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Abstract

The development of effective structural health monitoring (SHM) methodologies is imperative

for the efficient maintenance of important structures in aerospace, mechanical and civil engi-

neering. Based on reliable condition assessment, the owners of monitored structures can expect

two important benefits: (1) to avoid catastrophic accidents by detecting various types of struc-

tural deterioration during operation, and (2) to establish efficient maintenance means and time

schedule to reduce maintenance costs.

A vibration-based SHM methodology is evaluated for change detection in nonlinear systems

that can be frequently seen in many engineering fields. The proposed methodology is advanta-

geous over existing SHM methodologies regarding the following aspects: (1) feasible to detect

small changes in complex nonlinear systems, (2) possible to make physical interpretation of

detected changes, and (3) possible to quantify the uncertainty associated with the change detec-

tion.

A series of analytical and experimental studies was performed to investigate various impor-

tant issues in modeling and monitoring of uncertain nonlinear systems. Different parametric

and non-parametric identification methods were compared for monitoring purpose using full-

scale nonlinear viscous dampers for seismic mitigation in civil structures. Then, the effects

xv



of uncertainty on change detection performance were investigated. Two types of uncertainty

were studied: measurement uncertainty (or measurement noise) and system characteristic uncer-

tainty (or variation of system parameters). For measurement uncertainty, three different types

of full-scale nonlinear viscous dampers were used to validate the proposed SHM methodology

when the dampers’ response was polluted with random noise. For system characteristic uncer-

tainty, a semi-active magneto-rheological damper whose system characteristics were determined

through user controllable input current was used. Statistical pattern recognition methods were

studied to detect relatively small changes in nonlinear systems with different uncertainty types.

The Bootstrap method, a statistical data resampling technique, was also studied to estimate the

uncertainty bounds of change detection when the measurement data are insufficient for reliable

statistical inference.

A web-based real-time bridge monitoring system was developed and used for a forensic

study involving a cargo ship collision with the Vincent Thomas Bridge, a critical suspension

bridge in the metropolitan Los Angeles region.

Keywords: structural health monitoring, system identification, Restoring Force Method, artificial

neural networks, Hypothesis test, Bootstrap method, statistical pattern recognition, support vec-

tor machines, k-mean clustering, error analysis, detection theory, Natural Excitation Technique,

Eigensystem Realization Algorithm, full-scale viscous dampers, magneto-rheological dampers,

suspension bridge, web-based real-time bridge monitoring system, ship-bridge collision.
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Chapter 1

Introduction

1.1 Motivation

The development of effective structural health monitoring (SHM) methodologies is imperative

for the efficient operation and maintenance of important structures in aerospace, mechanical

and civil engineering. With the capability of reliable condition assessment using modern sens-

ing, data networking and data analysis techniques, the operation and maintenance of monitored

structures can be improved in the following two ways:

1. To avoid catastrophic accidents by detecting various types of structural deterioration, mod-

ification or changes during the operation.

2. To establish efficient means and time schedules for structural maintenance or rehabilitation

for the detected or predicted structural changes.

Consequently, the efficiency of SHM methodologies is directly related to the operational costs

and safety of monitored systems, and many SHM approaches have been developed for various

applications in different science and engineering fields. An example can be found in the Inte-

grated Vehicle Health Management (IVHM) program developed by the National Aeronautics

and Space Administration (NASA). Using advanced smart sensing, diagnostic and prognostic

techniques, and multi-level management and maintenance planning algorithms, the goal of the

IVHM systems is to provide both real-time and life-cycle vehicle health information for the
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second generation Reusable Launch Vehicle (RLV). Consequently, reliable and accurate SHM

approaches play critical roles in the development of the IVHM. As shown in the tragedy of the

space shuttle Columbia, the vehicles need to be monitored with an integrated array of onboard in-

situ sensing systems rather than periodic, ground based structural integrity inspection (Mancini

et al., 2006; Prosser et al., 2004). The health information of the vehicles is continuously updated

for estimating critical failure modes as well as routinely updated for estimating life cycle con-

dition trending (National Aeronautics and Space Administration, 2007). Moreover, in operating

the space programs, the high program’s total cost, which is largely influenced by the efficiency of

the operation and maintenance procedures, would be one of the most substantial obstacles to the

progress of space exploration (Schwabacher et al., 2002). The combination of continuous and

routine assessments of the vehicles’ healthiness could reduce the high operational costs through

quicker vehicle turn-around (Aaseng, 2001).

Another example of the motivation for developing effective SHM methodologies can be

seen in the maintenance of civil infrastructure system. Current practices of highway bridge

inspection are based on the National Bridge Inspection Program (NBIP) (FHWA, 1972). Since

1972, the NBIP has been managed by the Federal Highway Administration (FHWA) to assess the

“health” condition of major highway bridges in the U.S.A. However, because this method mainly

relies on visual inspection methods by human inspection crews, the program’s cost is expensive,

and the inspection results could be subjective and inaccurate. Hence, in order to overcome

the limitations of the existing NBIP, the Long-Term Bridge Performance Program (LTBP) was

recently proposed by the FHWA and approved by the U.S. Congress in 2006 (FHWA, 2006).
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The purpose of the LTBP is to develop predictive models for bridge performance and asset-

management decision making over 20 years, utilizing powerful sensing, instrumentation, test,

monitoring and evaluation techniques, which are available in these days.

A number of structural condition assessment approaches have been developed using mod-

ern sensing, communication and computing technologies (Housner et al., 1997). Among them,

vibration-based structural health monitoring techniques have been employed as promising con-

dition assessment approaches. For numerous applications of critical structures in many engi-

neering fields, numerous modeling approaches have been proposed worldwide to identify the

monitored structures using the structures’ dynamic response measured with advanced sensing

and data acquisition techniques (Fujino et al., 2004; Housner et al., 1997; Ou, 2004; Ou and

Li, 2004; Paik et al., 2004; Rodellar, 2004; Spencer and Yang, 2004; Tachibana and Mita, 2006;

Yun, 2006). However, none of the proposed methods can become universally applicable to detect

various modes and types of changes in complicated, monitored structures due to many limita-

tions. For successful SHM, the developed SHM methodologies should possess the following

important features:

1. (Detectability of system changes): Various types and modes of structural changes should

be detectable. The monitored structures are frequently complex nonlinear systems. Due

to structural deteriorations or changes, the structural characteristics vary over time (i.e.,

the structures are time-varying systems). In general, these changes involve not only the

changes of system parameter values, but also the transformation (evolution) into different

classes of nonlinear systems. Unfortunately, the analytical models of the transformed sys-

tems are commonly unknown. If the monitored structures are complex nonlinear systems,

3



then model-order reduction would be necessary, especially when the exact system models

are unknown, or when the rapid computation time is a significant concern.

2. (Physical interpretations): Although the feasibility of change detection in nonlinear time-

varying systems is very important, it is not the only objective for successful SHM. In order

to establish effective operation and maintenance strategies for the monitored structures, it

is necessary to interpret the physical meanings of the detected changes. Consequently,

structural engineers should be provided with some engineering-based guidelines to effec-

tively deal with the detected changes. The physical interpretations should involve (1)

estimating the effects of the detected changes on the structural “healthiness”, at the full-

structure level as well as at the component level, (2) characterizing the possible causes of

the changes, and (3) locating the changed (or damaged) parts in the entire structures.

3. (Uncertainty quantification): The uncertainty quantification of the detected changes

should be possible since the dynamic response of monitored structures are usually influ-

enced by various sources of uncertainty. In general, there are two types of uncertainty

affecting the change detection performance: (1) measurement uncertainty of the system

response, and (2) system characteristics uncertainty. Since the measurement uncertainty

is due to various types of noise in the data acquisition processes, this uncertainty is often

time-uncorrelated (i.e., white noise). On the other hand, the system characteristics uncer-

tainty is often periodic and time-correlated (or colored noise) because this type of uncer-

tainty is usually caused by structural characteristic changes due to various environmental

effects, such as daily and yearly temperature changes. Using SHM techniques, it should
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be possible to distinguish genuine structural change detection from “noisy” detection, and

to estimate the uncertainty bounds (or confidence intervals) of the detected changes.

As discussed above, developing reliable and practical SHM methodologies is extremely chal-

lenging, and, consequently, few current approaches satisfy those requirements. Common limita-

tions of current SHM methodologies include:

1. The system models are over-simplified. The over-simplification is usually made in the

following two ways: (1) excessive model-order reduction for nonlinear systems, and (2)

lack of knowledge of significant environmental effects. Obviously, these two simplica-

tions make the identification results inaccurate (Peeters et al., 2001; Seber and Lee, 2003).

In the development of current SHM methodologies, however, the effects of model-order

reduction on the corresponding change detection are rarely studied.

2. The modeling approaches are not robust enough to identify time-varying structures. In

general, two types of modeling approaches are used in SHM applications: (1) paramet-

ric system identification methods and (2) non-parametric system identification methods.

Because the modeling approaches of the parametric identification methods are based on

some physical assumptions of the monitored structures, a priori knowledge of the struc-

tures is required. Consequently, if the structures change into other classes of nonlinear

systems due to unexpected structural changes, the identification results using the “old”

models become no longer accurate. The non-parametric identification methods, how-

ever, are more “flexible” than the parametric methods since the modeling processes of

the non-parametric methods are data-driven, and no assumptions about the structures’
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physical characteristics are required in its modeling process. Yun et al. (2007) experimen-

tally demonstrated that the non-parametric modeling approaches are more advantageous

in monitoring purposes than the parametric approaches.

3. Although current SHM methodologies adopting non-parametric system identification

approaches (e.g., artificial neural networks, principal component analysis, etc.) allow

detecting the changes in the structural characteristics, the physical interpretations of the

detected changes are rarely possible. For the interpretation of the system changes, the

parametric identification methods are more advantageous than the non-parametric meth-

ods since the identified parameters are usually directly related to the structures’ physi-

cal characteristics (e.g., mass, spring constant and damping constant in linear lumped-

mass vibration model). On the other hand, because the identification models of the non-

parametric methods usually do not have direct relationships to the structural characteris-

tics(e.g., weights and biases of the artificial neural networks), it is difficult to interpret

the detected changes. Consequently, there exists a trade-off between parametric and non-

parametric modeling approaches, and using current SHM methodologies overcome this

trade-off, the trade-off can be rarely overcome.

4. Most of current SHM methodologies are deterministic, and the uncertainty bounds of the

detected changes are seldom estimated. The estimation of the change detection uncertainty

should include various effects of the measurement uncertainty and system characteristics

uncertainty as discussed earlier.
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1.2 Objectives

The objective of this study is to develop effective modeling and monitoring methodologies for

assessing the healthiness of uncertain, nonlinear, dynamic systems. The developed methodolo-

gies are evaluated analytically and experimentally for complex nonlinear systems that can be

frequently seen in the aerospace, mechanical and civil engineering fields.

Different vibration-based system identification methods are compared. For effective SHM,

the modeling approaches should be able to identify complex nonlinear systems that change in

time due to system deterioration, modification, or changes. Here, the system changes involve

transformation into different classes of nonlinearities, as well as changes of system parameter

values. In the SHM practice, since the system characteristics of the changed systems are usually

unknown, the modeling approaches should not based on specific phenomenological models.

Once the changes are detected, physical interpretation should be made on the detected

changes to establish effective strategies to deal with the detected changes. Consequently, the

modeling approaches of the developed SHM methodologies should be model-independent, but

still the physical interpretation of the detected changes should be possible.

For the uncertain response of the nonlinear systems affected by various types of random-

ness, not only the “genuine” changes of the system characteristics should be detectible, but also

the uncertainty bounds on the change detection should be quantifiable. In addition, the quan-

tified detection errors should be analyzed to improve the performance of the developed SHM

methodologies.
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1.3 Approaches

In order to achieve these research objectives in a logical fashion, a series of investigations were

performed in this study, gradually introducing the complexities of the problems mentioned above

by conducting the following studies:

1.3.1 Comparison of Modeling Approaches for Full-Scale Nonlinear Viscous

Damper

Using a full-scale nonlinear viscous damper that is frequently employed to mitigate seismic and

wind-induced vibration in civil structures, the results of a joint study between the University of

Southern California (USC) and the University of California, Berkeley (UCB) are presented in

this thesis. A series of tests is conducted at UCB with the viscous damper, and the obtained

experimental data are analyzed at USC.

Different parametric and non-parametric identification methods are compared to achieve the

following important research objectives: (1) to obtain quantitative data on full-scale tests, which

are rarely available due to the damper’s large size, (2) to obtain information on the accuracy and

utility of various modeling approaches, (3) to compare the advantages and limitations of para-

metric and non-parametric models, (4) to study nonlinear features of full-scale viscous dampers,

and (5) to study model dependency on the level of excitation.

8



1.3.2 Data-Driven Methodologies for Change Detection in Large-Scale Nonlinear

Dampers with Noisy Measurements

Once different modeling approaches are compared, the effects of different types of uncertain-

ties on the modeling fidelity of complex nonlinear systems must be investigated. Two types of

uncertainties can be considered in the development of SHM methodologies: (1) measurement

uncertainty, and (2) system characteristics uncertainty.

Among these two uncertainty types, the effects of measurement uncertainty are firstly inves-

tigated. In this experimental study, three different types of large-scale nonlinear viscous dampers

are used to understand the various effects of the system nonlinearities on the damper identifica-

tion results. Aiming for the model-independent change detection discussed in Section 1.2, the

goal of this study is to develop a data-driven methodology for identifying various nonlinear vis-

cous dampers.

A joint study is performed between the University of Southern California (USC), the Uni-

versity of California, San Diego (UCSD) and the University of California, Berkeley (UCB). The

experimental results of the large-scale viscous dampers tested at UCSD and UCB are discussed.

Using the experimental results, an analytical study is performed at USC. In this analytical study,

the measured data are artificially polluted with random noise to investigate some aspects of the

measurement uncertainty effects. Data-driven system identification methods are applied using

the noisy data sets.

In general, the uncertainty quantification of the identification results requires multiple tests,

which is not usually possible for in-situ monitoring, due to the lack of control of excitation

sources. Even if one had the control of the excitation, performing multiple tests with large-scale

9



viscous dampers would be extremely difficult because of the enormous amount of heat converted

from the dissipated energy. Consequently, a statistical data recycling technique is studied for the

uncertainty quantification, even with a limited number of data sets for the statistical inference.

1.3.3 Model-Order Reduction Effects on Change Detection in Uncertain Nonlin-

ear Magneto-Rheological Dampers

Once the effects of measurement uncertainty are understood, the effects of system characteristics

uncertainty should be also investigated. The objective of this study is to investigate various

effects on modeling and monitoring nonlinear systems with uncertain system characteristics.

For achieving this objective, passive type viscous dampers used in previous studies cannot

be used because a direct control of the dampers’ physical characteristics is required for a known

amount of “genuine” (or effective) system changes with a known quantity of system uncertainty.

Consequently, a semi-active magneto-rheological (MR) damper is used in this study. Multiple

sets of damper’s response are obtained for Gaussian distributions of MR damper input currents

with different means and standard deviations. Here, the mean of the distribution determines

the effective system characteristics and the standard deviation of distribution determines the

uncertainty of system characteristics.

In order to identify complex nonlinear systems, the model-order reduction of the identified

systems is often necessary when the exact system models are unknown, or when a short com-

putation time is an important concern. Hence, the effects of the model-order reduction on the

system change detection should also be also studied.

Using powerful statistical pattern recognition and classification algorithms, the detectability

of the “genuine” system changes with different levels of system characteristics uncertainties are

10



studied. The classification errors of the change detection are analyzed, and a classifier design

approach for the optimal change detection is proposed.

1.3.4 Monitoring the Collision of a Cargo Ship with the Vincent Thomas Bridge

In general, there are two different identification classes considered in vibration-based SHM: the

component-level and full structure-level SHM. Once various important effects on the identifica-

tion in uncertain nonlinear systems are investigated for developing the component-level SHM,

the scope of this study should be expanded to the full structure-level SHM.

The Vincent Thomas Bridge (VTB), an important suspension bridge in southern California,

was collided by a cargo ship in 2006. A web-based real-time continuous monitoring system

installed on the bridge was successfully measured the bridge’s dynamic response before, during

and after the collision. Using the valuable data sets obtained, a forensic study is performed to

assess the change of the bridge’s structural integrity, which is usually difficult to determine with

human visual inspection. Global and local bridge characteristics are identified for the condition

assessment of the in its vibration signature.

1.4 Scope

This thesis is organized in the following layout: an overview of the structural health monitoring

is described in Section 2; the comparison of modeling approaches for full-scale nonlinear viscous

dampers is discussed in Section 3; the data-driven methodologies for change detection in large-

scale nonlinear dampers with noisy measurements is discussed in Section 4; an experimental

11



study of model-order reduction effects to change detection in uncertain nonlinear systems is

discussed in Section 5; and the summary and conclusion of this study are given in Section 7.
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Chapter 2

Overview of Structural Health Monitoring

2.1 Components of Structural Health Monitoring Systems

In general, SHM systems consist of three subsystem components: (1) the sensing and instrumen-

tation component, (2) the data networking and archiving component, and (3) the analysis and

interpretation component. Using those subsystem components, the general procedure involving

SHM is performed following the order shown in Figure 2.1. Important issues and roles of each

subsystem component are also summarized in Figure 2.2. In the following section, the objectives

and scopes of each component of SHM systems are described.

2.1.1 Sensing and Instrumentation

The role of the sensing and instrumentation component is to obtain physical measurements of

the response of monitored structures using various types of sensors and data acquisition systems.

In the design of the sensing and instrumentation component, the following important issues need

to be considered:

1. Sensor types,

SENSING &
INSTRUMENTATION

DATA
NETWORKING
& ARCHIVING

ANALYSIS & 
INTERPRETATION

SENSING &
INSTRUMENTATION

DATA
NETWORKING
& ARCHIVING

ANALYSIS & 
INTERPRETATION

1. Determine the objectives and scopes of 
    maintenance policies.
2. Determine the objectives and scopes of 
    the SHM.
3. Design optimal combinations of analysis 
    “toolkits” to meet the objectives.
4. Establish detailed data interpretation 
    strategies using the “toolkits”.

Design the data acquisition system  based 
on analysis strategies considering the 
following aspects:

  1. sensor types
  2. sensor locations and intensities
  3. sampling frequencies and resolutions
  4. necessary signal conditioning and
      preliminary data processing
  5. measurement frequencies (continuous, 
      temporal and snap-shot)
  6. excitation types (ambient and forced)

Design sensor networks based on analysis
strategies considering the following aspects:

  1. sensor network types (centered and 
      distributed)
  2. device network types (GPIB, VISA, VXI,
      PXI, serial, WI-FI, bluetooth, etc.)
  3. remote data communication types (UDP,
      modified UDP, TCP-IP, etc.)
  4. archived data types
  5. data archiving frequencies

Figure 2.1: General procedure for performing structural health monitoring.
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2. Sensor locations and densities,

3. Sampling frequencies and resolutions,

4. Necessary signal conditioning and preliminary data processing techniques,

5. Measurement frequencies, such as continuous, temporal, and single-time monitoring,

6. Excitation types, such as ambient and forced vibration.

2.1.2 Data Networking and Archiving

The data networking and archiving components involve tranceiving and archiving the measured

data for further analyses. Typical considerations in the design of the data networking and archiv-

ing system component involve:

1. Sensor network types, such as centered or distributed networks,

2. Device network types, including General Purpose Interface Bus (GPIB or IEEE-488),

Virtual Instrument Software Architecture (VISA), VME eXtensions for Instrumentation

(VXI), PCI eXtensions for Instrumentation (PXI), serial, WI-FI, bluetooth, etc.,

3. Remote data communication types, such as User Datagram Protocol (UDP), modified

UDP, Transmission Control Protocol and the Internet Protocol (TCP/IP), etc.,

4. Method of data archiving, and

5. Frequency of data archiving.
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2.1.3 Analysis and Interpretation

The objectives of the analysis and interpretation component include the following three impor-

tant tasks for the effective SHM systems: (1) the identification of monitored systems, (2) detec-

tion of changes in monitored systems, and (3) interpretation of detected damage mechanisms

and establishment of maintenance strategies. In designing the analysis and interpretation com-

ponents, the following important issues need to be considered:

System identification

1. Scope

• regional / system-level / component-level

2. Modeling

• parametric / non-parametric

• linear / nonlinear

• stationary / non-stationary

• discrete / continuous

• single-input / multiple-input

• deterministic / stochastic

System change detection

1. Feasibility of Change Detection

• Detection resolution

15



• Estimation of detection uncertainty (or detection confidence)

2. Physical Interpretation of Detected Damage

• Effects on the structural characteristics

• Significance in regard to structural healthiness

• Understanding damage mechanism

• Damage locations

Damage mechanism estimation for maintenance strategies

1. Integration of Damage Detection Results from Multiple Heterogeneous Civil Structures

2. Damage Prediction

• Prediction of future damage based on the trends of detected damage in time

• Estimation of prediction uncertainty

3. Reliable Maintenance Strategy

• Reliable decision-making based on predicted damage development

• Planing effective budget policy for infrastructure operation and maintenance

16
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2.2 Design of the Structural Health Monitoring Systems

The development of effective SHM methodologies is a design process to achieve various design

objectives of the SHM applications with specified design constraints and specifications. Conse-

quently, establishing clear objectives and scopes of given applications is crucial for successful

SHM. This involves the following two issues:

1. Determining the objectives and scopes of operation and maintenance policies,

2. Determining the objectives and scopes of the modeling and monitoring approaches.

Among them, the former issue is the controlling goal of SHM, while the latter involve prac-

tical approaches to achieve those ultimate goals. In the design of the analysis/interpretation

component, a number of modeling and monitoring approaches could be used simultaneously to

achieve the various design objectives. Consequently, the optimal combinations of modeling and

monitoring approaches (or “toolkits”) should be determined. For each modeling and monitoring

approach in the “toolkits”, detailed identification and change detection strategies should be also

considered.

Once the analysis/interpretation component is designed, the sensing/instrumentation and

data networking/archiving components need to be designed as the next step. The implemen-

tation of those two components should be performed to meet the pre-determined objectives of

the analysis/interpretation component.

The above discussion indicates that, unlike the procedure for performing SHM in Figure 2.1,

the procedure of designing SHM systems should consider the analysis/interpretation component

first, then to consider the sensing/instrumentation and data networking/archiving components to
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meet the goals of SHM applications as illustrated in Figure 2.3. In addition, because the perfor-

mance of the analysis/interpretation component is more directly related to achieving the ultimate

objectives of the SHM system, the analysis/interpretation component needs to be considered

more carefully than the sensing/instrumentation and data networking/archiving components.

Many current SHM methodologies, however, tend to put too much emphasis on the sens-

ing/instrumentation and data networking/archiving components. With the advent of modern

sensing and data acquisition technologies, the development of the required sensing and data net-

working systems becomes more feasible in many SHM applications. However, the development

of effective analysis and interpretation components for complex nonlinear structures is still very

challenging, and it consequently becomes one of the major obstacles to designing reliable SHM.

Hence, in this study, the development of the analysis/interpretation methodologies will be more

focused. However, the development of an effective sensing/instrumentation and data network-

ing/archiving system for a full-scale suspension bridge is also conducted as a part of the study,

and the description of the developed bridge monitoring systems is presented in Section 6.2.3.
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SENSING &
INSTRUMENTATION

DATA
NETWORKING
& ARCHIVING

ANALYSIS & 
INTERPRETATION

SENSING &
INSTRUMENTATION

DATA
NETWORKING
& ARCHIVING

ANALYSIS & 
INTERPRETATION

1. Determine the objectives and scope of 
    maintenance policies.
2. Determine the objectives and scope of 
    the SHM.
3. Design optimal combinations of analysis 
    “toolkits” to meet the objectives.
4. Establish detailed data interpretation 
    strategies using the “toolkits”.

Design the data acquisition system  based 
on analysis strategies considering the 
following aspects:

  1. sensor types
  2. sensor locations and intensities
  3. sampling frequencies and resolutions
  4. necessary signal conditioning and
      preliminary data processing
  5. measurement frequencies (continuous, 
      temporal and snap-shot)
  6. excitation types (ambient and forced)

Design sensor networks based on analysis
strategies considering the following aspects:

  1. sensor network types (centered and 
      distributed)
  2. device network types (GPIB, VISA, VXI,
      PXI, serial, WI-FI, bluetooth, etc.)
  3. remote data communication types (UDP,
      modified UDP, TCP-IP, etc.)
  4. archived data types
  5. data archiving frequencies

Figure 2.3: Preferred design approach for structural health monitoring procedures.
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Chapter 3

Comparison of Modeling Approaches for

Full-Scale Nonlinear Viscous Dampers

3.1 Introduction

3.1.1 Motivation

The orifice fluid viscous damper (hereinafter viscous damper) is a passive energy dissipation

device that is commonly employed in civil structures to reduce structural vibrations, typically

induced by seismic motion or wind. A typical viscous damper consists of a piston rod, seal

retainer, acetal resin seal, cylinder, chambers filled with compressible silicon fluid, control

valves, rod make-up accumulator, and accumulator housing (Figure 3.1). For effective energy

dissipation, the viscous damper employs small orifices on its piston head so that the fluid (usu-

ally compressible silicon oil) is forced to pass the orifices, when the piston reciprocates. The

relationship between velocity and damping force follows a clear constitutive law at relatively

low frequencies (Constantinou et al., 1993).

In general, the viscous damper is utilized in a civil structure to control seismic, wind-induced

and thermal expansion motions, and it is usually arranged in one of the following configurations:

(1) a diagonal or chevron bracing element of steel or concrete trusses, (2) a part of the wind/rain

cable stays of suspension bridges, (3) a part of a tuned mass damper to reduce the structure
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Piston Rod

Cylinder

Chamber 1 Chamber 2

Piston Head 
with OrificesHigh-strength

Acetal Resin Seal

Seal Retainer

Accumulator 
Housing

Control Valve
Compressible 
Silicon Fluid

Rod Make-up
Accumulator

Figure 3.1: Components of a orificed viscous damper (Soong and Dargush, 1997).

vibration, (4) a part of a base isolation system to add energy dissipation, and (5) as a device

for allowing free thermal movement. The viscous damper can be used in the construction of a

new building, or the retrofit of an existing structure. In the case of structural retrofit, utilizing

a viscous damper is frequently the only measure that will not prolong lane closure and traf-

fic interruption (Caltrans, 2003). Thanks to its effective energy dissipation capability and wide

range of application, the importance of viscous dampers in vibration control has increased. Var-

ious applications of the viscous damper and other passive control devices have been reported

worldwide (Aiken, 1996; Chen and Duan, 2000; Housner et al., 1997; Kareem et al., 1999; Kita-

gawa and Midorikawa, 1998; Ou and Li, 2004; Park and Koh, 2001; Spencer Jr. and Nagarajaiah,

2003; Wolfe et al., 2002).

In the U.S.A., after the Loma Prieta earthquake in 1989, the California Department of Trans-

portation (Caltrans) initiated seismic vulnerability assessment and subsequently retrofitting of

all major California toll bridges (Caltrans, 2003). In order to improve the dynamic characteris-

tics of a specific bridge, viscous dampers were employed in some retrofit projects (Sheng and
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Lee, 2003). An example is the massive retrofit effort recently completed on the San Francisco-

Oakland Bay Bridge, West Spans Suspension Bridge. More than 100 full-scale viscous dampers

(max. force: 3115 kN, max. stroke: ±584 mm) were installed at the truss-to-tower connec-

tions of the suspended spans as anti-seismic dissipators. Another example of Caltrans’ retrofit

projects is the Vincent Thomas Bridge, which employed full-scale viscous dampers for limiting

the deformation of the suspended trusses (Baker, 1998).

In Europe, full-scale viscous dampers are also widely used for structural vibration control.

A recent example of the viscous damper in new bridge construction is the Rion-Antirion Bridge

project in Greece. This 2252-m multi-span suspension bridge is constructed on a local active

seismic fault, which causes high intensity earthquakes and large tectonic movements. A number

of full-scale viscous dampers with a maximum force of 3500 kN and maximum stroke of±2600

mm were installed between the deck and pier with fuse retainers to reduce the deformation

induced by the seismic ground motion (Infanti et al., 2003).

U.S. design provisions for viscous dampers and seismic isolators have been developed by the

National Earthquake Hazards Reduction Program (NEHRP). The NEHRP is a joint program of

the Federal Emergency Management Agency (FEMA), National Institute of Standards and Tech-

nology (NIST), National Science Foundation (NSF), and the United States Geological Survey

(USGS). In the recent update of the NEHRP Recommended Provisions for New Buildings and

Other Structures (BSSC, 2004), a new chapter of “Structures with Damping Systems” (FEMA

450 Ch.15) was added. This chapter specifies provisions of designing the damping system and
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testing damping devices. The MCEER/ATC-49 Recommended LRFD Guidelines for the Seis-

mic Design of Highway Bridges also provides the guidelines and design procedures for seismic

isolation (Ch.15) (ATC/MCEER, 2003).

Although the effect of the viscous damper in the design of vibration control is relatively

well-known, few studies of structural health monitoring (SHM) techniques for operational and

maintenance purposes have been reported on full-scale viscous dampers. The performance of

viscous dampers installed on important civil structures must be carefully assessed to judge if the

damper is operating as designed. The development of condition assessment techniques includes

testing guidelines and identification methods. Due to their massive size and inherent nonlinearity,

special considerations should be given in testing and identification of full-scale viscous dampers.

3.1.2 Viscous Damper Tests

Currently, testing of viscous dampers is usually conducted as pre-qualification and quality con-

trol tests for structural vibration control purposes. Along these lines, NIST developed three

classes of testing guidelines, including a pre-qualification test, prototype test, and quality control

test (Shenton, 1994). These test guidelines provide the provisions of project-specific and project-

unspecific testing for both prototype and commercialized seismic control devices. Another pur-

pose of testing viscous dampers is to provide basic information concerning the characteristics of

the damping devices for the design procedures of vibration control.

The Earthquake Engineering Research Center (EERC) at the University of California,

Berkeley has developed testing methods for full-scale viscous dampers and seismic isolation

devices (Aiken, 1998; Aiken and Kelly, 1996; Aiken et al., 1993). Aiken classified full-scale
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testing procedures into quasi-static testing and dynamic testing (Aiken et al., 1993). The quasi-

static testing is used when the loading rate and thermodynamic effects are not significant. A

typical loading rate in quasi-static testing is 200-300 mm/min (8-12 in/min). The dynamic test-

ing includes dropping a known weight on the end of a vertically mounted viscous damper (drop

test), and servo-hydraulic testing (dynamic cyclic test). In the drop test, the relationship of the

exciting force and damper response can be obtained. Because no significant energy is input

into the damper due to the short impact time, transient temperature effects are not recovered.

The dynamic cyclic test provides more opportunities to understand the nonlinearity and thermal

properties of the viscous damper. However, because the dynamic cyclic test requires a powerful

servo-hydraulic testing facility, the dynamic cyclic test can only be performed at very limited

locations (Beck et al., 1994). As a result, there are few available experimental data sets of full-

scale viscous dampers.

A monotonic sinusoid excitation is typically used in the dynamic cyclic test. The Highway

Innovative Technology Evaluation Center (HITEC) developed nine standardized testing meth-

ods for seismic isolators and energy dissipation devices (HITEC, 1996, 1998a,b, 1999). In their

study, “off-the-shelf” full-scale viscous dampers were tested with sets of monotonic sinusoidal

excitation, and the damper response was recorded. For the identification of a nonlinear system,

using a monotonic sinusoid excitation may not reveal the nonlinearity of the system completely,

and for this reason, a broadband random excitation is commonly used. For meaningful identi-

fication results, the testing time with a broadband random excitation should be longer than that

with a monotonic sinusoidal excitation. In the case of full-scale viscous dampers, however, a

long testing time frequently generates an enormous amount of heat that is converted from the
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dissipated energy. Consequently, the temperature of the silicon fluid inside the damper’s piston

chamber should be controlled to preclude added complexities.

3.1.3 Identification of Viscous Dampers

For the identification of viscous dampers, many analytical models have been developed based on

Maxwell models (Constantinou and Symans, 1993; Constantinou et al., 1993; Makris and Con-

stantinou, 1991; Makris et al., 1993). Current identification techniques for viscous dampers are

mostly based on these parametric models. Although parametric identification techniques have

been successfully used to identify viscous dampers, non-parametric identification techniques are

more suitable in SHM (Soong, 1998). This is because, in the SHM context, the system charac-

teristics may continuously vary over time, both quantitatively as well as qualitatively. Therefore,

the development of a condition assessment methodology for full-scale viscous dampers using

non-parametric identification methods will be a critical step towards establishing the operation

and maintenance strategies for vibration-controlled structures.

3.1.4 Objectives and Scope

A joint study between the University of Southern California and the University of California,

Berkeley was conducted on a full-scale viscous damper. The research objectives were (1) to

obtain quantitative data on full-scale tests, (2) to obtain information on accuracy and utility of

various modeling approaches, (3) to compare advantages and limitations of both parametric and

non-parametric models, (4) to study nonlinear features of viscous dampers, and (5) to study

model dependency on excitation ranges. The 1112 kN (250 kip) full-scale viscous damper was

tested using multiple sets of monotonic sinusoidal excitation at the University of California,
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Berkeley, and the test data were analyzed at the University of Southern California. The research

material is organized in the following layout: The experimental studies are discussed in Section

2; an overview of the modeling approaches is presented in Section 3; the parametric and non-

parametric identification approaches are presented in Section 4; and the results are discussed in

Section 5.

3.2 Experimental Studies

3.2.1 Test Apparatus

The 1112 kN (250 kip) viscous damper was tested in the Earthquake Engineering Research

Center (EERC) at the University of California, Berkeley (Figure 3.2). The damper is a sister

damper of the eight dampers installed at the 91/5 over-crossing in Orange County, CA. The

damper has a mid-stroke length of 1828.8 mm (72 in) and a maximum stroke of ±203.2 mm

(8.0 in). The test setup consists of a self-equilibrating reaction frame with a 1335 kN (300 kip)

actuator equipped with a 3785 l/min (1000 gpm) proportional valve. The bolted head-piece

at the opposite side of the actuator can assume other positions to accommodate dampers with

different length. In addition to the load-cell and LVDT, the damper was instrumented with six

thermocouple probes along its length (Figure 3.2 (b)).

3.2.2 Test Cases

A total of 15 experiments were performed to obtain the dynamic response of the viscous damper.

The experiments were designed to determine the dynamic performance characteristics of the

damper at varying velocities and displacements. The damper was subjected to multiple sets of
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(a) (b)

Figure 3.2: The 1112 kN (250 kip) viscous damper installed on a damper testing machine at the
University of California, Berkeley.

monotonic sinusoidal excitation at peak velocities of ±254.0 mm/s (10.0 in/s), ±317.5 mm/s

(12.5 in/s), ±381.0 mm/s (15.0 in/s), and ±444.5 mm/s (17.5 in/s) and peak displacements of

±101.6 mm (4.0 in), ±127.0 mm (5.0 in), ±152.4 mm (6.0 in), and ±177.8 mm (7.0 in). All

test cases had a 6-cycle excitation period, except for one having a 10-cycle period. The test

specifications are summarized in Table 3.1.

3.2.3 Instrumentation

The damper displacement and force were measured: the force was measured with an in-line

load cell, and the displacement between the reaction frame and the clevis was measured with an

LVDT. The transducer measurements were sampled at 100 Hz.

3.2.4 Preliminary Data Processing

Once the force and displacement of the damper were measured, the measured displacement was

numerically differentiated to obtain the corresponding velocity and acceleration. The records
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Table 3.1: Test specifications of the 1112 kN (250 kip) viscous damper. A total of 15 experiments
were performed for different levels of peak velocity and peak displacement.

No Name of data set Peak velocity Peak displacement Freqeuncy No. cycles

1 UCB1 10 4 ±254.0 mm/s (10.0 in/s) ±101.6 mm (4.0 in) 0.398 Hz 6
2 UCB1 10 5 ±254.0 mm/s (10.0 in/s) ±127.0 mm (5.0 in) 0.318 Hz 6
3 UCB1 10 6 ±254.0 mm/s (10.0 in/s) ±152.4 mm (6.0 in) 0.265 Hz 6
4 UCB1 12 4 ±317.5 mm/s (12.5 in/s) ±101.6 mm (4.0 in) 0.500 Hz 6
5 UCB1 12 5 ±317.5 mm/s (12.5 in/s) ±127.0 mm (5.0 in) 0.400 Hz 6
6 UCB1 12 6 ±317.5 mm/s (12.5 in/s) ±152.4 mm (6.0 in) 0.332 Hz 6
7 UCB1 12 7 ±317.5 mm/s (12.5 in/s) ±177.8 mm (7.0 in) 0.284 Hz 6
8 UCB1 15 4 ±381.0 mm/s (15.0 in/s) ±101.6 mm (4.0 in) 0.600 Hz 6
9 UCB1 15 5 ±381.0 mm/s (15.0 in/s) ±127.0 mm (5.0 in) 0.477 Hz 6

10 UCB1 15 6 ±381.0 mm/s (15.0 in/s) ±152.4 mm (6.0 in) 0.400 Hz 10
11 UCB1 15 7 ±381.0 mm/s (15.0 in/s) ±177.8 mm (7.0 in) 0.341 Hz 6
12 UCB1 17 4 ±444.5 mm/s (17.5 in/s) ±101.6 mm (4.0 in) 0.695 Hz 6
13 UCB1 17 5 ±444.5 mm/s (17.5 in/s) ±127.0 mm (5.0 in) 0.557 Hz 6
14 UCB1 17 6 ±444.5 mm/s (17.5 in/s) ±152.4 mm (6.0 in) 0.464 Hz 6
15 UCB1 17 7 ±444.5 mm/s (17.5 in/s) ±177.8 mm (7.0 in) 0.399 Hz 6

were bandpass-filtered within the frequency range 0.1 - 10 Hz. A sample damper response after

data processing is shown in Figure 3.3.

3.3 Overview of Modeling Approaches

3.3.1 Simplified Design Model

Some analytical models of the orifice viscous damper, hereafter referred to as the Simplified

Design Model (SDM), have been developed based on Maxwell models by Makris and Constanti-

nou (1991) and Makris et al. (1993). The dynamic performance characteristics of the damper

significantly depend on the configuration of the small orifices on the piston head, following a
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Figure 3.3: Sample time histories of measured damper response after preliminary data processing
(UCB1 15 6). The figure illustrates the time histories of the (a) displacement, (b) velocity, (c)
acceleration, and (d) force.

nonlinear constitutive law at relatively low frequency (Constantinou and Symans, 1993; Con-

stantinou et al., 1993) as expressed by

f̂d(t) = mẍ+ Csgn(ẋ)|ẋ|n (3.1)
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where f̂d(t) is the designed damping force, ẋ is the damper stroke velocity, ẍ is the damper stroke

acceleration, m is the “effective” moving mass of the damper, C is the damping coefficient, and

n is the exponent (n = 1 for linear; n < 1 for softening; and n > 1 for hardening). The tested

viscous damper under discussion was designed for C = 86.03 kN·secn/mmn (60 kip·secn/inn)

and n = 0.35.

For the optimal values of the parameters (i.e., m, C, and n), the Adaptive Random Search

(ARS) method (Andronikou et al., 1982; Masri et al., 1980) is employed. Using the ARS method,

the optimal values of the parameters are searched within the solution space of a differential

equation for minimal normalized mean square error between the measured and identified damper

responses. In order to determine the optimal values of m, C, and n, the simplified design model

(Equation 3.1) is reformulated as a first order differential equation

 ẋ

ẍ


︸ ︷︷ ︸

ẏ

=

 ẋ

1
m(f(t)− Csgn(ẋ)|ẋ|n)


︸ ︷︷ ︸

F (t,y)

(3.2)

The solution of Equation 3.2 can be determined, using standard numerical time-marching tech-

niques, if the initial conditions (i.e., x(0) and ẋ(0)) and the values of the system parameters

are specified. The optimal values of the unknown parameters can be found by minimizing the

following cost function

J(ε) = w1 ×
100
Nσ2

x

N∑
i=1

(xi − x̂i)2 + w2 ×
100
Nσ2

ẋ

N∑
i=1

(ẋi − ˆ̇xi)2 (3.3)
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where x and ẋ are the measured displacement and velocity, x̂ and ˆ̇x are the computed displace-

ment and velocity from Equation 3.2, N is the number of data points, σ2
x and σ2

ẋ are variances

of the measured responses, and w1 and w2 are normalizing weights.

3.3.2 Restoring Force Method

A constant-mass, single-degree-of-freedom nonlinear dynamic system can be represented by the

following equation of motion

mẍ(t) + r(x(t), ẋ(t)) = f(t) (3.4)

where f(t) is the exciting force, m is the mass, and r is the restoring force, which is a nonlinear

function of the displacement (x) and velocity (ẋ). Using the restoring force method (RFM), the

restoring force surface can be approximated by a series of two-dimensional Chebyshev polyno-

mials (Masri and Caughey, 1979)

r(x, ẋ) ≈ r̂(x, ẋ) =
MX∑
i=0

NY∑
j=0

C̄ijTi(x̄)Tj(¯̇x) (3.5)

where x̄ and ¯̇x are the normalized displacement and velocity in the range [-1, 1], C̄ij is the

normalized Chebyshev coefficient, and Tn is the nth order Chebyshev polynomial. For the

tested viscous damper, if the excitation frequency is low (i.e., nearly quasi-static conditions), the

inertia term in Equation 3.4 becomes negligible. Then, the damper can be modeled as

f̂r(t) ≈
MX∑
i=0

NY∑
j=0

C̄ijTi(x̄)Tj(¯̇x) (3.6)
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where f̂r(t) is the damping force identified with the RFM. One of the advantages of using the

RFM is that the orthogonality is preserved, using the Chebyshev polynomials. That is, with the

normalized domain of [-1, 1], the identified Chebyshev coefficient of each term is not affected by

the other terms. This feature of the RFM can be very attractive, especially in SHM applications,

where the proper order of the expansion is often unknown. In identification, the Chebyshev

polynomial is more appropriate to the polynomial type nonlinearity than the piece-wise orthog-

onal functions. It is also known that the orthogonal polynomials with limited bounds, such as

the Chebyshev polynomial, is more accurate than those with unlimited bounds, such as Her-

mite polynomials. According to de Moivre’s Theorem, a Chebyshev series has the following

relationship with a power series (Mason and Handscomb, 2003)

T0(x) = 1, T1(x) = x, T2(x) = 2x2− 1, . . . , Tn+1(x) = 2xTn(x)−Tn−1(x), . . . (3.7)

Using the relationship in Equation 3.7, the viscous damper restoring force can be modeled

f̂p(t) =
MX∑
i=0

NY∑
j=0

aijx
iẋj (3.8)

where aij is a de-normalized power series coefficient, and f̂p(t) is the damping force identified

with power series.

3.3.3 Artificial Neural Networks

The artificial neural networks (ANN) identification technique has been applied successfully to

broad classes of nonlinear systems. For the tested viscous damper, a three-layer feedforward
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neural network (the last layer is the output layer) was constructed and trained with the ARS.

Descriptions of the ANN and ARS are given in Masri et al. (1993, 2000, 1999). Using the

following three-layer ANN, the viscous damper force can be expressed:

f̂a(t) = Γ


N2∑
j=1

[
wjΓ

(
N1∑
k=1

vj,kyk + bv,j

)
+ bw

] (3.9)

where w and v are weights, b is bias, N1 is the number of nodes in the first layer, N2 is the

number of nodes in the second layer, Γ is a tangent-sigmoid function, and f̂a(t) is the damping

force identified with the ANN method. Here, the third layer is used as an output layer.

3.4 Identification of the Viscous Damper

3.4.1 Parametric Identification of Simplified Design Model

Identification

For the optimal values of the unknown parameters in Equation 3.1, the parametric identifica-

tion using a time-marching technique (SDM) was applied. In the ARS, the design values of

C = 86.03 kN·secn/mmn (60 kip·secn/inn) and n = 0.35 were used as the initial values of

the unknown parameters. The solution space of the optimization was constrained for positive

values of the parameters. The initial values and the bounds of the solution space are summarized

in Table 3.2. For each optimization process, 300 global searches and 25 local searches were

performed. Three identical optimization processes were conducted with randomly generated

initial parameters, and the identified parameters with the least normalized mean-square-error

were selected.
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Table 3.2: Initial values and boundaries of the unknown parameters in Equation 3.1 for the
Adaptive Random Search method. Parameter m is the “effective” moving mass, C is the damp-
ing coefficient, and n is the exponent.

Parameter Initial value Lower bound Upper bound

14,593.9 kg 0.1459 kg 1,459,390 kg
m

(1.0 slug) (1× 10−5 slug) (100.0 slug)

86.03 kN·secn/mmn 0.14 kN·secn/mmn 143.38 kN·secn/mmn

C
(60 kip·secn/inn) (1× 10−1 kip·secn/inn) (100 kip·secn/inn)

n 0.35 1× 10−1 2.0

A sample identification result of the SDM is illustrated in Figures 3.4 (a) and (d). In the fig-

ure, the identified damper response was obtained, using Equation 3.1 for the identified optimal

values of the parameters. The m, C, and n were determined for all test cases, and the identi-

fied values are summarized in Table 3.3. The mean of the identified m is 735.64 kg with the

coefficient of variance of 0.3185. The mean of the identified C is 4.357 kN·secn/mmn, and its

coefficient of the variance is 0.0512. The mean of the identified n is 0.391, and its coefficient of

variance is 0.0345.

The normalized mean-square-error (NMSE) of the SDM-identification was calculated to

evaluate the accuracy of the identification results. The NMSE was calculated as

NMSE(f̂) =
100
Nσ2

f

N∑
i=1

(fi − f̂i)2 (3.10)

where f is the measured force, f̂ is the identified force, N is the number of data points, and σ2
f

is the variance of the measured force (Worden and Tomlinson, 2001). The identification errors
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Figure 3.4: Sample identification results of the parametric simple design model (SDM), the
non-parametric restoring force method (RFM), and the non-parametric artificial neural networks
(ANN) for the data set UCB1 15 6. The phase plots show approximately a one-cycle period of
the damper response (solid line for measured, and dashed for identified forces). In the figure, the
first row shows the relationship between displacement and force, and the second row shows the
relationship between velocity and force for each investigated identification method.

for all test cases are summarized in the gray cells in Table 3.4 (a). The mean of the identification

error is 3.75% with the coefficient of covariance of 0.28.

Validation

Once the viscous damper was identified using the SDM, the results were validated with the data

sets, which had not been used in the identification phase. A total of 196(=14×14) validation

processes were performed, and the NMSE’s are summarized in Table 3.4 (a). In the table, the

identification errors are shown in the grayed cells, and the validation errors are summarized in

the white cells. The values in the same column show the errors with respect to the same identified
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Table 3.3: Mass, damping constant (C), and exponent (n) identified using the simplified design
model (SDM). The system parameters were determined, using the adaptive random search opti-
mization, and for the determined parameters, the governing differential equation of motion was
directly solved through the use of conventional time-marching techniques.

No Name of data set Mass (kg) C (kN·secn/mmn) n

1 UCB1 10 4 567.7 78.5085 0.3773
2 UCB1 10 5 1199.6 70.1302 0.4055
3 UCB1 10 6 1208.4 70.1866 0.4108
4 UCB1 12 4 685.9 74.6388 0.3896
5 UCB1 12 5 777.9 70.7238 0.4030
6 UCB1 12 6 869.8 70.5987 0.4036
7 UCB1 12 7 974.9 71.4950 0.3997
8 UCB1 15 4 567.7 78.5085 0.3773
9 UCB1 15 5 594.0 75.4005 0.3862

10 UCB1 15 6 785.2 69.6316 0.4076
11 UCB1 15 7 645.1 72.1798 0.3967
12 UCB1 17 4 494.7 79.7295 0.3732
13 UCB1 17 5 522.5 79.4230 0.3747
14 UCB1 17 6 519.5 77.2283 0.3789
15 UCB1 17 7 621.7 76.9658 0.3799

avg 735.64 74.366 0.3909
cov 0.3185 0.0512 0.0345

parameters (i.e., C and n), and the values in the same row show the errors with respect to the

same data set. The mean of the averaged validation errors for the same identified parameters is

3.79% with the coefficient of variance of 0.098. The mean of the averaged validation errors for

the same data set is 3.79% with the coefficient of variance of 0.31.

3.4.2 Nonparametric Identification Using Restoring Force Method

Identification

An optimal Chebyshev order of the RFM-identification was determined using the tested damper

response. The damper was identified with the order of n = 1, 2, 3, . . . , 15, and the determined

NMSE’s are plotted in Figure 3.5 in semi-log scale. The NMSE decreases for 1 < n ≤ 9, and

increases for 9 < n ≤ 15 due to over-fitting. Because Figure 3.5 is plotted in semi-log scale,
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Table 3.4: Identification and validation results of the simplified design model (SDM), the restor-
ing force method (RFM), and the artificial neural networks (ANN). The values are the normal-
ized mean-squared errors (NMSE) of the estimated force versus the measured force. For each
identification method, the identification errors are shown in grayed cells, and the validation errors
are shown in white cells. The values in the same row show the errors with respect to the same
data set, while the values in the same column show the errors with respect to the same identi-
fied coefficients (i.e., the damping constant (C) and exponent (n) for the SDM, the normalized
Chebyshev coefficients for the RFM, and the trained weights and biases for the ANN).

(a) Simplified Design Model (Parametric)
Data Data No. (w.r.t. Same Identified C and n)
No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg cov
1 4.60 4.99 5.65 4.71 4.91 4.93 4.81 4.60 4.62 5.05 4.72 4.56 4.59 4.49 4.51 4.78 0.063
2 3.15 3.55 4.17 3.27 3.47 3.49 3.37 3.15 3.18 3.61 3.29 3.11 3.15 3.07 3.08 3.34 0.087
3 2.62 2.77 3.13 2.64 2.72 2.73 2.68 2.62 2.61 2.80 2.64 2.62 2.62 2.60 2.60 2.69 0.051
4 5.32 5.79 6.50 5.45 5.69 5.72 5.58 5.32 5.35 5.86 5.48 5.27 5.31 5.22 5.23 5.54 0.061
5 3.60 4.01 4.64 3.71 3.92 3.95 3.83 3.60 3.63 4.07 3.74 3.57 3.59 3.53 3.54 3.80 0.078
6 2.94 3.31 3.90 3.03 3.23 3.26 3.15 2.94 2.96 3.37 3.06 2.91 2.93 2.87 2.88 3.12 0.088
7 1.94 2.42 3.06 2.08 2.33 2.35 2.22 1.94 1.99 2.49 2.13 1.90 1.93 1.88 1.89 2.17 0.149
8 5.35 6.01 6.85 5.55 5.88 5.92 5.75 5.35 5.42 6.10 5.61 5.29 5.33 5.24 5.26 5.66 0.078
9 3.86 4.42 5.16 4.02 4.31 4.34 4.19 3.86 3.91 4.50 4.07 3.81 3.84 3.77 3.79 4.12 0.092
10 3.03 3.79 4.66 3.26 3.66 3.69 3.50 3.03 3.13 3.89 3.35 2.95 3.00 2.92 2.94 3.39 0.144
11 2.23 2.74 3.39 2.37 2.64 2.67 2.53 2.23 2.29 2.81 2.43 2.20 2.22 2.18 2.19 2.48 0.135
12 5.38 6.22 7.17 5.63 6.05 6.10 5.89 5.38 5.47 6.31 5.72 5.29 5.35 5.25 5.28 5.77 0.093
13 3.78 4.52 5.38 4.00 4.38 4.42 4.23 3.78 3.87 4.62 4.08 3.71 3.76 3.68 3.71 4.13 0.115
14 2.82 3.55 4.37 3.04 3.41 3.45 3.27 2.82 2.91 3.64 3.13 2.76 2.80 2.74 2.76 3.17 0.145
15 2.38 3.18 4.06 2.63 3.04 3.08 2.88 2.38 2.49 3.29 2.73 2.31 2.36 2.29 2.76 2.76 0.181
avg 3.53 4.09 4.81 3.69 3.98 4.01 3.86 3.53 3.59 4.16 3.75 3.48 3.52 3.45 3.47
cov 0.33 0.30 0.27 0.32 0.30 0.30 0.31 0.33 0.33 0.29 0.31 0.33 0.33 0.33 0.33

(b) Restoring Force Method Identification (Non-parametric)
Data Data No. (w.r.t. Same Identified C and n)
No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg cov
1 1.50 2.11 2.39 2.38 1.47 1.67 2.76 3.18 2.37 2.72 4.49 3.69 3.94 4.11 4.08 2.86 0.35
2 1.86 1.61 1.57 2.24 1.24 1.09 1.92 3.19 2.13 2.23 3.51 3.98 4.01 3.77 3.60 2.53 0.41
3 2.37 2.00 1.56 2.21 1.04 0.78 1.58 2.71 1.60 1.43 2.52 3.28 3.08 2.69 2.47 2.09 0.35
4 2.55 3.00 2.58 1.68 1.06 1.35 2.39 1.30 0.94 1.25 2.54 1.40 1.50 1.78 2.11 1.83 0.36
5 2.91 3.41 2.77 2.37 1.07 1.25 2.16 1.80 1.07 0.89 2.13 1.57 1.32 1.30 1.30 1.83 0.42
6 3.19 3.11 2.32 2.40 1.03 0.91 1.70 2.01 1.06 0.72 1.72 1.96 1.55 1.26 1.13 1.74 0.44
7 3.08 3.13 2.34 2.87 1.12 0.92 1.65 2.59 1.35 0.75 1.83 2.44 1.91 1.46 1.07 1.90 0.42
8 3.66 4.51 3.82 2.45 1.60 2.01 3.09 1.24 1.00 1.19 2.46 0.72 0.69 1.07 1.43 2.06 0.59
9 3.94 4.44 3.52 2.66 1.52 1.76 2.63 1.52 1.02 0.87 1.90 1.05 0.77 0.81 0.98 1.96 0.61
10 3.83 4.26 3.28 3.02 1.47 1.52 2.25 2.06 1.23 0.74 1.68 1.59 1.10 0.88 0.75 1.98 0.62
11 4.69 4.83 3.61 3.48 1.86 1.78 2.48 2.37 1.45 0.81 1.63 1.85 1.22 0.87 0.68 2.24 0.60
12 4.47 5.54 4.75 3.21 2.17 2.66 3.76 1.61 1.40 1.51 2.86 0.74 0.63 1.08 1.40 2.52 0.61
13 4.91 5.80 4.78 3.68 2.25 2.61 3.55 2.00 1.54 1.29 2.48 1.04 0.66 0.83 0.96 2.56 0.64
14 5.24 5.76 4.58 3.85 2.28 2.44 3.28 2.26 1.59 1.11 2.12 1.38 0.83 0.73 0.73 2.54 0.65
15 5.31 5.82 4.59 4.26 2.39 2.43 3.20 2.77 1.86 1.16 2.16 1.84 1.15 0.89 0.68 2.70 0.60
avg 3.57 3.95 3.23 2.85 1.57 1.68 2.56 2.17 1.44 1.25 2.40 1.90 1.62 1.57 1.56
cov 0.34 0.37 0.35 0.25 0.32 0.38 0.27 0.29 0.30 0.46 0.32 0.54 0.70 0.69 0.68

(c) Artificial Neural Networks Identification (Non-parametric)
Data Data No. (w.r.t. Same Identified C and n)
No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg cov
1 0.31 0.48 0.54 2.49 0.47 0.57 0.67 2.82 1.13 0.86 0.79 1.37 2.39 1.23 1.57 1.18 0.69
2 0.97 0.28 0.29 5.57 0.73 0.73 0.57 5.65 1.96 1.34 1.01 2.79 4.01 1.78 2.40 2.01 0.89
3 0.89 0.39 0.27 6.54 0.85 0.97 0.43 7.19 2.00 1.29 1.03 3.32 4.25 1.73 2.42 2.24 0.98
4 0.47 0.70 0.71 0.39 0.39 0.51 1.10 0.52 0.55 1.02 0.84 0.97 1.20 1.13 1.67 0.81 0.46
5 0.54 0.55 0.40 1.47 0.26 0.41 0.50 1.94 0.52 0.46 0.44 0.96 1.25 0.53 0.66 0.73 0.64
6 0.84 0.48 0.36 2.46 0.40 0.24 0.37 3.29 0.77 0.40 0.38 1.43 1.92 0.64 0.81 0.99 0.91
7 0.98 0.37 0.41 6.26 0.72 0.78 0.19 7.40 1.43 1.17 0.72 2.89 3.48 1.29 1.50 1.97 1.11
8 0.52 0.99 0.51 0.44 0.35 0.43 1.19 0.22 0.32 1.33 0.71 0.48 0.71 0.88 1.54 0.71 0.56
9 0.49 0.73 0.45 0.58 0.32 0.42 0.75 0.56 0.27 0.74 0.45 0.66 0.57 0.42 0.72 0.54 0.30
10 0.83 0.56 0.43 2.42 0.46 0.40 0.42 3.28 0.92 0.31 0.44 1.44 2.02 0.78 0.78 1.03 0.85
11 1.01 0.64 0.55 2.05 0.43 0.33 0.43 2.86 0.77 0.47 0.29 1.28 1.51 0.46 0.50 0.91 0.81
12 0.51 1.49 0.67 1.70 0.57 0.75 1.18 0.66 0.43 1.76 0.63 0.20 0.30 0.42 1.39 0.84 0.62
13 0.50 1.28 0.82 1.43 0.48 0.67 0.91 0.92 0.45 1.37 0.41 0.41 0.19 0.29 0.75 0.73 0.53
14 0.68 0.94 0.61 1.75 0.37 0.39 0.62 2.13 0.48 0.57 0.30 1.00 0.70 0.17 0.31 0.74 0.74
15 1.00 0.83 0.68 2.08 0.51 0.44 0.52 2.03 0.79 0.53 0.28 1.14 1.02 0.33 0.20 0.83 0.69
avg 0.70 0.71 0.51 2.51 0.49 0.54 0.66 2.77 0.85 0.91 0.58 1.36 1.70 0.81 1.15
cov 0.34 0.48 0.31 1.26 0.35 0.37 0.47 0.84 0.65 0.50 0.45 0.69 0.77 0.64 0.61
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Figure 3.5: The normalized mean square error (NMSE) for different Chebyshev polynomial
orders for the data set UCB1 15 6. The LHS-figure shows the NMSE in semi-log scale. The
RHS-table shows the NMSE values in the figure.

the accuracy of the identification results is negligible with NMSE of 0.34% for 5 ≤ n ≤ 9.

Therefore, the Chebyshev order n = 5 was repeatedly used for all analyzed data sets.

The RFM-identification was performed for all test cases. A sample result of the RFM-

identification is shown in Figures 3.4 (b) and (e). The mean and standard deviation of the NMSE

are (1.16±0.41)%, and the NMSE’s for all test cases are summarized in the gray cells in Table 3.4

(b).

The normalized Chebyshev coefficients were determined for all test cases (Table 3.5). The

coefficients associated with the first order damping, the third order damping, and the first order

stiffness are the most dominant terms in the RFM-identification, and the other terms are either

negligible or cancel each other out. The means and standard deviations of the dominant Cheby-

shev coefficients are (716.3± 53.5) kN for the first order damping, (−45.05± 4.801) kN for the

third order damping, and (88.29 ± 38.90) kN for the first order stiffness. A sample normalized

Chebyshev coefficients is illustrated in Figure 3.6 (a).

The de-normalized power series coefficients were also calculated using the de Moivre’s The-

orem (Table 3.5). The means and the standard deviations of the power series coefficients are
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(a) normalized Chebyshev coefficients (b) de-normalized power series coefficients

Figure 3.6: An example of normalized Chebyshev coefficients (C̄ij) and de-normalized power
series coefficients (aij) for the tested viscous damper (UCB1 15 6).

(1.782 ± 0.234) kN sec/mm for the first order damping, (4.047 ± 2.822) kN sec3/mm3 for the

third order damping, and (10.72± 5.641) kN/mm for the first order stiffness. Unlike the Cheby-

shev polynomial expansion, the orthogonality property is not valid among the power series terms.

A sample de-normalized power series coefficients is shown in Figure 3.6 (b).

Validation

The RFM-identification results were validated using the data sets, which had not been used in

the identification phase. A total of 196 (=14×14) validation processes were performed, and the

normalized mean-square errors between the measured and estimated forces are summarized in

Table 3.4 (b). In the table, the values in one row are the validation errors with respect to one

data set, while the values in one column are the validation errors with respect to the same iden-

tified normalized Chebyshev coefficients. The means and standard deviations of the averaged
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Table 3.5: Normalized Chebyshev coefficients (C̄ij) and de-normalized power series coefficients
(aij) of the tested viscous damper for the restoring force method (RFM).

No Name of data set C̄01 C̄03 C̄10 a01 a03(10−6) a10(10−1)

1 UCB1 10 4 630.3 −37.89 184.0 2.186 −0.403 25.32
2 UCB1 10 5 621.5 −39.36 85.99 2.000 7.960 9.887
3 UCB1 10 6 669.8 −44.62 95.09 2.310 8.881 9.364
4 UCB1 12 4 669.9 −39.51 122.0 1.716 5.318 17.30
5 UCB1 12 5 707.1 −45.69 81.75 1.810 8.574 9.454
6 UCB1 12 6 683.3 −47.97 40.93 1.865 1.973 5.946
7 UCB1 12 7 684.9 −46.83 99.65 1.884 2.292 7.423
8 UCB1 15 4 739.4 −41.75 120.2 1.651 5.166 17.82
9 UCB1 15 5 727.5 −44.27 63.87 1.578 4.428 8.669
10 UCB1 15 6 761.8 −50.33 58.64 1.710 5.586 6.242
11 UCB1 15 7 756.6 −52.88 128.5 1.755 3.442 9.914
12 UCB1 17 4 767.7 −39.19 88.35 1.610 1.492 14.46
13 UCB1 17 5 770.2 −45.11 63.35 1.538 1.715 7.784
14 UCB1 17 6 781.7 −48.11 53.22 1.564 2.431 6.090
15 UCB1 17 7 772.3 −52.24 38.75 1.554 1.854 5.074

avg 716.3 -45.05 88.29 1.782 4.047 10.72
cov 0.075 0.107 0.434 0.131 0.697 0.526

validation errors vary from (1.44±0.43)% to (3.95±1.45)% for the same identified normalized

Chebyshev coefficient set, and from (1.74± 0.77)% to (2.86± 1.01)% for the same data set.

3.4.3 Nonparametric Identification Using Artificial Neural Networks

Training

The artificial neural network (ANN) identification was performed with the measured viscous

damper response. Three-layer feedforward neural networks were constructed with 15 nodes

in the first layer and 10 nodes in the second layer. The third layer was used as the output

layer. The adaptive random search method was employed to train the neural networks with 10

global searches and 500 local searches. Three identical training processes were performed with

randomly generated initial weights, and the best identification result (i.e., the result with minimal

NMSE) was chosen.
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A sample ANN-identification result is illustrated in Figures 3.4 (c) and (f). The mean and

standard deviation of the ANN-identification are (0.25 ± 0.06)%. The NMSE of the ANN-

identification for all test cases are summarized in the grayed cells in Table 3.4 (c).

Validation

The trained neural networks using the ANN identification method were validated with the data

sets, which had not been used in the training phase. A total of 196 validation processes were

performed, and the normalized mean-square errors (NMSE) are summarized in Table 3.4 (c). In

the table, the values in one row are the validation error for one data set, and the values in one

column are the validation errors for the same trained neural networks. The means and standard

deviations of the NMSE vary from (0.49±0.17)% to (2.77±2.33)% for the same trained neural

networks, and from (0.54± 0.16)% to (2.24± 2.19)% for the same data set.

3.5 Discussion

3.5.1 Constitutive Law

The frequency-dependent damping properties of the tested viscous damper were studied to inves-

tigate the dependence of the estimated peak damper force with the corresponding displacement

and velocity range. Figure 3.7 shows that the relationship between the peak force and the peak

velocity follows the constitutive law at all tested peak displacements. The identified peak forces

are also plotted in the table. The peak forces identified with the SDM (©) are less than the

measured peak forces by 3.0% on average. The peak forces identified with the RFM (�) are

less than the measured peak forces by 5.1% on average, and the peak forces identified with the
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(a) ±101.6 mm (4.0 in) (b) ±127.0 mm (5.0 in) (c) ±152.4 mm (6.0 in) (d) ±177.8 mm (7.0 in)

Figure 3.7: Relationship of peak velocities and peak forces at different peak displacements. (©:
measured,4: SDM, �: RFM, ∗: ANN). For each peak displacement level (i.e., (a), (b), (c), and
(d)), the x-axis shows the peak velocity and the y-axis shows the force.

ANN (∗) are less than the measured peak forces by an average of 4.8%. Consequently, the peak

force of the tested damper can be identified successfully by using all investigated identification

methods.

3.5.2 Fidelity of Identified Models

Parametric Simplified Design Model

The parametric SDM-identification results show that the hysteresis in the velocity-force phase is

not modeled accurately (Figure 3.4 (d)), while the damping energy can be modeled accurately in

the displacement-force phase plot (Figure 3.4 (a)).

Table 3.3 shows that the identified damping constant (C) and exponent (n) are reasonably

close to the design values; the mean of the identified damping constant is 74.37 kN·secn/mmn,

which is about 86% of the design value 86.03 kN·secn/mmn; the mean of the exponent is 0.39,

which is about 112% of the design value 0.35.
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Figure 3.8: Normalized mean-square errors between the measured and the identified forces with
parametric simplified design model (SDM), and non-parametric restoring force method (RFM)
and artificial neural networks (ANN). In the figure, the data set for x = 254.0 mm/sec and ẋ =
177.8 mm is missing.

Figure 3.8 (a) shows that the NMSE increases as the peak velocity or the peak displacement

increases. According to Soong and Dargush (1997), the simplified design model is more appro-

priate for a lower excitation frequency because of the smaller contribution of relaxation time in

the Maxwell equation. Therefore, the NMSE of the SDM-identification increases when the peak

velocity increases. In addition, using the simplified design model, because the damper response

is modeled as a function of velocity only, the displacement-related nonlinearity of the damper

cannot be modeled properly.

Non-parametric Restoring Force Method

In the non-parametric restoring force method (RFM) identification, the response of the damper is

modeled relatively accurately (Figures 3.4 (b) and (e)). The NMSE of the RFM-identification is

2.22%, which is less than the 3.75% NMSE of the SDM-identification. Thus, the tested damper

is modeled more accurately with the RFM than the SDM. In contrast to the SDM-identification

case, the NMSE of the RFM-identification becomes smaller with larger peak velocity (Figure 3.8

(b)). That is, the accuracy of the RFM-identification increases, when the viscous damper is
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identified using data sets with higher frequency excitations. This result implies that, in the

RFM-identification, the tested viscous damper is modeled more accurately with a high frequency

excitation.

The normalized Chebyshev coefficients show that the first order damping, third order damp-

ing and the first order stiffness terms are the dominant terms in the RFM-identification. The

identified force components corresponding to these dominant terms are illustrated in Figure 3.9.

Figure 3.9 (a) shows that the first order damping coefficient (C̄01) is the most important one in

modeling the damping energy. Figure 3.9 (d) shows that the “effective” damping constant of the

viscous damper is modeled by the C̄01. Therefore, the damping characteristics of the viscous

damper are mainly governed by the first order damping coefficient.

The plot in Figure 3.9 (e) clearly shows the nonlinear characteristic of the viscous damper.

As summarized in Table 3.5, the third order Chebyshev coefficient (C̄03) has a negative value

for all test cases. The negative value is due to the “softening” of the damping force (α < 1).

Had the tested viscous damper had linear or “hardening” characteristics, the third order damping

coefficient would have been close to zero, or have taken a positive.

Figure 3.9 (c) shows that the contribution of the C̄10 to the total damping energy is negligible,

as indicated by the slight slope. However, Figure 3.9 (e) reveals that the first order stiffness

coefficient is important to model the damper hysteresis in the velocity-force phase plot.

Figure 3.10 shows the C̄01 and C̄03 coefficients at different peak velocities and peak dis-

placements. The C̄01 increases by 20.8% on average, as the peak velocity increases (Figure 3.10

(a)), while the C̄01 remains constant for different displacements (Figure 3.10 (b)). These results

imply that the nonlinearity of the first order damping depends on the peak velocity, rather than
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Figure 3.9: Sample phase plots for the first order damping, the third order damping and the
first order stiffness terms of the identified force using the restoring force method. The solid line
represents the measured (total) force and the dashed line represents the termwise identified force.
The first row shows the relationship between displacement and force, and the second row shows
the relationship between velocity and force.

the peak displacement. As was previously shown, in the RFM-identification, the “effective”

damping constant of the damper is mainly modeled by the first order damping term. Conse-

quently, these results also imply that the “effective” damping constant varies with different peak

velocities, rather than with different peak displacements.

The C̄03 decreases about 20.7% on average as the peak displacement increases (Figure 3.10

(d)), while the C̄03 remains constant at different peak velocities (Figure 3.10 (c)). Therefore,

unlike the C̄01, the nonlinearity of the third order damping depends on peak displacement, rather

than peak velocity. Previously, it was also shown that the softening of the damper is modeled
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Figure 3.10: The normalized Chebyshev coefficients of the first and third order damping at dif-
ferent peak velocities and peak displacement, respectively. (a) and (c) show the relationship
between peak velocity and the normalized Chebyshev coefficient for different peak displace-
ments. (b) and (d) show the relationship between peak displacement and the normalized Cheby-
shev coefficient for different peak velocities.

with the C̄03 in the RFM-identification. Therefore, the decrease of the C̄03 at a larger peak

displacement would imply that the magnitude of the damper’s softening increases as the peak

displacement increases.

Non-parametric Artificial Neural Networks

In the non-parametric artificial neural networks (ANN) identification, the response of the tested

viscous damper is modeled fairly accurately (Figures 3.4 (c) and (f)). With the given identifi-

cation parameters, the NMSE of the ANN-identification is the smallest among the investigated

identification methods. In the training phase, the averaged NMSE of the ANN identification is
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0.23%, which is approximately five times less than the averaged NMSE of the RFM in identifi-

cation phase, 1.16%. The ratio of the NMSE in the validation phase to the NMSE in the training

phase (NNMSE) of the ANN is not as that of the RFM. The averaged NNMSE of the ANN is

4.45, and the averaged NNMSE of the RFM is 2.20. This result shows that the relative accuracy

of the ANN in the validation phase is less than the corresponding accuracy of the RFM.

Computation Time

A fair comparison of computation times of the investigated methods is difficult, because the

computation time is a complicated function of many parameters used in each method. However,

it was noticed that the optimization-based methods (the SDM and the ANN) require a longer

computation time than the quadrature-based method (the RFM) due to the fundamental differ-

ences in the identification methods. In general, the optimization-based methods would require

more time, when the error surface is more complex.

3.5.3 Identification Using the Data Sets with Concatenated Sinusoidal Excitation

Using a single-frequency sinusoidal excitation, the dynamic response of a linear system can

be fully identified. However, for a nonlinear system, such as the nonlinear viscous damper

under discussion, the dynamic characteristics, in general, can not be accurately identified with

a single-frequency sinusoidal excitation, since the dynamic response depends on the amplitude

and frequency of the excitation. On the other hand, for a full-scale viscous damper, using a

broadband random excitation (which is much better from the identification point of view) could

generate an excessive amount of heat for an extended testing period.
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An alternative way to identify a nonlinear viscous damper is to use combined data sets of

the damper responses for multiple single-frequency sinusoidal excitation. The combined data set

can be obtained by concatenating multiple sets of damper response with different frequency and

amplitude characteristics. Because the time sequential order of the combined data set should not

affect the identification results, the combined data are randomly shuffled in time. Identification

approaches that use error functions based on the solution of the governing differential equations

require sequential ordering in time of the measured data and simulated ones. However, if “static”

data comparison is used (i.e., by directly using the assumed model form), then the elements of

the reference data set can be arbitrarily shuffled in time.

The influence on the identification results when using the time-shuffled concatenated data

was studied. A concatenated data set was prepared by adding 14 data sets (among a total of

15 data sets) in series, and the time-order of the concatenated data set was randomly shuffled.

The RFM- and ANN-identifications were performed using the concatenated data set. The RFM-

and ANN-identification was validated with the data set, which had not been used in the iden-

tification (or training) phase. The same procedures were repeated to validate the RFM- and

ANN-identification results using all 15 tested data sets. A sample validation result for the RFM

and the ANN is shown in Figure 3.11.

In the RFM, the mean and standard deviation of the averaged NMSE is (1.39 ± 0.28)%

for the identification and (2.46± 1.42)% for the validation. In the ANN, the mean and standard

deviation of NMSE is (0.43±0.06)% for the training and (0.64±0.23)% for the validation. In the

identification (or training) phase, the averaged NMSE with concatenated data set is greater than

that with the single data set: for the RFM, (1.16±0.41)% with single data set and (1.39±0.28)%
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(a) Restoring force method (RFM)
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(b) Artificial neural networks (ANN)

Figure 3.11: The “static” validation results of the RFM-identification (a) and ANN-identification
(b) procedures for the data set UCB1 15 6 randomly shuffled in its sequential order. The solid
line is for the measured force, and the dashed line is for the identified force.

with the concatenated data set, and for the ANN, (0.25±0.06)% with single data set and (0.43±

0.06)% with the combined data sets. In the validation phase, however, the averaged NMSE with

the concatenated data set for the ANN is less than that with single data set, while the averaged

NMSE’s with single and concatenated data sets for the RFM are approximately the same: for the

RFM, (2.22 ± 0.85)% with single data set and (2.46 ± 1.42)% with concatenated data set, and

for the ANN, (1.08±0.72)% with single data set and (0.64±0.23)% with concatenated data set.

The averaged NMSEs with single and concatenated data sets are summarized in Table 3.6. Note

that the accuracy of the ANN identification model to generalize; increases with the combined

data set, while the accuracy of the RFM identification is not improved with the concatenated data

set.
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Table 3.6: The averaged normalized mean-square error of the restoring force method (RFM)
and the artificial neural networks (ANN) identifications using a single and concatenated damper
response data sets. The table shows the mean and standard deviation of the averaged normalized
mean-square error.

Restoring force method Artificial neural networks

Single Concat. Single Concat.Phase
mean stdv mean stdv mean stdv mean stdv

Identification 1.16 0.41 1.39 0.28 0.25 0.06 0.43 0.06
Validation 2.22 0.85 2.46 1.42 1.08 0.72 0.64 0.23

3.5.4 Significance of Inertia Effects

The quasi-static approximation in Equation 3.6 is valid when the inertia effect is negligible in the

dynamic response of the damper. The peak velocity of the excitation used in this study is within

the range of 254.0 mm/s to 444.5 mm/s (10.0 in/s to 17.5 in/s), which is greater than the typical

excitation velocity in a quasi-static testing, 3 mm/s to 5 mm/s (0.12 in/s to 0.20 in/s). Therefore,

the significance of the inertia effect to the damper response should be evaluated.

The significance of the inertia effects was assessed, using the SDM-identification method;

a formal parametric identification procedure was performed in which the governing differential

equation of motion was directly solved through the use of conventional time-marching tech-

niques. The mass term was explicitly included in the governing equations, and the damper

restoring force was modeled by the expression of Equation 3.1. Table 3.7 shows the significance

of the inertia effects at different peak velocities and peak displacements. For all 15 data sets, the

variability of the identified mass around the mean value of 735.6 kg is 31.9%. It is important

to note that the “effective” mass in the actual tests includes not only the weight of the moving

internal components of the damper and a portion of the squeezed fluid, but also a part of the
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Table 3.7: Estimated significance of inertia effects in the SDM-identification. In the table, ||f̂ || is
the norm of the SDM-identified force, ||f̂ẍ|| is the norm of the inertia term of the SDM-identified
force, and ||f || is the norm of the measured force.

No Name of data set Mass (kg) ||f̂ẍ||/||f̂ || (%) ||f̂ẍ||/||f || (%)

1 UCB1 10 4 567.7 0.0504 0.0524
2 UCB1 10 5 1199.6 0.0841 0.0902
3 UCB1 10 6 1208.4 0.0685 0.0730
4 UCB1 12 4 685.9 0.0835 0.0877
5 UCB1 12 5 777.9 0.0763 0.0811
6 UCB1 12 6 869.8 0.0704 0.0746
7 UCB1 12 7 974.9 0.0698 0.0743
8 UCB1 15 4 567.7 0.0951 0.0990
9 UCB1 15 5 594.0 0.0786 0.0819

10 UCB1 15 6 785.2 0.0852 0.0942
11 UCB1 15 7 645.1 0.0611 0.0642
12 UCB1 17 4 494.7 0.1060 0.1104
13 UCB1 17 5 522.5 0.0895 0.0930
14 UCB1 17 6 519.5 0.0759 0.0784
15 UCB1 17 7 621.7 0.0776 0.0810

avg 735.6 0.0781 0.0824
cov 0.319 0.17 0.17

external hardware attachments utilized in performing the test. Once the “effective” moving mass

was identified, the significance of the inertia term was measured as

||f̂ẍ||
||f̂ ||

× 100(%),
||f̂ẍ||
||f ||

× 100(%) (3.11)

where ||f̂ẍ|| is the norm of the inertia term of the identified force, ||f̂ || is the norm of the identified

force, and ||f || is the norm of the measured force. The significance of the inertia effects is also

summarized in Table 3.11 for all test cases. The mean of the ||f̂ẍ||/||f̂ || is 0.0781% with the

coefficient of variance of 0.17. The mean of ||f̂ẍ||/||f || is 0.0824% with the coefficient of

variance of 0.17. Therefore, the induced inertia forces are negligible, confirming the earlier

conclusion to ignore inertia terms.
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3.6 Summary and Conclusions

The goal of this study was to investigate the applicability of a set of parametric and non-

parametric identification methods to measurements obtained from a full-scale nonlinear viscous

damper. Such models can be used for structural health monitoring purposes. Two non-parametric

identification methods, the restoring force method and the artificial neural networks, were stud-

ied and the results were compared with the parametric simplified design model of the full-scale

viscous damper. The nonlinear full-scale viscous damper used in this study was successfully

identified with the simplified parametric model, as well as with the restoring force method and

the artificial neural networks. The identification results show that the normalized Chebyshev

coefficients can be used to interpret the nature and relative contribution of the linear and non-

linear characteristics of the viscous damper. A comparison of the investigated identification

methods is shown in Table 3.8.
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Table 3.8: A comparison of investigated system identification methods for applications in struc-
tural health monitoring.

Identification Methods Advantages Disadvantages

- Most accurate if the exact system model - A priori knowledge of the system is required.
Simplified Model is known. - The identified parameters become significantly
(parametric) - Direct physical interpretation is biased when the initial model is incorrect.

possible using the identified
parameters.

- No a priori knowledge of the system is - The identification yields an approximating
required. model.

- The same model can be used when the - Only limited physical interpretation of
Restoring Force Method system changes into different identification results is possible.
(non-parametric) nonlinear classes.

- It is applicable to a wide range of
nonlinearities.

- Both Chebyshev and power series
coefficients can be identified.

- Physical interpretation of some of the
identification results is possible with
identified coefficients.

- No a priori knowledge of the system is - Change detection is possible, but physical
required. interpretation of the detected changes are not

Artificial Neural Networks - It is applicable to a wide range of generally possible.
(non-parametric) nonlinearities.

- Change detection of the system is possible
through monitoring the regression
error of the trained networks.
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Chapter 4

Data-Driven Methodologies for Change

Detection in Large-Scale Nonlinear Dampers

with Noisy Measurements

4.1 Introduction

4.1.1 Motivation

Large-scale orifice viscous dampers are frequently used in modern civil structures to mitigate

seismic or wind-induced vibration. Among various types of dampers, orifice viscous dampers

(hereinafter viscous dampers) provide excellent efficiency of energy dissipation — the orifice

damper employs small orifices on its piston head, so that the silicon fluid sealed inside the

damper chamber is forced to pass through the orifices when the damper piston reciprocates. Con-

sequently, the dynamic properties of an orifice viscous damper largely depend on the geometric

characteristics of the orifice design. Soong and Constantinou (1994) and Soong and Dargush

(1997) provide detailed descriptions of orifice viscous dampers.

Due to their importance in applications involving civil structures, many government agen-

cies require a series of quality assurance tests for large-scale dampers before the dampers are
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installed in actual civil structures (HITEC, 1996, 1998a,b, 1999). After installation, the condi-

tion assessment of the installed dampers is commonly performed in two ways: visual inspection,

and monitoring the internal pressure of the damper’s silicon fluid. First, visual inspection is

usually conducted by trained inspectors, searching for noticeable damage on the damper sur-

face, often evident by fluid leakage. The second method employs a pressure gauge to measure

the internal pressure levels of the dampers. Thus, with a pressure change, the inspectors can

presume that the damper has changed during the operation. If the pressure change were signifi-

cant, the damper would be removed from the structure and delivered to testing facilities to find

possible causes of the change. However, none of the current practices are adequate for reliable

condition assessment. The visual inspection is often subjective. Although pressure monitoring is

obviously a more advanced method than visual inspection, the direct relationships between the

pressure level and engineering characteristics of the nonlinear dampers are difficult to identify.

Moreover, no current practices of damper monitoring are appropriate when a number of dampers

are employed in a structure. For example, after a major seismic retrofit of the west spans of the

San Francisco Oakland Bay Bridge in 2004, more than 100 large-scale viscous dampers are

employed. In this case, more systematic and efficient condition assessment methodologies are

required.

As an alternative approach for damper condition assessment, a vibration-based structural

health monitoring technique is proposed in this study. Yun et al. (2007) demonstrated that

the non-parametric Restoring Force Method (RFM) is a very promising tool for the condition

assessment of large-scale nonlinear viscous dampers. Comparing one parametric (the simpli-

fied damper design model) and two non-parametric identification methods (the Restoring Force
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Method and Artificial Neural Networks), they demonstrated that the RFM has significant advan-

tages than other methods because (1) no a priori knowledge of the system is needed, (2) the

same non-parametric model is applicable to a wide-range of nonlinearities, and (3) the physical

interpretation of the identification results is possible, which is generally impossible with other

non-parametric identification methods, such as Artificial Neural Networks.

Recent progress in sensing and internet-based data communication technologies allow the

development of real-time remote monitoring systems for civil infrastructure system. Yun et al.

(2007) have developed a reliable real-time web-based continuous bridge monitoring system that

has been applied to a critical bridge (the Vincent Thomas Bridge) in the Los Angeles, Califor-

nia, metropolitan region to perform forensic studies of various earthquakes, as well as a recent

ship-bridge collision. Therefore, by combining the technology of a web-based monitoring sys-

tem with the Restoring Force Method, a feasible methodology can be developed for a real-time

remote condition assessment of large-scale nonlinear viscous dampers.

In the development of the monitoring system, the following practical and challenging prob-

lems must be considered: First, the effects of measurement noise on the results of change detec-

tion must be considered, since sensor readings can be more significantly affected by noise in

the in-situ measurements than in laboratory testing, due to various sources of noise. In many

cases of in-situ monitoring, only the displacement or acceleration is measured, depending on

the measurement feasibility, and then other necessary response states are numerically obtained

through digital signal processing techniques using the measured response. In such cases, the

effects of measurement noise are not simply additive, and propagate throughout the response

states, which are numerically obtained from noisy measurements. Consequently, the developed
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methodology should be able to deal with those complicated noise effects. Second, the results of

the change detection will be affected by the measurement uncertainty. Therefore, the uncertainty

of the detected change due to the measurement noise must be quantified for reliable condition

assessment. However, the uncertainty quantification requires multiple tests, which is not usu-

ally possible for the in-situ monitoring due to lack of control of excitation sources. Even if one

had the control of the excitation, performing multiple tests with full-scale viscous dampers is

extremely difficult because of an enormous amount of heat converted from the dissipated energy.

Having the proposed condition assessment methodology will provide contributions in the

following three ways:

1. Enabling the interpretation of physical significance of detected changes, one can quantify

the significance of the changes at the full-structure level as well as at the component level.

This attribute remains even when the dampers’ evolving properties change into different

classes of nonlinearity, due to various types of deterioration.

2. With more reliable condition assessment methodologies, one can minimize unnecessary

removal of undamaged dampers. Damper removal from civil structures is time-consuming

and expensive due to their large physical size.

3. Since the methodology proposed in this study is data-driven and model independent, the

same approach is applicable to other types of nonlinear components, such as different

types of energy dissipating devices, base isolators, and nonlinear joints.
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4.1.2 Objective

The objective of this study is to develop a data-driven methodology for change detection in

large-scale nonlinear viscous dampers. A joint study was performed between the University of

Southern California (USC), the University of California at San Diego (UCSD) and the University

of California at Berkeley (UCB). Three different large-scale nonlinear viscous dampers were

tested at UCB and UCSD. The damper experiments were designed to introduce different types

of nonlinearity in a systematic way. Three large-scale viscous dampers used in the experimental

study involved different nonlinear features. In the experiments, two different excitation types

were tested, including monotonic sinusoidal and broadband random excitations.

Using the experimental results, an analytical study was performed at USC. A data-driven

change detection methodology for the tested large-scale dampers was investigated using the

non-parametric Restoring Force Method. In order to study the effects of measurement uncer-

tainty, the damper data were intentionally polluted with random noise. As a statistical data

recycling technique, the Bootstrap method was investigated for uncertainty quantification, even

with insufficient data for meaningful statistical inferences. Using the developed change detection

methodology, the aim was to achieve the following:

1. Ability to detect even small (genuine) changes in the nonlinear dampers;

2. Ability to interpret the physical meaning of detected changes; and

3. Ability to quantify the uncertainty associated with the detected changes.
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4.1.3 Scope

This chapter is organized as follows: the experimental studies using three large-scale nonlinear

dampers are discussed in Section 4.2; the data-driven identification approach using the Restoring

Force Method is discussed in Section 4.3; the uncertainty estimation and statistical change detec-

tion of the large-scale viscous dampers are discussed in Section 4.4; and the Bootstrap method

as a data recycling technique and its uncertainty estimation are discussed in Section 4.5.

4.2 Experimental Studies

4.2.1 Test Apparatus

Three different large-scale nonlinear viscous dampers were tested at two different test facilities:

the 66.7 kN (15 kip) viscous damper was tested at the Earthquake Engineering Research Center

(EERC) of the University of California, Berkeley (Figure 4.1 (a)), and the 2001.6 kN (450 kip)

and 2891.3 kN (650 kip) viscous dampers were tested at the Seismic Response Modification

Device (SRMD) facility of the University of California, San Diego (Figure 4.1 (b)).

The 66.7 kN damper with the maximum velocity of 431.8 mm/sec (Damper A) has the

smallest size among the tested dampers in this study. The damper was designed using a simpli-

fied Maxwell model (Constantinou and Symans, 1993; Constantinou et al., 1993; Den Hartog,

1956; Makris and Constantinou, 1991; Makris et al., 1993) as

r(x, ẋ) = C sgn(ẋ)|ẋ|n (4.1)
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(a) Test at the University of (b) Test at the University of
California, Berkeley (UCB) California, San Diego (UCSD)

Figure 4.1: Test facilities for large-scale viscous dampers at the University of California, Berke-
ley(UCB), and the University of California, San Diego (UCSD) used in this study.

where r is the restoring force, C is the damping constant, and n is the nonlinear damping expo-

nent. This simplified design model is valid when the excitation frequency is low. In this case,

the inertia term of the damper response becomes insignificant, and consequently, f(t) ≈ r(x, ẋ),

where f is the measured force. Yun et al. (2007) demonstrated that the inertia term of the large-

scale damper response would be negligible at a low velocity. The design parameters of Damper

A are C = 1.12 kN · secn/mmn and n = 1.0, which makes the damper response approxi-

mately linear. The 2001.6 kN damper at the maximum velocity of 215.9 cm/sec (Damper B) was

designed with the parametersC = 398.93 kN·secn/cmn and n = 0.3. The 2891.3 kN damper at

the maximum velocity of 40.6 cm/sec (Damper C) was designed withC = 957.44 kN·secn/cmn

and n = 0.3. Hence, the restoring force of Dampers B and C will be “softening” with n < 1.0.

4.2.2 Test Protocols and Preliminary Data Processing

Test with Damper A

Damper A was subjected to broadband random excitation with a lowpass cutoff frequency of 5.0
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Hz. During the experiment, the acceleration (ẍ) and force (f ) of the damper were measured with

a sampling frequency of 1 kHz. The measured force of Damper A under broadband random exci-

tation is shown in Figure 4.2 (a). Once ẍ and f were measured, preliminary data processing was

performed to obtain the displacement (x) and velocity (ẋ) required for the damper identification.

The data processing was performed in accordance with the following procedures:

1. The measured ẍ and f were de-trended and zero-phase filtered with the cutoff frequencies

of 0.1 ∼ 10.0 Hz, and a cosine-tapered window was applied to the time-histories of ẍ and

r.

2. The filtered ẍ was integrated to obtain the corresponding velocity ẋ. The same filter and

time-history window were applied to ẋ.

3. The processed ẋ was numerically integrated to obtain the corresponding displacement x.

The same filter and time-history window were also applied to x.

The test protocols, preliminary data processing and phase plots of the resulting Damper A

response are summarized in Table 4.1.

Test with Dampers B and C

Dampers B and C were subjected to monotonic sinusoidal excitation with an excitation frequency

of 0.2 Hz for both dampers. Unlike Damper A, x and f (but not the ẍ) were measured during

the experiments. The sampling frequency of the measurement was 100 Hz. Figures 4.2 (b) and

(c) show the measured force of Dampers B and C, respectively. In the figures, notice that the

force amplitude of Damper B is constant, while that of Damper C decreases. Both dampers were

subjected to the sinusoidal excitation with a constant frequency and constant peak amplitudes

over time.
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(a) Damper A (close to linear and time-invariant)
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(b) Damper B (damping “softening” and time-invariant)
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(c) Damper C (damping “softening” and time-varying)

Figure 4.2: Time histories of the measured forces for different large-scale nonlinear viscous
dampers with displacement-controlled excitations. (a) The force of Damper A was measured
under broadband random excitation. (b) The force of Damper B was measured under monotonic
sinusoidal excitation with a constant frequency of 0.2 Hz and constant peak amplitudes of±50.8
mm. (c) The force of Damper C was measured under monotonic sinusoidal excitation with a
constant frequency of 0.2 Hz and constant peak amplitudes of ±25.4 mm.

Once x and f are measured for Dampers B and C, preliminary data processing was per-

formed to obtain the velocity (ẋ) using the following procedures:

1. The measured x and f were de-trended and zero-phase filtered with the cutoff frequencies

of 0.05 ∼ 5.0 Hz. Then, a cosine-tapered window was applied to the time histories of the

filtered response, x and f .
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2. The displacement x was differentiated to obtain the corresponding ẋ. The same filter and

time-history window were applied to the obtained ẋ.

The test protocols, preliminary data processing and phase plots of Dampers B and C are summa-

rized in Table 4.1.

4.3 Non-Parametric Identification

4.3.1 Overview of Restoring Force Method

The Restoring Force Method (RFM) is a non-parametric identification method for nonlinear sys-

tems, using a series expansion of two-dimensional Chebyshev polynomials (Masri and Caughey,

1979). Using the RFM, the restoring force of a single-degree-of-freedom (SDOF) nonlinear

dynamic system can be modeled as

r(x, ẋ) =
P∑

i=0

Q∑
j=0

C̄ijTi(x̄)Tj(¯̇x) (4.2)

where r(x, ẋ) is the restoring force of the nonlinear dynamic system, C̄ij is the normalized

Chebyshev coefficient, Ti(•) is the ith order Chebyshev polynomial, P and Q are the high-

est orders of the Chebyshev polynomial of the normalized displacement (x̄) and velocity (¯̇x),

respectively, within the range of [-1, 1].

Once the C̄ij are identified, the C̄ij can be converted into the equivalent power series coeffi-

cients using the following relationship (Mason and Handscomb, 2003):

T0(y) = 1, T1(y) = y, T2(y) = 2y2 − 1, . . . , Tk+1(y) = 2yTk(y)− Tk−1(y), . . . (4.3)
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Table 4.1: Summary of test protocols and preliminary data processing parameters for the three
large-scale nonlinear viscous dampers used in this study.

Parameters Damper A Damper B Damper C

Nominal output force
66.7 (15) 2001.6 (450) 2891.3 (650)

kN (kips)
Max. velocity rating

43.2 (17) 215.9 (85) 40.6 (16)
cm/s (ips)

Designed parameters
C = 1.12, n = 1.0 C = 398.93, n = 0.3 C = 957.44, n = 0.3for damping, kN (sec/cm)n

Excitation type Broadband random Monotonic sinusoidal Monotonic sinusoidal

Excitation frequency ≤ 5.0 Hz 0.2 Hz 0.2 Hz

Nonlinearity Close to linear Polynomial, hysteretic Polynomial, hysteretic

Time-invariancy Time-invariant Time-invariant Time-varying

Measured response ẍ, f x, f x, f

Performed Integration for ẋ
Data processing Double integration for x

Differentiation for ẋ Differentiation for ẋ

x vs. f
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The converted power series coefficients are called the normalized power series coefficients (āij).

With the de-normalization of x̄ and ¯̇x, the de-normalized power series coefficients (aij) can be

obtained. Using these coefficients, Equation 4.2 can be also expressed as

r(x, ẋ) =
P∑

i=0

Q∑
j=0

C̄ijTi(x̄)Tj(¯̇x) =
P∑

i=0

Q∑
j=0

āij x̄
i ¯̇xj =

P∑
i=0

Q∑
j=0

aijx
iẋj (4.4)

4.3.2 Identification of Nonlinear Viscous Dampers

It was known that the force characteristics for Dampers A and B do not change over time under

stationary displacement-controlled excitation. For example, as shown in Figure 4.2 (b), the mea-

sured force of Damper B is stationary over time under the stationary sinusoidal excitation with

a constant frequency of 0.2 Hz and constant peak amplitudes of±50.8 mm. Consequently, since

the outputs (i.e., measured force) of Dampers A and B do not depend explicitly on time, the

dampers are time-invariant systems under stationary excitation. On the other hand, as shown in

Figure 4.2 (c), the measured force of Damper C decreases over time although the sinusoidal exci-

tation has a constant frequency of 0.2 Hz and constant peak amplitudes of ±25.4 mm. Hence,

Damper C is a time-varying system since the output of Damper C depends on time under sta-

tionary excitation. For these two classes of nonlinear systems (time-invariant and time-varying),

different procedures were applied in the damper identification. Detailed identification proce-

dures for each class are described below.

Identification results of time-invariant systems

Using the time-invariant systems of Dampers A and B, the RFM identification was applied for

the entire domain of the measured time histories. In both cases, the order of the series expansion
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Figure 4.3: The identification results for Dampers A and B using the Restoring Force Method.

was five. The identification results for Dampers A and B are shown in Figure 4.3. The quality of

the RFM identification was measured with the normalized mean-square errors (NMSE) as

NMSE =
1
nσ2

f

n∑
i=1

(fi − f̂i)2 (4.5)

where n is the number of data points, f is the measured force, f̂ is the identified force, and σf

is the standard deviation of the measured force (Worden and Tomlinson, 2001). Considering

Damper A, excellent identification results were obtained with the NMSE of 0.82% as illustrated

in Figure 4.3 (a). For Damper B, “softening” hysteresis were successfully identified (Figure 4.3

(b)). However, the identification failed to accurately model the nonlinearity near the damper’s

neutral position (i.e., x ≈ 0 and ẋ ≈ 0). The NMSE for the Damper B identification was 3.0%.
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The identified RFM coefficients for Dampers A and B are summarized in Table 4.2. For the

normalized Chebyshev coefficients (C̄ij), the first order damping coefficient (C̄01) is dominant

for both Dampers A and B: 27.99 for Damper A and 257.00 for Damper B. Notice that Damper

B is designed for a larger damping capacity than Damper A (refer Table 4.1). The third order

damping coefficient of Damper B (C̄03 = −13.17) is negative because the designed damping

exponent is less than one (n = 0.3), while the C̄03 of Damper A is close to zero (C̄03 = 0.30)

because Damper A was designed for n = 1.0 (Equation 4.1). The stiffness-related coefficients

(C̄10 for the linear stiffness and C̄30 for the cubic stiffness) are relatively small compared to the

damping coefficient (C̄01) for both dampers, which indicates that the contribution of the stiffness

terms is less significant in the identification than the damping terms (i.e., C̄01 and C̄03). These

results are reasonable for viscous dampers.

The identified power series coefficients (āij and aij) also show the damper nonlinearity

without a priori knowledge of the dampers. For Damper A, the cubic damping coefficient

(ā03 = 4.21) is ignorable, compared to the linear damping (ā01 = 25.82). This result indi-

cates that the damping characteristic of Damper A is closed to linear rather than “softening”. On

the other hand, the significance of the cubic damping coefficient (ā03 = 148.20) with respect

to the linear damping coefficient (ā01 = 203.10) becomes larger for Damper B. However, since

the ā03 is still smaller than the ā01, the force of Damper B is “softening”. The identified RFM

coefficients for Dampers A and B are summarized in Table 4.2.

Identification results of time-varying system

In order to identify a time-varying nonlinear system of Damper C, the time histories of the

damper data (i.e., x, ẋ and f ) were partitioned into eight windows as illustrated in Figure 4.4.
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Table 4.2: Summary of the identified coefficients using the Restoring Force Method.

Coefficients Damper A Damper B
Damper C

mean stdv max min entire
ˆ̄C10 1.24E-2 40.27 37.59 21.01 55.79 -1.48 51.27
ˆ̄C01 27.99 257.00 516.48 64.64 625.80 436.66 526.6
ˆ̄C30 0.63 2.80 3.75 2.06 7.04 0.98 10.90
ˆ̄C03 0.30 -13.17 -26.70 3.47 -21.67 -30.63 -52.09
ˆ̄a10 -1.41 66.32 31.02 56.63 100.30 -59.67 72.60
ˆ̄a01 25.82 203.10 430.40 41.33 490.90 373.30 507.9
ˆ̄a30 -0.55 10.33 101.20 48.11 155.90 38.70 17.38
ˆ̄a03 4.21 148.20 244.66 115.71 387.80 89.29 117.0
â10 -0.19 1.33 1.33 2.37 4.18 -2.47 3.02
â01 0.27 3.12 13.17 1.24 14.92 11.38 15.37
â30 2.11E-5 7.38E-5 7.08E-3 3.38E-3 1.08E-2 2.90E-3 1.37E-3
â03 3.68E-6 5.34E-4 6.94E-3 3.37E-3 1.08E-2 2.35E-3 3.04E-3

NMSE (%) 0.82 5.03 0.50 0.09 0.66 0.39 1.92
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Figure 4.4: Partitioning the time history of the measured force of Damper C for the Restoring
Force Method identification.

The time history partition was designed to have ten cycles per window. Then, the RFM identi-

fication was performed for each time-history window. Damper C was accurately identified, and

the mean and standard deviation of the NMSE for the eight windows were 0.50% and 0.09%,

respectively. The identified normalized Chebyshev coefficients and normalized power-series

coefficients for the eight windows are illustrated in Figure 4.5. For the normalized Chebyshev

coefficients (C̄ij), the linear damping (C̄01) is dominant with the mean value of 516.48, while the
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THE NORMALIZED CHEBYSHEV COEFFICIENTS (C̄ij)
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Figure 4.5: The identified coefficients of Damper C for different time-history windows.

cubic stiffness (C̄30) is negligible with the mean value of 3.75. The linear damping coefficient

(C̄01) decreases as the measured force decreases (Figure 4.5 (b)), while the linear stiffness (C̄10)

remains constant (Figure 4.5 (a)). The cubic damping coefficient (C̄03) decreases as the damper

reciprocates. For the normalized power-series coefficients (āij), the first order damping (ā01)

and third order damping (ā03) decrease (Figures 4.5 (f) and (h)), while the first order stiffness

(ā10) and third order stiffness remain constant (Figures 4.5 (e) and (g)). These results indicate

that the degrading force of Damper C is due to the change of damping characteristics rather than

stiffness characteristics over time.

The identified RFM coefficients for Damper C are summarized in Table 4.2. In the table, the

mean, standard deviation, maximum and minimum values of the RFM coefficients identified for

the eight identification windows in Figure 4.4 are shown. For a comparison purpose, Damper
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Figure 4.6: The measured and identified forces for the time-varying system of Damper C under
the stationary sinusoidal excitation with a constant frequency of 0.2 Hz and constant peak dis-
placements of ±25.4 mm using the entire domain of measured time histories of displacement,
velocity and force. In the figure, the measured force is in the solid line, and the identified force
is in the dashed line.

C was also identified using the entire domain of measured time histories, and the correspond-

ing identified RFM coefficients for the entire time domain are also shown in the last column

of Table 4.2. The table shows that the dominant coefficients for the entire time-history data

are within the range of the minimum and maximum for the partitioned time-history data (e.g.,

−1.48 ≤ 51.27 ≤ 55.79 for the C̄10 and 436.66 ≤ 526.60 ≤ 625.80). The NMSE of the former

is also about 3.5 times greater than the latter. The measured and identified forces using the entire

time domain are compared in Figure 4.6. The figure illustrates that the identified force estimates

the average of the degrading measured force over time.

Findings from the identification results

Based on above results, several important conclusions can be drawn. First, two different types

of nonlinear dampers were accurately identified without using a priori knowledge about the

identified dampers. This is because the identification procedures of the RFM are data-driven

and model-independent. Although no a priori knowledge was used in the identification, the

identified Chebyshev and power series coefficients still contain the information concerning the
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dominant physical characteristics of the identified dampers. Consequently, in the development

of the change detection methodology, these coefficients can be used as “change indicators” (or

“features” in pattern recognition sense). Moreover, knowing which coefficients the changes were

observed in, one can interpret the physical meanings of the detected changes. Hence, guidelines

to deal with the detected changes can be established for field applications. An excellent example

can be found in the identification results of Damper C. Again, without a priori knowledge of the

time-varying damper, the identified coefficients show that the decreasing measured force is due

to degradation of the damping efficiency (decreasing damping coefficients) in time rather than

the changes of damper stiffness (constant stiffness coefficients).

Notice that although the identified normalized Chebyshev coefficients (C̄ij) are related to the

dampers’ stiffness or damping characteristics, they are not exactly equivalent to the actual spring

or damping constants of the dampers. For physical interpretation purposes, the normalized power

series coefficients (āij) and de-normalized power series coefficients (aij) can be used as more

convenient indices. However, the C̄ij have many advantages over āij and aij , because of the

orthogonal property of the Chebyshev polynomials. The orthogonal property of C̄ij can reduce

the complexity of the uncertainty quantification of change detection with noisy measurements.

Detailed discussion of this issue is provided in Section 4.4.3.

4.4 Uncertainty Estimation of Damper Identification

4.4.1 Data Generation of Noisy Response

In order to study the effects of measurement noise on the damper identification, the sensor mea-

surements of Dampers A, B and C were polluted with 5% additive zero-mean Gaussian noise
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Figure 4.7: Sample time histories of noisy response of Damper B. The displacement and force
were polluted with 5% additive zero-mean Gaussian noise with respect to the measured response
states, and then the velocity was obtained with numerical differentiation following the data pro-
cessing procedures discussed in Section 4.2.2.

with respect to the root-mean-square (RMS) of the measurement states: the acceleration (ẍ) and

force (f ) for Damper A, and the displacement (x) and force (f ) for Dampers B and C. Once

the measurement states were polluted, the necessary damper response for the RFM identifica-

tion was obtained numerically with the noisy measurements: x and ẋ for Damper A, and ẋ for

Dampers B and C. Hence, the uncertainty of the noisy measurements propagated throughout the

numerically obtained response. The detailed data processing procedures were the same as those

described in Section 4.2.2. A total of 3000 noisy data sets were generated for all tested dampers.

Sample time histories of noisy data sets for Damper B are shown in Figure 4.7.

4.4.2 Damper Identification with Noisy Response

Once the 3000 noisy data sets were obtained for each damper, the RFM identification was per-

formed, and the corresponding Chebyshev coefficients (C̄ij) and power series coefficients (āij

and aij) were identified. The NMSE of the RFM identification was relatively low for all tested

dampers: the mean and standard deviation of the NMSE for Damper A were 1.33% and 0.79%,
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respectively; those for Damper B were 3.91% and 2.54%, respectively; and those for Damper C

were 4.59% and 2.98%, respectively.

For the linear damping (C̄01), which was the dominant term in the identification, the mean of

C̄01 for Damper A was 16.84, which was 61.16% compared to the identified C̄01 of 27.99 using

the “clean” data set, while the means of C̄01 for Dampers B and C were 278.06 and 562.48,

respectively, which were 108.19% and 108.91%, compared to the identified C̄01 of 257.00 and

516.48, respectively, using the “clean” data set. Hence, the discrepancy between the identified

C̄01 for “clean” and “noisy” data was larger with Damper A than with Dampers B and C.

The statistics of identified coefficients for Dampers A, B and C using the RFM are summa-

rized in Table 4.3. The table shows that the coefficients of variance (cv) of C̄01 and the cubic

damping (C̄03) for Dampers B and C are almost identical: the cv of C̄01 for Dampers B and

C were 0.03 and 0.03, respectively, and the cv of C̄03 were -0.15 and -0.18, respectively. This

result is expected since the “softening” characteristics of Dampers B and C are similar with the

same designed damping exponent (n = 0.3). On the other hand, Damper A has a different cv

(cv of C̄03 = −5.00) because the designed damping exponent for Damper A was n = 1.0.

Hence, physical interpretation using the identified coefficient was still valid even with the noisy

measurements.

4.4.3 Statistical Change Detection of Time-Varying Damper

Statistical independence of the RFM coefficients

In Section 4.3.2, it was shown that the identified RFM coefficients can be used as excellent

“change indicators”. A question is left: among three kinds of RFM coefficients, which one
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Table 4.3: Statistics of the identified RFM coefficients for the multiple tests and 3000 noisy data
sets. The mean, standard deviation and coefficient of variation are shown. In this table, only
significant coefficients are shown, including the linear stiffness (C̄10, ā10, a10), linear damping
(C̄01, ā01, a01), cubic stiffness (C̄30, ā30, a30), and cubic damping (C̄03, ā03, a03). The * indi-
cates the coefficients of Damper C are the averaged values for eight time-history windows shown
in Figure 4.4.

(a) Normalized Chebyshev Coefficients ( ˆ̄Cij)

Damper A Damper B Damper C∗

Coefficients
mean stdv cv mean stdv cv mean stdv cv

ˆ̄C10 0.67 0.19 0.28 26.23 14.26 0.54 55.19 32.17 0.58
ˆ̄C01 16.84 0.16 0.01 278.06 8.60 0.03 562.48 17.17 0.03
ˆ̄C30 0.14 0.14 1.00 -6.05 14.09 -2.33 -6.17 28.40 -4.60
ˆ̄C03 -0.02 0.10 -5.00 -62.46 9.14 -0.15 -112.19 20.71 -0.18

(b) Normalized Power Series Coefficients (ˆ̄aij)

Damper A Damper B Damper C∗

Coefficients
mean stdv cv mean stdv cv mean stdv cv

ˆ̄a10 1.55 0.69 0.45 110.49 115.28 1.04 286.46 245.46 0.86
ˆ̄a01 18.23 0.74 0.04 642.43 86.03 0.13 1093.50 198.68 0.18
ˆ̄a30 -1.20 2.32 -1.93 -190.07 360.35 -1.90 -473.24 786.05 -1.66
ˆ̄a03 -2.63 2.26 -0.86 -747.97 322.88 -0.43 -982.85 669.23 -0.68

(c) De-normalized Power Series Coefficients (âij)

Damper A Damper B Damper C∗

Coefficients
mean stdv cv mean stdv cv mean stdv cv

â10 1.42E-1 6.27E-2 0.44 2.00 2.09 1.05 10.98 7.85 0.71
â01 1.17E-1 5.56E-3 0.05 7.25 0.90 0.12 26.25 3.63 0.14
â30 -6.04E-4 2.36E-3 -3.91 -1.10E-3 2.12E-3 -1.93 -2.56E-2 4.24E-2 -1.66
â03 -8.17E-7 6.69E-7 -0.82 -1.05E-3 4.35E-4 -0.41 -1.31E-2 8.32E-3 -0.64

(d) Normalized Root-Mean-Square of Identification Errors

Damper A Damper B Damper C∗

Coefficients
mean stdv cv mean stdv cv mean stdv cv

NMSE 1.33E-2 7.90E-3 0.59 3.91E-2 2.54E-2 0.65 4.59E-2 2.98E-2 0.65
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is most useful for change detection in a probabilistic sense. The advantage of using the de-

normalized power series coefficients (aij) is that direct physical interpretation is possible because

the aij preserves the physical units (e.g., the unit of a10 for Damper B is kN/mm, that is the same

as the linear spring constant). The advantage of using the normalized power series coefficients

(āij) is that although the direct physical interpretation is not convenient due to using the nor-

malized displacement (x̄) and velocity (¯̇x), āij measures the relative contribution of each power

series term to the identified restoring force. However, when measurement uncertainty exists, the

identified aij and āij are not statistically independent because the basis functions of the power

series expansion (i.e., xiẋj and x̄i ¯̇xj) are not orthogonal. Consequently, for the uncertainty

quantification of the system changes, the testing dimension of the statistical Hypothesis Test

(HT) becomes too high because the aij and āij are multivariate coefficients. For example, in this

study, there are 36 identified coefficients with the highest series order of five for the displacement

and velocity. For aij and āij , because each of the coefficients are not statistically independent,

the HT should be performed with the testing dimension of 36 (maximum). In Figure 4.8 (a), the

scatter plot between the first order damping (ā01) and linear stiffness (ā10) shows no significant

statistical correlation. However, a strong correlation is observed between the linear damping

(ā01) and cubic damping (ā03).

On the other hand, the normalized Chebyshev coefficients (C̄ij) preserves the statistical

independence because the basis function of Chebyshev polynomials are orthonormal (Mason

and Handscomb, 2003). In Figure 4.8 (b), both scatter plots illustrate that no significant statis-

tical correlations are observed between the identified Chebyshev coefficients. With the statisti-

cal independence property, the testing dimension of the HT dramatically reduces to one. That
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ā01

ā
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Figure 4.8: Sample scatter plots of the normalized Chebyshev coefficients and normalized power
series coefficients for the noisy response of Damper C (Window 1 in Figure 4.4). The magnitude
of the linear correlation coefficient (ρ) between two identified coefficients is also shown in the
table.

is, the HT can be performed for each individual Chebyshev coefficient to detect possible sys-

tem changes. Hence, the normalized Chebyshev coefficients were used in the statistical change

detection in this study.

Statistical change detection using identified coefficients

Using the 3000 sets of the identified, normalized Chebyshev coefficients (C̄ij), the distributions

of the identified C̄ij were obtained. The histograms of the identified first order damping coef-

ficient (C̄01), the dominant coefficient in the Damper C identification, for different time-history
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windows are shown in Figure 4.9. The bin width of the histograms was determined using the nor-

mal reference rule (or Scott’s rule) (Scott, 1979, 1992), optimized for the Gaussian distribution

as

h = 3.5 SX N−1/3 (4.6)

where h is the bin width (or smoothing factor), Sx is the sample standard deviation of a statistic

of interest X , and N is the sample size. The probability density functions (pdf) of C̄01 were

estimated with the Gaussian distribution assumption and are shown in Figure 4.9. In the figure,

the mean of the distributions decrease in time, while the standard deviations of the distributions

remain approximately constant. The pseudo-constant deviation is the justification as to why the

noise amplitudes were fixed at 5% RMS with respect to the measurement states among the win-

dows (Section 4.4.1). After obtaining the distributions of identified coefficients, one can achieve

the three objectives of this study that were discussed in Section 4.1.2. First, with the mean of the

distribution, one can accurately check if the damper has had a genuine system change. Second,

one can interpret the physical meaning of the detected changes. In Sections 4.3.2 and 4.4.2,

it was shown that the actual changes in Damper C are due to the degradation of the damping

efficiency rather than stiffness efficiency. Third, with the standard deviations of the distributions

determined, one can quantify the uncertainty of the detected changes. Using the RFM identi-

fication procedure, these objectives can be achieved without knowing the underlying physical

characteristics of the identified system.
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Figure 4.9: Histograms and probability density functions (pdf) of the first order damping normal-
ized Chebyshev coefficient (C̄ij) for different time-history windows. The bin width (or smooth-
ing factor) of the histogram was determined using the normal reference rule (or Scott’s rule).
The pdf’s were estimated with the assumption of the normal distribution.

Using the extracted coefficient distributions, the statistical HT was performed to detect the

changes in the distribution means. This test can be performed with the test statistics of two-tailed

T-distribution (Hogg and Tanis, 1997; Mendenhall and Sincich, 1995):

H0 : (µ1 − µ2) = 0, z =
ȳ1 − ȳ2

σ(ȳ1−ȳ2)
≈ ȳ1 − ȳ2√

s2
1

n1
+ s2

2
n2

(4.7)

where H0 is the null-hypothesis, ȳ1 and ȳ2 are the identified Chebyshev coefficients for two

different identification windows, µ1 and µ2 are the means of the coefficient distributions from

two identification windows, σ1 and σ2 are the standard deviations of the coefficient distributions

from two identification windows, and s1 and s2 the sample standard deviations of the coefficient

distributions from two identification windows. In the HT’s, the change of the distribution mean

was observed with all windows (Windows 1 to 8) with a 95% confidence level.
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4.5 Bootstrap Estimation of the Identification Uncertainty

The uncertainty quantification usually requires many data sets — in Section 4.4, 3000 data sets

were used to measure the identification uncertainty. However, collecting sufficient data sets

of large-scale viscous dampers for reliable statistical estimation is very difficult and expensive.

Statistical data recycling techniques have been applied successfully in many fields of engineering

and science for the error generalization of identification results using insufficient data sets. In this

section, the Bootstrap method is used to measure the uncertainty of the damper change detection

with a single data set. The Bootstrap estimates of the identification uncertainty with a single

data set will be compared with the uncertainty estimates with the multiple data sets discussed in

Section 4.4.

4.5.1 Overview of the Bootstrap Method

The Bootstrap method is a statistical data recycling technique for the uncertainty estimation of

any kind of identification parameters. This method is commonly used where the estimation of

parameter uncertainty is needed, but an insufficient amount of data is available for a statistically

reliable uncertainty quantification. Excellent introductory literature on the Bootstrap method

can be found in the work of Efron (1979); Efron and Tibshirani (1993), Davison and Hinkley

(1997), and Martinez and Martinez (2002).
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The Bootstrap method starts with a very simple assumption. An arbitrary parameter (θ)

identified using an independently and identically distributed (i.i.d) random data set, y =

(y1, y2, · · · , yn)T with the underlying true distribution (F ) can be modeled as

θ = t(F ) (4.8)

where t(•) is a nonlinear function of F . Without knowing F , the uncertainty of θ is commonly

determined with multiple data sets, {y1, y2, · · · , yM}, drawn from the same distribution F as

sθ =

√√√√ 1
M − 1

M∑
i=1

(θi −mθ)2 (4.9)

where sθ is the sample standard deviation of θ, mθ is the sample mean of θ, M is the number of

multiple tests, and θi is the parameter identified in the ith test.

Instead of performing multiple tests for the uncertainty quantification, the Bootstrap method

recycles a single data set, y with the empirical distribution (F̂ ). The data recycling is performed

with the random selection of a sample (yk, where 1 ≤ k ≤ n) from y for n times with replace-

ment. With replacement, the probability of each sample to be selected is 1/n. Performing these

procedures B times, one can obtain multiple Bootstrap replicates, {y∗1, y∗2, · · · , y∗B}. The Boot-

strap estimate of the parameter uncertainty is determined as

s∗θ =

√√√√ 1
B − 1

B∑
i=1

(θ∗i −m∗
θ)

2 (4.10)
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where s∗θ is the Bootstrap standard error of θ, θ∗i is the parameter identified in the ith Bootstrap

replicate of the data set, B is the number of the Bootstrap replicates, and m∗
θ is the Bootstrap

estimate of θ defined as

m∗
θ =

1
B

B∑
i=1

θ∗i (4.11)

In order that sθ ≈ s∗θ, the empirical distribution F̂ should be close to the true distribution F .

Therefore, the following two conditions should be satisfied for the Bootstrap estimation of the

standard error:

1. The random data y is i.i.d.

2. The empirical distribution F̂ is close to the true distribution F .

In the context of the damper identification problem under discussion, however, since the

noisy measurement states (ẍ, f ) for Damper A and (x, f ) for Dampers B and C are time-

correlated (i.e., the data are not i.i.d), the standard Bootstrap method described above needs

to be modified to deal with the time-dependency. Many modified algorithms have been devel-

oped and introduced: model-based resampling (Efron and Tibshirani, 1986; Kreiss and Franke,

1992), block resampling (Carlstein, 1986; Hall, 1985; Shi, 1991), phase scrambling (Theiler

et al., 1992; Timmer, 1998), and periodogram resampling (Davison and Hinkley, 1997). Detailed

descriptions of each of these methods can be found in Davison and Hinkley (1997), and Härdle

et al. (2003). Among these methods, one of the most widely used method is the model-based

resampling, because of its simple procedure and good theoretical behavior when the time-series

model is correct. Consequently, in this study, the model-based resampling method was employed

for the uncertainty estimation of the time-dependent data. In Section 4.5.2, a detailed Bootstrap
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resampling procedure is proposed and described in detail for the cases that the displacement and

force were measured (Damper A), and that the acceleration and force were measured (Dampers

B and C).

4.5.2 Bootstrap Resampling of Noisy Response Data

Single data sets of Dampers A, B and C were recycled with the Bootstrap method using the

following procedures:

Approach when displacement is measured

A single data set of noisy (5% RMS) displacement (x) and force (f ) for Dampers B and C was

resampled with the Bootstrap method as follows:

1. The same data processing procedures for Dampers B and C in Section 4.2.2 were per-

formed to obtain the triplet (x, ẋ, f).

2. The RFM identification was performed with the noisy (x, ẋ, f). The identification residual

(e) was obtained as e = f − f̂ , where f̂ is the identified force using the RFM.

3. The auto-regression (AR) was performed for the time histories of x and e. The correspond-

ing AR estimate of x is x̂. The AR orders were determined so as to satisfy the conditions

that εx and εe become i.i.d, where εx is the AR residual of x, and εe is the AR residual

of e. The detailed procedure for determining the optimal AR orders for the εx and εe is

described later in this section.

4. The Bootstrap resampling was performed with the εx and εe to obtain the Bootstrap repli-

cates of the εx and εe (ε∗x and ε∗e, respectively).
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Figure 4.10: Bootstrap resampling procedures for Dampers B and C with measured displacement
(x) and force (r).

5. The Bootstrap replicates of the displacement (x∗) and force (f∗) were obtained with the

sample reconstruction as x∗ = x̂+ ε∗x and f∗ = f̂ + ê+ ε∗e.

6. The Bootstrap version of the velocity (ẋ∗) was obtained through the differentiation of

x∗. In this procedure, the same filter and time-history window as those discussed in Sec-

tion 4.2.2 were applied.

A total of 3000 Bootstrap replicates (x∗, ẋ∗, f∗) were obtained. The Bootstrap resampling pro-

cedures for Dampers B and C are also illustrated schematically in Figure 4.10.

A sample comparison of the original and Bootstrap-resampled data is shown in Figures 4.13.

The Bootstrap resampled data show slightly larger dispersion than the original data in the phase

plots. The RFM identification was performed with the 3000 Bootstrap replicates, and the cor-

responding RFM coefficients were identified. The Bootstrap standard errors of 3000 identified

coefficient sets were estimated using Equation 4.10, and compared to the standard deviations

of multiple tests. Table 4.4 shows a comparison of the error estimations of the RFM identified

coefficients with multiple tests. In the table, the error estimates with the Bootstrap method are

larger than those with multiple tests: 7% ∼ 42% for Damper B and -0.2% ∼ 53% for Damper
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Table 4.4: Bootstrap estimations of standard errors for the coefficients identified using the
Restoring Force Method. The Bootstrap estimates are compared with the standard deviations
through the multiple tests shown in Table 4.3. The sample size is 3000 for both the Bootstrap
and multiple test estimates.

Damper A Damper B Damper CCoefficients
Multiple Bootstrap Ratio Multiple Bootstrap Ratio Multiple Bootstrap Ratio

C̄10 0.19 0.32 1.68 14.26 17.35 1.22 32.17 42.14 1.31
C̄01 0.16 0.31 1.94 8.60 12.22 1.42 17.17 26.21 1.53
C̄30 0.14 0.32 2.29 14.09 18.63 1.32 28.40 37.81 1.33
C̄03 0.10 0.20 2.00 9.14 12.49 1.37 20.71 27.47 1.33
ā10 0.69 1.44 2.09 115.28 149.10 1.29 245.46 311.77 1.27
ā01 0.74 1.64 2.22 86.03 104.55 1.22 198.68 235.09 1.18
ā30 2.32 4.76 2.05 360.35 474.97 1.32 786.05 983.70 1.25
ā03 2.26 5.67 2.48 322.88 395.84 1.23 669.23 823.17 1.23
a10 6.27E-2 7.13E-2 1.14 2.09 2.67 1.28 7.85 11.60 1.48
a01 5.56E-3 1.01E-2 1.82 0.90 1.06 1.18 3.63 4.58 1.26
a30 2.36E-3 7.03E-4 0.30 2.12E-3 2.71E-3 1.28 4.24E-2 5.14E-2 1.21
a03 6.69E-7 1.30E-6 1.94 4.35E-4 4.66E-4 1.07 8.32E-3 8.13E-3 0.98

NMSE (%) 7.90E-3 2.05E-2 2.59 2.54E-2 3.02E-2 1.19 2.98E-2 2.98E-2 1.00

C. Hence, it can be seen that the Bootstrap estimation of the identification error is more conser-

vative than the results obtained through estimation with multiple tests. In addition, the results

indicate that the Bootstrap method is applicable to the time-varying system (Damper C), as well

as the time-invariant system (Damper B).

Approach when acceleration is measured

Using a single data set of noisy (5% RMS) measurements of the acceleration (ẍ) and force (f )

for Damper A, the Bootstrap method was applied as follows:

1. The same data processing procedures for Damper A in Section 4.2.2 were performed to

obtain the triplet (x, ẋ, f).

2. The RFM identification was performed with the noisy (x, ẋ, f). The identification residual

(e) was obtained as e = f − f̂ , where f̂ is the identified force using the RFM.
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Figure 4.11: Bootstrap resampling procedures for Damper A with measured acceleration (ẍ) and
force (r).

3. The AR was performed for the time-histories of ẍ and e. The AR estimate of ẍ is ˆ̈x.

The AR orders of ˆ̈x and ê were determined so as to satisfy the conditions that εẍ and εr

become i.i.d, where εẍ is the AR residual of ẍ, and εe is the AR residual of e. The detailed

procedure for determining the optimal AR orders is described below.

4. The Bootstrap resampling was performed with εẍ and εe to obtain the Bootstrap replicates

of εẍ and εe (ε∗ẍ and ε∗e, respectively).

5. The Bootstrap replicates of the acceleration (ẍ∗) and force (f∗) were obtained with the

sample reconstruction as ẍ∗ = ˆ̈x+ ε∗ẍ and f∗ = f̂ + ê+ ε∗e.

6. The ẍ∗ was integrated and then double-integrated for the Bootstrap version of the velocity

(ẋ∗) and displacement (x∗), respectively. The same filter and time-history window were

applied to ẋ∗ and x∗ as described in Section 4.2.2.

A total of 3000 Bootstrap replicates (x∗, ẋ∗, f∗) were generated. The Bootstrap resampling

procedures for Damper A are also illustrated in Figure 4.11.

A sample comparison between the original and Bootstrap-resampled data for Damper A

is shown in Figure 4.13 (a). Unlike Dampers B and C, the range of the Bootstrap-resampled
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displacement is approximately twice larger than that of the original displacement in the

displacement-force plot, while the velocity-force plots of two data sets are almost identical.

Issues involving the auto-regression procedure

The above results indicate that using the measured acceleration, the Bootstrapping for the veloc-

ity through single-integration was successful, but the Bootstrapping for the displacement through

double-integration failed. In the model-based Bootstrap method, the resampling results are

largely dependent on the performance of the AR identification. The AR is performed to remove

the trends of the time-series data, and with successful AR, the corresponding AR residuals (εẍ

and εe for Damper A, and εx and εe for Dampers B and C) become i.i.d. Figure 4.12 shows

the significance of the time-correlation for different AR orders. The significance of the time-

correlation is commonly measured with the correlation coefficient (ρ) in a lag plot. Here, the

lag is defined as a fixed time distance. For example, for the vector εe = {εe1 , εe2 , . . . , εen}

for Damper B, the εe2 and εe5 have a lag with order three. Hence, in the lag plot (usually with

order one), which has the x-axis of εei and the y-axis of εei−1 (i = 2, 3, . . . , n), the correlation

coefficient ρ(εei , εei−1) measures the serial correlations of the εe in time. In Figure 4.12 (a), the

ρ(εei , εei−1) asymptotically approaches to zero as the AR order increases. However, Figure 4.12

(b) illustrates that the ρ(εxi , εxi−1) approaches to zero as the AR order approaches from 1 to 40.

Then, the ρ(εxi , εxi−1) increases as the AR order increases more than 40. This result indicates

that the AR regression for the identification residual (e) becomes overfitted when the AR order

is greater than 40. Consequently, the AR order of 40 was used in the Bootstrap resampling for

Damper B. The same procedure of determining the optimal AR order was applied for Dampers

A and C.
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Figure 4.12: Time-correlations of the auto-regression (AR) residuals of the identified restoring
force residual (εe) and the displacement (εx) for different AR orders. The time-correlations were
measured with the correlation coefficients of the order-one lags for εe and εx. The definition of
the order-one lags is explained in the text.

Although the serial correlations in time were carefully removed with the optimal AR orders,

however, perfect removal of the time correlations is almost impossible. Consequently, a slight

amount of time-correlation will affect the results of differentiation or integration. In this study,

the results indicate that the unremoved trend does not significantly affect to the results of the

single differentiation (x∗ → ẋ∗) and integration (ẍ∗ → ẋ∗). However, the unremoved trend

significantly influences the results of the second integration (ẋ∗ → x∗) as the example of Damper

A. Consequently, the Bootstrapping for the displacement becomes unsuccessful. Therefore, in

the application of the Bootstrap method to noisy measurements, it is recommended that the force

as well as the displacement of the damper be directly measured.

4.6 Summary and Conclusions

An experimental study was conducted to develop a probabilistic change detection methodology

for in-situ monitoring of nonlinear viscous dampers with measurement uncertainty. It was found
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that the coefficients identified using the Restoring Force Method can be used as excellent indi-

cators (or features) (1) to detect the changes of nonlinear systems, (2) to interpret the physical

meaning of the detected changes, and (3) to quantify the uncertainty of the detected system

changes.

The Bootstrap method was also investigated for uncertainty quantification of the detected

changes when the measurement data are insufficient for reliable statistical inference. Using the

Bootstrap method, the uncertainty of the identification was estimated reasonably accurately even

with a single data set when the displacement and force were measured.
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Figure 4.13: A comparison of the original and Bootstrap-resampled data for different nonlinear
dampers. The upper half of the figure shows displacement-force plots, while the lower half
shows the velocity-force plots.
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Chapter 5

Model-Order Reduction Effects on Change

Detection in Uncertain Nonlinear

Magneto-Rheological Dampers

5.1 Introduction

5.1.1 Motivation

The development of an effective structural health monitoring (SHM) methodology is imperative

for two major purposes: (1) to avoid catastrophic structural failure by detecting various types of

structural deterioration, modification or changes during the operation, and (2) to reduce mainte-

nance cost by establishing effective means and time schedules for structural maintenance or reha-

bilitation for the detected or predicted changes. However, the development of an effective SHM

methodology is very challenging, especially when monitored structures are complex nonlinear

systems and their system characteristics are uncertain. The system characteristics uncertainty

can be frequently found due to uncertain system parameters or various environmental effects on

system characteristics.

Current SHM approaches, however, have the following limitations for the condition assess-

ment of nonlinear structures with system characteristics uncertainty:
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1. The system models are commonly over-simplified. The over-simplification can be con-

ducted in two ways: (1) excessive model-order reduction of complex nonlinear systems

and (2) ignorance of significant environmental effects. The excessive model-order reduc-

tion makes the identification results inaccurate. Moreover, the effects of model-order

reduction to the change detection are rarely studied. Detected structural changes could

be also significantly biased with ignoring the changes of environmental effects (Peeters

et al., 2001).

2. The modeling approaches are not “flexible” enough to identify timely changing (or deteri-

orating) structures. Because parametric identification approaches require a priori knowl-

edge of the monitored structures, if the structures change into another classes of nonlin-

ear systems, the system identification using the “old” models are no longer valid. Non-

parametric approaches, however, are more “flexible” than the parametric approaches by

identifying the time-varying systems with no assumption about the structures’ physical

characteristics. Yun et al. (2007) experimentally demonstrated that non-parametric mod-

eling approaches are more advantageous in monitoring purposes

3. Although many current methodologies can detect changes of structural characteris-

tics, physical interpretations of detected changes are rarely possible with current non-

parametric approaches. Some necessary physical interpretations for effective SHM are

discussed earlier.
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4. Most of current SHM methodologies are based on deterministic models, and uncertainty of

detected structural changes is rarely estimated. The estimation of change detection uncer-

tainty should include the effects of the measurement and system parameter uncertainty as

discussed earlier.

5.1.2 Objectives

The objectives of this part of study was to develop a reliable change detection methodology for

uncertain nonlinear systems. An experimental study was conducted to test the validity of the

developed methodology. A complex nonlinear system with system parameter uncertainty was

used in this experimental study. The effects of model-order reduction of the nonlinear system on

the performance of the change detection methodology were investigated.

5.1.3 Methodology and Scope

Approach of experimental study

For the experimental study of change detection in uncertain nonlinear systems, a single degree-

of-freedom (SDOF) magneto-rheological (MR) damper was used. MR dampers are semi-active

energy dissipating devices (Dyke et al., 1996; Ehrgott and Masri, 1992, 1994; Spencer et al.,

1997, 1998; Yang et al., 2004). The MR dampers typically consist of a piston rod, electromag-

net, damper cylinder filled with MR fluid, accumulator, bearing and seal. The magnetic field

generated with the electromagnet changes the characteristics of the MR fluid, which consists of

small magnetic particles and fluid base. Consequently, the strength of the electromagnet’s input

current determines the physical characteristics of MR dampers.
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In this study, a series of tests was conducted with random MR damper input currents: under

deterministic broadband random excitation, the MR damper was characterized with a constant

input current, which randomly varies between tests. Hence,the average (effective) characteristics

of the MR damper are determined by the mean of the random input currents, and the uncertainty

(variability) of the damper characteristics are controlled by the standard deviation of the input

currents.

Identification approach

The restoring force of a nonlinear system can be expressed as

r(t) = g(x, ẋ,p) (5.1)

where r(t) is the restoring force, g(•) is a nonlinear function, x is the displacement, ẋ is the

velocity, and p is the system parameter vector. The nonlinear restoring force can be modeled as

r(t) = r̂(t) + e(t), r̂(t) = h(x, ẋ,q) (5.2)

where r̂ is the identified restoring force, e(t) is the modeling error, h(•) is a nonlinear function,

and q is the postulated model parameter vectors. In parametric modeling approaches, q usually

is postulated with assumptions of physical characteristics of the system so that the characteris-

tics should be known a priori. The physical interpretation, using the parametric approaches, is

usually straightforward because the identified q is directly related to the assumed system char-

acteristics based on the assumptions concerning the phenomenological model. On the other

hand, the non-parametric models do not require the assumption of system characteristics, but
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their identification processes are model-independent and data-driven. Consequently, the non-

parametric models remain valid even if the system is transformed into another type of nonlinear-

ity. An example of the non-parametric approach can be found in the artificial neural networks

(ANN) (Masri et al., 1993, 2000, 1999). However, the physical interpretation with the non-

parametric approaches is not straightforward because there are no direct relationships between

the identified q and system characteristics, and as can be seen with ANN, the q is not uniquely

defined even even with “successful” identification (Masri et al., 2000).

In this case, the Restoring Force Method (RFM) would provide an excellent solution, taking

both advantages of the parametric and non-parametric approaches: no a priori knowledge of

the system is required and physical interpretation of some of the identification results with the

identified coefficients (Wolfe et al., 2002; Yun et al., 2007). Therefore, in this study, the RFM

was extensively investigated for developing an effective SHM methodology.

Effects of model-order reduction

The significance of the modeling error can be determined by the relationship of the system com-

plexity, O(p) and the model complexity, O(q). If the true system parameters, p are uncertain,

the relationship between O(p) and O(q) can be defined as

1. O(p) > O(q): the system complexity is greater than the model complexity (underfitting).

2. O(p) = O(q): the system complexity is equal to the model complexity (perfect fitting).

3. O(p) < O(q): the model complexity is greater than the system complexity (overfitting).

Some studies of stochastic non-parametric models of uncertain nonlinear systems were reported

by Masri et al. (2006). In practice, the system identification is rarely perfect fitting since the p are
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often unknown. When the system identification is either underfitting or overfitting, the identified

q is generally biased (Mendel, 1995; Seber and Lee, 2003). Consequently, the damage detection

with the identified q becomes inaccurate. Hence, in this study, the effects of the model-order

reduction on the change detection were investigated with the identified coefficients using the

RFM.

Scope

This chapter is organized as follows: the experimental studies using the nonlinear MR damper

are discussed in Section 5.2; the non-parametric RFM identification for the MR damper is

discussed in Section 5.3; and statistical change detection for the MR damper using pattern-

recognition-based classification methods is demonstrated in Section 5.4.

5.2 Experimental Study

5.2.1 Test Apparatus

An MR damper was tested in the Structural Dynamics Laboratory at the University of Southern

California.

In order to investigate the effects of system parameter uncertainty, performing a numerous

series of tests is necessary. For the successful experimental study, controlling the damper tem-

perature is critical because the internal temperature of the MR damper that is converted from the

dissipated energy increases significantly during the series of tests. Consequently, an effective

water cooling system was developed to minimize the temperature effects on the damper’s physi-

cal characteristics (Figure 5.1 (a)). The MR damper was mounted on the actuator, controlling the
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damper displacement with a PID controller (Figure 5.1 (b)). The MR damper was fully instru-

mented with various sensors, including an LVDT (displacement), LVT (velocity), accelerometer

(acceleration), load cell (force), and temperature (damper surface temperature). In order to con-

duct a number of tests in this study, a data-acquisition (DAQ) software was also developed. The

role of the developed DAQ software was to automate the test procedure by controlling the actu-

ator, controlling the MR damper input current, and measuring the sensor readings. A schematic

figure of the architecture of the MR damper test apparatus is illustrated in Figure 5.1 (c).

The MR damper used in this study had very complicated nonlinearities: a hysteretic nonlin-

earity due to the viscous action of the MR fluid combined with a dead-space nonlinearity due

to a mechanical gap in the damper. Figure 5.2 illustrates the time histories of the measured dis-

placement, velocity and force under sinusoidal excitation. For the given displacement that was

controlled by the actuator controller, the measured force shows the combination of the dead-

space nonlinearity due to a mechanical gap near the damper’s neutral position (i.e., x ≈ 0) and

the viscous nonlinearity due to the MR damper characteristics within the remaining displacement

range. In Figure 5.1, the mechanical gap can be seen to be approximately 0.9 mm.

5.2.2 Test Protocols

A series of tests was performed with different statistics of the damper input current. A total

of eight test sets was conducted, with four different mean values (µI ) and two different values

of standard deviation (σI ), for the MR damper input current (I): µI = 1.0 A, 0.8 A, 0.6 A

and 0.4 A, and σI = 0.1 A and 0.15 A. Consequently, for each data set, the input current had

a Gaussian distribution of N ∼ (µI , σI). Therefore, the effective (nominal) characteristics of

the MR damper are determined by means of µI , and the uncertainty of the MR damper with
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(a) The MR damper mounted (b) The MR damper installed
with the water cooler on the actuator

PC
SCXI MR Damper

Actuator
(Shake Table)

LabVIEW

- actuator command voltage

displacement-controlled
actuation

magnetic field 
strength (I)

- damper velocity (LVT)
- damper acceleration (MEMS-based accel.)
- damper force (load cell)
- damper surface temperature (thermocouple)
- fixture acceleration

- damper displacement (LVDT)
- actuator command voltage

measured data

test parameters

(c) A schematic of the instrumentation system architecture

Figure 5.1: The magneto-rheological (MR) damper test apparatus.

σI . For each test set, 500 experiments were conducted. Consequently, a total of 4000 tests was

performed in this study. The MR damper was subjected to broadband random excitation with

cutoff frequencies of 0.1 ∼ 3.0 Hz. The test protocols using the MR damper are summarized in

Table 5.1.
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Figure 5.2: Time histories of the measured and normalized displacements, velocities and forces
of the MR damper subjected to sinusoidal excitation.
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Table 5.1: MR damper test protocols.

Test no.
Input current (A) Input current

Sample size Excitationmean stdv distribution

A1 1.0 0.10
A2 1.0 0.15
B1 0.8 0.10 Deterministic
B2 0.8 0.15 Gaussian 500 broadband-random
C1 0.6 0.10 (0.1 ∼ 3.0 Hz)
C2 0.6 0.15
D1 0.4 0.10
D2 0.4 0.15

5.3 Non-Parametric Identification of MR-Damper

5.3.1 Overview of Restoring Force Method

The Restoring Force Method (RFM) is a non-parametric identification technique for nonlinear

dynamic systems (Masri and Caughey, 1979; Worden and Tomlinson, 2001). A SDOF nonlinear

system can be modeled using a two-dimensional series expansion of the Chebyshev polynomials:

r(x, ẋ) =
P∑

i=0

Q∑
j=0

C̄ijTi(x̄)Tj(¯̇x) (5.3)

where r(x, ẋ) is the restoring force of the nonlinear dynamic system, the C̄ij is the normalized

Chebyshev coefficient, Ti(•) is the ith order Chebyshev polynomial, P and Q are the highest

orders of the Chebyshev polynomial of the normalized displacement (x̄) and velocity (¯̇x) within

the range of [-1,1]. For given measured vectors of x, ẋ, and r, the C̄ij can be identified as

C̄ij =
< r(t), Ti(x̄)Tj(¯̇x) >

< Ti(x̄)Tj(¯̇x), Ti(x̄)Tj(¯̇x) >
=
∫ ∫

w(x̄)w(¯̇x)r(t)Ti(x̄)Tj(¯̇x)dx̄d¯̇x∫ ∫
Ti(x̄)2Tj(¯̇x)2dx̄d¯̇x

, (5.4)
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where w(·) is the weighting function. Once the C̄ij is identified, the normalized and de-

normalized power series coefficients (āij and aij , respectively) can be identified as

r(x, ẋ) =
P∑

i=0

Q∑
j=0

C̄ijTi(x̄)Tj(¯̇x) =
P∑

i=0

Q∑
j=0

āij x̄
i ¯̇xj =

P∑
i=0

Q∑
j=0

aijx
iẋj (5.5)

using the following relationships (Mason and Handscomb, 2003):

T0(y) = 1, T1(y) = y, T2(y) = 2y2 − 1, . . . , Tn+1(y) = 2yTn(y)− Tn−1(y), . . . (5.6)

5.3.2 Identification Results for the MR Damper

The MR damper was identified using the RFM for the measured data sets in Table 5.1. In order to

understand the model-order reduction effects on the identification results, the normalized mean

square errors (NMSE) of the RFM identification for different model-orders were measured as

NMSE =
1

mσ2
f

m∑
i=1

(fi − f̂i)2 (5.7)

where m is the number of data points, f is the measured force, f̂ is the identified force, and σf

is the standard deviation of the measured force (Worden and Tomlinson, 2001). Figure 5.3 (a)

shows the relationship between the series order and the NMSE. The NMSE decreases rapidly

from order 1 to 5, and the slope becomes gradually saturated from order 6 to 20. Hence, the

MR damper was identified with the model orders of 5 and 20 (O(5) and O(20), respectively) to

investigate the effects of the model-order reduction. For O(5) and O(20), a total of 8000 RFM

identifications was performed (i.e., 2 model complexities × 4 input current means × 2 input
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current standard deviations × 500 observations). In the RFM identification, the contribution of

each Chebyshev polynomial term can be measured using the following normalized weighting

equation:

w̄ij =
C̄2

ij∑P
p=0

∑Q
q=0 C̄

2
pq

(5.8)

The identification results showed that the three most significant terms in the identification were

the linear damping (C̄01), linear stiffness (C̄10), cubic damping (C̄03) and cubic stiffness (C̄30).

The cumulative weight for these terms was greater than 90% for both modeling orders. Table 5.2

summarizes the statistics of C̄01, C̄10, C̄03, the corresponding power series coefficients (ā01, ā10,

ā03), and the NMSE of the RFM identification for O(5) and O(20).

5.3.3 Physical Interpretations Without Assuming System Models

Figure 5.3 (b)-(d) show the velocity-force plot of the measured and identified response with

O(5) and O(20). Figure 5.3 (c) shows that with the O(5), although the majority of traces of the

velocity-force plot can be identified, the details of the traces largely due to the dead-space non-

linearity fail to be identified. Using the basis functions of the Chebyshev polynomials, “smooth”

(or continuous) nonlinearities can be identified using a relatively small number of the series

expansion terms. However, for discontinuous nonlinearity, such as the dead-space nonlinearity,

a relatively large number of the series expansion terms is usually needed of the same basis func-

tions. Figure 5.3 (C) shows that with the higher O(20), the discontinuous nonlinearity are fairly

accurately identified.
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Table 5.2: Summary of the identification results for the MR damper using the Restoring Force
Method.

(a) Normalized Chebyshev Coefficients (C̄ij)

Order Test no.
1st stiffness (C̄10) 1st damping (C̄01) 3rd stiffness (C̄03)

mean stdv cv mean stdv cv mean stdv cv

A1 337.88 80.46 0.2381 1038.40 180.30 0.1736 -255.60 49.99 -0.1956
A2 330.07 110.38 0.3344 1018.04 257.94 0.2534 -249.14 71.99 -0.2889
B1 502.14 60.83 0.1211 1348.91 99.05 0.0734 -324.02 24.96 -0.0770
B2 491.39 85.59 0.1742 1328.49 162.36 0.1222 -318.98 41.20 -0.12925
C1 573.79 54.61 0.0952 1511.32 67.97 0.0450 -357.11 17.73 -0.0497
C2 571.06 67.76 0.1187 1502.65 103.44 0.0688 -354.69 25.79 -0.0707
D1 624.05 43.21 0.0692 1618.85 53.48 0.0330 -386.94 17.29 -0.0447
D2 619.77 50.65 0.0817 1612.89 75.61 0.0469 -385.18 21.13 -0.0549
A1 360.56 86.72 0.2405 1048.99 183.05 0.1754 -270.00 53.09 -0.1966
A2 352.44 117.60 0.3373 1028.54 264.32 0.2570 -263.08 77.02 -0.2928
B1 541.28 65.98 0.1219 1364.32 100.87 0.0739 -343.60 26.80 -0.0780
B2 529.02 93.41 0.1766 1342.24 166.03 0.0124 -337.73 44.35 -0.013120
C1 619.45 59.27 0.0957 1530.89 69.27 0.0452 -380.29 18.98 -0.0499
C2 615.86 73.37 0.1191 1522.08 105.47 0.0693 -377.95 27.99 -0.0741
D1 668.16 48.02 0.0719 1637.19 54.24 0.0331 -412.16 17.16 -0.0416
D2 664.76 56.02 0.0843 1632.14 77.78 0.0477 -410.72 22.80 -0.0555

(b) Normalized Power Series Coefficients (āij)

Order Test no.
1st stiffness (ā10) 1st damping (ā01) 3rd stiffness (ā03)

mean stdv cv mean stdv cv mean stdv cv

A1 647.78 170.41 0.2631 2340.12 430.94 0.1842 -3179.03 644.04 -0.2026
A2 881.37 229.41 0.3658 2283.33 612.69 0.2683 -3089.39 881.37 -0.2853
B1 942.21 137.39 0.1458 3034.01 243.71 0.0803 -4314.57 470.03 -0.1089
B2 922.13 172.21 0.1867 2983.92 385.27 0.1291 -4233.05 650.00 -0.15365
C1 1076.99 139.31 0.1293 3383.90 193.39 0.0571 -4822.62 472.61 -0.0980
C2 1072.01 153.27 0.1430 3363.73 265.94 0.0791 -4792.21 548.46 -0.0114
D1 1210.75 115.62 0.0954 3612.91 167.06 0.0462 -5026.61 467.50 -0.0930
D2 1189.28 141.32 0.1188 3603.26 201.03 0.0558 -5019.45 480.98 -0.0958
A1 430.95 549.97 1.2762 3205.08 658.45 0.2054 -18432.98 19792.93 -1.0738
A2 500.18 526.79 1.0532 3084.24 815.13 0.2643 -16998.43 20179.07 -1.1871
B1 777.02 840.00 1.0810 4498.72 929.77 0.2067 -41326.02 33137.60 -0.8019
B2 811.18 737.51 0.9092 4369.22 981.22 0.2246 -38265.26 31812.22 -0.831420
C1 1036.13 921.20 0.8891 4913.95 1009.55 0.2054 -43620.36 37791.24 -0.8664
C2 1054.86 979.76 0.9288 4916.29 1007.44 0.2049 -44503.36 35387.04 -0.7952
D1 1163.74 968.06 0.8318 4615.94 1036.27 0.2245 -24603.48 39224.80 -1.5943
D2 1167.03 963.62 0.8257 4712.44 1037.13 0.2201 -28390.98 39049.60 -1.3754

(c) Normalized Mean Square Error (NMSE)
Order Test no. mean stdv cv Order Test no. mean stdv cv

A1 0.1532 0.0118 0.0769 A1 0.1173 0.0196 0.1669
A2 0.1516 0.0138 0.0908 A2 0.1150 0.0242 0.2106
B1 0.1733 0.0195 0.1128 B1 0.1419 0.0218 0.1538
B2 0.1720 0.0203 0.1179 B2 0.1406 0.0235 0.16725
C1 0.1769 0.0187 0.1056

20
C1 0.1484 0.0210 0.1414

C2 0.1768 0.0184 0.1039 C2 0.1494 0.0213 0.1422
D1 0.1828 0.0108 0.0593 D1 0.1579 0.0161 0.1018
D2 0.1822 0.0115 0.0629 D2 0.1579 0.0172 0.1090
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Figure 5.3: A sample identification result for the MR damper using the Restoring Force Method.

Physical interpretations without assuming system models

As discussed earlier, the RFM can be used to identify nonlinear systems without a priori knowl-

edge of the systems because the method is model-independent and data-driven, like other non-

parametric identification methods. Using the RFM, some physical interpretations are also possi-

ble with the identified coefficients. For example, the restoring force of nonlinear systems can be

modeled as

r(x, ẋ) = rx + rẋ + rx,ẋ, (5.9)

where rx is the restoring force component that is dependent on the displacement only, rẋ is

the restoring force component dependent on the velocity only, and rxẋ is the restoring force
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component that depends on both displacement and velocity. In the RFM, the components rx, rẋ,

and rxẋ can be expressed, by grouping the terms of the series expansion as

rx =
P∑

i=0

C̄i0Ti(x̄) =
P∑

i=0

āi0x̄
i (5.10)

rẋ =
Q∑

j=0

C̄0jTj(¯̇x) =
P∑

i=0

ā0j
¯̇xj (5.11)

rxẋ =
P∑

i=1

Q∑
j=1

C̄ijTi(x̄)Tj(¯̇x) =
P∑

i=1

Q∑
j=1

āij x̄
i ¯̇xj (5.12)

First, using the rx, rẋ, and rxẋ, some physical interpretations can be made with the identi-

fied RFM coefficients without assuming any system models. The effects of different modeling

complexities for the same input current were studied. Figure 5.4 shows the phase plots of the rx

and rẋ using the orthogonal Chebyshev and non-orthogonal power series basis functions. In the

figure, the identified forces are shown as the solid lines, and the measured forces as the dashed

lines. The first row shows the displacement-force plots of rx for the power series and Chebyshev

polynomials with the model complexities of O(5) and O(20), and the second row shows the

corresponding velocity-force plots of rẋ. For the same model complexity of O(5), the identified

rx and rẋ with the power series and Chebyshev polynomials are different because of employing

different basis functions (Figures 5.4 (a) and (b), and Figures 5.4 (d) and (e)). The identified rx

and rẋ for both polynomials trace the slopes of the displacement-force and velocity-force plots,

respectively. The identified rx with the power series polynomials, however, is approximately

50% less than the measured force at the peak displacements of approximately ±1.3 cm, while

the identified rx with the Chebyshev polynomials is almost the same as the measured force at the

peak displacements. In the comparison of O(5) and O(20) using the Chebyshev polynomials as
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Figure 5.4: The identified restoring forces that are dependent on the displacement only (rx)
and velocity only (rẋ) using the non-orthogonal power series (āij) and orthogonal Chebyshev
(C̄ij) polynomials for different identification model orders (O(N)). The solid lines are of the
identified force, and the dashed lines are of the measured force. In the top row, (a) the rx with
the power series polynomials for O(5), (b) the rx with the Chebyshev polynomials for O(5),
and (c) the rx with the Chebyshev polynomials for O(20). In the second row, (d) the rẋ with the
power series polynomials for O(5), (e) the rẋ with the Chebyshev polynomials for O(5), and (f)
the rẋ with the Chebyshev polynomials for O(20).

shown in Figures 5.4 (b) and (c), and Figures 5.4 (e) and (f), the slopes of the rx and rẋ become

more accurate with the higher O(20), but the improvement is not significant.

Second, the effects of the system changes on the identified coefficients were investigated.

In general, the stiffness and damping characteristics of dynamic systems can be determined

with the slopes of the phase plots. That is, if the system stiffness is large, the identified āi0

and C̄i0 become large, and vice versa. Similarly, if the system damping is large, the ā0j and

C̄0j terms become large, and vice versa. Figure 5.5 illustrates the changes of the identified rx,
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rẋ, and rxẋ for different MR damper input currents. With the O(20), the first row shows the

phase plots of the rx, rẋ, and rxẋ for I = 1.0 A (Figures 5.5 (a) to (c), respectively), and the

second row shows the phase plots for I = 0.4 A (Figures 5.5 (d) to (f), respectively). In the

identification, the Chebyshev polynomials were used. The identified rx, rẋ, and rxẋ are shown

as solid lines and the measured force as dashed lines in the figure. When the I changes, both the

stiffness and damping characteristics of the MR damper change. The exact relationships of the

stiffness and damping characteristics on the current I are very complicated nonlinear functions

influenced also by the MR fluid properties, electro-magnet design, and damper cylinder and

orifice design. Various mechanical models of the MR and controllable dampers can be found in

the works by Ehrgott and Masri (1992). Although no damper models are assumed in the RFM

identification, the data-driven technique automatically adjusts its coefficients to obtain the best

fit for given data sets. Consequently, in the figure, the slopes of rx and rẋ for the displacement

and velocity decrease as the I decreases (Figures 5.5 (a) and (d), and Figures 5.5 (b) and (e)),

and the area of rxẋ also decreases as I decreases (Figures 5.5 (c) and (f)). Figure 5.6 also shows

the changes of the Chebyshev coefficients for the different input currents. The changes of the

MR damper characteristics are reflected in the identified Chebyshev coefficients as shown in the

figure.

Hence, the above identification results indicate that the identified RFM coefficients could

be used as excellent indicators for change detection of a complicated nonlinear system. Using

the information of system characteristics contained in the identified coefficients, some physical

interpretation of the detected change would be possible. A question is left: among three kinds

of the RFM coefficients, C̄ij , āij , and aij , which kind is more useful to detect the changes in the
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Figure 5.5: Changes of the identified restoring forces that are dependent on the displacement only
(rx), velocity only (rẋ), and coupled with both displacement and velocity (rxẋ) for different MR
damper input current (I) of 1.0 A and 0.4 A. In the identification, the Chebyshev polynomials
were used as the basis functions, and the model complexity (O(N)) was fixed at 20 for both
input current cases. The solid lines are of the identified restoring forces, and the dashed lines are
of the measured forces. The top row shows the phase plots of the displacement and force, and
the second row shows the phase plots of the velocity and force.
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Order ẋ (j)Order x (i)

C̄
ij

−1000

0

1000

2000

02468101214161820 0 2 4
6 810

1214
1618

20
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damper input currents (I) of 1.0 A and 0.4 A. The identification was performed using the Restor-
ing Force Method with the model complexity of O(20) for both input currents.
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uncertain nonlinear system? In the next section, the stochastic properties of the RFM coefficients

are discussed.

5.3.4 Stochastic Properties of the Identified RFM Coefficients

As shown in Equations 5.3 and 5.5, three kinds of equivalent coefficients are available using the

RFM: the normalized Chebyshev coefficients (C̄ij), normalized power series coefficients (āij),

and de-normalized power series coefficients (aij). The basis functions for the C̄ij are orthogonal,

while the basis functions for the āij and aij are non-orthogonal. The orthogonality of the basis

functions significantly influences the stochastic properties of the identified coefficients, and as

well as the performances of the system change detection capability. An analytical description of

the stochastic effects of the orthogonality on the identified coefficients is provided below.

Biasness of the identified coefficients

Three kinds of orthogonal basis functions are generally used in system identification: (1) poly-

nomial orthogonal functions, (2) piecewise constant orthogonal functions, and (3) Fourier (sine-

cosine) functions. An excellent overview of using orthogonal basis functions for system identi-

fication and control application can be found in Datta and Mohan (1995). In system identifica-

tion, the polynomial orthogonal functions are advantageous to identify continuous nonlinearities,

while the piecewise constant orthogonal functions are advantageous for discontinuous nonlinear-

ities by using a smaller number of terms in the identification for each function kind.

In general, the identified restoring forces for the reduced-order and higher-order models can

be expressed as

r̂h = r̂l + r̂e = φ̂lψl + φ̂eψe = φ̂hψh (5.13)
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where r̂l and r̂h are the restoring force components identified with a reduced-order model and

higher-order model, respectively, r̂e is the residual between r̂h and r̂l, φ̂h and φ̂l are the iden-

tified model parameters for the higher-order and reduced-order models, respectively, φ̂e is the

identified model parameters for the residual, ψh and ψl are the basis functions for the higher and

reduced-order models, and ψe is the basis function for the restoring force residual. The identified

model parameters can be estimated as

E[φ̂h] =
< r̂h, ψl >

< ψl, ψl >
=
< φ̂lψl + φ̂eψe, ψl >

< ψl, ψl >
= φ̂l

< ψl, ψl >

< ψl, ψl >
+ φ̂e

< ψe, ψl >

< ψl, ψl >
= φ̂l + φ̂eΨe

(5.14)

where < • > is the inner product of two functions. Therefore, the biasness of the reduced-

order model parameter (φ̂h) depends on the significance of the term φ̂eΨe. For the RFM, the

orthogonality of the Chebyshev polynomial basis functions is guaranteed with the normalized

displacement (x̄) and velocity (¯̇x) within the range of [-1, 1]. Consequently, the identified C̄ij

become unbiased because ψl and ψe are orthogonal, and φ̂eΨe = 0. Consequently,

E[φ̂h] = φ̂l (unbiased), when ψl and ψe are orthogonal. (5.15)

Figure 5.7 shows a comparison of term-wise identification results, with different modeling

orders, for the normalized Chebyshev polynomial basis functions. In the figure, the first row

shows the term-wise identification results with the O(5) for the linear damping (a), cubic damp-

ing (b) and linear stiffness terms (c), and the second row shows the same term-wise identified

restoring forces with the O(20) since the term-wise identification results with O(5) and O(20)
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Figure 5.7: Term-wise identification results with model orders of 5 and 20 with the normalized
Chebyshev polynomial basis functions.

are identical. The comparison shows clearly that the identified Chebyshev coefficients are not

biased with respect to the model complexity.

The unbiasness is not generally true for non-orthogonal basis functions. Table 5.3 shows the

stochastic effects of the model-order reduction on the identified coefficients with the Chebyshev

and power series polynomials. For the Chebyshev polynomials, both the means and standard

deviations of the identified coefficients for different model orders are approximately the same,

which indicates the statistical unbiasness of the identified coefficients. For the power series poly-

nomials, however, significant biasness is observed with the mean of the identified coefficients:

the mean ratio withO(5) andO(20) varies from 20.4% to 104.0%. The standard deviation of the
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identified coefficients were also significantly varies with different model complexities: the ratio

of the O(5) and O(20) varies within the range of 1.19% to 16.1%. The results demonstrate that

for different levels of modeling complexity, the identified coefficients with the orthogonal basis

functions are statistically unbiased, while the identified coefficients with the non-orthogonal

basis functions are significantly statistically biased.
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Distributions of Identified Coefficients

The unbiasness of the identified coefficients using the orthogonal basis functions is critical for

implementing the change detection in uncertain nonlinear systems: the the probability of the

identified coefficients should be a function of the system uncertainty, not a function of the

model complexity. When the unbiasness is guaranteed, the identified coefficients of a reduced-

order model can be safely used for change detection. Consequently, change detection could be

observed even with a few dominant terms of the identified coefficients. For example, the O(20)

model has a total of 441 coefficients. Using the orthogonality property, the testing procedure

for change detection could be dramatically simplified by using a smaller number of coefficients.

Figure 5.8 shows the bivariate Gaussian probability density functions (pdfs) of the two domi-

nant identified Chebyshev coefficients in the displacement (C̄10) and velocity (C̄01) for different

MR damper input currents. The figure illustrates that, even with two dominant coefficients, the

bivariate pdfs can still accurately represent the physical changes in the MR damper.

Figure 5.9 shows the pdfs of the first-order damping coefficient (C̄01) for different MR

damper input currents. In the figure, the mean of pdfs decreases as the input current decreases.

Since the damping force of the MR damper is proportional to the input current (Dyke et al.,

1996), it is observed that the mean of C̄01 by itself properly represents the actual changes in the

damper properties. Figure 5.10 illustrates the current-dependence of the means of the identi-

fied Chebyshev coefficients with one standard deviation error bars for different means (µI ) and

standard deviations (σI ) of input currents. For σI = 0.1 A, as the input current increases, both

the first order damping and stiffness coefficients (C̄01 and C̄10, respectively) increase, while the

third order damping coefficient (C̄03) decreases (Figure 5.10 (a)). For the same µI but different
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Figure 5.8: Bivariate Gaussian distributions of the identified Chebyshev coefficients of two dom-
inant terms in the velocity (C̄01) and displacement (C̄10), for different MR damper input currents
(Test no. A1, B1, C1, D1).

σI of 0.15 A, the means of the coefficients are almost identical to the means for σI = 0.1 A, but

the standard deviation of the identified coefficients increases 42.2% on average (Figure 5.10 (b)).

This result indicates that the change of σI is also properly reflected in the standard deviation of

the identified coefficients.

Based on the above results, the experimental study has demonstrated the following important

facts to detect changes in uncertain nonlinear systems:

1. Because the identification procedure of the RFM is data-driven, no a priori knowledge of

the monitored nonlinear systems is required.
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(C̄01) for different MR damper input currents (Test no. A1, B1, C1 and D1). In the figure, the
smooth factor (bin width) of the histograms were determined with the normal reference rule
(or Scott’s rule) (Martinez and Martinez, 2002). The pdf’s were estimated with the Gaussian
distribution assumption.

2. The identified coefficients with the orthogonal basis functions are statistically unbiased

with respect to the model complexity.

3. Due to their statistical unbiasness, the identified coefficients (using orthogonal basis func-

tions) with a reduced-order model can be safely used to detect changes in the systems.

4. Using the distributions of the identified coefficients, not only detecting changes in the

monitored systems, but also quantifying the detection uncertainty is possible: the mean

changes of the distributions measure the genuine system changes, and the standard devia-

tions of the distributions measure the detection uncertainty.

5.4 Stochastic Change Detection of MR Damper

In the previous sections, it was analytically and experimentally demonstrated that the identified

coefficients with the orthogonal basis functions are statistically unbiased with respect to the

model complexity. In this section, some examples are provided to demonstrate how the unbiased
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Figure 5.10: The means of the identified normalized Chebyshev coefficients with 1σ error bars
for different MR damper input currents (I). (a) The input current standard deviations of 0.1 A
(Test no. A1, B1, C1 and D1). (b) The input current standard deviations of 0.15 A (Test no. A2,
B2, C2 and D2). In the figures, the solid lines are for C̄01, dashed lines for C̄10, and dash-dot
lines for C̄03.

coefficients can be used for the change detection in uncertain nonlinear systems. Two pattern

recognition algorithms are used, as supervised and and unsupervised classification methods, in

this demonstration. Brief description of both classification approaches will be followed in the

next section.

5.4.1 Overview of Statistical Classification with Pattern Recognition Methods

Classification methods

Statistical classification methods are pattern recognition procedures in which the pattern data (or

observations) are placed into two or more labeled groups (or classes) based on one or more char-

acteristics (or features). A classifier is a nonlinear function mapping an observation in a feature

space to a class label. In general, there exist two types of classifiers: supervised classifiers and

unsupervised classifiers. The supervised and unsupervised classification are briefly described
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below. More detailed and formal descriptions of these methods can be found in Duda and Hart

(1973).

The supervised classifiers require the training pattern data consisting of pairs of feature

inputs and desired class labels. Using the training data, the optimal relationships between the

feature inputs and class labels can be obtained, minimizing the prediction errors of the desired

class labels for the given feature input data. In this study, Support Vector Machines are used

as an example of supervised classifications for detecting changes in the MR damper. Detailed

description of Support Vector Machines will be provided later in Section 5.4.2.

The unsupervised classifiers are distinguished from the supervised classifiers by the fact that

the unsupervised classifiers do not require the desired class labels. Considering the input features

as random variables, this method finds the probabilistic relationships between the input features,

commonly employing Bayesian inference to obtain the conditional probabilities of the features.

Without this a priori information for the classification, the unsupervised classification is often

more challenging than the supervised classification. The k-means clustering is one of most

widely used unsupervised classification method due to its simple procedure and relatively good

classification results (Kanungo et al., 2002). Hence, in this study, the k-means clustering is used

as an unsupervised classifier for the change detection in the MR damper. Detailed description of

the k-means clustering is provided in Section 5.4.3.

The purpose of the classification demonstration is to illustrate the advantage of using the sta-

tistically unbiased coefficients (i.e., C̄ij) for the change detection in uncertain nonlinear systems.

Consequently, this study focuses on demonstrating the importance of selecting effective features
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for the system change detection rather than evaluating the performance of different statistical

classifiers.

Model selection and error generalization techniques

Accuracy estimation and error generalization are critical steps to select good classifier models

and evaluate the performance of the selected models for future data sets (Kohavi, 1995). In both

cases, low bias and low variance of the classification results are desirable. If data sets are suf-

ficient, the given data sets are generally partitioned into three groups to perform the following

steps: (1) model training, (2) model validation, and (3) model assessment. The model training

and model validation are performed to choose the model with the best performance on new data.

For these, the first-group data are used to train different classification models, and the second-

group data, which were not used in the model training, are used to select the model with the

best performance. Once the best performance model is selected, model assessment is performed

with the third-group of data sets to estimate the generalization error on future data. However, the

given data are often not sufficient to partition into three groups and to perform all the necessary

evaluations. In this case, statistical data partitioning and resampling techniques provide effec-

tive approaches to maximize the use of a limited amount of data (Efron and Tibshirani, 1993;

Martinez and Martinez, 2002).

The cross-validation method (CV) is a statistical data-partitioning technique for model selec-

tion with an insufficient amount of data. Common types of the CV include: the k-fold cross-

validation, and leave-one-out cross-validation. The k-fold cross-validation partitions the original

data into k subsamples. Of k partitioned subsamples, one subsample is retained for model val-

idation, and the remaining (k − 1) subsamples are used for model training. Then, the same
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process is repeated with the next subsample to “cross-validate” trained classifier models. Con-

sequently, k accuracy estimates are obtained from the folds, and the averaged accuracy is used

as the final estimation. The leave-one-out cross-validation has similar procedures to the k-fold

cross-validation, but this method retains a single observation (or data point) for model valida-

tion, and the remaining observations are used for model training. Consequently, if the original

data have m observations, the leave-one-out and k-fold cross-validations become identical when

k = m.

5.4.2 Supervised Change Detection Using Support Vector Classification

Overview of Support Vector Machine classification

The Support Vector (SV) algorithms are statistical learning techniques for various classification

and regression problems (Boser et al., 1992; Burges, 1998; Smola and Schölkopf, 1998; Vapnik,

1995, 1998). For the classification problems, the Support Vector Classifiers (SVC) have been

successfully used for various system-identification and damage-detection-related applications

(Gao et al., 2002; Mita and Hagiwara, 2003; Oh and Beck, 2006; Park et al., 2005; Worden

and Lane, 2001; Yun et al., 2006; Zhang et al., 2006). Here, a brief description of the SVC is

provided. More complete information on this method can be found in the work by Schölkopf

and Smola (2002).

Suppose that m sets are available of training pattern vectors x1, x2, . . . , xm in a dot product

space H as illustrated in Figure 5.11. If the given training data set is separable, the goal is to

find the hyperplane (H) with the maximal geometrical margin ρ. The purpose of maximizing ρ

is obvious: the classifier becomes robust with the ρ when the training vectors x are noisy. If the

noise of x is bounded in r > 0, the separation margin should be ρ > r, so that the separating
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Figure 5.11: Support Vector Classification.

hyperplane (H) correctly classifies the noisy data (Figure 5.11 (b)). Therefore, for a given r of

the training pattern vectors, ρ is optimized with the maximal value ρ∗ (Schölkopf and Smola,

2002). Any hyperplane H in H can be expressed as

{x ∈ H| < w, x > +b = 0}, (5.16)

where w is a vector orthogonal to the hyperplane (w ∈ H), b is a threshold (and b ∈ <), and

< • > is a dot product. Because w and b are arbitrary, we can imagine two linear hyperplanes

as

H1 := {x| < w, x > +b = +1}, H2 := {x| < w, x > +b = −1}. (5.17)

Then the separation conditions for an arbitrary vector xk into two classes become

< w, x > +b > +1 for xk ∈ {C1}, < w, x > +b < −1 for xk ∈ {C2}. (5.18)
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Or more concisely,

yk < w, x > +b > +1, where yk = sgn(< w, x > +b >). (5.19)

Since the distance between xk and H (ρk) is given by

yk
(< w, x > +b)

||w||
≥ ρ, (5.20)

the separating hyperplane H can be obtained by solving the following constrained quadratic

optimization problem with ||w||ρ = 1:

minimize Q(w, b) =
1
2
||w||2, (5.21)

subject to yk(< w, xk > +b) ≥ 1. (5.22)

This is called the primal optimization problem. Introducing the Lagrangian, the optimization

becomes

minimize L(w, b, λ) =
1
2
||w||2 −

m∑
i=1

λi(yi(< xi,w > +b)− 1) (5.23)

where λi are Lagrange multipliers. Since the quadratic equation is convex, this leads to

∂

∂b
L(w, b, λ) = 0 ⇒

m∑
i=1

λiyi = 0, (5.24)

∂

∂w
L(w, b, λ) = 0 ⇒ w =

m∑
i=1

λiyixi.
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at the optimum. The Karush-Kuhn-Tucker (KKT) theorem that asserts the existence of non-zero

Lagrange multipliers (i.e., λi > 0) at the optimum (Bertsekas, 1999) leads to

λi(yi(< xi,w > +b)− 1) = 0 (5.25)

The training vectors xi with λi > 0 are called Support Vectors (SVs) located on the geometrical

margins (i.e., H1 and H2), and the rest of the training vectors xj are irrelevant to the optimization

procedures because λj = 0. Substituting Equations 5.24 and 5.25 into Equation 5.23, the dual

formation of the primal optimization problem can be obtained as

maximize P (λ) =
m∑

i=1

λi −
1
2

m∑
i,j=1

λiλjyiyj < xi, xj >, (5.26)

subject to λi ≥ 0 ∀ i = 1, 2, . . . ,m, and (5.27)

m∑
i=1

λiyi = 0.

Once the optimal λi’s are found, the classification function can be solved as

f(x) = sgn

(
m∑

i=1

λiyi < x, xi > +b

)
(5.28)

When the training pattern vectors are not linearly separable, one can make H1 and H2 soft

margin hyperplanes with so-called slack variables (ξi):

yi(< xi, w > +b) ≥ 1− ξi, where ξi ≥ 0 (i = 1, 2, . . . ,m). (5.29)
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Two approaches are commonly used for soft margin hyperplanes: the C-Support Vector Classi-

fication, and ν-Support Vector Classification. Cortes and Vapnik (1995) proposed a SV classifier

by introducing slack variables and a penalty parameter C to the primal optimization function in

Equation 5.22 as:

maximize Q(w, ξ) =
1
2
||w||2 +

C

m

m∑
i=1

ξi, (5.30)

subject to ξi ≥ 0, and (5.31)

yi(< xi, w > +b) ≥ 1− ξi, ∀ i = 1, 2, . . . ,m.

This modified primal problem is called the C-Support Vector Classification (C-SVC). The dual

form of the C-SVC is

maximize P (λ) =
m∑

i=1

λi −
1
2

m∑
i,j=1

λiλjyiyj < xi, xj >, (5.32)

subject to 0 ≤ λi ≤
C

m
∀ i = 1, 2, . . . ,m, and (5.33)

m∑
i=1

λiyi = 0.

The penalty parameter C determines the trade-off between maximizing the geometrical margin

and minimizing the training error. One practical drawback of the C-SVC is that there is no

guidelines to choose a reasonable value of C, because C is rather unintuitive. In order to address
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this problem, Schölkopf et al. (2000) proposed the ν-Support Vector Classification (ν-SVC)

replacing C with another parameter ν as:

maximize Q(w, ξ) =
1
2
||w||2 − νρ+

1
m

m∑
i=1

ξi, (5.34)

subjected to ξi ≥ 0, ρ ≥ 0, and (5.35)

yi(< xi, w > +b) ≥ ρ− ξi, ∀ i = 1, 2, . . . ,m.

The dual form of the ν-SVC is

maximize P (λ) = −1
2

m∑
i,j=1

λiλjyiyj < xi, xj >, (5.36)

subject to 0 ≤ λi ≤
1
m

∀ i = 1, 2, . . . ,m, (5.37)

m∑
i=1

λiyi = 0, and

m∑
i=1

λi ≥ ν.

So far, the training pattern vectors have been assumed to be linearly separable, and the SVC

algorithm can be extended to the nonlinear classification using so-called kernel-trick technique.

Using a kernel function Φ, the training vectors x1, x2, . . . , xm ∈ H are nonlinearly transformed

into a higher feature space, and the linear SVC is performed in the higher order space. Cover

(1965) found the relationship between the number of possible linear separations and m numbers

of training vectors in general position in anN -dimensional space. The number of possible linear

separation is

2m when m ≤ (N + 1) (5.38)
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and

2
N∑

i=0

 m− 1

i

 when m > (N + 1) (5.39)

Consequently, since m > N + 1 in this study, the more N increases, the larger the number

of possible linear separation that exists. However, in Cover’s theory, the training vectors are

required to be in a general position. Schölkopf and Smola (2002) pointed out that the Cover’s

theory “does not strictly make a statement about the separability of a given data set in a given

feature space. E.g., the feature map might be such that all points lie on a rather restrictive

lower-dimensional manifold, which could prevent us from finding points in general position.”

This issue becomes very important in the classification of the reduced-order model, and more

detailed discussion will be provided later in this section with actual experimental results from

the MR damper. Solving the dual form of the optimization using the kernel-trick approach, the

classification decision function in Equation 5.28 can be converted to

f(x) = sgn

(
m∑

i=1

yiλi < Φ(x),Φ(xi) >

)
, (5.40)

and then solving the dual form of the quadratic optimization function with kernel for separable

training vector (refer Equation 5.28) as

maximize P (λ) =
m∑

i=1

λi −
1
2

m∑
i,j=1

λiλjyiyj < Φ(xi),Φ(xj) >, (5.41)

subject to λi ≥ 0 ∀ i = 1, 2, . . . ,m, and (5.42)

m∑
i=1

λiyi = 0.
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Four kernel functions are commonly used in the SVC:

Linear classifiers : < x, xi > (5.43)

Polynomial classifiers of order d : < x, xi >
d (5.44)

Radial basis function classifiers : exp(−||x− xi||2/γ) (5.45)

Sigmoid neural networks classifiers : tanh(α < x, xi > +β) (5.46)

Classifier model selection for the MR damper change detection

A supervised change detection was performed using the C-SV radial basis function classifier

(Equations 5.32, 5.33 and 5.45) to monitor the changes of the MR damper using the orthogonal

Chebyshev coefficients (C̄ij) and non-orthogonal power series coefficients (āij). In order to

find the optimal parameters C and γ, a grid search method (Fan et al., 2005; Hsu et al., 2007)

was used within the ranges of 2−9 ≤ C ≤ 215 and 2−15 ≤ γ ≤ 25. The SV classifier was

trained using the data sets of C̄ij and āij . The cross-validation of 5-folds was used for the model

selection of the SV classifier with the training data sets consisting of (441 features) × (2000

observations).

The classifier model selection was performed using the 3-fold cross validation of the training

data sets for different C and γ. Figure 5.12 (a) shows the classification precisions for the C̄ij ,

and Figure 5.12 (b) for the āij . From the grid search with 3-fold cross validation, the optimal

values of the C and γ were found: Copt = 8192 and γopt = 3.91 × 10−3 for the orthogonal

Chebyshev coefficients, and Copt = 2.0 and γopt = 1.95 × 10−3 for the non-orthogonal power-

series coefficients.
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Figure 5.12: The classification precision of C-Support Vector Classification for different C and
γ values. The contours show the classification precision for different parameter values of C and
γ.

Classifier precision assessments for the MR damper change detection

Once the SV classifier model was selected with the optimal C and γ for the C̄ij and āij , the

classification precision was assessed using 50% of the data for training and 50% of the data for

the precision assessment. In order to understand the model-order reduction effects, the number

of features (m) in the classifications increased from one to 441 for the O(20) models, and the

corresponding classification precisions were measured. For 1 ≤ m ≤ 5, the five most significant

terms were determined using Equation 5.8, and the coefficients were used in the classification

cumulatively in the order of the C̄01, C̄01, C̄10, C̄03, C̄30 and C̄34, and the same terms and order

of the āij .

Effects of model order reduction on the classification results

Figure 5.13 shows the classification precisions with the unbiased C̄ij and the biased āij for

different number of features. In the figure, the classification precisions for the data sets of σI =

0.1 A (©) and σI = 0.15 A (4) are also compared. Figures 5.13 (a) and (b) illustrate that
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Figure 5.13: The precisions of the Support Vector Classification (SVC) for the statistically inde-
pendent Chebyshev coefficients (C̄ij) and statistically correlated power-series coefficients (āij).
The SVC was performed for different number of features (i.e., identified coefficients) to study
the effects of model-order reduction. Two different standard deviations of the MR damper input
current (σI ) of 0.1 A (©) and 0.15 A (4) are compared for each type of coefficients. The
computation times, normalized with respect to the smallest time, are also shown in the figure.

the classification precision increases as m increases for both C̄ij and āij . The semi-log plots

also show that the precision improvement becomes saturated for a large m. In the figures, the

precisions with the C̄ij are larger than those with the āij . For different system uncertainty levels,

the precisions with σI = 0.1 A are greater than those with σI = 0.15 A. Figure 5.13 (c)

shows the computation times, normalized with respect to the smallest time, for different m.

The computation time with 441 features is about 15 times larger than with one feature. The

classification results in Figure 5.13 is also summarized in Table 5.4.

The above results indicate that the classification with the unbiased C̄ij is more efficient than

with the statistically biased āij due to many advantageous properties of the orthogonal basis

functions discussed in Sections 5.3.3 and 5.3.4. For the change detection in the MR damper,

with the unbiased C̄ij , using reduced-order models would be more efficient, especially when a

short computation time is a critical concern. For example, in order to improve the classification
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Table 5.4: The precision of the Support Vector Classification (SVC) procedure for the statis-
tically independent Chebyshev coefficients (C̄ij) and the statistically correlated power series
coefficients (āij). The SVC was performed for different number of features (i.e., identified coef-
ficients) to study the effects of model-order reduction. Two different standard deviations of
the MR damper input current (σI ) of 0.1 A (©) and 0.15 A (4) are compared for each type
of coefficients. The computation times, normalized with respect to the smallest time, are also
summarized in the table.

Number of Number of
0.1 A (%) 0.15 A (%)

Normalized
classes features computation time

C̄ij āij C̄ij āij

1 62.4 38.8 55.1 40.7 1.0
2 68.9 44.8 56.7 45.1 1.2
3 69.7 53.0 60.4 51.2 1.2
4 71.6 58.1 61.4 53.3 1.1

4 5 72.1 60.7 62.0 54.6 1.1
36 79.4 64.5 70.0 60.5 1.6
121 81.2 65.1 74.0 62.9 4.3
256 81.1 65.9 74.4 64.3 8.4
441 82.8 68.9 75.6 66.3 14.6

precision from 80% to 85% for σI = 0.1 A, the m should be increased from 36 to 441 (Fig-

ure 5.13 (a)). However, the corresponding computation time increases approximately nine times

(Figure 5.13 (c)). In the comparison of data sets with σI = 0.1 A and σI = 0.15 A, because

the classification precision is inversely proportional to the system uncertainty, the classification

with higher system uncertainty should involve more features in order to have the same precision

as with a smaller system uncertainty.

Error analysis of the SV classication

In general, there exist two sources of classification error: Type I and Type II errors (Hogg and

Tanis, 1997; Mendenhall and Sincich, 1995). For a given null hypothesis (H0), Type I error is

defined as H0 is rejected when H0 is true. For the same H0, Type II error is defined as H0 is
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(R,F)
Correct

(A,F)
“Missed”

(R,T)
“False alarm”

(A,T)
Correct

(Type II error)

(Type I error)

H0: 
The MR damper does NOT 
belong to this class.

(A,F):
We accept H0 when H0 is false 
(Type II error).

(R,T): 
We reject H0 when H0 is true 
(Type I error). 

Figure 5.14: Detection rules with two sources of errors (Type I and Type II errors).

accepted when H0 is false. In this study, the H0 and its alternative hypothesis (Ha) for each class

are defined as (Figure 5.14)

H0 : The MR damper does NOT belong to this class. (5.47)

Ha : The MR damper belongs to this class. (5.48)

Consequently, in this study, Type I error is of a “false-alarmed” error, while Type II error is of a

“missed-classification” error. The power of a test (or probability of detection) is defined as the

probability of rejecting H0 when Ha is true. The power of test can be expressed as

Power of test = 1− p(Type II error), (5.49)

where p(Type II error) is the probability of Type II error. Therefore, the power of test is the

probability that the test will declare Ha true when in fact Ha is true.

Using those definitions, the Type I and Type II errors of the SVC for the C̄ij were assessed.

The probabilities of the apparent successful classification (correct), Type I error (false-alarm),
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Type II error (missed) and the power of test for each class are shown in Figure 5.15. The prob-

abilities were measured for different m, so that the effects of model-order reduction on the

classification precisions and errors can be understood.

In Figure 5.15 (a), the probabilities of the apparent successful classification were measured

with the number of observations that belong to (R,F) and (A,T) in Figure 5.14 divided by

total number of observations for different m. The highest probability of apparent successful

classification is observed with Class D1 (×), and the lowest with Class B1 (4) (refer Table 5.1

for the class labels).

The probabilities of the Type I and Type II errors were measured with the number of observa-

tions that belong to (R,T) and (A,F), respectively, divided by the total number of observations

(Figures 5.15 (b) and (c)). For both Type I and Type II errors, the highest error probabilities are

observed with Class B1 (4), and the lowest error probabilities with Class D1 (×). This result

indicates that the classifier performance varies with different types of classes. The probabilities

of both Type I and Type II errors decrease as m increases. In Figures 5.15 (b) and (c), it is also

observed that there exist trade-offs between Type I and Type II errors for all classes. That is, if

the Type I error decreases, the Type II error increases, and vice versa. Between these trade-offs,

minimizing the Type II error would be more appropriate for the purpose of the SHM. For exam-

ple, let us assume that there occurs significant damage in a monitored system. In the damage

detection of the system, the chances of “false alarms” of the change detection increase with a

larger Type I error. In this case, although the performance of the classifier becomes worse, hav-

ing “false alarms” is more conservative to prevent the failure of the system. On the other hand,

the chances of “missed” damage detection increases with a larger Type II error. In this case,
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Figure 5.15: The probabilities of apparent successful classification, Type I error, Type II error
and the power of test of the Support Vector Classification (SVC) for different numbers of the
normalized Chebyshev coefficients (features) in the classification. In the SVC, four classes of
data are classified: Test no. A1 (©), B1 (4), C1 (�) and D1 (×).

the monitored system could be in a dangerous condition as results of failing to detect serious

structural damage. Figure 5.15 (d) shows the powers of test for different m. The powers of tests

increase as m increases, especially when m > 10. Similar to the probabilities of the apparent

successful classification, the largest power of test is observed with Class D1 (×), and the lowest

with Class B1 (4).
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Classifier design for the optimal number of features

Based on the above results, an optimal classifier design strategy can be proposed by minimizing

the number of features in the identification subjected to chosen thresholds of the “false alarm”

(or Type I error), “missed” (or Type II error) and computation time. Two simple design examples

are shown below:

(i) Design specifications 1

• Powers of test ≤ 90% (or Type II errors ≤ 10%),

• Type I errors ≤ 10%, and

• The normalized computation time ≤ 2.0

(ii) Design specifications 2

• Powers of test ≤ 90% (or Type II errors ≤ 10%),

• Type I error ≤ 15%, and

• The normalized computation time ≤ 2.0

The figures necessary for these design examples can be found in Figure 5.15 (d) for the powers

of test, in Figure 5.15 (c) for the Type I error, and Figure 5.13 (c) for the normalized computation

time. The optimal number of features for the design examples is 36 for the specifications 1, and

5 for the specifications 2 (without the interpolations between different m).

5.4.3 Unsupervised Change Detection Using k-Means Clustering

Overview of the k-means clustering

The k-means clustering is an unsupervised algorithm to cluster the pattern vectors in a feature
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space into k partitions. With a priori information about the number of clusters (not desired class

labels), the algorithm defines k centroids, and one for each cluster. For the given pattern vectors

x1, x2, . . . , xm (m ≥ k), let ci be the geometrical centroid of the ith cluster. Then, the k-means

classifier can be expressed as the following optimization function:

minimize J(c1, c2, . . . , ck) =
k∑

i=1

∑
xj∈Si

|xj − ci|2 (5.50)

where Si = {x| x assigned in the ith cluster}. Simple procedures of the k-means clustering were

proposed by MacQueen (1967):

1. Randomly generate k points as the initial centroids ci, where i = 1, 2, . . . , k.

2. Assign xj to the nearest cluster centroid, where j = 1, 2, . . . ,m.

3. Once all x are assigned to the centroids, recalculate the position of the centroids.

4. Repeat above two steps until the locations of the centroids are converged.

In general, however, the solution of Equation 5.50 is not necessarily lead to a global mini-

mum (Bottou and Bengio, 1995; Mangasarian, 1997; Pollard, 1982; Selim and Ismail, 1984).

Classification results for the MR damper

A unsupervised change detection was performed using the k-mean clustering algorithm with the

identified RFM coefficients. The distances between the centroid clusters are measured with the

squared Euclidean distance. The maximum iteration of each clustering was set to be 5000. In

order to avoid the local minimum problem discussed earlier, and the procedures were statisti-

cally averaged over 100 sets. The parameters of the k-mean clustering used are summarized in

Table 5.5.
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Table 5.5: Parameters for k-means clustering for the MR damper change detection.

Parameters Values

Distance measurement Squared Euclidean distance
Maximum iteration 5000
Number of statistical averagings 600

Table 5.6 summarizes the results of unsupervised k-mean clustering for the MR damper

change detection. The table shows the powers of test (Equation 5.49) for different numbers of

features (m) and classes (M ). The power of test is also referred to as the probability of detection

that declares that the MR damper belongs to a class (H0) when H0 is actually true. The results

show that, unlike the SVC, there is no noticeable improvement of the powers of test with the k-

means clustering by adding more features in the classification for both C̄ij and āij . However, the

power of test is slightly larger with the C̄ij than with the āij for approximately 9% on average.
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5.5 Summary and Conclusion

An effective and reliable structural health monitoring methodology is proposed for change detec-

tion in uncertain nonlinear dynamic systems. An experimental study was performed using an MR

damper to evaluate the range of validity of the proposed methodology. The experimental results

demonstrated that the proposed methodology can successfully assess the conditions of uncertain

nonlinear systems by: (1) detecting (small) genuine system changes, (2) interpreting physical

meaning of the detected changes without a priori knowledge of system characteristics, and (3)

quantifying the uncertainty bounds of the detected changes.

In the proposed methodology, the Restoring Force Method was used as a non-parametric sys-

tem identification approach. It was demonstrated that the Restoring Force Method is more useful

than other modeling approaches in structural health monitoring applications, taking advantage

of features from both the parametric and non-parametric modeling approaches: the identifica-

tion procedure is data-driven and some physical interpretation is possible, using the identified

coefficients.

Supervised and unsupervised statistical classification methods were applied to detect genuine

system changes with different levels of system uncertainty. The classification results demon-

strated that the identified coefficients using the Restoring Force Method can be used as excellent

features to detect system changes in uncertain nonlinear systems. With statistical unbiasness of

the identified coefficients, it was shown that the change detection procedure can be dramatically

simplified using reduced-order models.
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Chapter 6

Monitoring the Collision of a Cargo Ship with

the Vincent Thomas Bridge

6.1 Introduction

6.1.1 Motivation

The demand on advanced transportation infrastructure increases in every region of the world. In

the United States and across the world, more highways and bridges are being built than in the

past. With new construction technologies and materials to link lands and islands, bridges have

become longer and more reliable. As more bridges have been constructed, however, the chances

of collisions with ships have also increased. In fact, ship-bridge collisions (with potentially

serious consequences) happen relatively frequently. Some examples of these, with fatalities, in

different countries are shown in Table 6.1. In the United States, many significant ship-bridge col-

lisions have occurred, and many of them involved human fatalities. Some major ship-bridge col-

lision incidents in the United States, reported by National Transportation Safety Board (NTSB),

are summarized in Table 6.2.

When a ship-bridge collision occurs, accurate and rapid condition assessment of the bridge

is critical. Such an assessment should include the estimation of potential damage, as well as that

of direct damage in order to prevent secondary disasters that could be induced by the collision.
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Table 6.1: Examples of ship-bridge collisions with fatalities in different countries, listed in
chronological order (Mastaglio, 1997; Proske and Curback, 2003).

Bridge name Year Fatalities

Severn River Railway Bridge, UK 1960 5
Lake Ponchartain, USA 1964 6
Sidney Lanier Bridge, USA 1972 10
Lake Ponchartain Bridge, USA 1974 3
Tasman Bridge, Australia 1975 15
Pass Manchac Bridge, USA 1976 1
Tjorn Bridge, Sweden 1980 8
Sunshine Skyway Bridge, USA 1980 35
Lorraine Pipeline Bridge, France 1982 7
Sentosa Aerial Tramway, China 1983 7
Volga River Railroad Bridge, Russia 1983 176
Claiborn Avenue Bridge, USA 1993 1
CSX/Amtrak Railroad Bridge, USA 2001 47
Port Isabel, USA 2001 8
Webber-Falls, USA 2002 12

Since current practices of damage estimation mainly rely on human visual inspections, accurate

and reliable condition assessment of a target bridge is often infeasible, as damage may not be

visible. In such a case, vibration-based structural health monitoring approaches can augment

traditional damage inspection methods. Thanks to the multi-disciplinary advanced technologies

of sensor networks, data acquisition, communication, computation powers and system iden-

tification techniques, this approach has the potential to provide a useful and reliable damage

quantification, which might be difficult with traditional visual inspection approaches.

6.1.2 Objectives

This chapter presents a forensic study of the first-ever collision of a cargo ship with the Vincent

Thomas Bridge (VTB), a critical 1850-m suspension bridge located in the larger metropolitan

Los Angeles, California region.
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Table 6.2: Examples of major ship-bridge collision incidents in the U.S.A. during the past 30
years reported by National Transportation Safety Board.

Date Location Accident description

U.S. Tankship SS Marine Floridan Collision with the1977-02-24 Hopewell, Virginia
Benjamin Harrison Memorial Bridge.

Collision of M/V stud with the Southern Pacific1978-04-01 Berwick Bay, Louisiana
Railroad Bridge over the Atchafalaya River.

Ramming of the Sunshine Skyway Bridge by the1980-05-09 Tampa Bay, Florida
Liberian bulk carrier Summit Venture.

Ramming of the Popular Street Bridge by the tow1983-04-02 St. Louis, Missouri
boat M/V City of Greenville and its four-barge tow.

Collision of the Panamainia cement carrier M/V
1983-11-23 New Orleans, Louisiana Amparo Paola with the Danziger Bridge Inner Harbor

Nav. Canal.

Ramming of the Poplar Street Bridge by the towboat1984-04-26 St. Louis, Missouri
M/V Erin Marie and its twelve-barge tow.

Ramming of the Sidney Lanier Bridge by the Polish1987-05-03 Brunswick, Georgia
bulk carrier Ziemia Bialostocka.

Ramming of the CSXT Railroad Bridge by the Cyprian1988-05-06 Chicago, Illinois
Bulk carrier M/V Pontokratis Calumet River.

U.S. Towboat Chris collision with the Judge William1993-05-28 New Orleans, Louisiana
Seeber Bridge.

Ramming of the Eads Bridge by barges in tow of the
Merchant/Motor Vessel (M/V) Anne Holly with1998-04-04 St. Louis Harbor, Missouri
subsequent ramming and near breakaway of the
President Casino on the Admiral.

U.S. towboat Robert Y. Love allision with Interstate2002-05-26 Oklahoma
40 Highway Bridge near Webbers Falls.

Using advanced structural health monitoring technologies, the main objective of this study

was to demonstrate various analysis and interpretation capabilities of the bridge’s global con-

dition after the collision. The dynamic response of the VTB was successfully measured (with

a real-time monitoring system installed on the bridge) before and after the incident, as well as

during the impact process. Using these valuable data, various system identification approaches,
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including global (multi-sensor) and local (single-sensor) identification methods, were performed

independently to detect the potential occurrence of significant changes in the bridge’s vibration

signature.

6.1.3 Scope

The contents of this chapter are organized as follows. The description of the VTB and its real-

time monitoring system are presented in Section 6.2. The procedure for the preliminary data

processing and its results are discussed in Section 6.3. In Section 6.4, detailed information

and sensor measurements of the ship-bridge collision incident are presented. Various global and

local identification approaches used in this study are explained, and their identification results are

shown in Section 6.5. The summary and conclusions of the chapter are provided in Section 6.6.

6.2 Real-Time Monitoring of the Bridge

6.2.1 Bridge Description

The VTB is located in the metropolitan Los Angeles region. This bridge was one of toll bridges

before 2000, and it is still considered as a major bridge in California. It connects two main har-

bors in this region, the Port of Los Angeles and the Port of Long Beach (See Figure 6.1). These

two ports are among the busiest ports in the U.S. The bridge handles approximately 39000 cars

and trucks daily. The VTB is a cable-suspension bridge, approximately 1850-m long, consisting

of a main span of 457 m, two suspended side spans of 154 m each, and two ten-span cast-in-place

concrete approaches of 545-m length on both ends. The roadway is 16-m wide and accommo-

dates four lanes of traffic. The bridge was completed in 1964 with 92000 tons of Portland
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cement, 13000 tons of light weight concrete, 14100 tons of steel and 1270 tons of suspension

cables. The bridge was designed to withstand winds of up to 145 kilometer per hour. A major

seismic retrofit was performed during the period 1996-2000, including a variety of strengthening

measures, and the incorporation of about 48 large-scale nonlinear passive viscous dampers.

(a) A photo of the Vincent Thomas Bridge (Courtesy of Port of Los Angeles). In the photo, the
left is the East tower toward Terminal Island, and the right is the West tower toward San Pedro.

Total Spans (1847.70 m)

Suspended Spans (765.96 m)

Main Span (457.20 m)

East TowerWest Tower
Cable

Anchorage

Terminal Island Approach
Spans (519.84 m)

San Pedro Approach
Spans (561.29 m)

Cable
Anchorage

(b) A schematic view of the Vincent Thomas Bridge with span dimensions.

Figure 6.1: The Vincent Thomas Bridge.
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6.2.2 VTB Instrumentation

The VTB has been instrumented by the California Strong Motion Instrumentation Program

(CSMIP) of the California Geology Services (CGS), formerly known as the Division of Mines

and Geology (CDMG), for more than twenty years. The strong-motion recording system con-

sists of twenty-six accelerometers mounted on the bridge and an original analog recording sys-

tem (later converted to a digital recording system) located in the east anchor block. Figure 6.2

shows the sensor locations for this system.

Significant motions have been recorded for the 1987 Whittier, 1994 Northridge, and sev-

eral other earthquakes. Analysis of these recordings has provided much information about the

dynamic response of large suspension bridges. The previous analog film recording system, (used

until the mid 1990s) has proven to be very reliable, but the recorded data were limited in dynamic

range and difficult to convert to digital format appropriate for computer analysis.

Modern digital recording technology certainly can provide superior data quality and ease

of analysis. To demonstrate this, a temporary digital monitoring system with remote commu-

nications capability was installed in parallel with the existing analog recording system for the

Vincent Thomas Bridge strong motion instrumentation between November 3 and December 5,

1995. During this short time period, a large amount of ambient vibration data was recorded. The

capability of remote real-time data monitoring was also demonstrated.

Abdel-Ghaffar et al. (1995) includes examples of preliminary analysis in the appendices,

showing these measurements and the large amount of high-quality digital data obtained during

the monitoring period. Examples of preliminary analyses are included in the appendices. In
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Figure XX. Vincent Thomas Bridge sensor location. 

 Figure 6.2: Sensor locations and directions on the Vincent Thomas Bridge, San Pedro, CA.

addition to successfully demonstrating this application of modern structural monitoring instru-

mentation, the recorded ambient vibration data provided a baseline for evaluating the effects of

the seismic retrofit on the bridge’s dynamic behavior, occurring from 1999 to 2000.

More information concerning instrumentation and analysis of the VTB can be found

in Abdel-Ghaffar and Housner (1978); Abdel-Ghaffar et al. (1992); He et al. (2004); Ingham

et al. (1997); Masri et al. (2004); Smyth et al. (2003); Wahbeh et al. (2003).

6.2.3 Real-time Bridge Monitoring System

The VTB has been monitored with a web-based real-time bridge monitoring system developed

by the authors since 2005 (Wahbeh et al., 2005). The monitoring system consists of four subsys-

tems, including: (1) sensor networks; (2) publisher; (3) server; and (4) clients (see Figure 6.3).
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Figure 6.3: A schematic of the VTB real-time monitoring system architecture.

1. For the sensor network subsystem, twenty-six strong-motion accelerometers are used to

measure the bridge’s ambient and earthquake vibrations. The sensor locations and mea-

surement directions are illustrated in Figure 6.2. Notice that the eastern half of the bridge

is more densely instrumented than the western half, because the data acquisition system is

housed in the eastern cable anchorage.

2. Bridge motion is sensed by the accelerometers, then the sensor signals are conveyed to the

publisher subsystem, which consists of the data acquisition module and data transmission

module. The accelerometers are physically connected to the data acquisition module with

wire cables, and the sensor signals are sampled at 100 Hz.

3. Using the data transmission module, the digitized signals are transmitted to the server

subsystem accessed via the Internet. The TCP/IP protocol is used for reliable data com-

munication between the publisher and server subsystems (Stevens, 1998; Stevens et al.,

2002).

4. The acquired data can be downloaded using the FTP server located in the University of

Southern California (USC), the USC FTP module, for further analysis. The data are also
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sent to the USC server module to distribute the data simultaneously to multiple authorized

clients, such as CDMG and Caltrans.

5. In the server-to-multiclient communication, the data transmition rate often becomes a

“bottle-neck” for successful data communication. Therefore, a faster and less reliable

communication protocol , UDP, is used (Stevens, 1998; Stevens et al., 2002).

6.3 Preliminary Data Processing

Once the bridge accelerations were measured, the raw data were processed to obtain the corre-

sponding velocities and displacements using the following procedure:

1. The DC and linear trend were subtracted from the raw accelerations, and a cosine-tapered

window was applied to the acceleration time histories to prevent frequency leakage.

2. A bandpass filter was designed with the cutoff frequencies of 0.1 to 30 Hz and applied to

the acceleration time histories.

3. Standard numerical integration procedures were subsequently used to obtain the corre-

sponding velocity and displacement time histories.

A sample processed acceleration and displacement time history record at the moment of the

cargo-ship collision is shown in Figure 6.4.
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(a) Processed acceleration (b) Processed displacement

Figure 6.4: Preprocessed acceleration and displacement of Channel 4 (lateral direction at the
mid-span of the bridge deck). The acceleration was numerically double-integrated to obtain the
displacement with the cutoff frequencies of 0.1 to 30 Hz.

6.4 Description of the Ship Collision Incident

6.4.1 Factual Information of the Incident

The Beautiful Queen is a 189-m (620-ft) 32000-ton cargo ship, owned by Pasha Hawaii Trans-

portation Line. The cargo ship is a bulk carrier, not a container ship, commonly hauling rolled

steel, coal or grain. The ship is equipped with onboard cranes for freight loading.

On Sunday, 27 August 2006, the ship departed from the Los Angeles harbor via one of the

channels in the harbor district. At 16:40 (Pacific Daylight Time), the ship was passing under the

Vincent Thomas Bridge, linking San Pedro and Terminal Island as shown in Figure 6.5. When

the ship was passing under the bridge, the ship operators miscalculated the tide, and one of the

onboard cranes scraped a guide rail of a maintenance scaffold secured at the bridge center span,

which was about 56 m (185 ft) above water. No injuries were reported during the incident. A

schematic view of the ship-bridge collision is illustrated in Figure 6.6, and the damaged guide

rail of the maintenance scaffold is shown in Figure 6.7.
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Figure 6.5: Schematic view of the incident area (courtesy of Google Inc.)
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Figure 6.6: Schematic view of the Beautiful Queen, a cargo ship, under the Vincent Thomas
Bridge. The figure is presented for illustration purpose, and does not show the actual path taken
by the ship during the collision.
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About thirty minutes after the collision, the vehicular traffic across the bridge was stopped

by Caltrans to investigate potential damage. Vessel traffic was also stopped under the bridge by

the Los Angeles Port Police and Coast Guard. Two incoming cargo ships were delayed due to

the vessel traffic shut-down. After investigating the incident for a period of about two hours,

Caltrans engineers declared that the bridge was sound and that the damage was limited to the

maintenance scaffolding. Both vehicle and vessel traffic were re-opened at 18:55 the same day.

An independent investigation was also conducted by the Coast Guard on the colliding cargo ship.

6.4.2 Vibration Monitoring of the Incident

The VTB vibration during the cargo-ship incident, and two-hour traffic shut-down afterward,

were successfully captured by the real-time monitoring system. Sample acceleration time history

data are illustrated in Figure 6.8. The figure shows a time-window of 24-hours (from midnight to

midnight) corresponding to the displacement measurements at the mid-span of the bridge deck

(Figure 6.8 (a)) and at the east column (Figure 6.8 (b)) in the lateral and vertical directions.

According to the measurements, the incident occurred at 16:41 and resulted in approximately

two minutes of superstructure vibration. At 17:12, thirty-one minutes after the incident, the

displacement RMS reduced dramatically for a 1:45 hour duration, corresponding to the post-

incident traffic shut-down by Caltrans. The impact by the cargo-ship was more noticeable in the

lateral displacements than in the vertical displacements, for both the bridge deck and columns,

since the bridge was rammed by the ship in the lateral direction.

150



Figure 6.7: A damaged maintenance scaffolding member from the ship-bridge collision (Cour-
tesy of Caltrans). This figure is presented for illustration purpose. The location of the damaged
member in the bridge could differ from the exact location.

6.4.3 Bridge Response Before and After the Incident

The bridge response is largely influenced by various environmental conditions, such as traffic

intensity and temperature, and the bridge characteristics determined with identification methods

could be also affected by these conditions. Therefore, it is worthy to investigate the trends of the

bridge response over certain periods.
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(a) Displacements at the mid-span of the bridge deck — Channel 3 (top) and Channel 16 (bottom).
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(b) Displacements at the top of the bridge column — Channel 8 (top) and Channel 10 (bottom).

Figure 6.8: Displacements of the bridge deck and column on 27 August 2006 when the cargo-
ship incident occurred. The top figure shows the lateral displacement, and the bottom figure
shows the vertical direction.

Typical weekly RMS displacements of the main span of the bridge deck before and after the

incident are shown in Figure 6.9. In the figure, ◦ indicates an hourly RMS displacement, and 4

indicates a daily average of the hourly RMS displacements. One standard deviation (σ) of the

hourly RMS displacements for one day is shown as the gray region in the figure. The RMS levels

of the displacement during the incident impact and traffic shut-down after the incident were also
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determined and shown as a dash line and dash-dot line, respectively. The figure shows that no

significant difference was observed in the bridge response before and after the incident. For the

vertical displacement, the hourly RMS displacement is less than 2.5 cm during the particular

weeks before and after the incident (Figures 6.9 (a) and (c)). A daily cycle was observed for

a week starting on Monday and ending Sunday – smaller displacements were noted at night

and larger displacements during the day due to traffic. It is also shown that the daily average

of the hourly RMS displacement is relatively high during weekdays, while much lower during

weekends. Similar trends were found in the lateral displacements (Figures 6.9 (b) and (d)), while

its amplitude is about one third of the vertical displacements before and after the incident.

6.5 System Identification of the Bridge

6.5.1 Global System Identification Approaches

This section deals with the basic formulation of the Natural Excitation Technique (NExT) in

conjunction with the Eigensystem Realization Algorithm (ERA), which was used to extract the

modal parameter information of the VTB. For more detailed formulation and discussion, the

reader is referred to other papers by the authors (Nayeri et al., 2007, 2006).

Formulation of the time-domain modal parameter identification techniques

Providing known input excitations for large civil structures is very difficult, costly, and in many

cases infeasible. On the other hand, ambient excitation (from wind, traffic, ground motion,

etc.) is always available. However, ambient vibrations are output-only, as the inputs cannot be

measured or quantified with any certainty. These facts show the importance of output-only modal
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Figure 6.9: Typical weekly root-mean-square (RMS) displacements of the main span of the
bridge deck in vertical and lateral directions before and after the ship-bridge collision. In the
figure, ◦ indicates an hourly RMS displacement, and 4 indicates a daily average of the hourly
RMS displacements. One standard deviation (1σ) of the hourly RMS displacements for one day
is shown as the gray region in the figure. The RMS levels of the displacement during the incident
impact and traffic shut-down after the incident were also determined and shown as a dash line
and dash-dot line, respectively.

parameter identification methods. The NExT approach, introduced by James et al. (1993, 1996),

has been successfully used for the identification of structures based on output-only information

(Caicedo et al., 2004). The basic idea behind the NExT method is that the cross-correlation

function between the response vector and the response of a selected reference DOF satisfies the

homogeneous equation of motion, provided the excitation and responses are weakly stationary
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random processes. Weak stationarity can usually be assumed for ambient vibrations over typical

analysis time durations of minutes to tens of minutes.

Using NExT, it can be also shown that the cross correlation function between the accelera-

tion process vector and the acceleration of a reference DOF satisfies the homogeneous (or free

vibration) equation of motion per the equation:

MR̈Ẍref Ẍ
(τ) +DṘẌref Ẍ

(τ) +KRẌref Ẍ
(τ) = 0 (6.1)

where Ẍ and Ẍref are the n×1 acceleration vector, and the reference DOF acceleration, respec-

tively, M, D, and K are the n× n mass, damping, and stiffness matrices respectively, and R(.)

denotes the correlation function.

Previous experience (Nayeri et al., 2006) has shown that one cannot rely one a single ref-

erence DOF for identification of all modes. Optimum accuracy for different modes typically

occurs at different choices of the reference DOFs. The importance of Equation (6.1) is that: (a)

the stationary random excitation (ambient noise) is eliminated from the equation of motion, and

(b) only the acceleration records are needed to implement the technique.

Once the homogeneous equation of motion is formed using the NExT, the ERA (Juang and

Pappa, 1985, 1986) can be used to extract the modal parameters of the homogeneous model.
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Here, we briefly present the fundamental principles of ERA. The first fundamental step is to

form the n(r + 1)×m(p+ 1) Hankel block data matrix as follows:

H(k − 1) =



Y(k) Y(k + 1) . . . Y(k + p)

Y(k + 1) Y(k + 2) . . . Y(k + p+ 1)

...
...

. . .
...

Y(k + r) Y(k + r + 1) . . . Y(k + p+ r)


(6.2)

where n andm are the number of measurement stations, and the reference DOFs, respectively; r

and p are integers corresponding to the number of block rows and columns, respectively. Y(k)

is the n×m matrix of the cross-correlation functions which satisfies the homogeneous equation

of motion (Equation 6.1). The ERA process starts with factorization of the Hankel block data

matrix, for k = 1, using the singular value decomposition procedure:

H(0) = PDQT =
[
P1 P2

]D1 0

0 0


QT

1

QT
2

 = P1D1QT
1 (6.3)

where D is the diagonal matrix of monotonically non-increasing singular values. D1 is anN×N

(N ≤ p) diagonal matrix formed by truncating the relatively small singular values. N is the final

system order. It is worth noting that the selection of the final model order it not a trivial task

(Nayeri et al., 2006). The discrete-time state-space realization matrices for the structural model

can be estimated as (Juang and Pappa, 1985)

Â = D−1/2
1 PT

1 H(1)Q1D
−1/2
1 (6.4)
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Ĉ = ET
mP1D

1/2
1 (6.5)

where ET
m =

[
I 0

]
, and its size is determined accordingly. The control influence matrix

can not be estimated using the output-only information. The estimated discrete-time realization

needs to be transformed to the continuous-time domain version, and the modal parameters can

then be extracted from the identified continuous-time system (Nayeri et al., 2007).

There are lots of issues with the implementation of these techniques, including: selection of

user-selectable parameters such as the size of the SVD matrix, the reference DOF (or DOFs),

window size, final model order, and more important, recognizing and eliminating spurious modes

which will appear due to noise and model overspecification. Nayeri et al. (2006) addressed these

problems in detail.

Implementation and results

This section reports the results of the application of the proposed algorithms to the VTB recorded

data. As was mentioned earlier, for implementing the NExT/ERA algorithm, only output accel-

eration records are needed. In this study, three distinct time windows of data were considered.

The first window captures data during the accident (impact type excitation), which lasted about

twenty minutes, the second one corresponds to the traffic shut-down period which lasted about

two hours, and the third window corresponds to regular traffic conditions for eight hours. Rela-

tively long time-history records were used to enhance the stationarity of the analysis data.

As shown in Figure 6.2, the VTB was instrumented with twenty-six accelerometers, however,

only the acceleration measurements on the main deck, and towers (six vertical, six lateral, and
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three longitudinal directions) were used in this study. Sensors at the base of the VTB recorded

negligible levels of response. Data were recorded at a sampling rate of 100 Hz. Since the

frequency range of interest is less than 5 Hz, the data (after pre-processing) were down-sampled

to 50 Hz.

After pre-processing (filtering, detrending, etc.), the next step was to compute the Cross-

Correlation Functions (CCF) between the response of the preselected reference DOF (or, for

more reliability, multiple DOFs) and the response of all available DOFs. As mentioned earlier,

one cannot rely on just one single reference DOF for all modes. One single reference that is

a proper selection for some modes, might not be proper for other modes. Consequently, it is

recommended to use multiple reference DOFs, as opposed to a single reference DOF (Nayeri

et al., 2006). In this study, in order to improve the identification results, all available DOFs were

included (in sequential order) as the reference ones. The CCF can be estimated by the inverse

Fourier transform of the Cross-Power-Spectral Density (CPSD), where the CPSD is computed

directly from the data. Random errors associated with the CPSD can be minimized by window-

ing and averaging (Bendat and Piersol, 2000).

Three different time windows were considered in this study: (1) during accident (impact

type excitation), (2) traffic shut down, and (3) regular traffic. Table 6.3 summarizes the modal

parameter identification results for the three above mentioned time windows. A total of five

dominant modes were identified: the first lateral bending (Mode A), first vertical bending (Mode

B), first torsion (Mode C), second vertical bending (Mode D), and second torsion (Mode E).

One interesting observation from this table is that the first lateral mode only appeared during

the accident. This makes sense, since the traffic can barely excite that pure lateral mode. Mode
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Table 6.3: Comparison of the VTB modal parameter identification results using NExT/ERA for
three different cases: (1) during accident (impact type excitation), (2) traffic shut down, and (3)
regular traffic. For all cases: window size and overlap=327.68 sec and 75%, respectively, and all
available DOFs are used as the reference. For ERA: r = 30, and p = 2/3 of the correlation data
points.

Natural frequency (Hz) Mode shape ratio w/ MAC (%)
Mode and damping ratio (%) and frequency difference (%)
No.

Mode shape
impact w/o traffic w/ traffic

(1) (2) (3) (1) & (2) (1) & (3) (2) & (3)

A
0.1496 – – – – –

(top view)
4.0% – – – – –

B

0.2327 0.2441 0.2353 99.7% 99.9% 99.8%
2.7% 2.5% 1.9% 4.87% 1.11% 3.61%

C

0.5357 0.5430 0.5339 99.8% 99.7% 99.4%
0.8% 0.6% 0.6% 1.36% 0.67% 0.68%

D

1.3938 1.3920 1.4004 99.2% 99.7% 98.9%
1.5% 1.3% 1.7% 0.13% 0.47% 0.60%

E

1.8685 1.8930 1.8668 98.9% 98.7% 99.3%
1.3% 1.2% 1.9% 1.31% 0.09% 1.38%

shape and frequency comparisons between the results of these three time windows indicate that

the mode shapes are virtually identical; however, there is up to a 5% change in frequency. That

is not a surprise in view of the uncertainty issues related to environmental conditions.

Comparison with previous identification studies for different earthquakes

The identification results in this study are compared with previous identification works by Luş

et al. (1999) and Smyth et al. (2003). In their identification work, Luş et al. (1999) employed

the ERA method with the Observer/Kalman filter Identification (OKID) approach to extract the
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modal parameters of the Vincent Thomas Bridge, based on the data obtained during the 1987

Whittier and 1994 Northridge earthquakes. Using the same earthquake data sets, Smyth et al.

(2003) applied a linear least-squares method to identify the bridge. The three identification

results are summarized in Table 6.4. Obviously, the number of identified modes in this study

is smaller than those in the previous studies. As mentioned earlier, we used an autonomous

algorithm to eliminate the spurious modes and include only genuine modes of the bridge. This

autonomous algorithm works based on some accuracy indicators, which are used to perform a

validation test (Nayeri et al., 2006). Thus, the modes not satisfying the test criteria are regarded

as non-genuine modes and automatically eliminated from the process. The mode shapes in

Table 6.3 clearly indicate that non-genuine modes were successfully rejected. Moreover, the gen-

uine modes identified in this study repeatedly appeared in different identification time-windows

under both the impact and ambient vibration conditions. The repeatability of the identified modes

in various excitation conditions is critical for reliable structural health monitoring applications.

Uncertainty study of the bridge identification

A statistical study was performed to estimate the identification uncertainty. Because the struc-

tural conditions of the bridge characterized with the identification methods used in this study

could vary significantly with different excitation and environmental conditions (e.g. traffic inten-

sity and temperature), it is important to estimate the bounds of uncertainty in the identification

results. For three-month duration (July, 2007 ∼ September, 2007), the statistics of the identified

natural frequencies and damping ratios were obtained. The statistics were obtained separately

for weekdays and weekends because a significant difference of the bridge response was observed

between weekdays and weekends, as shown in Figure 6.9. Sample distributions of the identified
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Table 6.4: Comparison of the bridge identification results with previous studies for different
earthquakes. The previous studies in the comparison include Smyth et al. (2003) and Luş et al.
(1999) for the 1987 Whittier and 1994 Northridge earthquakes. In the table, f is the natural
frequency (Hz), and ζ is the damping ratio (%).

Smyth et al. (2003) Luş et al. (1999) Yun et al.
Vertical direction All directions All directions

Whittier Northridge Whittier Northridge Impact w/o traffic w/ traffic
f ζ f ζ f ζ f ζ f ζ f ζ f ζ

0.212 1.2 0.225 0.1 0.234 1.5 0.225 1.7 0.150 4.0 – – – –
0.242 1.7 0.240 8.2 0.388 38.2 0.304 28.6 0.233 2.7 0.244 2.5 0.235 1.9
0.317 -4.3 0.358 -4.7 0.464 9.7 0.459 1.8 0.536 0.8 0.543 0.6 0.534 0.6
0.531 10.2 0.390 4.2 0.576 9.9 0.533 4.0 1.394 1.5 1.392 1.3 1.400 1.7
0.570 0.6 0.448 -0.7 0.617 14.5 0.600 26.2 1.869 1.3 1.893 1.2 1.867 1.9
0.636 4.2 0.478 1.3 0.617 76.8 0.632 13.7
0.672 0.1 0.522 1.4 0.769 29.7 0.791 15.6
0.734 2.4 0.587 -0.1 0.804 1.4 0.811 1.0
0.818 1.9 0.625 7.4 0.857 11.6 0.974 2.7
0.958 2.9 0.733 1.2 0.947 4.3 1.110 0.6
1.027 -1.9 0.837 5.0
1.111 1.3 0.935 -1.8
1.159 1.7 1.036 1.6
1.391 2.3 1.110 1.7
1.554 -1.3 1.136 1.4

natural frequencies and damping ratios for Mode B (the first vertical bending) are illustrated in

Figure 6.10.

The average of natural frequencies and damping ratios for four different identified modes

(Modes B ∼ E) were determined with the averaged sample sizes of 288 for weekdays and 123

for weekends. The sample size of each mode varied because not all modes were identifiable

with ambient vibration in the NExT-ERA identification. The mean of the averaged natural fre-

quency for weekdays and weekend differed from 0.39% to 1.47%. The coefficient of variance

of the averaged natural frequency was determined between 0.35% and 1.98% for weekdays,

and between 0.41% and 1.85% for weekend. Thus, no significant difference for weekdays and

weekend was observed in the averaged natural frequencies. For the averaged damping ratio, the

difference of its mean ranged from 7.13% to 19.64%, and the coefficient of variance ranged from

0.98% to 45.64%. Therefore, the discrepancy between the averaged damping ratio for weekdays
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Figure 6.10: Histograms of the natural frequencies and damping ratios of the first vertical bend-
ing mode (Mode B) identified using the ERA method.

and weekend is greater than that of the averaged natural frequency. Therefore, it was observed

that the uncertainty of identifying the damping ratio was greater than that of identifying the

natural frequency.

Effects of temperature variation

It is well known that the effects of temperature variations are very significant to the dynamic

response of bridges, and in many cases, the genuine changes of bridge modal properties could

be overwhelmed by the temperature-induced changes. Unfortunately, because no temperature

measurements were conducted in this study due to the limitation of the current monitoring sys-

tem configuration, more rigorous studies of this important temperature effects could not be

performed. However, this chapter is designed to demonstrate the practical applications of the
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SHM approaches for forensic investigations, and advanced issues of the bridge identification are

beyond the scope of this study.

6.5.2 Local System Identification Approaches

Identification of natural frequency and damping ratio

Once the global (multiple-sensor) system identification was performed, local (single-sensor)

identification approaches were also applied independently for comparison purposes. Modal

frequencies and damping ratios of the lateral displacement modes of the bridge deck were

estimated. The logarithmic decrement (δ) method was used to estimate modal damping ratio

as (Meirovitch, 1986):

δj =
1
j

ln
x1

xj+1
, δ̄ =

1
n

n∑
j=1

δj (6.6)

ζ̄ =
δ̄√

(2π)2 + δ̄2
∼=

δ̄

2π
(6.7)

where xj is the jth peak displacement, δj is the logarithmic decrement between x1 and xj+1, δ̄ is

the averaged logarithmic decrement, and ζ̄ is the averaged damping ratio. The averaged damping

ratios of sensors 3 and 5 were calculated with the peaks and valleys of the oscillation as shown

in Figure 6.11 (a). A slight discrepancy of ζ̄ between the peaks and valleys was observed. The ζ̄

of peaks and valleys were measured at 6.40 and 4.78 for sensor 3, and 6.40 and 4.60 for sensor 5,

respectively. Notice that the averaged values of ζ̄ of peaks and valleys for sensors 3 and 5 were

5.59 and 5.50. Second, the natural frequencies of the bridge deck at sensors 3 and 5 were also
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estimated from its power spectral density plot as shown in Figure 6.11 (b). The estimated lateral

natural frequencies (ωn) of the bridge were 0.138 Hz for sensor 3, and 0.142 Hz for sensor 5.

The identification results of the lateral damping ratios and natural frequencies of the bridge deck

are summarized in Table 6.5.

0 50 100 150 200
−40

−30

−20

−10

0

10

20

30

40

RELATIVE TIME (SEC)

D
IS

P
L

A
C

E
M

E
N

T
 (

cm
)

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

FREQUENCY (Hz)

P
S
D
 
D
I
S
P
L
A
C
E
M
E
N
T

(a) Time history (b) Power spectral density

Figure 6.11: Local identification of the damping ratio and natural frequency of the bridge deck
in lateral direction (sensor 3) during the incident impact.

The natural frequencies and damping ratios of the vertical and torsional bridge response

were also estimated. First, the vertical displacements at the center of the main span (sensors

15 and 16) and their frequency spectra are shown in Figures 6.12 (a)-(d). From the frequency

spectra, two identical natural frequencies were identified at 0.232 Hz and 0.537 Hz for both

sensors 15 and 16. The torsional displacement was obtained from the subtraction between the

time histories of sensors 15 and 16 as shown in Figure 6.12 (e). The natural frequencies of the

torsional displacement were identified at 0.147 Hz and 0.537 Hz for sensors 15 and 16, and at

0.147 Hz, 0.537 Hz, and 0.717 Hz for sensors 17 and 18. The slight variations in the single-

sensor frequency estimates are primarily attributable to mode-order-reduction effects.

In order to estimate the damping ratios for the identified natural frequencies, a bandpass

filter was applied to the torsional displacement, and Equations 6.6 and 6.7 were used for the
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(a) Time history of sensor 15 (b) Frequency spectrum of sensor 15

0 20 40 60 80 100 120 140
−10

−5

0

5

10

D
IS

P
L

A
C

E
M

E
N

T
 (

cm
)

RELATIVE TIME (SEC)
0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

F
F
T
 
D
I
S
P
L
A
C
E
M
E
N
T

FREQUENCY (Hz)
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Figure 6.12: The vertical and torsional displacements at the center of the bridge deck (sensors 15
and 16). The torsional displacement was obtained with the subtraction between the time histories
of sensors 15 and 16.

filtered signal. An example of the damping ratio estimation for the torsional displacement is

shown in Figure 6.13. The damping ratios based on sensors 15 and 16 for peaks and valleys

were identified at 4.8% (peak) and 6.9% (valley) for the natural frequency of 0.147 Hz, and

0.5% (peak) and 0.6% (valley) for the natural frequency of 0.537 Hz. The damping ratios for

sensors 17 and 18 were identified at 5.0% (peak) and 7.3% (valley) for the natural frequency of
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Figure 6.13: The estimation of damping ratios for torsional displacement. The damping ratios
were estimated with the bandpass-filtered signal of the torsional displacement illustrated in Fig-
ure 6.12 (e).

Table 6.5: Summary of estimated local damping ratios of the bridge deck.

Averaged damping ratio (%)Direction Sensor No. Locations
peaks valleys average

Frequency (Hz)

3 center 6.4 4.8 5.6 0.138Lateral
5 east quarter 6.4 4.6 5.5 0.142

– – – 0.23215 center
– – – 0.537

Vertical – – – 0.232
16 east quarter – – – 0.537

– – – 0.720
4.8 6.9 5.8 0.1474(15− 16) center
0.5 0.6 0.6 0.537

Torsional 5.0 7.3 6.1 0.147
4(17− 18) east quarter 0.5 0.7 0.6 0.537

1.0 1.0 1.0 0.717

0.147 Hz, 0.5% (peak) and 0.7% (valley) for the natural frequency of 0.537 Hz, and 1.0% (peak)

and 1.0% (valley) for the natural frequency of 0.717 Hz. The identified damping ratios of the

bridge deck are summarized in Table 6.5.

Phase of two different sensor readings

The cross-correlation of bridge displacements was measured to determine the phase lag of two
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Table 6.6: Time lags and dominant frequencies of cross-correlation for different sensor readings.

Direction Sensor no. Time lag (sec) Dominant frequency (Hz)

Lateral 3 and 4 0 0.147
Vertical 15 and 16 approx. 8 0.232 and 0.537

different sensor readings. Figure 6.14 (a) illustrates the cross-correlation of the lateral displace-

ments at the main span of the bridge deck (sensors 3 and 5). The cross-correlation shows that

the time lag between sensors 15 and 16 is zero, which implies the oscillation phases of the

sensors are identical. The frequency spectrum of the cross-correlation shows that the dominant

frequency is placed at 0.147 Hz, which is almost identical to the identified natural frequencies

of the lateral displacements, 0.138 Hz for sensor 3 and 0.142 Hz for sensor 5 shown in Table 6.5

(Figure 6.14 (b)). The cross-correlation of the vertical displacements, sensors 15 and 16, was

also determined, and its time lag was measured at approximately 8 seconds; that is, the period

of relative vertical displacement between sensors 15 and 16. The dominant frequencies of the

cross-correlation spectrum were observed at 0.232 Hz and 0.537 Hz. The time lags and dominant

frequencies of the cross-correlation are summarized in Table 6.6.

6.5.3 Comparison of Global and Local Identification Results

Once the local identification was performed, the results of the local identification were compared

with those of the global identification for validation purpose. A comparison of the global and

local identification results is shown in Table 6.7. As depicted in the table, only minor discrepan-

cies were observed between the global and local identification results for Modes A through C.

Notice that the same natural frequency and damping ratio of Mode A, a strong lateral motion,

were observed from the torsional displacements of sensors 15 and 16, and sensors 17 and 18,
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(a) Cross-correlation of lateral displacement (b) FFT of cross-correlation of lateral displacement
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(c) Cross-correlation of vertical displacement (d) FFT of cross-correlation of vertical displacement

Figure 6.14: Cross-correlation and its frequency spectrum for the lateral displacements (sensors
3 and 5) and vertical displacements (sensors 15 and 16) of the bridge deck.

which are the differences of those two-vertical displacements. Figure 6.15 shows a top view

and lateral view of Mode A identified with the global identification method. Although a lateral

motion is dominant in this mode (Figure 6.15 (a)), there also exists a minor torsional motion

(Figure 6.15 (b)). Thus, the natural frequency and damping ratio of Mode A were also observed

in the torsional displacement calculated from sensors 15 and 16, and from sensors 17 and 18.

(a) Top view (b) Lateral view

Figure 6.15: Top and lateral views of Mode A identified with the global identification methods.
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Modes D and E, which are relatively higher modes identified with the global identification

method, were not successfully observed with the local identification. It should be noticed that

using the global identification method, these higher modes were accurately determined with the

ambient excitation as well as the impact excitation during the incident.

Using the local identification method, the natural frequency of 0.717 Hz and its correspond-

ing damping ratio of 1.0% were identified with the torsional displacement calculated from sen-

sors 17 and 18. This is approximately the quarter-point of the bridge main span. The same

natural frequency and damping ratio were not observed with the torsional displacement calcu-

lated from sensors 15 and 16, located at the center of the main span. This is a symmetric torsional

mode, and so the center of the main span is an antinode for the mode shape. Using the global

identification method, this mode was detectable. However, the corresponding mode shape could

not be determined due to a low sensor density.

6.6 Summary and Conclusions

This chapter reports on a study of the analysis of multi-channel time-history acceleration records

captured by the digital instrumentation network installed on the Vincent Thomas Bridge, near

the Port of Los Angeles, California, and caused by an accident that occurred on 27 August 2006

between a large cargo ship and the bridge.

Relatively long time history records of the bridge oscillations before, during, and after the

accident, were used to analyze its nearly stationary response by applying multi-sensor system

identification approaches, utilizing the Natural Excitation Technique with the Eigensystem Real-

ization Algorithm. Modal parameter estimates for the bridge based on analysis of single-sensor
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Table 6.7: A comparison of natural frequencies and damping ratios identified with global and
local identification methods.

Global (Multi-Sensor) Identification Local (Single-Sensor) Identification Comparison

Mode no. Mode shape fG (Hz) ζG (%) sensor no. fL (Hz) ζL (%) fL
fG

ζL
ζG

3 0.138 5.6 0.92 1.40
5 0.142 5.5 0.95 1.38

∆(15− 16) 0.147 5.8 0.98 1.45
∆(17− 18) 0.147 6.1 0.98 1.53

A 0.150 4.0

xcorr(3, 4) 0.147 – 0.98 –

15 0.232 – 1.00 –
16 0.232 – 1.00 –

xcorr(15, 16) 0.232 – 1.00 –
B 0.233 4.0

16 0.537 – –
∆(15− 16) 0.537 0.6 –
∆(17− 18) 0.537 0.6 –
xcorr(15, 16) 0.537 – –

C 0.536 0.8

– – – – –D 1.394 1.5

– – – – –E 1.869 1.3

∆(17− 18) 0.712 1.0 – –
16 0.720 – – –

– – – –

measurements at selected locations were also used to demonstrate the range of validity of crude

estimates of selected modal parameters when drastic reduction in the identified model-order is

used.

By utilizing a web-enabled structural health monitoring system that is installed on the bridge,

it is shown that analysis of the acquired sensor measurements, using various levels of sophisti-

cation in the digital signal processing of the captured data, can provide the owners of critical

infrastructure systems with forensic tools that enable reliable and rapid assessment to analyze

the circumstances and consequences of extreme events to which the target system is subjected.
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The power of the results reported in this chapter is that it provides maintenance engineers

with the ability to quickly determine the need for, or order of, visual inspection required after

an event, such as an earthquake. Thus, assuming a number of large structures are appropriately

instrumented, maintenance inspection engineers are able to review the damage potential at each

location and schedule visual inspections, or investigations utilizing more sophisticated means,

accordingly.
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Chapter 7

Summary and Conclusion

The objective of this study was to develop effective modeling and monitoring methodologies

for assessing the “health” of uncertain, nonlinear, dynamic systems. The SHM methodology

proposed in this study is more advantageous than existing methodologies with the following

three aspects: (1) its feasibility to detect (small) changes in complex nonlinear systems, (2) the

possibility to make physical interpretation of detected changes, and (3) the possibility to quantify

the uncertainty of change detection, which is usually influenced by various uncertainty sources.

A series of investigations was performed by gradually introducing the complexities of various

problems in modeling and monitoring uncertain nonlinear systems in a logical fashion. From the

investigations reported in this thesis, the following important facts can be concluded:

Comparison of modeling approaches for full-scale nonlinear viscous damper

One parametric (simplified design model) and two non-parametric (Restoring Force Method and

artificial neural networks) identification methods were compared using a full-scale nonlinear vis-

cous damper of the type that is frequently employed to mitigate seismic and wind-induced vibra-

tion in civil structures. A series of experimental studies was conducted on the viscous damper.

The viscous damper was successfully identified with the parametric as well as non-parametric

identification methods. Among the modeling approaches investigated in this study, the Restor-

ing Force Method was more advantageous than other methods for monitoring purposes due to
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the following aspects: (1) no a priori knowledge of the system being monitored is required; (2)

the same model can be used when the system evolves into different types of nonlinearity; (3)

the method is applicable to a wide range of nonlinearities; (4) both Chebyshev and power series

coefficients can be identified; and (5) physical interpretation of some of the identification results

is possible with identified coefficients.

Data-driven methodologies for change detection in large-scale nonlinear dampers with noisy

measurements

There are two types of uncertainties affecting modeling and monitoring results of uncertain non-

linear systems: (1) measurement uncertainty (or measurement noise), and (2) system characteris-

tic uncertainty (or variation of system parameters). Among them, the effects of the measurement

uncertainty on the change detection performance were firstly investigated.

An experimental study was conducted using three different types of large-scale nonlinear

viscous dampers, and multiple sets of tested dampers’ response polluted with random noise were

produced to investigate the stochastic effects of the measurement noise on the change detection

performance. Using the Restoring Force Method, the viscous dampers were identified with the

noisy measurements, and the corresponding coefficients were obtained.

It was found that the coefficients identified using the Restoring Force Method can be used

as excellent features for (1) detecting the changes of nonlinear systems, (2) interpreting the

physical meaning of the detected changes, and (3) quantifying the uncertainty of the detected

system changes.

The Bootstrap method was also studied to estimate the uncertainty bounds on the coefficient

identification, when the measurement data are insufficient for reliable statistical inference. Using
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the Bootstrap method, the uncertainty in the identification was estimated reasonably accurately

even with a single data set when the displacement and force were measured, rather than when

the acceleration and force were measured with random noise.

Model-order reduction effects on change detection in uncertain nonlinear magneto-rheological

dampers

Once the effects of measurement uncertainty were understood, the effects of system character-

istic uncertainty were investigated. In order to study the system characteristic uncertainty, a

semi-active magneto-rheological (MR) damper was employed. Multiple sets of the damper’s

response were obtained for Gaussian distributions of MR damper input currents with different

means and standard deviations. Here, the mean of the distribution determines the effective sys-

tem characteristics and the standard deviation of distribution determines the uncertainty of the

system characteristics.

A series of experimental studies was performed with the MR damper, and the MR damper

was identified using the Restoring Force Method. Using the distributions of the corresponding

identified coefficients, it was demonstrated that the developed change detection methodology can

successfully assess the conditions of uncertain nonlinear systems by (1) detecting the effective

(nominal) system changes with the mean changes of the coefficient distributions, (2) quantifying

the uncertainty bounds of the detected changes with the standard deviation of the coefficient

distributions, and (3) interpreting the physical meaning of the detected changes without a priori

knowledge of the system characteristics.

Supervised and unsupervised statistical classification methods were applied to detect effec-

tive system changes with different levels of system uncertainty. Among the three coefficients
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available in the Restoring Force Method (the normalized Chebyshev coefficients, normalized

power series coefficients, and de-normalized power series coefficients) the normalized Cheby-

shev coefficients with orthogonal basis functions demonstrated many advantageous aspects for

change detection purposes, due to the statistical unbiasness of the identified coefficients, which

was not observed with non-orthogonal power series coefficients identified with non-orthogonal

basis functions. In addition, the change detection with statistically unbiased coefficients showed

higher accuracy and less computation time with reduced-order models.

Monitoring the collision of a cargo ship with the Vincent Thomas Bridge

Once various important effects of uncertain nonlinear systems for the development of the

component-level structural health monitoring were investigated, the scope of this study was

expanded to the full-system-level structural health monitoring.

On 27 August 2006, the Vincent Thomas Bridge, an important suspension bridge in south-

ern California, had a collision with a cargo ship. An investigation was performed on the multi-

channel time-history acceleration records captured by the web-based digital instrumentation net-

work installed on the bridge.

Relatively long time history records of the bridge oscillation before, during and after the

accident, were used to analyze its nearly stationary response by applying multi-sensor system

identification approaches, utilizing the Natural Excitation Technique with the Eigensystem Real-

ization Algorithm. Modal parameter estimates for the bridge based on analysis of single-sensor

measurements at selected locations were also used to demonstrate the range of validity of crude

estimates of selected modal parameters, when drastic reduction in the identified model-order is

used.
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By utilizing a web-enabled structural health monitoring system that is installed on the bridge,

it is shown that analysis of the acquired sensor measurements, using various levels of sophisti-

cation in the digital signal processing of the captured data, can provide the owners of critical

infrastructure systems with forensic tools that enable reliable and rapid assessment to analyze

the circumstances and consequences of extreme events to which the target system was subjected.

The power of this study is that it allows maintenance engineers the ability to quickly deter-

mine the need for, or order of, visual inspection required after an event, such as an earth-

quake. Thus, assuming a number of large structures are appropriately instrumented, maintenance

inspection engineers are able to review the damage potential at each location and schedule visual

inspections, or investigations utilizing more sophisticated means, accordingly.
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