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Abstract

Viscous dampers are integral components in the implementation of structural control
retrofit strategies on several new and retrofitted bridges throughout the world. Due
to the significance of the role played by the dampers in the retrofit schemes, it is
imperative that some of the hurdles impeding the field implementation of structural
health monitoring applications in conjunction with such dampers be investigated and

resolved.

The goals of the research reported herein were to conduct analytical and
experimental studies to evaluate a promising strategy for structural health monitoring
of nonlinear viscous dampers. The sequence of analytical and experimental studies
performed was designed to illuminate the numerous challenging technical issues
encountered in the characterization of the physical phenomena exhibited by
structural damper components. Nonparametric and parametric algorithms were
investigated to determine their suitability to field applications in detecting potential
system degradation under the influence of noise pollution. Statistical tools such as
probability density functions, root-mean-square error analysis, data normalization
and curve-fitting techniques were employed in ascertaining the effectiveness and
sensitivities of the various algorithms. It is found that the structural health
monitoring techniques investigated in this study offer the potential for being useful
tools in detecting and quantifying relatively small changes in the system being

monitored.

Xviii
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1.0 Introduction

1.1 Motivation

In recent times, with the ever increasing assimilation of high density population
centers, particularly in earthquake prone regions such as the Pacific Rim, more
emphasis has been placed on the ability of engineered structures to withstand seismic
excitations. Today, engineers and scientists have the ability to physically measure
and model dynamic phenomena with increasing accuracy, as computer data
acquisition, processing, control, storage capacity and simulation tools are continually

improved.

One of the main concerns of engineers today is not only the design but also the
assessment, analysis and retrofitting of existing structures. Economically, it is not
feasible to demolish and reconstruct most structures that are determined to be below
acceptable seismic standards. Thus, engineers must develop retrofit strategies
designed to incorporate modifications to existing structural parameters, thereby
enabling a given structure to behave in a manner consistent with current design

philosophy.

Large-scale dampers are being specified for incorporation into several toll bridge
retrofit strategies. The reasons are obvious; energy dissipative devices such as
dampers reduce adjoining member design demands, thereby allowing subsequent

reduction in member sizes ... and yielding dramatic weight and cost savings. As
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such, dampers are integral components of these structures; the failure of even one
can portend potentially catastrophic system failure. Given the critical nature of the
damper elements to the success of retrofit strategies being implemented on these

large-span structures, a means of evaluating their health is imperative.

At the present time, engineers are uncertain as to how to approach the problem of
evaluating the structural integrity of the viscous dampers, particularly those being
placed in service on several toll structures throughout the State of California
(“State”). The current practice involves removing dampers from service for testing
and evaluation ... and then reinstalling or replacing them as necessary. The obvious
downside to this approach is the economic burden of maintaining such a program. A
related problem arises from the potential for damage during removal/installation,
transit and testing. Without the luxury of proven alternatives, such as health

monitoring systems, the above must necessarily be coordinated on a periodic basis.

Structural health monitoring has received much attention from researchers in the past
decade. While the merits of numerous signature-based nondestructive evaluation
(NDE) approaches continue to be investigated, health monitoring methods that do
not require a priori knowledge of a structure are advantageous, as they offer the
ability to detect unforeseen failure modes. Hence, the motivation for model-based

inverse methods based on system identification theory is obvious.
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A typical scheme utilized in structural health monitoring algorithms is the model
updating approach. This approach relies on measured data collected from prescribed
instrumentation to continually update the stiffness distribution of a simulation model
of the system under investigation. System degradation is predicated on stiffness
variations revealed in the measured data. Predetermined threshold crossings defining
specific failure modes are used to identify failure potential. In general, though, the
model updating approach presents an ill-conditioned, non-unique, inverse problem.
The primary sources of the difficulties presented by this approach are measurement

noise and modeling errors.

A number of papers have been published on various analytical techniques. Many of
these papers are cited herein, with reference listings. In this fashion, the interested
reader can further acquaint himself/herself with the intricate details of these tools as
well as the power and promise presented by each. Additionally, examples depicting
the applicability of these tools to experimental data provide further insight into the
existing state of research in this important field; several such examples are included
in the reference material, again for the benefit of the reader. The challenge of this
research, then, is not in developing analytical tools but, rather, it is in the selection,
optimization, calibration and evaluation of those extant, from the perspective of

quality assurance needs.
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1.2 Background

Caltrans is currently implementing a $4 billion statewide seismic retrofit program
(Wolfe and Wahbeh, 2000). The main focus remaining in this program is six of the
seven major State toll bridges, the Vincent Thomas Bridge being recently completed.
One of these toll structures, the retrofit of the San Francisco-Oakland Bay Bridge

(SFOBB), is currently under construction, providing data for this research.

The SFOBB carries Interstate 80 over the San Francisco Bay eight and one quarter
miles, connecting the cities of San Francisco and Oakland (reference Figure 1.1).
The structure is divided into East Bay and West Bay crossings, also known as the
East and West Spans. The former, with four separate structure types, is scheduled for
replacement beginning next year. The West Crossing is currently being retrofit and

has numerous large viscous dampers incorporated into the retrofit strategy.

The West Bay Crossing is comprised of concrete approach spans at both ends. A
continuous truss spans from the San Francisco anchorage to the cable bent, nearly
900 feet in length. Trademark back-to-back suspension spans, centered on a 450-
foot high vertical cantilever pier in the middle of the bay and crossing from San
Francisco to Yerba Buena Island, comprise the West Bay Crossing (reference Figure
1.2). At 10,303 feet (1.95 miles) long, this crossing includes two suspension

structures (East and West) as well as a continuous span and center and island
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anchorages. Both the East and West suspension bridges are nearly identical in

length, at 4,630 feet; the West suspension bridge is merely 11 feet longer.

Figure 1.1. Site map

The retrofit design of the West Spans of the SFOBB incorporates one hundred (100)
dampers. Specification of these dampers was crucial to the success of the design in
meeting stipulated criteria. Other retrofit designs implementing viscous dampers
include the interim retrofit of the SFOBB East Spans, the Vincent Thomas
Suspension Bridge in San Pedro and the Coronado Bay Bridge in San Diego. In
each case, the design team was similarly challenged to properly specify the damper

elements. While a considerable body of work exists to assist in solving damper

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



specification problems, the choice of which of the techniques to use remains a
problem. Until now, no comprehensive evaluation of these techniques had been
completed; nor had the best techniques been selected and optimized for application,

complicating the design efforts.

Figure 1.2. West Crossing elevation, SFOBB

1.3 Research Objectives

The research contained herein attempts to quantify the class of problems associated
with viscous dampers, specifically as they are applied to retrofit strategies on large
bridge structures, such as the West Spans of the SFOBB. Health monitoring
techniques are evaluated and optimized for application to damper elements in an

effort to facilitate in sifu evaluation of their continued ability to perform as designed.

The main objective of this research is to develop an optimized set of analytical tools
that can be implemented in the field to monitor the health of the damper elements.
This research will utilize prototype and proof test data, coupled with possible
broadband data to fully characterize the dynamics of the dampers, as a means of
selection and optimization of the set of analytical tools, parametric and

nonparametric, previously developed. Additional simulations and testing are being
6
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performed currently on the campus of the University of Southern California to
further quantify the most promising analytical tools for detecting slight variations in

damper performance which might portend failure.

It is important to note that the analytical tools presented herein, do not require
extensive a priori knowledge of the damper mechanisms. Quite the contrary, while
the parametric tools require limited knowledge to allow system equation estimation,
the nonparametric tools do not require any knowledge of the system, utilizing instead
input excitation with judiciously chosen output data to analytically model the system
characteristics. Additionally, these methods do not require external forcing
functions, beyond system calibration, to reliably detect subtle changes in the
system’s dynamics. It is these subtle data shifts, captured in the first and second
moment descriptions of the data, which, when acquired and analyzed in continuous,

real-time mode, provide invaluable insight to the health of a system.
This study will focus on optimizing structural health monitoring algorithms for

specific application in field analysis. Actual implementation will require minimal

additional efforts and instrumentation.
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2.0 Literature Survey

Before launching into the detail of this research, it is important to assess that which
has been done before. Of the multitude of papers published on this topic, many were
reviewed; several warrant brief discussion. As such, this section provides a
chronological summary of key research directly and peripherally linked to the
examination embodied in this research. Topics included range from simulation
efforts to experimental studies, with selection predicated on health monitoring and
system identification techniques. A more in-depth listing of relevant papers is

included in alphabetic order in the references.

Masri and Caughey (1979) develop a nonparametric identification technique utilizing
system state variables of nonlinear systems to describe the system characteristics in
terms of orthogonal functions. A main advantage to nonparametric algorithms lies in
their inherent ability to represent systems without a priori assumptions of the system
model. The approach discussed has the further advantage of being able to
successfully model hysteretic systems, which often pose difficulties with other
nonparametric simulation algorithms. They report rapid convergence rates with
minimal execution time and storage requirements. Finally, this technique is largely

insensitive to data noise pollution.

Masri, Miller, Sassi, and Caughey (1984) present an approximate method of system

equation order reduction, utilizing conventional condensation techniques. This
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method is shown effective for the nonparametric identification of reduced-order
model generalized nonlinear restoring forces. They demonstrate the ability to reduce
the order of discrete multi-degree-of-freedom (mdof) dynamic systems, which

possess arbitrary nonlinear characteristics.

Makris and Constantinou (1990) propose a fractional derivative Maxwell model.
Said model was developed and calibrated from experimentally observed dynamic
characteristics. They report reasonable agreement between the predictions derived

from the simulation algorithm as compared with experimental results.

Constantinou and Symans (1992) present results from a series of component tests on
viscous dampers to determine mechanical characteristics, frequency and temperature
dependencies. They develop a mathematical model to describe the macroscopic

behavior of the dampers from empirical results.

Raghavendrachar and Aken (1992) discuss the application of impact testing on a
three-span reinforced concrete bridge relating to structural identification, health
monitoring and damage detection. Impact testing is performed on the structure to
facilitate damage detection and identification. They note that identification
algorithms relying on frequency shifts and few mode shapes are not adequate to
detect subtle system damage. They propose quantifying the structure flexibility with

modal testing utilizing multi-reference testing.
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.Masri, Chassiakos and Caughey (1993) discuss the application of artificial neural
networks to the identification of nonlinear dynamic systems. In this paper, the
authors demonstrate the effectiveness of neural networks for dynamic system
simulation modeling of nonlinear structural systems. As a test case, they simulate a
damped Duffing oscillator, given a deterministic excitation. The simulation model
incorporates a three-layer, feedforward neural network, which is shown to be

adequate for characterization of the internal force in the damped Duffing oscillator.

Soong (1986-1994) investigates the feasibility of viscoelastic dampers as integral
control mechanisms in large civil engineering structures. Analytical and simulation
techniques for assessing the impact of viscoelastic dampers in civil engineering
structures subjected to seismic loading are evaluated. Results are compared to those

acquired from extensive experiments.

Taylor and Constantinou (1994) utilize experimental results to demonstrate the
validity and significant energy dissipation capabilities of viscous dampers. They
report substantial displacement and inter-story drift reductions, as well as inertial
force reduction in certain favorable conditions. The degree of frequency (DOF)
insensitivity of dynamic systems with viscous dampers is discussed. Experimental

tests were performed on dampers with nonlinear viscous characteristics and marked

10
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insensitivity to temperature variations. One tested damper had a stroke of +/- 600

mm and an output force of approximately 1500 kN.

Aiken and Kelley (1995) report results from reduced-scale damper testing as
performed for the Golden Gate Bridge Seismic Rehabilitation Project. Their stated
primary research goals were to evaluate damper energy dissipation and wear
characteristics. The dampers were excited by multiple-cycle, constant velocity
displacement loads at varying amplitudes and frequencies as well as sinusoidal

displacements.

Masri, Nakamura, Chassiakos and Caughey (1996) present a neural network-based
approach for the detection of structural characteristic changes of undefined structural
systems. The approach relies on training the dynamic structural characteristics of a
“healthy” structure. Subsequently, the trained network is fed the vibration excitation
simultaneously experienced by the structure; the difference between the simulation
and actual structure outputs are compared to an allowable error deviation. Hence, a
simple error comparator defines the “health” of the structure. Damage detection is
thus facilitated by threshold evaluations. This is a very promising technique for the

application proposed.

A discussion of ambient vibration measurements is presented by Abe et al (1996).

Ambient vibration data is captured and analyzed from Japan’s “Hakucho Bridge”,

11
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located in the windy and seismically active northern region of that country. The
identification scheme employs statistical means of analysis. Captured data is
integrated using the random decrement method to cancel random measurement
components, leaving the free vibration response of the system for modal analysis

(Ibrahim, et al, 1977).

Liu and Sun (1997) develop an intelligent monitoring system for a bridge using
neural networks. In the study, a truck of constant mass is driven across the bridge at
a constant speed. The monitoring system, comprised of several back-propagation
neural networks, measures minimum and maximum elongation of the bridge and
evaluates its current condition. The study concludes that the monitoring system is an

effective means of detecting damage in bridges.

Park, Reich and Alvin (1997) investigate three approaches that use relative changes
in localized flexibility properties to detect structural damage. The approaches
evaluated are a free-free substructural flexibility method, a deformation-based
flexibility method, and a strain-basis flexibility method. The three approaches are
applied to a model ten-story building, an experimental bridge, and a hybrid
experimental-simulated engine structure. The research shows that while all three
methods are effective in determining damage locations, the strain-base substuctural

flexibility method is the most desirable.

12
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Vanik and Beck (1997) present a continual on-line Bayesian probabilistic structural
health monitoring method. This method can be useful in detecting small degrees of
damage over long periods of time. Test results using 2-DOF and 10-DOF shear

structure models are presented.

Katafygiotis and Lam (1997) also propose a Bayesian probabilistic approach for
damage detection. In this research, damage is quantified through a set of damage
parameters. These parameters are treated as random variables, and their probability
density functions are estimated, allowing a probabilistic estimate of damage.
Ultimately, damage is expressed as a finite set of damage modes, which can be

ranked according to their relative probabilities.

Al-Khalidy, et al (1997) use wavelet analysis to detect fatigue damage in structures.
The structures are modeled as linear single-degree-of-freedom (sdof) oscillators. The
work shows that detection of fatigue signals are affected by sampling rate, signal-to-
noise ratio and the vanishing moments of the wavelets used. External noise degrades
the ability to detect the impulsive signals. High sampling frequency is preferable
when small noise levels are present while low sampling frequency is suggested with

higher noise levels.

Quantitative non-destructive evaluation and probabilistic monitoring are discussed

by Achenbach, et al (1997) as complementary tools for determining structural

13
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reliability. The paper presents techniques and instrumentation for flaw detection,
including laser based ultrasonics, neural networks and integrated microsensors. In
addition, condition monitoring is studied as an assessment of residual structural

reliability.

Gaul and Sachau (1997) develop a simulation that uses active damping to control the
dynamics of flexible lightweight space structures. Nonlinear transfer behavior, often
observed in the joints of large space systems, is controlled by adapting contact
pressure. Pizoelectric elements are used in bolted connections to achieve the desired
joint pressure. Simulation studies show that greater damping performance is

achieved through the use of active joints.

Lihua and Baoqi (1997) use a neural network approach to determine the location and
strength of external forces acting on a plate structure. The structural response is
measured with several pizoelectric sensors. A neural network model is used to
determine an approximate relationship between the sensor output and the location of
the load. Once the location is found, a second neural network uses the sensor output
along with the location estimate to approximate the magnitude of the load. The
advantages of the system are (1) that the structure is simple, (2) the neural network

takes little time to train and (3) the algorithms converge well.

14
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To control structural vibration, a neural controller structural design methodology is
develobed by Yang and Lee (1997). The approach combines experimental design
with back-propagation neural network design such that the advantages of both
methods can be integrated. Optimum neural network solutions are found in an
experimental fashion, thereby eliminating the need for lengthy trial-and-error
methods. In addition, design parameters can be analyzed through variance. Eight

design parameters are used; and, an adaptive learning rate is employed.

Herrmann and Streng (1997) use neural networks to determine the location and
magnitude of damage in two dimensional truss structures. The paper evaluates
learning rules and network types as applied to the stated problem; it further discusses
dimensional analysis as a tool for problem specific data preprocessing. As well,
pruning algorithms, which are used to reduce neural network topologies, are studied.
The authors conclude that a trained neural network can effectively locate and
quantify the damage in a structural system, as long as the training patterns include a

sufficient number of characteristics to distinguish the various states of the structure.

Chong (1997) presents an overview of the NDE of civil infrastructures. In addition,
the paper outlines current projects and studies related to NDE, smart structures and

materials.

15
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Farrar and Doebling (1997) summarize their experience performing modal tests for
damage detection on a large highway bridge in its undamaged and damaged states.

The authors focus on lessons learned from this project as well as others.

A damage detection method based on the use of measured structural dynamic
response and separation by damage type is presented by Hanagud and Luo (1997).
Two types of damages are considered in the paper: delamination and stiffness loss
due to impact damage, and traverse cracks. The approach combines the use of neural

sub-networks with information obtained from the damaged structures.

Chassiakos, Masri, Smythe and Caughey (1998) present a method for on-line
identification of hysteretic systems subjected to arbitrary dynamic excitations. They
propose the use of the Bouc-Wen model as the basis of the identification scheme,
leveraging its ability to capture properties of a wide class of nonlinear systems. A
discrete-time linearized, parameterized estimator is derived for on-line hysteretic
behavior estimation. Through simulation studies, they reveal that the proposed
algorithm for on-line estimation of system behavior accurately portrays actual

system response under wide-band random excitation.

Mita (1999) presents an overview and needs assessment of health monitoring
technologies necessary to preclude future disasters such as that experienced in Kobe,

Japan after the 1995 Hyogo-Ken Nanbu Earthquake. Discussion is offered
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concerning recent contracts that have been awarded in Japan to develop new
techniques and approaches in health monitoring and adaptive structural control

techniques.

Sikorsky (1999) redefines the definition of structural health monitoring as given by
Housner, et al (1997) to include locating and estimating damage severity and
corresponding consequences (Sikorsky, 1999). He discusses Caltrans’ efforts at
developing a viable system from a corporate operations viewpoint, utilizing an
expected loss formulation proposed (Sikorsky, 1997) in a previous paper by the
author. Damage detection is facilitated by measuring the structure’s stiffness
properties following procedures outlined (Stubbs and Kim, 1996; Stubbs, et al,
1992). A simple updating algorithm is applied in comparing the measured data with

that of the established baseline.

Park and Reich (1999) review two complementary model-based localized structural
damage detection methods. The theoretical basis for these methods is a partitioned
formulation of the equations of motion. One of the two methods reviewed is based
on localized flexibility variations (Lloid and Wang, 1999; Alvina and Park, 1996).
The second method utilizes invariance properties of the elemental or substructural
transmission zeros (Reich and Park, 1999). Both methods employ a baseline
reference structure for comparison. The damage detection algorithm for the

localized flexibility approach relates the quasi-static strain output at one location to a

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



conjugate strain-based input force at another location. Comparisons of the flexibility
changes along the matrix diagonal are sufficient to uniquely identify and locate
damage. Damage detection based on localized transmission zeroes relies on a
element-by-element comparison of the transmission zeros of a particular localized
transfer function corresponding to one substructure for the reference and measured

cascs.

The practical issues associated with the implementation of effective health
monitoring systems are discussed by Hall (1999). Concerned with the appropriate
identification and subsequent development of data management systems for the
purposes of health monitoring, he espouses a thorough, disciplined approach to the
engineering and technicél data management aspects of any viable structural health

monitoring system.

Lee and Liang (1999) address several pertinent concerns inherent in bridge
monitoring systems, namely, signal-to-noise ratios and the relation of measured
vibrational data to damage thresholds. They propose a revised modal parameter,
termed the energy transfer ratio (ETR) as a baseline signature. Next, they investigate
the application of ETR to identification and damage location. Finally, they report on

their successes in relation to conventional analysis.
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Chang, et al (1999) propose an adaptive neural network method (Doebling, et al,
1996; Atalla, et al, 1998; Masri, et al, 1993; Levin and Leven, 1998; Wu, et al, 1992;
Szewczyk and Hajela, 1994; Jiao, 1996; Luo and Hanagud, 1997) for structural
model updating and damage detection. The method employs an improved back-
propagation learning algorithm with a jump factor. A dynamic learning rate also

developed and incorporated.

Helmicki, et al (1999) demonstrate the evaluation of a steel-stringer bridge through
various monitoring techniques and field tests (Helmicki, et al, 1999). Their work
focuses on the instrumentation, data collection and processing from a steel-stringer
concrete deck composite bridge structure (HAM-126-0881) constructed in the
Cincinnati, Ohio area in 1997. Measurements were acquired throughout the
construction phases, allowing in-situ development of a health monitoring system
baseline. A total of 642 channels of data are available for future health monitoring

evaluation.

Catbas, et al (1999) present an overview of health monitoring for long span
structures. They cite the recent retrofit activities on two bridges, the Golden Gate
and SFOBB, in Northern California as examples of the need for adequate health
monitoring systems to preclude abrupt disruption to the region’s economic well
being. Their studies actually concentrate on the Commodore Barry Bridge (CBB)

spanning the Delaware River between Chester, Pennsylvania and Bridgeport, New
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Jersey. Discussions center on the appropriate modeling of the structure for baseline

development, instrumentation types and data acquisition management.

Lloyd and Wang (1999) discuss decision error minimization in probabilistic neural
networks. Their approach is to apply a Monte Carlo simulation of a two dimensional
neural network to determine the probability of not achieving a successful detection;
i.e., a miss or false alarm. They conclude that the miss probability is dependent on
the kernel density estimator window width used to characterize the training set.
Additionally, they demonstrate that through implementation of a selection based,
data driven criteria for 4, instead of using A, as selected in the MISE sense,
detection errors are not adequately impacted. Instead, they propose an algorithm
which estimates the influence of the bias error using asymptotic expansions,

resulting in reasonable detection rates.

A discourse on symptom based reliability is presented by Yao and Wong (1999). In
this paper, they explore the merits of implementing fuzzy sets to facilitate descriptive
interfacing with health monitoring systems. Issues of fatigue and as-built
environmental concerns are capable of being addressed with symptom based

reliability variables. This work is ongoing.

Hyland and Fry (1999) present a neural-genetic hybrid approach for structural health

monitoring systems. They modify neural network theory to incorporate a series of
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identical replicators, each competing to identify the system being analyzed. Their
work in many ways emulates behavioral science research, providing “rewards” to
successful replicators, by Darwinian selection criteria; the most adaptive species
prevails. The basic premise is to arbitrarily select the synaptic weights for each
replicator, then apply the system stimuli to the replicator bank. A comparator
evaluates the output of each replicator, and determines the “winning” replicator, that
which yields the lowest output error as compared to the system output. The other
replicators retain their existing weights and continue to compete, thereby increasing
system reliability and performance as these might more quickly discern and correct
for changes in the system. Applications of this methodology are potentially

numerous.

Time-domain parameter estimation techniques for structural damage detection are
presented by Sana and Rao (1999). In short, neural network based algorithms
incorporating smart actuators and sensors are discussed. A parameter identification
method based on time-domain response data is employed to extract vibration
signatures for damage detection. This method relies on accurate modeling of the
structural system under consideration (Banks, et. al., 1996), as it is determined that
the structural variations leading to damage are not well defined in a standard finite
element model. The modeling method employed is shown to easily describe the
piezoceramic patch interactions with the underlying structures, yielding good

agreement with the experimental data. Neural networks are chosen for their
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adaptability to complex unknown systems because of the inherent difficulties in
measuring the system damping ratio, hence reducing the effectiveness and reliability
of transfer function coefficients as the poles and zeros cannot be accurately placed.
Limitations to this method include difficulty in modeling complex systems, detecting

multiple damages and discerning delaminations, cracks, etc.

The application of wavelet analysis is studied and reported on by Hou and Noori
(1999). They utilize a wavelet-based approach to discern structural damage.
Structural damage is detected by locating spikes in the wavelet decomposition of the
acceleration response. A major limitation to this approach, as reported, is its
sensitivity to noise corruption, hence requiring a relatively large signal-to-noise ratio

(SNR) for accurate detection.

Bolton, et al (1999) are concerned with methods of evaluating structural
deterioration. They report on the results of a modal-based Level [V non-destructive
damage detection procedure. Data collection from in-service structures was
collected from drop hammer tests. The data was then processed to yield modal
parameters. They report that the fundamental mode shapes were in agreement with
analytical predictions; however, they also note that higher mode shapes were more
complex. Additionally, the recorded data was well above the ambient noise floor
created by traffic loading. An impact of 3000 1b peak over 50 ms was reported

sufficient to excite all structural modes necessary for damage detection algorithms.
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While the reported results were good, this method does rely on off-line post

processing of the data, and is not applicable for on-line algorithms at present.

Shinozuka and Rejaie (2000) used correlation techniques on remotely sensed pre-
and post-disaster imagery to detect damage. Camera calibration data is utilized to
achieve three-dimensional representations of the imagery. Correlation between the
baseline image and additional imagery collected at a later time is performed to detect

changes.

Free damped vibrations of a suspension bridge are studied by Rossikhin and
Shitikova (2000). The study utilizes fractional derivatives to define system damping
features. The research concludes that the use of fractional derivatives in modeling
viscosity yields a two-fold influence on a suspension bridge; the stabilizing effect of
damping of vibration amplitudes and the destabilizing effect of unstable vibratory
motions. The system is stable when the orders of the fractional derivatives
governing the damping of vertical and torsional vibrations are equal. Instability of

the system results when the fractional derivatives differ.

Long-term continuous, remote monitoring of bridges is discussed by Alampalli and
Cioara (2000). Acceleration data due to vehicular traffic was recorded and analyzed.
Fluctuations in modal frequencies due to thermal conditions were determined to set a

baseline for damage detection thresholds. Estimation of variations in the modal
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parameters of the structure were evaluated utilizing the Selective Random
Decrement Technique. An alternate method, briefly discussed, is the application of

the Fast Fourier Transform of the signal with a curve-fitting algorithm.

Several types of control strategies are investigated by Agrawal (2000) for the control
of an electromagnetic semi-active friction damper and a semi-active stiffness
damper. This study was performed with data gathered from buildings subjected to
near-field earthquakes. Data from the Northridge and Kobe earthquakes was
utilized. The research reveals that two of the semi-active dampers evaluated out-

performed other passive and semi-active dampers.

Lopes, et al (2000) utilize neural networks to detect and locate structural damage. An
external surface-bonded piezoelectric sensor/actuator excites the structure at greater
than 30 kHz to facilitate structural point impedance changes. Said changes
reportedly result from structural damage. Multiple sets of neural networks were
developed to detect, locate and characterize structural damage through examination
of variations in the measured impedance curves. In short, this method is predicated
on the knowledge that structural damage is both a local phenomena and a high

frequency effect.

Wavelet analysis of measured reflected signals is discussed by Lihua (2000).

Electrical time domain reflectometry (ETDR) (Dowing et al, 1995) techniques are

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



improved through the application of wavelet analysis. Basically, transmission line
theory is used to simulate time-domain reflection in concrete structures. Damage
thresholds are established as the sensitivity of the time-domain reflection coefficient
of the transmission line. Wavelet analysis is employed to preclude difficulties in
identifying the arrival time of the reflected signal due to attenuation and

environmental measurement noise.

Health monitoring of long-span bridges is studied by Catbas, et al (2000). The
researchers focused on the applicability of numerous data recovery stations for long-
span structures, concluding that present star topology systems wherein the data
recovery systems are centrally located are not feasible for long-span structures. The
basic premise of this paper was integrated asset management of data collection

systems for bridges.

The research by Fuchs, et al (2000) reviews the applicability of utilizing a scanning
laser-based displacement measurement instrument for monitoring large-scale civil
structures. Data was collected from several long-span specimens at the Federal
Highway Administration’s (FHWA) Turner-Fairbank Highway Research Center
(TFHRC) to determine the feasibility of implementing laser-based scanning systems

in the field. Detailed surface profiling and long-term movement data was recorded.
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Stubbs, et al (2000) present a practical methodology applicable to NDE of the
structural properties of bridges. The Damage Index Method (Stubbs ,et al, 1992)
utilizes changes in the modal strain energy, as stored in the pre- and post-damaged
structure, as an indicator of structural damage. They state that this method is capable

of locating structural damage where no baseline data is available (Stubbs and Kim,

1996).

Park, et al (2000) discuss experimental work on an impedance-based health
monitoring technique for civil structures. High frequency structural excitation (30
kHz) is applied to the structure of interest through surface-bonded piezoelectric
sensor/actuators to facilitate damage detection. Variations in structural impedance
are used as the indication that damage has occurred. Importantly, this method is not
able to predict the exact nature and size of incurred damage. Reliance on
quantitative NDE techniques such as ultrasonics (UT) or eddy current (ET) may be

required to facilitate more precise location and classification of damage.

A semi-active variable damping tuned liquid column damper is researched by Yalla,
et al (2000). Various semi-active algorithms are compared, such as clipped optimal
continuously varying and on-off approaches. Additionally, sub-optimal control

strategies using LQR/LQG and fuzzy controllers for a mdof structure with the tuned

liquid column dampers attached at the top story are studied.
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A method of localized structural health monitoring on damage detection of a bridge
column is demonstrated by Reich and Park (2000). The method is based on the

relative changes and localized flexibility properties of the structure.

Chen (2000) investigates the effect of soil-structure interaction (SSI) on the
performance of passive, semi-active and active control strategies. The research
shows that SSI tends to degrade the effectiveness of control systems. This is largely
due to the fact that damping is increased, causing the structure to behave like a rigid

body.

Choi and Kwon (2000) developed a damage detection system for a steel truss bridge
to determine the location and severity of damaged members. A finite element model
of the bridge was developed and a damaged scenario was simulated. A neural
network was implemented to determine the location of the most severely damaged

member.

Optimal instrumentation strategies for structural health monitoring methods are
presented by Paadimitridu, et al (2000). Information entropy measures of the
uncertainty in modal parameter estimates are minimized to determine optimal sensor
configuration. Structural model parameterization is used to facilitate input-output
descriptions of the structural behavior. Bayesian statistical methods are employed to

compute the information entropy of the uncertainty in the parameters of the
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structural model. A generic algorithm is utilized to evaluate the discrete
optimization problem involving minimization of the information entropy over all

possible sets of sensor configurations.

Cosner (2001) examines uncertainty quantification for application in computational
fluid dynamics (CFD). While interested in establishing confidence levels for CFD
predictions in the design process, his work on uncertainty quantification is relevant

to this effort.

Ziemianski (2001) analyzes neural network applications in damage detection
problems. He concludes that Back-Propagation Neural Networks (BPNNs) can be a

valuable tool in the analysis of structural damage problems.

Sikorsky, et al (2001) present a modal analysis of two adjacent structures on Route
86 in Riverside County. Interestingly, one structure is a conventionally reinforced
concrete slab and the other is comprised largely of carbon and glass-fiber reinforced
composite materials. Determination of system stiffness changes is accomplished by
defining damage in terms of global stiffness variations. Modal analysis of field
derived data sets are compared to finite element models of the structure without

flaws.
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Quantification of uncertainties inherent in physical systems is discussed by Doebling
and Hemez (2001). The effects of parametric variability propagation in numerical
simulations is considered in evaluating the validity of system modeling. Parametric
and nonparametric uncertainties are also studied. Monte Carlo techniques are
utilized in quantifying the effects of system variability. Correlation of response

parameter ratios is reported.

Jin and Livingston (2001) discuss the development of an extensive health monitoring
sensor network for incorporation in the new reinforced concrete Woodrow Wilson
Bridge across the Potomac River. Optimization of sensor location was determined
utilizing a detailed nonlinear finite element (FE) model. Member connectivity is
considered in the FE evaluation. Model validation will be performed during

construction phases, leading to corrections in the sensor network for final evaluation.

Vecchio and Van der Auweraer (2001) present a model-based approach to damage
detection and localization. They validate their proposed methodology with
experimental test data derived from a simple structure with artificially applied
damage scenarios. Damage localization requires a FE model. Acquired data is
processed statistically utilizing the ? approach. Structural damage is quantified by

comparing modal statistics to an undamaged reference case.
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Of the papers reviewed, those which presented the neural network approach as well
as approximate methodologies of system equation order reduction appear to be the
most promising technologies for the intended purpose. There are numerous other
papers in this burgeoning field of research. In fact, technical conferences are held
worldwide with multiple papers on this very topic. One such conference is the
annual IMAC, where a substantial number of technical papers are devoted to

technical damage detection and health monitoring.
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3.0 Theoretical Background

This chapter provides the major impetus to this research effort and presents a brief
synopsis of the system identification approaches utilized in later sections. Current
quality assurance testing specifications for dampers employed on several California

bridges are presented.

3.1 SFOBB Dampers

Figure 3.1 below provides a view of a typical tandem set of dampers as proposed for

implementation on the West Spans retrofit of the SFOBB.

FIGURE 3.1. Typical damper

Dampers can be described by a relatively simple mathematical model, as depicted in
Figure 3.2 below. This fact simplifies the development of mathematical

representations of the damper system.
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FIGURE 3.2. Descriptive mathematical model

3.2 Planned Quality Assurance Testing
The contract specifications for most dampers incorporated into State of California
highway bridges require limited testing, both at the prototype and proof levels.

These tests basically analyze the dampers at discrete frequencies. In reality, the

dampers will be exposed to numerous broadband excitations throughout their service

life. Hence, any analysis attempting to capture and quantify the dynamic

characteristics of the dampers, particularly for optimization and eventual application

of analytical NDE tools must necessarily include similar testing.

Presently, the contract specifications require the aforementioned tests to be

conducted at the newly constructed Seismic Response Modification Device Test
System (SRMD) on the campus of the University of California, San Diego. The
potential exists for the proof tests to occur at the damper manufacturing facility,

Taylor Devices Incorporated in New York, if a variance is accorded.
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While the contract specifications clearly stipulate the testing at the prototype and
proof levels, they do not broach the topic of instrumentation, opting instead to allow
the test facility the leeway to propose alternatives. In reality, the degree of
instrumentation is relatively minor to obtain the data required for the temperature
and hysteresis specifications. In fact, a thermocouple, a force transducer and a
displacement transducer are all that are needed to comply. Further discussion of

instrumentation requirements for this proposal is contained in Section 4.

3.3 Development of an Accurate Mathematical Model for an Individual Damper
Element

3.3.1 Technical approaches

Using one of the generic viscous dampers as shown in Figure 3.1, a sequence of
experimental tests was conducted to precisely characterize the force-deformation
properties of an isolated individual member. Parametric as well as nonparametric
analytical approaches were employed to furnish different formats of the member's

characteristics. These are discussed below.

3.3.1.1 Parametric identification approaches

Parametric identification approaches to structural health monitoring provide an
important class of identification procedures. Parametric methods basically attempt to
determine the value of previously identified and assigned parameters based on an

assumed representation of the dynamic system under investigation. Their value
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cannot be overestimated, as they provide analytical methodologies wherein the
estimated system parameters can easily be associated with identifiable system
parameters such as stiffness and damping. Hence, deviations in the identified model
parameters can be traced to actual changes in the system being estimated. This
allows a measured degree of identification, which may not be a precise indicator of

the source of a problem, but nonetheless yields clues for system evaluation.

Parametric methods allow identification of hysteretic systems, a particularly difficult
class of nonlinear structural behavior. Chassiakos, et al, 1998 presented an efficient
technique to develop suitable nonlinear model(s) of varying degrees of complexity;
this technique serves as the basis for the following parametric analysis.

Additionally, the parametric method studied herein for the evaluation of the damper
components on the retrofit of the West Spans of the SFOBB is capable of providing
real-time structural monitoring. This was an important point when investigating

potential on-line structural health monitoring systems.

For the dynamic system under consideration - that is, dampers - the system equation
of motion is well documented. All that remains is estimating the mass, stiffness and
damper coefficients. For the general case, the governing equation of motion can be

represented as

my X, (8) +c, %, () +k,x(1) + m %, (1)
+ ¢k, (1) + ke, (D) + £,(6) = F() CRY)
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where the matrices, m, ¢ and k are defined as the mass, damping and stiffness
matrices, F(t) is the loading matrix and f,(t) defines the nonlinear forces. Details of

this equation are found in Masri, et al (1987).

3.3.1.2 Nonparametric identification approaches

While parametric methods attempt to fit experimental data to an assumed model of
the dynamic system of interest, nonparametric methods yield a functional
representation of the dynamic system without assumed a priori knowledge.
Basically, nonparametric methods can be viewed as analytical tools to evaluate
“black box” system characteristics. Information regarding the system input
excitation and relevant output data are fed into a variety of analytical tools to yield
the internal system characteristics. Such algorithms have been finely honed in the
past fifteen years, resulting in tools that can replicate “black box” dynamic system
responses remarkably accurately within a few data samples. Examples are depicted

in the pertinent references.

The nonparametric phase of the investigation utilized two approaches:
a.) The method of Masri and Caughy (1979), whereby the effective
restoring force of the element was analytically represented in terms of
a doubly-indexed series of orthogonal polynomials involving
appropriate basis functions that depend on the element’s state

variables.
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b.) The use of artificial neural networks consisting of three-layer

feedforward nets (Masri, et al, 1993).

As with the class of parametric models, nonparametric methods can be applied to

highly nonlinear dynamic systems as easily as to linear systems. Additionally, real-

time, continuous data acquisition is possible.

3.4 Parametric Studies to Evaluate Damage Pattern Signatures

In quantifying the damper system characterization, several parametric studies were

performed. These studies established the various relevant influences acting on the

system, thereby facilitating establishment of damage detection thresholds. As in any

parametric analysis, data was collected and represented statistically.

Among the issues investigated in this task were:

L.

2.

The influence of the spectral content of the excitation on the member's behavior.
The variation of the member's properties with deformation

(excitation) level.

The influence of the direction of excitation on the member's

response.

The stationarity of the member's properties (thermal effects, wear, etc).

The level of uncertainty in the member's behavior.
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4.0 Test Apparatus

4.1 Equipment Specifications

As noted previously, calibration and initial selection and optimization was
undertaken in the labs on the campus of the University of Southern California. To
facilitate this testing, a test stand was constructed, a hydraulic actuator sized and
purchased, and a similar damper element acquired from Taylor Devices, Inc. Data

acquisition and processing was performed as delineated above.

A 10-kip Taylor Devices damper was selected for testing after discussions with both
Taylor and Enidine, the two damper manufacturers prequalified by Caltrans to bid to
supply dampers for the seismic retrofit of the SFOBB. This selection was largely
based on the fact that Taylor could provide a reasonably scaled damper with similar
internal construction as compared to the full-scale dampers specified for the SFOBB
retrofit. This damper was being reconfigured by Taylor Devices from a 20-kip
model to meet the necessary specifications for the work discussed herein; that is, a

damper force rating of 10-kips, velocity capacity of 70 ips and +-6 inch stroke.

The next step was sizing of the actuator. An 11-kip MTS Systems actuator fitted

with a 90 gpm servo valve was chosen to meet the velocity requirements of the test

plan. Basically, the sizing calculations were performed as follows:
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: ; .
n'q=90gpmservovalvex[lmm]x( Lt ]x(1728m ]

60sec 7.48 gal 1 £
4.1)
m =346.5in" / sec
The cross-sectional area of the damper piston was simply computed as
Area=_L0rce _LUKPS 4 o67in? (4.2)

Pressure 3 kips

Then, the maximum attainable velocity given the selected components was simply

m 346.5in° /sec
== =04 5ips 4.3
"4 3.667 in* P .3)

The maximum frequency component attainable with the specified equipment was
calculated from simple trigonometric formulas as

x = Asin(2nft)
(4.4)
X = 27fA cos(2nft)

where the maximum velocity was as computed above, V., = 94.5 ips = 27f4. Recall
from the damper specifications cited above that the maximum displacement is +/- 6

inches. Thus, A is equal to 6 and the maximum attainable frequency is

% 5i
g = OASIPS gy, (4.5)
274 27 (6in)

Reducing the displacement to ¥z inch peak yields a maximum frequency of 30 Hz.
Figure 4.1 pictorially depicts the frequency/displacement relationship for the

specified test components.
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FIGURE 4.1. Damper test frequency/displacement relationship

4.2 Setup
To handle the large forces and accelerations generated in this testing a massive steel

and concrete table was constructed (reference Figure 4.2).

FIGURE 4.2. SolidWorks® depiction of test stand
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Finite element modeling of the table was performed using NASTRAN®, after mesh
development in SolidWorks®. Table sizing was designed to force a natural resonant
frequency of around 50 Hz, with the actual first mode reported at 48 Hz (reference
Figure 4.3). Note that the mode shape depicted in Figure 4.4 is the seventh mode
shape. NASTRAN® reports the first six mode shapes as rigid body motions, so mode
shape number seven is the first unconstrained mode shape, often referred to as the
first mode shape in literature. Handling limitations due to existing laboratory
facilities factored heavily in the final table design. The table weight was limited to
8.2 kips, being comprised of a 9.5-inch thick concrete slab sandwiched between two

steel plates. The top plate was two inches thick, the bottom plate only one-half inch

thick.

V1

X
Output Set: Mode 7.47.88369 Hz
Deformed(0.449): Total Translation 0.000351
Contour: Total Transiation

FIGURE 4.3. Table finite element results
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5/8-inch diameter (#5) reinforcing steel studs were fillet welded in a 9.5x10-inch
pattern on each plate to ensure adequate bond to the concrete layer (reference Figure
4.4). A total of 120 reinforcing steel studs were utilized. Trunyon mounts were then
welded to the ends of the steel plates, acting as spacers for the sandwiched concrete
slab as well. The steel plates were set in a vertical plane, and concrete was placed
and vibrated in between the steel forms. The completed slab was then moved on
dollies to its final resting place on 4-8x8x1/2 TS legs located in a corner of the

basement dynamics laboratory.

View of Top and Bottom Plates

Close-up of 8x8x1/2

Fnd View Denicting Welded Stmds

FIGURE 4.4. Construction photos
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FIGURE 4.5. Table anchor blocks

The 11-kip actuator and 10-kip damper were mounted to fabricated steel anchor
blocks, which are shown in Figure 4.5. These anchor blocks are comprised of 1 and
2-inch steel plates joined with fillet welds. The anchors are designed to bolt to the
tabletop, thereby allowing flexibility with various damper sizes. The damper and

actuator components attached to the anchor blocks via bolted clevises.

The connection between the actuator and damper incorporated linear bearings to
preclude introducing moments to the damper and actuator shafts, which could lead to
premature failure of the components. This assembly was also bolted to the tabletop
to allow adjustments as warranted with new hardware. Clevises were attached to a

built-up, “T”-bracket design, 2-inch thick steel plate to mate to the linear bearings.

Completed depictions of the assembly, incorporating the actuator and damper

elements with the anchor blocks are shown in Figure 4.6. An exploded view of the
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damper/actuator connection assembly is presented in Figure 4.7. The completed

assembly is photographed in Figure 4.8.

The noise floor introduced by the bearings was measured and recorded as shown in
Figure 4.9. At 1.59 Hz, the level of noise compared to the measured acceleration
was approximately 21%. This noise was interpreted to be within the range of 1.2-2.2

Hz.

FIGURE 4.6. Completed assembly
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Hydraulic energy to the servo valve was plumbed from the existing dual sliding
tables pump located in the basement of Kaprielian Hall. A hydraulic manifold
located immediately prior to the servo valve served to reduce the head losses due to
compressibility concerns. The system was controlled by an existing MTS controller
outfitted with a special control module. A dedicated Pentium PC running Windows
NT provided data acquisition capability. The computer was networked to allow easy
data transfer to the UNIX system for data storage, manipulation and processing. A

simplified depiction of this setup is presented below in Figure 4.10.

Accumulator
Damper Actuator  Servo Valve Pump

Hyd. Manifold

Controller

FIGURE 4.10. Simplified diagram of test system
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5.0 Data Collection and Processing

An important aspect of successful research programs relates to well-planned
execution. Good research is not only technically accurate and focused, but also
replicable. This chapter provides appropriate detail related to the planning phases of
the research, including the necessary instrumentation, data collection and archiving
tools utilized. Also included is a discussion of the various processing algorithms

used for system parameter identification.

5.1 Instrumentation

Figure 5.1 depicts an idealized damper, detailing the location of sensors. The
contract specifications for seismic retrofitting of bridges in California with viscous
dampers require a thermocouple (T), a force transducer (F) and a displacement
transducer (y) to collect the necessary data for the prototype and proof testing. To
facilitate the additional testing proposed herein - to quantify and optimize the
analytical tools for health monitoring applications - additional instrumentation was
required. Basically, the addition of acceleration ( j’ ) and velocity transducers ( )
were necessary to identify system characteristics. Due to the relatively simple
dynamical system presented by viscous dampers, a single acceleration transducer and
a velocity transducer were sufficient. These instruments were optimally located, as

depicted in Figure 5.1 below.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



|"" x; (1)

/‘T(t) [—> xz(t)
11— F@)

>l J(®)

(1) = x5 (1) —x, (1)

() =%, (6) = %, (1)

FIGURE 5.1. Typical damper

5.2 Data Collection and Storage

Data collection from experimental laboratory tests was performed utilizing a
Pentium personal computer equipped with a National Instruments® AT-MIO-16X
A/D board. A LabVIEW® program was written to facilitate data acquisition and
storage. The program features eight acquisition channels and supports multiple
output channels for control signals. Acquired data was written to a user-defined text
file, which could then be read into postprocessing routines in Fortran, MSExcel® and
Matlab®, or ported to the UNIX platform in ASCII format. A user-friendly interface
allowed selection of data acquisition rates, number of channels, channel gains,
instrumentation gain factors, channel naming conventions and data file output
conventions. Acquisition rates were between 1 and 5 kHz, to ensure capturing high

frequency data.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2.1 Data Acquisition

Engineering researchers have historically modeled the complexities of natural
phenomena with reduced-order mathematical representations. Such modeling
reduces complexities to manageable levels, important for real-time data processing
as well as developing insight into the physical system. Acceptable levels of reduced-
order model inaccuracy in replicating physical system interactions and behavior
under a wide range of stimulus are defined and quantified through simulation and

experimental testing.

This research attempts to model the complex dynamics of a viscous damper as an
sdof system. In reality, dampers are highly nonlinear mdof systems with complex
mechanical/fluid interactions. Nonlinear dynamics inherent in dampers include gap
elements to model fluid/orifice interaction under reversing direction. The measured
signature of highly damped systems is largely characterized by low frequency
components. It is this fact that attracts the engineering profession to apply damping
systems for structural seismic behavior modification. However, the design of data
acquisition systems must span a broad frequency range, from nearly direct current
(DC) to high frequencies to capture the nonlinear interactions contained in the high
frequency range of the signal. Application of the Sampling Theorem (Kreysig,
1993) to avoid digitization errors requires the sampling frequency be greater than

twice the maximum frequency component of interest in the signal being sampled.
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To detail the effects of improper sampling or digitization, Figure 5.2 depicts three
iahase-plane plots of restoring force versus velocity derived from the same
experimental data set. The damper was excited by a 5 Hz sinusiodal input with a
0.25 inch peak amplitude. The external damper temperature at the beginning of the
test was 73.4°F, increasing to 78.2°F at the culmination of the 30 second test. The
data plotted in Figure 5.2a contains sampled frequency information to 5 kHz. Figure
5.2b displays the identical phase plane representation, only the data set used is
decimated by filtering, reducing the frequency content to below 1 kHz. Figure 5.2¢
represents the same data set decimated to 250 Hz. The phase-plane representation in
Figure 5.2a is noticeably rippled throughout, with large nonlinearities evident at
near-zero velocities when the system is experiencing direction reversal. The ripples
in the phase diagram indicate the presence of nonlinear system dynamics captured in
the higher frequency realm of the signal. These ripples are largely lost in Figure
5.2¢, with only limited evidence of nonlinear system behavior, substantiating the
need for higher data acquisition sampling rates to facilitate detection of subtle shifts
in the dynamic behavior of a damped system. The large excursions at low force and
velocities in the phase-plane plot are indicative of “dead-space” dynamics occurring
in the viscous fluid/orifice interaction during direction reversal. These excursions
provide a means of quantifying the orifice sizing through measurement of the length
of the spike and modeling of the fluid/orifice interaction. At elevated temperatures
or changing fluid viscosity, the fluid/orifice interaction will vary, thereby providing a

potential gage of system degradation. Thus, the data acquisition system design is a

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



critical element in successfully capturing the system dynamics to discriminate subtle

signal shifts potentially indicative of system degradation.

5.2.2 Data Storage

Data from the simulation studies, as well as from the laboratory experiments were
processed and stored in ASCII format on a UNIX platform in the USC Department
of Civil Engineering Research database (Wolfe, 1999). This database is a tool
intended to facilitate large-scale data storage resulting from the variety of research
projects undertaken at the University. Data stored in a two-dimensional ASCII array
is processed and stored efficiently in the database for future reference. The database
is a compilation of the efforts of various graduate students and Dr. Masri through the
years, dating back to the days of the VAX system (the late 1970’s through the

1980°s).

The benefits associated with the utilization of the database for the storage of research
data include the ability to quickly and easily retrieve user-defined segments of the
data for analysis. Additionally, the user can input a forty-character descriptive text
line to facilitate data definition for future reference. The data array can be n-
dimensional, given that » is specified as a parameter in the source code. In addition,
a variety of data analysis tools are available to facilitate this endeavor, including
integration codes, statistical analysis and plotting routines. The data can also be

retrieved and exported to external data analysis packages.
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In general, the database can accommodate an n-dimensional array of data for
processing and storage. The data must simply be saved in ASCII format to facilitate
the procedure. Vector storage names as well as the number of columns of data
contained in the data array to be processed must be hard-coded into the source code
prior to compilation. The present code offers the user the flexibility to add a
comment description line for the set of data being processed from one input array. A
parsing routine was written to preprocess the data, regardless of whether it is
formatted as comma, space or tab delimited. The output of this preprocessor is data

formatted in one-dimensional vectors, as required by the database.

The naming conventions used for the data collected from the instruments discussed

above were as follows:

- Displacement transducer x1
Velocity transducer xd1
Accelerometers (2 total) xdd1, xdd2
Force transducer forcel
Thermocouples (2 total) TC1, TC2

A naming convention for implementation with the USC UNIX-based database was
necessary to handle the large quantities of data generated from both the experimental
and simulation studies. First, the database allows three character descriptions in the

database file names, Dxxx.FDR and Sxxx.RUF. Databases were kept for each phase
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of the experimental and simulation testing: calibration, testing and simulation. The
testing and simulation phases consisted of a series of excitations, including
sinusoidal, swept sine, and stationary and nonstationary random. Excitation control
parameters such as amplitude, frequency, sweep time, period and degree of
nonstationarity were varied to fully characterize the system response for both the
experimental and simulation studies. This was addressed in the excitation naming
convention as noted below. The data channels stored within the databases followed

standard engineering naming conventions as noted above.

DCAL.FDR SCAL.RUF calibration

DESN.FDR SESN.RUF experimental, sine

DESW.FDR SESW.RUF experimental, swept sine

DESR.FDR SESR.RUF experimental, stationary random

DENR.FDR SENR.RUF experimental, nonstationary random

DSSN.FDR SSSN.RUF simulation, sine

DSSW.FDR SSSW.RUF simulation, swept sine

DSSR.FDR SSSR.RUF simulation, stationary random

DSNR.FDR SSNR.RUF simulation, nonstationary random
5.2.3 Excitation Log

The excitation channel naming convention linked the applied excitation to the

excitation log as defined herein. The six-character excitation channel was named
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EXCTxx. Two examples depicting the usage of the excitation log are presented

herein, one for a sinusoidal system input and the other for a random excitation.

Sinusoidal input: F(t) = Fy sin(wt)
EXCTO1 Fo=1lL,o=w,
EXCTO02 Fo=l,0=w,-90
EXCTO03 Fo=l,0=0,+3d
EXCTOm Fo=2, 0=,
EXCTOm+1 Fo=2, 0=0,-8
EXCTOm+2 Fo=2,0=0,+9d

random input: F(t)=Fy
EXCTO01 Fo=x,
EXCTO02 F() =Xy
EXCTOm Fo=xy,

Note that @, was determined in the calibration phase, where the damper was

characterized.
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5.3 Data Processing

5.3.1 Parametric Technique

As stated previously, the parametric technique proposed by Chassiakos, et al, 1998,
was investigated as a potential health monitoring tool. This method is capable of
handling the problem of identification of hysteretic systems, a particularly difficult
class of nonlinear structural behavior. Additionally, this method provides the ability
to track variations in structural parameters real-time; thus, it is suited to the time-
varying application presented herein. In the specific case of a damper element, the
hysteretic nature of the inelastic restoring force precludes expressing the nonlinear

force in algebraic form.

|—> x(t)

FIGURE 5.3. Typical damper

In formulating the problem, the sdof system depicted in Figure 5.3 to be identified is
governed by the expression

mi(t) + r(x(t), x(t)) = u(t) 5.1
where x(?) is defined as the system displacement, »(x(¢),x(t)) is the restoring force

and u(?) is the external excitation. The mass of the system is easily estimated if

unknown; in the case of the damper, the mass changes only due to loss of fluid. Both
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the external forcing function, u(?), and the system acceleration are obtained from
measurements at times #;, k= 1,.... The velocity and displacement, x(¢) and x(2), are

available by direct measurement or indirectly through integration of the signal, x(¢).

For the specific case of damper elements under investigation, the restoring force,
r(x(2),x(t)), exhibits hysteretic characteristics. Hence, the Buoc-Wen nonlinear
differential equation can be utilized to describe the restoring force as

r(x,x)=z (5.2)

= (L - ol - | 63

Varying the parameters, 7, 4, v, 3, % and n, and the combinations therein, yields

smooth hysteretic loops with differing characteristics.

The Buoc-Wen model is linearly parameterized with respect to the coefficients,
(1/mA, (1/n)vp, (1/n) vy, and nonlinearly with respect to the power, n. Because it is

desirable to implement a linearly parameterized estimator for the on-line estimation

of hysteretic systems, the model is modified as

. 1 . n=N . n-1 . n
Z= {;}{Ax - Zanv(ﬁ|xl)[zl z - }oc|z| :l (5.4)
n=1
where a,, determines the contribution of n to the hysteresis, and N is chosen to be a

sufficiently large integer.
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An equivalent discrete-time model of the system was necessary, as the measurements
were obtained at discrete-time intervals, Af; for example, a 1 kHz sample rate would

yield a 4¢ = 0.001 milliseconds. The discrete-time version of the model can be

written as

z(k) = z(k - 1) + At(lJAx(k -1
n

+ Atriv(— a, (l]vﬁpc(k —1)||z(k - 1)|"‘1 zk-)+a, ij;oe(k ~1)|z(k -1) J
n=1 77
(5.5)

Hence, the discrete-time linearly parameterized estimator is expressed as
k) =z(k—1)+ 8,(k)x(k - 1)

+ 50y, ik~ |2k~ )

n=1

=

)

(5.6)

" 2k = 1)+ 6, (k)i (k ~ D]z(k ~ 1)

where the coefficients, 6.(k), i =0,...,2N, are the estimates at time, #;, of the
corresponding coefficients from the discrete-time system equation described
above; i.e., Gy(k) is an estimate of At(1/n)A, 6,,.1(k) is an estimate of

—(At)an(1/n) v and 6,(k) is an estimate of —(At)a, (1/1) vy.

Following the established procedures of estimation theory (Ioannou, 1996), the

vector of parameter estimates at time ; is 6 (k) = [Oo(k), Oi(k), ..., On(k)]" and
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g = (6%, &4, ..., Q*ZN]T contains the actual values of the parameters being estimated.
Next, let ¢(k) be a vector containing the system measurements corresponding to each
parameter in the preceding equation at each time, #. The estimator can then be
expressed in classical form as
Fk)=z(k-1) + ¢" (k-1)O(k) (5.7)

The associated estimation etror is then

e(k) = 7(k) = r(k) = ¢" (k= D)O(k) - ¢" (k =1)8" = ¢ (k— 1B (k) (5.8)
where 6 (k)= 0(k) — 8" is the (2N + 1) x 1) vector of parameter errors between the

actual and estimated values, 6,

Actual implementation of the above estimation algorithm incorporates the gradient
projection adaptive law (Chassiakos, et al, 1998; Ioannou and Sun, 1996) and a least
squares based adaptive law (Smythe, 1998) to obtain on-line estimates of the damper

element parameters.

5.3.2 Nonparametric Techniques

5.3.2.1 Method of Masri and Caughy (1979)

In an effort to mitigate the problems associated with nonparametric identification
techniques, such as greater mathematical complexity, convergence difficulties,
excessive computational effort, restrictions on the dynamic systems to be evaluated

and restrictions on the system excitations, a simplified method was developed by
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Masri and Caughy (1979). This relatively straightforward approach allows the

identification of a broad class of dynamic models. Through the application of

regression techniques coupled with orthogonal polynomials, several advantages are

realized:

1)

2)

3.)

4)

5.)

The technique’s applicability extends to linear, nonlinear, hysteretic,
nonhysteretic and self-excited systems with limit cycles.

The type of probing signal utilized for system identification is
virtually boundless.

In the absence of a priori knowledge of the type and order of the
nonlinearities, several of the orthogonal polynomials can be
determined while the lower-order coefficients remain valid for the
higher ones.

The approximation error within the range of measurements can be
forced to oscillate nearly equally between the limits with the
application of Chebyshev polynomials.

The convergence rate is vastly improved, even for nonpolynomial

linearity types, reducing execution times.

Development of the procedure follows closely with that for the parametric technique;

that is, starting with the sdof system illustrated in Figure 5.3, the governing equation

of motion can be written as

mi(t) + r(x(t), %(t)) = u(t) (5.9)
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where x(?) is defined as the system displacement, r(x(¢),x(¢)) is the restoring force,
and u(?) is the external excitation. This equation can be rewritten as

r(x(8), x(t)) = u(t) — mi(t) (5.10)
The terms on the right-hand-side (RHS) of Equation 5.10 are known or available
from measurements. Hence, the timehistory of the restoring force, »(x(¢),x(¢)), can
be computed. In general, the basis of the procedure is to estimate the real restoring
force, r(x(r),x(t)), by an approximate function, 7(x(¢),x(¢)). This approximate

function is expressed in terms of two-dimensional orthogonal polynomials as

m2 n2

r(x, %)~ F(x, %) =Y. > C,T,(x")T; (&) (5.11)

i=0 j=0
where the T”s are defined as Chebyshev polynomials. One of the attractive attributes
of Chebyshev polynomials, besides their orthogonal nature, is the fact that they yield

an equi-ripple approximation within a prescribed interval of interest.

The normalized values, x',x" of xand x, are defined as

xl — [x—(xmax +xmin)/2]

5.12
[(xmax - xmin ) / 2] ( )
J.C’ = [x_.(‘xmax -ltxmin)/z] (513)
[(xmax _xmin )/2]
The Chebyshev polynomials are defined as
T (&) =cos(ncos™ &) -1<&<1 (5.14)
which can be shown to satisfy the weighted orthogonality property
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1 0 n#+m
1T, (&)ds _ % ne=m£0 (5.15)

1= P n=m=0

where w(x) =1/4/1—x? is the weighting function. A graphical representation of the
g

Chebyshev polynomials is presented in Figure 5.4.

The least-squares Chebyshev polynomial approximation, 7(x,x) of r(x,x), yields

coefficients, Cy, as

(2/7)*v iand j#0
C,=s@/z"  iorj=0 (5.16)
/7w  i=j=0

where
L= [ ‘[f’(x,y)T,-(X)T,-(y) w(x) w(y)dx dy (5.17)

Transforming to polar coordinates yields

0

V= [ vE(cos~1 x, cos™ NT(OT;($)dOdg (5.18)

To facilitate numerical integration, the above is discretized as

MX2 NY2

v=> 1, cosli(A0)(k — D]cos|j (Ag) (I -~ D]AO Ag (5.19)

=1 j=l

The equally spaced increments in @and ¢ are given by
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T

AO =—rr

MXx?2
(5.20)

r
Ap=——+
¢ NY2
and
r, =r(coséd,, cosg,)

0, =k -1)A0 0<O0=<n7m (5.21)

¢, =10-DAg 0<s¢g<nm
The restoring force is computed at equally spaced intervals in dand ¢ while the
physical data are available for only a portion of the (x, X) or (6 ¢) planes. Thus, a

two-dimensional interpolation scheme is utilized to compute the restoring force.

1.1 Y
L < - /’ Y 0“1 Order ~
1 ya N F) \\ PRy
0.825 \ \ . 7 \ 7 X g I-’
r . ‘ .
\ 3" Order \// N\ 1% Order / I’
0.55 -+ / 2 A = L1
s AN \ p I
Y AN v /1
Vo / . 1Nl Ry
0.275 +— N F A N\ ; 71
\ TR / \ e \ '/ ;!
- '\ R / | . \ , o
= 0 3 ! \ / ) o i /‘ 1
v 2 Order 4 . \ 4 O{der / / I’
0.275 * / e’ \ / .
n \- /’ L i \‘ \ /' / T
A N \ A ; II
y \ ’( 1y '( yl
0.55 {— T < 7 /
coN N 20N /
AP E EN NN
0.825 - ’ < X AN
o LT \ / ~ - ‘N \/ 7
-~ \\_./ \‘—.......—” \s—//\._/
-1.1
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FIGURE 5.4. Chebyshev polynomials
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The Chebyshev coefficients are directly related to the surface, »(x, x), over the range

—1<x'<1,-1<x'<1. For the case of the linear sdof system, the restoring force is
r(x,%) = mQ2lax + w’x) (5.22)

where o is the natural frequency, and £ is the ratio of critical damping. Given the

boundary constraints,

r(x,0) = g(x) = ma’x
(5.23)
r(0,x) = h(x) = 2{wmx

it follows that
r(x,x) = g(x) + h(x) (5.24)
Obviously, the above expression for the restoring force is simply the sum of a

function of the system displacement and a function of the system velocity only.

Generalizing the above to the nonlinear case, the restoring force approximation is

written as

ml

r(x,x)~ Y a,T,(x) + nzlb ;T () (5.25)

The above approximation of the restoring force is valid for locations in the (x,X) -

plane far removed from the measured response pairs, (x,x). The coefficients a and

b are Chebyshev polynomial coefficients for one-dimensional least squares

experimental data fitting. The a’s correspond to experimental data where |x| ~ 0; the
b’s for |x|~ 0. Hence, the coefficients are given as

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ml

r(x,0) ~ &(x) = Zai T, (x)

(5.26)
n nt
r(0,%) ~ h(%) = > b, T, ()
=0
where the coefficients can be written as
1 MX1-1 2 MX1-1
a, = —]\Z)ﬁ r(é,-,O), % =27 2, r&,0T, (&)
(5.27)
NY1-1 2 NY1-1
b, NYIZ( Sz) b, = NYIZF(O‘f)T(f)

Note that the abscissa variables x' and x' have been transformed by equations 5.12
and 5.13 to satisfy the range constraint on @in the Chebyshev polynomial. The
constraint that the interpolation scheme must generate equally spaced data is

predicated on the following definition:
. T .
¢ :cos{(2z + I)Z} i=0,1,.,n-1 (5.28)

For equidistant data points, (x,x), sufficiently close to measured data points, two-

dimensional interpolation is adequate to estimate the value of r(x,x). In general,
Equation 5.25 will yield an estimate of the unknown surface at the prescribed

locations.
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5.3.2.2 Artificial Neural Network

Another nonparametric procedure employed in this study is based on the use of
artificial neural networks for the identification of nonlinear systems. The advantages
of neural network techniques lie in their very construction; neural networks do not
perform sequential computations, as does a Von Neuman machine, being comprised
of parallel nets of simpler computational components. This fact implies that neural
networks contain more processing elements than a sequential machine such as the
Von Neuman computer and, thus, yield a higher degree of robustness. Artificial
neural networks were developed in the early 1940's to emulate the neuron in
biological studies, with much of the pioneering attributed to McCulloch and Pitts
(1943). Since they were developed to simulate biological cells’ ability to adapt,
neural networks provide an intrinsic ability to adapt to their environment. Hence,
neural networks can be applied to systems where they are given a set of “training”
parameters, a prescribed set of rules or inputs and outputs, and then can “learn”
about the system by continuously adapting their internal parameters to simulate the

training examples.

The unique simplicity of the neural network, coupled with it’s inane ability to adapt
to a prescribed system, has made it a preferred algorithm for numerous applications
where real-time adaptation and fast processing of large data sets are required.
Applications include image and speech recognition, robotics control and, more

recently, system identification.
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Neural networks are basically comprised of a replicator, which, as its name implies,
simply tries to emulate the input/output characteristics of a given unknown dynamic
system. The error between the net output and the unknown system response is
computed, and fed back through the network, resulting in adjustments to the
replicator’s synaptic weights to gradually reduce the error such that it converges to
an acceptable predefined threshold. Hence, the replicator becomes an artificial copy

of the unknown dynamic system, yielding a model of the system for future analysis.

4 Y Zy 2
X—p Wl > W2 ™ w3 .
: ; : : - LA (x, %
x —p (15x2) r —»{ (10x15) —p r ! (1x10) r =5
Vs Vis Z Z1
INPUT LAYER 1 LAYER?2 LAYER 3

(OUTPUT)

FIGURE 5.5. Multilayer feedforward neural network

As in the previous discussions, a nonlinear sdof system is illustrated in
Figure 5.3. The unknown restoring force equation follows from the discussion of
Equation 5.10 in the preceding sections. Again, it is assumed that the acceleration,

¥(t), and input excitation, u(?), are available from measurements and that the mass,
m, is known or easily estimated, so that the restoring force, r(x(¢), x(¢)), is the only

unknown to be solved for in Equation 5.10.

For the case described above in Figure 5.5, the system inputs would be the measured

displacement, x(¢), and velocity, x(¢). The network output, #(x(¢), x(¢)), is then an

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



approximation of the restoring force, #(x(¢), X(¢)). An example three-layer
feedforward network (Narendra and Parthasarathy, 1990) is depicted in Figure 5.5.
This net incorporates fifteen nodes in the first hidden layer, ten nodes in the second
hidden layer, requiring two inputs and yields one output. For the given problem at
hand, this network might well provide a reasonable estimation of the unknown
restoring force, given the system inputs of displacement and velocity. The network

topology is represented by various matrices designated by #" and bias terms, 4. For

a two-dimensional input vector , X = [x, J'C]T , the output of the network, 7(x(¢), x(t)),

is computed as

2

W'X+b'; v, =y(@), i=1..15
zZ = 2 2 - Z. | = aen
1z =W v+b7; z,=y(z), i=1..10 (5.29)

F=y(W’z+b%)

The function, ®x ), is typically defined as a sigmoid function as expressed in
Equation 5.30, and plotted in Figure 5.6.

1
y(X)=——r7 (5.30)
l1+e

The network is “trained” by presenting it with a series of discrete input vectors,

{ [x ks X ]T }, and a sequence of discrete desired output vectors, {r,}. Then, with an
initially prescribed set of weights, /', and biases, &', the input vector is propagated
forward through the network at time, #. The network output, 7, , is computed

according to the algorithms set forth in Equation 5.29. Next, the error between the
68
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network output, 7, , and the desired output, 7, , is computed. Based on a prescribed

error performance criterion, such as a least squares algorithm or other cost function
minimization procedures, the weights and biases are adjusted to reduce the error and

the process repeated until an acceptable error threshold is reached.

Evaluation of the success of the network training process is accomplished by
inputting vector sequences, { [xa . X, ]T }, not included in those used for training. A
well “trained” network should yield an output sequence, {Pa }, within acceptable

tolerance as compared to the actual system output, {r, } = {r(x,,%,)}.

X

FIGURE 35.6. Sigmoid function

A detailed partial depiction of the network is given in Figure 5.7. It is important to

note that the network topology, the number of layers and the number of nodes, are
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not stipulated by any design guidelines; rather, said selection is based on experience
and testing. For the given network, with fifteen hidden nodes in the first layer, ten
hidden nodes in the second layer, two inputs and one output, the total number of
network parameters requiring adjustment is 216. In general, the total number of

parameters for adjustment in any given network can be computed as

nmt = ninput x nW,nodes,Iayer] + nW,m)des,layerl x nW Jhodes , layer 2 +

(5.31)
nW,m)des,layerZ +...+ nbias,layerl + nhia‘s',/ayerz +..+ nbias,laycrn
wl B
— v W2
poy W N .
5 Yy . Yy
N 5 : 2
X v - v, : b _ w3
; Z z,
\ i)-4 V4 T 1 Y 1
z ¥ =
z z.
\ "75 v5 T 2 ¥ 2
z Y zZ z
\ _(, V() T 3 Y 3
T ~
N - i N ! z, - z,
T 7 7 7 > 2 b3
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| AT Z z
™ > Yo Yio : T _7 oy e
1 ’ Z z,
5 8 ]
™~ U It z v
— L Z Z
™ N 12 z _9 >
g z
N : . v, )10 ; 10
Y
N 5 v
Q T _14 - 14
15 Vis
z ¥
FIGURE 5.7. Detailed partial network topology
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6.0 Simulation Studies

6.1 Simulation

As discussed previously, computer simulations of damper elements are crucial for
the initial selection and optimization of the analytical tools necessary for real-time
data processing. Simulations were carried out utilizing the nonlinear three-
dimensional frame program 204.exe, which was developed by Dr. Masri and students
(Wolfe, 2000). Comparison simulations were developed using the

4™_order Runge-Kutta method in conjunction with the analytical tools described

herein.

6.2 Simulations using 204.in

The 204.exe program is a powerful three-dimensional, nonlinear finite element code,
which allows the user the flexibility to add elements in a three-dimensional frame
environment with nonlinear elements incorporated. An additional feature allows
multiple support excitations specified. The input file, 204.in, is designed to follow

the format depicted in Figure 6.1 below.
The 204.exe program allows user-defined integration step-size, DT, maximum
solution time, TMAX, and plot time increments, DTPLOT (reference Figure 6.2).

Hence the user has the ability to determine the resolution of the stored data for

plotting purposes.
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(0,0,0) (1,0,0)

FIGURE 6.1. 204.in model format

A4 NS

|« TMAX >|

FIGURE 6.2. Data sampling

Each element prescribed in the model must be defined. The 204.exe program allows
nine type specifications, each type delineating the number of multipliers in the

restoring force equation. For the damper problem being discussed herein, consider a
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linear sdof system with a given mass and natural period T = 2n/w. The restoring
force equation is given as

f(x,%) = mQ&wx + o*x) (6.1)
which is easily verified from mechanics. Nonlinear damper representations such as

the Duffing and Van der Pol oscillators are discussed later.

The 204.in input file represents the equation as

f(x,%) =GP(M ,D)x + GP(M,2)x + GP(M,3) x> + ... (6.2)
where M is the element number and GP() is the element multiplier. Hence, a matrix
of multipliers is created based on the number of elements specified. Linear system
representations are modeled by specifying the first two elements. Nonlinear systems

require specification of additional element multipliers.

Naturally occurring measurement errors due to uncertainties and noise thresholds can
also be simulated. Data postprocessing and storage routines are identical to those
anticipated for use with the actual measured data from laboratory testing. Thus, the
simulation studies not only enable the selection and preliminary optimization of the

analytical tools for the research, but also hone the process of data manipulation.

6.2.1 Simulated Data
A free-body diagram (FBD) of the damper element reveals that there are only five

degrees of freedom (DOF) at each end. Note that a torsional moment at ends i and j
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relies on the damper configuration, but, as a minimum, will result from the shear

stress or viscosity of the fluid.

o | o
— J

FIGURE 6.3. FBD damper model

Figure 6.4 below depicts the sdof damper as modeled in the 204.in file.

& N3
(0,0,1)

N2
(0,1,0)

N4 N1
(0,0,0) (1,0,0)

FIGURE 6.4. Single element sdof damper model

For the damper case, there are two nodes and one element, with a total of five DOF.
DT was set equal to 0.0025 seconds, TMAX to 50.0 seconds, and DTPLOT to 0.010
seconds. Element connectivity was left as given in the existing file, with the
exception that only the element between nodes 4 and 1 (N1,N4) was turned on
(reference Figure 6.4). Recall from the damper model depicted above that three
DOF exist at node 1, and two at node 4. Note that DOF’s are counted similar to
local coordinates, with DOF’s 1, 2, and 3 located at node 1, and DOF’s 4 and 5 at
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node 4. Springs with stiffness k = 10,000 are placed at all other DOF specified to

preclude numerical instability problems in the solution.

6.2.1.1 Linear systems

For a linear sdof system with unit mass, the natural period and natural frequency are

r=2% (6.3)
w

fet=l 64)
T .

Thus, the natural circular frequency is @ = 27 = 6.28318. The stiffness is then
computed as k = maf = (6.28318)° = 39.478. The coefficient of damping is

C

e

(6.5)

which implies that ¢ = 2+ km¢ =24/(27)*¢ = 4n¢ . Thus,
¢ =12.566 |45 = 0.62832. This result yields a system gain of 10, as depicted in

the plots in Figure 6.5. This figure contains six plots; the excitation, acceleration,
and velocity timehistories are contained in the first row from left to right. The
system displacement timehistory is the first plot on the second row, with the
remaining plots depicting the phase-plane relationship between the displacement and

velocity, and the displacement to restoring force.

Given the above, for the single element model specified in the damper example,
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GP(1,1) =k = 39.478, and GP(1,2) = ¢ = 0.62832 (assuming £ = 0.05). All other

multipliers for this element are set to zero since the model is to be linear.

6.2.1.1.1 Sinusoidal excitation

A test simulation was performed using a sinusoidal input with an amplitude,

Fy=39478,and w= 2~

QY
!

39.401
38478
58

=
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]
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b
2 S 4
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FIGURE 6.5. Noise-free sinusoidal damper data

Next, the data was corrupted with stationary, zero-mean noise having a standard
deviation of 0.05. The application of noise to the data was to simulate the noise
realized in typical data acquisition processes. Such noise is attributable to

instrumentation susceptibility, cabling interference and acquisition hardware.
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FIGURE 6.6. Noise-polluted sinusoidal damper data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77



Figure 6.6 displays three columns of plots, with the four rows depicting the
excitation, acceleration, velocity, and displacement records, respectively. The first
column plots the above without noise added, and hence replicates that depicted in
Figure 6.5. The second column incorporates noise to the signals. The third column
depicts a measure of the added noise. Figure 6.7 displays the internal element forces,
following the format in Figure 6.6 as described above. Note that as there is only one

element, a damper, only one row of data is plotted in Figure 6.7.
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e aen
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[+ 41778
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—

e
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o
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PR =
—i

1| [
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FIGURE 6.7. Noise-polluted internal element forces w/ sinusoidal excitation

In the following subsections, simulated damper input and output is presented
following the format described above for Figures 6.5 through 6.7. This allows for

continuity and clarity in presentation and discussion.

6.2.1.1.2 Swept-sine excitation
The simulated data developed in Section 6.2.1.1.1 incorporates a sinusoidal input.

For the purposes of scientific evaluation of the parametric and nonparametric tools,
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additional system excitation is necessary. Using the sdof model developed in the

previous section, the simulated damper is subjected to a swept-sine excitation

F(t) = F, sin[Q() ]t (6.6)
where the variable frequency (%) varies linearly between ¢ = () and ¢ = T according
to the relationship

Q()=at +b (6.7)

The coefficients of this equation are defined as

a___(a)z"a)l) b=,
o,
(6.8)
@, =€ @, =20(T}) - €(0)

where @ = ] and T = 277/@. The frequency limits are chosen as £2(0)/w = 0.5 and
OTy)/w=1.5,in sweep time Ty/T = 5. This prescribed excitation yields the large-

amplitude motion time-history record depicted in Figure 6.8 below.
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FIGURE 6.8. Noise-free swept-sine damper data

Data corruption as outlined in Section 6.2.1.1.1 above yields the following data

representation in Figures 6.9 and 6.10.
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FIGURE 6.9. Noise-polluted internal element forces w/swept-sine excitation
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FIGURE 6.10. Noise-polluted swept-sine damper data
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6.2.1.1.3 Stationary random excitation
The stationary random excitation function envelope was characterized by the
following equation:

y(t) = Ae™ (6.9)
where 4; = 1.0, A; = -0.05, and the mean of the random process, ¢ = 0, and the

standard deviation was as prescribed below.

6.2.1.1.3.1 Stationary random excitation withc =1
Again, utilizing the model developed in Section 6.2.1.1.1, simulation data was
developed with a stationary random excitation. The standard deviation was set at o

= ] to yield a slight nonlinear system behavior. The simulated data is depicted in

Figures 6.11 - 6.13.
6.2.1.1.3.2 Stationary random excitation with c =35
Additional stationary random excitation data was simulated with a standard

deviation, of o = 3 to yield a higher degree of system nonlinearities. This data is

depicted in Figures 6.14 - 6.16 below.
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FIGURE 6.11. Noise-free stationary random (o = 1) damper data
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FIGURE 6.13. Noise-polluted stationary random (¢ = 1) damper data
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6.2.1.1.4 Nonstationary random excitation
The nonstationary random excitation function envelope was characterized by the
following equation:

y(t) = Aie™ + A,e™ (6.10)
where 4; and 4, and u were as defined in 6.2.1.1.3, and 43 =-1.0, 4, = -1.5. Again,

the standard deviation was as prescribed below.

6.2.1.1.4.1 Nonstationary random excitation with ¢ =1
Returning to the model developed in Section 6.2.1.1.1, simulation data was

developed with a nonstationary random excitation. The standard deviation was set at
o= 1 to yield a slight nonlinear system behavior. The simulated data is depicted in

Figures 6.17 - 6.19.
6.2.1.1.4.2 Nonstationary random excitation with ¢ =5
Additional nonstationary random excitation data was simulated with a standard

deviation, of o= J to yield a higher degree of system nonlinearities. This data is

depicted in Figures 6.20 - 6.22 below.
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FIGURE 6.19. Noise-polluted nonstationary random (o = 1) damper data
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6.2.1.2 Nonlinear Systems
6.2.1.2.1 Duffing oscillator
The first nonlinear damper type considered is a Duffing oscillator. The restoring

force for a Duffing oscillator can be written as

fx,0)=m2 0% + @ (x + £x’)] (6.11)

where the mass, system frequency, damping coefficient and epsilon are defined as m

=1, w=1,{=0.02, £=0.003, respectively.

6.2.1.2.1.1 Nonstationary random excitation

Simulation data for the Duffing oscillator excited by nonstationary random
excitations with ¢ = 1 are given below in Figures 6.23 — 6.25, as prescribed in

Section 6.2.1.1.4.
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6.2.1.2.2 Van der Pol oscillator
A second nonlinear damper type considered is the Van der Pol oscillator. The

restoring force for this oscillator can be written as
fen)=—ell—x* )i+ x (6.12)
where the system mass, frequency and epsilon are definedasm =1, o= 1,

&= 0.2, respectively.

The Van der Pol oscillator will be discussed later.

6.3 Runge-Kutta Modeling
The Runge-Kutta computation procedure was chosen for this application largely due

to the fact that it is a self-starting method with a high degree of accuracy. The
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accuracy of the Runge-Kutta algorithm is comparable to that of a Taylor series

solution incorporating terms through .

Application of the Runge-Kutta method to the damper problem can be illustrated
with a simple second order differential equation. First, the second-order differential
equation is reduced to two first-order equations. Recall that the damper problem can
be expressed in differential form as

mi + g(x,x) = F(t) (6.13)
Performing a change of variables such that x, = x, then setting x, = %,, Equation

6.14 is reduced to the following two first-order equations:

X =X,
(6.14)
. 1
%y = F0,%,,0) = —[F(0) - g0, x,)]
A Taylor series expansion of x; and x; in the neighborhood of x,; and x3;,
respectively, yields the following two expressions:
2 2
X, =Xx,; + ) h+ 4 h—+
dt ), dt ,_ 2
(6.15)

2 2
x2=x2i+(&jh+ d x —h—+
dt )\ dr ) 2

Note that the time increment, 4f, was replaced by variable 4 for clarity of
presentation. A simpler set of equations is derived by replacing the first derivative in

the Taylor series expression depicted above with an average slope. The average
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slope for the two state variables for the system under consideration can be expressed

as

dx
X, =X, + (—1j h
dt .

(6.16)

dx,
=X, +|—=| h
Xy = Xy, (dl jl

Applying Simpson’s rule, the expanded form of the average slope in the time interval

h becomes

dxy ) _Lifdn ) fde ) (4 6.17)
a ), 6\ dt ), a ) on \d ).,

The 4™-order Runge-Kutta method follows suit with the above, except that the
second term is divided into two terms. Then, the four values of ¢, x;, x,, and fare

computed at each point i as follows:

t x, X, = X, f=%x =X
T, =t Xll'_xli Xz,—xz,. szf(Tlelale)
Tzzfi""g Xlzlei'*'Xz,“Z' X22=x2,.+Flg F2=f(T2,X12,X22)
T3=ti+'§ X132x1i+X22§ X23:x2,+le;‘ F=71T,X,,X),)

T,=t;+h X, =x +X,h X, =x, +Fh F,=f(1,,X,,X,)

Substituting the computed values into the following recurrence formulas allows the

point-wise solution of x and X as
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=X +%(le +2X22 +2X23 +X24)

X

(6.18)

=x, +%(F1 +2F, +2F, + F,)

24
Recall that the various identification algorithms are performed on the simulated
excitation data from Section 6.2.1. The various identification algorithms yield the
coefficients or weights of the mathematical representation of the system excitation.
This data is then fed into the Runge-Kutta algorithm to compute the state variables,
x;and x,. Finally, once the timehistories of x; and x; for the various identification
algorithms are computed using the Runge-Kutta method, they can be evaluated in a
mean square sense for optimization. The various steps for this process can be easily
shown in outline form as:

1. create simulated system data; x,x, 5c',r(x, x) ,

2. input simulated system data into identification algorithm to develop
mathematical representation of system; ie., the coefficients of a
polynomial or mesh fit (Chebyshev coefficients),

3. feed identified system coefficients (Chebyshev coefficients or other) into
the forward differential equation to compute the state variables,

4. finally, compare computed state variables with original simulated system

data using mean-squared error evaluation.

In addition, the Runge-Kutta routine can be used in lieu of the algorithms discussed

in Section 6.2.1 to derive the variables x and x for a known system. The restoring
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force can then be computed at each pair of variables in time, and then this
information can be fed into one of the identification algorithms to develop the
mathematical representation of the system. Figure 6.26 below presents the Runge-

Kutta procedure in flowchart form.

RUNGA
, =23 )
INPUT
m, ¢, k, F(t),At, N
x1(0), %(0) =x(0) TG =t+h/2
Xi(G) = xt+ /2 * 3%e(j-1)
l Xa(j) = %+ h/2 * F(j-1)
h=4t F(G) = { {[T()] - cX() - kX(j)}/m
t=0
< i
o
T(4) =t +h

Xi(4)=x+h*X(3)

X(4)=% +h*F(3)
F(4) = {f[T(4)] - cX(4) - kX(H}/m

!

T =t t=t+h

Xi(1)=x 1= xi+ (WO)[3%(1) + 2%(2) + 2%(3) + Xe(4)]
X(I) =% %= xi+ (WE)[F(1) + 2F(2) + 2F(3) + F(4)]
F(1) = { f[T(D)] - ¢¥(1) - kX(1)}/m

END

FIGURE 6.26. Runge-Kutta algorithm

The data derived from the previous simulations represents a sdof system

incorporating a damper element. The output information emulates measured data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from a physically realizable, instrumented system. As with physical online data, the

simulated system data can be fed into an identification algorithm.

6.3.1 Algorithm Verification
Verification of the coded Runge-Kutta algorithm was conducted by computing the
actual solution to a differential equation and comparing results against that output
from the code. A linear sdof model withm =1, k=1, and £ = 0.05 was chosen. The
excitation force was a sinusoidal input with Fy=1 and o = 1. The differential
equation of motion describing the system can be written as

mi+cx + kx = F,sin(wt) (6.19)
which reduces to

X+ 0.1% + x =sin(?) (6.20)
Note that this equation is similar to that reported in the linear solutions from the

Fortran Runge-Kutta codes. The general homogeneous solution to equation (6.20) is

ms*+cs+k=0
(6.21)

Since ¢* <4mk , the system is underdamped; hence, the solution takes the form
s, =—a+io, s,=—a-io (6.22)

where
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a=-"<", o = f—(ij (6.23)

Thus,

x,({)=e" (A cos(w't) + Bsin(a)*l))
(6.24)
x,)=Ce™ cos(a)*t - 5)

2 42 2 _B
whereC* = 4° + B and tan5—/4.

*

Substituting system parameters from above yields f = ;)— =0.159, 0 =0.05,and ©"
T

=(0.99875. Then, s; =-0.05 + 0.998751, s, = -0.05 — 0.99875i, and the homogeneous

solution can be expressed as
x, () =e"" [A c0s(0.99875¢) + Bsin(0.99875 t)] (6.25)
Next, the particular solution follows:

x,(t) = acos(wt) + bsin(w?)
x,(t) = awsin(wt) + bocos(wr) (6.26)

X,0)=- aw’ cos(wt) — bw’ sin(wt)
Substituting the above into the differential equation yields

[(k —-mw?)a+ a)cb]cos(a)t)
6.27)
+ [— wca+ (k- ma)z)b]sin(a)t) = F, sin(wf)

Equating coefficients of cosine and sine terms yields
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(k—mw*)a+wch=0

(6.28)
~wca+(k-mo*)b=F,
Coefficients a and b are computed by solving these equations simultaneously.
wc
a=—-F
’ (k - mm2)2 +(wc)
(6.29)
2
b=, E=mO )
(k - ma)z) +(wc)
Thus,
1
x, () =F —cacos(art) + (k — me? Jsin(cwr
? O(k—mcoz)2 (ca))z[ ( ) ( ]
(6.30)

x, () =—10cost
Combining the homogeneous and particular solutions by superposition, the system

differential equation solution can be written as

x(t)=e™ (A cos(a)*t)+ Bsin(a)*t))
(6.31)
1

(k - ma)2)2 +(wc)

+ F, [~ (wc)cos(et) + (k — @ c)sin(a)t)]

The final solution to the differential equation is computed by substituting the initial
conditions, x(0) = x(0) =0, yielding A =-20 and B =-1.00125. Thus, the solution

becomes
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x(0) = e ™ [10c05(0.9975¢) + 0.501255in(0.9975¢)] - 10 cost
i(f) = —0.05¢ %" [10c0s(0.9975¢) + 0.501255in(0.9975¢)] (6.32)

+¢7%'[-9.9755in(0.9975¢) + 0.5c0s(0.9975¢)] + 10sin¢

The excellent comparison between the above differential equation solution for a
system excited by a sinusoidal input and the Runge-Kutta solution of the same
system are depicted below in Figures 6.27 and 6.28. Note that the displacement and
velocity curves are nearly identical overlays. The computed “goodness-of-fit”
(reference Section 6.4) was 0.006, clearly revealing that the coded Runge-Kutta

algorithm accurately replicated the differential equation solution.

10

actual
----- R-K

Displacement
o

FIGURE 6.27. Displacement comparison
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10

Velocity
[=]
B—

-10

FIGURE 6.28. Velocity comparison

6.4 Goodness-of-fit

A measure of the goodness-of-fit between the actual surface f and the approximate
one f at n discrete points corresponding to the n pairs of data (x,, X,),i=1,2,...,n
is computed as the ratio of the root-mean-square (rms) values of f(x,x)and the

~

deviation e = f — f;
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| 172
Sf ={; ;fz(xi:xf)jl

(6.33)

Given the swept sine excitation, the goodness-of-fit was computed as shown in Table

6.1 below.
System type Solution Runge-Kutta | Chebyshev 1-D | Chebyshev 2-D
Algorithm
linear Masrietal | = ------- 0.0287 0.0167
(1979)
linear revised | @ - | meees 0.0600
Duffing revised | @ smeem ] memeee- 0.0284
Van der Pol revised | - | s 0.181

TABLE 6.1 Goodness-of-fit, e*
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6.5 Runge-Kutta Simulations

Several programs were written to facilitate the simulation and experimental studies
of multi-degree-of-freedom linear or nonlinear systems. These included a Fortran
code to generate system excitation force timehistories, a Runge-Kutta differential
equation solver, and a code for computing the Chebyshev 1D and 2D polynomial
coefficients. Matlab® was used for generating the data plots from these various

codes.

The system excitation timehistories were computed in a Fortran code called swept.
This program was designed to generate sinusoidal, swept sine, and
stationary/nonstationary random excitations. Amplitude, frequency, time

increments, beginning and maximum solution time were user-specified parameters.

The output from swept was fed into a separate Fortran code called nonlin, which
solved the system differential equation for the specified excitation. The Runge-Kutta
algorithm was utilized to solve the reverse differential equation, given the system
parameters; mass, stiffness, and damping. Nonlinear models include the Duffing,
Van der Pol, and hysteretic. This program was also designed to solve the differential
equation of motion when the system parameters were not known, but rather a
mathematical representation of the system was supplied. The system could be
represented in terms of Chebyshev 1D or 2D polynomial coefficients, or as weights

and biases defining a neural network. The state variables, displacement and velocity
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were output for each algorithm applied in the solution of the system differential

equation.

Two approaches were taken in computing the Chebyshev polynomial coefficients.
First, the procedure described in the paper by Masri et al., 1979 was programmed in
Matlab®. The raw data produced by the Runge-Kutta solution of the excited system
was read, then processed to determine the coefficients. The state variable data,
displacement and velocity, were normalized to +-1, then a user-specified tolerance
was applied along the abscissa and ordinate axes to select data for the 1D fit. Next,
the selected data was interpolated to recover equally spaced data for computation
with the cosine function. With the 1D coefficients, the 2D values were then
computed. The procedure required translating the normalized phase plane data by
cos 0, then interpolating to a specified grid. Interpolation was accomplished using

two methods, a bilinear and a quardic equation. These can be expressed as:

ﬁ;ilinear (xﬁy) = aO + al X+ a2 y + a3 xy
(6.34)

2 2
fquardic(xay)zao +tagxta,y+ra,xy+a,x +asy

The bilinear interpolation proved the most accurate in the final solution. Successful
application of the interpolation strategies required searching the normalized,
translated phase plane data for points in each quadrant surrounding each grid point.
A search radius was prescribed to ensure relative accuracy of the interpolated data at

each grid intersection. Data within this radius was searched to locate the closest
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points to the grid intersection of interest in each quadrant. Once the grid was
populated with interpolated data, the 1D Chebyshev polynomial fit was used to fill
the remainder of the grid. This phase plane grid surface representation of the system
restoring force was then integrated to compute the Chebyshev 2D polynomial
coefficients. Accuracy as measured by the goodness-of-fit algorithm described
above proved excellent for linear and pseudo-linear systems; however,
computational difficulties were encountered with most higher order nonlinear
systems. A linear example of this algorithm is illustrated in Figures 6.31-6.39, with

Figures 6.29 and 6.30 depicting the damped system and excitation, respectively.

To address the nonlinear problems, a slightly different approach was utilized.
Instead of computing the 1D Chebyshev polynomial coefficients as described above,
the system state variable phase plane data was interpolated to a grid, then the
interpolated data was extrapolated to complete the population of the grid.
Interpolation was accomplished by locating the three closest points to the grid
intersection and fitting a plane through these points. Extrapolation was performed by
stepping through the grid along the displacement axis and fitting a curve to the
interpolated grid restoring force. The fitted curve was then used to extrapolate
missing grid data along the perimeter of the interpolated data set. The above could
be further fine-tuned by extrapolating along the velocity axis after performing the
operation along the displacement axis, then averaging the results. The excellent rms

data fit reported for the extrapolation along one axis only, however, did not warrant
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additional computational effort and time. The extreme values of the restoring force
along the displacement axis were set to the computed minimum and maximum
values as there typically existed at most one interpolated value along these gridlines,
making curve fitting unreasonable. Additional polynomial smoothing algorithms
were added to adjust the extrapolated data set near the displacement extremes on the
grid. To accomplish this, polynomial curves were fit along the velocity gridlines,
covering approximately 10% of the grid space in the displacement direction. The
slope of the two points preceding the limits for application of the out-of-plane
smoothing polynomials was used to transition the smoothing algorithm. These
curves yielded a smoother restoring force surface for integration in the areas where
only limited data was available from the grid interpolation processing. Again, these
smoothing techniques were simply to address the regions on the grid where limited

interpolated data existed to provide accurate extrapolated information.

In addition to the algorithm modifications used in populating the restoring force grid,
a slightly different integration scheme was employed. The discretized integration
equation given in Masri et al., 1979, weighted all the integrated values equally,
causing the end values to be dominant. The general form of this integration routine

is depicted in Equation 6.35 below, with the limits of integration also shown.
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=MzX:NZ: ,cos[iA@(k —1)]cos[ jag(l —1)jaorg

k=1 /=1

0<i<m2-1, 0<j<n2-1 (6.35)
T V4
A= ——r, Ap=——
(Mx2-1) ¢ (NY2-1)

In lieu of this procedure, integration was performed following finite element
strategies. Each grid square was considered a finite element, and the four corner
restoring force values were summed and averaged to determine their mean value.
This mean was assumed applied at the center of each element. Once all the mean
values were computed for each finite element grid square, their sum was computed

and divided by the number of elements less one.

e

=1 \ k= I=],

(6.36)
0<i<m2-1, 0<j<n2-1

The combination of these changes yielded excellent rms error values in data
comparisons, as well as near overlays of the actual system response and the
approximated one from the computed Chebyshev polynomial coefficients. These
results are depicted below for a linear and several nonlinear models excited by swept
sinusoids. A linear example of this algorithm is illustrated in

Figures 6.40-6.43. Nonlinear cases included a Duffing oscillator, reference

Figures 6.44-6.52 and a Van der Pol oscillator, reference Figures 6.53-6.61. The

goodness-of-fit for each case is tabulated in Table 6.1, Section 6.4.
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An important note is that while the revised algorithm yielded excellent surface fits
for the various nonlinear systems investigated, the linear results were not quite as
accurate as those reported from the original methodology. This can be explained by
a review of the two methods. The method presented by Masri and Caughey utilizes
the 1D Chebyshev polynomial fit to populate the grid where interpolated data was
not available. Since the linear model can easily be replicated with 1D Chebyshev
polynomials, this algorithm results in highly accurate linear system identification
with very low polynomial order; ie., a 2x2 as depicted in the following example.
However, utilization of the 1D Chebyshev polynomials for nonlinear system

identification results in discontinuities in the restoring force surface.

These discontinuities are difficult to reconcile for the integration scheme employed
in computing the Chebyshev 2D polynomial coefficients from the populated
restoring force surface. Tests revealed that the higher the system nonlinearity, the
more pronounced the discontinuities in the populated restoring force surface.
Meanwhile, the revised algorithm does not rely on the Chebyshev 1D polynomials to
populate the grid voids, but rather applies smoothing polynomials along the
displacement axis to extrapolate using the interpolated data sets. This method then
relies largely on the actual interpolated restoring force data, with smoothing
techniques applied to rectify those areas where limited data resides, such as along the

extremes along the displacement axis. The result is a smooth rectangular grid
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surface built solely from the interpolated data. The extrapolation and smoothing
techniques applied in this algorithm do not change the values of the actual data set,

so the surface replicates the data set well.

6.5.1 Linear System Data
6.5.1.1 Excitation data
The prescribed excitation was swept-sine, as defined below:

Fi(t) = Fo sin Q(t)t

Fo=1,0,=0.5,0,=25

TJ/T =49
L’ x(1)

FIGURE 6.29. Model of nonlinear single-degree-of-freedom system
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FIGURE 6.30. Excitation data

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.5.1.2 Masri et al., 1979 algorithm

The system parameters utilized for the analysis are:

Exact f(x,%): mQcax + »°x)
(6.37)
m=1,w=1,¢=0.05

Typical time-history records for f(x, X) corresponding to a linear SDOF system

under the swept-sine excitation defined above are given in Figure 6.31.
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FIGURE 6.31. Identification data for a linear system
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6.5.1.2.1 Chebyshev approximation

The Matlab® output is listed below with comparison numbers in parentheses:

» clear all

» restorfsub('matlabin.txt',1,0.05,1,0.05,'poly1.txt','poly2.txt','minmax.txt');

xMax = 7.6622
xMin= -7.7209
xdMax = 8.0080
xdMin = -7.9022
ans= 705
ans= 1177
= -0.0202 7.6840
b= -0.0303 0.8299
r= 0.2500
xGridSize= 25
yGridSize= 25
C =-0.038530976 0.819183349
7.669988499 -0.003831229
epslD= 0.0280
eps2D=0.0167
fitCntr= 0
2-D

interpolation fit
elapsed_time = 258.9200

(7.57)

(-7.72)

(7.97)

(-7.89)

(282) % length of g(x)
(465) % length of h(xd)
(-0.09 7.63)

(-0.20 0.61)

(-0.22 0.65)
(7.64  0.003)

% counter indicating numerical instabilities encountered in

% cpu solution time in seconds

Note that timehistory data is first acquired by running a Fortran code called swept

with the prescribed frequency, time and amplitude parameters noted above. This

data is then fed into the master Fortran code which computes the Runge-Kutta

solution of the system (in this case an sdof system) and writes the displacement,

velocity and force data to a text file called matlabin. This file is then read by the

Matlab® code and processed according to the algorithms described in the above-

noted paper. This code computes the 1D and 2D Chebyshev coefficients for the data

set and plots the various fits.
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The raw data generated from the Runge-Kutta solution of the linear system

differential equation is plotted in Figure 6.32 below.
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10 10

1-D Restaring Farce
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FIGURE 6.32. State variable plots for a linear system

The coordinate system of the state variable phase plane data is transformed as

depicted in Figure 6.33 to allow application of the processing algorithm.

Normalized state-variable plot Transformed state-variable plot

o
o

velocity
(]

05

-1 05 0 05 1
displacement

FIGURE 6.33. Transformed state variable plots for a linear system
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Figure 6.34 displays the 3D mesh of interpolated equidistant points of the data set
represented in Figure 6.33. The vertical axis represents the restoring force
amplitude, while the horizontal axes represent the transformed coordinate
displacement and velocity. Figure 6.34 displays the same data set after data
averaging to remove any substantial discontinuities from the interpolated set prior to
integration. The diamond shape outline evident in Figures 6.34 and 6.35 define the
interpolated data derived from interpolating on the phase plane representation in
Figure 6.33, while the remainder of the grid was populated using the 1D Chebyshev
polynomial fit algorithm discussed earlier. Figure 6.36 simply displays the
interpolated and averaged data as seen in Figure 6.35, without the 1D Chebyshev
approximation to fill the voids in the restoring force mesh. The least-squares
Chebyshev approximation of the data represented in Figure 6.35 is given in Figure
6.37. This plot was derived from the 2D Chebyshev polynomial coefficients
computed after integrating the data in Figure 6.35 in accordance with the algorithm
presented by Masri et al, 1979. The excellent fit between the initial displacement
and velocity data utilized to derive the Chebyshev polynomial coefficients, and that
computed from these coefficients, is displayed in Figure 6.39. The actual Chebyshev
coefficients are tabulated in Table 6.2. Note that there are three curves displayed in
the displacement and velocity plots, one representative of the initial Runge Kutta
data fed into the above algorithm, and the other two representing the state variables
generated from the Chebyshev 1D and 2D polynomial fits. For the linear case,

excellent comparisons were realized with both the simpler Chebyshev 1D and 2D
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approximations of the actual system displacement and velocity. The Chebyshev 1D
approximation populates the grid entirely with the one dimensional polynomial,
instead of applying the algorithm above. This is adequate for representing linear
systems, but will not capture the subtle data shifts inherent in nonlinear systems, and
thus was only shown for the linear case for completeness. It is also important to note
that while a 1** order 2D Chebyshev representation of the data was adequate for the
linear case, higher order polynomial representations are necessary to accurately

approximate nonlinear systems.

The search radius and grid specified in the algorithm was varied to yield the highest
degree of accuracy of the fit to the original data set. Multiple iterations of the
algorithm were performed to minimize the approximation error. Plots of the error
versus search radius for specific mesh sizes are given in Figure 6.38. It is clear that

the optimum search radius was 0.25 units for a 25x25 grid mesh.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2-D interpalated values of f{x,xd)

Nl Soa
o aTaNAe

phi

theta

FIGURE 6.34. Interpolated values of f(x,x)at equidistant points in 6 and ¢ for a
linear system

2-D estimated values of f{x,xd)

FIGURE 6.35. Averaged values of f(x,X) at equidistant points in 6 and ¢ for a
linear system
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2-D estimated values of f(x,xd)

foFit

FIGURE 6.36. 2D interpolated values of f(x,x) at equidistant points in 6 and ¢ for
a linear system without 1-D data fit along perimeter

Least-squares Chebyshev polynomial approximation f{x,xd)

xGrid xdGrid

FIGURE 6.37. Least-squares Chebyshev polynomial approximation f (x,%) to
f(x,x) for a linear system
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FIGURE 6.38. Chebyshev 2D data fit error for the linear oscillator

TABLE 6.2. Chebyshev coefficients for the linear oscillator

search radius

i L) | L&D
T,(x) | -0.0385 | 0.8192
T(x) | 76700 | -0.0038

—+-20x20
—=-25x25
—-30x30
—=-35x35
—=40x40
——45x45
-+ 50x50
~—55x55
—— 60x60
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FIGURE 6.39. Comparison of exact and approximate results for the linear oscillator
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6.5.1.3 Revised algorithm

The results contained herein were generated from the revised algorithm described
above. The goodness-of-fit for this algorithm solution is given in Section 6.4, Table
6.1. As noted in the example above, typical time-history records for f(x, x)
corresponding to the linear SDOF system under the swept-sine excitation defined
above are given in Figure 6.31. Figures 6.32 and 6.33 depict the state-variable plots

and their transformed state for the linear case under consideration.

fFit

phi

FIGURE 6.40. Interpolated values of f(x,%) at equidistant points in 8 and ¢ for a
linear system
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«Grid #dGrid

FIGURE 6.41. Interpolated and extrapolated values of f(x,X) at equidistant points
in 0 and ¢ for a linear system
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00 xGrid

xdGrid

FIGURE 6.42. Least-squares Chebyshev polynomial approximation f’ (x,%) to
f(x,%) for a linear system
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The 2D Chebyshev polynomial coefficients generated as a mathematical
representation of the system with the revised algorithm are included in the
Appendices. A 20x20 polynomial representation was necessary with this algorithm,

even for the linear oscillator, as discussed previously.

6.5.2 Nonlinear System Data
6.5.2.1 Duffing oscillator
6.5.2.1.1 Excitation data

The prescribed excitation for the nonlinear Duffing oscillator was a swept-sine as

defined below:

F(t) = Fo sin Q(0)t

Fo=4, 0 =05, 0, =2.5 | | <> > Y
T/T =49 | .0

FIGURE 6.44. Model of nonlinear single-degree-of-freedom system

U
il
U
i1

-5

Excitation
Q

PO U

36 38 40 42 44 46
T

FIGURE 6.45. Excitation data
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6.5.2.1.2 Chebyshev approximation
The system parameters utilized for the nonlinear Duffing analysis are:

Exact f(x, X): ml2gap'c +o’(x+ 8x3)J
(6.38)
m=Lw=1,¢=0.02, £=0.003

Typical timehistory records for f(x, x) corresponding to a nonlinear Duffing

oscillator SDOF system under the swept-sine excitation defined above are given in

Figure 6.46 below.

ol |

il n
AR
Ml il

uT

FIGURE 6.46. Identification data for a Duffing oscillator
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Following the procedures outlined above, the raw data generated from the Runge-
Kutta solution of the nonlinear Duffing oscillator system differential equation is
plotted in Figure 6.47. Note that the data processing is performed utilizing the

modified or revised algorithm defined in Section 6.5.1.3.

10 20
5 8 10
z &
5 0 20
5 =
> 2
-5 & -10
10 20
5 0 5 10 -10 5 0 5 10
Displacement Velocity
20 20

-10

1-D Restoring Force
o

R-K Restoring Force
o

20 -20
-n A n A n -n A n | n

FIGURE 6.47. State-variable plots for a Duffing oscillator
The coordinate system of the state variable phase plane data is transformed as
depicted in Figure 6.48 to allow application of the processing algorithm.

Norrnalized state-variable plot Transformed state-variable plot

velocity

displacement

FIGURE 6.48. Transformed state-variable plots for a Duffing oscillator
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FIGURE 6.49. Interpolated values of f(x,x) at equidistant points in 6 and ¢ for a
Duffing oscillator

2R
».;t,,g,,;l

200 .
100 4]
-100
-200 ] f}';’fé‘,"’"’;/#
. 0

FIGURE 6.50. Interpolated and extrapolated values of f(x,%) at equidistant points
in © and ¢ for a Duffing oscillator
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finterp

xGrid

FIGURE 6.51. Least-squares Chebyshev polynomial approximation f (x,x) to
f(x,x) for a Duffing oscillator

The 2D Chebyshev polynomial coefficients generated as a mathematical

representation of the system with the revised algorithm are included in the

Appendices. A 20x20 polynomial representation was utilized.
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Comparison of exact and approximate results for a Duffing oscillator
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6.5.2.2 Van der Pol oscillator

6.5.2.2.1 Excitation data

The prescribed excitation for the nonlinear Van der Pol oscillator was a swept-sine as

defined below:

Fi(t) = Fo sin Q()t

Fo=10, o; = 0.5, 0, = 2.5 | <> > £
TJT =10 | . 0

FIGURE 6.53. Model of nonlinear single-degree-of-freedom system

Excitation

iy
LY
L

VIV TTEEEEY

-12

FIGURE 6.54. Excitation data
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6.5.2.2.2 Chebyshev approximation
The system parameters utilized for the nonlinear Van der Pol analysis are:

Exact f(x,%): —e(l—x*)%+x
(6.39)
m=1,¢£=02

Typical timehistory records for f(x, ) corresponding to a nonlinear SDOF system

under the swept-sine excitation defined above are given in Figure 6.55.

12

——displacement
------- velocity

Displacement/velocity
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Restoring Force
o [=2]
\
/

)
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I—

=

—
= | |
—

il
o]

24

-32

uT

FIGURE 6.55. Identification data for a Van der Pol oscillator
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Following the procedures outlined above, the raw data generated from the Runge-
Kutta solution of the nonlinear Van der Pol oscillator system differential equation is
plotted in Figure 6.56. Note that the data processing is performed utilizing the

modified or revised algorithm defined in Section 6.5.1.3.

[
2
z w
g 0 20
= S
> 2
5 3 5
g o
10 10
1} 5 0 5 10 1 10
Displacement
10 10

1-D Restoring Farce
o

R-K Restoring Faorce
o

"M s o0 5 10 - 5 0 5 10
Displacement Displacement

FIGURE 6.56. State-variable plots for a Van der Pol oscillator

The coordinate system of the state variable phase plane data is transformed as

depicted in Figure 6.57 to allow application of the processing algorithm.

Normalized state-variable plot Transformed state-variable plot

velocity

displacement

FIGURE 6.57. Transformed state-variable plots for a Van der Pol oscillator
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theta phi

FIGURE 6.58. Interpolated values of f(x,x) at equidistant points in © and ¢ for a
Van der Pol oscillator

xdGrid

xGrid

FIGURE 6.59. Interpolated and extrapolated values of f(x,%) at equidistant points
in 6 and ¢ for a Van der Pol oscillator
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xdGrid

FIGURE 6.60. Least-squares Chebyshev polynomial approximation j} (x,%) to
f(x,x)for a Van der Pol oscillator
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6.6 Statistical Analysis

As stated previously, it is the intent of this research to determine the most effective
system identification tool from the three discussed for the purpose of identifying
subtle variations in system performance which could be indicators of damper system
degradation. To accomplish this, simulation data was fed into each of the three
system identification tools and the error between the approximated system state

variables and the simulated results was computed.

Statistical analysis was introduced at this juncture in an attempt to replicate the
anticipated damper system parameter variations prevalent in any mechanical system.
With the failure threshold parameters known for the system mass, stiffness and
coefficient of damping, random perturbations in these values were added to the
original system representation. The models of the damped system used were: linear,
Duffing oscillator, and the Buoc-Wen oscillator. These oscillators are discussed at
length in section 6.5 of the text. The statistical sample size was initially set at 5000,
then revised down to 3000 as discussed later. The results of these simulations were
plotted, with the number of samples on the abscissa and the computed state variable
error on the ordinate.” Figure 6.62 depicts the systems excited by a stationary random
input, with the three lines representing the three identification algorithms under
consideration. It is important to note that these curves only represent the degree of
accuracy or level of confidence associated with the analytical tool’s ability to

replicate the system state variables; i.e., the baseline cases.
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FIGURE 6.62. Identification algorithm comparison

Based on the results of these studies, the least squares recursive algorithm and
restoring force method using Chebyshev polynomials provide the highest confidence
levels in matching the system state variables. In-depth studies of these algorithms

are presented in Sections 6.6.4.2, 6.6.4.3 and 6.6.4.4.

As the system parameters are tweaked to ascertain the sensitivity of the identification
algorithms, it is possible that one algorithm may be more sensitive to certain system
variations while another discriminates other system parameters more adeptly. In this
event, decision level fusion techniques might yield the highest degree of confidence
in identifying system degradation. Basically, this concept relies on evaluating the
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output of multiple identification algorithms, and combining the results to determine

the overall health of the system.

With the baseline cases developed for a random sample set, the parameters were
varied beyond their acceptable performance ranges to determine threshold system
identification sensitivity. The parameter variations in this analysis were first
controlled to determine the identification algorithm sensitivities, then randomly
varied about the revised degraded parameter means to further study the identification
algorithms’ robustness in quantifying the degradation. This process was repeated for

various excitation signals and the results are plotted below.

6.6.1 Quantification and Propagation of Uncertainties in Linear/nonlinear
Systems

A comprehensive Monte Carlo simulation was conducted to investigate the
propagation of uncertainties in model structure, as well as parametric uncertainties,
on the response of reduced-order nonparametric identification (NPI) system models.
These simulations were performed on the Unix machine utilizing batch file
capabilities to fully automate the studies. Known random perterbations of system
parameters, individually, then collectively, yield some variability in the restoring
force. These studies are crucial to the establishment of damage detection thresholds,

as any physical system inherently incorporates some degree of variability. Examples
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include manufactured products, where components are built within some prescribed

tolerance, and naturally occuring systems which are inherently random.

A measure of the percent error from the baseline case, defined with the system
parameters set to their mean values (m=1, k=39.478, ¢=1.2566), is quantified for
each parameter variation in Tables 6.3 and 6.4. This error in the identified system

parameter for the prescribed parameter variation is defined as

*_ p(0)
_( f(o{ ) (6.40)

£
where f* is the mean of the identified stiffness or damping from Chebyshev
polynomial coefficients for each simulation, and /7 is the exact value of the system
stiffness or damping as computed from the reference case. Following similar

notation, the frequency changes resulting from perterbing the system parameters are

quantified as

O

Aw= @

(6.41)
@

6.6.1.1. Linear model

For calibration purposes, initially these studies centered on linear models. A linear
sdof model was developed with 10% damping. This model was similar to that
discussed earlier; with a unit mass and period, and a natural frequency of 2nt. With

these parameters, the system stiffness was 39.478, and the damping coefficient was

1.2566.
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Parametric uncertainty analysis was studied by introducing randomness into the
stiffness, mass, and damping parameters, then in combination. The parameters were
randomized with a zero-mean unit variance Gaussian distribution. 5000 simulations
of each model were investigated. Further uncertainties were introduced into the
system by randomizing the excitation for each simulation. The seeds used to
generate the random numbers were different for each parameter variation, to ensure

uniqueness.

Noise pollution of 5% was added to study the NPI algorithm’s ability to detect
parametric variations under the constraint of measurement noise. Selected pdf
curves detailing these studies are included in Figure 6.63. The dashed curves on
Figure 6.63 and in the associated Appendices represent the noise polluted
simulations, while the solid lines depict the perturbed system parameters in the
absence of noise pollution. More encompassing data representation is included in
the Appendices. Results of these studies are compiled and tabulated in Tables 6.3
through 6.5, depicting the cause and effect relationship of known parameter variation
to the system restoring force. The left column of plots in Figure 6.63 depicts the
distribution of NPI Chebyshev coefficients C(1,2), and the right column depicts the

C(2,1) coefficients.
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one (reference case)

mass normally distributed (u =1, o = 0.05)

stiffness normally distributed (1= 1, o = 0.05)

damping normally distributed (un =1, o = 0.05)

all normally distributed (n=1, o = 0.05)

None (reference case)

mass normally distributed (u = 1, o = 0.05)

stiffness normally distributed (u =1, o = 0.05)

Ol o N DO W N

QO | | O] O] O] O

damping normally distributed (un =1, o = 0.05)

—_
o

all normally distributed (1 =1, o = 0.05)

TABLE 6.3. Summary of linear sdof simulation cases

T

IE

K™ 39.478 39.478 (39.47845| 39.478 |39.47845
k - 41.03719 | 40.86992 | 40.94081 | 41.00218
Ex - 0.039495 | 0.035246 | 0.037054 | 0.038597
o 6.283152 | 6.403648 | 6.392959 | 6.398501 | 6.400916
A -- 0.019178 | 0.017476 | 0.018358 | 0.018743
c 1.2566 1.2566 1.2566 |1.254344 | 1.254344
c —— 1.329195 | 1.351043 | 1.321912 | 1.331494
€¢ - 0.057771 | 0.075158 | 0.053867 | 0.061506
TABLE 6.4. Linear sdof identification results w/o noise pollution

1. 1 1.

39.478 39.478 |39.47845| 39.478 |39.47845
k - 40.95554 | 40.63259 | 40.92315 | 40.89848
€k -~ 0.037427 | 0.029235 | 0.036606 | 0.03597
o 6.283152 [ 6.397274 | 6.37437 | 6.39712 | 6.392816
Ao - 0.018163 | 0.014518 | 0.018139 | 0.017454
c" 1.2566 1.2566 1.2566 | 1.254344 | 1.254344
c - 1.48166 | 1.470834 | 1.494487 | 1.494749
Ee - 0.179102 | 0.170487 | 0.191449 | 0.191658

TABLE 6.5. Linear sdof identification results w/noise pollution
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FIGURE 6.63. Linear oscillator, noise-free and noise-polluted data
(- = w/0 noise, -- = 5% noise pollution)
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It is important to note that the pdf results depicted in Figure 6.63 statistically tend
towards Gaussian distributions for large sample sizes. This fact follows intuition and
confirms the central tendency theorem (Kreysig, 1993). Recall that the parameter
variation was normally distributed, as was the stationary random excitation. Since
the system model under investigation is linear, a second order Chebyshev
representation is adequate to accurately emulate its behavior. A Chebyshev model
with sixteen coefficients was assumed. Thus, in many of the Appendices, the
computed means of coefficients C(1,2) and C(2,1) are the only two that vary
substantially from zero. A review of the transformation to a Power Series
representation reveals that these two parameters are primary contributors to the
system damping and stiffness parameters, respectively. This transformation is

discussed in greater detail in a later section.

It can be seen from Figure 6.63 that a random perterbation of the system parameters
with noise pollution assumed at 5% does not appreciably degrade the NPI
Chebyshev identification results. These results establish the variance or variability
of a large sample set from a sdof system with quantifiable parameter uncertainties,
excited by a stationary random signal. Again, for the linear case, only two

parameters are necessary to completely quantify the system behavior.

6.6.1.2. Nonlinear model
The next phase investigated nonlinear models. One such model reviewed was a
Duffing oscillator. The Duffing oscillator parameters were established as m=1,
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k=39.478, c=1.2566, and &=11.23. To truly study the effect of the nonlinear term, ¢, a

measure of the level of nonlinearity was formulated as
3
— 80 xmax

"k, x

0 “'max

(6.42)

such that =1 resulted in a near equal contribution of the linear system stiffness and
the nonlinear term. As k and & were previously defined for the Duffing oscillator, the
level of stationary excitation was varied to affect x,,,x. An iterative approach
revealed that when the stationary excitation amplitude was 33, x,,=1.89, yielding
&=1.02. The contribution of the stiffness and Duffing nonlinear terms were 74.6 and
75.8, respectively. Next, validation of the nonlinear solution was verified by halving
the integration step size from 0.0025 to 0.00125. System response values were
nearly identical to those previously reported, with larger integration step sizes, as
expected for a stable solution. Once again, selected pdf curves detailing these
studies are included in Figure 6.64, with more details included in the Appendices.
The cause/effect relationship of the prescribed parameter variation to the system

restoring force is depicted in Tables 6.6 through 6.8.
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one (reference case)
mass normally distributed (u = 1, o = 0.05)
stiffness normally distributed (u= 1, o = 0.05)
damping normally distributed (n =1, o = 0.05)
epsilon normally distributed (e = 1, s = 0.05)
all normally distributed (1 =1, o = 0.05)

None (reference case)

mass normally distributed (u =1, o = 0.05)
stiffness normally distributed (u =1, o = 0.05)
damping normally distributed (1 = 1, o = 0.05)
epsilon normally distributed (e = 1, s = 0.05)
all normally distributed (u =1, o = 0.05)

Gl MO IO O] O O| O[O O

TABLE 6.6. Summary of Duffing oscillator sdof simulation cases

0007435] 1 1 1 [1.0007435
K 30478 | 30478 | 3047845 39478 | 30478 |30.47845
K T [41.02134 | 40.93922 | 40.00054 | 40.04738 | 40.98318
o - [0.039094 | 0.037002 | 0.036262 | 0.03722 | 0.038115
o 16283152 | 6.402411 | 6.398376 | 6.396057 | 6.399014 | 6.399432
Ao [ 0.018981 | 0.018339 | 0.017969 | 0.01844 |0.018507
O 72566 | 12566 | 12566 |1.254344| 1.2566 |1.254344
c [ 1.332604 | 1320576 | 1.304866 | 1.353308 | 1.321661
% - [0.060484 | 0.050912 | 0.056222 | 0.07696 | 0.053667

TABLE 6.7. Duffing oscillator sdof identification results w/o noise pollution

Similar to the presentation of Figure 6.63, the left column of plots in Figure 6.64
depicts the distribution of NPI Chebyshev coefficients C(1,2), and the right column
depicts the C(2,1) coefficients. As seen in the linear case, the Monte-Carlo results
plotted tend to a Gaussian norm. However, in the nonlinear case, a higher order
Chebyshev representation is necessary to fully quantify the system behavior. Also,
the robustness of the NPI Chebyshev identification algorithm discriminates 5%

noise-polluted data nearly equally as well as the reference cases without noise.
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7435

1 1 .

39.478 39.478 |39.47845| 39.478 39.478 | 39.47845

k - 40.87501 | 40.90121 | 41.64627 | 40.86564 | 40.885
€k -—- 0.035387 | 0.036039 | 0.054923 | 0.03515 | 0.035628
o 6.283152 | 6.390981 | 6.395405 | 6.453392 | 6.392624 | 6.391762
A® -- 0.017162 | 0.017866 | 0.027095 | 0.017423 | 0.017286
c”’ 1.2566 1.2566 1.2566 |[1.254344 | 1.2566 | 1.254344
c - 1.478855 | 1.519603 | 1.651211 | 1.493506 | 1.465099

€c - 0.17687 | 0.209298 | 0.316394 | 0.188529 | 0.16802

TABLE 6.8. Duffing oscillator sdof identification results w/noise pollution

6.6.2. Investigation of System Parameter Uncertainty

More intensive, high-resolution simulation studies of the sdof system were
performed by varying the system parameters, individually, then collectively. Noise
pollution effects were also included in this analysis. A Monte Carlo approach was
utilized to quantify the effects of varying the system parameters. This enabled
establishment of identification results under system parameter uncertainty or

variability.

Initially, 5000 simulations were performed. The resulting data sets were then plotted
to ascertain the required number of simulations for ergodicity. Superposing
Gaussian curves derived from pdf analysis of the varying length data sets with
identical means and variances indicates that only 3000 simulations are necessary to
achieve reasonably accurate statistical results. These results are plotted in Figures

6.65 and 6.66 below for the first eight Chebyshev coefficients. The solid line in each
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of the plots in Figures 6.65 and 6.66 represents the pdf derived from 5000
simulations as a comparison baseline. The data was retrieved from the same output
file, simply varying the number of simulations processed.

A review of these figures reveals that most of the Chebyshev coefficients are
centered about zero. This is expected for a linear system. In fact, coefficients C(1,2)
and C(2,1) deviate the most from zero, being the primary representations of the

system damping and stiffness coefficients, respectively.

As the response of the sdof damped system is most susceptible to variations in the
system stiffness, a detailed analysis was concentrated on this parameter. This is
because the contribution of the stiffness term is greatest in the restoring force
representation of the system. The stiffness parameter was varied normally by 1, 2, 3,
5,7, 10, 15, 20 and 25 percent standard deviation from the prescribed mean. This
uncertainty analysis attempts to quantify the variance expected in manufactured

dampers and evaluate the reliability of the identification algorithms.

Measurement uncertainty was investigated by introducing known stiffness and
damping parameter degradation, then applying varying levels of normally distributed
random noise. As before, the noise was additive as an epsilon error to the system
variables. Mean values of the applied noise were 1, 5, 10 and 20% of the system

excitation.
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It is important to note that in the limiting case, the linear model with constant
defining parameters yields identical identification results when a normally
distributed random excitation is fed to the system. This result is expected and further

validates the model.

The results of this study are condensed in Figures 6.67 and 6.68. The left column of
plots in both figures depict the distribution of NPI Chebyshev coefficient C(1,2), and
the right column displays the distribution of Chebyshev coefficient C(2,1). These
Chebyshev coefficients are primary contributors to the system stiffness and damping
parameters in the conversion from the Chebyshev restoring force representation to
the Power Series representation, which is discussed in detail later. Variations in the
stiffness parameter of 1, 2, 3, 5 and 7% are included in Figure 6.67. Figure 6.68
includes plots with the stiffness parameter varied normally by 1, 5, 10, 15 and 20%.
Each plot includes varying levels of noise pollution. There are four curves in each
plot; the solid line depicting 1% noise pollution, the dashed line representing 5%
noise pollution, the dot-dashed line displaying the system with 10% noise pollution,

and the dotted line depicting 20% noise pollution.

As depicted in Figures 6.67 and 6.68, the mean of the system stiffness and damping
parameters identified with the restoring force method varies only slightly with
increasing input system stiffness parameter variance. However, the distribution of

the identified stiffness and damping parameters does increase with increased input
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system stiffness variance. Additionally, it is clear from the plots that increasing
system noise reduces the ability of the identification algorithm to correctly identify
the stiffness and damping parameters. In general, the stiffness parameter can be
reasonably identified even at 20% stiffness parameter variation. Even so, the
damping parameter identification degrades substantially with only 5% measurement
noise and at greater than 10% variation of the stiffness parameter. With
measurement noise at 10% or greater, identification of the system damping
parameter with the restoring force method degrades rapidly. This result follows
intuition, as the damping component of the restoring force is much less than that of
the stiffness for a linear sdof system. Hence, the damping parameter is much more

susceptible to the effects of system noise than the stiffness parameter.
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(- = w/o noise, -- = 5% noise pollution)
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6.6.3. NPI Chebyshev to Power Series Restoring Force Equation
Representation

The NPI Chebyshev coefficients must be transformed to an equivalent Power Series
representation to allow direct correlation of computed coefficients to the assumed
physical system. While cumbersome, this transformation is fairly straightforward.
Following the presentation in Masri and Caughey [1], the estimated restoring force is

expressed in terms of two-dimensional orthogonal polynomials as

Flx, %) = ZZCUT ()T, (%) (6.43)

i=l j=1
where the T’s are chosen as Chebyshev polynomials for their equal-error
approximation within the interval of interest. The Chebyshev polynomials are

defined as
T (&) =cos(ncos™ &)  —1<&<1 (6.44)
satisfying the weighted orthogonality property

n+m
L (5) (§)d§ 77 n=m=£0 (6.45)

n=m=0
The normalized displacement and velocity values are defined as

[x - (xmax + xmin)/z] /[(xmax mm)/z]
Li— (i +%. )/ 2]/ )/2]

min max mm

(6.46)

x'
x'
The identification simulations yield the normalized Chebyshev coefficients. In order

to evaluate the accuracy of the identified coefficients, a power series expansion of
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the estimated restoring force surface described in equation (6.43) must be performed.
This expansion yields
]Ar(x:x) =(C), ~C5 —Cy, +C33)+(Cyy = Cy3 =3C,; +3C5)x'
+(Cy, =3Cyy = Coy +3C)% +(2C;5; = 2C5)x"
+(2C,; =2C)x"* +(C,, —3C,, —=3C,, +9C, x5’
+(4C,, —4C,)" +(4C,, —4C,)x" +(2Cy, —6C;, x5 (6.47)
+(2C,, —6C)x'%"* +(4C,, —12C,)x'5"
+(4C,, —12C,)x"% +(4C3)x"* %" +(8C, )x"*x"
+(8C )X %" +(16C,, )x" %"

Finally, replacing all occurrences of x’ and x' with the definition in equation (6.46)
denormalizes equation (6.47). Completing this and combining like terms yields the
denormalized power series expansion of the estimated restoring force. It can be seen
from equation (6.47) that several coefficients contribute to the stiffness and damping
terms. A detailed conversion was performed using Mathematica®, and is included in

the Appendices.

6.6.4. Investigation of System Damage Detection Methodology

Next, the damage detection methodology was investigated. The purpose was to
identify and analyze the impact of stiffness and damping parameters. Various levels
of degradation or enhancement of each were tested. Additionally, noise pollution
effects were assessed. The results for both linear and nonlinear tests are presented in

the following pages.
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6.6.4.1 Linear model

First, the nominal stiffness parameter of 39.478 was reduced by fixed percentages of
1,5, 10 and 25%. Solutions for each case were computed; and, the identification
results for the stiffness and damping parameters were verified. Then, various levels
of damping degradation and enhancement were analyzed. Finally, combinations of
stiffness and damping parameter variations were investigated. Noise pollution levels
were added to further evaluate the identification algorithm. Plots of the Chebyshev
coefficient degraded states for stiffness only, damping only and their various

combinations are given in Figures 6.69 through 6.73, respectively.

In each of Figures 6.69 through 6.73, the first column of plots represents the
Chebyshev coefficient C(1,2); the second column represents C(2,1). Each plot also
presents four curves, depicting the 1, 5, 10 and 20% noise pollution simulations

introduced earlier in Figure 6.67.

Figure 6.69 incorporates five rows of plots, labeled a through e. The two plots in row
a depict the Monte Carlo results of the undamaged system state. Those in rows b
through e represent Monte Carlo system simulations with 1, 5, 10 and 25% stiffness

degradation.

Figures 6.70 and 6.71 present only four rows of plots, as the undamaged system is

already displayed in the first row of Figure 6.69. Rows a through d in Figure 6.70
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depict Monte Carlo system simulations with 1, 5, 10 and 25% damping parameter
degradation. Figure 6.71 follows the description for Figure 6.70, except that the
damping parameter is enhanced rather than degraded by 1, 5, 10 and 25%; the

attendant plots are shown in rows a through d, respectively.

Only three rows of plots are included in Figures 6.72 and 6.73. Rows a through ¢ in
Figure 6.72 display the combined stiffness and damping parameter reductions of 1, 5
and 10%. Alternatively, in Figure 6.73, the first row depicts a 1% degradation in the
stiffness parameter degradation and a 1% enhancement of the damping parameter
enhancement. The second row represents a stiffness parameter degradation of 5%
and a damping parameter enhancement of 5%. The last row includes degradation of
the stiffness parameter by 10%, coupled with a 10% damping parameter

enhancement.
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Clearly, the data represented in Figures 6.69 through 6.73 reveal that increasing
noise pollution levels to 20% reduces the identification algorithm’s ability to

successfully detect the system state variables consistently over a large sample set.
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Interestingly, though, the mean of the identified parameters does not exhibit a large
shift for higher levels of noise pollution. The effect of increasing noise pollution for
all cases is evidenced in the variance of the distribution.

The effect of increasing the linear system stiffness parameter degradation does result
in a shift in the identified damping parameter, as illustrated in Figure 6.69.
Additionally, damping parameter degradation does have an affect on the identified
mean of the stiffness parameter. This result is highlighted in Figure 6.70. The
identitifed mean of the identified Chebyshev parameter C(2,1) when the system was
only subjected to noise pollution was reported as approximately 0.64. Under a 5%
damping parameter reduction, this value increased to approximately 0.75. A value of
0.80 was approached when the stiffness parameter was further degraded to 20%.
Similar results are reported in Figure 6.71 for damping parameter enhancement.
Recall that Chebyshev parameter C(2,1) is a primary contributor to the Power Series

linear term, which is associated with a system’s stiffness.

Figure 6.72 highlights the effect of combined stiffness and damping parameter
reduction of various levels. Figure 6.73 reveals the effect of damping parameter
enhancement and stiffness degradation. As noted earlier, the identified mean values,
while not greatly influenced by noise, do change under system parameter variances.
The effects of system parameter changes are more clearly illustrated in a review of
the statistics of the identified parameters. These effects are discussed in detail in the

following section.
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6.6.4.1.1 Identification of linear system parameters with noise pollution

A total of 77 cases were evaluated. The statistical data in each case were derived
from at least 3000 system simulations, as previously discussed. The first 20 cases
(reference Table 6.9) represent various levels of reduction in the stiffness parameter.
Cases 21 through 56 model damping enhancement and reduction (reference Table
6.10). Finally, combinations of stiffness parameter reduction and damping variations
are included in cases 57 through 77 (reference Table 6.11). All cases incorporate

several levels of noise pollution.

_ |None (referenc . .
Reduce k by 1% from 39.478 to 39.0832
Reduce k by 5% from 39.478 to 37.5041
Reduce k by 10% from 39.478 to 35.5304
Reduce k by 25% from 39.478 to 29.6085
Reduce k by 1% from 39.478 to 39.0832

JEL ) R e

7 5 du

8 5 Reduce k by 5% from 39.478 to 37.5041
9 5 Reduce k by 10% from 39.478 to 35.5304
10 5

Reduce k by 25% from 39.478 to 29.6085
Reduce k by 1% from 39.478 to 39.0832
Reduce k by 5% from 39.478 to 37.5041
Reduce k by 10% from 39.478 to 35.5304
Reduce k by 25% from 39.478 to 29.6085

e D e

om 39.478 to 39.0832

20 Reduce k by 1%

20 Reduce k by 5% from 39.478 to 37.5041
20 Reduce k by 10% from 39.478 to 35.56304
20 Reduce k by 25% from 39.478 to 29.6085

TABLE 6.9. Investigated test cases with stiffness degradation
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Reduce ¢ by 1% from 1.2566 to 1.2440
Reduce ¢ by 5% from 1.2566 to 1.1938
Reduce ¢ by 10% from 1.2566 to 1.1309
Reduce ¢ by 25% from 1.2566 to 0.9425
Increase ¢ by 1% from 1.2566 to 1.2692
Increase ¢ by 5% from 1.2566 to 1.3194
Increase ¢ by 10% from 1.2566 to 1.3823
Increase ¢ by 25% from 1.2566 to 1.5708

Alalalalalalal—

by 1% .2566 to 1.2440
Reduce ¢ by 5% from 1.2566 to 1.1938
Reduce ¢ by 10% from 1.2566 to 1.1309
Reduce ¢ by 25% from 1.2566 to 0.9425
Increase ¢ by 1% from 1.2566 to 1.2692
Increase ¢ by 5% from 1.2566 to 1.3194
Increase ¢ by 10% from 1.2566 to 1.3823
Increase ¢ by 25% from 1.2566 to 1.5708
_ |None (reference case).
Reduce ¢ by 1% from 1.
Reduce ¢ by 5% from 1.2566 to 1.1938
Reduce ¢ by 10% from 1.2566 to 1.1309
Reduce ¢ by 25% from 1.2566 to 0.9425
Increase ¢ by 1% from 1.2566 to 1.2692
Increase c¢ by 5% from 1.2566 to 1.3194
Increase ¢ by 10% from 1.2566 to 1.3823
Increase ¢ by 25% from 1.2566 to 1.5708

gyl on

(referencecase) ‘
49 Reduce ¢ by 1% from 1.2566 to 1.2440
50 Reduce ¢ by 5% from 1.2566 to 1.1938
51 Reduce ¢ by 10% from 1.2566 to 1.1309
52 Reduce c by 25% from 1.2566 to 0.9425
83 Increase ¢ by 1% from 1.2566 to 1.2692
54 Increase ¢ by 5% from 1.2566 to 1.3194
55 Increase ¢ by 10% from 1.2566 to 1.3823
56 Increase ¢ by 25% from 1.2566 to 1.5708

TABLE 6.10. Investigated test cases with damping parameter variation
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Reduce k by 1% and ¢ by 1%

65

59 Reduce k by 1% and increase ¢ by 1%
60 Reduce k by 5% and ¢ by 5%

61 Reduce k by 5% and increase c by 5%
62 Reduce k by 10% and ¢ by 10%

63 Reduce k by 10% and increase ¢ by 10%

72

5 educe k by 1% and c by
66 5 Reduce k by 1% and increase c by 1%
67 5 Reduce k by 5% and ¢ by 5%
68 5 Reduce k by 5% and increase c by 5%
69 5 Reduce k by 10% and ¢ by 10%
70 5 Red

-

Red

uce k by 10% and increase ¢ by 10%
uce k by 1%

n case)

and cSy 1%

73 10 Reduce k by 1% and increase ¢ by 1%
74 10 Reduce k by 5% and c by 5%

75 10 Reduce k by 5% and increase c by 5%
76 10 Reduce k by 10% and ¢ by 10%

77 10 Reduce k by 10% and increase ¢ by 10%

TABLE 6.11. Investigated test cases with combined parameter variation

Four distinct “damage” levels are identified in Table 6.9; stiffness reductions of 1, 5,
10 and 25%. Each level of induced damage is also simulated with various degrees of
noise pollution. Cases 1, 6, 11 and 16 are reference cases (shaded in Tables 6.9
through 6.11); i.e., they incorporate noise pollution but no “damage” to the stiffness
parameter. These cases are used as baselines to quantify the statistics of the
identified changes to the system parameters at the corresponding levels of noise

pollution.
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Error analysis is facilitated through the introduction of non-dimensional terms in
Tables 6.12 through 6.19. k* is defined as the exact stiffness value of the known
system. K7 is the exact value of the stiffness parameter for the reference case. Ak is

then a dimensionless change in £* defined as

* (0
Ak:(’f k ) (6.48)

k©
k (= kbar in the tables) represents the mean value of the identified system stiffness,
and S is the corresponding standard deviation. The dimensionless error in the

identified mean relative to the exact stiffness is defined as

e —*k*) (6.49)

k

The dimensionless change in the mean value of the identified stiffness with respect
to the corresponding mean value associated with the “undamaged” reference case

(i.e., case 1) is defined as

F-kO
The dimensionless change in & ® with respect to the identified k corresponding to

the reference case and expressed as a multiple of the corresponding standard

deviation is written as

7 _ 1 (0)
g k) (6.51)

N

Finally, a dimensionless ratio of natural frequencies, @, to the frequencies

corresponding to the “undamaged” reference case is computed as
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—p©
Ao =2 (6.52)

Tables 6.12 through 6.22 include measures E, R, and D derived from the stiffness
parameter as well as the damping parameter. The first seven rows in each table are
dedicated to the dimensionless variations computed from the stiffness parameter.
The last seven rows consider the same ratios, only computed from the damping
parameter. The system frequency and associated dimensionless ratio to the

undamaged case Aw divides each table (shaded rows in Tables 6.12 through 6.22).

6.6.4.1.1.1 Identification of baseline and degraded stiffness states at 1% noise
pollution

The identified results and computed statistics for cases 1 through 5 are listed in Table
6.12. Case 1 does not include any “damage” to the system, simply noise pollution at
1%. This level of noise yields a 4% error in the mean value of the identified stiffness
and 6% in the identified damping parameter. The identified natural frequency is 6.4

Hz, which is 1.8% greater than the exact value.

Clearly, the errors detected in the stiffness and damping parameters are much greater
than that from the identified natural frequency. Thus, either one of these identified
parameters is a potential candidate for detecting system change from the reference or
baseline case. Noise pollution effects will dictate which parameter is best suited for

this application, as discussed below.
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Reviewing Case 2, a reduction of 1% in the stiffness parameter yields a 4% error in
the identified mean value of the stiffness parameter and 5% in the mean value of the

identified damping parameter. The corresponding standard deviations are 3 and 0.5.

Given the above, the stiffness parameter is a more logical choice for use in detecting
system changes when system damping is low. This point is further highlighted upon
review of cases 3, 4 and 5, where the mean and standard deviation of the identified
damping parameter does prescribe to an intuitive trend when considering the

associated induced damage.

Concentrating then on the stiffness parameter statistics only for cases 2 through 5,

the percentage change in the mean values of identified system stiffness k closely

replicate the actual stiffness parameter reduction k'. Recall from earlier definitions

that Ry is the identified version of Ak (reference equation 6.50).

A measure of the confidence level in the identified changes to the system is
represented in Dy, which reveals the quantitative change in k relative to the

reference k@ expressed as a fraction of the standard deviation. For these cases, the

measure of confidence ranges from 12 to 200 %.
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39.48 39.08 37.50 .
--- -0.01 -0.05 -0.10 -0.25
40.97 40.60 38.97 36.93 30.84
2.85 3.06 4.88 3.67 5.13
0.04 0.04 0.04 0.04 0.04
- -0.01 -0.05 -0.10 -0.25

126

126

1.26 1.26
Ac - 0.00 0.00 0.00 0.00
cbar 1.33 1.32 1.34 1.34 1.35
Se 0.38 0.48 0.82 0.51 0.98
= 0.06 0.05 0.07 0.07 0.07
R¢ - 0.00 0.01 0.01 0.02
Dq o -0.01 0.02 0.02 0.02

TABLE 6.12. Summary of identification results, stiftness degraded, 1% noise

The damage levels represented in these cases resulted in very small changes detected
in the natural frequencies, with percentages ranging from less than 1% in Case 2, to
13% in Case 5. Hence, higher levels of damage can be detected in the natural

frequency shifts, but low levels of damage are not easily discernable.

6.6.4.1.1.2 Identification of baseline and degraded stiffness states at 5% noise

pollution

Table 6.13 highlights the identified results for cases 6 through 10. The stiffness is
again degraded by 1, 5, 10 and 25 percent as in cases 2 through 5, but the noise

pollution is set at 5% for these cases.
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c* 1.26 1.26

-0.1

1.26 1.26
Ac - 0.00 0.00 0.00 0.00
char 1.48 1.63 1.562 1.63 1.60
S¢ 1.01 1.46 1.30 1.26 3.16
E; 0.18 0.22 0.21 0.22 0.27
Re - 0.04 0.03 0.03 0.08
De - 0.04 0.03 0.04 0.04

TABLE 6.13. Summary of identification results, stiffness degraded, 5% noise

Case 6 is the reference case for the simulations with 5% noise pollution. The

computed error Ej in the mean value of the identified stiffness is 3%, and the

identified natural frequency is 6.4 Hz, both similar to the values reported in

Case 1.

In cases 7 through 10, the percent change Ry in the mean values of the identified

stiffness & closely matches the artificially imposed stiffness parameter reduction k'

for each respective case. Again, this follows that reported in cases 2 through 5.

The confidence in detecting the degraded system in these cases ranges from 3% to

107%, as represented in Dy.
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6.6.4.1.1.3 Identification of baseline and degraded stiffness states at 10% noise

pollution

Cases 11 through 15 illustrate the effects of 10% noise pollution on degrading

stiffness states (reference Tables 6.9 and 6.14).

The baseline case for the computed statistics in these simulations is Case 11, which
does not incorporate any stiffness parameter degradation. The computed error Ej in
the mean value of the identified stiffness is 2%, and the identified natural frequency
is 6.3 Hz, both approximately similar to the values reported in the earlier reference
cases. However, the standard deviation of the data is substantially higher at 21. This
apparent dramatic increase in the dispersion of the data is readily evident upon
review of the plotted curves in Figure 6.69a. As the noise level increases, the
identification algorithm’s ability to discriminate data is reduced. Still, the mean
values of stiffness parameter from the respective data sets remain close to the actual
values, as reported in the error measure Ej. Figures 6.74 through 6.76 depict this
effect in bar chart form, which helps clearly illustrate the data reported in tabular
form. Again, as reported above for cases 2 through 5 and 7 through 10, the percent
change Ry in the mean values of the identified stiffness & closely matches the
artificially imposed stiftness parameter reduction k'

The confidence in detecting the degraded system in these cases ranges from 2% to

44%, as represented in Dy. This reveals a substantial reduction in the identification
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algorithm’s ability to replicate the system response from the measured state

variables.

Figure 6.77 details the shift in the identified Power Series representation of the

stiffness parameter mean from Cases 11, 13 and a 5% variation in the nonlinear term.

This plot illustrates the excellent ability of the Chebyshev algorithm to discriminate

subtle changes in system parameters, even under credible levels of noise pollution.

29,61

39.48 37.50 35.53
- -0.01 -0.05 -0.10 -0.25
40.16 39.83 38.60 36.17 29.88
20.99 14.81 37.35 24.55 23.32
0.02 0.02 0.03 0.02 0.01
— -0.01 -0.04 -0.10 -0.26

TABLE 6.14.
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Ac - 0.00 0.00
char 2.05 2.03 1.97 2.12 1.91
Se 4.47 5.98 5.57 5.95 3.30
| = 0.63 0.61 0.57 0.69 0.52
R - -0.01 -0.04 0.03 -0.07
D, - 0.00 -0.01 0.01 -0.04
Summary of identification results, stiffness degraded, 10% noise
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6.6.4.1.1.4 Identification of baseline and degraded stiffness states at 20% noise
pollution
Table 6.15 includes the linear system models polluted by 20% noise, cases 16

through 20 (reference Table 6.9).

As noted from Table 6.9, Case 16 reveals tﬁe noise polluted system response in the
absence of parameter degradation. An inspection of the error Ey and the standard
deviation Sy of the identified mean stiffness value clearly supports the conclusion
from the system polluted with 10% noise; that is, while the mean of the identified
stiffness parameter is well within acceptable tolerance levels compared to the actual
value, the dispersion of the data is dramatic. Thus, for a large enough data set, the
identification algorithm successfully discrimates the system stiffness from the noise,
but the level of confidence on an individual sample will be vastly reduced from cases

with noise pollution levels set orders of magnitude lower.
This hypothesis is supported in the computed measure of the system detection
confidence for the degraded states (cases 17 through 20), which ranges from 2% to

42%. Recall that the level of confidence was reported at 3% to 107% in cases 7

through 10.
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. . . .61
Ak - -0.01 -0.05 -0.10 -0.25
kbar 38.93 38.43 36.60 35.04 29.87
Sk 29.70 22.59 39.52 34.19 21.76
= -0.01 -0.02 -0.02 -0.01 0.01
Ry - -0.01 -0.06 -0.10 -0.23
Dy - -0.02 -0.06 -0.11 -0.42
o 6.24 6.20 6.05 5.92 5.47
Ao --- -0.01 -0.03 -0.05 -0.12
c* 1.26 1.26 1.26 1.26 1.26
Ac - 0.00 0.00 0.00 0.00
cbar 2.14 2.07 1.91 1.90 2.01
S 5.50 6.38 6.92 5.53 6.39
E. 0.70 0.65 0.52 0.51 0.60
R¢ — -0.03 -0.11 -0.11 -0.06
D, - -0.01 -0.03 -0.04 -0.02

TABLE 6.15. Summary of identification results, stiffness degraded, 20% noise

6.6.4.1.1.5 Identification of baseline and degraded/enhanced damping states at
1% noise pollution

Table 6.16 presents results from the next subset of cases, 21 through 29. These
depict the system “damaged” by inducing various levels of damping parameter
degradation and enhancement with 1% noise pollution (reference Table 6.10). Based
on this definition, the baseline for these simulations, Case 21, is identical to Case 1,

and is included here for clarity in presentation only.

Since the damping parameter is being varied in these cases, this discussion will
include effects on the identified damping parameter to the extent deemed
appropriate. Recall that the damping parameter is highly susceptible to noise effects
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as it represents a minor component in the restoring force equation for the linear
system under investigation herein. Thus, the focus of the identification algorithm’s
ability to successfully discriminate system changes should remain on the stiffness

parameter, which is not as sucseptible to the effects of noise.

Cases 22 through 25 represent simulations with the damping parameter reduced by 1,
5,10 and 25%. The errors computed in the mean of the identified stiffness
parameter for these cases hover around 3.5%. The standard deviations of the
identified stiffness mean range from 1.8 to 4.6. Note that there was no initial
reduction in the stiffness parameter. This variation in identified stiffness values
results from system noise polluting the degraded damping parameter. The
percentage change in the mean values of the identified stiffness parameter indicate
only slight variations from the reference case. The percentage change in the mean
values of the identified damping parameter for these cases follows the actual
damping parameter reduction fairly well. Recall that there is only a slight

perturbation to the system from noise for these simulations.

The computed statistics for cases 26 through 29, where the damping parameter is
increased by 1, 5, 10 and 25%, reveal similar tendencies to those reported for cases

22 through 25.
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6.6.4.1.1.6 Identification of baseline and degraded/enhanced damping states at

5% noise pollution

Table 6.17 reveals the effect of 5% noise pollution on the system with degraded and
enhanced damping parameter variations of 1, 5, 10 and 25%. Case 30 is identical to
Case 6 in Table 6.13, both representing undamaged system simulations inhibited by

5% noise.

Cases 31 through 34 represent damping parameter degradation of 1, 5, 10 and 25%
respectively. Cases 35 through 38 correspond to enhancing the damping parameter
by similar percentages. The errors in the identified stiffness parameter for these
cases do not follow a trend as before. This fact is expected for increasing system
noise due to the susceptibility of the damping parameter to noise influences, and is
seen in subsequent data sets derived from damping parameter variations under 10%
and 20% noise pollution (reference Tables 6.18 and 6.19). The measure of the
percentage change in the mean values of the identifed damping parameter R, holds

the best hope for identifying system change in these cases.

6.6.4.1.1.7 Identification of baseline and degraded/enhanced damping states at
10% and 20% noise pollution

The effects of higher noise pollution levels on the system with damping reduction
and enhancement are detailed in Tables 6.18 and 6.19. A total of 18 cases are

tabulated in these two tables (reference Table 6.10). Cases 39 and 48 are identical to
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cases 11 and 16, respectively (reference Tables 6.9 and 6.10); these are included only

for clarity.

The identified stiffness parameters are relatively close to the actual values, but the
dispersion of the data in each case is dramatic, revealing the effects of noise
pollution on the damping parameter. Additionally, large errors are noted in the
identified damping parameter mean values. The only conclusion that can be drawn
from these cases is that the sign of the confidence level measure follows the change
in the damping parameter; negative when the damping parameter is reduced and

positive when enhanced.
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6.6.4.1.1.8 Identification of baseline and combined variations in stiffness and

damping states at 1, 5 and 10% noise pollution

The last linear cases considered incorporate combined stiffness and damping
parameter changes to the system. The results of these cases are presented in Tables
6.20 through 6.22. The effects of noise pollution at levels of 1, 5 and 10%
differentiate the data in each of these three tables. Parameter variations are outlined

in Table 6.11.

A review of the percent change Ry in the mean values of the identified stiffness again
closely matches the induced stiffness parameter reduction in these results, with the
exception when the damping parameter is enhanced by 1% under 1% noise pollution.
In all cases, the value of Ry is several percent higher, indicating susceptibility to

system noise, as noted earlier.

The dispersion of the data indicated by the standard deviation of the identified
stiffness parameter S; also follows trends discussed previously. Increasing noise
pollution results in lower expected accuracy of the identified results for an individual
simulation, while the identified mean value closely replicates the actual parameter

degraded state.

The confidence measure Dy ranges from 15% to 180% for the tabulated results in

Table 6.20. This measure degrades when the noise pollution levels increase, as
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indicated in Tables 6.21 and 6.22. D, varies from 3% to 69 % in Table 6.21, and 3%

to 16% in Table 6.22.

Changes in the system natural frequencies for these cases track levels of change in
the stiffness parameter, but do not discriminate changes in the damping parameter

well. This is particularly true at higher values of stiffness parameter degradation.

The only definitive conclusion to be drawn from a review of the statistics computed
with the identified damping parameters is that noise pollution clearly dominates the
result. The measure of confidence in detecting changes to the system state utilizing
the damping parameter range from 4% to 35% in Table 6.20 with 1% noise
pollution, and quickly deteriorate under higher levels of noise pollution. At 10%

noise pollution, the maximum confidence level is only 4%, as detailed in Table 6.22.
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6.6.4.2 Nonlinear model

Nonlinear systems were also investigated. As an example, results from simulations
of a Duffing oscillator with the stiffness degraded by 1, 5, 10 and 25%, and noise
pollution levels of 0, 1 and 10% are included. The data is represented in tabulated
form similar to that discussed in Section 6.6.4.1 above. As before, the Duffing

oscillator parameters were established as m=1, k=39.478, c¢=1.2566 and &11.23.

6.6.4.2.1 Identification of nonlinear system parameters with noise pollution

A total of 30 cases of the nonlinear Duffing oscillator were evaluated. As in the
linear case, the statistical data in each case were derived from at least 3000 system
simulations. The first ten cases (reference Table 6.23) represent various levels of
reduction in the stiffness parameter. The next ten cases simulate variations in the
nonlinear term, & Finally, combinations of stiffness parameter reduction and
nonlinear term variations are included in the last ten cases, 21 through 30. All cases

incorporate two levels of noise pollution, 1% and 10%.

Following the format utilized in the linear simulations, four distinct “damage” levels
are identified in Table 6.23; reductions or enhancements of 1, 5, 10 and 25 percent.
Each level of induced damage is also simulated with various degrees of noise
pollution. Cases 1, 6, 11, 16,21 and 26 are reference cases; ie., they incorporate

noise pollution but no “damage” to the stiffness parameter. These cases are used as
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baselines to quantify the statistics of the identified changes to the system parameters

at the corresponding levels of noise pollution.

1 1 None (reference case)

2 1 Reduce k by 1% from 39.478 to 39.0832
3 1 Reduce k by 5% from 39.478 to 37.5041
4 1 Reduce k by 10% from 39.478 to 35.5304
5 1 Reduce k by 25% from 39.478 to 29.6085
6 10 None (reference case)

7 10 Reduce k by 1% from 39.478 to 39.0832
8 10 Reduce k by 5% from 39.478 to 37.5041
9 10 Reduce k by 10% from 39.478 to 35.56304
10 10 Reduce k by 25% from 39.478 to 29.6085
11 1 None (reference case)

12 1 Reduce ¢ by 5% from 11.23 to 10.6685
13 1 Increase ¢ by 5% from 11.23 to 11.7915
14 1 Reduce ¢ by 10% from 11.23 to 10.1070
15 1 Increase ¢ by 10% from 11.23 to 12.3530
16 10 None (reference case)

17 10 Reduce ¢ by 5% from 11.23 to 10.6685
18 10 Increase ¢ by 5% from 11.23 to 11.7915
19 10 Reduce ¢ by 10% from 11.23 to 10.1070
20 10 Increase ¢ by 10% from 11.23 to 12.3530
21 1 None (reference case)

22 1 Reduce k by 5% and € by 6%

23 1 Reduce k by 5% and increase € by 5%
24 1 Reduce k by 10% and ¢ by 10%

25 1 Reduce k by 10% and increase ¢ by 10%
26 10 None (reference case)

27 10 Reduce k by 5% and & by 5%

28 10 Reduce k by 5% and increase & by 5%
29 10 Reduce k by 10% and ¢ by 10%

30 10 Reduce k by 10% and increase & by 10%

TABLE 6.23. Investigated Test Cases
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6.6.4.2.1.1 Identification of baseline and degraded stiffness states at 1% noise
pollution

Table 6.24 displays statistical results for the stiffness and nonlinear terms, as do the
remaining tables in this section. The data in Table 6.24 represents statistical results
from Monte Carlo simulations with the stiffness parameter reduced by 1, 5, 10 and
25%, as noted in Table 6.23. Clearly, the errors in identifying the stiffness and
nonlinear terms are reasonable at less than 4%, except in Case 5. The variance in the
identified parameters is also very small, meaning that the identified variables are
close to their respective baseline values. Both Ry and R, closely follow the actual
parameter perterbations, with R, being zero for all cases. Since the nonlinear term

was not varied for these simulation cases, this was expected.

39.08 37.50 35.53 29.61

-0.01 -0.05 -0.10 -0.25

40.40 38.81 36.88 31.25

4.81 2.36 2.02 8.39

0.03 0.03 0.04 0.06

-0.01 -0.05 -0.10 -0.24

-0.10 -0.87 -1.98 -1.15

6.36 6.23 6.07 5.59

-0.01 -0.03 -0.05 -0.13

11.23 11.23 11.23 11.23

--- 0.00 0.00 0.00 0.00

ebar 10.78 10.81 10.83 10.82 10.77
S, 1.38 1.41 0.81 0.70 2.03
E. -0.04 -0.04 -0.04 -0.04 -0.04
R. --- 0.00 0.00 0.00 0.00
D. --- 0.02 0.07 0.06 0.00

TABLE 6.24. Summary of identification results, stiffness degradation, 1% noise
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6.6.4.2.1.2 Identification of baseline and degraded stiffness states at 10% noise

pollution

Increasing the level of noise pollution to 10% does reduce the identification

algorithm’s ability to discern system change, but not dramatically. Cases 6 through

10 in Table 6.25 highlight the detection capability for the same degraded stiffness

values used in Table 6.24, with the noise pollution level increased from 1% to 10%.

The error in identified parameters increases slightly, but the dispersion of the sample

set increases dramatically to almost three times that reported in Table 6.24.

39.48 39.08 37.50 29.61

- -0.01 -0.05 -0.25

42.43 40.60 39.96 37.89 32.52

22.91 40.86 21.19 25.42 20.18

0.07 0.04 0.07 0.07 0.10

- -0.04 -0.06 -0.11 -0.23

—— -0.04 -0.12 -0.18 -0.49

o 6.51 6.37 6.32 6.16 5.70

Aw - -0.02 -0.03 -0.05 -0.12
g 11.23 11.23 11.23 11.23 11.23

Ag - 0.00 0.00 0.00 0.00
ebar 9.33 9.65 9.48 9.55 9.50
S, 5.93 11.73 6.13 6.60 5.18

E, -0.17 -0.14 -0.16 -0.15 -0.15

R. --- 0.03 0.02 0.02 0.02

D, - 0.03 0.02 0.03 0.03

TABLE 6.25. Summary of identification results, stiffness degradation, 10% noise
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6.6.4.2.1.3 Identification of baseline and degraded epsilon states at 1% noise

pollution

AK 0.00 0.00 0.00
kbar 40.88 40.94 41.24 40.83 40.85 °
Sk 3.89 3.90 21.75 2.67 6.38
Eq 0.04 0.04 0.04 0.03 0.03
Re 0.00 0.01 0.00 0.00
Dy 0.02 0.02 -0.02 0.00
® 6.39 6.40 6.42 6.39 6.39
A 0.00 0.00 0.00 0.00
e* 11.23 10.67 11.79 10.11 12.35
Ae -0.05 0.05 -0.10 0.10
ebar 10.78 10.20 1117 9.69 11.89
S, 1.38 1.41 9.13 0.86 2.36
E, -0.04 -0.04 -0.05 -0.04 -0.04
R, -0.05 0.04 -0.10 0.10
D, -0.41 0.04 .27 0.47

TABLE 6.26. Summary of identification results, epsilon degradation, 1% noise

Cases 11 through 15 depict the effect of reducing the Duffing system nonlinear term

on the identified results. These cases include 1% noise pollution. Variations in the

nonlinear term € are tabulated in the row beginning with character string Ae. The

error in the identified nonlinear term for each of these cases is relatively low for all

cases. It is important to note that the error in the identified stiffness parameters for

these cases is 4% or less, illustrating the identification algorithm’s ability to

discriminate damage well.
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6.6.4.2.1.4 Identification of baseline and degraded epsilon states at 10% noise

pollution

Repeating the above cases from Table 6.26 with 10% noise pollution increases the

error in the identified nonlinear term as depicted in Cases 16 through 20, Table 6.27.

Again, the error reported in the identified stiffness parameter remains minor, at or

below 8%.

k* 39.48

39.48 30.48 39.48 39.48

Ak 0.00 0.00 0.00 0.00 0.00
kbar 42.43 42.47 41.55 4153 41.73
Sy 22.91 14.48 34.70 26.88 24.27
E, 0.07 0.08 0.05 0.05 0.06
Ry 0.04 0.04 0.02 0.02 0.02
Dy 0.07 0.11 0.02 0.02 0.04
® 6.51 6.52 6.45 6.44 6.46
A 0.02 0.02 0.01 0.01 0.01
e 11.23 10.67 11.79 10.11 12.35
Ae -0.05 0.05 -0.10 0.10
ebar 9.33 8.83 10.16 8.62 10.52
S, 5.93 4.65 11.01 7.74 7.22
E, -0.17 -0.17 -0.14 -0.15 -0.15
R, -0.13 -0.18 -0.06 -0.20 -0.02
D, -0.24 -0.42 -0.06 -0.28 -0.04

TABLE 6.27. Summary of identification results, epsilon degradation, 10% noise
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6.6.4.2.1.5 Identification of baseline and combined stiffness and epsilon
degraded states at 1% noise pollution

Cases 21 through 25 highlight the identification statistics for the nonlinear Duffing
oscillator with combined variations of stiffness degradation and epsilon degradation
and enhancement. Noise pollution is defined as 1% for these cases. R;and R,
closely match the parameter perturbations in all cases. The reported error remains
4% or less for all identified parameters. The standard deviations for the identified
data are also relatively small, indicating that the data dispersion is minor for the 3000

simulations performed.

37.50 37.50 35.53 35.53
Ak - -0.05 -0.05 -0.10 -0.10
kbar 40.88 38.76 38.82 37.04 36.94
Sy 3.89 425 2.01 4.64 3.93
E, 0.04 0.03 0.04 0.04 0.04
Ry - -0.05 -0.05 -0.09 -0.10
Dy - -0.50 -1.02 -0.83 -1.00
® 6.39 6.23 6.23 6.09 6.08
Ao - -0.03 -0.03 -0.05 -0.05
g* 11.23 10.67 11.79 10.11 12.35
Ag e -0.05 0.05 -0.10 0.10
ebar 10.78 10.28 11.37 9.66 11.92
S, 1.38 1.22 0.74 1.35 1.09
= -0.04 -0.04 -0.04 -0.04 -0.04
R, -0.05 0.06 -0.10 0.11
D, -— -0.41 0.80 -0.83 1.04
TABLE 6.28. Summary of identification results, combined variation, 1% noise
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6.6.4.2.1.6 Identification of baseline and combined stiffness and epsilon

degraded states at 10% noise pollution
Cases 26 through 30 illustrate the effect of combinations of the nonlinear term
degradation and enhancement with stiffness parameter degradation as in Cases 21

through 25. Noise pollution is increased to 10% for these cases. As noted in the

above cases, the identified errors in the parameters is relatively low, especially given

the higher noise pollution level.

k* 39.48 37.50 37.50 35.53 35.53
Ak - -0.05 -0.05 -0.10 -0.10
kbar 42.43 39.03 40.90 38.28 38.47
Sy 22.91 65.19 21.47 33.40 27.00
Ey 0.07 0.04 0.09 0.08 0.08
Ry -—- -0.08 -0.04 -0.10 -0.09
Dy - -0.05 -0.07 -0.12 -0.15
® 6.51 6.25 6.40 6.19 6.20
Aw - -0.04 -0.02 -0.05 -0.05

g* 11.23 10.67 11.79 10.11 12.35
As - -0.05 0.05 -0.10 0.10
tbar 9.33 9.21 9.69 8.45 10.43
S, 5.93 17.09 7.04 9.72 7.75
E, -0.17 -0.14 -0.18 -0.16 -0.16
R, - -0.01 0.04 -0.09 0.12
D, -0.01 0.05 -0.09 0.14
TABLE 6.29. Summary of identification results, combined variation, 10% noise
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6.6.4.3 Identification verification using Neural Networks

A number of test cases drawn from the nonlinear models identified in Table 6.23
above were processed through a neural network algorithm. The cases selected
incorporated 10% noise pollution with variations in the stiffness and nonlinear terms.
The cases chosen for this study included 8, 17, 18, 27 and 28 with Case 6 as the
baseline. The neural network architecture followed that described in detail in
Chapter 5, Section 5.3.2.2, having two inputs (x, ) and one output F(x(t),x()). The
topology of the training network incorporated 15 nodes in the first hidden layer and

10 nodes in the second hidden layer as a typical three-layer feedforward net.

The identification procedure consisted of two phases; network training utilizing the
baseline case (Case 6), and identification with the degraded sets (Cases 8, 17, 18, 27
and 28). Initial estimates of the network weights and biases used in replicating the
system output through iterative error comparisons were randomly assigned. The
training phase was performed with Adaptive Random Search (ARS) algorithm
(Masri et al, 1999) incorporating a hyperbolic tangent function defining the node
nonlinearity. The ARS algorithm performs a specified number of iterations
searching for a global maximum. A total of 25 global searches were specified for
this effort, with 20 local searches at each step. The rms error of the fit is optimized,

and leads to the selection of the weights and biases (reference Figure 6.78).
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FIGURE 6.78. Neural network output rms error for nonlinear model

A comparison of the measured and identified restoring force for the baseline case,
Case 6, is depicted in Figure 6.79. As noted in the studies performed with the
Chebyshev restoring force algorithm, the error in identifying the system response is

reasonable.

With the neural network weights and biases determined for the baseline case, the
damaged states were then processed through the trained network. Comparisons of
the network identified restoring force and the associated error for each damaged state
reveals the trained algorithm’s ability to detect system changes while under fairly
substantial noise pollution. Due to the nonuniqueness of weights and biases within

the neural network architecture and the fact that the algorithm is nonparametric by
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definition (that is, the network weights and biases have no direct correspondence to
the physical system’s properties) changes in the structural system are best detected
through statistical means. The mean-square error of the identified output from a
“damaged” state, represented by cases 8, 17, 18, 27 and 28, are compared to that of
the baseline case (case 6). Case 6 represents the reference or baseline state of the
system with 10% noise pollution. Changes to the physical system from this state are
easily noted as the reference network no longer replicates the measured output. The
greater the deviation in the physical system from its baseline state (e.g., 5% stiffness
degradation as in Case 8) the greater the error between the measured (physical

system) and that identified through the predefined reference neural network.

150

— identified
------ measured

100

=Y
Y

_100 v \/

-150 .

FIGURE 6.79. Measured versus identified restoring force for nonlinear model
baseline case, Case 6, neural network algorithm
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Table 6.30 highlights the mean-squared error and computed statistics for these cases.
The data presented in Table 6.30 is also graphically portrayed in Figure 6.85. The
second column of Table 6.30 contains the normalized mean error values of the
identified system response to the measured response. The mean normalized error for
the baseline case (Case 6) is 23.6%, based on the ANN weights and biases
determined through training the network with a separate data set representative of the
amplitude and frequency response defining Case 6. This result is relatively high due
to excursions of the identified response from that measured at a few peak amplitude
values as evidenced by a close inspection of Figure 6.79. A more complex network
topology would reduce this reported error. However, the key is to look at the

network’s ability to discern changes to the baseline system.

Processing the remaining cases through the same trained network topology yields the
mean and standard deviations of the computed error as given in columns 2 and 3 of
Table 6.30. The estimated standard deviations center around 0.1. The variation in
the mean for the various “damaged” states represented by the investigated cases is
relatively small, but it is clear from inspection of the fourth column that the system

has experienced changes from it’s reference state (Case 6).

Recall that Case 8 represents the system with a 5% reduction in stiffness. The
computed dimensionless error tabulated in column 4 for this case reveals a 1.2%

increase for this case.
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The dimensionless error ratio “R” presented in column 5 highlights the significance
of the deviations in the ANN-estimated system response. Column 6 quantitatively
reveals the relative significance of changes in the ANN deviation error as compared

to the dispersion in the distribution of the error statistics around the sample mean.

As an example, R = 4.3% for Case 27, signifying that the mean of the deviation error
has changed by 4.3% of the standard deviation of the corresponding tracking errors.
This is construed as possible evidence of change in the system, although the reported

variation is quite small. Further investigation of these sensitivity issues is warranted.

Standard (1 - _
H~ Hey ) (/u Hy, ) o
Mean of deviation £ / f

Case error oferror M Ky o O ref
6 0.236 0.098 1.000 0.000 0.000 1.000
8 0.239 0.095 1.012 0.012 0.029 0.969
17 0.235 0.097 0.996 -0.004 -0.011 0.986
18 0.237 0.099 1.007 0.007 0.016 1.005
27 0.240 0.093 1.017 0.017 0.043 0.944
28 0.238 0.097 1.011 0.011 0.027 0.987

TABLE 6.30. Mean-squared error for identified damage states

Note that the data presented in the following figures (Figures 6.80 through 6.84)
reveals the excellent fit of the ANN identified system response to that measured in
the simulations. Each case was simulated forty times with the stationary random

excitation seed varied similarly by a prescribed random number. The simulations of
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the “damaged” cases were all polluted by 10% noise, which masked some of the
“damage” introduced in each system, such as 5% stiffness degradation.

A cursory glance at these plots might lead the reader to consider them to be identical,
but overlays of the response data suggest otherwise. There are subtle changes in the
system response amplitude and frequency content between each “damaged” case.
Figure 6.85 highlights the effect of the various cases of system degradation utilizing
a bar chart. The error statistics produced for the baseline case did not incorporate the

network training data.

150

—— identified
------ measured
100

| f
Vo

-150

1 101

FIGURE 6.80. Trained network output comparison, Case 8
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FIGURE 6.81. Trained network output comparison, Case 17
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FIGURE 6.82. Trained network output comparison, Case 18
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FIGURE 6.83. Trained network output comparison, Case 27

150

—— identified
------ measured

100

VY

-150

1 101

FIGURE 6.84. Trained network output comparison, Case 28
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FIGURE 6.85. Comparison of error in identifying cases 8, 17, 18, 27, 28

6.6.4.4 Identification verification using the Least Squares Recursive Method
The recursive least-squares parametric identification algorithm was next utilized to
evaluate the same cases selected for identification with the neural network algorithm

described in Section 6.6.4.4. A detailed discussion of this algorithm is presented in

Chapter 5, Section 5.3.1.

As in Section 6.6.4.3, Case 6 was considered the baseline. The damaged states were
identified as cases 8, 17, 18, 27 and 28. These cases incorporated 10% noise

pollution with variations in the stiffness and nonlinear terms.
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Figure 6.86 highlights the excellent fit between the simulated restoring and that
identified by the recursive least-squares identification algorithm. A comparison of
the identified thetas to the baseline for each case as presented in Figures 6.87 through
6.91 reveals damage detection. Note that there is a discernable difference in the
theta values for each damaged case when referenced to the undamaged baseline case.
Each of the figures below details a particular theta parameter used in the
identification algorithm. The abscissa scaling for the plots varies to highlight the
parameter fluctuations until they reach steady state values. Note that there are

discernable variations in some of the parameters for the different cases, particularly

Case 17.
150

—— identified

------- measured A
100 f—

FIGURE 6.86. Measured versus identified restoring force for nonlinear model
baseline case, Case 6, recursive least-squares algorithm
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The variation in theta values for a particular “damaged” state can be investigated to
reveal system changes due to possible degradation. As an example, Case 8
repreéents the system stiffness degraded by 5% with 10% noise pollution.
Comparing the identified theta parameters for this case to that of the reference (Case
6), highlights the effectiveness of the Least Squares Recursive Algorithm in
detecting system changes even under the influence of noise pollution. The algorithm
parameters (theta values) can be correlated to specific system parameters to the
extent of ascertaining change to a parameter as defined in Section 5.3.1. The mean
and standard deviation of the rms error computed between the reference case and
Case 8 varies for each of the seven identified theta values as illustrated in Table 6.31.
The tabulated mean m* represents the rms mean of the specific case to the reference,
normalized by the square of the sum of the reference values. This is similar to the
presentation in Table 30. These variations from the established baseline case clearly

reveal system deviations. Thus, the algorithm successfully identified the forced

degradation.
Case 8 Case 17 Case 28

Theta W¥mseror  Ormseror | H*rms error C'rms error ¥ ms error Gms error
1 0.015 268.464 0.035 902.939 0.018 302.812
2 0.005 0.039 1.170 1024.655 0.005 0.166
3 0.033 75.536 0.103 2047.326 0.028 54.521
4 0.040 15.023 0.903 3069.259 0.040 14.739
5 0.035 13.415 0.238 834.182 0.036 13.268
6 0.060 0.212 3.889 740.022 -0.060 0.208
7 0.151 0.205 2.765 55.711 0.154 0.202

TABLE 6.31. Mean-squared error for identified damage states
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Figures 6.94 through 6.98 illustrate the identified system restoring force for each of
the five investigated “damaged” cases plotted against the baseline case. Variations
in peak amplitude values are readily noted in each of these plots. Larger excursions
in peak amplitudes are evident in Figures 6.94, 6.97 and 6.98. These figures
represent the “damaged” states wherein the stiffness parameter was degraded. The
effect of changing the nonlinear term epsilon in the Duffing model is less

pronounced, though evident as well.
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FIGURE 6. 94. Identified system response (Case 8) versus baseline case
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6.6.4.5 Summary
Simulation data was processed through the three identified algorithms to determine
their ability to detect subtle changes in the system. Various levels of noise pollution
were incorporated into the simulations to realistically evaluate the algorithms’
sensitivity to slight parameter changes, as real applications will always include the
effects of measurement and ambient noise. The primary focus of the analysis
centered on the restoring force algorithm based on orthogonal Chebyshev
polynomials. The restoring force algorithm using Chebyshev polynomials was
selected for the majority of the simulation studies for its ability to replicate the
response of highly nonlinear systems under virtually any excitation with low-level
polynomial approximations. This fact is important in any attempt to provide real-
time data processing as proposed herein. Section 6.6.4.2 presented the resulting data
in a variety of forms to extract the true essence of the algorithm’s sensitivity to
predefined system “damage”. The neural network approach was discussed with

- selected results highlighted in Section 6.6.4.3 using a subset of the data presented
earlier. Finally, the least squares recursive algorithm was evaluated for specific

cases.

These three algorithms were selected because they do not require any a priori
information of the physical system structure. The restoring force method provides
the advantage that the resulting identified parameters are easily translated into power

series form, thereby allowing direct correlation to the parameters of an assumed
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system model. A disadvantage of course is reliance on an assumed model of the
physical system must be carefully evaluated through substantial parametric analysis

to ascertain the accuracy of the model.

6.6.4.5.1 Restoring force algorithm

The dimensionless measures of system change with respect to the reference system
stiffness, R and D, as tabulated above, clearly indicate parametric variations for
known system degradation. For example, the sensitivity of these measures is evident
for the linear case with a prescribed stiffness reduction of only 1%. Increasing noise
pollution levels are clearly discriminated in measure D, as evidenced in Tables 6.12

through 6.15.

Damping parameter reductions are more difficult to discriminate than the stiffness
parameter degradation discussed previously. As noted earlier, this is to be expected
because the stiffness term dominates the restoring force representation of typical
physical systems. In the undamped system, recall that the stiffness parameter was set
to 39.478, while the damping parameter was 1.2566, assuming 10% system damping.
Thus, the ratio of the stiffness parameter to the damping parameter is approximately
31.42. Equalization of parametric contributions in the restoring force equation of the

linear system

F(x, %) = boc + cx (6.53)
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requires similar velocity to displacement ratios. Actual displacement and velocity
values depend strongly on the excitation and system dynamics; but for a 10%
damped system, the ratio of velocity to displacement will not approach that of the

stiffness to damping parameters.

However, using the revised measures of change, R and D, computed from the
damping parameters instead of the stiffness parameters as defined in equations 6.48
through 6.52, allows more sensitive detection of system damping changes. For
clarification purposes, it is important to understand that the dimensionless ratios
depicted at the bottom of these tables, computed from the damping parameter values,
follows the definitions of the ratios given in equations 6.48 through 6.52. The
stiffness values defined in the measures are simply replaced by the corresponding

damping values.

The tabulated results of combined parameter reduction/enhancement are given in
Tables 6.20 through 6.22. Once again, system changes are easily noted in the

dimensionless measures.

Clearly, from the above discussion, any health monitoring system utilizing these
measures must evaluate them for both the identified stiffness and damping
parameters to enhance overall sensitivity to damaged states. Another approach is to

rely on detected frequency shifts in the identified system referenced to a baseline
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model. While the tabulated simulation results in Tables 6.12 through 6.22 reveal
substantial increases in frequency shifts for increasing noise pollution, this measure

does not discriminate well between changing system parameter values.

6.6.4.5.2 Neural network algorithm

The statistics presented in Table 6.30 indicate the presence of detected change in the
identified system response from the baseline case. Figure 6.85 clearly displays the
change in the identified system statistics for the “damaged” states. Development of
an assumed model to replicate an actual physical system would allow damage
thresholds to be established. System variations beyond the prescribed thresholds

would trigger an investigation of the physical system for potential damage.

6.6.4.5.3 Least squares recursive algorithm

The least squares recursive algorithm uses a modified Buoc-Wen algorithm to define
the physical or simulated system investigated. This algorithm was developed to
éapture a broad class of physical systems, from linear to hysteretic. The algorithm
employs parameters, which are varied in a step-wise solution to converge to the
exact measured system output, the restoring force in this application. Investigation
of the changes in these parameters from the baseline, as presented in Figures 6.86
through 6.92, reveals system changes. Further analysis utilizing statistics to compute
the rms error for each identified algorithm parameter, theta, highlights the detected

system change.
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6.6.4.5.4 Concluding remarks

The identification algorithms have been shown effective in discriminating system
change at noise pollution levels of up to 10% with relatively high degrees of
accuracy. The measures of R and D in the restoring force algorithm analysis, the rms
error determined from the neural network results, and the rms error of the identified
theta values from the least squares recursive method proves that damage detection
thresholds can be safely established to facilitate detection of system degradation as a

precursor to major damage.
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7.0 Experimental Studies

7.1 Impetus

The simulation tools discussed earlier provide an excellent means of calibrating the
identification algorithms under investigation. They also allow in-depth statistical
analysis of various system scenarios. The relationships between degrading

parameter states and the system response are easily quantified. Parameter variability
studies and noise pollution effects are also readily obtained at a fraction of the cost of

experimental testing.

However, there are a number of system influences not necessarily apparent from
simulation efforts, regardless of the detail. While issues of parameter variability,
noise pollution effects and the sensitivity of identification algorithms can be well
documented from simulation work, modeling errors inherent with any attempt at
simulating real-world physics are not easily defined. Dynamic systems generally
cannot be categorized or modeled accurately due to subtle nonlinearities. Thus, the

purpose of experimental testing is to define the underlying physics of the problem.
This chapter introduces the experimental design, data and results. Systemic
dependencies across key variables — amplitude, frequency, temperature — are

explored. Comparisons are drawn between these experimental results and those

predicted by simulation models. Discussions on the implications of this testing and
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analysis on the prospects for structural health monitoring tools are interspersed

throughout this chapter.

7.2 Anticipated Results
A key result to be obtained in the experimental testing of a viscous damper lies in the
identification of the damper properties. Dampers are specified according to the
simple equation

F,=cx" (7.1)
where F, represents the damped system force, ¢ is the coefficient of system

damping, x is the measured velocity, and the exponent » defines the degree of
nonlinearity inherent in the damper. The design specifications typically cite
rhéximum force, stroke, velocity and operating temperature requirements, with the
exponent n determined to resolve these quantities and provide the necessary system
damping. The size and number of fluid orifices, the damper fluid chamber volume,

and the viscous fluid all contribute to meeting the design specifications.

The damper utilized in these tests was designed with a force rating of 10 kips, a
velocity capacity of 70 ips, and a 12 inch total stroke. The damping coefficient ¢
and the exponent » were set to meet the specified parameters. Experimental data
was then fed into the identification algorithms to determine the damping coefficient,

following the procedures discussed in the simulation studies earlier.
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Quantifying the modeling errors from the simulated mathematical representations of
the system is another key result of experimental testing. Simulation models of the
system for study inherently incorporate modeling errors, as the exact dynamical
behavior of the system cannot easily be replicated through mathematical
representations without some a priori information. The real system will not likely fit
the models assumed in the simulation work. The Duffing, Van der Pol, and Buoc-
Wen simulation models may exhibit similar system characteristics to that measured
during experimental testing, but will not likely reveal the subtle underlying physics
of the damped system. The importance of this discussion is that while much work
can be accomplished through simulation efforts, including in-depth variability
analysis as reported in Chapter 6, the assumption of model types used in simulation
studies does introduce some level of error. Experimental testing is the only true
heans of quantifying the behavior of a system in the absence of validated modeling

knowledge.

Another distinction to be made is that while errors exist in simulation studies from
assumed mathematical descriptions of the system, the identification procedures
utilized to process system response data are largely immune to these effects. The
identification algorithms simply fit a mathematical representation of the system from

measured or simulated system state variable data.
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7.3 Test Plan

The test plan developed to gather data for this study addressed amplitude, frequency,

and temperature effects. For nonlinear systems, which this viscous damper is

assumed to be, the effects of amplitude, frequency and temperature variations are

expected to be substantial. The silicone fluid in the damper was rated to yield fairly

linear output in the range of —40°F to 130°F. Tables 7.1 and 7.2 reveal the test plan

for studying the effects of amplitude, frequency and temperature influences on the

damper.

Initially, sinusoidal excitations were utilized; then, stationary random signals were

applied. The sinusoidal excitation was programmed in an MTS Microconsole.

Amplitude gain was controlled via a dial gauge on the MTS Controller front panel.

1 0.5 1 1 0.5
2 0.5 2 2 0.5
4 0.5 4 4 0.5
6 0.5 6 . 6 0.5
1 1 1 1 1 1
2 1 2 1 2 1
4 1 4 1 4 1
1 5 1 5 1 5
2 5 2 5 2 5

TABLE 7.1. Test plan, sinusoidal excitation
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The random excitation was derived through the following procedure:
1.) creating a vector of normally distributed random numbers,
2.) performing the Fast Fourier Transform (FFT) of this data set,
3.) truncating the frequency content with a Boxcar or rectangular window,
4.) applying a cosine taper at both ends, and

5.) performing the inverse Fast Fourier Transform (IFFT).

The signal frequency content was designed to contain frequencies from DC to 25 Hz
through the above technique. The purpose of the cosine taper at the upper and lower
bounds of the truncated signal frequencies was to preclude large amplitude scaling
effects resulting from the inverse FFT. The taper was applied to the first and last 0.1
Hz frequencies of the windowed signal. Figure 7.1 depicts the psuedo-broadband
random signal generation. The amplitude gain was again controlled via a dial gauge
on the MTS controller, as it was for the sinusoidal excitation. Figure 7.1a displays
the random signal generated as described in

step 1 above. Note that the mean and variance of the random generator were set to
one. The power spectral density (PSD) of this signal is given in Figure 7.1b after
steps 2 through 4 were completed. Finally, Figure 7.1c reveals the processed data set

after step 5, the IFFT was performed.
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7.4 Instrumentation
The system response was captured with various instruments as discussed generally in

Chapter 3. These instruments and the procedure employed are discussed below.

An MTS 661.2 force transducer with a factory-calibrated range of £11000 pounds
was coupled to the interface between the actuator and damper. Calibration was
verified in the lab by applying a known tensile load to the actuator utilizing a
threaded rod assembly. The tapered preload rings on the force transducer were then

set and the load removed.

The displacement transducer is also an MTS component coupled to the actuator. It
was calibrated to yield 0.5 in/volt output. In addition, a velocity transducer (Alnico-
V 7L9-VTZ, S/N 6531) was attached to the system at the damper/actuator interface,

and connected to the rigid table. The velocity calibration factor was 7.143 ips/volts.

Acceleration measurements were achieved using an Endevco variable capacitance
transducer (S/N 15771) with a calibration factor of 5.032 g’s/volt. Temperature was
measured with an externally attached transducer calibrated to yield a linear output
over the range of 0 to 212°F in an ice bath. The transducer calibration factor was

100°F/volt.
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7.5 Calibration

A series of tests were performed to validate the system setup. Physical
measurements provided assurances that the displacements and accelerations matched
those called for in the system excitation. A Mitoyo® dial gauge with reported
accuracy of 0.001 inches was mounted on the reaction mass experimental table to
provide direct displacement readings. The system was excited at 0.25 Hz to facilitate
visual confirmation of the system displacement. The maximum recorded error
between the system displacement input and that directly measured with the gauge

was 1.3% at 0.5 in-pk.

The accelerometer was verified by simply placing it on the test table orientated to
read positive and then negative vertical acceleration. Measurements of 0.78 g’s in
the positive direction and 1.23 g’s in the negative orientation were recorded. Next, a
zero offset of 0.22 g’s was measured by setting the accelerometer on edge.
Demeaning the acceleration data with this offset yielded —0.99 g’s in the negative
direction and 1.01 g’s in the positive direction. Acquired data for 30 seconds proved
that the accelerometer output was stable. The effects of digitization were analyzed

and are presented in section 5.2.1.

7.6 Damper Identification
The measured response of the system to various excitations was processed through

the restoring force identification algorithm to determine the damper stiffness and
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damping parameters. Acquired data was first stored in ASCII format in the Unix
database discussed in section 5.2.2, then processed through the identification

software.

7.6.1 Sinusoidal Excitation

In order to quantify the variability of the system, various representations of the
acquired data are presented. Statistical analysis of the data can be derived from
amplitude, frequency and temperature variations, utilizing any one of these as the

sample set. Additional statistics can be gathered from the same data, only varying

. . . o ..
multiple parameters. A measure of data scatter, the coefficient of variation (——) is
rms

used to quantify parameter variation effects. Experimental tests were performed to

sufficiently produce statistical confidence in the system behavior.

The test plan utilizing a sinusoidal input to the damper as defined in Table 7.1 was
repeated ten times. Data was acquired from each test for 60 seconds. Then, this data
was divided in half for processing. Thus, a statistical sampling comprised of 20, 30-
second segments was available for analysis. While substantially less rigorous than
the sample sets processed during the simulation studies, valuable variability
information was gathered nonetheless. Note that only a few tests were performed at

5 Hz, due to the severity of the test on the damper.
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The processed data from these tests is presented herein in a variety of plots and
tables. Recall from Table 7.1 that the primary variables in the excitation to the
damper were amplitude, frequency and temperature. Thus, the presentation of the

data attempts to quantify these effects.

Figures 7.2 through 7.15 illustrate the system response output for a constant
temperature range between 90° F and 100° F. Figures 7.2,7.4,7.6,7.8,7.10,7.12
and 7.14 depict the excitation timehistory and the phase plane plots of the system.
Detailed plots of the displacement, velocity and force timehistories are presented in
Figures 7.3, 7.5,7.7,7.9,7.11, 7.13 and 7.15. The excitation amplitude is varied
with the frequency of excitation held constant at 0.5 Hz for Figures 7.2 through 7.9.
The system response plotted in Figures 7.2 and 7.3 was derived from 0.5 in-pk
excitation amplitude, and that in Figures 7.4 through 7.9 depict the system response

with excitation amplitudes of 1, 2, and 3 in-pk.
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Following a similar format, Figures 7.10 through 7.15 detail the system response at
0.5, 1, and 2 in-pk amplitude excitations, respectively, with the excitation frequency
at 1 Hz. These plots were included to detail the highly nonlinear damper response,
which is particularly evident in the phase plane representation of the velocity and
force. As discussed previously and displayed in Figures 7.2 through 7.9, increasing
excitation amplitude does correlate to amplified system nonlinear response.
Interestingly, though, the effect of increasing excitation frequency tends to mask the
nonlinear behavior so readily apparent in the phase plane representation of the
system response excited by a 0.5 Hz signal. The system response appears to have
been smoothed from that illustrated in Figures 7.2 through 7.9. Close investigation
of the velocity/force phase plane plots for the system excited by a 1 Hz siganl still
reveal similar nonlinearities, just not to the degree evidenced in the response to a 0.5

Hz excitation.
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To further detail the effects of excitation amplitude and frequency variations on the

damper, phase plots with these parameters varied are depicted in Figures 7.16 and

7.17. First, various excitation amplitudes are overlaid in Figure 7.16 with the

excitation frequency held constant at 0.5 Hz. Figure 7.17 is similar to Figure 7.16,

except the excitation frequency is changed to 1 Hz.

Note that the larger parameter excursions result from increased excitation amplitude;

thus, these plots reveal that increasing the excitation amplitude yields higher

damping forces at the maximum relative velocity. This result follows intuition. A

comparison of the two figures reveals that increasing the system excitation frequency

also increases the output force at the maximum velocity point.
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The identified Chebyshev and Power Series coefficients for the above test cases are
depicted in Tables 7.3 through 7.9. The damper temperature remained constant

within a 90-100° F range for all of these results.

Chebyshev coefficients

i 1 2 | 3 | a4
1 6.46 -823.41 21.94 52.68
2 281.35 -5.87 57.06 1.01
3 -9.41 -10.93 12.91 62.80
4 11.50 9.01 55.17 10.35

Power Series coefficients
i 1| 2 3 4
1 11.11 -932.34 27.11 -68.20
2 673.68 137.91 -578.77 -390.34
3 -149.39 -1710.88 207.78 3055.83
4 -1189.35 -761.52 4251.41 1914.41

TABLE 7.3. Identified damper coefficients, A=0.5 in-pk, ®=0.5 Hz
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Chebyshev coefficients
ilj 1 2 3 4
1 28.02 -1195.79 477 40.60
2 292.16 -17.15 58.63 19.06
3 -0.49 -30.99 35.46 51.91
4 -1.34 5.32 55.53 12.95
Power Series coefficients
ilj 1 2 3 4
1 70.65 -689.59 -22.38 -10.30
2 384.37 17.63 -75.71 -17.08
3 -61.88 -208.09 43.77 85.62
4 -194.95 -75.24 140.73 40.63

TABLE 7.4. Identified damper coefficients, A=1 in-pk, ©®=0.5 Hz

Chebyshev coefficients

ilf 1 2 3 4

1 72.81 -2308.08 -7.40 81.15
2 633.61 -61.71 124.37 53.58
3 -9.18 -60.85 59.72 121.64
4 -4.31 29.72 140.46 47.26

Power Series coefficients

ilfj 1 2 3 4

1 139.11 -659.55 -13.15 -4.83
2 447.82 15.81 -27.32 -4.98
3 -32.03 -59.28 5.49 6.53
4 -62.05 -14.48 11.65 2.41

TABLE 7.5. Identified damper coefficients, A=2 in-pk, ©®=0.5 Hz

Chebyshev coefficients

ifj 1 2 3 4

1 317.30 -3288.15 361.61 39.15
2 -18.51 -56.49 -191.72 150.07
3 1296.98 1.81 -37.83 9.95
4 -759.46 -112.83 68.37 160.23

Power Series coefficients

ilj 1 2 3 4

1 -1403.25 -701.32 34.84 1.04
2 846.59 83.13 -11.40 -3.80
3 265.31 -1.48 -0.64 0.08
4 -105.42 -15.61 0.84 0.74

TABLE 7.6. Identified damper coefficients, A=3 in-pk, ®=0.5 Hz
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Chebyshev coefficients
ilj 1 2 3 4
1 -4.99 -1947.53 442 17.60
2 273.30 -1.19 47.00 0.17
3 -4.36 -10.07 -4.64 11.39
4 5.35 2.60 47 .61 -0.96
Power Series coefficients
ilj 1 2 3 4
1 -7.38 -618.88 1.86 0.79
2 674.26 -10.25 -36.62 0.70
3 7.84 -102.19 -8.13 10.53
4 -1177.27 45.38 265.51 -3.37

TABLE 7.7. Identified damper coefficients, A=0.5 in-pk, ®=1 Hz

Chebyshev coefficients

ifi 1 2 3 4

1 42.86 -3831.84 7.15 15.06
2 442 94 -5.95 90.06 6.40
3 -6.48 -21.06 21.35 -4.66
4 -1.40 4.05 87.96 5.82

Power Series coefficients

ilf 1 2 3 4

1 34.27 -620.71 -0.68 0.33
2 589.96 1.50 -8.52 -0.17
3 -49.69 -1.86 1.93 -0.14
4 -306.59 -5.92 15.55 0.33

TABLE 7.8. Identified damper coefficients, A=1 in-pk, ®=1 Hz

Chebyshev coefficients

ilj 1 | 2 3 4

1 -659.11 -7229.47 101.26 41.47
2 08.24 -120.65 -47.04 -6.20
3 27.93 -47.89 -453.20 62.60
4 6.31 25.67 -146.26 139.61

Power Series coefficients

ilj 1 2 3 4

1 -1208.04 -675.74 9.95 -0.07
2 -152.09 48.04 3.46 -0.68
3 214.67 -9.41 -3.64 0.09

4 65.27 -15.64 -1.14 0.20

TABLE 7.9. Identified damper coefficients, A=2 in-pk, ®=1 Hz
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Selecting two terms from the Power Series expansion for plotting, the coefficient of
the linear quantity and that of the quadratic term, otherwise known as the system
damping and stiffness, reveals the effect of excitation variation. In Figure 7.18,
indices i and j define the related test case, with index i describing the test cases
wherein ® = 0.5 Hz and index j for =1 Hz. The data tabulated in Table 7.3 for 4 =
0.5 in-pk and @ = 0.5 Hz is then indexed as i = 1, and that from Table 7.6 is indexed
as i = 4. Similarly, index j relates the data contained in Table 7.7 through 7.9, with j
=1 describing data from Table 7.7. It is evident that excitation amplitude and
frequency variations dramatically alter the system response. Hence, any attempt to
quantify system parameter variations utilizing system identification techniques will
require a fairly in-depth understanding of the physics of the test specimen.
Substantial testing to develop envelopes of expected parameter performance over the
range of anticipated excitations is then indispensable. Further analysis may be
necessary to define the system variability between dampers before damage detection

thresholds can be established.
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Finally, comparative time domain plots of the measured and identified damper force
for parametric identification algorithms of the above seven test cases reveal the
excellent fit of the identified system response to the measured response (reference
Figures 7.19 through 7.27). The dashed line in these figures represents the measured
damping force and the unbroken line traces the identified force utilizing the
Chebyshev restoring force algorithm. Note that the identification results detailed in
these figures were derived from a 4"_order Chebyshev polynomial approximation.
Identification results are repeated for the case depicted in Figure 7.23 utilizing a 24,
order Chebyshev polynomial, and are included as Figure 7.24 for comparative

purposes.

Due to system noise; that is, mechanical noise generated through the actuator and
linear bearings at the actuator/damper interface (reference Figures 4.6 and 4.7), as
well as instrumentation and cabling noise, the system response is nonlinear. As the
excitation amplitude is increased, these effects are amplified (reference Figures 7.19

through 7.21).

The effects of increasing excitation frequency tend to override some of the noise
contributors so evident in the plots for the system excited at 0.5 Hz (reference
Figures 7.19 through 7.23). As the system response is smoother under 1 Hz
excitation at all tested amplitude levels, 0,5, 1 and 2 in-pk, the 4"_order Chebyshev

algorithm replicates the measured restoring force to a higher degree of fidelity than
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apparent for the 0.5 Hz test cases, particularly with increasing amplitude levels.
Increasing the polynomial degree in the approximation results in more accurate
correlation between the fit and measured data sets. This is demonstrated in Figure

7.23 for the 3 in-pk amplitude 0.5 Hz excitation.

In general, it is important to note that the system response can be replicated with a
high degree of accuracy using low order Chebyshev polynomials. This fact
highlights the robustness of the Chebyshev restoring force algorithm and allows on-

line system identification with minimal computer resources.
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FIGURE 7.19. Measured versus identified damper force, A=0.5 in-pk, ®=0.5 Hz
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FIGURE 7.21. Measured versus identified damper force, A=2 in-pk, ®=0.5 Hz
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The system response captured in Figure 7.22 provides a great example of this
commentary. This data was derived for 3 in-pk 0.5 Hz system excitation. As noted
above, Figure 7.23 illustrates that increasing the polynomial degree in the
identification algorithm results in improved data replication. Figure 7.24 displays a
close-up of two cylces of the measured force data from the test case depicted in
Figures 7.22 and 7.23. This plot highlights the nonlinear response of the system near
the point of minimum velocity, where the system response reverses polarity in a
highly irregular, nonlinear transition. Clearly, as commented eatlier, on the
discussions in Figures 7.2 through 7.15, increasing the excitation frequency reduces

the nonlinearities evident in the system response.
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FIGURE 7.22. Measured versus identified damper force, A=3 in-pk, ®=0.5 Hz
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FIGURE 7.26. Measured versus identified damper force, A=1 in-pk, =1 Hz
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FIGURE 7.27. Measured versus identified damper force, A=2 in-pk, =1 Hz

7.6.1.2 Statistical analysis

The statistics of varying the amplitude, frequency and temperature ranges were also
studied. As stated above, the pdf statistics were computed from a total of 20 samples
of each test case outlined in Table 7.1. Figures 7.28 through 7.33 depict the
distribution of the damper response with curves of constant amplitude contained in
each plot. Figures 7.34 through 7.42 contain curves of constant excitation frequency.
Finally, Figures 7.43 through 7.49 reveal the dependence of the system to
temperature effects by displaying constant temperature curves for given amplitude
and excitation frequency. For clarity of presentation, the temperature ranges are
defined as T1 = 70-80° F, T2 = 90-100° F, and T3 = 110-120° F in Figures 7.28

through 7.49.
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These figures clearly display shifts in the mean identified stiffness and damping
parameters when amplitude, frequency and temperature are varied according to
Table 7.1. Interestingly, thermal effects appear to dominate the system response,
masking other effects to a degree. This is particularly evident for higher amplitude

tests where the temperature rise during the 60-second test was recorded as 30-40°F.

A simplified explanation of this phenomenon lies with the thermal characteristics of
viscous fluids such as used in the tested damper. Higher velocities dramatically
increase the friction within the fluid, resulting in large temperature rises. This result
follows basic fluid dynamics theory and must be addressed in future studies to

facilitate decoupling of the respective parameter influences.

The results of Figures 7.28 through 7.49, when ignoring higher velocity tests,
illustrate gradual shifts in the system stiffness and damping parameters. The
tendency is for the parameter mean values to either increase or decrease given
prescribed changes to the excitation. Clearly, amplitude and frequency changes in
the excitation impose identifiable system trends, but these effects are not easily
uncoupled from each other or from temperature effects. Thus, attributing respective
contributions to amplitude, frequency and temperature effects is difficult in the
absence of more refined test protocols. A first step involves tighter controls over

temperature test parameters to draw definitive results beyond stating that the effect
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of varying any of the three test parameters is noted in the identified system response

parameters.

blearly the three dimensional nonlinear fluid/orifice dynamic effects are
complicating factors not adequately addressed in these tests. The questionable
higher amplitude results illustrate the pitfalls of too simplified an approach to a
highly nonlinear problem. Recall that the temperature was controlled within 10°F
increments, with T1 defined between 70-80°F, T2 ranging from 90-100°F, and T3
defined as 110-120°F. Rapid thermal increases introduce unanticipated excursions
beyond these temperature ranges which skews the results with undefined system
thermal characteristics. Future studies should incorporate more indepth modeling
émd test plan controls to identify and quantify these and all other effects inherent in

such a highly nonlinear system. Some of these efforts are currently underway.

In short, these results clearly reveal that a more rigorous control of the temperature
range throughout the test period must be investigated and formalized. The damper is
a time varying system, and is thus subject to the dynamic thermal effects resulting
from increasing velocities. Further evaluation and testing should approach the
system as a nonstationary problem and address the time varying effects in test
planning and execution. Test protocols designed to fully characterize the time-
varying nonlinear behavior of a similar damper are necessary to draw useful

conclusions beyond that stated above.
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7.6.2 Broadband Random Excitation

Two experiments were conducted with broadband excitations having different
amplitudes as described in Table 7.2. Preliminary testing of the damper with low-
level broadband excitations revealed that the system was severely driven in the
higher frequencies of the response spectra defined in Figure 7.1. This fact was
further substantiated through tests being conducted concurrently at the University of
California, Berkeley, on physically damaged ‘dampers using the same excitation
developed herein. In both cases, it was determined that the frequency content should
be reduced from 25 Hz to accommodate continued testing. These tests were
performed with the cutoff frequency set at 5 Hz at USC. The resulting measured

responses for these tests are presented below.

: MHI i 4““.1 |
'”Hi‘IHU'HH Il'rH' 'l‘lum é’g
$

FIGURE 7.50. Damper response to broadband excitation, test #1
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FIGURE 7.51. Damper response to broadband excitation, test #2

Chebyshev coefficients

ilj 1 2 3 4

1 38.17 920.31 44,74 118.47
2 296.67 4.55 11.38 -17.19
3 -2.66 25.40 14.18 -26.54
4 -30.32 1.12 522 19.66

Power Series coefficients

ilj 1 2 3 4

1 -35.75 46.26 0.33 0.71
2 833.23 41.19 -0.10 -0.64
3 11.22 131.87 3.10 -1.62
4 -1333.67 | -237.60 2.65 3.58

TABLE 7.10. Identified damper coefficients, broadband excitation, test #1
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Chebyshev coefficients

ilj 1 2 3 4

1 322.43 | 2085.71 | 446.67 937.53
2 484.85 -51.98 -54.94 11.11
3 -209.43 | -403.26 | -229.84 | -243.06
4 81.48 106.92 63.17 101.31

Power Series coefficients

ilj 1 2 3 4

1 -212.89 | -101.36 5.09 2.76
2 500.13 1.19 0.43 0.08
3 -82.03 122.87 -6.54 -1.98
4 126.42 -78.34 2.23 1.06

TABLE 7.11. Identified damper coefficients, broadband excitation, test #2
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FIGURE 7.56. Measured versus identified force, broadband excitation, test #2

Note from the above results that the restoring force algorithm clearly tracks the
system response. Data processing through the neural network and least squares
recursive algorithm would yield similar results as noted in the simulation studies

presented in Chapter 6.

The next step lies in developing threshold values for the system. There are two ways
of approaching this problem; perform large sets of experiments to statistically
quantify the system response and variability for a “healthy” damper, or physically
introduce predefined damage to the system and excite the system to evaluate the

response. Both methods require some initial investment to facilitate development of

282

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



valid thresholds describing the potential for system damage existing when crossed.
Since it has been shown that any of the three algorithms is viable for detecting subtle
system variations under noise pollution, damage detection thresholds can be
developed for any of the three. Recall that the neural network results cannot be
correlated to the physical system as can the restoring force and least squares method
parameters. In any case, the physical system need not be modeled to determine

damage.

7.7 Scaling effects

A concern held early in the development of the test plan for the scaled testing related
to model scaling effects. The problem of model scaling has plagued researchers
through the ages, particularly when full-scale testing was not feasible. It is shown
through preliminary results from full-scale testing of similar dampers that these
effects are inconsequential relative to the scaled model testing performed at the
University of Southern California. The data presented in Figures 7.57 and 7.58 was
drawn from cyclic testing performed at the SRMD research facility at the University
of California, San Diego campus. Reviewing these results in conjunction with those
reported in Section 7.6.1 reveals nearly identical system characteristics. Phase plane
plots for each reveal similar nonlinear dynamic response to cyclic excitation. This
result is powerful in that it refutes claims that scaling effects potentially invalidate
results reported from the dynamic characterization, evaluation and determination of

the effectiveness of identification algorithms utilizing a scaled model.
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8.0 Conclusion

The stated objective of this research was to develop an optimized set of analytical
tools for in-field health monitoring of structural damper elements. In pursuit of this
objective, a number of parametric and nonparametric health monitoring tools have
been evaluated. Based on this evaluation, a subset of health monitoring tools has

been optimized to enhance their error detection capabilities.

This analysis identified the restoring force and least squares recursive algorithms as
the best means of in-situ error detection. Each of the analyzed algorithms showed
success in replicating the system response to prescribed excitation, even under noise

pollution.

In arriving at this conclusion, the research considered a number of health monitoring
tools. The Chebyshev restoring force algorithm, Neural Network approach and the
method of Chassiakos et al were selected for this research based on the successes
portrayed in numerous publishings regarding their use. Monte Carlo statistical
analysis of the simulation data was utilized to develop algorithm detection
capabilities. Variability analysis was also introduced to determine the identification

algorithm’s ability to discern induced damage from manufacturing variances.

The author notes that a considerable amount of research on this subject had preceded

this work. A key first step here, then, was to review the large body of literature
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available on the subject. This was followed by selection from amongst those
considered most well developed, based on simulation and actual experimental
applications. The focus of this research was not in developing new identification
algorithms, but in selecting and optimizing existing algorithms for in-situ real-time
identification of damper elements. Thus, the algorithms studied herein were chosen
based on existing tests and their ability to replicate nonlinear system response with
low level computational effort. These tools were, then, subjected to rigorous
analysis. This analysis employed simulation data as well as experimental data sets
derived from a scaled version of dampers being implemented on the retrofit of the

West Spans of the SFOBB.

The research efforts focused on the Chebyshev restoring force algorithm first.
Several hundred thousand simulations were performed for varying degraded system
states of linear and nonlinear models. The Chebyshev algorithm was chosen to
process the resulting data to establish a baseline measure. Additionally, multiple
levels of noise pollution were introduced to quantify algorithm discrimination
capabilities. Selected simulations were then processed with the Neural Network and

least squares recursive algorithms.

It was originally proposed that data from the prototype and proof tests of the
dampers being employed on the SFOBB retrofit be compared to reduced-scale

simulation studies conducted at the University of Southern California.
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Unfortunately, due to construction schedule delays, the SFOBB dampers have not
yet been tested. However, plans are in place to conduct full-scale damper testing and
data acquisition, at either the newly constructed State-owned Seismic Response
Modification Device (SRMD) facility at the University of California at San Diego or
at Taylor's testing facilities in New York. Such testing is targeted for mid to late
summer 2002. The results are expected to confirm those presented in this research as
the tested damper was a similar device, only scaled from the actual dampers. The
identification algorithms being employed, however, are immune to size effects,

relying solely on the measured system response for identifying the system behavior.

Additional scaled model testing is underway at the campus of the University of
California, Berkeley. Data from these tests, wherein actual damage levels are to be
incorporated will be processed and analyzed through the above algorithms. These
results are expected to further support the hypothesis that a detection system can be
implemented in the field with only minor instrumentation needs. Online system
quantification requires only a few transducers to provide velocity, displacement,
force and temperature measurements. These transducers and the data acquisition
system would be required to incorporate fairly high frequency response, with a data
sampling rate of at least 1 kHz, and preferably 5 kHz. Identification can be
performed on subsets of the real-time data stream. The advantages of such a system
are a substantial reduction in periodic inspection and damper removal for testing, and

subsequent reduction in handling damage potential. In the absence of direct
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displacement and velocity measurements, integration of acceleration could be
facilitated if the data set was acquired with anti-aliasing filtering. High fidelity

integration schemes are being developed here at the University currently.

Further research efforts in this area should focus on actual testing of damaged states.
This will require additional dampers and the ability to introduce stiffness and
damping system changes. Some of this effort is underway at the University of

California, Berkeley, as noted above.

In conclusion, the true engineering and research value of this effort is that it has been
conclusively shown that identification algorithms can successfully discriminate
system damage levels even under relatively high levels of noise pollution. System
variability analysis was also analyzed, and it was shown that damage detection
thresholds could be developed that allow for process variability while still
discriminating damage at low levels. This is important in that it allows detection
threshold analysis for a selected set of similar dampers only. Real applications will
likely incorporate baseline system evaluation with detection thresholds applied as

percentage standard deviations of measured state variables.

This research has moved industry closer to realizing significant gains in efficiency as
well as reliability through in-situ health monitoring applications, by imparting the

insight necessary to distill from the large body of extant research on system
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identification and damage detection, optimizing those algorithms and providing the
tools necessary to facilitate bridging the gap between academic study and real-life
benefits. The proposed health monitoring system requires limited investment in
terms of equipment and resources for implementation and maintenance, particularly
when judged against the alternatives currently in place; that is, periodic system

evaluation through physical testing, requiring removal, transport and reinstallation.
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Preface

The purpose of this document is to define both the basic design parameters related to
the USC Department of Civil Engineering Research database, as well as the user
interface. The database is a tool intended to facilitate large-scale data storage
resulting from the variety of research projects undertaken at the University. Data
stored in a two-dimensional ASCII array is processed and stored efficiently in the
database for future reference. The database is a compilation of the efforts of various
graduate students through the years, dating l;ack to the days of the VAX system. As
such, when compiling the source code, it is imperative that the —/V'77 identifier is

included in the compile command.

The benefits associated with the utilization of the database for the storage of research
data are the ability to quickly and easily retrieve user defined segments of the data
for analysis. In addition, a variety of data analysis tools are available to facilitate this
endeavor, including integration codes and plotting routines. The data can also be

retrieved and exported to external data analysis packages.

n-dimensional data arrays must be stored in ASCII format, but may be comma,
space, or tab delimited. A parsing routine is included to preprocess the data for

storage as one-dimensional vectors.
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As you delve into the nuances of the following specifications, you will discover that
fhe database is a powerful, but user-friendly tool, which will enable you to quickly
maneuver data to serve the purposes of your research. Examples of data input,
including a copy of the text input file and a brief description are included in
Appendix A. Appendix B contains a sample ASCII two-dimensional data array. An
explanation of the data storage scheme is detailed in Appendix C, and data retrieval

examples are included in Appendix D.
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Installation

The database must be installed on a UNIX platform. Once the source code is copied
to the desired directory, it must be compiled. After the source code is compiled, you
are ready to use the package. The executable file can be used for any size ASCII

two-dimensional array by simply specifying the input parameters in a text file called

input (reference Appendix A).

To install the database, follow these steps:
1. Copy the database subroutines to the desired directory on a UNIX server.

The necessary subroutines and text files to compile successfully are as

follows;

e parse.f

e MESGI.f
e OPENI1.f

e OPEN2f
e OPEN3f

o CHLI14.f

e CLOSElf
e CPUS

e FLINF4.f
e FLWRTS.f
e FLREDS.f
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e FILEOL.TXT
e CB270A.TXT
e CB320.TXT
2. Compile the code by typing the following command at the UNIX
command prompt:
f77 - o datawrite.exe *f -IV77
Note the spaces between 77, —o, datawrite.exe, *.f, and -IV77. This
command line compiles all the .f files contained within the directory, then
links them, creating the executable file datawrite.exe. The database code

is now ready for usage.

General Usage

In general, the database can accommodate an n-dimensional array of data for
processing and storage. The data array must simply be saved in ASCII format to
facilitate the procedure. The name of the ASCII data array, the number of data
columns contained in the array, the database number to write to, the names of the
column vectors, and a 40-character maximum comment line are input in a text file
called input (reference Appendix A). There is a limitation of 20 data columns hard-
coded in the main.f source code. If this requires modification, the code will have to

be recompiled as described above prior to additional usage.
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A compiled version of the database is easily utilized. The following is a general
introductory procedure for new users.
1. Access the UNIX directory in which the database resides.
2. Copy the ASCII formatted n-dimensional array into the same directory.
3. Open the file, input, and change the parameters to correctly define the
data array to be processed (reference Appendix A).
4. Type the name of the compiled source code at the UNIX command
prompt. (This is datawrite.exe if the compile command line given above

was followed).

The program then opens the input file and reads the input parameters. Next, it then
opens the ASCII data file and parses the two-dimensional ASCII data into one-
dimensional vector arrays derived from each column. The program proceeds to
process the data into the database. Specifically, the command, CALL FLWRTS( ),

begins this process.

The data is stored in the database as shown in Appendix C. Note that the data is

referenced to vector names, date and time of entry, and vector length.

Data Extraction

Data is extracted from the database utilizing a routine called extract. This code

simply requests that the user input the name of the vector and database number to
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locate the data of interest (reference Appendix C). The code does require that this
input follow the alphanumeric format specified for the argument c/4nam as detailed
in the “Important Notes” section of this manual. The user is then prompted for the
hame of the file to which the data is to be written. Next, the code extracts the vector
data from the specified database. It is important to note that if several vectors with
the same name are specified in the database, the extract routine will only extract

from the most recent vector.

Important Notes

While the various subroutines utilized by this code are written in FORTRAN, and
thus require strict adherence to rules related to text field size, spaces, and other
characters, this has been accounted for in the specification of the variables defined in
the file input. Thus, adherence to these rules is transparent to the user, unless
parameters exceed the defined length, in which case the variables are truncated to

proper length.

If the various subroutines are to be used separate from the executable, the user must
carefully follow the variable length restrictions. Examples of importance are the
CALL statements for the subroutines, flwrt.f and flred5.f. These subroutines require
several variables in the argument, and these must follow strict rules as outlined

herein.
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SUBROUTINE FLWRTS5 (cl4nam,length,V,c40emt)
Specifically, for the subroutine, flwrt.f, the argument list is first a fourteen
(14) character argument wherein the first six (6) characters define the data
type; ie., TIME, DISPL, ACCEL, etc. The next character in this argument is a
period, followed by a three (3) character file extension. A semi-colon follows
as the eleventh (1 lth) character. Finally, the last three (3) characters of the
fourteen (14) character argument are numeric, defining the database number
wherein the data is to be written.
where:
Cl4nam: isa 14 character name as mentioned above, e.g. XDD1--
.3NL;--1
NB: the ‘- characters should not actually be typed, they simply
represent spaces!!
Length: is the length of the vector (integer) returned.
V: is the alpha vector name identifier.

C40cmt: is a 40-character text description input by the user.
SUBROUTINE FLREDS5 (cl4nam,N1,N2,N3,NPICK,V)
where:

Cl4nam: is a 14 character name as mentioned above, e.g. XDD1-—

.3NL;--1
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NB: the ‘- characters should not actually be typed, they simply
represent spaces!!

NI: is the starting point (integer) to be extracted

N2: is the ending point (integer) to be extracted

N3: is the increment (integer) used to get from NI to N2.

NPICK: is returned (integer), and is the total number of points extracted

based on N1, N2, and N3

V: is the double precision vector, which is returned. This contains the NPICK

numerical data points extracted from the database.

The flreds5.f subroutine can be included in any main program to extract data from the

FDR/RUF formatted databases.

Conclusion

The present code offers much flexibility, allowing the user to present the ASCII data
array file as a space, tab, or comma-delimited file. Additionally, the user can input a
forty (40) character descriptive text line to facilitate data definition for future
reference. The data array can be n-dimensional, given that » is specified as a

parameter in the input text file, input.
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Appendix A —USC Database

The following is an example of an input file. Note that the executable code requires
the input file to be named input. The parameters are entered on each line as follows;

1. The first line of the input file specifies the name of the file containing the
two-dimensional ASCII data array to be processed into the database.

2. The second line specifies the database number to which the data is
written. This can be any number from 1 to 999.

3. The third line denotes the number of columns contained in the two-
dimensional ASCII data array to be processed into the database. (Note
that this number must not exceed 20, unless the main program code is
revised).

4. The next n-lines of input define the column vector names, which will be
used to store the data in the database. Note that there must be as many
lines of column headings as there are columns in the two-dimensional
ASCII data array to be processed into the database. This is the number n
specified in the third line. Thus, if » =3 as shown in the example file
below in the third line, column headings must be included in lines four
through six. It is also important to note that the column headings defined
below will be truncated at six characters. Hence, the column names
denoted in the fifth and sixth lines of the example input file below will be

stored in the database as x1disp and xlacce.

311

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. The last line in the input file is used to specify a 40-character comment to
describe the data for future reference. Again, the comment line will be

truncated at 40-characters.

test].dat

1

3

time

xlaccel

x1displ

revised code - datawrite.exe

FIGURE 1. Example input file
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Appendix B — USC Database

This appendix contains an example of a two-dimensional ASCII data array. Note that
the data can be obtained from virtually any platform as long as it is saved in the
ASCII format. Applications such as LabVIEW® and other data retrieval packages,
PC applications such as Microsoft EXCEL®, as well as UNIX based applications
allow the user to store the data array in ASCII format. Note that the data can be
saved as either tab, space or comma delimited. In the example shown below, the data
is comma delimited, and contains only three columns of data with two rows. This
data file can be processed into the database using the input file delineated in

Appendix A.

153.840,-245.000,-1.088
4156.80,2.000,0.093

FIGURE 2. Example data set for processing
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Appendix C — USC Database

This appendix contains an explanation and an example of the data storage in the

database. The user must understand the nuances of this appendix to fully appreciate

and utilize the database. A description of each column entry is included below.

211 time
2 1 2 xlacce.
2 1 3 xldisp.
21 4 time
2 1 5 xlacce.
2 1 6 xldisp.
21 7 time
2 1 8 xlacce
2 1 9 xldisp.

.dat;

dat;
dat;

.dat;

dat;
dat;

.dat;
.dat;

dat;

e = =

NNDNDODDNDNDDNDNDNDDN

o BN

12
14
16
18

12-
12-
12-
12~
12-
12-
12-
12-
12-

2-99
2-99
2-99
2-99
2-99
2-99
2-99
2-99
2-99

10:
10:
10:
10:
10:
10:
10:
10:
10:

28:
28:
28:
37:
37:
37:
44;
44:
44 ;

40
40
40
16
17
17
55
55
55

first test of sdof
first test of sdof
first test of sdof
second test of sdof
second test of sdof
second test of sdof
third test of sdof
third test of sdof
third test of sdof

FIGURE 3. Screen capture of database ASCII file, Dxxx.FDR

1. The first column defines the data type, either single or double precision.

A ‘2’ denotes that the data is stored as double precision.

2. The second column defines the ?

3. The third column is a global counter. Note that it is incremented by one

for each entry.

4. The fourth column contains the input argument c/4nam as defined in the

“Important Notes” section of the User’s Manual. Note that the six-

character column headers are included herein. The last three digits of this

column denote the database number that the vector was written to.
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5. The fifth column is a global counter defining the starting point of the data
for each vector. Note that the first vector starts at zero.

6. The sixth vector describes the length of the vector as input. Note that the
example ASCII data array depicted in Appendix B has only two rows, so
that each of the three column vectors derived from said example would
have a length of two.

7. The seventh column is also a global counter, used to define the ending
point of the vector in the database. This number is simply the sum of the
starting point and the vector length from the fifth and sixth columns.

8. The next column denotes the date that the data was written to the
database, starting with the day, followed by the month, and then the year.

9. The ninth column denotes the time the data was written to the database in
hours, minutes, and seconds. This is the data that is corrupted if the
executable code was not compiled with the —1V77 statement, as described
in the “Installation” section of this manual. This is because the time stamp
call was originally written on the VAX system.

10. The final column contains the 40-character comment description, which

was included in the last line of the input file (reference Appendix A).
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Appendix D — USC Database

This appendix details several examples of the data retrieved from the database, given
the input described in the preceding appendices. First, a screen capture of the extract
routine is depicted, then the various outputs are shown. Note that data is the same as

that contained in the ASCII data array shown in Appendix B.

ENTER DATA FILE NAME (A14)
XXXXXX.DDD;NNN format

time .dat; 1

Enter the name of the output file
Outl

samar.usc.edu(199): extract

ENTER DATA FILE NAME (A14)
XXXXXX.DDD;NNN format
x1disp.dat; 1

Enter the name of the output file
out2

samar.usc.edu(200): extract

ENTER DATA FILE NAME (A14)
XXXXXX.DDD;NNN format
xlacce.dat; 1

Enter the name of the output file
out3

samar.usc.edu(201):

FIGURE 4. Screen capture of extract routine
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The data shown below is from the output file outl.dat, which is the data stored in the
vector ‘time .dat; 1’.

0.1538400E+03

0.4156800E+04
The data shown below is from the output file out2.dat, which is the data stored in the
vector ‘x1disp.dat; 1°.

-0.1088000E+01
0.9300000E-01

The data shown below is from the output file out2.dat, which is the data stored in the
vector ‘x1disp.dat; 1°.

-0.2450000E+03

0.2000000E+01
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Appendix 2

Chebyshev polynomial coefficients for a linear system, revised algorithm

(Section 6.5.1.3)
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Appendix 3

Chebyshev polynomial coefficients for a nonlinear system (Duffing oscillator),

revised algorithm (Section 6.5.2.1.2)
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Appendix 4

Chebyshev polynomial coefficients for a nonlinear system (Van der Pol

oscillator), revised algorithm (Section 6.5.2.1.2)
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Appendix 5

Uncertainty analysis — induced parameter variations with noise pollution —

linear model (Section 6.6.1.1)
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Appendix 6

Uncertainty analysis — induced parameter variations with noise pollution —

nonlinear model (Duffing oscillator) (Section 6.6.1.2)
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Appendix 7

Chebyshev to Power Series transformation (Mathematica output)

(Section 6.6.3)
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Chebyshev to Power Series transformation (performed in Mathematica):

In[3]:= Expand[bl+b2*(a2*x-al )+b3*(ad*y-a3)+bd*(a2*x-al )*2+b5*(ad*y-
a3)"2+b6*(a2*x-al)*(ad*y-a3)+b7*(ad*y-a3)"3+b8*(a2*x-al) 3+b9*(a2*x-
al)"2*(ad*y-a3)+b10*(a2*x-al)*(ad*y-a3)"2+b11*(a2*x-al)*(ad*y-
a3)"3+bl12*(a2*x-al)"3*(ad*y-a3)+b13*(a2*x-al)"2*(ad*y-a3) 2+b14*(a2*x-

al)y"2*(ad*y-a3) 3+b15*(a2*x-al )"3*(ad*y-a3)"2+b16*(a2*x-al ) 3*(ad*y-a3)"3]

2 3 3 2 2 2 3
Out[3]= bl - al a3 bl0 + al a3 bll + al a3 blZ + al a3 bl3 - al a3 bl4 -

3 2 3 3 2 2 3
> al a3 bl5 + al a3 bl6 - al b2 - a3 b3 + al b4 + a3 b5 + al a3 b6 - a3 b7 -

3 2 2 3 2
> al bB ~ al &3 b9 + a2 a3 bl0 x - a2 a3 bll x -~ 3 al a2 a3 bl2 x -

2 3 2 2 2 3
> 2 al a2 a3 bl3 x + 2 al a2 a3 bld x + 3 al a2 a3 bl5 x - 3 al a2 a3 bl6 x +

2
> a2 b2 x -~ 2 al a2 b4 x - aZ a3 b6 x + 3 al a2 b8 x + 2 al a2 a3 b9 x +

2 2 2 2 2 2 3 2 2 2 2
> 3 al a2 a3 bl2 x + a2 a3 bl3 X - a2 a3 bldx - 3 al a2 a3 bls x +

2 3 2 2 2 2 2 2 2 3 3
> 3alaZz a3 blé6x +a2 bdx -3 alaZz b8 x -a2 a3 b9 x - a2 a3 bl2 x +

3 2 3 3 3 3 3 3 2
> a2 a3 bl5 x - a2 a3 bl6x + a2 bB x + 2 al a3 a4 bl0 vy - 3 al a3 a4 bll y -

3 2 2 2 3
> al ad blZ y-2al a3 a4 bl3 y+3al a3 a4 bldy +2 al a3 a4 bls5 y -

3 2 2
> 3al a3 a4 bl6y+adbl3y-2a3adb5y-aladbsy+3a3 adbly+

2 2 2
> al ad b9y -2 a2 a3 a4 bl0 xy+3 a2 a3 ad bll xy+3 al a2 ad bl2 x y +

2 2
> 4al a2 a3 a4 bl3 x y - 6 al a2 a3 a4 bldxvyv - 6 al a2 a3 a4 bls x v +

2 2 2 2
> 9 al a2 a3 a4 blé6 xy+a2adbbxy-2ala2zadbldxy-3ala2 a4 bl2 x y-

2 2 2 2 2 2 2
> 2aZ2 a3 ad bl3 x y+3a2 a3 a4 bldx vy +6al a2z a3 a4 bls x vy -
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Chebyshev to Power Series transformation (continued):

2 2 2 2 2 3 3 3 3
> 9alaz a3 a4bl6x y+a2 a4 b9 x y+aZ ad blz x vy - 2 a2 a3 a4 bl5 x vy +

3 2 3 2 2 2 2 2 2 2
> 3 a2z a3 a4 blé6x y-alad blDy + 3 ala3 a4 blly +al a4 bl3 y -

2 2 2 3 2 2 3 2 2 2 2
> 3al a3 a4 bldy -al a4 bi5y +3 al a3 a4 bl6y +ad b5y -

2 2 2 2 2 2 2 2
> 3 a3 a4 b7y +a2ad bl0xy -3 azal3 a4 bllxy -2ala2ad bl3xy +

2 2 2 2 2 2 2 2
> 6 al aZz a3 a4 bldxy +3al aZa4 blSxy -9 al a2 a3 a4 blé6xy +

2 2 2 2 2 2 2 2 2 2 2 2
> az a4 Dbl3 x y -3 a2z a3 a4 bldx y -3 ala2 a4 bls5x y +

2 2 2 2 3 2 3 2 3 2 3 2
> 9alaz a3 a4 bl6x y +a2 a4 blS5x y -3 a2 a3 ad bl6x y -

3 3 2 3 3 3 3 3 3 3 3 3
> al a4 blly +al a4 bldy -al a4 bléy +ad b7y +a2ad bllxy -

3 3 2 3 3 2 3 2 3
> 2al a2 a4 bldxy +3al a2 a4 blé6xy +a2 a4 bldx y -

2 3 2 3 3 3 3 3
> 3alaZ a4 bléx y +az2 a4 ble x y
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Appendix 8

Damper experimental test plan — sinusoidal excitation (Section 7.0)

336

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10-kip Damper Experimental Test Plan

1/18/02 alw05t1_1
1/18/02 60 sec 5kHz a2w05t1_1
1/18/02 60 sec 5kHz a4w05t1_1
1/18/02 60 sec 5kHz abw05t1_1
1/18/02 60 sec 5kHz alwit_1
2 1/18/02 60 sec 5kHz a2wit1_1
4 1/19/02 60 sec 5kHz adwit1_1
1
2 XXX XXX XXX XXX
1 1/19/02 60 sec S5kHz alw05t1_2
2 1/19/02 60 sec 5kHz a2w05t1_2
4 119/02 60 sec 5kHz a4w05t1_2
6 1/20/02 60 sec 5kHz abw05t1_2
1 1/20/02 60 sec 5kHz alwit1_2
2 1/20/02 60 sec 5kHz a2wit1_2
4 1/21/02 60 sec 5kHz adwit1_2
1
2 XXX XXX XXX XXX
05 1/19/02 60 sec 5kHz alwO05t1_3
2 0.5 1/19/02 60 sec 5kHz a2w05t1_3
4 0.5 1/19/02 60 sec 5kHz ad4w05t1_3
6 0.5 1/20/02 60 sec 5kHz abwO05t1_3
3 1 1 1/20/02 60 sec 5kHz atwit1_3
2 1 1/21/02 60 sec 5kHz a2w1t1_3
4 1 1/21/02 60 sec 5kHz adw1it1_3
1 5
2 5 XXX XXX XXX XXX
- 1 0.5 1/20/02 60 sec 5kHz alw05t1_4
2 0.5 1/20/02 60 sec 5kHz a2w05t1_4
4 0.5 1/20/02 60 sec 5kHz adw05t1_4
6 05 1/20/02 €0 sec 5kHz abw05t1_4
4 1 1 1/20/02 60 sec 5kHz alwitl_4
2 1 1/21/02 60 sec 5kHz azwit1_4
4 1 1/21/02 60 sec 5kHz adwitl_4
1 5
2 5 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/21/02 alw05t1_5
2 1/21/02 60 sec 5kHz a2w05t1_5
4 1/21/02 60 sec 5kHz a4wo05t1_5
6 1/21/02 60 sec 5kHz abw05t1_5
1 1/21/02 60 sec 5kHz alwit1_5
2 1/21/02 60 sec 5kHz a2wit1_5
4 1/23/02 60 sec 5kHz adwit1_5
1
2 XXX XXX XXX XXX
1 1/21/02 60 sec 5kHz alw05t1_6
2 1/21/02 60 sec 5kHz a2w05t1_6
4 1/21/02 60 sec 5kHz a4wO05t1_6
6 1/21/02 60 sec 5kHz abw05t1_6
1 1/21/02 60 sec 5kHz alwit1_6
2 1/21/02 60 sec 5kHz a2wit1_6
4 1/24/02 60 sec 5kHz ad4wit1_6
1
2 XXX XXX XXX XXX
1 1/21/02 60 sec 5kHz alw05t1_7
2 1/21/02 60 sec 5kHz a2w05t1_7
-4 1/21/02 60 sec 5kHz a4wO05t1_7
6 1/21/02 60 sec 5kHz abw05t1_7
7 1 1/21/02 60 sec 5kHz alwit1_7
2 1/21/02 60 sec 5kHz a2wit1_7
| 4 1/24/02 60 sec 5kHz adwit1_7
1
]_ 2 XXX XXX XXX XXX
i 1 1123102 60 sec 5kHz a1w05t1_8
2 1/23/02 60 sec S5kHz a2w05t1_8
4 1/23/02 60 sec 5kHz a4w05t1_8
6 1/23/02 60 sec 5kHz abwO05t1_8
1 1/23/02 60 sec 5kHz atwit1_8
2 1/23/02 60 sec 5kHz a2w1t1_8
4 1/28/02 60 sec 5kHz adwit1_8
1
2 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/24/02 alw05t1_9
2 1/24/02 60 sec 5kHz a2w05t1_9
4 1/24/02 60 sec 5kHz a4w05t1_9
6 : 1/24/02 60 sec 5kHz abw05t1_9
1 1 1/24/02 60 sec 5kHz alwit1_9
2 1 1/28/02 60 sec 5kHz a2wit1_9
4 1 1/28/02 60 sec 5kHz adw1t1_9
1 5
2 5 XXX XXX XXX XXX
1 05 1/28/02 60 sec 5kHz alwO05t1_10
2 0.5 1/28/02 60 sec 5kHz a2w05t1_10
4 0:5 1/28/02 60 sec 5kHz a4w05t1_10
6 0.5 1/28/02 60 sec 5kHz abw05t1_10

10 1 1 128002 60 sec 5kHz alwitl_10
2 1 2/12/02 60 sec 5kHz a2w1t1_10
4 1 2/12/02 60 sec 5kHz a4w1t1_10

T 5
| J 5 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/18/02 alw05t2_1
2 1/18/02 60 sec 5kHz a2w05t2_1
4 1/18/02 60 sec 5kHz a4w05t2_1
6 1/18/02 60 sec 5kHz abw05t2_1
1 1/18/02 60 sec 5kHz alw1t2_1
2 1/18/02 60 sec 5kHz a2w1t2_1
4 1/19/02 60 sec 5kHz adw1t2_1
1 1/19/02 30 sec 5kHz alwbt2_1
2 XXX XXX XXX XXX
1 . 1/19/02 60 sec 5kHz alwo5t2_2
2 0.5 1/19/02 60 sec 5kHz a2w05t2_2
4 05 1/19/02 60 sec 5kHz adw05t2_2
6 0.5 1/19/02 60 sec 5kHz abw05t2_2
2 1 1 1/19/02 60 sec 5kHz alwit2_2
2 1 1/19/02 60 sec 5kHz a2wit2_2
4 1 1/19/02 60 sec 5kHz adwit2_2
1 5
2 5 XXX XXX XXX XXX
1 0.5 1/19/02 60 sec 5kHz alwO05t2_3
2 05 1/19/02 60 sec 5kHz a2w05t2_3
4 0.5 1/19/02 60 sec 5kHz a4w05t2_3
6 05 1/19/02 60 sec 5kHz abw05t2_3
3 1 1 1/19/02 60 sec 5kHz atwi1t2_3
2 1 1/19/02 60 sec 5kHz a2wit2_3
4 1 1/19/02 60 sec 5kHz adw1t2_3
1 5
2 5 XXX XXX XXX XXX
1 0.5 1/20/02 60 sec 5kHz alw05t2_4
2 05 1/20/02 60 sec 5kHz a2w05t2_4
4 0.5 1/20/02 60 sec 5kHz a4w05t2_4
6 0.5 1/20/02 60 sec 5kHz abw05t2_4
4 i 1 1/20/02 60 sec 5kHz alwit2_4
2 1 1/20/02 60 sec 5kHz a2wit2_4
4 1 1/20/02 60 sec 5kHz ad4wit2_4
1 5
2 5 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/20/02 alw05t2_5
2 1/20/02 60 sec 5kHz a2w05t2_5
4 1/20/02 60 sec 5kHz a4wO05t2_5
6 . 1/20/02 60 sec 5kHz abw05t2_5
1 1 1/20/02 60 sec 5kHz alwlt2_5
2 1 1/21/02 60 sec S5kHz a2wit2_5
4 1 1/23/02 60 sec 5kHz ad4wit2 5
1 5
2 5 XXX XXX XXX XXX
T 1 05 1/21/02 60 sec 5kHz alw05t2_6
2 0.5 1/21/02 60 sec 5kHz a2w05t2_6
4 05 1/21/02 60 sec 5kHz a4w05t2_6
6 05 1/21/02 60 sec 5kHz abw05t2_6
6 1 1 121102 60 sec 5kHz alwit2_6
2 1 1/21/02 60 sec 5kHz a2wit2_6
4 1 1/24/02 60 sec 5kHz adw1t2_6
1 5
2 5 XXX XXX XXX XXX
e 05  1/21/02 60 sec 5kHz alwo5t2_7
2 05 1/21/02 60 sec 5kHz a2w05t2_7
4 0.5 1/21/02 60 sec 5kHz a4w05t2_7
6 0.5 1/21/02 60 sec 5kHz abw05t2_7
7 A 1. 12102 60 sec 5kHz alwit2_7
2 1 1/21/02 60 sec 5kHz a2wit2_7
4 1 1/24/02 60 sec 5kHz adwit2_7
A 5
_I__ 2 5 XXX XXX XXX XXX
1 0.5 1/23/02 60 sec 5kHz alw05t2_8
2 0.5 1/23/02 60 sec 5kHz a2w05t2_8
4 0.5 1/23/02 60 sec 5kHz a4w05t2_8
6 05 1/23/02 60 sec 5kHz abw05t2_8
8 1 1 1/23/02 60 sec 5kHz alw1t2_8
2 1 1/23/02 60 sec 5kHz a2w1t2_8
4 1 1/28/02 60 sec 5kHz adwit2_8
1 5
2 5 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/23/02 alw05t2_9
2 1/23/02 60 sec 5kHz a2w05t2_9
4 1/23/02 60 sec 5kHz a4w05t2_9
6 . 1/23/02 60 sec 5kHz abw05t2_9
1 1 1/23/02 60 sec 5kHz alwi1t2_9
2 1 1/23/02 60 sec 5kHz a2wi1t2_ 9
4 1 1/28/02 60 sec 5kHz adw1t2_9
T 5
2 5 XXX XXX XXX XXX
B i 05 1/28]02 60 sec 5kHz a1w05t2_10
2 0.5 1/28/02 60 sec 5kHz a2w05t2_10
4 0.5 1/28/02 60 sec 5kHz a4w05t2_10
6 0.5 1/28/02 60 sec 5kHz abw05t2_10
10 1 1 1/28/02 60 sec 5kHz alw1t2_10
2 1 2/12/02 60 sec 5kHz a2w1t2_10
4 1 2/12/02 60 sec 5kHz ad4w1t2_10
1 5
2 5 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/19/02 alw05t3_1
2 1/19/02 60 sec 5kHz a2w05t3_1
4 1/19/02 60 sec S5kHz a4wO05t3_1
6 1/19/02 60 sec 5kHz abw05t3_1
1 1/19/02 60 sec 5kHz alwit3_1
2 1/19/02 60 sec 5kHz a2w1t3_1
4 XXX XXX XXX XXX
1 1/19/02 30 sec 5kHz alw5t3_1
2 XXX XXX XXX XXX
1 1/19/02 60 sec 5kHz alw05t3_2
2 1/19/02 60 sec 5kHz a2w05t3_2
4 1/19/02 60 sec 5kHz a4w05t3_2
6 1/19/02 60 sec 5kHz abw05t3_2
1 1/19/02 60 sec 5kHz alwit3_2
2 1/19/02 60 sec 5kHz a2w1t3_2
_4 XXX XXX XXX XXX
1
‘ 2 XXX XXX XXX XXX
1 1/19/02 60 sec 5kHz alw05t3_3
2 1/19/02 60 sec 5kHz a2w05t3_3
4 1/19/02 60 sec 5kHz a4wO05t3_3
6 119/02 60 sec 5kHz abw05t3_3
3 1 1/19/02 60 sec 5kHz alw1t3_3
2 1/19/02 60 sec 5kHz a2w1t3_3
" 4 XXX XXX XXX XXX
1
2 XXX XXX XXX XXX
1 1/20/02 60 sec S5kHz alw05t3_4
2 1/20/02 60 sec 5kHz a2w05t3_4
4 1/20/02 60 sec 5kHz a4w05t3_4
6 1/20/02 60 sec 5kHz abw05t3_4
1 1/20/02 60 sec 5kHz alwit3_4
2 1/20/02 60 sec 5kHz a2w1t3_4
4 XXX XXX XXX XXX
1
2 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/20/02 alw05t3_5

2 1/20/02 60 sec 5kHz a2w05t3_5

4 1/20/02 60 sec 5kHz ad4w05t3_5

6 ; 1/20/02 60 sec 5kHz abw05t3_5

1 1 1/20/02 60 sec 5kHz alw1t3_5

2 1 1/20/02 60 sec 5kHz a2w1t3_5

4 1 XXX XXX XXX XXX

1 5

2 5 XXX XXX XXX XXX

1 05 1/21/02 60 sec 5kHz alw05t3_6

2 05 1/21/02 60 sec 5kHz a2w05t3_6

4 05 1/21/02 60 sec 5kHz a4wO05t3_6

6 0.5 1/21/02 60 sec 5kHz abw05t3_6
6 1 1 1/21/02 60 sec 5kHz alwit3_6

2 1 1/21/02 60 sec 5kHz a2w1t3_6

4 1 XXX XXX XXX XXX

1 5

2 5 XXX XXX XXX XXX

[ 1 0.5 1/21/02 60 sec 5kHz alwO05t3_7

2 0.5 1/21/02 60 sec 5kHz a2w05t3_7

4 0:5 1/21/02 60 sec 5kHz a4w05t3_7

6 0.5 1/21/02 60 sec 5kHz abw05t3_7
7 | 1 1 1/21/02 60 sec 5kHz atwi1t3 7

2 1 1/21/02 60 sec 5kHz a2wit3_7

4 1 XXX XXX XXX XXX

1 5

2 5 XXX XXX XXX XXX

1 0.5 1/23/02 60 sec 5kHz alw05t3_8

2 0.5 1/23/02 60 sec S5kHz a2w05t3_8

4 0.5 1/23/02 60 sec 5kHz a4w05t3_8

6 0.5 1/23/02 60 sec 5kHz abw05t3_8
8 1 1 1/23/02 60 sec 5kHz alw1t3_8

2 1 1/23/02 60 sec 5kHz a2w1it3_8

4 1 XXX XXX XXX XXX

1 5

2 5 XXX XXX XXX XXX
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10-kip Damper Experimental Test Plan

1 1/23/02 alw05t3_9
2 1/23/02 60 sec 5kHz a2w05t3_9
4 1/23/02 60 sec 5kHz a4w05t3_9
6 ; 1/23/02 60 sec 5kHz abw05t3_9
9 1 1 1/23/02 60 sec 5kHz alwit3_9
2 1 1/23/02 60 sec 5kHz a2wit3_9
4 1 XXX XXX XXX XXX
1 5
L 2 5 - XXX XXX XXX XXX
1 05 1/28/02 60 sec 5kHz a1w05t3_10
2 0.5 1/28/02 60 sec 5kHz a2w05t3_10
4 0.5 1/28/02 60 sec 5kHz a4wO05t3_10
L 6 05 1/28/02 60 sec 5kHz abw05t3_10
10 1 1 1/28/02 60 sec 5kHz alw1t3_10
2 1 1/28/02 60 sec 5kHz a2w1t3_10
4 1 XXX XXX XXX XXX
1 5
_2__ 5 - XXX XXX XXX XXX
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