and velocity may not be zero at the beginning (t=0) and the
ending (t=T) in the recorded responses. Next, it will be shown that if the structura
responses X; (t) and the reference response y(t) are jointly wide sense stationary, F3f‘y
will converge to zero as the number of group responses Q and the length of the responses
T tends to infinity. For simplicity, only the proof of the top story substructure case (i=n)

will be given below; the proof for other story substructures (in) can be easily obtained

by following a similar procedure.
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The last step in the proof uses the results that the terms lim J: R(xnfxnfl)y(t)e’j“"t dt and

pm j_T R % 1y (t)e '“'dt arefinitein the general wide sense stationary cases.

Y ]=0. Therefore, it

A similar proof can be given to show that Ilmi E[A, € jot | o

isproved that P, , =0 asboth Q and T tend to infinity.

The above proof provides some insightful information about the CSD_SUBID
method with non-stationary responses:
1. When the structural responses are stationary, the pseudo cross power spectrum

terms Py, become the cross power spectrum S, ; thus, the new CSD_SUBID

method using non-stationary structural responses, in Equations (5.56) and (5.63),

converges to the origina method in Equations (5.8) and (5.10) with a little
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modification, which accounts for the effect that the structural responses are not
zero at the beginning (t=0) and the ending (t=T) in the recorded responses.
2. Since, in most practical cases, the structural displacement and velocity are not

measured, the terms P, become unknown and have to be omitted in the

formulation of the identification. Under such a situation, elongating the length of
the measurements T will reduce the identification errors caused by neglecting the

terms P, in theidentification.

5.6.4 Identification Error of CSD_SUBID with Non-stationary Response

Applying the identification error analysis method in section 3.2, the identification
error of the CSD_SUBID method with non-stationary structural responses for both top n™

story and the non-top i story can be obtained as
0 N W, W, N, P W, N

|: kn} ~ Z R 111 121 | X, 1yl / (%, —%1_1) Yl n B Tyl (566)
e 1=1 W21,| W22,I I\lxny,l / P(Xn—xn,l)yyl W23,I P(xn—xn,l)y,l

Ny 1 /Py«
2 U 21 U 2. U 23 %yl )0 (=%_0) Yl U =)

26, (%-%_1)yl
inu)’r' /P(Xi‘iid)yv'

Ptass)y o (567)
N U U k(i+l)
+ZR { 14, 15, } P(}‘Q—xi,l)y,l
1=1 U24,| U25,| P(xm%)w 0.
Px-x0v e
where N, = |3fiy'I —Py,, . The proofs of Equations (5.66) and (5.67) are given in

Appendix D. It is worth pointing out that all factorsW,

i, andU;; | in the above two

equations are the same factors in Equation (5.15) and (5.16) (the identification errors of
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the CSD_SUBID method with stationary responses), except for the four factors

(Wig,» Wag, U @and U o4, ) that do not exist in Equations (5.15) and (5.16).

It is interesting that the identification errors of CSD_SUBID method with non-
stationary responses and with stationary responses are so similar that the only difference

is the additional error terms caused by the introduction of the extra uncertainty terms

Ny, in the case of non-stationary responses. Thus, many results of error analysis of the

CSD_SUBID method using stationary structural responses can be conveniently re-
utilized.

As shown in Figures 5.3 and 5.4, the magnitude of al factors W;, andU;;, in
Equations (5.66) and (5.67) are significantly large near the story substructure natural
frequency and decay very fast when moving to lower and higher frequencies. Therefore,
the parameter identification errors are mainly determined by the uncertainty terms in
Equations (5.66) and (5.67) near the substructure natural frequency; largely reducing the
uncertainty terms near the substructure natural frequency can significantly improve the
identification accuracy.

Moreover, al uncertainty terms in Equation (5.66) and (5.67) are also related to two

important structural responses: Ry 4y, and Py gy /Ps_x yys - Since Py 5y

serves as the common denominator for all measurement uncertainty terms, larger

Pix—% )y, leadsto smaller measurement uncertainties and, in turn, smaller identification

errors. The terms including Py )y, / Pix—% )y, @e proportional to the uncertainty of
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the upper story parameters;, smaller R gy, / P —x ,yys Will result in smaller upper

story parameter uncertainties and, thus, smaller identification error.

1

10 T T T
A =Wy
10° | 7 N ' = Wyl
= /- -o-W,
2, A /7y N ——W,
w 10 : o NN 21
o Y \x& e W,
B i % 4 ﬁ\\ N 22
o 10 / & g\&\ : -0-Wy
£ R b
s Y TR
o 10 e W
'g g =4
= 3
[=)] i
E 10 O
10 3
0.4 0.6 0.8 1 1.2 14 1.6

normalized frequency (o)l /m’.o)

Figure 5.3 Magnitude of the factors Wij;,

-
o
(=]

N

10"

magnitude of the factors Uii |

-

0

5.7 lllustrative Exam

.4 0.6 0.8 1 1.2 14 1.6
normalized frequency (o)l /mio)

Figure 5.4 Magnitude of the factors Uj;,

ples

5.7.1 CSD_SUBID Method with Stationary Response

In this section, the CSD_SUBID method is first tested on the same 5-story shear

structure used in the third and fourth chapters with stationary structural responses. Then,
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alarge 10-story uniform shear structure is used to check if the CSD_SUBID method can
be scaled well to deal with larger shear structures. The parameters of the 10-story shear
structures are picked as m=1x10° kg, ¢;=8x10° N-sec/m, ki=16x10" N/m (i=1,...,10). It is
assumed that both structures are subject to ground excitation only.

The ground excitation U, is modeled by a Gaussian random pulse process passing

through a 4™ order band-pass Butterworth filter with 1Hz low cut-off frequency and
12 Hz high cut-off frequency. 3600-second ground and floor acceleration responses,
sampled at 200Hz, are simulated to perform the identification with the CSD_SUBID
method. The Welch average periodogram method is applied to calculate the cross power
spectral densities needed to formulate the identification problem: the 3600-second long
structural responses are partitioned into short segments of 30 seconds each. A Hanning
window is applied to each segment response to reduce the effect of leakage. To increase
the number of averages and reduce the variance of the estimated power spectral, two
adjacent segments are overlapped by 25% of the frame length. The measurement noise is
also assumed to be band-limited Gaussian white noise with the cut-off frequency at
100Hz. To test the effectiveness of the proposed method as would be typical with only
ambient excitation sources, fairly large measurement noise is added to the true structural
response. It is assumed herein that the magnitude of the measurement noise of all
acceleration responses is the same, with root-mean-square (RMS) value equa to 50% of
the RMS vaue of the ground excitation. Figure 5.5 shows an example of the first two
seconds of response of the 5™ story acceleration, which demonstrates how significantly

the measurements are distorted by the added noise.
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Figure5.5 The 5" floor acceleration response with and without measurement noise

To examine the effect of choosing different reference responses y(t) on the
identification accuracy, two scenarios are considered here: 1) for each step of
substructure identification the reference y(t) is selected among the measured floor
accelerations and ground acceleration, using the reference selection rules in section 5.4;
and 2) The reference y(t) is fixed as the top floor acceleration for all story substructure
identification, chosen because the top floor acceleration has the largest response in terms

of RMS value among all floor accel eration responses.
a) ldentification Results

100 identification tests, using the CSD_SUBID method, are performed on the 5-
story and 10-story structures. The statistics of the identification errors of the 5-story
structure in both scenarios are listed in Tables 5.1 and 5.2.

Table 5.1 shows that the CSD_SUBID method, coupled with the proposed reference

response selection rule, provides excellent identification results: i) the means of the
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identification errors of both stiffness and damping parameters are all very close to zero
even with quite large (50%) noise disturbance, which verifies the analysis result that the
CSD_SUBID method is an asymptotically unbiased estimator for structural parameters.
i) the CSD_SUBID method can still provide very consistently accurate results under the
disturbance of quite large measurement noise (50%). The largest relative root-mean-
square-error (RMSE) of all story stiffnessees is just 1.1%; even for damping parameters,
usually difficult to accurately identify, the largest relative RMSE is only 5.3%.

However, the results in Table 5.2 show that if the top story acceleration response is
chosen to be the reference response for all substructure identifications in scenario 2, the
identification accuracy decreases drastically. As shown in section 5.4, if the reference
response is one of the structural responses involved in the substructure identification
process, the expected values of measurement uncertainty terms will no longer be zeros,
which leads to the biased estimation of structural parameters. Moreover, the noisier the
reference and structural responses are, the larger the biased estimation will be. Since the
story acceleration Xs is involved in the identification of the 4™ and 5™ story parameters
and the measured structural responses are quite noisy in this case (50%), using X as the
reference in that identification results in large identification error for the 4" and 5™ story
parameters, which consequently causes the large identification errors for the structural
parameters in lower stories due to error accumulation.

Table 5.3 shows the statistics of the identification results of the 10-story structure
using the optimal reference selection rules in the section 5.4, which demonstrates results

similar to the 5-story structure. For the larger 10-story structure, the CSD_SUBID
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method is still able to provide very accurate identification results when subject to a quite

high level of noise disturbance: the largest relative RMSE of all stiffness estimatesis only

2.1% and the largest relative RM SE of all damping estimatesis only 9.2%.

Table 5.1 Theidentification result statistics of the 5-story structure with 50% noise

(scenario 1: using the optimally selected responses asther efer ences)

Story Story stiffness |2i (x10°N/m) Story damping €. (x10°N-sec/m)
number y(t) ean relative relative ean relative relative
RMSE STD RMSE STD
. 1601 8.03
1 X5 . 0.5% 0.5% . 2.7% 2.7%
(0.1%) (0.4%)
. 1600 8.02
2 X 0.5% 0.5% 2.4% 2.4%
9| (0.0%) ° ° | (03%) ° °
. 1597 7.97
3 X 1.1% 1.1% 5.3% 5.3%
9 | (0.2%) ° ° (-0.3%) ° °
1600 7.99
4 X 0.4% 0.4% 1.5% 1.5%
2 | (0.0%) ° ° (-0.1%) ° °
1600 8.00
5 X, (0.0%) 0.2% 0.2% (0.0%) 1.1% 1.1%
. 0 . 0

*: relative error for mean estimate

Table 5.2 Theidentification result statistics of the 5-story structure with 50% noise

(scenario 2: usingthetop the story accelerations asthe refer ences)

Story Story stiffness |2i (x10°N/m) Story damping €, (x10°N-sec/m)
number | YO relative | relaive relative | relaive
mean mean
RMSE STD RMSE STD
. 1551 8.48
Xg . 3% 2% . .6% 3%
1 3.3% 1.2% 8.6% 6.3%
(-3.1%) (5.9%)
. 1539 7.59
2 Xg 4.1% 1.4% 8.7% 7.1%
(-3.8%) (-5.1%)
. 1634 4.61
Xg e 1% .00 U0
3 3.7% 3.1% 44.6% 14.0%
(2.1%) (-42.4%)
. 1683 7.97
4 X 5.2% 0.4% 1.9% 1.9%
5 | (5.2%) ’ ° | (03%) ’ ’
. 1609 7.72
5 X 0.6% 0.2% 3.5% 1.0%
5 | (0.6%) ° ° | (-33%) ° ’
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Table 5.3Theidentification result statistics of the 10-story structure with 50% noise

(scenario 1: using the optimally selected responses asthereferences)

Story Story stiffness |2i (x10°N/m) Story damping €. (x10°N-sec/m)
number | YO ean relative | relative i relative | relative

RMSE STD RMSE STD

} 1508 7.97
1 % 0.8% 0.8% 3.9% 3.9%
5 | (0.1%) ° ° | (03%) ° °

.. 1600 7.91
2 % 0.8% 0.8% 4.2% 4.0%
9 | (-0.1%) ’ ° | ((11%) ’ °

1601 7.97
3 e 0.8% 0.8% 4.0% 4.0%
1| (-0.1%) ° ° | (03%) ° °

1602 8.01
4 % 0.8% 0.8% 4.4% 4.4%
1| (0.1%) ’ ° (0.1%) ’ °

1601 8.05
5 % 1.1% 1.1% 5.3% 5.3%
1| (0.1%) ° ° (0.6%) ° °

1508 8.05
6 % 0.8% 0.8% 4.7% 4.7%
1| (-0.1%) ° ° (0.6%) ° °

1508 8.02
7 % 0.9% 0.9% 4.8% 4.8%
1| (-01%) ’ ’ (0.3%) ’ ’

1599 7.84
8 % 2.1% 2.1% 9.2%4 9.0%
1| (-01%) ’ ° | (L9%) ’ °

1600 8.00
9 % 0.5% 0.5% 2.5% 2.5%

(0.0%) (0.1%)

1600 8.00
10 | X% 0.4% 0.4% 1.8% 1.8%
1| (01%) ° ° (0.0%) ° °

Similar to the 5-story structure, if the top floor (the 10" floor) acceleration response

is chosen to be the reference response for all substructure identifications as in scenario 2,

the CSD_SUBID method will no longer provide accurate identification results, which is

verified by the identification resultsin Table 5.4.
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Table 5.4 The identification result statistics of the 10-story structure with 50% noise

(scenario 2: usingthetop the story accelerations asthe refer ences)

Story Story stiffness lzi (x10°N/m) Story damping €. (x10°N-sec/m)
number | YO I relative | relative ean relative | relative
RMSE STD RMSE STD
1 % 1570 1.9% 0.4% 74l 8.0% 3.1%
. 0 . 0 . 0 . 0
1 (-1.8%) (-7.4%)
] 1609 690
2 0.9% 0.7% 14.0% 2.2%
%o | 0606 ’ | (-13.8%) ° ’
) 1 7
3 %, 643 2.7% 0.6% o4 5.3% 2.9%
(2.7%) (-4.5%)
] 1643 868
4 2.7% 0.4% 9.4% 4.2%
%o |0 60 ’ ’ (8.5%) ’ ’
) 1587 970
5 % 1.4% 1.1% 21.4% 2.8%
0| (.0.8%) ° ° | (21.2%) ° °
] 1543 848
6 3.6% 0.7% 7.0% 3.6%
%o | 3606 ’ ’ (6.0%) ° °
) 1530 745
7 %, 4.4% 0.7% 8.6% 5.2%
(-4.4%) (-6.9%)
] 1647 416
8 3.7% 2.2% 48.3% 5.7%
%o |0 g0 ° ° | (-47.9%) ° °
) 1688 803
9 %, 5.5% 0.4% 2.5% 1.9%
(5.5%) (0.4%)
] 1607 772
10 0.5% 0.2% 3.6% 0.9%
%o | 0.a0) ’ ’ (-3.5%) ’ ’

b) Variance Estimation of the Identification Errors

In section 5.6, the formulae to calculate the variances of the identification errors for
the identified parameters were developed. To test the accuracy of these formulae in
predicting the variances of the identification errors of the structural parameters, the
results of the relative standard deviation of the identification errors in the last section
simulations were compared with that calculated from the formulae given in section 5.6

(Equations (5.24), (5.25) and (5.41)).
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As pointed out in section 5.6, the identification errors of the structural parameters
for a non-top story substructure are the combination of two kinds of errors: the errors due
to the measurement uncertainty and the errors caused by the uncertainty in the estimated
structural parameters of the story above. Strictly speaking, these two errors are correlated.
However, due to the complexity in directly obtaining the explicit expression for the
covariance matrix between two errors, it is assumed that these two errors are uncorrel ated
when calculating the variance. But such an assumption may sometimes lead to the
underestimation of the error variances, which is not desirable in real application. Thus, an
upper bound of the error variance is calculated by assuming the two errors are fully
correlated. In addition, this example uses segments that overlap by 25% of their lengths;
since the approximate formulae for the variances of the parameter estimations were
derived assuming no segment overlap and no correlation between segments, the predicted
variance might differ a bit from the actual variance.

Figures 5.6 and 5.7 show comparisons of the relative standard deviations of the
estimated story stiffness and damping parameter errors for the 5-story structure,
respectively. It is found that the formulae provide reasonably good prediction of the
relation standard deviation of the estimated structural parameters, while the upper bound
predictions significantly over-estimate the standard deviation of the identification error in

the lower stories.
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Figurebs.

Figure 5.7 The comparison of the relative standard deviation of the damping
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Figure 5.8 The comparison of the relative standard deviation of the stiffness
parametersfor the 10-story structure
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Figure 5.9 The comparison of the relative standard deviation of the damping
parametersfor the 10-story structure

Similar results with the relative standard deviations of the estimated parameter
errors in the 10-story structure are shown in Figures 5.8 and 5.9. It is worth pointing out
that there are some cases (i.e,, the 8" story parameters) that the predicted standard
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deviations are less than that obtained from the simulation, though the differences are not
very large. This does recall the aforementioned concern that the assumption of no
correlation between the two kinds of errors may lead to the underestimation of the
variance of some structural parameters. However, overal, the assumption of no
correlation between the two errors provides reasonably good prediction of the standard
deviation of the identification errors.

Another important observation is that the factors W and Uj;; in the formulae of the
identification error variances are functions of the structural parameters [ki ¢]" and [kis1
ci+1]" , whose values, of course, are unknown at the time of the variance estimation; thus,
the formulae of the identification error variance could not be directly calculated.
However, since the estimated structural parameters by the CSD_SUBID method are
unbiased estimations of the structural parameters, it is recommended in practice to use the
estimated values of the structural parameters to calculate the factors W and Ujj; , which

then can be used to calculate the variance of the identification errors.
c) Damage Detection

Applying the damage detection strategy proposed in section 3.5, damage detection
tests are carried out on the 5-story structure by using structural parameters estimated by
the CSD_SUBID method. The damage scenario of the structure stays the same as in the
third and fourth chapters: the structural damage occurs at the first, third and fifth stories,
which results in the reduction of story stiffness by 5% and the increase of story damping

by 20%. Damage detection tests are carried out with 50% noise (in terms of RMS).
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In order to test the ability of the proposed damage detection strategy to correctly
identify the health status of the structure, 600 independent substructure identifications
using the CSD_SUBID method are carried out on the damaged structure; these results are
used in the hypothesis test to determine whether or not the structure is damaged. The
number of the substructure identifications that each hypothesis test uses to reach the
conclusion is selected as 1, 3 and 5, respectively. According to the number of the tests
each hypothesis test uses, the identification results of 600 tests are divided into groups
and a hypothesis test is performed for each group using the majority vote method
proposed in section 3.5. Since the identified structural parameters of the undamaged
structure have quite small variances, alarger S value, 6, is selected in the hypothesis tests
to reduce the probability of the second kind of error of the hypothesis test — faulty
detection. The percentage of the hypothesis tests which give the corrected health status of
the structure are shown in Table 5.5.

Table 5.5 The percentage of the hypothesis tests which give the corrected conclusion
about the structural health status

Floor Number 1 2 5
1 100% 100% 100%
2 96% 100% 100%
3 100% 100% 100%
4 72% 79% 88%
5 100% 100% 100%
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Due to the smaller variances of the identified structural parameters of the
undamaged structure, the proposed damage detection procedure 100 percentage
accurately picks out all structural damage. However, in some cases the damage detection
procedure does make some mistakes of labeling the undamaged structural members as
being damaged. This is partially due to the fact that the occurrence of structural damage
changes the structural responses, resulting in the change of the variances of the identified

parameters.

5.7.2 CSD_SUBID Method with Non-stationary Response

As shown in section 5.6, the CSD_SUBID method can be used to perform
identification with non-stationary structural responses by replacing the cross power
spectral density of the stationary responses by the pseudo cross power spectral density of
the non-stationary responses. To verify this result, an ensemble of the structural responses
due to many small earthquakes is used to carry out the identification.

It is assumed that the ground excitation during earthquakes can be modeled by a
band-pass Gaussian random process times a time variant envelop function a(t) (Amin et
al., 1968). The band-pass Gaussian random process is assumed to be a white Gaussian
process passing through an 4™ order Butterworth filter with 1Hz low cut-off frequency
and 12 Hz high cut-off frequency. The expression of the envelop function a(t) is given in
Equation (5.65) and its shape is shown in Figure 5.10. The nomina values of the
parameters in the envelop function are selected as A=1, B=1/7, t;=3 and t,=9. To simulate

the variations among different earthquakes, the parameter values of the envelop function
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for each earthquake is assumed to be the nominal parameter values multiplied by some
random variables which are uniformly distributed from 0.9 to 1.1.

100 identification tests are performed on the 5-story and 10-story structures. For
each test, 120 micro-tremor excitations and the corresponding structural responses are
simulated to perform the identification viathe CSD_SUBID method and the length of the
responses is 30 second. It is assumed that the magnitudes of the measurement noises of
all acceleration responses are the same, with root-mean-square (RMS) value equa to

50% of the RM S of the ground excitation.

Ax(t/t,) t<t
at)= A t, <t<t, (5.65)
Axexp[-B(t-t,)] t, <t

A
a(t)

A*exp[-B(t-t2)]

el 2 t
Figure 5.10 The envelop function a(t) for earthquake excitations

The statistics of the identification results of the 5-story and the 10-story structures

arelisted in Tables 5.6 and 5.7, respectively.
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Table 5.6 Theidentification result statistics of the 5-story structurewith non-
stationary structural responses and 50% noise

sory |y Story stiffness K. (x10°N/m) Story damping ¢, (x10°N-sec/m)
y
number ) mean relative relative mean relative relative
RMSE STD RMSE STD
1 % 1604 0.6% 0.5% 7.9 2.5% 2.5%
. 0 . 0 . 0 . 0
> | (0.3%) (-0.4%)
y 1604 7.81
2 X 0.6% 0.5% 3.6% 2.8%
° | (03%) ’ ° | (23%) ° 0
3 X 1618 2.6% 2.4% 8.17 8.7% 8.5%
. 0 . 0 . 0 . 0
91 (1.1%) (2.1%)
1602 7.97
4 % 0.6% 0.6% 2.8% 2.8%
2| (0.1%) ’ | (0.4%) ’ °
5 % 1601 0.3% 0.3% 781 3.0% 1.9%
2 (0.1%) 3% 3% (-2.3%) .0% 9%

The identification results in Tables 5.6 and 5.7 show that the CSD_SUBID method

is able to provide very accurate results with non-stationary structural responses, which

numerically verifies that the CSD_SUBID method is applicable to non-stationary

structural responses, though with a bit less accurate than stationary cases.
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Table 5.7 The identification result statistics of the 10-story structure with non-
stationary responses and 50% noise

Story stiffness Izi (x10°N/m)

Story damping €, (x10°N-sec/m)

Story
number y(t) I relative relative ean relative | relative
RMSE STD RMSE | STD
i} 1608 7.89
1 % 0.8% 0.6% 3.5% 3.2%
5 | (0.5%) ° ° (-1.4%) ° °
.. 1606 7.90
2 X 0.8% 0.7% 3.0% 2.7%
9| (0.3%) ° ° | (11%) ° ’
1605 7.96
3 e 0.6% 0.5% 2.8% 2.8%
1| (0.3%) ’ ° | (-05%) ’ ’
1606 7.85
4 % 0.8% 0.7% 4.2% 3.8%
1| (0.4%) ° ° | (-18%) ° °
1607 7.89
5 % 1.2% 1.1% 6.4% 6.3%
(0.5%) (-1.4%)
1604 7.95
6 % 0.9% 0.8% 3.7% 3.7%
1| (0.2%) ’ ° | (-0.6%) ’ °
1604 7.79
7 % 1.0% 1.0% 5.4% 4.7%
(0.3%) (-2.5%)
1617 8.63
8 % 4.4% 4.3% 17.3% | 155%
1| (1.0%) ’ ’ (7.9%) ° ’
1601 8.00
9 % 0.9% 0.9% 4.7% 4.7%
1| (0.0%) ’ ’ (0.0%) ’ ’
1603 7.82
10 | % 0.6% 0.5% 3.5% 2.7%
1 (0.2%) ’ ’ (-2.3%) ’ °
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Chapter 6
Controlled Substructure ldentification for Shear Structures

Due to the great potential to improve structural safety and reliability as well as to
lower structural maintenance cost, many researchers have studied global vibration-based
structural health monitoring (SHM) methods to detect (and localize and quantify)
damage, often by examining changes in the identified structural parameters or modal
properties. The identification process inherent in such approaches often suffers from
difficulties, such as insufficient excitation energy at high frequency, sensor noise, lower
sensitivity of the measurements to structural damage, ill conditioning in the inverse
problem to be solved, and so forth.

In order to overcome some of these difficulties, some researchers attempted to
utilize structural control (SC) systems to improve the accuracy of the damage detection.
Many reasons are behind this trend: first, the SC system and the SHM system contain
many similar components that can be shared by both systems, such as sensors, data
acquisition systems, central computers and so forth. The synergy of the two systems fully
utilizes these components and, thus, makes the whole system more cost-efficient. Second,
generally the SC system is designed and implemented to mitigate large structural
vibrations caused by strong earthquakes or high speed winds. However, due to the
infrequent occurrence of such natural hazards compared with the whole service life of the
structure, actually the SC system remains in idle status most of the time. Incorporating
SHM functions into the SC system not only makes the SC system more cost-effective by
providing important structural health information but also has the potential to improve the
SC performance of reducing structure vibration (because SHM provides the SC system
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with a more accurate structural model which facilitates the design of efficient control
algorithms). Third, the SC system is capable of intentionally changing the structural
responses and/or other features (e.g., natural frequency and mode shape etc.) in some
specific ways such that the structural damage can be more accurately detected from the
modified structural responses and/or features.

Recently, many new techniques have been developed to use SC systems to improve
the accuracy of SHM. These techniques can be classified into two categories: multiple
configuration and sensitivity improvement. For multiple configuration methods, different
control algorithms are often used in SC systems to tune the structural modal properties of
the original structure to different configurations. Since the controlled structure in each
configuration contains some information about the uncontrolled structure, combining the
information from the controlled structure in all configurations provides much more
information about the uncontrolled structure, which helps to solve rank deficiency
problem in SHM identification (Lew et al., 2002) and, thus, improves the identification
accuracy. Sensitivity improvement methods (Koh et al., 2004) utilize some specially
designed control algorithms to shift structural modal properties and make these properties
more sensitive to structural damage; therefore, structural damage can be more accurately
identified.

However, there is a problem often ignored by the above methods: how will the
imperfections in the control system affect the identification results? Some control system
error always exists, such as time delay for computation, unmodeled actuator dynamics,
measurement noise in feedback and so forth. Since SC systems are deeply involved in the
system identification procedure in the above methods, it is inevitable that the control
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system errors will affect their identification accuracy, possibly even eliminating the
identification benefits of using control. Moreover, because of the complexity of the
closed-loop control system, the effects of control system error on the identification
accuracy usually become extremely difficult to analyze and predict. Thus, it would be
beneficial to develop some new approaches in which control improves the identification
accuracy but the identification results are robust to errors in the control forces.

In the third, fourth and fifth chapters, three interrelated substructure identification
methods have been proposed for shear structures. The error analyses for these
identification methods demonstrate that the identification errors are closely related to two
important structural responses: 1) the frequency responses of the interstory acceleration
of the story being identified and 2) the frequency response ratio between two adjacent
interstory accelerations, the story being identified and the story above it. The accuracy of
these substructure identification methods can be improved by significantly changing
these two responses accordingly near the substructure natural frequency. This result
provides an easy way to make use of control systems to change structural responses and
improve the identification accuracy.

In this chapter, two kinds of structural control (SC) systems, an active mass driver
(AMD) system and a semi-active interstory brace system, are used to induce the
aforementioned structural response changes and to improve the accuracy of the
substructure identification methods. The accuracy of the substructure identification
method proposed in the previous chapters does not directly depend on the SC system but
only indirectly on the performance of SC system, that is, the response of the closed-loop
controlled structure; any control system errors (such as feedback measurement noise,
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time delay and so forth) that do not significantly deteriorate this performance of the
designed control system should not have a large side effect on the accuracy of the
controlled identification. Therefore, the proposed substructure controlled identification
should be quite robust to the possible control system errors.

This chapter is organized as follows: first the identification error analyses of the
proposed three substructure identification methods are reviewed. Then, based on the
results of the error analyses, some optimization problems are formulated, in which the
optimal parameters of two control systems are obtained. Next, a three-stage structural
control system design strategy is proposed to overcome the difficulty that the true
structural parameters are unknown when designing the control system for the
identification purpose. Moreover, a study is carried out to demonstrate that the proposed
controlled substructure identification method is very robust to one very common
uncertainty in the control system — measurement noise. Finally, several numerical
examples demonstrate that both control methods greatly improve the identification

accuracy and are robust to fairly large feedback measurement noise.

6.1 Review of Identification Error Analysis Results of Three
Substructure Identification Methods

In this section, the results of the identification error analysis of the previously
proposed three substructure identification methods are briefly reviewed, which provides
the foundation as to how to design structural control systems to change structural
responses and improve the identification accuracy. As shown in Figure (6.1), the top (n™)
story substructure can be considered a special case of the general non-top (i) story

substructure in which the fictitious upper (n+1") structural parameters [Kn+1 Cne1]" and the
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fictitious upper structural responses X,,, are all zero. Therefore, only the identification

error of the general non-top (i™) will be reviewed; the results of the identification error

analysis of the top story can be easily derived based on the results of the non-top

substructure and the simple substitution.

Xn+1 = 0
------------ 1: K1, G =0
: m, X
___________ i : kniCo |
Koy
""""" K
E Xi+1
i : m ki+l’(;l+l XI
G %,

u g—>

Figure 6.1 Comparison of top story substructure and non-top story substructure

6.1.1 Identification Error of FFT_SUBID Method

As stated in section 3.3.2, the relative identification errors of the i non-top story

parameters [k ¢ |"in FFT_SUBID method can be obtained as,

U U
e { 11 12

U 211 U 22

U 24, U 25

N, 4, /(X|| - Xi—l,l) (6.1)
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23]
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where 6y+1) and Gy+1) are the relative identification errors of the (i+1)™ story parameters
ki+1 and ci+1, respectively; the expression of all factors U;;, are given in Equation (3.32).
As shown in section 3.3.2, the magnitude of all factors U;;; are significantly large
near the i™ story substructure natural frequency wio and decay very fast when the
frequency moves to both lower and higher frequency; hence, the uncertainty terms near

the substructure natural frequency dominate the identification errors.

Moreover, the frequency response of the i interstory acceleration (X, — X;y,) is
in the denominator of all measurement uncertainty terms and the frequency response ratio
between the two adjacent interstory accelerations, (Xi;, —X;,)/(X;, = Xiy)) .
multiplies the uncertainty terms related to the errors in the (i+1)th story parameters;
therefore, the identification errors of the i™ story parameters can be reduced by (a)

maximizing the frequency response of the i interstory acceleration (X'LI _Xi—l,l) in a

frequency range around the i™ substructure natural frequency w;o , Which will reduce the

identification error due to measurement uncertainty; (b) minimizing the frequency

response ratio between the (i+1)" interstory acceleration and the i

interstory
acceleration, (X,,;; - X;;)/(X;, - Xi1,), in the same frequency range, which reduces the

error caused by the parameter estimate errors from the (i + 1) story.

6.1.2 Identification Error of TF_SUBID Method

As analyzed in section 4.4.2, the relative identification errors of the i non-top story
parameters [k, c; ]T in the TF_SUBID method should be less than the following three

identification errors, each of which assumes that only one of floor acceleration responses

172



is used as the pseudo input to calculate the transfer functions needed in the identification

process.
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)'('H") shows up in the denominator of all measurement uncertainty terms and the

)'('i_u) multiplies the uncertainty terms

related to the errors of the upper (i+1)" story parameters; hence, largely maximizing the

frequency response (X,

(Xi+l,| - Xi,l )/(Xi,l -

>'<'i_1'|) in a frequency range around the i

_Xi—l,l) and minimizing the frequency response ratio

substructure natural

frequency w;, can significantly reduce of the identification errors of the TF_SUBID

method.
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6.1.3 Identification Error of CSD_SUBID Method

As analyzed in section 5.3.2, the relative identification errors of the i"™ non-top story

parameters [k; c; ]"inthe CSD_SUBID method can be expressed as,

6.5
NX1—1y'| /S(X—xfl)yvl ( )

Hki x U 11,1 u 12, u 13,1
|:9 }zzRe |:U U U ) Nifayxl/sy(x.-%_l)yyl +
21 22,1 23 N S
5my,l/ Y(%-%_1)yl

S(&rx)y,l 0 .
iRe |:U14,| U15,|j|. S()(‘-—Xi_l)y,l <
I=1 U24,| U25,| S(m%)y,l 0.

S(Xrif.,l)yvl )

Since the identification errors of the CSD_SUBID method has a format similar to
that of the FFT_SUBID method, a similar conclusion about how to change the structural
responses to improve the identification accuracy is obtained: the identification errors of
the CSD_SUBID method can be reduced by maximizing the cross power spectral density,
Six—x )y, » and minimizing the cross power spectral density ratio, S )y, /S(xfimy,l :
in a frequency range around the i" substructure natural frequency Wi -

If it is assumed that there is only one excitation source (e.g., ground excitation )

forcing in the structure, then the cross power spectral density ratio, S(fo)y/s(.&fwy ,

will become independent of the selection of the reference response y(t) and can be

simplified as
* . . 6'7
S(xnr*a)y _ H Ylg H(xm_yi)fjg Sug _ H(Xﬁl_xi)ug _ Xi+l B ><i ( )
(Xi_ii—l)y yug (yi_xi—l)ug Sug H (Xi_XA)Ug Xi - xifl
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where Hy[jg is the transfer function from the ground excitation G, to the reference
response  y(t); Hx 5 is the transfer function from the ground excitation (i, to the i"
interstory acceleration (X —X ;) ; H(M_Wjg is the transfer function from the ground
excitation U, to the (i+1)™ interstory acceleration (%, —X ). Therefore, in the case of

one excitation, the cross power spectral density ratio S, ), /S( equals the

%=%1)y
frequency response ratio (X,;; — X;;)/(X;; = Xiy,).
If the structure is only subjected to the ground excitation, the magnitude of the cross

power spectral density Sy _¢ ), can be evaluated as

2 (6.8)

2
i

*

= \/wa,l)ys(xfx,l)y - \/‘H i

= Sy Sty -5

Equation (6.8) shows that the magnitude of the cross power spectrum — ‘Sy(x—x,l)‘ —is

2
‘H (%1% )y

‘Soqf'my

9

closely related to the power spectrum density of the i" interstory acceleration St —x )

larger S5, _ ) leads to larger ‘S ‘ and, thus, more accurate identification results of

V(% —%_1)
. . 2

the CSD_SUBID method. Moreover, since Sy _y :EUXLI —Xi_1,|‘ } large Sy _x )

implies larger average frequency response (X, — X ;).

6.2 Design for Controlled Substructure Identification Systems

Based on the error analysis results of all three substructure identification methods, it

becomes obvious that the goal of an identification-focused control system is to increase
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the frequency response of the interstory acceleration (X, — X; ;) and simultaneously to
reduce the frequency responses ratio (X;,; — X;)/(X; — X;_;) near the story substructure

natural frequency w,, as much as possible.

To achieve the goal of improving the parameter identification accuracy, two
structural control systems are studied: a semi-active brace system and an active mass
damper system (AMD). Figure 6.2 shows an example of the active AMD system and the
semi-active brace system. New control algorithms for these two systems are designed to
attain the desired structural response changes previously mentioned so that the structural
parameters can be more accurately identified. It is worth emphasizing that the proposed
identification-facilitated control algorithm will be implemented with a fail-safe
mechanism, that is, if excessive excitation is detected the control system will immediately
switch back to the original control algorithm that is designed to mitigate the structural
vibration. Therefore, the new algorithm will not weaken the main function of the control

system, vibration mitigation, but add extra value to the installed control system.

AMDsysem [FO L]

Semisctive _|———

hmesym\

Figure 6.2 lllustration of semi-active brace systemsand AMD system
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For the simplicity of designing control algorithms to improve substructure
identification accuracy, it is assumed herein that
1. The structure is excited only by the ground motion in addition to the control
system force(s).
2. The control system is ideal and no control system errors (such as feedback
measurement noise, actuator time delay and so forth) exist.

Based on these assumptions, it can be easily shown that 1) the frequency response
ratio (X;,, — X;)/(X; - X;,) equals the transfer function from the i" interstory

acceleration response to the (i+1)" interstory acceleration response and does not change

with different ground excitation inputs, and 2) the frequency response of the interstory
acceleration (X; — X, ,) is equal to the frequency response of the ground excitation

multiplied by the closed-loop transfer function from ground excitation to the it interstory
acceleration. Hence, instead of directly utilizing the frequency response of the interstory
acceleration, which is random in nature due to the random ground excitation, the control
system is designed by using the deterministic transfer functions of the closed-loop
controlled structure, as shown subsequently in Equations (6.9), (6.11) and (6.12).

The control systems need to simultaneously achieve two goals: amplifying

(X; = X,_;) and reducing (X, — X;)/(X; — X;_;) near the story substructure natural

frequency, which may be competing goals in some situations; to overcome this problem,
the above two-objective optimization problem is converted into a single objective
optimization problem by assigning some importance weighting factors for each goal as

shown in Equations (6.9), (6.11) and (6.12). Moreover, the goal of amplifying response
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(X, — X,_;) is replaced by an equivalent goal of reducing the inverse of the response,
Y(Xi = Xig).

6.2.1 AMD System

The linear state-feedback control method is adopted for designing the active AMD
system to improve the parameter identification accuracy. Let L denote the state feedback
gain matrix of the AMD system. The optimal L matrix can be obtained by solving the
following optimization problem in Equation (6.9). Since the AMD control system has the
potential to destabilize the controlled structure system, a stability constraint is imposed
on the optimization problem to require that the damping ratio of the closed-loop
controlled system be greater than a given threshold.

- wu . 2 (I)u -
arg min J('—)Z“L M(Jw)‘]/"'m—x,l)ug d“”(l_“)Ll M(J“’)H(mrmm—x,o
subjectto &, >¢&,>0,k=12,---,2n

“do (6.9)

where H s o, and H 5y -x,) are the closed-loop transfer functions from the

ground excitation U, to the i™ interstory acceleration response (% — % ;) and from the i"
interstory acceleration response (xI - Xi,l) to the (i+1)™ interstory acceleration response
(%.,, — % ), respectively; &, is the damping ratio of the k™ root of the closed-loop system
and &, is a positive real number, taking the value of 0.02 in the following numerical

examples; o, and e, are the lower and upper frequency bounds of the integration, herein

taken to be 0.8wjo and 1.2wip; a is a weighting factor that balances the role of the SC

system in achieving the two possibly competing control goals of changing structural
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responses; «a takes the value of 0.8 in the following examples. W(jw) is a frequency

weighting function

 med) (610
b jc /(me) -k /(me?)]

W(jo)

As shown in Figure 6.3, the magnitude of W(jw) peaks at around the i story
substructure natural frequency ;, and quickly vanishes when further away. The role of
this frequency weighting function is to implicitly force the control system to focus on
changing the two interested  structural  responses, (X, -X,,) and
(Xiys — X;)/(X; = X,_;), only around the substructure natural frequency w;,, so that the

identification error can be greatly reduced.

magnitude of frequency weighting function

normalized frequency ((o/(oio)

Figure 6.3 Magnitude of frequency weighting function W(jw)
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6.2.2 VSDD Brace System

Two kinds of control strategies to design a variable stiffness damping device
(VSDD) brace system are studied herein. First, the VSDD braces are used as passive
devices that add fixed stiffness and damping to the structure. Second, in a semiactive
strategy, the VSDD braces try to mimic, as closely as possible, the control force

trajectory of an optimally designed active control system.

a) Passive Control Algorithm Design
Let0=[6 ... Hp]T be a vector composed of the stiffness and damping parameters
of the semiactive braces. The following optimization problem is posed to minimize the
inverse of the frequency ith interstory acceleration ],/ (X; = X, ;) as well as the frequency

ratio (X;,; — X;)/(X; = X,_;) near the i"" story substructure natural frequency .

, o _ 2 . (6.11)
do + (1—05)'[@ ’VV(JW)H(m—xi)(x—XH) do

arg;.nln J (e) - aJ.a)|u M(Ja)) ]/H (Y,-—X’i,l)[jg
subjectto 6, 26, 20,k=12,---,p

where o, and w, are the lower and upper limit of the integration frequency range,
respectively; 6" (k =1,2,---, p) are the upper limit of the corresponding stiffness or
damping parameters of the braces; all design variables 6, should be non-negative due to
the passive nature of the devices; p is the number of the braces; and « and W( jw) are the

same as given in Equation (6.9).

b) Semiactive Control Algorithm Design

A clipped optimal control strategy (Dyke et al., 1996; Ramallo et al., 2002) is used

to design a semiactive algorithm to enhance the identification accuracy. The clipped
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optimal control is composed of two controllers in series: the primary controller is
designed by a linear state feedback control algorithm assuming that the actuators are fully
active, and a clipping algorithm is used as a secondary controller to make the semiactive
brace mimic the control force commanded by the primary controller.

Due to the dissipative nature of semiactive braces, a semiactive brace cannot always
provide the exact control force as calculated by the primary controller. The performance
of the clipped optimal control system, compared with the corresponding fully active
system, is largely dependent on the dissipativity of the control forces from the primary
controller (Johnson et al., 2007). Therefore, a dissipativity constraint for the primary
controller is integrated into the optimization procedure of the algorithm design (6.12) to
assure that the control forces applied to the structure are dissipative during most of the
time history, so that the semiactive system effectively tracks the active system.

Let G be the state feedback gain matrix of the primary controller in a clipped
optimal semiactive control system. An approximate optimal semiactive strategy can be
found by solving for an active primary controller state feedback gain subject to a

constraint that it be dissipative much of the time

. oy . 2 o .
argénln JG)= OK_L rW(Ja’)']/H(x—xfl)ug do+ (1~ a)jw. M(J“’)H(m—m(x—m

subjectto p,, <&e<0,k=12,,p

? 4y 612

where p, is the correlation coefficient between the control force uj and the velocity v

across the ™ semi-active brace; ¢ is a negative number between 0 and -1, with smaller &
requiring the control force be more dissipative; ¢ is chosen to be —0.5 in the numerical

examples herein. The weighting function W(j®) is the same as given in Equation (6.9).
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After the primary controller is designed, a secondary clipped optimal controller is
concatenated afterward to form the full controller, where desired control force u(t) is
exerted at time t if u(t):vi(t) <0 for velocity v(t) across the I™ device (i.e., if it is
dissipative), and zero force otherwise.

Since the accuracy of substructure identification does not directly depend on the SC
system but only indirectly on the performance of the SC system — the ability to change
the structural response — any control system errors, like feedback measurement noise,
which do not significantly weaken this performance of the designed control system will
not have a large side effect on the final identification results. Therefore, the proposed
controlled substructure identification should be quite robust to the possible control

system errors.

6.3 Control System Design with Unknown Structural Parameters

To optimally design a control system, the exact structural parameters are required to
accurately evaluate the performance of the closed-loop controlled system. However, the
whole purpose for designing control systems herein is to improve parameter
identification; thus, these parameter values, at least their exact values, should not be
available for control design. To overcome this difficulty, a three-stage design strategy can
be adopted. Figure 6.4 shows the flowchart of this three-stage design method. At the first
stage, several substructure identifications with no control forces are performed to initially
estimate structural parameters. In the second stage, a probabilistic model for the structural
parameters will be constructed from the previous step identification results to describe the

uncertainty of the structural parameters. Given the limited number of identification
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results from the first stage, only the first two statistical moments (mean and variance) of
structural parameters can be computed accurately. Thus, based on the maximum entropy
theorem (Jaynes, 1968), a Gaussian probability model is selected in this study to keep the
maximum uncertainty of the random parameters when only their means and variances are
given. The parameters (statistics) of this Gaussian model are estimated from the previous
step identification results. Based on the probability model of the structural parameters, a
sampling technique is applied to generalize many realizations of the structural
parameters, each of which is used to create a structure model. In the final stage, instead of
using the best guess model of the structure, whose parameters are the mean estimates of
the structural parameters, to design the control system, all structural models generated by
the sampling are used together to evaluate both the objective function and the constraints
in the optimization.

Let L denote the design parameters of the control system, which is the state
feedback gain matrix for the AMD system or the added story stiffness and damping for
semiactive brace system; let 0 =[k; ... k, ¢Ci ... c)]' be the uncertain structural
parameter vector with probability distribution obtained in the second stage. The
optimization problem used to design control system with uncertain structural parameters

can be written as,

} 4 (613)

wLI . 2 wu -
arg min J(L)=ajwl Ee|:’\N(Ja))/H(izix1)ug }dwﬂl—“)j{u Ee[M(J“’)H(m—xi)(x—m
subject to E, [c(0)]+205,[c(0)]<0, k=12, p

where subscript 0 denotes that the expectation operator is taken with respect to the

uncertain structural parameters; E,[c(0)] stands for the mean value of the constraint
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function c(0) , whose value must be less than zero (i.e., ¢c(0) < 0) in the original control
system design with deterministic structural parameters; o, [C(G)] denotes the standard
deviation of the constraint function c(0) due to the uncertainty in the structural
parameters. The factor of 2 in front of o,[] is used to ensure that the constraint is

satisfied most of the time (larger values than 2 would be used to ensure a higher

likelihood of satisfying the constraint).

B

'

substructure identifications without
} the 1% stage

control system

'

construct probability models for
structural parameters

v the 2" stage
sampling structural parameters and

create many corresponding structural
models

'

design control system based on the
ensemble of structural models

v the 3" stage
carry out controlled substructure
identification

v
EET

Figure 6.4 Flowchart of three stage control system design strategy
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6.4 Effect of Feedback Measurement Noise on Controlled
Substructure ldentification

Using structural control systems to amplify the response (X; — X; ;) and reduce the

response ratio (X;,; — X;)/(X; — X;_;) near the story substructure natural frequency can

significantly improve substructure identification accuracy. Further, since each step of the
substructure identification method only involves the dynamic response of a certain floor
substructure, a control force applied on one floor will not enter into most of the
identification steps and, thus, the error in control force will not directly affect the
accuracy of these identifications and the side effect of the control system error is
minimized. Moreover, because the control system error affects the identification accuracy
by diverting the controlled structural responses from the optimally designed responses,
the effect of the control system error can be easily analyzed and predicted by observing
the responses of the controlled structure. Therefore, the proposed controlled substructure
identification methods will improve identification accuracy and also be robust to the
errors in the control forces.

The control algorithm in the previous section is designed on the assumption of an
ideal control system. However, some control system errors always exist and will
inevitably affect, more or less, the performance of the designed control system to
improve identification accuracy. In this section, an analysis is made to examine how one
of the common control system errors, feedback measurement noise, will affect the

performance of the control system. Since the identification accuracy of substructure

identification directly depends on two closed-loop substructure responses, (X; — X, ;)
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and (X, — X;)/(X; = X;_;), the effect of feedback measurement noise on the accuracy

of the substructure identification can be analyzed by examining how the noise will

change these responses from what was originally designed.

Structure
|- TTTTT T == 1
i, | R o
— > _Hi [T LT %~ Xy
1
Uo . o
T H; ! | To > XK
A —
Y
C |« —D n,

Figure 6.5 Control system with state feedback measur ement noise

It can be shown that both active AMD and semiactive brace systems can be

represented by the flowchart in Figure 6.4, where U, is the ground excitation; u, are the

control system force(s) applied on the structure; z represents the structural state-space

response vector, containing the displacement and velocity responses of all floors; n,is

the measurement noise vector of the state space response, assumed to be band-limited
Gaussian random processes; H; and H, are the structure transfer functions from ground
excitation and control forces to the structural state-space responses respectively; C is the
designed controller; T;and T, are the linear matrices that link the state-space response to
the i™ and (i+1)™ interstory acceleration respectively.

Assuming that the controller C is a linear controller, the closed-loop controlled
structure is a linear time invariant (LTI) system. By applying the superposition principal

to the output of this system in the frequency domain, the frequency response of the i
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interstory acceleration (X, — X, ;) and the (i+1)" interstory acceleration (X;,, — X,), can
be calculated as

X, -X_,=T,(-H,C)"HU, +T,(I-H,C)"H,CN, =R +AR (6.14)

X=X =T,(1-H,C)"H U, +T,( -H,C)"H,CN, =R, +AR, (6.15)

i+~ N

where X, X;, X lJ'g,NZ are the frequency response of the corresponding time

i+11
domain responses of X, %,%,;, Uy, n,, respectively. The responses in Equations (6.14)

and (6.15) contain two parts: the first part is due to the ground excitation, which is just
equal to the responses from the ideally controlled system without feedback noise; the
second part is the responses contributed by the feedback noise. For notational simplicity,

new variables R, AR, R.1, AR, are introduced to represent these response, respectively.

a) Feedback Noise Effect on Response (X, — X ;)
In order to perform an analysis, it is assumed that feedback measurement noises n,

are independent of the ground excitation ;. Therefore, the variance of the frequency

response of the i closed-loop controlled interstory acceleration can be calculated as

g%, - X[ | =€ 1.0 .0 G, [ | +E]r0 - H,0)*H,on [ (6.16)

The variance in Equation (6.16) consists of two parts: the first part is due to ground
excitation, which just equals the variance of the responses from the ideally controlled
system without feedback noise; the second part is contributed by the feedback noise
variance. Since the second part is always greater than zero, the variance of the responses

from the non-ideally controlled system (with feedback noise) will be larger than that from
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the ideally controlled system; this indicates that from the response (X; — X; ;) point of
view, the feedback noise does not deteriorate but rather improves the performance of the
control system to amplify the frequency response of the i interstory acceleration

(X, — X, ;) and , thus, enhance the final identification accuracy.

b) Feedback Noise Effect on Response (X;,; — X;)/(X; — X,.;)

Using the results from Equations (6.14) and (6.15), the frequency response ratio

(Xi1 = X)/(X; = X;_;) under feedback noise can be calculated as

Xi+l — X| _ R+l + AR+1 (616)
Xi - Xi—l R +AR

Treating the variables AR, and AR;4; as the increment of the variables R and R+
respectively and applying a first order Taylor expansion with respect to variables R, and

R+1, the response in Equation (6.16) can be approximated by

X=X Ry RuAR AR, AR) AR, (617
X; 1—5(1_1 ) Zl ) 11 F? ’ E - H(m—xxx—xl)(l_%}%

The ratio R.1/R; is equal to the closed-loop transfer function from the i™ interstory

acceleration to the (i+1)™ interstory acceleration H s —x)x % ) Of an ideally-controlled

structure, which is designed to be small near the substructure natural frequency.
Therefore, if the i and (i+1)" interstory acceleration AR and AR.; caused by the
feedback noise are small compared with the i™ interstory acceleration R due to the

ground excitation, the frequency response ratio (X;,, — X;)/(X; - X;_;) with feedback

noise will not be largely amplified compared with that from the ideally-controlled system

(without feedback noise). Moreover, the R response, equal to the i interstory
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acceleration (X; — X, ;) in ideally control system, is originally designed to be large near

the substructure natural frequency; thus, generally, the frequency response ratio

(Xi1 = X;)/(X; = X;_;) should not be largely amplified near the substructure natural

frequency by the introduction of feedback noise.

Combining the conclusions from (a) and (b) regarding the feedback noise effect on
response (X, — X, ,) , it can be concluded that the proposed control-facilitated

identification method designed under ideal conditions (without feedback noise) are quite
robust to the side effect of the existence of feedback noise and may even have a potential

to provide more accurate identification results with feedback noise because the noise

amplifies the structural response (X; — X; ;).

6.5 A Numerical Example

The same 5-story shear structure used in the third, fourth and fifth chapters is reused
here to illustrate the effectiveness of utilizing the control systems to improve the accuracy
of the structural parameter identification. The parameters of the shear structure are
m = 1x10° kg, ¢ =8x10° N-sec/m and k = 16x10" N/m (i =1,...,5). The structure is

subject to ground excitation G, which is modeled by a Gaussian random pulse process

passing through a 4-th order band pass Butterworth filter with 1Hz low cut-off frequency
and 12 Hz high cut-off frequency.

Two control systems, an AMD system installed on the roof (the fifth floor) and a
VSDD brace system implemented in the first and second stories, are considered
respectively. The state feedback control strategy is used to design the AMD system; the

passive and the pseudo-active state feedback control strategies are applied to design the
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VSDD brace system. The optimal parameters of the control systems are obtained by
solving the optimization methods proposed in section 6.2. Then, the designed control
systems are then used to control the structural response when the controlled substructure
identifications are performed.

To test the performance of the newly designed control systems in improving the
parameter identification accuracy, 100 substructure identification tests, via the
FFT_SUBID method, are carried out for the structure without control, with VSDD brace
and AMD control systems respectively. It is assumed in the simulation that there is noise
in the measurements of floor accelerations and control forces, but the control systems
works ideally and there is no noise in the state feedback measurement.

Figures 6.6 and 6.7 demonstrate an example of how the control systems change the
structural responses to improve the parameter identification accuracy. Figure 6.6 shows
the transfer functions from the ground excitation to the 1% interstory acceleration of the

uncontrolled and the controlled structures; Figure 6.7 shows the frequency response ratio

(X, = X,)/(X, =U,) between the two adjacent interstory responses of the uncontrolled

and the controlled structures. It can be seen that two control systems — passive VSDD

system and AMD system — amplify the 1% interstory acceleration responses, which
controls the identification error of the 1% story parameters [k, c,]' due to the
measurement noise, and reduce the frequency response ratio (X, — X,)/(X, —U,), which

controls the identification error related to the error propagation effect; thus, it is expected

that the control systems will improve the accuracy of the substructure identifications.
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Note that the transfer functions of the VSDD system using pseudo-active control strategy

are not included in the figures because this control system is not a linear system.
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Figure 6. 6 Thetransfer functionsfrom ground excitation to the 1% interstory
acceleration of uncontrolled and controlled structure
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Figure 6.7 Thefrequency response ratio between the 2" inter story acceleration and the
1% interstory acceleration
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In each substructure identification test, 180-second ground and floor acceleration
responses, with sampling rate 200 Hz, are calculated to carry out the identification. It is

assumed that the magnitudes of the measurement noises of all acceleration responses X;

are the same, with root-mean-square (RMS) value equal 5% of the RMS of the ground
excitation; the measurement of the control force (in controlled identification case) is also
contaminated by 5% noise, that is, the RMS of the measurement noise of the control
force is equal to 5% of the RMS of the corresponding control force.

The relative RMS errors (RMSE) of the identified parameters (in percentage) are
listed in Table 6.1. From the result, it is clearly seen that all control systems do greatly
improve the parameter identification accuracy. Taking the third story parameter as an
example, the RMSEs of stiffness and damping parameter estimates are reduced by a
factor of 4.7 and 5.4 for the passive control method (VSDD system), by a factor of 3.3
and 3.9 for the pseudo-active control method (VSDD system), and by a factor of 8.3 and
11.9 for the active control method (AMD system).

Table 6.1 Relative (per centage) RM SE of identification resultswithout control and
with ideally passive, pseudo-active and active control

No control VoD VSPD AMD
floor # (passive) (pseudo-active)

ki G ki Gi ki Gi ki G
1 1.40 3.85 0.22 1.92 0.29 0.99 0.26 2.01
2 1.90 4.65 0.42 2.18 0.47 1.41 0.41 2.36
3 2.33 20.59 0.49 3.83 0.71 5.33 0.28 1.73
4 0.63 6.64 0.20 1.12 0.21 1.17 0.17 1.16
5 0.39 3.31 0.19 0.78 0.15 0.63 0.19 1.29
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Table 6.2 Relative (per centage) RM SE of identification result of passive and active
control with 20% feedback noise

VSDD VSDD
floor # (passive) (pseudo-active) AMD
ki G ki G ki G
1 0.38 2.76 0.31 1.05 0.22 1.72
2 0.46 1.96 0.42 1.23 0.36 1.95
3 0.54 4.76 0.63 5.46 0.23 1.50
4 0.19 1.02 0.21 1.46 0.20 1.05
5 0.16 0.59 0.14 0.70 0.13 0.67

The analyses in section 6.4 show that the proposed control-identification methods
are robust to the feedback measurement noise and it is possible that the noise may even
enhance the identification accuracy. To test this conclusion, fairly large 20% Gaussian
white control feedback noise is added into the structural state feedback; that is, the RMS
of noise n; is equal to 20% of the RMS of the corresponding state response. Similarly,
100 identification tests are performed with the noise-contaminated passive and active
control systems. The results of these tests are shown in Table 6.2.

By comparing the corresponding results between Tables 6.1 and 6.2, it is observed
that there is no obvious deterioration of the identification accuracy due to the addition of
20% state feedback noise; on the contrary, the identification results for most story
parameters with feedback noise become more accurate than those without noise. This
simulation result partially verifies the previous analysis that the controlled identification

systems are robust to the state feedback noise and the noise may even help to improve the
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identification accuracy via amplifying structural response (X; — X, ;). However, there are

some cases that the identification results deteriorate slightly. This may be due to two

reasons: 1) the introduction of feedback noise may also amplify the response ratio

(X1 = X)/(X; = X, ;) compared with the ideally-controlled case, which in turn

deteriorates the accuracy. 2) The uncertainty of the measured control forces may
contribute to the increase of the identification errors. Taking the AMD system as an
example, the control force (from the actuator) is directly applied on the 5™ floor of the
structure; thus, the measured control force is needed for the identification of the 5™ story
parameters. In the non-ideal control case, the measured control force is also assumed to
be noise contaminated; thus, the uncertainty in the measured control force will inevitably
increase the identification error for the 5" story parameters and also affect the
identification accuracy of other parameters through the error accumulation effect.

In summary, although the estimates of some parameters with feedback noise
deteriorates slightly compared with an ideally-controlled case, both control systems do
still provide quite large improvements for the identification accuracy under fairly large
feedback noise, compared to uncontrolled identification results. These simulation results
reconfirm the conclusion of the analysis that the proposed control-identification methods

are quite robust to the feedback measurement noise.
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Chapter 7

L oop Substructure I dentification M ethod

In the third, fourth and fifth chapters, three substructure identification methods have
been proposed to identify the structural parameters of a shear structure. These
identification methods essentially establish an induction identification problem, in which
the parameters of the whole structure are identified iteratively from top to bottom.
However, there are two limitations of these substructure identification methods. First, the
induction process in these methods requires a priori information of the structural floor
masses. But the structural mass may not be always known in reality, which prevents the
application of the substructure identification methods. Second, in some cases, such as
post-earthquake damage evaluation of building structures, people may only care about the
structural parameters of a few stories where structural damage is most likely to occur
(e.g., the lower stories). However, to identify the parameters of a lower story in the
substructure identification methods, the structural parameters of al stories have to be first
identified in the induction identification process, which requires installation of
accelerometers on every floor above the story being identified; this may result in
prohibitive costs for the SHM system if the building has tens of stories. Therefore, it is of
practical interest to develop some methods that can identify the parameters of any story in
the structure by only measuring a few structural responses related to that part of the
structure.

In this chapter, a new substructure identification method, the LOOP_SUBID method,
is proposed to address the aforementioned limitations of substructure identification

methods in Chapters 3~5: how can one perform the identification with unknown
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structural mass and with only a few measurements in the structure. Different from the
previous substructure identification methods, in the new LOOP_SUBID method only the
dynamic equation of one non-top story substructure, containing the story whose
parameters are to be identified, is used in formulating the identification problem. Two
substructure identification problems, each of which identifies the parameters of one story
in the substructure given that the parameters of another story in the substructure are

known, are alternately used to establish a sequence of loop identification problems, in
which all four structural parameters [k, ¢ ki, ¢.,,]" areidentified all together once.
Moreover, the new method does not need the absolute value of the story mass m in the

identification if the mass normalized structural parameters

[/m c/m k/m c,./m] aeidentified.
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Figure 7.1 (a) A shear story (b) two-story standard substructure
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This chapter is organized as follows. First is to examine how to make use of the
dynamic equation of one story substructure to formulate the loop identification problems
in the LOOP_SUBID method. Then, the convergence behavior of the LOOP_SUBID
method is studied and a numerical example is used to verify the convergence; the results
show that not all identification estimates of the LOOP_SUBID method converge. Next,
an analysis is made to explain why the LOOP_SUBID method fails to converge, leading
to the proposal of a modification of the LOOP_SUBID method to fix the problem by
using two sets of special structural responses in formulating the loop identification
problems. Moreover, a method of designing some control system is proposed to change
structural responses so that the convergence of the loop identification in the
LOOP_SUBID method can be achieved. Finaly, the same 5-story example is used to
show that by utilizing the specialy designed control systems, the LOOP_SUBID method

is able to achieve converged identification results.

7.1 Method Formulation

Figure 7.1a shows an n-story shear structure; Figure 7.1b shows a standard two-story
substructure that will be used in formulating the LOOP_SUBID method. The dynamic

eguation of amiddle floor of this substructure can be written as

M % (1) + ¢ [% (1) = %_ O]+ ki [x (1) = %, O]+ €1 [% 0) = %0 O]+ ko [% €)= %, ©)] =0
(7.1)

where m; is the mass of the i floor; ¢; and k; are the damping coefficient and stiffness of

the ™ story; x; is the displacement of thei™ floor relative to an inertial reference frame.
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Adding —m X _,(t) to both side of Equation (7.1), pre-multiplying both sides by a
reference response at an earlier time y(t —7) and taking the expectation will give
MRs—x.y TG Rx -y KRy FGaRiy HRiaRo )y =-MmRy - (72
where R,/ (7) = E[x(t)y(t —z’)] is cross correlation function between the responses x(t)
and y(t). It is assumed here that the reference response y(t) and all structural responses
are jointly wide sense stationary (WSS). When y(t) and x(t) are joint WSS process,
their cross correlation function satisfies the following equation (Bendal et al., 2000)

Rymy (1) = R (7) (7.3)
Let x™ denote the m" derivative of the random process x(t) with respect to time, and
R)((;“) (r) denote the m™ derivative of the correlation function R, (7) with respect to z. If
the mean square derivatives exist, Equation (7.2) can be rewritten as
M Rixx 0y + G R x )y +KiRx )y T GaRyxy + kiR xy = MRy (7:4)
Taking a two sided Fourier transform of both sides, rearranging the order of the equation

and exploiting the property of F(R)=(jw)>F(R) (where F denotes Fourier transform
operator and j?=—1) gives

S, ,—S,
1 X1y %Y (7 5)

1-jc /(Mo)—k [(Mo?) S, ,+(S, , - S,,liCs/(Ma) + K.,/ (Mw?)]

where ijy, the Fourier transform of the cross correlation function R, (), is the cross

power spectral density function between the structural acceleration response X; and the

reference response .
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If the structural parameters of the (i+1)" story [ki+1 G+1]" are known, then the right
side of Equation (7.5) can be calculated from the measured structura responses and the

following the optimization problem is formulated to identify the parameters of the i

story [k c]".
N R .~ A
ar%min J(ki’Ci):Z‘gl(ki’Ci)_gl(Sxiflyisxiyisxmy)z (7.6)
i1Gi =1
where g,(ki,c)= 1
R 1- ¢ /(may) -k /(Ma®)

2 2 A S, . -S
G (Sy_ya» Sy Sy) = 3 a a my,l. Su 2
Sy i Sk Ly =Syl jCia/(May) + kiﬂ/(mi )]

(The derivation in Equations (7.1)~(7.6) is nothing but a duplication of the derivation of
the non-top story identification in the CSD_SUBID method in section 5.1). In order to
solve the optimization problem (7.6), the value of the (i+1)™ story parameters [Ki+1 Cis1] "
have to be known. To identify parameters [ki.1 Ga]', the CSD_SUBID method in
Chapter 5 uses the dynamic equation of the (i+1)™ floor shown in Equation (7.7), which

results in the establishment of an induction identification problem.

My 1%+ Caa (K1 = %)+ K (60 = %)+ 6o (K40 = X )+ Ko (6,1 = X42) = 0 (7.7)
Unlike the CSD_SUBID method, the LOOP-SUBID method utilizes a different approach
to identify the parameters [ki+1 Ci+1]", one based on the dynamic equation of the i floor,
Equation (7.1), rather than that of the (i+1)" floor.

One interesting property of Equation (7.1) is that the equation remains unchanged
with the structural parameters swapped (ki, ¢ < ki+1, G+1) and structural responses

swapped (X_y X;_3,X_1 & Xi,1 X1, %,1), Which implies that the i story substructure and
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(i+1)" story substructure have some symmetry in the identification process. This

symmetry provides away of developing a symmetric identification method similar to that

of Equation (7.6), in which that the parameters of the (i+1)" story [k, ¢.,]" can be

identified given that the parameters of the i™ story [k ¢ ]T are known. This symmetric

identification method is developed as follows,

Adding the term —m X, to both sides of Equation (7.1) and following a procedure

similar to that in Equations (7.2)~(7.5), another key equation can be obtained as follows

1 Syiﬂy B SX1 y (78)

1= [ Gy /(M) — Ky [(Me®) Sy +(Sy .y — S, )G /(M) + ki /(M o?)]

If the structural parameters of the i story [k ¢]" are known, then the right side of
Equation (7.8) can be calculated from the measured structural responses and the

following the optimization problem can be formulated to identify the parameters of the

(i+1)" story [ki,y €l

a:;gmln ‘J(k|+1! |+1) Z‘hl (k|+1' |+1) hI (SxI AR >qy|! x|1y|) (7-9)
G

1

where h (ki+ 1Ciy )= . '
I jCi/(Maoy) —ki+1/(mi‘0|2)

A (S, )= S S |
RS IE xyl’ xlyl Sx y|+(3 - )ﬁy’,)[jci/(ma)|)+ki/(ma’lz)]

Thus far, two identification problems, Equation (7.6) and (7.9), for the two-story
substructure in Figure 7.1b are established, each of which can identify the parameters of

one story in the two-story substructure by using the parameters of the other. By

200



connecting these two identification problem in a loop as shown in Figure (7.2), a loop

identification sequence is established in which all four structural parameters
[k ¢ k. ¢, are identified once together. It is worth pointing out here that

although the LOOP-SUBID method is developed by using the cross power spectral
densities between structural acceleration responses and the reference response, it can also
be formulated by using the Fourier transform of structural responses or using the transfer

functions among different structural responses as in Chapter 3 or 4.

Identification (7.9)

N

ki G ki+1’Ci+1

~_ 7

| dentification (7.6)
Figure 7.2 L oop identification sequencein the LOOP_SUBID method

Compared with the previous substructure identification methods, the LOOP_SUBID

method has severa advantages.

1. Different from the previous substructure identification methods which require of
measuring the structural responses of all floors above the story being identified,
the LOOP_SUBID method only needs four structural responses to formulate the
identification problems: three floor accelerations and one reference response.
This may greatly reduce of the costs of SHM systems, especialy in the case that
the structure has many stories but only the health status of a few lower stories

are of interest.
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2. The LOOP_SUBID method essentially forms a loop identification sequence as
shown in Figure 7.2. It can be imagined that if the parameter identification errors
for each step in the sequence are small enough, the sequence of identifications
will perform like a contraction mapping such that after a sufficient number of
steps, the sequence will aways give the identification near their true values no
matter what theinitia structural parameters are.

3. If the mass normalized structural parameters [ki/m ci/m ki:a/m ci.i/m]" are
treated as the variables to be identified in the optimization problems (7.6) and
(7.9), the value of the i floor mass is no longer needed in the identification,
which means that the LOOP_SUBID can be performed without structural mass
information.

4. If the LOOP_SUBID identification is carried out twice, once on each of the two
adjacent two-story substructures, i.e., the i and (i+1)" floor substructures, two
sets of mass normalized parameters [k/m c/m kisi/m G:a/m]" and [Kisa/mi
Ci+1/Ma1 Kivo/Mis1 CisofMisa]” will be identified. The mass ratio m/m.; between
these two floors can be calculated by using these identified parameters as shown
in Equation (7.10); hence, the results of LOOP_SUBID identification is also able
to provide information about the relative distribution of structura mass on

different floors.

rTh—l/rni = (ki+1/m )/(ki+l/m+1) (710)

Even though the LOOP_SUBID method possesses many attractive features, how to

implement it to ensure the convergence of the identification sequence is still a big
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challenge. In the next section, the condition under which the identification sequence will

converge near true structural parametersisfirst studied.

7.2 Convergence Condition of LOOP_SUBID Method

Comparing the two identification problems, (7.6) and (7.9), involved in the
identification sequence of the LOOP_SUBID method, it is found that these two problems

are essentially the same with the structural parameters swapped (k;,c; < k;,,,¢;,;) and
structural responses swapped (Sy;, < Sy ); thus, al identification analysis results of

(7.6), developed in the fifth chapter, can be also applied to that of (7.9) with the same
variable exchange.

According to the results of identification error analysis of the CSD_SUBID method
in the fifth chapter, following Equations (5.37) and (5.38), the relative parameter
identification errors of identification problem (7.6) can be approximated as,

0, ~g +T,-0,, (7.11)
where 0, =[6; 041" and 0,,; =[6,.3) Oeipy]’; O a0, arethe relative errors of the
i" story parameters [k, 1" 6.,y ad 6.y are the relative errors of the (i+1)" story
parameters [K;,; ci+1]T ; the first term on the right side of Equation (7.11),

e =[e; €51 . is the identification error due to the measurement uncertainty of the

structural responses, calculated by Equation (7.12); the second term on the right side of
Equation (7.11), T,-0,,, , is the identification errors caused by the propagation of
parameter errors of the (i+1)" story parameters. The expression of the matrix T is shown
in Equation (7.13).
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Ny o1 /Stxx oy
Sk o U11I U12| U13| X4y, X=%_)Y,

€ = ) ) . N S G5 (712)
| { } [U a1 Uy Uy, ’W"/ (%—%_1) Yl

N5 v /Sti-s i

N N
Z Re[U 14, A(i+1)i,|] Z Re[U 15, A(i+1)i,|]
=1 =1

T, = N N
Z Re[U 241 A iz ] Z Re[U 251 A iayi ]
=1 =1

(7.13)

where A,gi = S —x)y. /S(x—xfl)yyl , the expressions of factors Uy, are given in
Equation (3.32).
Using the structural parameter and response swap previously mentioned, the
identification error of identification problem (7.9) can be written as
0, ~&,+T,-0, (7.14)
where &, =[&i4) gc(i+1)]T is the identification error due to the measurement

uncertainty of the structural responses, calculated by Equation (7.15). The expression of

the matrix T is shown in Equation (7.16).

~ ~ ~ N.. /S o
Erfin N J g g Yol /A% =% )y
€1 = { by 1)} B Z R {Jl‘l Tt U } Nyx. /S(X—Xﬂ)yyl (7.15)
=1

Ee(i+1)
Ny .1 /St -x.0y

N - N -
E Re[U 12 Di(is1)) ] E Re[U 151 Aiiz), ]

To=|§ - N -
Z Re[U 241 Qi) ] Z Re[U 25, Ai(is1)) ]
=1 1=1

(7.16)

where factors Jij s has the same expression as factors U;; | (in Equation 3.32) with the

structural parameter swap (K;,C; < Ki.1,Cii1); Ajgiay = S —x)y. /S(x—xﬂ)y,l =VA g -
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To start the sequence of identifications in the LOOP_SUBID method, an initial
guess of the parameters of one of the two stories, [k, ¢;]" or [k, C.,]", isneeded. Itis
assumed herein that an initiadl guess of the (i+1)™ story parameters is given and used to

start the loop identification sequence. Let 0., denote the relative error of the initial

i+1
guess of the (i+1)™ story parameters. The superscript (0) standards for the step number in
the loop sequence identification. It is also assume herein that only one set of structural

responses is used in performing the sequence identifications in the LOOP_SUBID
method. Therefore, € and g;,;, , the identification errors due to the measurement
uncertainty, are unchanged during the whole sequence identification process. Moreover,
the matrices T, and T, are a so unchanged during the whole identification process.
Utilizing the relative parameter identification error in each step of the sequence

identification can be expressed by the following two equations,
0, —¢ +T,.0,,9 (7.17)

9i+1(2q+2) =&, +T5-0 (a2 (7.18)
where g=0,1,2,3,.... Substituting Equation (7.17) into (7.18), a difference equation in the

relative identification errors of the (i+1)™ story parameters 0,., isestablished.

0,1 = ToTy ‘9i+1(2q) +8i,1 + T8 (7.19)

i+1

Similarly, a difference equation in the relative identification error of the i™ story

parameters 0; can also be obtained as

0,%%9 —T.T,-0,%7 45 +Te; , (7.20)
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The initid conditions of these two difference equations are 6., and

0, =& +T,-0,,', respectively.

Difference equation (7.19) can be solved as follows

9i+1(2q+2) =T,T, '9i+1(2q) +&, + T8

= (T2T1)2 '9i+1(2q72) +(T,T) (81, + T,o8) + (g1, +T,8)

—... (7.20)
q

= (Tle)q+l '9i+1(0) + Z(Tle)l (814t T28)
-0

Thevalueof S=){(T,T,)" can befurther evaluated as follows
(l _Tle)S = |q=o (Tle)l - |0|:+1l (Tle)l =1- (Tle)q+l (7.22)

where | isthe identity matrix of the same size as the matrix T,T;. Assuming that matrix
(I-T,Ty) isinvertible,

S=> {1(T,T) =( -T,T) ™I - (T,T)*"] (7.23)
Therefore, the final solution to the difference equation (7.19) is obtained by substituting
Equation (7.23) into Equation (7.24) to give

0., = (T, 0,0 + ( ~T,T) M~ (TT) ™ (era + Toe)  (7.29)

Similarly, assuming that matrix (1-T.T,) is invertible, the solution to difference
equation (7.20) can be written

0, %% = (T, T) ™™ 0,% + (1 ~TyT,) [1 = (TT) ™) (e + ey ) (7.25)

The results of the identification errors in Equation (7.24) and (7.25) clearly indicate
that the identification errors 8,“%*? and 9, ,***® converge as q goes to infinity if the
following two conditions are satisfied,
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lim(T,T,)% =0, lim(T,T,)*=0 (7.26)
g—© g—>o©

From linear algebra (Wylie et al., 1982), the conditions (7.26) hold if the maximum
eigenvalues of both matrices, T1T, and T,T 1, have magnitudes less than unity.

Since T, and T, are 2x2 sguare matrices, the products of these matrices, T,T, and
T,T,, are also 2x2 square matrices. By directly solving for the eigenvalue of the matrix
T1T,and T,T; symbolically via the matlab® Symbolic Math Toolbox, it can be proven
that the eigenvalue of these two square matrices are equal. As a result, the identification
sequence in the LOOP_SUBID method converges to the values near the true structural
parameters if the magnitude of the maximum eigenvalue of the matrix T1T»is less than
unity.

If the magnitude of the maximum eigenvalue of the matrix T,T.is less than unity,
after a sufficiently large number of loop identifications have been carried out, the
identification errors of the structural parameters in the identification sequence, the

solutions to difference equations (7.24) and (7.25), will convergeto

(!Lnlﬂi(zmz) = (1 = TiTo) (e + Togin) (7.27)
éLn;9i+1(2q+3) =(l - T2T1)_1'(8i+1 +T,8) (7.28)

Thus, it becomes clear that the key to the success of the LOOP_SUBID method, the
convergence of the identification sequence, is that the magnitude of the maximum
eigenvalue of the matrix T, T,in the identification needs to be less than unity.

Matrices T, and T, ae relaed to the structurad  response

and U.

ij» which are

Ajisny) = Sy %)l /Sy(x—xﬂ),l as well as deterministic factors Uy
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the functions of structural parameters. If there is only one excitation, response A,y will

be independent of the excitation and become a function of structural parameters only.
Under such a circumstance, matrices T, and T, become deterministic functions of the
structural parameters and can be directly evaluated. In the following subsection, the 5-
story shear structure used in the previous chapters is reutilized to check if the

LOOP_SUBID method will lead to converged identification results for that structure.

7.2.1 An lllustrative Example

The parameters of the 5-story shear structure are m=1x10° kg, ¢;=8x10 N-sec/m,
k=16x10" N/m (i=1,...,5). The structure is only subject to ground excitation which is
modeled as a Gaussian random pulse process passing through a 4™ order band-pass
Butterworth filter with 1Hz low cut-off frequency and 12 Hz high cut-off frequency.

In this 5-story structure, four standard two-story substructures can be formulated,
each of which uses one of the non-top story floors as the middle floor in the standard
two-story substructure. The maximum eigenvalues of the matrix T,T, for the four
substructures are calculated and listed in Table 7.1. All four eigenvalues are larger than
unity, indicating that the identification using the LOOP_SUBID method will not
converge for any of these substructures.

Table 7.1 Maximum eigenvalue of the matrix T,T, of each substructure

Number of middle
floor in the two- 1 2 3 4
story substructure
Largest magnitude
eigenvalue of 197 122 1.18 141
matrix T,T,
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To verify this conclusion, the LOOP_SUBID method is carried out for al four
substructures. In the simulation, it is assumed that a set of 1800-second long structural
responses, sampled at 200Hz, are used to perform the loop identification. The Welch
average periodogram method is applied to calculate the cross power spectral densities
needed in the identification: the 1800-second long structural responses are partitioned
into short segments of 30 seconds each. Adjacent segments are overlapped by 25% of the
segment length to increase the number of CSDs averaged. The magnitudes of the
measurement noises of all acceleration responses are assumed to be the same, with RMS
equal to 50% of the RMS of the ground excitation.

Figures (7.3)~(7.7) show how the relative errors of the identified parameters change
as the loop identification progresses. It is easily seen that the identified parameters do not
converge to near their true values in al four identification cases, consistent with
expectations from the eigenvalue analysis.
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Figure 7.3 Relative identification errors of loop identification for the 1% floor
substructure
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In the next subsection, the reason that the LOOP_SUBID fails to provide converged
results is analyzed. Based on that result, a new measure is proposed to modify the
LOOP_SUBID method so that the loop identification sequence converges to near the true

structural parameters.

7.2.2 Analysis of the Identification Results of LOOP_SUBID Method

In the previous subsection, the simulation results show that the LOOP_SUBID
method fails to give corrected identification results for all four substructures. In this
subsection, a qualitative explanation of this result is provided which reveals the in-depth
reason behind the failure of the LOOP_SUBID method.

The LOOP_SUBID method consists of two basic identification steps. Each step
identifies the parameters of one story in the two-story substructure given the parameter
values of the other story. The identification errors of these two steps are composed of two

parts as shown in Equations (7.11) and (7.14): the first part is due to the measurement
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uncertainty of structural responses; the second part is related to the parameter errors of
the other story. The analysis in section 7.2 aso demonstrates that if the second part
converges to zero as the loop identification is continuously carried out, the loop
identification sequence will converge. Therefore, to simplify the analysis of the lack of
the convergence, assume that the first part of the identification error (from measurement
uncertainty) isjust zero. Then, the identification error in each step is only from the error

accumulation.
For the step which identifies the i story parameters [k c 17, it has been shown in

the fifth chapter that the second part of the identification error is significantly affected by
the ratio of two cross power spectral densities, A,y = Sy _x), / Syx—x_)1 » hear the
substructure natural frequency W . If thisratio is very small near frequency\/m :
the identification error of the parameters [Kk; ci]T in this identification step will be much
smaller than the identification error of the parameters [k;,; C,,]" in the previous
identification step.

Since the step to identify parameters [k, C.,]7 is identica to the step for
identifying parameters  [kK; ci]T with the structural parameters swapped
( ki,¢ < k4,6, ) and structural responses swapped ( Sz < Sy ), a similar

conclusion as to the identification error can be obtained: the second part of the

identification error is greatly affected by the cross power spectral density ratio

Aisn = Sy -2). / Sy(x-x.,) Near the substructure natural frequency 4/k;,;/m . If this
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ratio is very small near the frequency ./ki,,/m , the identification errors of the
parameters [k;,; C.,]" in this identification step will be much smaler than the

identification error of the parameters [k; ¢; ]" in the previous identification step.
Since the shear structure used in the illustrative example has uniform stiffness along

the height of the structure, the two substructure natural frequencies, ,/k;/my and
Jki.1/my , are equa. Therefore, to make the identification error in the two identification

steps both small, the two cross power spectrd ratios, Ay and Ay, , must be small

near the same frequency k/m (or ,/k,;/m ). However, since only one set of

structural responses are used in formulating the loop identification sequence, A, and

A1) are inverses of each other; that is, if one of them is small near the frequency

Jki/m , the other will be large near the same frequency. Hence, there exists a

conflicting relation between the identification errors in the two identification steps: if one
of them is smaller, then the other will be large. It isimpossible to make the identification
errors in the two steps both small simultaneously. This conflict leads to the failure of the
LOOP_SUBID method in the example.

As previously analyzed, the key to making the loop identification sequence converge

is to simultaneously reduce two cross power spectral ratio, A,y andA;,y, , near the

same substructure natural frequency \/ ki /m (or\/ ki.2/m ). In order to achieve this goal,

some modifications to the original LOOP_SUBID method are needed. In the origind

method, one set of structural responses is used repeatedly to carry out the loop
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identification, leading to the problem that the two responses A,y andA,y), cannot
both be very small in the same frequency range (because they are inverse of each other).
In the modified LOOP_SUBID method, two sets of structural responses are required: one
in which key response ratio A,y is smal and the other in which A,y is small near
the substructure natural frequency. These two sets of responses are used in an alternating
order to formulate the two identification steps in the loop identification sequence. Since
both response ratios, Ay, andA;,q, , ae very smal in their own identification step,
the identification error of the loop identification sequence is guaranteed to continuously

decrease until it converges.

Clearly, the success of the modified LOOP_SUBID depends on finding two sets of
structural responses in which the key response ratios, A,y Of Ay, are very small

near the substructure natural frequency in one of them. However, in the illustrative

example it is assumed that there is only one excitation source (ground excitation);

therefore, the two key response ratios, A, and Ay, , are independent of the
excitation and become functions of the structural parameters only; that is, A,y and
A i1y Will not change due to changesin the single excitation. In order to change A 4y

and Ay, , some effects from an outside system (e.g., control systems) must be applied

to the structure.
In the next section, an AMD control system (assumed to be installed on the top floor)

is utilized to change structural responses so that two sets of structural responses can be
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achieved, in which A,y and Aj,y, are very small near the substructure natura
frequency in one of them.

7.3 Controlled LOOP_SUBID Method

As stated in the last section, to ensure the convergence of the loop identification

sequence in LOOP_SUBID method, two control algorithms are needed to be designed,

each of which makes one of the response ratios A,y andA.y, as small as possible

near the corresponding frequencies \/ki /m and \/km/mi , respectively. However, the
convergence of the loop identification sequence does not necessarily mean that the
converged identified parameters are accurate. As shown in Equations (7.17) and (7.18),
the identification errors of the converged identified parameters are related to ¢; and ¢,

the part of the identification errors due to the measurement uncertainties. It has been

shown in section 7.2 that ¢; and ¢;,, are mainly determined by two structural responses

Six-x yy ad Sy _x )y, : the larger these two responses near the substructure natural

frequencies \/ki /m and \/km /m , the smaller the measurement uncertainties will be;

leading to smaller identification errors. Therefore, in addition to reducing the response

ratios Ay, and Ay, , @ control system must aso amplify the two structural

responses S, ; , ad Sy, ; , near the frequencies \k/m and ki;/m

respectively.
In the sixth chapter, an optimization method is proposed to design the control

systems to achieve two similar goas of changing structural responses. That method
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assigns the importance weighting factors for each of the objective functions in the
optimization and converts a multi-objective optimization problem into a single-objective
optimization problem. In this chapter, a different approach is proposed to design the
control system to achieve the two goas of simultaneously changing the response ratio
Aisnyiy (OF Ay, ) and the response S

y (or'S ,) in favor of more accurate

V(% =% V(% —%,
parameter identification.
Since the two identification steps involved in the LOOP_SUBID are essentially the

same, only the control to improve the identification accuracy of the i story parameters
[k c]" isintroduced. The key equation to identify parameters [k ¢ ]" is Equation (7.5),
repeated here:

S, - S.
1 %1y %Y (729)

1-jo /(Me)—k [(Mo?) S, , +(Sx, — S, ) iGa/ (M) + Ky (Me?)]

Introduce anew variable H,;, .\, as
(%.1=%) %

H(5§+1—§§)5§,1 = (SYXA B SV’ﬂ )/Syxfl - Sy()ﬂu_)ﬂ)/Sy)ﬂ—l (730)
If there is only one independent excitation, the newly defined variable H(jqﬂ,jg )%, €an be

interpreted as the transfer function from the response X;_; to the response (X ., —%) in

either uncontrolled or controlled structural systems. Using the newly defined variable,
key identification equation (7.29) is rewritten as

S. - S.
1 %1y %Y (731)

1-jc /(M) -k [(Mo?) S, A1+Hy o [C/(Ma)+ K,/ (Mo?)]}
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Assuming that 1) the magnitude of H 5  is far less than unity in a narrow
frequency range around ,/k;/my and 2) the structure has uniform story stiffness and
damping coefficient (i.e, k =k, andc, =c,,; ), then Equation (7.31) near the

frequency ./k; /m isapproximated by

1 _Sew =Sy ~Swsuy (7.32)
1-jc/(me) -k /(me?) S, S

Since the magnitude of the transfer function on the left side of the equation is large

near the frequency ,/k; /m , the structural responseS which is closely related to

Y(%=%4)?
the measurement uncertainties in the identification, will not be small near the frequency

Jki/m as long as the response Sy , is not very small near the same frequency.

Therefore, largely reducing the magnitude of the transfer function H ; to some

%)% 4
very small value (by control systems) near the frequency 4/k; /my has some potential for

amplifying the structural response S, , ,, near the frequency 4 k; /m , which controls

the identification errors due to the measurement uncertainties. (It is assumed that the

control systems do not significantly reducing the response S, | near the frequency

Vi /m)

Moreover, another key component of controlling the identification errors of [k ¢ 1",

y

A = Sy %) /Sy(x,xil) , can also be changed in favor of more accurate parameter

217



identification by greetly reducing the magnitude of the transfer function H; ), near

the frequency /k; /m, . Rewrite the responseratio Aisp In adifferent way

S. . S,
— T (Kam%)y % 1Y
A(i+1)i = S(xnfx‘)y/s(xfxi,l)y = : S (7.33)
Xy

(%-%_1)y

Using the definition of H; 5, and the approximate relation in Equation (7.32),
Equation (7.33) becomes
Ay ® —Hg xyx - [1- 16 /(M o) —k; /(m ®°)] (7.34)

Since both H and [1—jci/(mw)—ki/(ma)2)] are very smal near the

%)%
frequency 'k /m , A,y becomesvery small near the frequency y/k; /m .

In summary, greatly reducing the (closed-loop) transfer function H ), near

the frequency ,/k;/m by some control system will lead to small response ratio A s

and large response S, Hence, it becomes clear that the ultimate goal the control

%=%_1)Yy "

system is to minimize the (closed-loop) transfer function H _¢); near the

substructure natural frequency.

7.3.1 AMD System

In order to implement the controlled LOOP_SUBID method, an active mass damper
(AMD) control system, installed at the top floor of the shear structure, is used in this

study. For each standard two-story substructure, two control system algorithms are

designed: one is to minimize transfer function H _; near the frequency \/k; /m, ;
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the other is to minimize transfer function H; ¢ near the frequency ki, /m . Itis

assumed herein that 1) only the three floor accel eration responses, related to the two-story
substructure being identified, and the control force of the AMD system are measured; 2)
the three measured floor acceleration responses are used as the feedback signals to design
the linear feedback algorithms, which are to achieve the previously mentioned goa of
changing the closed-loop transfer functions of the structure. The optimal gain matrices of
the two control systems, L; and L,, are obtained by solving the following two
optimization problems respectively.

2

argLrlnin J(L,)= Lu ’VVl(J OMH x5, | d@ (7.35)
subjectto &, > &, >0,k=12,---,2n
. o, . 2

argernln J(L Z)ZJ.@ ’VVz(Ja’)H(xi_l—xi)m deo (7.36)

subjectto &, > &, >0, k=12,---,2n

where H ;| is the closed-loop transfer function from the (i-1)™ floor acceleration

%)%

%_; to the (i+1)" interstory acceleration response (%, — % ); H g . is the closed-

loop transfer functions from (i+1)" floor acceleration ; ., tothe i interstory acceleration

response (% — %.,,); & isthe damping ratio of the K" root of the closed-loop system and
&, Is a poditive real number, taking the value of 0.02 in the following numerical
examples, o, and o, are the lower and upper frequency bounds of the integration, herein

taken to be 0.8 and 1.2 times the corresponding substructure frequencies respectively; and

W, (jw) and W, (jw) are frequency weighting functions
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2
Wl(j ) ki/(mw )

)= ] 24 |2
i- o (M) -k /(me?)] (7.37)
Wz(ja)): ki+l/(ma)2)
i jc s /(o) ks (mo?)f (739

The magnitudes of W, (jw) and W, (jw) are very large only near the frequencies,/k; /m

and,/k;,,/m , respectively, and quickly vanish when departing from these frequencies.

The role of these frequency weighting functions is to implicitly force the control systems

to focus on changing the transfer functions, H ¢4 and H; 5y« , only around the

frequencies /k /m and \/ki,;/m .

7.3.2 Revisit the lllustrative Example

The 5-story shear structure in subsection 7.2.2 is used to demonstrate the
effectiveness of the controlled LOOP_SUBID method. It is assumed that there is an
AMD system installed on the fifth floor of the structure. As in the illustrative example,
the structure is only subject to ground excitation in addition to the control force from the
AMD system. The ground excitation is modeled as a Gaussian random pulse process
passing through a 4™ order band-pass Butterworth filter with 1Hz low cut-off frequency
and 12 Hz high cut-off frequency.

In this 5-story structure, four standard two-story substructures can be formulated,
each of which uses one of the non-top story floors as its middle floor in the standard two-
story substructure. For each two-story substructure, the two optima feedback gain

matrices of the control system are designed by utilizing the optimization methods
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proposed in the previous subsection. One is to minimize transfer function H;, 45
near the frequency \/k; /m ; the other is to minimize transfer function H ), ~ near

the frequency 'k, /m, . The matrices T, and T from Equations (7.13) and (7.16) for the

corresponding closed-loop controlled structure are calculated. The largest eigenvalue
magnitudes of the matrix T,T, of the four controlled structures are calculated and listed
in Table 7.2. All are smaller than unity, indicating that the identification using the
controlled LOOP_SUBID method will converge for al these substructures.

Table 7.2 Largest magnitude eigenvalues of thematrix T4T, of each controlled

substructure
Number of middle
floor in the two- 1 2 3 4
story substructure
Largest magnitude
eigenval ue of -0.05 -0.0006 -0.6x10° -2x10°®
matrix T,T>

To verify this conclusion, controlled LOOP_SUBID method is carried out for the all
four substructures. In the simulation, it is assumed that a set of 3600-second long
structural responses, sampled at 200Hz, are used to perform the loop identification. The
Welch average periodogram method is applied to calculate the cross power spectral
densities needed in the identification: the 3600-second long structural responses are
partitioned into short segments of 30 seconds each. Adjacent segments are overlapped by
25% of the segment length to increase the number of CSDs in the average. The
magnitudes of the measurement noises of all acceleration responses are assumed to be the

same, with RM S equal to 50% of the RM S of the ground excitation.
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Figures 7.7~7.10 show how the relative errors of the identified parameters change as

the loop identification progresses. When choosing the initial values of the parameters
[ki,; C.,]" to start the loop identification sequence, very large errors are given: the

initial value of the stiffness parameter ki1 is 150% of its true value and the initial value of
the damping parameter c. is 50% of its true value. It is easily seen that, even with such
large errorsin initial parameter values in the loop identification, the identified parameters

still quickly converge as expected from the eigenvalue analysis.
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To evaluate the identification accuracy of the proposed controlled LOOP_SUBID

method, 100 similar controlled identification tests are carried out. The statistics of the

identification errors of the converged identified parameters, relative mean estimate error

and relative root-mean-square-error (RMSE), are calculated and listed in Tables 7.3 ~ 7.6.

Table 7.3 The statistics of the identification errorsof the 1% floor substructure

k1 él kz é2
relative mean 0.0% 0.0% -0.1% 0.2%
error
relative
0 0 0, 0,
oyt 0.1% 0.3% 0.3% 1.2%

Table 7.4 The statistics of the identification errors of the 2" floor substructure

ﬁ2 62 Qs é3
relative mean 0.0% 0.5% 0.1% 0.6%
eror
relative
0.3% 2.0% 0.1% 0.6%
RMSE
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Table 7.5 The statistics of the identification errorsof the 3" floor substructure

relative mean -0.1% 0.0% 0.0% 0.1%
error
relative

0 0, 0, 0

hoyo 0.4% 1.9% 0.5% 1.8%

Table 7.6 The statistics of the identification errorsof the 4™ floor substructure

I24 64 lz5 65
relative mean 0.0% 0.1% 0.2% 0.1%
error
relative 0.3% 1.3% 1.5% 7.8%
RMSE il = o -

As shown in Equations (7.27) and (7.28), the relative errors of the converged

identified parameters are related to €; and g;,, , the parts of the identification errors due

to the measurement uncertainties. Since it has been shown in the fifth chapter that ¢; and
g,,, are zero-mean random variables, the means of the parameter identification errors in

the controlled LOOP_SUBID method are zeros, verified by the simulation results here.
The controlled LOOP_SUBID method provides very accurate identification results under
the inference of fairly large measurement noise: in most cases the relative RMSE of the
stiffness estimates are far less than 1% and the relative RM SE of the damping estimates

are around 1~2%.
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Chapter 8

Substructure | dentification for Frame Structures

The substructure identification methods and controlled substructure identification
methods in the previous five chapters are based on a fundamental assumption that the
identified structure is a shear moddl structure. Although the shear model iswidely used to
model the dynamic behavior of building structures, it is only a simplification of red
complex structures. As shown in Figure 8.1, a simple one-bay n-story frame structure has
three times as many DOFs as an n-story shear model structure; the dynamic behaviors of
the frame structure will be different from that of the shear structure. Furthermore, finding
damage in real complex structures, like the frame structurein Figure 8.1, is of much more
practical interest than just identifying the parameter values in a shear model structure
(Yan et al., 2006). However, directly performing identification in a complex structure to

find damage is often fruitless due to the greater complexity of the search space.

El

Figure8.1 A frame structurevs. a shear structure
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In this chapter, a new approach is proposed, using substructure identification
methods, to locate and quantify damage in complex frame structures. First, a direct
method is attempted in section 8.1 simply treating the frame structure as a shear model
structure and directly applying the substructure identification method (for shear structures)
to identify story stiffness ki from the floor acceleration measured on the frame structure.
However, it is found that this method only works when the beam-to-column stiffness
ratio of the frame structure is very large and the frame structure essentially behaves like a
shear structure. If the beam-to-column stiffness ratio is not very large, which istypical for
real frame structures, the rotation of the beam-column joints in the frame structure will
lead to significant errors in the identification and the direct method will not give accurate
results. In order to overcome this difficulty and extend the substructure identification
methods to frame structures with moderate or small beam-to-column stiffness ratios, a
new substructure identification method for frame structures is proposed in section 8.2.
This new method utilizes the exact dynamic equation of one floor substructure of aframe
structure to formulate the identification problem, in which the equivalent story stiffness
of the frame structure is identified. The “equivalent” story stiffness here refers to the
story stiffness of the frame structure when fictitious constraints are added such that all
rotational responses at beam-to-column joints vanish. This stiffness can also be thought
as the story stiffness of a frame structure when its beam-to-column ratio is infinite or, or
in other words, the frame structure approaches a shear structure. The new substructure
method transforms the frame structure into a beam-like structure. Then, the substructure
identification method developed for shear structures is modified and used to identify the
equivaent story stiffness of this beam-like structure.
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8.1 Directly Apply Substructure Identification Method for Shear
Structures to Frame Structures

The substructure identification method for shear structures is derived based on the
dynamic Equation (8.1) of one floor substructure in a shear structure. Various
transformations result in key identification Equation (8.2) for the substructure

identification.
mX +C (X = %) +K (% =X_) +C (% —%.;) + K, (X —%,)=0 (8.1)

1 _ Xia—X (8.2)
1-j¢/(mw) -k /(mo?®) X+ (Xi+1 =X, )[J'Cm/(m w) + ki+1/(ma)2)J .

where x; is the i™ floor displacement relative to an inertia reference frame; the overdots
denote derivatives with respect to time; and X; denotes the Fourier transform of the i"

floor acceleration.
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Figure 8.2 A five-story one-bay frame structure
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When a frame structure replaces the shear structure, the equilibrium condition in
Equation (8.1) no longer holds true, nor does Equation (8.2). However, if the difference
between the two sides of Equation (8.2) is small, Equation (8.2) perhaps can still be used
to form the substructure identification optimization. Therefore, this section will focus on
testing how well the equilibrium of Equation (8.2) is satisfied for aframe structure.

A simple 5-story one-bay uniform frame structure, shown in Figure 8.2, isused as a
test. It is assumed herein that the axial rigidities of the columns and floor labs are infinite
and the mass of both columns and beams are negligible relative to the mass of the floor
dabs. Therefore, there are 3 DOFs for each floor, two rotation and one horizontal
trandation, for total of 3n DOFs for the whole structure. The parameters of the frame
structure are set as follows: the height of each story of the structure is H=3m; the span of
the bay is L=3m; the mass of each floor slab is m=1x10°kg; and the flexural rigidity of
each column El= 18x10° N-mZ. If the frame structure moves in pure shear, the equivalent
story stiffness would be k=2x12EIl/H*=16x10" N/m, which is the same as the story
stiffness of the 5-story structure used elsewhere herein; the floor mass is also the same in
this frame structure as in the shear structure example. It is assumed that the damping of
the frame structure is the same as the damping of the previous 5-story shear structure (i.e.,
ci=8x10° N-sec/m). The flexural rigidity of each beam is El,=pEl., where g is the beam-
to-column stiffness ratio. It is well known that stiffness ratio S greatly affects how well
the frame structure behaves like a shear structure; larger  value implies that the frame
structure behave more like a shear structure. Three scenarios, corresponding to different
levels of the relative stiffness of the beams, are studied herein: 1) the beams and the
columns have the same flexural rigidity (f=1); 2) the beams have large flexural rigidity
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relative to that of the columns ($=10), but not rigid enough that its flexibility can be
neglected; 3) the flexural rigidity of the beamsisvery large ($=100).

Figures 8.3~8.7 show the magnitudes of the right side of the key identification
equation (8.2) of the five story substructures with three different beam-to-column
stiffness ratios £. The magnitude of the left side of Equation (8.2) is aso shown in the
plots with red solid lines for comparison. The stiffness and damping parametersin the | eft
side of Equation (8.2) are the “equivalent” story stiffness and damping of the frame
structure, defined as the story stiffness and damping when the frame structure behave like

apure shear structure (when the beam-to-column stiffness ratio isinfinite).
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Figure 8.3 Magnitude plot comparison for the 1% story substructure
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Figure 8.4 Magnitude plot comparison for the 2™ story substructure
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Figure 8.5 Magnitude plot comparison for the 3" story substructure
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Figure 8.6 Magnitude plot comparison for the 4™ story substructure
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Figure 8.7 Magnitude plot comparison for the 5" story substructure

A good match between the magnitudes of the left and right sides of Equation (8.2)
indicates that the substructure identification methods for shear structures can be applied
to the identification of the frame structure; on the contrary, a bad match indicates that the
substructure identification methods for shear structures are not suitable for the

identification of the frame structures.
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Several important observations can be made from Figures 8.3~8.7.1) For structures
with small and moderate beam-to-column stiffness ratios (5=1 and f=10), the magnitudes
of the two sides of Equation (8.2) do not match very well, indicating that the substructure
identification methods for shear structures are not applicable to these frame structures. 2)
For a structure with a quite large beam-to-column ratio ($=100), the magnitude plots
match very well in most cases. However, there are some exceptional cases (e.g., for the
magnitudes of the 3" story substructure terms). Thus, even though it seems reasonable
that the substructure identification methods for shear structures can be directly applied to
the frame structures with very large beam-to-column ratios, unexpected identification

errors will likely occur in some cases.

8.2 Substructure Identification Method for Frame Structures
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Figure 8.8 Thetwo-story substructure of a non-top floor in aframestructure

As demonstrated in section 8.1, directly applying the substructure identification

methods of shear structures to frame structures is infeasible unless the beam-to-column
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ratio of the frame structure is extremely large. However, the beam-to-column ratio of
most real frame structures is far from what can be considered extreme large. Therefore,
some modifications must be made to the original substructure identification methods for
shear structures so that they can be applied to most frame structures. In this section, a
new substructure identification method for frame structures is proposed, derived based on
the dynamic equation of one floor substructure in a frame structure. In order to make the
illustration simpler, a simple n-story one-bay structure is used to demonstrate how to
formulate the substructure identification for frame structures.

Figure 8.8 shows a standard two-story substructure of the frame structure.
According to Lagrenge-d’ Alembert’s principle, the dynamic equation of the i floor in

the horizontal trandlational direction can be written as

mx =V, +V, +V; +V, (8.3)
where V4, V,, Vs and V, are the elastic restoring shear forces that the columns in the i

and (i+1)" stories apply on the i floor. From structural analysis, these shear forces at the

ends of the column elements can be calculated as

12E 126,

V1 = ( -1) - Il (ell ‘9@—1)1) (8.4)
12El., ,
V, =- H 3 (% i -1) 2 (‘9.2 (i—1)2) (8.5)
12El ;. 6El ;.
3= _%(Xi — %)+ H(Z = (01 +6;.11) (8.6)

i+1 i+1
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12El 6El ;.
V, = ——; 2 (X —X.q) + (2 = (62 +.11)2) (8.7)
H|+1 Hi+1

where El,;, El;,, El,;, and El,,, are flexurd rigidities of the columns in the i™ and

(i+1)" stories; and 6., and 6., (i=1,...,n) are the rotational responses of the two beam-

column joints at the i™ floor.

Substituting Equations (8.4)~(8.7) back into Equation (8.3) gives

12(E|I +El,) 12(El i, + El ,9y2)
i #(Xi —X4)+ H.3+1 (X — %)
6El, 6El, 6El ;. 6El ;.
+H—21(‘9i1 + ‘9(i—1)1) +H—22(0i2 + ‘9(i—1)2) _%(eil + 0(i+1)1) _%(em + ‘9(i+1)2) =0
i i i+1 i+l

(8.8)
For the sake of notational simplicity, a reference flexura rigidity, El, is introduced. The

ratios between the flexural rigidities of the columns and the reference flexural rigidity are

defined as
El i1 El i2 El (i+1)1 El (i+1)2
1 _g Bo_ _5. _ 8.9
5 Mg vy Py P (8.9)

Equation (8.8) can be transformed into

mX; +1EI—E3|(051+0‘2)(Xi _Xi1)+1|_2|EI (By+ Bo) (X —X%,1)

i i+1

6El

F(al +0‘2){a Iy (ell +9(| 1)1)+ a +a (9|2 +‘9(| 1)2)} (8-10)
i 1 2 1 2

6El

o H_zl(ﬁl + ﬂz){L (Hil + 9(i+1)1) + L(Qiz + 0(i+1)2)} =0

P+ B, P+ B,

Define four new rotational responses as follows
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a a

ei(—zl) = —1‘9071)1 + —29(i—1)2 (8.11)
a, +a, a, +a,

oV =—4 g % g (8.12)
a, +a, a, +a,

I 0, + e 0, (8.13)
B+ B, B+ B,

08 =Lyt —L2 0

e P+ B, e B+ B, e (8.14)

These rotational responses are the average floor rotationa responses weighted by the
relative flexura rigidity of the columns in the same story. Superscripts (1) and (2)
indicate which story columns are used to calculate the weighting factors: (1) for the
flexural rigidity of the columns below the floor; (2) for the flexura rigidity of the
columns above the floor. If the stiffness of the columnsin thei™ and (i+1)th stories are the

same, i.e, a; = B, and a, = f3,, thetwo rotational responses of a floor will be equal and
become one rotational response (i.e., 6 =6?).

Using the weighted average rotationa responses, Equation (8.10) is rewritten as

mix+1|iE (et + ) (% — .1)+1H2E' By + ) (% — %)

i 6E| i+1 (815)
+0{2)(l9(l) Hi(—zl)) (ﬁl ﬁz)(9(2)+9.(+li) 0

i |+1

6EI

Define the equivalent story stiffness of thei™ and (i+1)" stories as

12El
ki = F(Oﬁ +a,)

i (8.16)
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Kisy = ]ﬁ::l (B +B>)

i+ (8.17)

which is just the story stiffnesses when the beam-to-column stiffness ratio of the frame
structure is infinite and the frame structure behaves like a pure shear structure. Then,

Equation (8.15) can be rewritten by using the equivalent story stiffness as

mx +k[x —x_,+6 ]+k [x —x.,—6,]=0 (8.18)
where &, = (0% +0%)H, /2, 5., = (0P +02)H, ./2.
If it is assumed that the damping matrix of the frame structure has aformat similar to that

of the stiffness matrix, the dynamic equation of the i™ floor, including the effects of the

structural damping, can be written as
mx, +.c:i [xI - )‘gfl' +6 J+ k[x —x_ +5] (6.19)
+ Ci+1[xi X 5i+1]+ ki+1[xi X 5i+1] =0

where ¢; and ¢;+1 are the equivaent story damping of the frame structure.
Adding the term m (-, + &;) to both sides of Equation (8.19), taking the Fourier

transform and rearranging gives

1 _ Xi—l_ Xi__Ai i
1-j6 /(Me) -k /(Mo?) (X4 —4)+ (X - X + A )]ic. /(M) + k., /(me?)]
(8.20)

where A, and A, are the Fourier transforms of the responses 5, and &, ,, respectively;

i+1 [

X. is the Fourier transform of the i™ floor acceleration % . Assuming that structural

parameters [k.; C,]" in Equation (8.20) are known, the right side can be directly
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calculated from the measured acceleration responses. Then, an optimization problem

similar to Equation (3.10) is formulated to identify structural parameters [k, ¢].

N 2

N A A A A A
ar%min ‘J(ki’ci):Z|8I|2:Zgl(ki’ci)_gl(xi—lixi’Xi+1’Ai’Ai+lj (8.21)
i +Ci =1 1=1
where gl(khci): : L N
1-jo /(May) -k /(M)
P R _ Xi—l,l_xi,l_Ai,l
O Xie, X0 Xis, A A, |=—= A x = = ] 5
(X =A) + (X = X, +Ai+1,|)[JCi+1/(mia)l)+ki+l/(rnia)l )] .

Similar to the substructure identification methods for shear structures, Equation

(8.21) establishes an induction identification problem which can identify the equivalent

story stiffness and damping coefficient of the i story [k c 1T given that the parameters

of the (i+1)™ story [Ki,q ci+1]T are known. Since the top-floor substructure could be
considered as a specia case of the general non-top two-story substructure, shown in
Figure (8.8), wherein both parameters of the fictitious story (n+1)" [Knsa cn+1]Tand the

response of the fictitious (n+1)" floor are zero, a simple top-story identification problem

can be formulated as

N ~ln G
argmin J(kn,Cn)=Z fI (knicn)_ fl(xn—lixniAnj
ko o =1 (8.22)
1 AR s )2 -1 ).znl _gn
where f, (k,,c,) = ,f(x_,x): A 3 :
I( n n) 1— an/(mna))—kn/(mna)z) I n-1:“*n ),(,n_lYI —An
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In Equation (8.22), the equivalent parameters of the n™ story [k, c,]" are identified,

which in turn can be used to start the induction identification problem in Equation (8.21).

By continuously repeating the induction problem in Equation (8.21), the equivalent story

parameters of the whole frame structures are identified from top to bottom iteratively.
Compared with the substructure identification method for shear structure in Chapter

3, the proposed substructure identification method for frame structure has some
additional terms (A;,A,,,) that account for the effects of the rotation responses in

formulating the identification problems. Moreover, athough this derivation of the
substructure identification method for frame structures utilizes the Fourier transform of
the structural responses, it can be easily shown that, if a reference response y(t) is
introduced, the two key identification equations in the power spectral densities between

the structural responses and the reference are

. 1 B e . (8.29)
1-jc, /(M) —k,/(mo?) S,y Sk

n

1 B Sxfly - SXY - SAiy (8.24)

jCi+l + ki+1 :|
2
mo) (Mo°)

1_ JCI _ ki
(M) (Mo?) (Sxy = Say) + Sy —Siy TSk Ly (

By utilizing these two key equations, a new power spectral density based substructure

identification method can be formulated as foll ows.

2

N A o~ ~ ~
agmin J(k,.c,) = Z\ i (knoCo) = F1(Siy.Si 0S5 y) (8.25)
n’cn =1
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1
1- J Cn/(mna)l ) - kn/(mna)lz) '

where f,(k,,C,) =

A ~

~ oA - Sx yI_Sxyl+éA !
f, (any,Sx ,1y”SA y) = Y nYs
" ST Y
] N . ~ ~ ~ ~ ~ 2
argmin J(k,c)=219,(k.c)=8,(S, ,+SiysSiy+Siys Sk ) (8.26)
G =1
1

Whefe g| (kl 1Ci) =

1-jc /(M) -k /(Mof)’

N ~ N A

>

A~

g, (SX,,ly’ SXY ! Sxﬁ»ly ! SA‘V ! Ai+1y)

N A

S . -S. -S

%1yl %l Ayl

(Siyi —Si )+ Sy —Siy +Si)liC/(May) + K, /(M)

The derivation of the substructure identification method for frame structures
essentially converts one frame substructure, shown in Figure 8.1, into a beam-like
structure, shown in Figure 8.9 with (3n—1) DOFs (each floor has one translation and two
weighted rotation responses; the top floor is an exception which only has one rotation
response). The two rotation responses of each floor are the weighted average rotation
responses of al beam-column joints in the same floor; the weighting factors are
determined by the relative flexural rigidities of the columns in the story above and the

story below the floor being identified.
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Figure 8.9 The equivalent beam-like structurefor an n-story frame structure

Although this substructure identification method for frame structures is derived from a
simple one-bay frame structure, it is easily shown that this method can be extended to
more general multiple-bay frame structures by calculating the two average rotation
responses from all beam-column joint rotation responses for each floor. Therefore, the
proposed substructure identification method is applicable to general frame structures.
However, there is one disadvantage of the newly proposed substructure identification
method: it does require measuring the rotation responses of the beam-column jointsin the
frame structure, which may be difficult to realize. Further research, beyond the scope of
this dissertation, is needed to relax this requirement and only utilize the floor acceleration

responses to perform the substructure identification.
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8.3 Identification Error Analysis

Utilizing the method of the identification error analysis, proposed in the third
chapter, the identification errors of cross power spectrum density based method for frame

structures are derived in this section.

8.3.1 Top Story Identification Case

The parameter identification error of the top story identification in the power

spectral density based method (for frame structures) can be obtained as

N, / S, . .«
0 N W, W, W, KoaYil [ (% =% 0+ A Y
|: nk:| ~ Z R |: 11 12 13 :| (825)

JdN..,/S. . .
4 Woy i Wap W) X“y"/ (% =% 1+4,) Y]

1=1
NAny'I /S xn_xn—l"'An))lvl

nc

where 6y, and 6., are the rel ative identification errors of the n story parameters k, and cy,

respectively; Ny, = éw — Sy (i=1..,n) is the measurement uncertainty of cross

power spectrum density (CSD) estimation, given by the difference between the CSD
estimated from the noise-contaminated measured responses and the CSD of the true

(noiseless) responses at frequency wy; S is the CSD between the response of

xn_xn—l"'An)yJ
the i™ story (% — % _, +A,) and the reference response y(t); the derivation of the factors
W, isgivenin Appendix E.

As shown in Figure 8.10, al factors Wj;, are significantly large near the natural

frequency of the n story substructure ., =+/K,/m, , and very small when far away

from this frequency. Thus, the uncertainty measurement terms (N / S(XFX Ayl

Ng g / Six % iy AANg / Six % .+i )y ) Near the substructure natural frequency
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.o Play a dominant role in determining the parameter identification accuracy. Largely
reducing these terms near the substructure natural frequency w,, will significantly

reduce the identification errors and improve the identification accuracy.
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Figure 8.10 M agnitude of weighting factors Wi,

8.3.2 Non-top Story Identification Case

The parameter identification errors of the i™ non-top story in the power spectral

density based method (for frame structures) can be obtained as
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N %1yl /S(X| —%_+A) Yl

Ny /Sg g si v

Ut Ui U U U | N0t/ Sesasions |+
21 Yzr Yz Y Vs N s )
Ayl / (X%—%_1+A) Yyl

_NAHly'I /S(Xi_xi—l*'Ai)y'l . (826)

S
(%.1-%+Au1) Yl
1 1 ek

(i+1)
i Re) [U 16, U17,| } ) S(X-—Xﬁﬁ—&)y,l

S(Xﬂl_xi-"AHl) y)l 2]
S—“ c(i+1)
(%—%_+A) Yl

where Gy+1) and Og41) are the relative identification error of the (i+1)" story parameters
ki+1 and ci+1, respectively; the derivation of the factors Uj;; is givenin Appendix E.

The identification errors of the i™ story parameters [6q 6] in Equation (8.26)
consist of two parts: the errors (the first part of the right side) directly related to the

measurement  uncertainty of the structural responses ( Ny , /S(x—x,ﬁﬁi)y ,

ny/S(K—X,1+Al)y ! NXMV/S(X'_XA"'AJY ! NAiY/S(x—xfl*'Ai)y and NAMY/S(X'_X'fﬁAi)y) and
the accumulation errors (the second part) due to the uncertainty in the identified structural

parameters of the story above ( S and

(X+1—5§+Ai+1)Y/S(5§ —%_1+A))y 9k(i+l)

S

% 5ok )y / Sixx +h )y Oeey ). AS shown in Figure 811, all factors Uy, are

ijl
significantly large in magnitude near the natural frequency of the i"" story substructure
o =+/ki/m and decay very fast when moving to lower and higher frequency.
Therefore, both the measurement uncertainties and the upper story parameter

uncertainties near the substructure natural frequency w,, play an important in
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determining error; significantly reducing their values can greatly reduce identification

error.

y

magnitude of the factors U
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Figure 8.11 Magnitude of weighting factor Uj;,

Another interesting observation of this result is that the magnitudes of both kinds of
uncertainties are not only related to the sources of these uncertainties — the measurement

uncertainties (N N N

X1y X1y

%,y N;, and N; ) and the identification errors of the

upper story parameters ( 6,.; and 6.5 ) — but aso are affected by two important

.Since S

and s (%% 1+,

(%.1—% JrAiu)y/ SErves

structural responses: S

(Xi_xi—lJrAi)y S(

% =%, +4,)y

as the common denominator for all three measurement uncertainty terms, amplifying

St _x +iyy €A the substructure natural frequency w;, will lead to smaller

measurement uncertainties and, in turn, smaller identification errors. Similarly, reducing

245



S near the frequency w;, will result in smaller upper story

V(%1% +A ) /Sy()ﬂ —%_4+A))

parameter uncertainties and, thus, smaller identification errors.

8.4 An lllustrative Example

In this section, the power spectral density based substructure identification method
for frame structures, shown in Equations (8.25) and (8.26), is used to identify the
equivaent story stiffness and damping parameters of a simple 5-story one-bay uniform
frame structure. The parameters of the test structure are picked as: the height of each
story of the structure is H=3m,; the span of each bay is L=3m; the mass of each floor slab
is m=1x10° kg (chosen so that the mass of the frame structure the same as the 5-story
shear structure used in Chapters 3~7); the flexura rigidity of each column is El = 18x10’
N-m? (which gives the same story stiffness in the frame structure as the 5-story shear
structure if the beam flexibility is negligible); and the flexural rigidity of each beam is
El,=El=18x10" N-m?. It is assumed that the damping of the frame structure has a format

similar to that of the stiffness matrix, that is,

[C] = K] (8.27)
where [C] and [K] are the damping and stiffness matrices of the frame structure; the
coefficient a is selected such that the damping ratio of the first mode of the structure is
2% (the equivalent story damping coefficient is ¢=8.89x10° N-sec/m). The frame

structure is shaken by ground excitation (i, , modeled by a Gaussian random pulse

g )
process passing through a 4™ order band-pass Butterworth filter with 1Hz low cut-off

frequency and 12 Hz high cut-off frequency.
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8.4.1 Estimation of Equivalent Story Stiffness and Damping Parameters

The identification results in Table 8.1 show that the largest identification error
occurs at the 4™ story but not at the 3" story as would be in the shear structure (in
Chapter 5) that has similar story stiffness. This result can be explained as follows. Based
on the identification error analysis results previously derived in Equation (8.26), the two
important substructure responses that determine the accuracy of the substructure
identification method are the cross power spectral density of the modified interstory

acceleration responses, S

sk ei)y ! and the ratio between the cross power spectral

densities  between two modified interstory acceleration responses,

S

%mtirh o)y / S iy » NEAM the story substructure natural frequency w,, = 'k;/m . As
discussed in section 6.1.3, these two responses are directly related to the frequency

responses X, =X, +A,, and  the  frequency response  ratio

(X = Xiy + A1) /(X = X, +A,,), respectively. The larger the first response and
the smaller the second response near frequency wio, the more accurate the identification
results will be. As shown in Figure 8.12 and 8.13, the inaccurate identification results of
the 4™ story parameters are due to the two undesirable responses controlling the 4™ story
parameters identification: compared to the substructure responses related to other story
identifications, the power spectral density of the modified 4™ story interstory acceleration
is very small near the substructure natural frequency (40 radian/sec); simultaneously, the
frequency response ratio is very large near the substructure natural frequency (40

radian/sec).
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Table 8.1 Statistics of relativeidentification errorsof the 5-story frame structure

Story Story stiffness |2i Story damping C
number y(® mean relative relative ean relative | relative
error RMSE STD RMSE STD
1 Xs -0.5% 1.0% 0.9% 0.1% 4.3% 4.3%
2 Xg 0.3% 1.6% 1.6% -3.0% 7.0% 6.3%
3 Xg 0.4% 1.0% 1.0% 0.1% 4.7% 4.7%
4 X, -0.3% 3.2% 3.2% 6.1% 14.6% 13.3%
5 X, 0.0% 0.4% 0.4% 0.2% 1.7% 1.7%

magnitude

Figure 8.12 Auto power spectra of the modified interstory acceleration
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Figure 8.13 The frequency responseratio between the two modified interstory
accelerations

8.4.2 Damage Detection in the Frame Structure

The proposed substructure identification method for frame structures identifies the
equivaent story stiffness of the structure, which is determined by the flexural rigidity of
the columns. If the occurrence of structural damage results in the decrease of a column’s
flexura rigidity, it will be possible for the substructure identification method to detect
this change and, thus, detect the damage. In this section, the proposed substructure
identification method is used to detect the damage of columns in
frame structures. It is assumed that the damage occurs at the first story of the 5-story one-
bay frame structure, resulting in the reduction of the flexural rigidity of one column by
10%, which is equivalent to the reduction of the equivalent story stiffness by 5%.

Moreover, since it is assumed in this chapter that the damping matrix of the structure is
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proportional to the stiffness matrix of the structure, the equivalent damping coefficient of
the 5" story is al'so decreased by 5%.

The damage detection method proposed in section 3.5 is used to detect the structural
damage previously mentioned. The identification results of 100 tests for the undamaged
structure in subsection 8.4.1 are reused to calculate the mean and variance of the
identified parameters for the undamaged structure. In order to test the performance of the
proposed damage detection strategy to correctly identify the health status of the structure,
300 independent substructure identification are carried out on the damaged structure; the
results are used in the hypothesis test to determine whether or not the structure is
damaged. The number of the substructure identifications that each hypothesis test uses to
get the conclusion is selected as 1, 3 and 5. According to the number of tests each
hypothesis test uses, the identification results of 300 tests are divided into groups and a
hypothesis test is performed for each group using the method proposed in section 3.5.
The percentages of the hypothesis tests which give the correct health status of the
structure are shown in Table 8.2. The  value is selected as 5 in the hypothesis tests.

The results in Table 8.2 show that when only one identification is used in the
hypothesis testing, the damage at the first story is amost 100% percent correctly
identified; however, there are about a 10% chance that the undamaged stories are
mistakenly reported as damaged. As the number of the identifications, n, that each
hypothesis test uses to make the decision increases, the chance that hypothesis tests make
the corrected decision aso increase, which verifies that the proposed hypothesis test
method, using n identifications together to make the decision, is effective in improving
the probability to make the right decision about the health status of the structure.
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Table 8.2 The percentage of the hypothesistests which give the correct conclusion
about the structural health status

Floor Number 1 2 5
1 99.7% 100% 100%
2 91.3% 99% 100%
3 89.3% 97% 99%
4 91.3% 99% 99%
5 87.7% 97% 100%
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Chapter 9
Experimental Verification of Controlled Substructure I dentification

9.1 Introduction

Figure 9.1 Small scaletest system

A laboratory experiment is an important step to verify theories and the assumptions
used in their derivations as well as to test how the theories work in the real world with all
kinds of uncertainties. In the previous chapters, theoretical developments and simulation
results have demonstrated that the proposed substructure identification methods
successfully identify the parameters of shear structures and that the controlled
substructure identification methods further improve the identification accuracy by
changing the structural dynamic responses via specially designed structural control
systems. In order to experimentaly verify these results, a series of experiments are
carried out on a small-scale test system, located in the SHM and Control Lab at the
University of Southern California. The whole test system, shown in Figure 9.1, includes

the following. @ A two-story shear building model structure, made of aluminum and
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plexiglass plates, serves as the test structure. b) A small-scale Quanser® uniaxia shake
table provides the necessary ground excitations to the test structure. ¢) A small active
mass driver (AMD) control system can be used to change the dynamic responses of the
structure to verify the effects of the control system for improving the identification
accuracy (not used in this study that only reports the results of passive control strategies,
active strategies are left for future research). d) A digital controller board provides the
functions of collecting measured response data and of commanding the AMD control
device. €) A personal computer, installed with the software MATLAB® and QuaRC®,
controls the movement of the shake table as well as the AMD device. On this test bed,
several experiments are performed to test the proposed substructure identification
methods as well as the controlled substructure identification methods which improve the
identification accuracy by changing the structural dynamic responses via specialy

designed control systems.

9.2 Experiment Overview

In the area of control and SHM of civil structures, it is well recognized that
experimental verification is necessary to focus research efforts in the most promising
directions (Housner et al., 1994; 1997). Therefore, to experimentally verify the
effectiveness of the proposed substructure identification methods and controlled
substructure identification methods is an essential step before these techniques can be
advanced towards practical use. The goa of the experiments are 1) to check the
effectiveness of the substructure identification methods for identifying the structural

parameters of the 2DOF test structure and 2) to verify that the accuracy of the identified
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parameters can be improved by changing the structural responses via some specially
designed control systems. To test the effectiveness of the substructure identification
methods, the 2DOF shear structure is mounted on the shake table and excited by band-
pass Gaussian white ground accelerations. The measured accel eration responses are used
in the substructure identification algorithms to identify the structural parameters.

To verify the efficiency of the controlled substructure identification, using control
systems to further improve the identification accuracy, some simple passive control
methods are tested in this study. The effects of the control systems are replicated by
changing the story stiffness via adding/removing diagonal springs installed into the
structure and by changing the structure floor mass via adding/removing the additional
mass attached to the structure. (The reasons that passive control methods are first adopted
here are that the passive control system is easy to realize and, yet, can still serve as afirst
step in verifying the effectiveness of the controlled substructure identification. More
advanced active control methods, implemented by the aforementioned AMD system, will
be investigated in future studies.) The specially designed passive control systems are used
to change the structural dynamics to improve the substructure identification accuracy.
Then, the controlled structure with the passive control devices is excited by the shake
table again; the measured structural acceleration responses are fed into the substructure
identification algorithms to identify the structural parameters, which will be compared
with the identification results of the (uncontrolled) substructure identification methods

and check if the expected improved identification accuracy is achieved.
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9.3 Description of Testing System

Before discussing the details of the experiments, the properties of each component

in the experiments are first introduced in detail in the following subsections.

9.3.1 2DOF Test Structure

A 2DOF shear building structure, shown in Figure 9.2, is the test structure of this
experiment (Quanser, 2010). The structure is composed of two vertical aluminum plates,
connected with three horizontal thick plexiglass plates at the bottom, first and second
story positions. The horizontal plexiglass plates and the vertica auminum plates are
fixed to each other by three UNC #8 bolts in each side at each level. The interstory height
iS490 mm.

At each floor level of the experimental structure, several small aluminum plates with
holes (see Figure 9.3) are attached to the structure, which allow us to change structura
story stiffness by adding or removing some diagonal springs to the structure. The test
structure by itself is quite soft; the first two frequencies are 1.9Hz and 5.2Hz. A pair of
diagona springs is attached to each story of the structure to increase the structura
stiffness.

Prior to experimentation, the 2DOF structure was disassembled so that its
dimensions and weight could be measured. An electronic scale, with measurement
sensitivity 1 gm, was used to weigh each component of the structure. Table 9.1 lists the
measured dimensions and masses of the structure (Elmasry, 2005). Using the lumped
mass method, the equivalent floor mass of the shear model for the testing structure is

calculated and shown in the Table 9.2. The caculation of the equivalent floor mass
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includes the mass of the springs, screws, washers, fastener plates, and accelerometers

located at the corresponding level.

Figure 9.2 Thetwo-story
test structure

Figure 9.3 Aluminum and plexiglass

connection details

Table 9.1 Dimension and mass of test structure

Mass(kg) | Length(cm) | Width(cm) | Height (cm)
plelggltgf;f"e\fjtdeat 0.654 30.48 10.80 1.24
et | o | ma | ow |
Vg;itgai"na'z‘n{{“;g‘;;“ 0.236 50.17 10.80 0.18

Table 9.2 the equivalent concentrated floor mass of test structure

my (kg)

m, (kg)

eguivalent concentrated
floor mass

1.217

0.934
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In order to determine the approximate “true’ values of the structure story stiffness
and damping coefficients, the test structure is dissembled and only one story substructure
(with the pair of springs) is put on the shake table. A sine sweep test was carried out on
this one story structure and the natural frequency corresponding to the maximum
acceleration response was identified along with the half power bandwidth frequencies.
Since the mass of this one story substructure is known (0.934 kg), the story stiffness and
damping coefficient of this one story structure can be estimated to be 572 N/m and
0.29 N-sec/m, respectively, which are treated as the approximate true values of the story
stiffness and damping coefficient of the original two-story test structure. Since both
auminum plates and diagonal springs are aimost identical, hence, it is reasonable to
assume that the story stiffness and damping coefficients of both stories in the test
structure are the same, with values identified from the sine sweep test of the one-story

structure.

9.3.2 Shaking Table

One of the key components of the experiments is a bench-scale shake table, shown
in Figure 9.4. The shaking table is a small-scale uniaxial earthquake simulator
manufactured by Quanser Consulting Inc. The table is located in the SHM and Control
Lab at the University of Southern California (USC). The Quanser Shake Table is an
instructional shake table device that was originally developed for the University
Consortium on Instructional Shake Tables (UCIST). It can be used to teach structural
dynamics, vibration isolation, feedback control, and various other topics for mechanical,

aerospace, and civil engineers. The shake table is controlled by a personal computer with
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the interface software QuaRC® also provided by Quanser Consulting Inc. The design
specifications of the shaking table, as supplied by the manufacturer, are shown in Table
9.3. The nomina operational frequency range of the ssmulator is 0-20 Hz. Because the
shake table motor is inherently open loop unstable, position feedback, measured from the
shake table motor, is employed to stabilize the table (Christenson et al., 2003).

Table 9.3 Design specification of the shaking table

Specification Vdue Unit
Shake table syzt_e:n V\;))\(/f'r)all dimensions 61x46x13 om
Shake table system mass 27.2 kg
Table dimensions (payload area) (LxW) 46x46 cm
Maximum payload at 2.5g 15 kg
Peak displacement +7.5 cm
Operational bandwidth 20 Hz
Peak acceleration 245 m/'s’
Accelerometer range +49 m/s”
Accelerometer sensitivity 1/9.81 Vsim
Lead screw spread pitch 12.7 mm/rev
Brushless servo motor power 745.7 W
Maximum continuous current 125 A
Motor maximum torque 1.65 Nm
Linear bearing load carrying 1315 kg
Linear bearing life expectancy (total 6350 Kkm
travel)
Lead screw encoder resolution 4096 countsirev
31 pum/count

258



Figure 9.4 Quanser uniaxial shaketable

9.3.3 Digital Control and Data Acquisition System

Figure 9.5 External connection board of Quanser Q4 board

The digital control and data acquisition system, used in the experiment, consists of
both the hardware and the software. The main hardware of the system is Quanser Q4

hardware in the loop board (http://www.quanser.com/english/html/solutions/fs_Q4.html).

This board supports 4x14 bits input analogue signal, 4x12 bits D/A analogue output, 4

guadrature encoder inputs, and 16 programmable 1/O channels. It provides an ided
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single-board solution for use in control system and complex measurement applications.
There is another external board connecting the Quanser Q4 board via a ribbon cable to
the outside input/output equipments, such as sensors, power module and electrical motor
in the AMD system. The external board of the Quanser Q4 interface board, as shown in
Figure 9.5, has six input and six output analog channels. Eight digital encoders are aso
available. The major software of this test system is the real time control software

QuaRC®  (http://www.quanser.com/english/html/solutions/fs soln_software.html), also

produced by Quanser Consulting Inc. QuaRC supports Matlab Simulink® models. The
table control algorithm is developed using Simulink® under MATLAB 2009b and
executed in real time using the QuaRC software. The Simulink code is converted to C++
code using the Real Time Workshop in MATLAB and interfaced through QuaRC®

software to run the control algorithms on the CPU of the computer.

9.3.4 Accelerometer

The acceleration response of the structure during the experiment is measured by
accelerometers. There are three accelerometers installed in the test systems. One is fixed

to the table base level. Another two are fixed, one to each of the two stories in the middie
bottom of the plexiglass plates at each floor. The range of the accelerometersis + 5g with
an output of +5 volts. Each accelerometer is connected via cable to the power module

which is, in turn, connected to the external connection board.
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Figure 9.6 the accelerometer ingtalled at the floor level

9.4 Design of Passively Controlled Substructure Identification
9.4.1 Selection of Shake Table Excitation

During the shake table experiments, the test structure is assumed to be subject to the
ambient ground excitation, induced by the shake table. The excitation of the shake table
is determined by letting a white Gaussian process passing through a band-pass filter. The
transfer function is shown in Equation (9.1).

w’s?

B (S* +28,0,5+ 0} )(S* + 24 ,0,5+ @5)

H(s) (9.1)

where wi=12.6(radian/sec) and w,=27.7(radian/sec) are the low and high cut-off
frequency of the band-pass filter respectively; {3=0.6 and {>=0.6 are the damper ratios of
the filter. The magnitude of the ground band-passfilter is shown in Figure 9.7.

According to the previous theoretical analyses, the identification accuracy of
proposed substructure identification methods is largely determined by the frequency

responses of the interstory acceleration near the story substructure natural frequency.
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Since the nominal values of the floor mass and story stiffness of the test structure are
known, it is easy to calculate that the substructure natural frequencies of the two
substructures, the first story substructure and the second story substructure, are around
21.6 (radian/sec) and 24.7 (radian/sec) respectively. The low and high cut-off frequencies
of the bass-pass filter are selected such that both substructure natural frequencies are
located in the pass-band frequency range of the filter. Therefore, the structural responses
near the substructure natural frequencies can be fully excited, which will lead to more

accurate estimation of the structural parameters.

Bode Diagram

Magnitude (dB)
\ (._,: \

-35 - e - e
10 10' 10
Frequency (rad/sec)

Figure 9.7 Magnitude of the band-passfilter

9.4.2 Design of Passive Control System

From the error analysis results, any control method that can amplify the interstory
acceleration and minimize the interstory acceleration ratio (for non-top story
identification only) near the story substructure natural frequency is theoretically able to
improve the accuracy of substructure identification. Another important feature for the
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controlled substructure identification of a particular floor is that if the control force(s)
does not directly apply on the floors being identified, the value of the control force will
not be needed in the identification; as a result, the measurement error in the control force
will not affects the accuracy of the controlled substructure identification and the
controlled substructure identification at this floor will be very robust to such control
system errors. Therefore, to ensure the robustness of the controlled identification, no
control forces will be applied in the floor to be identified.

With this constraint, the possible selection of the passive control strategies that can
be applied is limited in this simple structure. Three passive control system scenarios are
considered in the experiments: to improve the accuracy of the second story parameter
estimates, (1) the stiffness of the first story will be changed and (2) the mass of the first
floor will be changed; when identifying the first story parameters, (3) the mass of the
second floor will be changed. The reasons for these choices of “control” are explained
above. It isworth pointing out here that, in full scale systems, these passive measures will
be replaced by active or semiactive control systems, like an active mass driver (AMD) or
variable stiffness and damping devices (VSDDs), which can apply similar control forces
on the structure. However, in this simple study, equivalent passive methods will be used.

To guide the control system design procedure, two performance indexes are created

asfollows:

2
< d 9.2
S @ (9.2)
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R(L)= I:M(Jw)s | do (9.3)
(%,

%)y

where S, is the cross power spectral density between structural response X and the
reference y (y is fixed as the base excitation of the structure in this study); Pi(L) is the
performance index of the i™ story substructure identification, with smaller values
indicating better identification accuracy; L denotes the control system parameters to be
designed (here, these are the changes of the second floor mass and the first story stiffness
or of the first floor mass); « is a weighting factor that balances the role of the SC system
in achieving the two possible competing goals of changing structural responses, taken to
be 0.8 in the following examples; and Wi(jw) is a frequency weighting function, given as
follows

—k,

W (jo)= ;
(miwz)[l_ jc; /(mo—k /(mia)z)]

(9.4

The magnitude of this weighting function peaks around the story substructure natural

frequency w;, =./ki/m and quickly vanishes when further away. The role of this

weighting function is to implicitly emphasize the importance of the structural responses

S

% %)y around the frequency wip and not attempt to change the

and Sy x)y/Six sy
response overall. Therefore, a smaler performance index corresponds to the large
interstory acceleration and the small interstory acceleration ratio near its substructure
natural frequency, which further corresponds to improved identification accuracy.

Figure 9.8 shows the change of the simulated performance index P; with the change

of the controlled structural parameters, more specifically the first story stiffness, the first

floor mass and the second floor mass. Decreasing the first story stiffness and increasing
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the second story mass both decrease the performance indexes for the second and first
story identification, respectively; this should result in more accurate identification.
Changing the mass of the first floor has negligible effect on the performance index
compared with the other two methods. Therefore, the final strategies for the control
identification of the first and second story parameters are as follows. First, when
identifying the second story parameters, additional stiffness will be added to the first
story. Second, while identifying the second story parameters, the partial mass of the
second floor will be removed. Both of these should decrease the performance index.
However, in the original test structure no mass on the second floor can be taken off (since
the floor mass is a solid plexiglass block and connection hardware). Therefore, an
additional 0.62 kg massis attached to the second floor of the structure. The structure with
this additional mass will serve as the baseline (uncontrolled) structure. Then, when the
first story parameters are to be identified, this additional mass will be removed to

simulate the effect of the control systems.
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Figure 9.8 The change of the performance index
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9.4.3 Experimental Procedure

The goal of this experiment is to verify that, by using severa control systems, the
substructure identification accuracy can be improved. Three groups of shake table
experiments were performed with different configurations of the test structure.

1) Basdline structure: the original test structure with an additional mass attached on
the second floor is used as the baseline (uncontrolled) structure — thus, the
baseline structure has a second floor mass about 65% larger than the original test
structure;

2) Control-1 structure: the additional mass on the second floor is removed (to help
identify the first story parameters);

3) Control-2 structure: some additional springs are installed in the first story of the
baseline structure (to help identify the second story parameters) — these newly-
installed springs increase the first story stiffness by about 180%.

The baseline structure is used to identify the structural parameters of both stories,
whereas the controlled structures 1 and 2 are only used to identify the first and second
story parameters, respectively. For each structural configuration, ten independent shake
table experiments are performed.

Tables 9.4, 9.5 and 9.6 show the (approximate) mass, stiffness and damping of the
baseline, controlled 1 and controlled 2 structures respectively. Note that due to the
l[imitation of the experiments the true values of the structure are indeed unknown;
therefore, the structural parameters listed in the Tables, especialy for stiffness and

damping parameters, can by no means be regarded as the true parameter values of the
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structure. They only serve to point out the approximate range where the true structural
parameters are located.

Table 9.4 The approximate structural parameter values of the baseline structure

story number mass (kg) stiffness (N/m) | damping (N-s/m)
1 1.217 572 0.29
2 1.549 572 0.29

Table 9.5 The approximate structural parameter values of the control-1 structure

story humber mass (kg) stiffness (N/m) | damping (N-s/m)
1 1.217 572 0.29
2 0.934 572 0.29

Table 9.6 The approximate structural parameter values of the control-2 structure

story humber mass (kg) stiffness (N/m) | damping (N-s/m)
1 1.217 n/a* n/a*
2 1.549 572 0.29

* Additional springs are added to the 1¥ story, the exact stiffnesses of which are
not measured. It is estimated that the combined stiffness of the added springsis
around 180% of the story stiffness.

The commanded shake table excitation for all experiments is a white Gaussian
random process passed through a band-pass filter with low-pass and high-pass cutoff
frequencies at 2 Hz and 8 Hz, respectively. About 1800 seconds of structural responses,
sampled at 1000 Hz, are measured and recorded. The reference response y(t) is chosen to
be the second floor acceleration because it has the largest responses near the substructure
natural frequency of all three measurements (shaking table acceleration, the first and
second floor accelerations). The MATLAB® function cpsd is used to calculate the power
spectra of structural responses, which, in turn, are utilized to perform the substructure

identification by using cross power spectral based substructure identification method.
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When identifying the first story parameters, the second story parameters are required.
Therefore, the mean values of the second story parameter estimates will be used in
identifying the first story parameters. The statistics of the story stiffness estimates from

al experiments are shown in Table 9.7.

9.5 Experimental Results

The identification error analysis of the substructure identification methods showed
that the identification accuracy is closdly related to the frequency response of the
interstory acceleration near the story substructure natural frequency; larger response gives
more accurate identification. Figures 9.9 and 9.10 show the changes of the frequency

responses of the first and second interstory accelerations by the control systems.
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Figure 9.9 The power spectrum of the 1% inter story acceler ation response of
the uncontrolled and controlled structures
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Figure 9.10 The power spectrum of the 2" inter story acceleration response
of the uncontrolled and controlled structures
Using the structural parameters of the baseline structure, it can be easily calculated
that the substructure natural frequencies of the first and second story substructure are 3.4
and 3.1 Hz respectively. As shown in Figures 9.9 and 9.10, the two control systems
largely amply the interstory acceleration response near those frequencies. Therefore, it is
expected that the control systems will improve the identification accuracy.

Table 9.7 Statigtics of the story stiffness estimates

Test ka [N/m] ko [N/mm]
Structure Mean cov Mean cov
baseline 660 12.7% 530 2.5%
control_1 538 2.9% n/a n/a
control 2 n/a n/a 542 2.2%

COV: coefficient of variation
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The results in Table 9.7 show that, compared with the baseline, the two control
identification cases greatly reduce the variation in the identification results. Moreover, if
the story stiffness of 572 N/m that was identified from the sine sweep excitation test is
treated as an approximate true value for the stiffness of each of the two stories, the mean
values of the story stiffness estimated from the controlled identification are closer to this
“true” vaue. Therefore, the experimental results verify that the controlled substructure
identification does provide more accurate estimates of the structural parameters than
uncontrolled identification.

It is worth pointing out here that the passive control strategies used in these
experiments, increasing the 1% story stiffness by about 180% and decreasing the 2" floor
mass by about 33%, do not represent feasible full scale control strategies. However, the
experimental results do prove the validity of the theories of the substructure identification
and the controlled substructure identification in a real application. Future experimental
studies will focus on more realistic and efficient control strategies, such as using the

AMD system to control the structural responses and improve the identification accuracy.
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Chapter 10
Conclusion and Future Research
A shear structure, shown in Figure 10.1, is widely used to model the dynamic
behaviors of building structures. Thus, developing efficient identification methods, which
can accurately identify the parameters of a shear model, plays a vital role in establishing

efficient and accurate SHM systems for building structures.

In this study, severa innovative substructure identification and controlled
substructure identification methods are proposed to accurately identify the parameters of
shear structures, which form a solid foundation to design future efficient and accurate
SHM system for building structures. The major achievements of this study are

summarized in the following sections.
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10.1 Summary of the Dissertation Work

10.1.1 Substructure Identification Methods for Shear Structures

Using the ‘divide and conquer’ strategy of substructure identification, a substructure
identification method (FFT_SUBID) for shear structures is first developed in Chapter 3.
A standard two-story substructure, shown in figure 10.2, is used to divide a large shear
structure into many small substructures. An induction identification method is proposed
from which the parameters of a shear structure are identified from top to bottom
iteratively. In each sub-step of the identification, the Fourier transforms of two or three
floor accelerations are utilized to formulate the substructure identification problem.

Due to the noisy nature of acceleration measurements, it turns out that FFT_SUBID
method can provide accurate parameter estimation only when the noise level in the
measurement is low. To improve the identification accuracy, a transfer function based
method (TF_SUBID) is proposed in Chapter 4, which makes use of the transfer functions
among different structural responses to construct the substructure identification problems.
Simulation results show that the TF_SUBID method significantly improves the
identification accuracy compared with the FFT_SUBID method, providing quite accurate
estimates even when the measurement noise is fairly large (40% in terms of RM S value).
Nonetheless, there are some shortcomings for the TF_SUBID method: 1) it requires that
there be only one excitation sources in the structure. 2) The TF_SUBID method provides
biased estimation of the structural parameters.

In order to further increase the identification accuracy, a new power spectrum based

substructure method, the CSD_SUBID method, is proposed in Chapter 5. A reference
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response, wide sense stationary (WSS) with other structural responses, is introduced in
this method. The cross power spectral densities are utilized to form the identification
problems. Compared with previous two substructure identification methods, the
CSD_SUBID method possesses some superb features. 1) It is an asymptotically unbiased
and consistent estimator for the structural parameters, able to provide arbitrarily accurate
estimates of the structural parameters given that enough long measurement records are
available. 2) The explicit formulae to calculate the variance of the estimated parameters
are developed, providing the optimal estimated parameters as well as information about
their confidence range. 3) Although the CSD_SUBID method is originally developed
based on the assumption that the reference and the structural responses are WSS, it is
shown that the CSD_SUBID also works with non-stationary structural responses and il

give very accurate estimates.

10.1.2 Controlled Substructure Identification

One of the great features of above three substructure methods is the analytical
results showing how the identification error in each step is formed. The identification
errors of these methods are simply controlled by two structural responses within a very
narrow frequency band, centered at the substructure natural frequency of the story being
identified. This important discovery gives the ability to easily improve the identification
accuracy by changing the substructure responses via specially designed structural control
systems.

Several controlled substructure identification methods were proposed, using

different structural control systems to improve the identification accuracy of the
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substructure methods. Furthermore, since the accuracy of the proposed controlled
substructure identification methods directly depends on the close-loop controlled
structural responses rather than on the control systems themselves, it is shown that these
controlled substructure identification methods are quite robust to possible control system
errors, moreover, one of common control system errors, feedback measurement noise,
may even have a tendency to improve the identification accuracy. The simulation results
demonstrate that the structural parameters are more accurately identified by applying the
controlled substructure identification methods and the identification results do not

deteriorate even when large feedback measurement noise is presented.

10.1.3 Loop Substructure Identification Method

Two major difficulties of the substructure identification methods proposed in
Chapters 3~5 are that 1) the structure floor mass must be known and 2) the structural
responses of al floors above the story being identified must be measured. To overcome
these two difficulties, a fast substructure identification method is developed in Chapter 7,
which only makes use of the responses of the standard two-story standard substructure to
formulate a loop-identification sequence and identify all four parameters of the
substructure [ki ¢ ki+1 Ci+1] once together even without knowing structural mass. This
new method can directly, quickly and accurately identify any structural parameters in a
large shear structure with as few as one set of substructure response data and no
information about the structural mass, making it a very promising technique for many
applications, such asimmediate post-earthquake damage evaluation for buildings.

The analysis is carried out to find the convergence condition of the new loop-
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identification method; it is demonstrated that the convergence of the identified parameters
cannot be achieved in the usual situation. To ensure the convergence of the loop
identification, the method of controlled substructure identification is applied, in which
two control systems are designed and used to control the structural response. The two
controlled structural responses are alternately used in the loop identification, resulting in

quick convergence of the identified parameters.

10.1.4 Substructure Identification for Frame Structures

In Chapters 3—7, the proposed substructure identification methods and their
identification error analyses are all based on a fundamental assumption that the identified
structure is a shear model structure. Although the shear model is widely used to model the
dynamic behavior of frame structures, it is only a simplification of a complex red
building structure. Furthermore, finding damage in complex real building structures is of
much more practical interest than just identifying the parameter values in a shear model
structure.

Using the methodology of substructuring, a substructure identification method for
frame structures is successfully developed. The dynamic equilibrium of one floor
substructure is used to formulate the identification problem, in which the equivalent story
stiffness and damping coefficient parameters are identified. In addition to the horizontal
floor responses, the rotational responses at beam-column joints are needed in the
formulation of the new method. Surprisingly, the newly-formulated substructure
identification method for frame structures has a format similar to the substructure

identification methods for shear structures. As a consequence, the results of the
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identification error analysis can also be applied to the new frame substructure
identification methods with some modifications. This new method can identify the
structural damage occurring in the structural columns. The numerical ssimulation results

also verify this conclusion.

10.1.5 Experiment Verification

To experimentally verify the effectiveness of the proposed substructure
identification and controlled substructure identification methods, a series of experiments
are carried out a bench-scale two-story shear structure model. Two substructure
identification methods, FT_SUBID and PSD_SUBID, are tested on this structure. The
results show that these two methods successfully identify the structural parameters. To
test the effectiveness of the controlled substructure identification, some passive
approaches are adopted to replicate the effects of the control system. These approaches
include adding/removing the part of the floor mass and adding/removing the part of the
structural story stiffness. Experimental results demonstrate that, by using the specialy
designed structural control systems, the identification accuracy of the structura
parameters can be improved.

10.2 Future Research

Although significant improvements have been achieved in this study toward the
ultimate goal of designing accurate and efficient SHM system for real building structures,
there are still a lot of challenges ahead. Here are some critical areas needing further

investigation.
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10.2.1 Substructure Identification of Three Dimensional Shear Structures

The substructure identification methods developed in this work apply to general one
dimensional shear buildings. However, rea buildings are 3-dimensional; extending the
substructure identification method to 3-D shear structure is a very important practical
issue.

When the structure is symmetric (the center of gravity and the center of the stiffness
are coincident for al floors), the structural responses can be decoupled into three
independent motions (two horizontal and one rotational), and the substructure
identification method can be used to identify the structural parameters in each direction
separately. However, if the structure is asymmetric (by design or due to damage), the
structural vibrations in the three directions will be coupled. How to decouple three
substructure identifications and accurately identify the structural parameters requires

further investigation.

10.2.2 Damage Detection of Frame Structures without Measuring Rotational
Responses

The damage detection method for frame structures has been studied in Chapter 8 via
identifying the equivalent story stiffness of the structure by using the substructure
identification method. But this identification method requires that the rotational responses
of all beam-column joints in the structure be measured, which is generally impractical. In
practice, usualy only the floor tranglational responses are measured. How to perform the
parameter identification and damage detection in frame structures with only floor

tranglational responses is another very important research direction.
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10.2.3 Experimental Verification of Controlled Substructure Identification
Using AMD Control System

In Chapter 9, the passive control approaches, changing the floor mass and the story
stiffness, are tested to demonstrate that specially designed control systems can improve
the accuracy of the substructure identification. However, changing the floor mass and the
story stiffness does not represent areal achievable means of effecting dynamic changesin
practice. In the future, more redlistic control methods, such as controlling structura

responses viathe AMD system, should be conducted.
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Appendices

Appendix A: The Properties of Circular Complex Gaussian Random

Variables

Lemmal

Let x(n) (n=0,...,N-1) be a real zero-mean discrete-time Gaussian white random

process, then

1)

2)

3)

4)

5)

The discrete Fourier transform X of x(n), evaluated at the discrete frequency
2nk/N, is a circular complex Gaussian variable, which means that the real part
and the imaginary part of Xy are jointly Gaussian, independent of each other,

and with equal variance.

If k#j are two arbitrary nonnegative integers no more than (N-1)/2, the discrete
Fourier transform of x(n) evaluated at two different discrete frequencies 2rk/N

and 2mj/N, X, and X, are independent.

If X is a circular complex Gaussian random variable and A be a constant

complex number, then AX is a circular complex Gaussian random variable.

If X and X; are two independent circular complex Gaussian random variables,

then X, +X; is a circular complex Gaussian random variable.

If a real random process y(n) is the combined output of several independent real

zero-mean white Gaussian processes passing through a linear system, then

a) The discrete Fourier transform of y(n) evaluated at certain discrete

frequency, Yj, is circular complex Gaussian variable;
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b) The discrete Fourier transform of y(n) evaluate at two different discrete

frequencies, YxandY; (j#K), are independent.

Pr oof:

Before beginning to prove the lemma, the following Equation (A1) is proved first.

& o N k=0
—27i-kn/N _ AL
2 {o ke{~N+1---11---,N -1} (A1)

n=0

Proof for (A1)

If k=0,

2rikN _ N0 _ N_ll_ N
2e =2e=21=
n=0 n=0

n=0

If k0
~ e 2rihaN f(efzmkm )” :(1_ o 2rik )/(1_ g2k )
n=0 n=0

1-1)/1-e>"™")=0

QED

Proof for (1)

Since x(n) si a zero mean white Gaussian random process, therefore

S N R

The Fourier transform of process x(n) can be calculated as

N-1 )
Xy = Y. x(nje "N (k=0,.,N-1),
n=0
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Re[X,]= :i:x(n)cos[—% knj ., Im[X, ]= Nzlx(n)sin(— ZW” knj

n=0

Since the process x(n) is a Gaussian process, Re[X, | and Im[X, Jare Gaussian

random variables and the mean, covariance and covariance of these two random variables

can be evaluated as follows,

N-1
E{Re[X, ]} = E{x cos( 2 knJ =0

n=0

_ L.N l(ezm kYN gr2mikyN Xezﬂu YN _ g2 kn/N)
-4
1 S (LamidaN N ) :
= > (e e )_ 0 (because of Equation (A1) (A2)
— 4l o
N-1N-1 2 2
VAR{Re[X, JI=E {Re[x } E[x(n)x cos(——kn} cos(——kmj
n=0 m=0 N N
N-1 2

= COS __kn 1 e27r-i-kn/N + e—27z~i<kn/Nn
4
n=0

N-1
— l (e47r-i~kn/N + e—4zr~i-kn/N + 2): % N (A3)
n=0
N-1N-1 2 2
VAR{IM[X, ]} = Efim[x, F}=Y 3 E[x sm(—Wkn)sm(—kaj
n=0 m=0
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2

\ (27r|kn/N _ —27r<i-kn/N)

H

N-1
= ZSinz(—z—”knj 1
s N -4

n=0

Z

-1

(e4zr-i»kn/N + ef47r<i-kn/N _ 2) — % N (A4)

1
_4

=}
I
o

According to the results for Equation (A2), (A3) and (A4), Re[X, ] and Im[X, ] are

zero-mean and mutually independent Gaussian random variables and their variances are
VAR{Re[X, ]} = VAR{IM[X, ]t = E| X, /2].

QED

Proof for (2):

Xy = rzz:_:x(n)ez”'i'kn/'\' , Re[Xy]= gx(n)cos(—%knj, Im[X, ]= gx(n)sin(—%zknj
X; :::x(n)ezn-i-jn/N ’ Re[Xj]= :g:x(n)cos(—%jnj, Im[X ] Z sm( nj

Since X, and X; are zero-mean complex, the covariance of these two random
variables is
COViX, X, f=E{Re[X,]+i-Im[X, D(Re|X, |+i-Im|X, )

E{Re[X,]-Re[X, }+i-E{Re[X,]- Im[X ]} +
i-E{im[X, ]-Re[X, [}-Efim[x,]- m[x, | (AS)

The four expected values of the production of the real and imaginary parts of Xy and

X in the above equation can be calculated as follows

E{Re[X, ]- Im[X, ]}= %% E[x(n)x(m)]cos(— ZW” kmjsin(— ZW” jn)

n=0 m=0
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_ fcos(—%knjsin(—% Jnj _ %Nz_l(ezm-kn/m 4 @ 2rikN XeZ;r-i»jn/N B e—2;r-i-jn/N)

n=0 n=|

_ iz (eZ;r-i-(k+j)n/N _ @2rilk=in/N | q2ri(ikIn/N _ qami (ke )N ): 0 (AB)
4| n=0

Since (k+j),(k=j)(j-k)(~k-j)e{~N+1,---,-11,---,N =1}, using the result
of (Al) it is easy to get the final result of (A6).

N-1N-1

E{Re[X, ] Re[X j ]= E[x(n)x(m)]cos(— % kmj cos(— ZW” jnj

n=0 m=0
— ZCOS _2_7[ kn} COS(—Z—ﬂ- Jnj — E (eZ;r-l-kn/N + e—2;r-|-kn/N Xebr-l»]n/N + e—2;z-|-]n/N )
N N 4=

(ezn-i.(k+j)n/N 4 @2rile N | q2ri (kN g-2ri(kej)n/N ): 0 (A7)

N-1 N1, _ N -

= sin| — 2—7[ kn |sin| — 2—7[ jn — LZ(eZﬂ-rkn/N _ e—27r-|<kn/N XEZIZ-I~JH/N _ e—27r-|~]n/N )
n=0 N N -4 n=0

_ i4 Nil(eZﬂ»i-(k+j)n/N _ ek _ g2mi(i-kn/N | g2 /N ): 0 (A8)
" n=0

Putting the results form Equations (A6)~(A8) back into (A5)
COV{X, X f=0 (j=k)

Therefore, X« and X; are independent if j#k.

QED
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Proof for (3):
Let A=atb-i,
Re[AX, |=aRe[X, |-bIm[X,], Im[AX, ]=alm[X, ]+ bRe[X,]
Since X is a circular complex Gaussian random variable, Re[X, Jand Im[X, ] are

independent, zero mean, and VAR{Re[X, ]} = VAR{Im[X, ]} = 02/2.
E{Re[AX, ]} = aE{Re[, ]} - bE{Im[X, ]J}= 0
E{Im[AX, ]} = aE{Im[X, ]} + bE{Re[X, ]} = 0
VAR[RE[AX, ]| = aVAR(Re[X, ]} + b2VAR(Im[X, ]} = (a? + b? |2 /2
VAR{IM[AX, ]} = aVAR{Im[X, ]}+ b2VAR{Re[X, ]} = (a2 + b? }o* /2

Therefore, AXg is a circular complex Gaussian random variable.

QED

Proof for (4):

Since X and X; are independent, Re[Xy], Re[X], Im[Xi] and Im[X;] are independent
of one another.

Re[Xi+X]=Re[Xi]+ Re[X] are independent of Im[Xi+X]=Im[X]+Im[X].

It is also easy to verify that VAR{Re[Xk+X,-]}:VAR{Im[Xk+X,-]}:E{|Xk+X,-|2}/2.

Therefore, Xi+X; is a circular complex Gaussian random variable.

QED
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Proof for (5a):

p .
Yk — z H m(e27[-|.k/N ). Xlgm)
m=1

where Hm(€”™™) is the transfer function from the m™ input to the output evaluated at
frequency 2nk/N, X is the discrete Fourier transform of the m™ input evaluated at

frequency 2mk/N.

Using the results from lemmas (1), (3) and (4), it can be easily shown that Yy is a

circular complex Gaussian random variable with the described properties.
QED

Proof for (5b):

p _ p .
Y, = Zle(ezn...k/N ) Xlim) Y, = Z Hm(ezm.k/N ) XJ(m)
m=

m=1
According to the result from Lemma 1(2) that Xlﬁm) and ngm) are independent for

any mif k= j, Y, and X; are independent.

QED
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Appendix B: Proof of Equations (5.21a)~(5.21i)
Before the formal proof of Equations (5.21a)~(5.21e), the following lemma is

proved first.

Lemmal

Given the four assumptions in section 5.5, the following properties hold:
E[N, . /Sy 5. [=0 iein—Lnjandl e [, N] (a)

N, N,
}0 vj.ke{n-1njandl,me Z[1,N] (©)

E[
S(Xn_xn—l)yll S(Xn_xnfl)y’m

2

« N, ' Ny,

E iy { %y.m } = S0k E —‘ ‘y"‘ - j,ke{n—l, n}andl,me Z[l,N](C)
S(Xn—an)y-' S(Xn—x'nfl)%m ‘S(Xn—xn,l)y,l‘

where Z[1,N] denotes a set containing natural numbers from 1 to N.

Proof for L emma 1(a)

@ L @Y (@ L N@ ) S v@ @
o o ST ) B
E ley’l/S(Xn_xnfl)yvI =E[— =

Q [ .,
DY@ (XY =X,
q=1

>[N+ NGRS NN
g : | (B1)

Q . ..
PARACSHEP N
g=1

S (@)* N (@ S (@)* y (@) 3 (@)™ N (@
q q q q q q
ZY| Nx,,l Ny,l X i Ny,l Nx,,l
_ g=1 gq=1 q=1
-F S (@*(y (@) ¢ (@) - S (@*(y (a) ¢ () - S (@)*(y (a) ¢ (a)
q q q q q q q q q
ZYI (Xn,l - Xn—l,l ) ZYI (Xn,l - Xn—l,l ) ZYI (Xn,l - Xn—l,l )
_q:l g=1 g=1

The first term in the above equation equals zero, which can be proved as follows
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| S ()" (@) | I |
Z_:YI in,l Q v (p)*
E 5 q=1 :Z E 5 [ E[N)((pl)]
S -xie,)| | | Sy -xi,)
0= g=1
) B _ Z (B2)
i E Y'(p)* 0+=0
= iy(q)*(x(q)_x‘(q) )
| n,l n-1,1
o=t i

The first equality in the above equation uses the assumption that the measurement
noise is independent of the true structural responses. Similarly, the second and third terms

in Equation (B1) also equal zero, assuming y is not X; (i.e., following the selection rules
of section 5.4).
Therefore, E[ijyyl/s(xn—xnfl)y,l |=0 je{n-1n}andl e Z[L,N]

QED

Proof for L emma 1(b)

E{ NXJV'I NX'ky,m :l
S(anxnfi)w S(anxn—l)va

- Q * * s * Q * * es * ]
{Z I N+ NG N )} [Z WA N+ N8 Ni-f,)mﬂ
_E q=1 p=1
B & (@) ) & () (5 (»)
PYE(X@ X)) SYEr (e X))
g=1 p=1
iiylw NGy N )
—E - -t pt . + other 8 terms
{zv@*(x‘w -89, {w (%15 ngzm)}
L Lol p=1 ]

(B3)
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The first term in the above equation can be simplified as

>3V NGV,
E g=1 p=1 g «
Q wf .. Q wf .
{w (9 - xsall){w (k) - xgpzm)}
g=1 p=1

L S (B4)

o
'L
o
'L

Applying the assumption that the measurement noise is a white Gaussian process, it can

easily be shown that

EINGNP, |=0 Vj.kefn-1n}&VI,me Z[1,N]&Vp,qe Z[1.Q] (B5)

Applying the result of Equation B5, Equation B4 can finally be simplified as

i in(q)* N __Q)I Yrgp)* N (P)
e ” %,,m B
Bl — — : =0 (B6)
[ZY.(‘” (%9 - %), )][ Y (R () - %))
g=1 p=1

Following similar steps, it can be shown that other eight terms in Equation B3 are all

equal to zero.

Therefore,
N \ j.ke{n-1,n}andl,me Z[1,N]
E[S ik Yol ]_0 and j = kand!l #m
Y (F=t0 )l 7Y (a0 ) and y is neither X; nor X,
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QED

Proof for Lemma 1(c)

E[ le yl N‘xky,m* ]
S(in—m)yyl S(xnf&,l)y,m*

[ZQ:\ﬁ(q)*Niq?, + NEXI9 + NN } {fvn@*ka)m +NPEXP Ngf’m*NQ:’)m}
_glle J pL
) i ( @) Q *
Y AX X (P)* (% (P) _ ¥ (p)
) ! Ll |:2Ym (Xn,m Xn—l m):|
L p=1 |
[ YNNG+ Y NI NPT 4+ Y N NN ]
ii PN REOYPING T N REONEKE NG ONEING)
jI 'm XM Y, J y,.m m \2 J y,m= Tx,m
q:l p:]' * * * *
+ N NEDYPINGEL "+ NN NEIXET + NI NG NN
-F Q S Q . . ’ (B7)
Sver(esy - xel)| S (ki x|
q=1 p=1

Given the assumption that measurement noises are white Gaussian processes and the
noise from different measurements are statistically independent, it can be easily shown

that

2} Vj,k e {n-1,n}and vI,me Z[1,N] (B8)

NN, T 50,08 N
xj,l Xi.,m ik Im Pa ‘ and vp;q € Z[l’ Q]

Utilizing the result of Equation (B8), Equation (B7) are simplified as

2

‘ijy,l

j.ke{n-1nlandl,me Z[L,N]

X; Nx m *
E iyl { kY :| _ 5|m5JkE
S(Xn_xn—l)yvl S(Xn_xnfl)yvm

2
‘S(Xn_xnfl )y,l ‘

QED
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With the results from Lemma 1, Equation (5.21a)~(5.21i) are proved as follows

Proof for Equation 5.21a

E|.gkn,l J:\Nll,l E[an,ly,l /S(xn—xnfl)y,l J+VV12,| E[any,l /S(xn—xnfl)y,l J

QED
=W, x0+W,,, x0=0
Proof for Equation 5.21b
Elgcm J:W21,| E|_N %1yl /S(xn—xn,l)yJ J+W22,| EI_N %yl /S(xn-xn,l)yJ J QED
=W,;, x0+W,,; x0=0
Proof for Equation 5.21c
Mu Ny i /S awt Wizt Ny /S5, yl]
E[gkn,lgkn,m]: E ]
X anym/S(Xn an +\A/12mNXnym/S(xn anym
N, N, N, N, ]
= Wiy Wy | 8 L Wy W Bt
_S(Xn—xn )y S(X—x Jym | _S(X %1yl S(X—x Jy,m
LN, N, ] [N, N, ]
Wi Wiy B o W, W, B
_S(Xn—infl)yvl S(Xn—m)y,m_ S(X %1yl S(X—X )y.m
=0
Lemma 1(b) is used to simplify the results of the above equation. QED

Proof for Equation 5.21d

E[g g* ]_E{hlvlll Nx‘n 1yI/S(X‘n—X‘n l) +VV12I Nx yI/Sx xnlyIJ }
e 1lmN 1ym/S(x —X_ +VV12meym/S(x —X_ ym]*
N, *

XpYy,m

* Nx y,l Nx y,m N y,l
:VV11,|VV11,m E = = "'VV11|VV12m E e

S(Xn*XnA)yv' S(X'H—Xn,l)y,m* ’ Y S(X'n*xm)yv' S(X’n—)(n,l)y,m

N, °

XpY,m

£

.| N, N, .° .| N,
+VV12,|VV11,m E Yo ’ Lox +VV12|VV12m E !

_S(X —%o )Yl S(Xn—xn_l)y,m* i ’ Y _S(Xn**M)y" . S(X'H—Xn_l)y,m
L= L e 8 WY =LY S

£

n 1Y l 5(nyvl
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Lemma 1(c) is used to obtain the simplified result of the above equation. QED
The proof of Equation 5.21e is similar to the proof for Equation 5.21c.
The proof of Equation 5.21f is similar to the proof for Equation 5.21d.
The proof of Equation 5.21g is similar to the proof for Equation 5.21c.
The proof of Equation 5.21h is similar to the proof for Equation 5.21d.

The proof of Equation 5.21i is similar to the proof for Equation 5.21d.
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Appendix C: Proof of Equation (5.22)~(5.26)

Proof for Equation 5.22

E[o,. ]= > 1{E[gkn, +Eleg, )= ilom

|
The result of Equation (5.21a) is used for this proof. QED

Proof for Equation 5.23

€6, ]= 23" Eleun |+ Elez ] = 130+ 0} =0

= =
The result of Equation (5.21b) is used in this proof. QED

Proof for Equation 5.24

VAR[6,,]= % E{lle: (€10 + 10, ]}2
:_%:;E[gknlgknm]+ 2 ;E[Skmgknm]Jr ;%“gE[gweZ&m]
S MR T

The results of Equation (5.21c) & (5.21d) are used for this proof. QED

1y|

Proof for Equation 5.25

VAR[O, )= E{Z e, + 25, }
N N N N
= %ZZ E[gcn,l gcn m Z E[gcn | gcn m]+ %Z z E[gcn,l g:n,m]
1=1 m=1 1=1 m=1 =1 m=1
1 N
- E;{’\le ‘ E[ K1 )Yl ‘ } + MQZ,I ‘2 E[ Ny v ‘2/ Sk, %)yl ‘2]}

The results of Equation (5.21e) & (5.21f) are used for this proof. QED

1)"
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Proof for Equation 5.26

covlg, o, -1 E{ [ekn|+ekn|]2[8mm cnm]}
SOOI IRVRNIE ) 3) 32 CHER S 3) 30 SN ) 9 o EA

4 1=1 m=1 1=1 m=1 I =1 m=1 =1 m=1

1 N * *
:ZZ{VVM,IWZI,I E[ K1Yl 2/S(xn—xn,l)y,l‘ :|+W21,|W22,| EI: NXny,I Z/S(xn—xnl)y,l‘z}}
1=1
13 . .
+ZZ{VV11,|W21,| E[ Ns<,,_1y,| 2/S(xn—xn1)y,|‘2}+v\/21,|W22,| E[ I\|s<,,y,| Z/S(xn—x“)y,l‘z}}
1=1

1y I 5(nyyl

= %i{Re 11, 21| ]El: —%1)y)| ‘2:| +Re 21,|W2*2,| ]E[ N 2/ S(xn—xn,l)y,l ‘2}}
1

The results of Equation (5.219), (5 21h) and (5.21i) are used in the second-to-last step of

the proof. Recalling the expression of factorsW,,,, Wi, , W,;; and W,,, in Equation

(3.26), it can easily be shown that
ReW Way, ]: ReMZl,IWZ*Z,I ]: 0

Therefore, COV([6,,0,,]=0. QED
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Appendix D: Identification Error Analysisof CSD_SUBID Method
with Non-stationary Response

a) Top Story Case:

Using the integrity indexes to rewrite the optimization problem (5.56) gives

,\ ~ ~ ~ 2
argmin  J(B,,, B, Z|8|| —Z (B Ben)— (Sx”y’SxHy’SAnyl (B1)

Bin+Pen 1=1

1

where f| (ﬂknllgcn) cn n/(m a)l) /}knkn/(m a)|

Following the procedure proposed in the LSE identification error analysis section,

h, = |:(9f| /aﬂnk}T = { K,/(m,a}) ic,/(ma,)
[P Lpa |- ie, /(M) —k, /(med)] - e, /(ma)—k,/(maed)]
(D2)
- a7
P‘XnyJ B any,I
o Job T | Powi =P
ﬁ| = afj/ali)xny,l = ﬁ (D3)
NP Lo | (B =Por)
_(Pinfly,l - any,l )2 i

where 8, =1 is the abbreviation for g, =1and S, =1; P, = P, is the abbreviation of

A A

P.,, =P, and If)fny]I =P, ,, for the sake of notational simplicity.

PXnAYx' = Pxn—lyvl !

pSA X fayl
Rearranging Equation (5.55) gives
Pxn—ly - any = (Pxnfly - PYny 11_ J Cﬂ/(mna)) - kn/(mna)z)] (D4)
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Using the right side of (D4) to replace the term in (D3) that equals the left side of

(D4), and simplifying gives

i, /man)+k, /(Mo )L-ic,/(ma) -k, /(med)E ]
h =55 Y- e /(o) —k, /(M) (05)
Yh-jc,/(me)-k,/(med)]

Using the result of (D2),

{Z Re(h?h.*)}l {M ° } (D6)

0 1A
where A = y e/ (M@)) A = N ca/(Mee?) |
Th-je/mae) -k /med)| T Fh-je/me)-k,/(mae?)

Then, applying the error analysis method in Equation (3.19) with the result of (D2),

(D5) and (D6), the relative identification error of the top story parameters can be written

as

[0"“} ~ ZN: Re [W“" Wz, } : {Nmy,l /Pix—x + [Wla,l } Niyi (D7)
ecn 1=1 W21,I W22,I I\|5<ny,l /F’(XH—XHA)y,I W23,I S(xnfxnil)w

where

w,, = L Ko/ (M) li e/ (M) +k, /(M @?)]
Ai ‘1_ J Cn/(rnna)l ) - kn/(mna)l2 )‘4

_ 1 e /@) [ic, /(me) +k,/(mef)]
| A2 ‘1_ J C /(mna)l ) - kn /(rnna)lz)‘4
kn/(mna)lz)

1
VVlZ,| = 2 L)
Ai ‘1_ J Cn/(rnna)l ) - kn/(mna)lz)‘ [1_ J Cn/(rnna)l ) - l‘(n/(rnna)lz)]
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1 - ey /(M)
AZ ‘1_ J Cn/(mna)l ) - kn/(mna)lz)‘z[l_ J Cn/(mna)l ) - kn/(mna)lz)]*

W22,| =

1 —k,/(m,@?) 1 iCa/(mye)
Ai ‘1_ J Cn/(mnwl ) - kn/(mna)lz)‘4 : A2 ‘1_ J Cn/(rnna)l ) - kn/(rnna)lz)‘4

VV13,| =

b) Non-top Story Case:

Using the integrity index, the identification problem (5.63) can be rewritten as

- N ~ " 2 2 2 2
arﬂgr;“n J(ﬁki’IBCi)zz‘g| (ﬂki’:Bci)_gl(PXiflexiy’P5q+lylﬂk(i+1)’ﬁc(i+l)’Pfiy) (D8)
ki1 Pei =1

1 .
1-jBec/(May) - By K /(mia’|2) ’

where g, (,Bk. B ) =

A

9 (Px-ly’ Peys Paayr By Begany Pfiy):

P, -P

iyl %yl

P yi T (FssqﬂyJ - f)iqy,l )[jﬂc(i+1)ci+l/(m @)+ By ki+1/(m o’)]- ISf,y,l

Following a procedure similar to the top story gives

{agl f&} { k /(mo?) ic. /(M)
Bo Bs s [L-jc/me)-k/med)] [-ic/ma)-k/(me))]
(D9)
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A A A A A~ A

R of, of, of, of, of, of,
8|£\)X, Y aﬂk(i +1) aﬁo(i+1) 6|£’f‘ vl Z. =7|:>.

| { P P 1yl +(P5<,+1y,l xyI IJC.+1/(m0)|)+ k|+l/(m CO| )]} ( X1yl - Px,y,l) |

{_ I:>f‘y,l + I:>5<i,1y,l + (mey,l xyI 11%1/(”\ a)l ) + k.+1/(m a)l )]}
{_ Py — [(PXMyI - Py )"‘ (Psq,ly,l — Pyl )IJC.+1/(TT1 o)+ k.+1/(m o, )]"‘ Py }

{ I:)fyl + P A _'-(F)x1 1Yl xyIchwl/(ma)l)-’_klﬂ/(ma)l )]}
(P P Xyl XJC|+1/(ma)| ) + k|+l/(m C()| ]

_ { Py + P +(P><‘ 1 WIJC.+1/(mw|)+k.+1/(mw| )]}
(Pxiyl - Px Lyl XP anl T xyl Ikwl/(ma)l ]

{ e T o L x‘ylIJC|+1/(me)+kl+l/(mwl )]}
P - P, XP anl xyI JC|+1/(ma)I ]

%yl XYl
{ fyI + P %i_1 Yl +(P avl, ><1y|chwl/(ma)l)—i_kwl/(mwl )]}
P VAL _Pxiyxl

{ I:)fyl + P Syl +(P5<i+1y,l )qylchwl/(mwl)-’_kwl/(mwl )]}

(D10)

Rearranging Equation (5.61) gives

—Pry + By + (B, — Pxiy)[jcm/(mw) + ki+1/(ma’2)]

(D11)
= (R, - Py - ic/(Mw) -k /(ma?)]

Using the right side of (D11) to replace the terms in (D10) that equals to the left side

of (D11) and simplifying will give

304



| 1 jc/(mao)+k /(ma)
(P =Py )i- i /ma) —k /(ma?)]
1 [1 J(C|+1+C)/(ma’| (kl+l+k /(mwl )]
(Pi‘wl_P 1yl) [1—JCi/(mw|)—ki/(ma’| )]
jCi+1/(ma’|)+ki+1/(ma’|2)
~ P _- _ 2\ 2
- 1y| jc/(ma) -k /(Mo )] D12
%Px Y g ki+1/(ma)|2) ( :
Eﬂw ﬂ&[-wﬁmwn—hﬂmth
Px Y jC|+1/(ma)I)
(P&yl myl)[l JC/(rnia)I) k /(M ey )]
i (P&yl myl)[l JC/(ma’|) k /(Mo )]

Then, applying the error analysis method in Equation (3.19) with the results of
Equations (D9) and (D12), the relative identification error of the i story parameters can

be obtained as

N, P, .
|:9ki } - ZN: Re Uy, Uy U, . Nﬁ_ly'l//PF_& __M)y’l N Use, Nyfi,|
Oy =1 u 21, u 22, u 23 Ayl 7 ko U 261 | Pls_

N %yl /P(X1 —%_1)yl

D13
P(anxi)yvl H( ) ( )
k(i+1
n s Re |:U14I U15,|] E;qsq_l)y,l
I=1 Uy, U25,I (&r&)y,le
P c(i+1)
(%% 1)yl

where U;; | are weighting factors as follows,

Bl — N kiz/(m260|4) B ul 2/(mi a),

Th-jo/ma) -k /med) T Fh-je/ma) -k /(maop)

U, =LK /(mwf)'[ici/(mw|)+ki/(mwﬁ)],
B L-jc/ma)-k/(mad)
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v, - L-de/ma)-lie/me)+k /(maed)],
B, ‘1—J'Ci/(mw|)—ki/(mw|2)‘4

ki/(mw|2)'[ (C.+1 +C; )/(”W) ( 1 T K )/(ma’f)],

U12,| =
‘1—JCi/(m60|)—ki/(m0)| )‘

1
Bl

U22I :i_jci/(ma)l [ (C|+1+C)/(ma)l (|+1+k)/(mwl ]
- B i-jc/(me) -k /(mae?)

_ 1 k/map)-Jic./(ma)+k./(mo)]
B, ‘1_jci/(ma)l)_ki/(miwlz)‘4

13

1 —Jci/(mw.)-[jci+1/(mw|)+km/(mwf)],
B, h-jc/ma)-k/(mep)

j k|+1C /(m2w|3)

1 - o'
U14| _E 1/(m |

1
L1 JC/(m0)|) k/(mw. | B e me) -k /med)

U | i chl+l/(m U2 | _i |+1/(m a)I ,
Bilt-ic/(me)- k/(mco. )" Bfi-je/(ma) -k /(med)|

U _i —k /(ma) U, _i jc /(M) .
B - jo /(ma)—k /(M) B, - jc /(ma)—k /(M)
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Appendix E: Identification Error Analysis of Power Spectral Density
Based Substructureldentification Method for Frame Structures

a) Top Story Case:

Using the integrity indexes to rewrite the optimization problem (8.25) gives

,\ ~ ~ A~ 2
ﬂkn ! ﬂcn) (any’ an,1y1 ! SAny) (El)

argmln Jﬁkn, Z|8|| —Z

B Ben 1=1

1
1- jﬂcn Cn/(mna)l ) _ﬂknkn/(mna)lz)

where f| (ﬂkn , ﬁcn ) =

Following the procedure proposed in the LSE identification error analysis section,

) {af./aﬁﬁ :{ K,/ (m,af) ic,/(m@) }
LN /B (e, /e -k meD)] - e, /(me) K,/ (me!)]
(E2)
o oS, ] < s T
h, = 8f|/68w| =[ — ~1 oy 2] (E3)
6ﬂ/8§Anyyl ‘e (Sinflyvl _SAny,l) (anflyyl - Ayl) (Sx Wl Any,l)

where g, =1 is the abbreviation for g, =1and g, =1, S, =S, is the abbreviation of

A A

S, S

%yl =Sk i Siyl = Sy, for the sake of notational simplicity.

S, |andS =S,

Apyl !
Rearranging Equation (8.23) gives

=S, = (S, ~Suy - SAny)[l— jc,/(me) -k, /(mo?)] (E4)

1Y XnY

S,

Xn—ly

Sy /5y~ =-lic./(me) +k, /(me))L- jc, /(me)~k /(me®)]  (E5)
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Using the results of Equations (E4) and (E5) to simplify Equation (E3) gives

- J Cn/(mna)l )_ kn/(mna)lz) |
1 [1_ J Cn/(rnna)l )1_ kn/(mna)lz)]z

h, = . : (E6)
(an—lyvl - SXnYJ - SAny,I) 1- J Cn/(mna)l ) - kn/(rnna)l )
j Cn/(mnwl )+ kn/(mnwlz)

_[1_ J Cn/(rnna)l ) - kn/(rnna)lz)]2 i

Using the result of (E2),

% rehrne)] Z[YA 0 }
Re(hTh’)| = E7
Lzll l )} { 0 YA (E7)
where A = y i/ (M@)) _iA, = N cy /(M) .
- ‘1_ ic,/(mao) -k, /(mna%z)‘ =1 ‘1— jc,/(mo) - kn/(mna)lz)‘

Then, applying the error analysis method in Equation (3.19) with (E2), (E6) and (E7), the

relative identification error of the top story parameters can be written as

N, /S.A -
0 N W W a1l [ (%0 =%+ A0) Y
{ nk:| ZRe { 11,1 12,1 13,|] |\|Xy]|/s(X e iyl (Eg)
1 W, W, Wog, " oo

21
' Ni o1 /Su s i
Any!l (Xn_xnfl*'An)yvl

1 —k,/(me?)-[ic,/(ma) + Ky /(M)

where W, =— n
‘1_ J Cy /(mna)l ) - kn /(mna)lz)‘
W. | =i_ jcn/(mna)l)' [J Cn/(mna)l)+ kn/(mna)lz)]’
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Then, applying the error analysis method in Equation (3.19) with Equations (E10)

and (E13), the relative identification error of the i"" story parameters can be obtained as
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