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Abstract

The concept of substructure deletion proposed for the analysis of a rigid embedded
foundation was adapted for the analysis of site amplification effects in alluvial valleys. A
major modification was made for the present application such that the boundary
integration equation method was used for both the finite size interior problem and semi-
infinite exterior wave radiation problem. The modification was made to reduce the
possible incompatibility between the finite element method, a volume formulation, and the
boundary integral equation method, a surface formulation. The substructure deletion
concept allows simple, century-old, basic Green’s Functions to be used to produce
excellent wave scattering results for topographical irregularities as well as arbitrarily
shaped alluvial valleys overlying a stiffer bedrock. The concept is applicable to three-
dimensional geometries as well as two-dimensional problems. Results are given for

incident SH, P, SV and Rayleigh waves.



Chapter 1

| ntroduction

It iswell-known to a geophysics researcher that atheoretically generated wave solution
from a fault rupture model seems overly simplistic compared to a recorded seismogram.
Although there are mgjor approximations made in a well-defined dip-dlip or strike-slip
model, the inhomogeneous contents along the wave path, from the fault to the recording

station, contribute in a major way to the complexity of the recorded wave form.

Since many civilizations were founded near a water source with an alluvial deposit to
grow vegetation and sustain life; it istherefore highly likely that an urban earthquake would
be amplified by soft aluvium deposit over a stiff bedrock. The duration of the seismic
event could be longer due to wave energy trapped within the top layers of sediment. Itis
relatively easy for wave energy to enter the soft upper layers from the rock layers below
because of the contrast of material strength. Once the wave energy entered the softer layers,
it is trapped there as a large percentage of the outgoing waves are reflected from the stiffer
lower layers. This phenomenon leads to prolonged seismic records as it requires time for

the interior wave energy to dissipate into the lower layers and not return.

Effect of site conditions on earthquake intensity has always been an important part of
earthquake engineering. It was noticed that during earthquakes degree of damageto similar
structures|ocated on different site conditionsis not the same and this started theinvestigation
and research on effect of soil conditions on earthquake strong motion. In the 1989 Loma
Prieta earthquake, the greatest damage occurred in areas where site response increased the
ground motion (Holzer et a.,1994). In the 1994 Northridge earthquake, distribution of

damage was irregular throughout Los Angeles even within a distance of 1 Km. Seismic



recording have been found different at sites which are located only 200 meters from each
other. Thisinconsistency in seismic risk indicates the effects of site conditions are major

factors (Holzer, 1994, Hatzell, 1996 and Field, 2000).

There are at least two types of site-effects that can enhance earthquake damage: one
is soil failure such as liquefaction and the other is geological compositions which amplify
incoming waves. In the 1985 Mexico City earthquake the catastrophic damage to buildings
and bridges was identified as a result of amplification of wavesin soft clay on much stiffer
soil or rock. During this particul ar earthquake long duration induced soil resonance without
much soil nonlinearity (Anderson et a, 1986). In the 2000 Western Tottori earthquake in
Japan, a detailed study of damage to wooden houses indicated a pattern that site condition
has strong effects (Matsunami et a, 2002). In the 1989 Loma Prieta and the 1996 Kobe
earthquakes, two well-documented events (Iwata et al, 1996, Aguirre and Irikura, 1998,

Ishihara and Kijima, 2001), both site amplification and soil liquefaction was reported.

1.1. Effects of siteamplification on structural response during earthquakes

Itisof great interest to study the effects of site amplification because of the direct impact
it hason theresponse of structuresduring earthquakes. Inthe 1985 Chileearthquakethe one-
and two-story buildings, which were built on volcanic or sedimentary rocks and alluvium,
resulted in resonance; wave amplification caused higher spectral acceleration values. Inthe
1985 Mexico City earthquake large amplitudes were results of site amplification effectsand
it has certain dominant frequencies associated with the geological conditions of the area
(Ordaz et a, 2000). It was reported (Anderson et al, 1986) that the medium-rise structures

were damaged most seriously.

Matsunami et a (2002) conducted a research on damage to wooden houses in

Shimoenoki, Tottori, Japan, by the 2000 Western Tottori earthquake. They concluded
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that damage was the result of variation of site amplification factors at frequencies between
2 and 5 Hz and that frequency range is close to the first natural frequency of the wooden
buildings. Zhang et a (2003) conducted research on the effects of site amplification on
structural response of base-fixed 6-storey framed structure. They used the finite elements
method with the aid of boundary elements to study structural response on a soft clay site.
They concluded that soil nonlinearity has a significant influence on structural response
if the site response has a period near the fundamental period of the structure. Wong et a
(1977) measured the response near acanyon in Pasadenagenerated by anine-storey building
excited harmonically by a shaker at its roof. The observed results indicated that surficial

irregularities can affect the incoming wave amplitudes.

Hao and Chouw (2008) studied the response of bridge structuresto siteamplified ground
motions. They utilized the Australian design spectrum for bedrock movement simulation
and described the subsoil properties using acombined finite element and boundary element
method. Their results show the importance of site amplification. The authorsindicated that
site amplification can result in relative response between two adjacent bridge locations and

it can cause pounding which damages bridge girders.

1.2 Empirical M odeling of Site Amplification

Many researchershave estimated siteamplification from weak and strong motion records
including S waves, codawaves, and ambient noise. Kagami et al (1982) found that spectral
amplitude of long period microtremors increases as the thickness of soil deposit increases.
Therefore, observation of |ong period microtremorsat anumber of stations can help estimate

deep soil amplification.

Borcherdt (1994), used the Loma Prieta strong motion record and averaged site

amplification factors over the short period (0.1-0.5 sec), intermediate period (0.5-1.5 sec),

3



mid period (0.4-2 sec), and long period (1.5-5 sec) bands. These coefficients were obtained
from Fourier amplitude spectrafor the radial and transverse components of ground motion.
Site amplification in recent building codes are devel oped from the averages of amplification

estimates in short and mid period.

Crouse and McGuire (1996) estimated site coefficients utilizing empirical attenuation
curves developed from strong motion recording of 16 US earthquakes considering various

spectral magnitude and acceleration levels.

Su et a (1996) concluded that site amplification determined from S waves and coda
waves are consistent within epicentral distance greater than focal depth, the reason for
the inconsistency within smaller distances is that S waves can be affected by the wave
propagation path. Stations in this study were located on sites with various geological
characteristics, including aluvial sites. The authors indicated that for deep aluvial sites,
such as San Francisco, further study need to be conducted since the generation of resonant

wavesis possible.

Harmsen (1997) derived amplification factors relative to a single reference rock site
(Caltech Seismic Lab) using the inversion approach of Andrews (1986). Strong motion data
from main shock recordings in the San Fernando Valley and the Los Angeles basin from
the 1971 San Fernando, the 1987 Whittier, the 1991 Sierra Madre and the 1994 Northridge
earthquakes were used. Amplification factors were proposed through linear relationships

for intermediate (0.5-1.5 Hz) and high (2.0-6.0 Hz) frequency bands.

Trifunac and Todorovska (2000) studied site amplification factors based on weak and
strong motions. Their results show that small amplitude waves (aftershocks, coda waves
and small earthquakes) cannot be used for the prediction of site amplification factorsin the

near field if the soil response is nonlinear.



Yamanakaet a (2008) observed the ground motions of the 2007 Noto Hanto earthquake
aftershocks. Their results suggest that amplification mechanism in Terrace deposits is
different from Quaternary sediments. They reported that amplitude of spectra ratios is
twice those of microtremors; but thereisalinear correlation between them. They indicated

that microtremors can be used for estimating site effectsin shallow soils.

Taylor et a (2009) developed a method for estimating site factors from ambient noise.
Based on their results for hard rock sites, amplitudes are lower and resonance peaks are
narrower as compared to softer sites. At higher amplitudes, the spectral peaks are more
symmetric and have higher frequencies because sites with higher amplification have lower

densities and smaller strain nonlinearity.

1.3 Siteamplification Factorsin Seismic Building Codes

Starting in the 1990s shear wave velocity in the upper 30 m of soil (Vs30) has been
incorporated in building codes around the world. In the United States, Uniform Building
Code (UBC) 1997, in Europe, Eurocode 8 (1998) and in Canada National Building Code
of Canada (NBCC) 2005 are examples.

In the United Sates, site coefficient S which depends on local soil conditions was
introduced in 1978 (ATC, 1987) for calculating seismic force of buildings. Values of S
were small and independent of level of shaking and they only amplified the long period of
the spectrum. Over the years, using analytical results, laboratory and instrumental results,
recorded amplification of earthquake waves (in soft soil during the Loma Prieta earthquake
in 1989), it has been shown that the S factor does not incorporate all the necessary site

characteristics for seismic design.



After some new studies, new site characterization and site coefficients were introduced
to 1994 edition of Seismic Provision of National Earthquake Hazard Reduction Program
(NEHRP, 1994) and 1997 Uniform Building Code (UBC 1997). Thenew F, and F;, defined
site coefficients at the short and large periods, respectively. The factors depend on both site
class and the intensity of rock motion, and they decrease as the level of rock seismic hazard
increases. The reason for this reduction is based on soil non-linearity. Average shear wave
velocity in the upper 30m of the siteis used for site classification; 30 misthe typical depth

of the soil boring tests which provide detailed site properties.

Code provisionsare based on National Earthquake Hazard Reduction Program (NEHRP
1994) soil classification schemes (BSSC 2003). NEHRP provides amplification factors
based on Vs30 (Finn and Wightman, 2003). F, and F,, were developed from averages of
amplification estimates in short and mid period from the research conducted by Borcherdt
(1994). LomaPrietastrong motion recordswere applied to average siteamplification factors
over the short period (0.1-0.5 sec), intermediate period (0.5-1.5 sec), mid period (0.4-2 sec),
and long period (1.5-5 sec) bands.

Dobry and La (2000) studied development of understanding site response and
implementation of it in US seismic codes. They concluded that effects of soil and
rock below upper 30 m, basin edge, other two-dimensiona and three-dimensional effects,
some combination of sites, earthquakes and period ranges are not considered in the
code. Liquefaction and strong soil nonlinearity are also not sufficiently considered. They
suggested that microzonation of cities and urban areas can be included to improve the
simplifications used in codes. Fig. 1.1 and Fig. 1.2 show seismic zones of Kobe, Japan, and

Taiwan, respectively.
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Figure 1.1. Geologic map of Kobe, Japan, and the site characterization locations.
The near-surface S-wave slowness Ss(30) range is shown for each SASW site

Anderson et a (1996) studied seismograms for vertically incident S waves through
flat, solid, elastic layers. The authors investigated the effect of both surficial and underling
geology on peak amplitude and integrated the squared amplitude of the seismogram. Their
results show that 30 mistoo thin of alayer for atypical earthquake with focal depth of 10 to

15 km and that 30 m represents only 0.3% of the propagation path. Unless the shear wave



velocity isaslow as 300 m/sec, the top layer islessthan the wavelength, even at 10Hz. The
conclusion is that the geological effects on ground motion cannot be determined based on

near surface properties alone.

Based onresearch conducted by Leeet a (2010) average shear vel ocity intheupper 30 m
of soil alone should not be used in site classification or scaling strong motion amplitudes.
Thelr results suggest using a parameter which considers much deeper soil layer thickness
and also near surface geology. Hassani et al (2011) suggest that shear wave velocity in the

top 30 mis not sufficient for site classification and site effect calculation.

Huang et al (2010) developed Next Generation Attenuation (NGA) relationships using
strong motion recordings of shalow earthquakes and compared their results with site
coefficients in ASCE 7 and NEHRP provisions. Based on their results for VS30 smaller
than 270 m/s, site factors significantly depend on period and are greater than the NEHRP

provision site factors.

Le Pense et a (2011) investigated the influence of soil properties and site geometry
of sediment filled valleys on earthquake response spectra. Based on their studies
current building codes consider site effects only based on a one-dimensional analysis and
avoided complex cases of irregular two-dimensional configurations. They indicated two-
dimensional complex site effects have higher amplification of seismic waves than one-

dimensional site effects, furthermore, it causes extension of signal length.

1.4 Analytical Modeling of Site Amplification

In addition to the observed site amplification effects during earthquakes, thereis still a
need to simulate these effects using analytical models. The wave propagation problem in

solids involves a vector wave equation with at least two body wave speeds. Additionally,
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surface L ove waves (antiplane motion) travel with frequency dependent phase vel ocitiesand
each mode of that has adifferent characteristic. There are Rayleigh waves (inplane motion)
which have aretrograde type of motion and is to be blamed for many landslide episodes.
Because of the complexity of the problem, there are still limited viable theoretical solutions

to adequately simulate the site amplification problem in three-dimensions.

Modern numerical tools such as finite elements and finite differences can theoretically
handle material and geometrical nonlinearities but the size of this geophysical problem is
so large that artificial boundaries must be introduce to limit the problem size. There are
still issues to be resolved for numerical instabilities of the artificial boundary algorithms.
The number of unknown variables increase quickly in athree-dimensiona analysis and the

problem can easily become unmanageable.

The continuum mechanics solution cannot handle nonlinear material properties but it
offers solutions which alows the far-field conditions to be modeled by a basic half space
configuration. The Sommerfeld radiation boundary condition at infinity allowed solutions
to be obtained so thereisbasically no concernfor reflected wavesfrom an artificial boundary.
The far field can be modeled approximately by a homogenous half space or alayered half
spacewith horizontal layers. Within thelinear model framework, the continuum mechanics
models can help explain the physics of wave scattering, reflection and diffraction involved

in the site amplification problem.

Using SH-wavemodels, Trifunac (1971) explained the amplitude of wavesonthesurface
of an aluvial valley could be an order of magnitude larger than the amplitude of the bedrock
beneath. The amplification factor is dependent of the contrast of material properties aswell
asthegeometrical configurationsof thelayers. Other researcherssuch asWongand Trifunac

(1974) and Lee (1985) aso contributed similar conclusions for different layer geometries.

10



Wong (1982) studied the effects of P, SV and Rayleigh waves on an arbitrary shaped
canyon and concluded that topographical irregularities can affect wave amplitudes. Kawase
H. (1988), Sanchez-Sesmaand Campillo (1991), Dravinski and M ossessian (1987) provided
more excellent results in that same area. Gatmiri et a (2007, 2009) performed in the time
domain a hybrid method which includes a finite element model for sedimentary layer and
a boundary element method for the bedrock. The authors also suggested shape factors for
possible use in building codes, an attempt to improve the existing one-dimensional wave
propagation model currently employed. Dravinski and Wilson (2001) extended the study
of wave scattering to include anistropic effects. Dravinski and Mossessian (1990) also did
analysis for athree-dimensional alluvial valley by providing interesting transient response
at variouslocations. Most of the above analyseswere performed using an indirect boundary
integra method where the wave solutions are generated by sources not directly on the

boundary of the wave scatterer.

Le Pense et a (2011) investigated the influence of soil properties and site geometry
of sediment filled valleys on earthquake response spectra. The authors indicated that two-
dimensional and complex site effects could yield higher amplification of seismic waves
than one-dimensional site effects. Their research conducted resulted in a two-dimensional
method for calculating site amplification of trapezoidal valleys with various geometrical

characteristics and soil properties.

Theboundary integral equation method, based on the representati on theorem introduced
by DeHoop (1958) and subsequent work by Haskell (1966, 1969), has the ability to handle
irregular geometries and it seems to be an excellent tool for wave scattering problem with
some simplification of the actual geological conditions. But the basic component, the
Green’s Functions, aredifficult to calculate. 1n the particular case of alayered medium with

buried sources and buried observers, the program code could require several thousand lines

11



(Apsel, 1979). Furthermore, there are singularitiesto be dealt with. The above reasonslead

to the fact that it is not yet a popular approach among earth scientists.

In thisdissertation, the concept of substructure Deletion as proposed by Dasgupta (1980)
to solve rigid embedded foundation problems will be adapted to analyze site amplification
problems. Thismethod can replacethe depth dependence of the buried Green’s Functionshby
representing those characteristicsby afinitelayer of thesamematerial. Asproposed, if afill-
inlayer of the same material isplaced on top of the irregular interface, the combination will
merge to become a basic half space. With abasic half space, the traction Green’s Function
matrix at the surface of the half space is zero because the half plane surface is stress free.
Therefore, only the displacement Green’s Function matrix needs to be calculated. And
since there is no depth dependence for the Green’'s Functions, the problem is significantly
simpler, perhaps by an order of magnitude in effort. Betti (1994) applied the same method
to a three-dimensional embedded foundation using the boundary integral egquation method
for both media | and 11 while Dasgupta originated the method by using the finite element

method for thefill-in layer.

The present application applies the same concept to analyze surface or subsurface
irregularities and their effects on wave amplification. Thetwo applications are different and
the substructure del etion concept should be more efficient for the present site amplification
problem because the lateral dimensions of a typical aluvia valey is much larger than
its depth, therefore, the fill-in layer is thin in aspect ratio compared to those employed
for embedded foundations. From a physics point of view, the traction-displacement
relationships for the half space and that for the irregular interface should not be appreciably

different.
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The main challenge of the present application would be that the motion at every point
of the model isof interest. Unlike the foundation analysis, where the traction at the surface
of the rigid foundation is only an intermediate result, they are later integrated to yield
one complex number per frequency, i.e., the impedance function of the foundation. The
inaccuracies of the traction solution would be diminished by the surface integration. The
shorter wavelengths are also filtered out by the rigidity of the foundation, a phenomenon
known as kinematic interaction. For site amplification studies, however, the point-by-point
solution is needed because the overall response at the surface of the entire canyon or alluvial
valley is of interest. The development in the later chapters will demonstrate the value of
the substructure deletion concept as a potential tool to analyze complex three-dimensional

wave scattering problems.
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Chapter 2

Theoretical Development

There are two of the mgjor analysis methods available for dynamics problems:. the
finite element method and the continuum mechanics method. The finite element method
isexcellent for three-dimensional geometrical and material modeling of finite size models,
but the vast scale of geophysical problems make computation not feasi ble because of issues
associated with an artificial boundary introduced to limit the model size. The continuum
methods are limited by the number of coordinate systems which are amenable to solutions

for the vector elastic wave equation.

Most geophysics related wave propagation problems are simplified to that with a half-
space configuration in which the out-going waves are assumed to radiate away and not
return. The far-field approximation is crude, smply a half-space or a layered half-space
with horizontal layers. The near-field locations demand more detailed modeling and the
boundary integral equation method seems to be the most promising analysis tool to meet

the challenge.

The form of the representation theorem (Haskell 1969) for waves generated by sources

from asurface S is

i) = [ [U@n]nds— [ [T@0]awas @)

Using the above integral representation, the displacement vector (7,) at any location
7 Within the homogeneous soil medium can be calculated in terms of the boundary
displacement () and the boundary traction (7). The derivation of Eq. (2.1) is based

on the reciprocal theorem and it is explained in Appendix A. The surface S represents the
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scattering surface of the problem and must be defined so it is consistent with the Green's
Functionmatrices[U] and [T]. If asemi-infinitemediumisconsidered, S can haveaninfinite
dimension to cover the entire half space surface if full-space Green's Functions were used.
However, if local conditions of a particular site is of greater interest, the far-field can be
assumed to be ahalf-space surface and it is expedient to use Green’s Function matrices, [U]
and [T'] such that the stress free boundary condition at the half-space surface is accounted
for automatically. With thiscondition, the surface S would be reduced to that of alocalized,
finite size wave scatterer, S, between points A and B as shown in Fig. 2.1. The boundary
condition of the free surface from A to z — —oo and from B to z — oo are accounted for

by using the Green’s Function derived specifically for a half-space configuration.

A B

\ ) '

Figure 2.1. A Basic Half Space Model
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2.1 Level of Difficulty of Various Wave Propagation M odels

The boundary integral equation, asshown in Eq. (2.1), isapplicableto alarge number of
wave propagation problems. It is particular important for modeling wave problems where
the outgoing waves are not expected to return. For this reason, the analysis is normally
concentrated near the scattering surface S and the details of the far field is |ess important.
Thismethod has an advantage over methods such asthefinite element or thefinitedifference
method because the information far removed from the points of interest is critical to the

stability of the numerical algorithm.

One of the difficulties of using Eq. (2.1) isthat the Green’s Functions have singul arities.
For two-dimensional problems, the displacement matrix [U] has the integrable singularity
of logr asr — 0 and the traction matrix [T'] hasa 1/r singularity. For three-dimensional
models, the displacement matrix [U] hastheintegrable singularity of 1/r asr — 0 and the
traction matrix [T'] hasa 1/r? singularity. In both cases, the Principle Value integral must
be taken for the integration of the [7'] matrix in the second term on theright side of Eq. (2.1)

when the observation point 7, is placed on the surface to form an integral equation.

In addition to the challenges met while dealing with the singularities, the Green’s
Functions are difficult to evaluate for some cases and nearly impossible for others. The
purpose of this section is to explore the relative difficulties of the problems and then
propose a way to simplify the formulation to achieve the solution with less complicated
Green’s Functions. It isimportant to note that the principle of superposition which led to

the development of Eq. (2.1) is applicable only to linear problems.

Shown in Fig. 2.2ais a simplified model of an alluvial layer overlying the bedrock.
This schematic represents both two-dimensional and three-dimensional models. Region |

represents the aluvial valley and it has a finite dimension as shown in Fig. 2.2b. Region |1
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(a)

Alluvial Deposit

N
S
N—
>

Half Space Configuration
Figure 2.2. A Medium With Contrasting Stiffness

has an irregular interface carved out of abasic half-space configuration and it is assumed to

have infinite dimensions in the lower portion of the model.

To use Eq. (2.1) to model the aluvial layer as shownin Fig. 2.2b, the Green’s Functions
for an infinite medium are used. The scatterer’s surface S would be the two faces which
enclose the body. The traction matrix [7'] would be calculated using the normal vector 7
directed outward from the medium. This is known as an interior problem and the model

possesses resonance behavior typical of afinitemodel. The Green’sFunctionsfor aninfinite

17



space are formed by basic algebraic and trigonometric functions as shown in Appendix
B, Section B.1 for two-dimensional anti-plane wave problems, Appendix C, Section C.1
for two-dimensional plane strain wave problems and Appendix F, Section F.1 for three-
dimensional problems. Although many of the expressions seem lengthy and tedious, they
can be calculated easily with acomputer program. The geometry of thealluvial layer can be
approximated by a parametric surface or a Triangulated Irregular Network (TIN) surface,

the latter for three-dimensional models.

To use Eq. (2.1) to model a half space with an irregular surface as shown in Fig. 2.2c,
the main challengeisthe numerical evaluation of the Green’s Functions with buried sources
and observation points both placed beneath the surface. Even for the case of ahomogeneous
half space, the Green’s Functions have the form of an infinite integral over wave number to
represent a superposition of body waves of all incident angles. The two-dimensional anti-
plane SH-wave problem isthe only exception, its Greens Function can be written in terms of
Bessel’s Function using amirror image to form the stress-free boundary (Section B.2). For
all the other cases, however, the complete expression for the Green’s Functionsisworthy of
an entire dissertation such as that provided by Apsel (1979) for alayered viscoelastic half
gpace. The expressions for plane strain or three-dimensional Green’s Functions provided
in Appendices C and F are those with sources and observations on the half space surface
only. With the proposed method in the next two sections, the use of the more complicated

Green's Functions can be avoided.

2.2 The Concept of Substructure Deletion

Thesubstructure Del etion concept as proposed by Dasgupta (1980) can replacethe depth
dependence of the buried Green’s Functions by representing those characteristics by afinite

volume of the same material. As proposed, if afill-in layer of the same material is placed
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on top of the irregular surface, the combination becomes a basic half space as shown in
Fig. 2.3a. With abasic half space, the traction Green’s Function matrix [T] at the surface
of the half spacein Eq. (2.1) is zero because the half plane surface is stressfree. Therefore,
only the displacement Green’s Function matrix [U] needs to be calculated. And since there
is no depth dependence for the Green’'s Functions, the problem is simpler by an order of
magnitude in effort. The Green’'s Functions on the surface of a half space are given in
Sections B.3, C.2 and F.2 for the two-dimensional anti-plane, two-dimensional plane strain

and three-dimensional problems, respectively.

(a)
A B

11
(b) A B
A
(c) A B
11

Figure 2.3. Two Media With The Same Material
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To clarify the procedures of this concept, it is proposed to first develop the traction-
displacement relationship of aflat half space surface between points A and B as shown in
Fig. 2.3a. That can be done by setting [77] to zero in Eq. (2.1). The next step isto recognize
the combination of medium | and medium |1 in Fig. 2.3b is the same as a flat half space
surface. The traction-displacement relationship of the fill-in layer can be obtained using
full-space Green’'s Functions while the traction-displacement rel ationship of the underlying
medium with an irregular surface, Fig. 2.3c, is much more complicated to obtain. It is
proposed to subtract, using matrix manipulation, the traction-displacement relationship for
the fill-in layer from that of the half space, and the difference would yield the traction-
displacement relationship of the irregular subsurface beneath the surface. This concept is

expected to be applicable to both two-dimensional and three-dimensional problems.

Sinceits original proposal over 30 years ago, the substructure deletion method has not
been developed further to reach its great potential. Dasgupta (1980) applied the method to
a deeply embedded two-dimensional foundations using a finite element model to represent
thefill-in portion and the boundary integral equation method for the plane half space mode!.
Betti (1991) applied the same method to a three-dimensional embedded foundation using
the boundary integral equation method for both media | and Il. The present application
applies the same concept to analyze surface or subsurface irregularities and their effects on
wave amplification. Thetwo applications are different and the substructure deletion concept
should be more efficient for the site amplification problem because the lateral dimensions
of atypical aluvial valley is much larger than its depth, therefore, the fill-in layer is thin
in aspect ratio compared to those of embedded foundations. From a physics point of view,
the traction-displacement relationships for the half space and that for the irregular surface

should not be appreciably different.
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The main challenge of the present application would be that the motion at every point
of the model is of interest. In the foundation analysis, the traction at the surface of the
rigid foundation is only an intermediate result, they are integrated to yield one complex
number per frequency, and that would be the impedance function of the foundation. The
inaccuracies of the traction solution would decrease by the surface integration. The shorter
wavelengths are to be filtered out by the rigidity of the foundation. For site amplification
studies, however, the point-by-point solution is needed because the overall response at the
surface of the entire canyon or alluvia valley is of interest. For that reason, obtaining high

frequency results could pose a more severe challenge.

The remaining chapters of this dissertation would address the feasibility of this method

to be applied to practical site amplification problems.
2.3 Theoretical Development of the Proposed Method

From EqQ. (2.1), the boundary integral equation on the stress-free surface of a

homogeneous half space can be simplified to

g

(i) = [5 AN G (2.2)

because the traction matrix [7'] is zero on a stress-free half space surface. In the above
equation, the displacement vector at any point on the surface, 7),, can be calculated as a
surface integral of the tractions at the same surface multiplied by the displacement Green’s
Functions [U]. Eqg. (2.2) isavector formulation of a boundary value problem which yields
a unique solution to the vector wave equation. After the boundary values are determined,

Eqg. (2.2) can be used to calculate the wave solution at other locations away from S.
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A numerical solution of Eqg. (2.2) can be accomplished by first subdividing .S into N
subregions, S;,i = 1,2, ..., N, then, it can be expressed as

Z / UG lR ] #ds (2.3)

with %, placed within the confine of S. The next step is to approximate (i) as a constant
vector, FJ within subregion S; asazero order approximation. It hasbeen shown in previous
formulations of this type (Wong 1975), that higher order approximations often do not
improve the accuracy because the traction distribution has unusualy high values at the
edges. Therefore, a constant value which represents the average traction distribution in the

subregions provides a good approximation. With the above assumptions, Eq. (2.3) can be

N
-y </S_[U(fp|f)] dS) Lo (2.4)

Assign the source point of the Green’s Function, 7, to be equal to 7, the centroid of the

simplified to

subregions, S;, then Eq. (2.4) can be expressed asa 3 x 3 matrix equation

N
;=Y [Uglt; . i=12...,N, (2.5)
j=1
in which ; isthe displacement vector at the centroid of .S; and

Uil = [ W (2:6)

isthe influence matrices. Replace the summation in Eq. (2.5) by amatrix equation of order

3N x 3N and it can be expressed as

i= U]t . (2.7)
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The concept for two-dimension problemsisthe same, except the order of the matrix equation
iIS2N x 2N for atwo-dimension P-SV wave problem and N x N for atwo-dimensional

SH-wave problem.

For later application, the above equation will be denoted as

in which the subscribe 1 refers to surface 1 (Fig. 2.3a) and the superscript of the influence

matrix, H, marksit as the formulation for a half space surface.

Consider now the application of Eq. (2.1) to thefill-in layer model asshowninFig. 2.3b.
The representation theorem, Eq. (2.1), can be changed into a boundary integral equation by
limiting the source point 7, onto surface S to leave an integral equation of the form

5U(rp) = /S[U(th?) | () dS — /S[T(th?) la(@ds , monS . (2.9)

In the above equation, the displacement vector at any point on the surface, i, can be

calculated as a surface integral of the displacements and tractions on the same surface

multiplied by the traction and displacement Green’s Functions, respectively. The factor, %
istheresult of the principle valueintegral of the 7] matrix when the source point islocated

onthe surface S.

A numerical solution of Eg. (2.9) can be accomplished by first subdividing S into NV
subregions, S;,i =1,2,..., N. Then, Eq. (2.9) can be expressed as

(UG, ] ) dS—Z[S_[T(fp|f)}ﬁ(f) is . (2.10)
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with 7, placed on S. Thenext step isto approximate (i) asaconstant vector, #; and () as
aconstant vector, i;, on S;, as azeroth order approximation. With the above assumptions,

Eg. (2.10) can be simplified to

N . N
; </SJ [U(Tp|7“>] dS) lj = Eu(rp) + Z (

J=1

/[T(Fpm]dS) i . (211

S
Assign the source point of the Green's Function, 7, to be equal to 7, the centroid of the

subregions, S;, EQ. (2.11) can be expressed asa 3 x 3 matrix equation

N N
> UGt = s+ Y [Tyld; ,i=1,2,...,N, (2.12)
inwhich
ol = [ wEmas (2.13)
and
)= [ m@inas (2.14)

will be referred to as the influence matrices. Replace the summation in Eq. (2.12) by a

matrix equation of order 3N x 3N and it can be expressed as
Ult= G+ (1) u (2.15)
in which « contains the displacement vectors at the centroids of the /N subregions.

Since the fill-in layer has both surfaces 1 and 2, Eq. (2.15) needs to be reorganized for

application by using partitioned matrices as
[} el (B} = [ ml i HEY
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in which the subscribes, 1 and 2, represent the surfaces, 1 and 2, respectively. To simplify

algebraic derivation, there is no superscribe assigned to this model.

Thelast remaining model isthe boundary integral equation formulation of the embedded
surface as shown in Fig. 2.3c. To be consistent with the half space model notation used in

Eqg. (2.8), the matrix representation for the embedded surface model can be written as
Un]ty = (3] + [T9]) af (2.17)

in which the subscribes 2 represents surface 2 as shown in Fig. 2.3c and the superscribe
E denotes the embedded subsurface. Unlike the formulations in Eq. (2.8) and Eq. (2.15),
the numerical integration of Eq. (2.17) will not be performed. Rather, the matrices [UZ]
and 1[I] + [T43] will be obtained through matrix manipulation of the components of the
half space model and the fill-in layer model. The radiation of waves will be provided by
[Uf1] and the irregular surface depth dependence will be accounted for by the submatrices

in Eq. (2.16).

Thefirst stepistoinvert the (3 (] + [T7]) matrix of thefill-inlayer in Eq. (2.16) to yield

acompliance matrix [G] defined as
ﬂl [Gll] [G12]:| { Zs—)1 }
Uil _ /] . 2.18
{Uz } [[Gzl] [G22] | | t2 (2.18)
The next step isto rewrite Eq. (2.17) in asimilar manner to
ay = [GRL]EY . (2.19)

The operation to obtain Eq. (2.18) requires perhaps the largest effort as the large matrix
involves both surfaces 1 and 2. The form in Eq. (2.19) is actually not calculated, it isa

symbolic form to be achieved by the substructure deletion concept, i.e., the matrix [Gg] is
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to be obtained using the submatrices of Eq. (2.18) and Eq. (2.8). Thereisno extraoperation
to obtain a compliance matrix for surface 1 of the half space model as it is aready in that
form due to the stress free conditions of the half space surface. To achieve a consistent

notation, rewrite Eq. (2.8) in the form
af = [GRlEY (2.20)
inwhich [Gf, ] isthe same as [U{1] in Eq. (2.8).

To assembl e the matrices, apply the boundary conditions shown below:

i = ul : (2.21a)
t=tH , (2.21b)
iy = @Y : (2.21c)
ty=—t% : (2.21d)

The sign of Eq. (2.21d) is opposite because the outer normal of the two formulations are
in opposite directions. Thefill-in layer isan interior problem while the irregular half space

surface is an exterior problem.
The expansion of the first row of the matrix equation in Eq. (2.18) yields
iy = [Gulty + [Gialta . (2.22)
Applying the boundary conditions Eq. (2.21a) and Eq. (2.21b) to Eg. (2.20) to yield
i =ay =GRt = [Gh)h (2.23)
The substitution of Eq. (2.23) into EQ. (2.22) generates

[GT )6 = [Gulh + [Grltz (2.24)

26



The above equation is now in aform to relate the tractions of the two surfaces as
f=(GH] - [Gu)) " Gt (2.25)
Expand now the second row of the matrix equation in Eq. (2.18) in the form
iy = [Go1]t1 + [Gaolts ; (2.26)
and the substitution of Eq. (2.25) into Eq. (2.26) generates the equation
S H -1 -
@ = ([Ga] + [G] (IG5] ~ [Gu1]) " [Gral) B (2.27)

Apply now boundary conditions in Eq. (2.21c) and Eq. (2.21d), the above equation can be

written as

if =~ (G2l + [G2] (GH] - [Gu]) ' [Gr]) EF . (228)

With the comparison between the above equation and Eq. (2.19), it is clear that
-1
G5 = = (1G22) + [G2] (IGH] = [Gn]) " [Gra]) (2.29)

Therefore, the compliance matrix of theirregular surface 2 is obtained using the half space
compliance matrix [G$4] and the four submatrices of the fill-in layer’s compliance matrix
without the Green’s Functions of aburied |oad with subsurface displacements and tractions.
Dasgupta (1970) has the same equation in his application, the major difference is that
his compliance matrix for the fill-in layer was formed using the finite element method
whereas the corresponding matrix for this application will be obtained using full-space
Green's Functions. It is anticipated that the present formulation would have less issues
with compatibility. Another advantage of using the boundary integral equation method over
the finite element method is the reduction of one spatial dimension. For two-dimensional

problems, finite element uses an area formulation whereas boundary integral equation uses
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line segments. Similarly in three-dimensiona problems, the reduction is from a volume
formulation to a surface formulation. One more factor isthat the degrees of freedom inside
the bounding surfacesare of no practical valuein siteamplification studies, only theresponse

at the free surface is of interest.

The present application is formulated to obtain results for wave amplification effects of
aluvial layers; Dasgupta introduced his method with the intention of obtaining impedance
functions for embedded foundations. For soil-structure interaction problems, some
foundations are deeply embedded and there is a limitation of how deep this formulation
can be extended. For most alluvial valleys of interest, the depths are much smaller than the
layers lateral dimensions. For example, in geophysics, atypical sedimentary valley has a
depth of the order of 2 to 3 km, but the lateral dimension is of the order of 20 km, or more.
Therefore, the aspect ratio of the layer is not deeply embedded and the substructure deletion
concept should be effective. The irregularity of the layer could aid the understanding of
the local effects of wave focusing as the incident, refracted and reflected waves interfere

constructively or destructively.
2.4 Accuracy of the M odified Substructure Deletion M ethod

Thesimplest casesto test the effectiveness of the Substructure Del etion M ethod arethose
of two-dimensional SH wave problems. Consider first the case of an éliptical cylindrical
foundation embedded in an elastic half space as shown in Fig. 2.4. A more specia case of a
circular foundation has a ssmple exact solution (Luco 1968) and in this particular case, the

ratio h/a is 1. The exact solution for the traction is

fo = pkAH{® (ka)/H (ka) (2.30)
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Figure 2.4. An Embedded Elliptical Foundation in an Elastic Half Space

in which p is the shear modulus of the soil medium, & = w/g is the wave number, A
is the displacement of the embedded foundation, « is the radius of the circular cylinder,
H(SQ) and H f2) arethe Hankel Functions of the Second Kind of zeroth order and first order,

respectively. The traction is constant throughout the symmetrical cylindrical surface.

To obtain the approximate sol ution using the substructure del etion method, calcul ate the

traction ¢ by inverting Eq. (2.19) as
t=[GLI'A (2.31)

in which [GZ,]7! isto be calculated by the formulain Eq. (2.29). The results for ag =
wa /B = lisshowninFig. 2.5. Inthetopfigure, thenumber of segmentsused to approximate
the cylindrical surface, IV, is 20. The results are oscillatory and are not accurate. The real
part of thetraction representsthe stiffness of the foundation and theimaginary part isrelated

to the radiation damping of the foundation. In both cases, the resultsin the top figure is not
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acceptable. On the other hand, the impedance function, being the integral of the oscillatory
traction, has an error of 10% or less. Better results can be obtained using a more refined
grid of 40 segments and the results are shown in the center figure of Fig. 2.5. Finally, 320
segments are used to obtain the results in the lower figure of Fig. 2.5 and the results are
excellent, especially near the center portion of the foundation surface. There are still some

small oscillation near the steeper portion of the foundation surface.

It is anticipated that an even more refine model may not completely eliminate the small
errors at the edge, it is perhaps the limitation of this method when the aspect ratio of the
scatterer’s geometry is deeply embedded. A shallower geometry is attempted next as the
aspect ratio is decreased to h/a = 0.5. Shown in Fig. 2.6 are the results for the elliptical
foundation. Theexact solution can nolonger be obtained using Eq. (2.30), the exact solution
for an elliptical foundation requires the use of Matthieu Functions (Wong, 1974). In this
particular test, the comparative “exact” solution is calculated using the boundary integral
eguation method using the embedded Green’s Function. The proven results will be labeled
as “benchmark” in the figures. For the anti-plane case, the embedded Green’s Function is

not difficult to obtain (Appendix B, Section B.2).

Asshowninthefigure, thetractionisnolonger constant throughout the el liptical surface.
Theresults by the substructure del etion method are remarkably accurate, indicating that for
shallower geometries, it is effective. The value of ag = wa/ is1 for Fig.2.6, therefore,

the wavelength islong and it is not numerically challenging.

Shown in Fig. 2.7 are the results for an éliptical foundation with the dimensionless
frequency a( equalsto 4. The wavelength is now shorter than the lateral dimension of the
elliptical foundation. In thetop figure, it shows that the number of segmentsequalsto 20is

not sufficient to obtain agood solution. But the morerefined casesof N = 40 and N = 320
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offered excellent results. It is clear that the potential of the substructure deletion method is

excellent, especialy for shallower geometries.

Shown in Fig. 2.8 is the average error resulted from the substructure deletion method.
Three different depth ratios were chosen to illustrate the effectiveness of the method
for shallow (b/a=0.25), medium (b/a=1) and deep (b/a=2) embedment. The errors were
accumulated as the magnitude of the difference between the substructure deletion results
and those of the benchmark solutions. The average decreases as N, the number of line
segments used, increases. There are four dimensionless frequencies chosen in each figure,
from a lower wave number to a high wave number. It is expected that the method would
perform better at lower frequencies. Fig. 2.8 shows clearly that the substructure deletion
method would perform most efficiently when the aspect ratio of the scatterer is shallow and
it performswell for higher frequenciesaswell. It isperhapstoo demanding for substructure
deletion to work when the frequency is high and thefill-in medium isrequired to extend far
beneath the surface. Theresultsfor N < 100 are not shown in the lower figure because the

cumulative errors are too large.
2.5 Response of a Canyon to Incident SH-Waves

Another relatively ssmple case to test the validity of the substructure deletion method is
the response of an elliptical canyon to incident SH-waves. Show in Fig. 2.9 isthe schematic
of the canyon with aspect ratio 4 /a and an incident wave making an angle of 6 with the
x—axis. Since the surface of the canyon is traction free, the boundary conditions can be
stated as

ts=—trp (2.32)
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Figure 2.9. An Elliptical Canyon Subjected to Incident SH-Waves

in which ¢ is the scattered wave from the canyon and ¢ is the traction of the free-field
motion. The traction free half space surface is aready dealt with by the definition of the

Green’s Functions.

The total displacement field, «; in the half space medium can be expressed as the

superposition of the scattered wave and the free-field motion as
Uy = Ug —l—ﬁff . (2.33)

Applyingtherelationship givenin Eqg. (2.19), the scattered wave displacement can bewritten
as

iy = [GRlts = —[GRltyy (2.34)

and the total displacement field can be determined as
@ =iy~ [Gyltyy (2.35)
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The free-field displacement, s, in Eq. (2.35) can be obtained using Eq. (D.75) in
Appendix D. The free-field traction, ¢ #f, can be computed using the expressions for 7,
and 7. in Appendix D, Egs. (D.77) and (D.78), respectively. Use an equation similar to
Eq. (B9), i.e,

trp = TuaNa + Tyany, (2.36)

to obtain ¢ +f, ng and n, arethe z and y components, respectively, of the outer normal 7.

The results for SH-wave incidence were obtained for incidence angles of § = 30° and
6 = 90°. Both curves are plotted on the figures for various values of N. The case of
6 = 90° has a symmetrical response on both sides of the canyon but the inclined incident
case of # = 30° theresponse is higher on the side of the wave approach. It isthe shielding
property of the canyon which causes the response to be lower on therear. Theresults shown
in Fig. 2.10 are excellent at ag = 1, the low frequency case. Higher values of a( are used
inFig. 2.11, ag = 2 for the case of N = 20, ag = 3 forthecaseof N = 40 and ag = 6
for N = 320. All figures show the capability of the proposed method for wave scattering.
Perhaps this method is limited for highly embedded foundation in the field of soil-structure
interaction. But it appears to be excellent for wave amplification studies. High frequency

results, for an equivalent ag as high as 100 will be presented in Chapter Three.
2.6 Response of an arbitrary shape Canyon to Incident SH-Waves

This section continues with the demonstration of the effectiveness of the substructure
deletion concept by applying the numerical procedure to an arbitrary shaped. Shown in
Fig. 2.12 is such a canyon. The geometry can be best described as an arc with a small
amplitude sine function superimpose on it. Even though the model geometry is a smooth
one, the method should be able to handle all geometries. This one was chosen for the

convenience of grid generation.
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Figure 2.10. A Circular Canyon Subjected to Incident SH-Wavesat ag = 1
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Figure 2.11. A Circular Canyon Subjected to Incident SH-Waves at Higher Values of ay.
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Figure 2.12. An Arbitrary Shaped Canyon

With this new model, there is a way to compare it to a solution obtained by another
method, for example, the Boundary Integra Method because it is an antiplane problem.
But with an anticipation to later chapters where there is no comparative solution available,
the comparisons in this section will be done by comparing results of the same method for

different level of model refinement.

Shown in Fig. 2.13, Fig. 2.14 and Fig. 2.15 are results of the present method for
dimensionless frequency, n, of 2, 4 and 8, respectively. In each figure, there are results
for three angles of incident, 30°, 60° and 90°. Three solutions with the number of line
segments, IV, equals to 40, 80 and 160 are presented. It is not difficult to calculate results
for N = 320, but the solution for the case of NV equal to 160 has already converged. In
Chapter Three, when the transfer functions are calculated for one thousand dimensionless

frequencies, N = 320 isthe model refinement used.
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The results presented demonstrate the method is convergent. Even for the case when
N = 40, the results are excellent at the locations where a solution is available, the limited
number of segments used cannot provide a value at locations that the more refined model
could offer. Based on the results in this chapter, it can be concluded that the substructure

deletion is excellent for site amplification studies.
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Chapter 3

Site Amplification for Anti-Plane Problems

In Chapter Two, the substructure del etion method was shown to be effective for forming
a compliance matrix for an embedded geometry in a half space. The verification were
performed using (1) arigid embedded foundation with a prescribed displacement boundary
conditionand (2) asurfacial irregularity of acanyon with aprescribed traction-free boundary

condition under the influence of incident waves.

In this chapter, the application will add an extra alluvia layer of different material on
top of the carved out half space configuration. This problem is more interesting from the
site amplification point of view because the softer layer on top of a bedrock can create
amplification of an order of magnitude higher than the free field motion (Trifunac, 1971).
The top layer has very little resistance for the incident wave to enter from the bedrock,
but it would be difficult for the wave energy to leave the soft layer because of the stiffness
contrast. This phenomenon explains the trapped energy within a layer and the duration of
motion couldincrease substantially. Some of these effects could be partially explained using
a horizontal stack of layers with stiffness contrast and vertically incident waves. But the
present proposed method could add to the understanding of focusing effects by an arbitrary
shaped soft layer and perhaps more energy being trapped within the layer with no horizontal
outlet to the far field. The effect of incident waves of various angles could aso be studied
using the present method; it has been shown for many yearsthat an alluvia valley at alarge
distance from the epicenter would receive most of its seismic energy from waves traveling

horizontally.
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3.1 Boundary Conditionsfor Alluvial Valley Problem

Consider an aluvial layer to be added to the carved out half space configuration as
shown in Fig. 2.2. The half space bedrock and the alluvial layer model have different
material properties, the most prominent of which, for boundary condition applications, is
the shear modulus, 1. Let 1 representsthe shear modulus of the bedrock (irregular half space
model) and 1, representsthe shear modulus of the alluvial valley. Other material properties
involved in the problem includes p, the mass density and (3, the shear wave velocity. For

elastic material, the properties are related as . = p3? and 1, = p,, 3.

The dynamic characteristics of the half space with an irregular embedded surface can

be summarized in amatrix equation, Eq (2.19), written as
@ = [GR)TY (3.1)

The actual calculation of [GZ,] isto be done using Eq. (2.29). For the alluvial layer, the

dynamic characteristics can be summarized by a matrix equation such asthat in Eq. (2.18),

{By-ln o) e} <3.2>

In Eq. (2.18), the layer model has the same properties as those of the half space model

ie,

and it was used as a part of the substructure deletion process. Eq. (3.2) was written the
same way with two notable differences. (1) The materia properties of the alluvial layer
is vastly different from those of the underlying half space and (2) the top surface, |abeled
with theindex “1”, does not haveto be aflat surface. A different grid generation algorithm
is to be used for the surface “1” while surface “2” should have the same configuration as
the irregular embedded surface of the half space. For the problems to be studied in this
chapter, the motion at the top surface is of the greatest interest because that is the location

of civilization.
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To apply the boundary conditions, let the subscripts a, » and f f represent the aluvid
layer, the rock half space and the free field motion (incident wave motion), respectively. In
the half space, the total wave field isthe sum of the free field motion and the scattered wave
from theinterface; in the alluvial layer, the wave motion is that of the scattered waves from
the interface. To ensure a compatibility of displacement at the layer interface, apply the
condition

G +ilfp = tlsq (3.3)

and the continuous stress condition can be applied using tractions as

t_;r + fff = —lgq . (34)

The negative sign in Eq. (3.4) isaresult of the fact that the outward normal vectors of the

rock layer and the aluvial layer are in opposite directions as shown in Fig. 2.2.

Assigning valuesto displacements and tractionsin Eq. (3.2), the matrix equation for the

In the above equation, the traction at the free surface of the alluvial layer was set to zero,

aluvia layeris

whereas the vector ¢, isto be determined. Rewrite the upper submatrix equation as
ﬁtop — [G%Q]t_;a y (35)

and that is the vehicle to obtain the motion at the free alluvial layer surface after the vector

t.q isdetermined. The lower submatrix equation can be written as
Usa = [ gz]{sa . (3-6)
The substitution of Eq. (3.6) into Eq. (3.3) yields

[GSoltea = tGer +Ups (3.7)



Using the bedrock equation, Eg. (3.1), and assigning the boundary values yields
iy =[Gt . (3.8)

Replace i, in EQ. (3.7) by Eq. (3.8), the boundary condition displacement compatibility
becomes

[GSy)tsa = [GQEQ}EST +Usf . (3.9)

Replace ., in Eq. (3.9) by the traction boundary condition in Eq. (3.4), Eq. (3.9) can be
written as

[GSoltsa = [Goa) (—tsa — trf) + sy (3.10)

Reorder Eq. (3.10) in the form,
([G35] + [GR)) e = sy — [GRIEs (3.11)

and the boundary traction can be obtained using a matrix inversion as

—

foo = ((G%] + [GR) " (@ry — [GBTyy) (3.12)

After t,, is determined, the response at the top surface of the aluvial layer can be obtained
using Eq. (3.5).

3.2 Comparison with Exact Solutions

There are several exact series solutions for two-dimensional SH-wave problems that
could be used as a benchmark. Trifunac (1971) presented results for a circular cylindrical
aluvia valley overlying a half space. The results were obtained using a separation of
variabletechniquefor partial differential equation and the solution waswritten asan infinite
series in Hankel Functions and harmonic functions. Later, Wong and Trifunac (1974)

presented resultsfor anelliptical cylindrical alluvial valley overlying ahalf space; theresults
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Figure 3.1. Models with Available Solutions

were obtained using a similar method for partial differential equation and the solution was
written asan infinite seriesin Mathieu Functions. Theseresults could beidentified as* exact
solutions” inthetraditiona sense. Thenumerical results of the substructure del etion method

will be compared against those results for accuracy.

In both of the exact solution in which the proposed method is to be compared against,
the basic model can be illustrated by Fig. 3.1. The material property of the bedrock was
represented by 1, the shear modulus, p, the mass density, and 3, the shear wave velocity
of the medium. For the aluvial valley, the respective material properties were represented
by 1., p» @d 3,. In the case of the comparisons, the ratios of 1./, = 6 and p/p, = 1.5
were used. Since an elastic material requires only two constants to define, the shear wave
velocity 3 canbecalculatedas 5 = \/,u_/p and that givesriseto aratio of /3, = 0.5. One
interesting parameter on the resultsisthat the wave number k£ = w/ /3 would be different for
the bedrock and the valley; the wave number k, would be twice that of k. Therefore, the
wavelength within the alluvial valley would be shorter and more amplitude variation over

distance is expected.
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Figure 3.2. Resultsfor Circular Valley for n = 0.5

The angle of incidence, 6, will be a prominent parameter in the comparison because the
effect on ground motion is highly dependent on the direction of the incident wave energy.
Since the geometry of the wave scatterer is symmetric, of angles of 0°, 30°, 60° and 90°
are selected to be used. For the circular cylindrical valley comparison, the aspect ratio of

b/a = 1 will be used. Theelliptical valley has more flexibility in the geometry and several
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Figure 3.3. Resultsfor Circular Valley for n = 1.0

values were presented. But the case of a shallower geometry, b/a = 0.3, will be used for

comparison.

Shown in Fig. 3.2 is the comparison of the substructure deletion results with the exact
solution. The curves of the present numerical solution are identified by solid line for a

horizontally incident wave (¢ = 0) and various length segments of dashed lines for three
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other angles. The digitized results from Trifunac (1971) are plotted with symbols, open-
circlesfor § = 0, triangles for & = 30°, squares for # = 60° and inverted triangles for
0 = 90°. The comparison of the four curves and the symbols are remarkable in their
consistency since two different methods were used. No legends for the symbols were given

in the figures as the results for the different incident angles were easily distinguishable.

In Fig. 3.3 the comparison is for a higher dimensionless frequency, n = 1. The value
of n is that of the bedrock, the value for the valley, n, is actually two times higher for
the present case study, i.e., n, = 2. The agreement between these two methods is again

excellent, demonstrating that the substructure deletion method is performing properly.

The comparison now turnsto another infinite series solution, that of an eliptical valley
with an aspect ratio of b/a = 0.3. The comparative results are shown in Fig. 3.4. The
dimensionless frequency of this case would be dlightly higher, n = 1.5 and n, = 3, to
see if the performance of the proposed method is valid for a higher frequency. Given the
resolution of the published figures available for digitization, the results match well and the

comparison further elevates the confidence of the newer method.
3.3 Solutions at High Frequencies

From the previously published results, even the infinite series solutions, it is difficult to
produce results at higher frequencies, e.g., n > 3. Since there are no published results to
compare against, aform of self comparison will be performed by using the present method

for different values of IV, the number of subregions (line segments) used for the solution.

In Fig. 3.5, three different values of [V, 80, 160 and 320, were used. The value of N
is the number of line segments used for the generation of the half space matrix, [G11], the

number of line segments for the grid to generate the full-space matrix would be 2/N. The
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Figure 3.4. Resultsfor Elliptical Valley forn = 1.5

dimensionless frequencies used for the calculation in Fig. 3.5is 7, = 8 and three angles
of incidence were considered: 6 = 30°, 60° and 90°. As shown in the figure, thereis no
appreciable difference between the results of the models, showing aconvergent trend that is

accurate even at high frequencies. There are some spotswherethe N = 80 solution appears
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to be deficient, but those are locations where the less refined model did not offer a sample

point.
3.4 Response of an Arbitrary Shaped Alluvial Valley

Consider now the response of an arbitrary shaped aluvial valley overlying bedrock.
The interface of the two materials, the bedrock and the alluvium, has a shape similar to the
arbitrary shaped canyon in Chapter Two, but shallower. The top surface of the alluvium is
represented by a small amplitude sine function. Again, any shape could be used with this

numerical method, only the grid generation program needs to be changed.

Withthislayer model, many different parameterscan be utilized to gain asmuch physical
understanding of the problem as possible. In later sections, time histories will be used to
gain adifferent perspective. In the present section, use the same contrast ratios for the two

materials as described in section 3.2, i.e., i/, = 6, p/p, = 1.5and 3/3, = 0.5.

Shownin Fig. 3.7 isthe variation of ground motion on the surface of the alluvial valley
for the lower dimensionless frequencies of n equal t0 0.5, 1.0 and 1.5. These are the typical
values used for the exact series solution by previous authors. The values of 7 isthat of the
bedrock, meaning it istheratio of theincident wavelength to the width of the alluvial valley.
But the wavelength in the valley is two times shorter because of the ratio, 5/5, = 0.5.
Therefore, there are significant variation over the surface of the aluvia valley even at
these lower dimensionless frequencies. Within each of three sub-figures, results for four
angles of incident, # = 0°, 30°, 60° and 90°, are plotted. The results demonstrate that the
direction of wave arrival is a significant factor which contributes to site amplification. In
future development of seismic ground excitation levels for building codes, some form of

risk analysisis recommended when amplification factors are determined.
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Figure 3.5. High Frequency Calculation at 7, = 8
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Figure 3.6. An Arbitrary Shape Alluvial Valley

Fig. 3.8 shows the response of the alluvia valley when subjected to the higher
dimensionless frequencies of 7 equal to 2, 3 and 4. The graphs are also plotted for 4
incident angles as those in Fig. 3.7. The variation of surface response paints a very busy
picture and it isdifficult to physically understand the significance of such agraph. Although
many high values, some as high as an order of magnitude larger than the unit amplitude of
theincident wave, are observed on the surface of thealluvial valley, thereare al so quiet spots
where the amplitude may be lower than 1. The same location, where there is a quiet zone
in one particular frequency, may have a high amplitude in another frequency. It isclear that
a constant-frequency amplitude plot is not the best way to assess seismic site amplification
effects. Another avenue for assessing the risk of site amplification isto use time histories.
In the next section, the response at various locations of the alluvial valley to incident wave
impluse time functions will be presented. The time history results will provide another

method to analyze the amplification factor of a soft alluvial layer.

One interesting observation to bring out from the results is that the low amplitude spots

are actually locations where a large torsional response might exist (Trifunac, 1971). The
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Figure 3.7. Low Freguency Response of Alluvial Valley
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Figure 3.8. High Frequency Response of Alluvial Valley
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Figure 3.9. Response of Alluvial at n = 4. Left Side Incident
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amplitude plots show only the absolute value of the displacement, therefore, two large
amplitudes on either side of alow amplitude generally point to a sign change and the large
displacements are actually out of phase by 180°. This situation in a SH-wave problem

describes atorsional response.

In the work of the exact series solutions for the circular valley (Trifunac, 1971) and the
eliptical valley (Wong and Trifunac, 1974), there are four example angles are used for the
analysis. But since the current arbitrary shaped alluvial valey, shown in Fig. 3.6, is not
symmetric about the y-axis, the wave arrival from an opposite direction would also cause a
different variation of ground motion. Fig. 3.9 and Fig. 3.10 serve two purposes, one is to
show the response of the alluvial valley at a high dimensionless frequency of n = 4 and six
different incident angles, 0°, 45°, 90°, 120°, 150° and 180°. The other purpose to show
the convergence of the solution by using a less refined model of N = 80, and compare its
accuracy to modelswith N = 160 and N = 320. The comparisons are excellent and they
are also excellent for larger values of 7, but the graphical representations of those cases are

difficult.

With the confidence gained from all forms of testing, the resultsin Section 3.5 will take
the results to a high limit when the transfer functions at selected locations are computed.
The high values of dimensionless frequency will reach ka = 100, or n = 100/7; meaning
there will be over 60 wavelengths within the alluvial valley. The transfer functions will be

plotted to show the outstanding stability of this numerical formulation.

3.5 Computation of Time Histories

Since the numerical solution using the substructure del etion concept is performed in the

frequency domain, time histories could be obtained using Fourier Synthesis. The Fourier
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Transform pair can be expressed as

F(w):/_oo f(tye ™@tat | (3.13)

as the forward transformation and

£(t) = — / TR etde (3.14)

:% .

as the inverse transformation. The factor, 1/27, is sometimes distributed evenly to both

parts of the pair as 1/+/2x

Consider theinput motion to be in aform of a Ricker Wavelet as shown in Fig. 3.11. It

has a mathematica form of
Aty = (1—2m2f2%) e 17 (3.15)

inwhich f = 1/t, isthe wavelet's peak frequency. There are three waveletsillustrated in
Fig. 3.11, the high frequency wavelet has a period of ¢, = 0.75 and a peak frequency of
f = 4/3. The medium frequency wavelet has a period of ¢, = 1.5 and a peak frequency of
f = 2/3. Thelong period wavelet has aperiod of ¢, = 3 and apeak frequency of f = 1/3.
Thiswavelet isfrequently used in seismic simulation asit hasavery definite frequency band

and it isagood input function.

If the complex frequency content of the incident wave time history can be obtained as
Alw) = / Alt)e ™@tdt (3.16)
the response at the surface of the alluvial valley can be computed as

u(t) = % /00 T(w)A(w) e dw , (3.17)

— 00
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where T'(w) is the complex transfer function determined at a certain location based on a
unit input of the incident wave. To obtain the transfer function, pick a location from the
graphs shown in Section 3.4 and calculated the response (amplitude and phase) over the

entire frequency spectrum.

Calculations were made to find the transfer functions at seven selected locations as
shown in Fig. 3.6 for various stiffnessratios, 1/, = 3, 6 and 9, angles of incidence from
both sides of the alluvia valley. There are many parameters to be dealt with, but many

interesting physical phenomena can be observed by this numerical ssmulation.

Shown in Fig. 3.12 are two transfer functions plotted versus dimensionless parameter
ka from 0 to 100. a isthe width of the alluvia valley and & is the wave number defined as
k = w/pB. kaisrelatedton used inthe previous sectionsasn = ka /7. Therefore, thevalue
of ka = 100 is equivalent to n > 32, a high dimensionless frequency rarely performed in
previous research reports. Inthetop figure of Fig. 3.12 isthe transfer function of Station 1
(a/8 fromtheleft edge) for vertical incident SH-wave and astiffnessratio of ./, = 3, The
solid line represents the real part of the complex transfer function and the short dash line
represents the imaginary part. For Fourier synthesis, the transfer function must be complex
so that the correct phases are accounted for. The second figure of Fig. 3.12 isthe amplitude
of the complex transfer function, it was plotted to show that the results are stable over a
large frequency band. The 3rd and the 4th figures of Fig. 3.12 shown the complex transfer
function and its amplitude for a stiffness contrast ratio of 1/u, = 6. Itisclear that transfer

function values are much larger because the wave energy would be trapped in the softer

layer.

It is important to point out that the media parameters used do not include viscous

damping. This decision was made to avoid introducing one extra parameter into the
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analysis. The fact that the transfer functions appear to be damped, i.e., no infinite values at
resonance frequencies of the alluvial valley, is that radiation damping exists in the model.
The Sommerfeld boundary condition at infinity was satisfied automatically by the choice of

Green’'s Functions for the exterior medium.

Working in the frequency domain, it is impossible to extract the valuable quantity of
duration. Putting physical dimensions into the analysis, let 3 = 1250 m/sec as the shear
wave velocity of the bedrock and thewidth of thealluvial valley is10.3 km. Sevenrecording
stations are selected equally spaced over the alluvia valley’s surface as shown in Fig. 3.6
with the distance between the station approximately equal to 1.3 km. ShowninFig. 3.13is
the case where the incident wave has an angle of 90° and the stiffness ratio of 1/, = 6.
The vertical scale of the responses is normalized to the incident pulse as 1, therefore, the
peak values represent the actual site amplification factors. The duration of the input pulse
is approximately 2.5 seconds, but the response, due to site amplification, could go on for
about 80 seconds. At station 5, the amplification reached as high as 6, based mainly on the
secondary refracted waves. As shown, the response on the aluvial valley is quite different
from the simple incident pulse. If an incident wave with a longer duration is used as the

input, the amplitude of the response could be much higher.

Shown in Fig. 3.14 is the response with the same parameters as Fig. 3.13 except the
angle of incident isf# = 0. Since it isahorizontal incident wave, the response starts earlier
on Station 1 and much later on Station 7. It isinteresting to note that the reflection from the
back of the alluvial valley interface arrives at Station 7 along time before it reached Station
1. For thisincident angle, the largest amplitude is less, about 4.5 times the strength of the

incident pulse.
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In Fig. 3.15, the response at Station 4, near the midpoint of the alluvial valley, is shown
for seven incident angles, 6 = 0°, 30°, 60°, 90°, 120°, 150° and 180°. The angle § = 0°
representstheincident wavescoming fromtheleft sideof thevalley and 6 = 180° represents
that from the right side. The stiffness ratio remains p/p, = 6. This figure demonstrates

that the response at arecording station is afunction of the location of the seismic source.

InFig. 3.16, the effect of stiffnessratio isexamined. Three Different values, 11/, = 3,
6 and 9 are used. The responses at Station 4 for all three stiffness contrasts were recorded
for incident angles of 6 = 30° and 8 = 90°. As expected, the amplification is larger for
a softer aluvial valley, but the most important difference is the duration. Seismic energy
would betrapped inside asofter layer longer asit isdifficult to transmit and radiate the wave
back into the bedrock. A more complex input time function than a Ricker Wavelet could

cause much larger amplification as waves constructively interfere with each other.
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Chapter 4

Wave Scattering by a Canyon for In-Plane Waves

In chapter Two, the substructure del etion method was shown to be effectivefor scattering
of SH-waves by two-dimensional canyons. This chapter the method will be explored for
in-plane motion. The number of degrees of freedom will increase by a factor of two as
the inplane motion includes a vertical and a horizontal component of displacement. As
described by wave propagation books, such as Ewing et a (1957), whenever an inplane
wave strikes a boundary, mode conversion would occur. An incident compressional wave
striking a boundary at an inclined angle would result in a reflection of a compressional
wave and ashear wave. The same scenario would apply for ashear wave (SV) incident for a
limited range of angles. Thisphenomenon iscaused by thefact that the compressional wave
and the shear wave have different velocities. The physics involved in thisinplane problem

is more advanced than those covered for the SH-wave diffraction problems.

The Green’'s Functions to be used for the formulation in this chapter will come from
Appendix C. The Green’'s Function for the interior problem are those covered in Section
C.1 and they are in the form of Hankel Functions. The Green’s Functions for the exterior
problem are the infinite integrals shown in Section C.2, better known as the solution to the

Lamb’s problem (Lamb, 1903).
4.1 Validation of Plane Strain Green’s Functions

Onebenchmark totest thevalidity of thiscal culationisto match theresultsgiven by Luco
and Westman (1971) for the compliance functions of arigid strip foundation on ahalf space
asshown in Fig. 4.1. The width of the foundation is 2b and the results for the compliances

are given as a function of a dimensionless frequency defined as ag = wb/3, in which 3
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Figure4.1. A Rigid Strip Foundation

is the shear wave velocity of the soil medium. The dimensionless compliance functions
were normalized as C,,, = mul, /P, for the vertical component and Chy, = mpA, /P,
for the horizontal component. Delta, and Delta, are the harmonic displacements of the
foundation inthe x and the y directions, respectively. The parameter 1. isthe shear modulus
of the soil medium and the harmonic forces, P, and P,, are thedriving forcesin the z and

the y directions, respectively.

To calculate the compliance functions, the plane strain Green’s Functions on the surface
of ahomogeneous half space must be computed. Therefore, if the comparison is successful,
it would validate that particular subprogram. Shown in Fig. 4.2 are the vertical compliance
functions, C,,,, for three different Poisson’s ratios, v = 0, 0.25 and 0.33. The solid
lines in each subfigures are the computed real parts and the dashed line are the computed
imaginary parts. The open circles represent the real part of the results provided by Luco
and Westman (1972) and the open triangle symbols represent the imaginary part. The

results match remarkable well, considering they were computed using completely different
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methods. The Poisson’s Ratio affects the ratio of the body wave speed; the ratio of shear

wave velocity over compressional wave velocity, v = 3/« isrelated to the Poisson’s Ratio

as+/(1—2v)/(2(1 —v)).
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Figure 4.3. Comparison of Compliance Functions Cl,j,
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Shown in Fig. 4.3 are the compliances for the horizontal component, C};,. The
comparison is again right on. The v = 0.33 case was not given by the authors for this
component. With these two tests, the Green’s Functions appear to be correct. A welded
boundary condition was used for the computation at the foundation’s interface with the soil

medium.

For this particular application, the results converged quickly with very few subregions
used for the approximation of the foundation surface. Shown in Fig. 4.4 is a comparison
between results calculated using N = 20, 40, 80 and 160 subregions; the numerical results
are within one or two percent of each other and the differences are not noticeable in the

figure.

The reason this exercise was performed is to test the convergence and stability of the
method. Initialy, the results for the highly refined model were actually worse and that
prompted an exercise to make sure the Green’s Functions were calculated correctly. The
Lamb’s solutions shown in Eq. (C24) through (C27) are complex infinite integral and they
contain asingularity known as the Raleigh Pole. To simplify the calculation, especially for
an undamped medium, contour integration was employed and the results offered simpler

and more manageabl e integrals and expressionsin Eq. (C28) to (C31).

Two particular integrals, involve an infinite limit in the forms of

V1+ k2

e~ wkTqE 4.1
/0 (2k2 +1)2 — 4k2\/k2 +2Vk2 + 1 (1)

and

(4.2)

Sy k2 2
/ ik e a0k
0 (2K241)2

_ 4k2\/k2 T 72\/]{;2 T1
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Figure 4.5. Compliance Functions C},;, with Various Levels of Approximation
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are the troublesome onesif the argument aox isvery small. Inthe case of the highly refined
models, the subregions, or the line segments, are very short and that leads to a small value

of agx, especiadly at alow dimensionless frequency of ag.

For normal values of agx, the exponential function decays rapidly in both Eq. (4.1)
and (4.2) and the numerical evaluation is simple. For extremely small values of agx, the
exponentia function approaches 1 and the remaining integrand has the following limit:

V1+ k2 N 1
(2k2 + 1)2 — 4k2\/k2 + 2VE2+ 1 2(1 =72k

as k approaches infinity. The integral of 1/k would result in alogarithmic singularity.

The modified method used to evaluate Eq. (4.1) isto split it into 3 integrals as follows:

/Oo P ek f,
0 (2k2+1)2 —4k2\/k2 +2Vk2 + 1
- /1 o e “r dk
0 (2k2 +1)2 — 4k2\/k2 +2Vk2 + 1
R
VI+ k2 1
+/ i - o | e dk
1| (k2 4+1)2 —4R2 B2 +2VEE+ 1 2(1 =Pk
1 |
—— | Zewkegp 4.4
DTy /1 k© (4.4)

Thefirst integral ontheright hand sideissimpleto evaluate numerically, itisafiniteintegral.
The second is integrated from O to R, an arbitrary value. If R is chosen to be 1000, the
difference in the bracket at the upper limit is near zero, accurate to the order of 6 significant
digits. The third integral is known as the Exponential Integral and it can be evaluated as
E1(ag). The Exponential Integral can be evaluate as a series (Abramowitz and Stegun,
1970) as

(1) e

Ei(z)=—y—logz— Z

n=1

o (4.5)
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where v = 0.5772156649 is the Euler Number. With the expressions in Eq. (4.4), the
log(apx) singularity has been isolated and it can beintegrated analytically over z to for the
diagonal elements of the singular matrices. A similar method could be used for Eqg. (4.2).

After this improvement is made, the matrix [G] as shown in Eq. (2.8) can be evaluated

consistently, no matter how refined the model maybe.
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Figure 4.6. Amplitude Comparisons for P-Wave Incident, n = 1
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4.2 Comparison with Available Results

There areanumber of resultsavailablefor wave scattering of P or SV-wavesby arbitrary
shaped canyons. Unlike the SH-wave problem where the half space boundary condition
could be satisfied by symmetry, The boundary conditions for plane strain problems are
much more difficult. Wong (1979) obtained his results using aleast square approximation
for the boundary conditions by placing sources within the boundary to provide the wave
form for the scattered waves. From that paper, some results were provided for an elliptical

canyon.

Shown in Fig. 4.6 are the results for P-wave incidence. The aspect ratio of the canyon
isb/a = 1, acircular cylindrical canyon. Two angles of incident were considered, 6 = 60°
and 90°. For both casesthereisahorizontal component |U,,| and avertical component |U, |,
represented by asolid lineand adashed line, respectively. Theresultsfrom Wong (1979) are
plotted as open circles for |U,,| and as open squares for |U,|. The dimensionless frequency
isn = 1. Theresults matched with about 20% difference. The overall shape of the response
variation is correct even though there are some differences. One possible reason for the
discrepancy is limitation of computer resources back in the late 1970s, there was no way to
justify the cost of a model which has 320 subregions. The substructure deletion results are
from arefined model. Later results will confirm that accurate results in the inplane model

require amore refined model than the antiplane model.

Shown in Fig. 4.7 are the results for SV-wave incidence. The same two angles were
used asin the P-wave case. The aspect ratio of the canyonisb/a = 1, acircular cylindrica
canyon, as previously. But it needs to be pointed out that the SV-wave angle cannot be
smaller than 60° for a Poisson Ratio of 1/3. Therefore, 60° isacritical angle with alarge

amplitude freefield motion. The amplitudesfor the free field motion asafunction of angles
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Figure 4.7. Amplitude Comparisons for SV-Wave Incident, n = 1

are shown in Appendix D. Judging from the fact that the two methods are significantly

different, the agreement of the resultsis acceptable.

Another explanation for the discrepancy isthat a circular canyon, having an aspect ratio
of b/a = 1isconsidered to beadeep canyon. Itisexpected that ashallower canyonwould be
better modeled by the substructure deletion method. Shown in Fig. 4.8 are the results from
three different depths of canyon, b/a = 0.25, 0.50 and 1.00. For the two shallower cases,
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Figure 4.8. Aspect Ratio Comparison. SV-wave Incidence, § = 60°, 7 =1
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two different models were made, one with N = 160 (represented by short dashed lines)
and another with doubletherefinement at N = 320 (represented by long dashed lines). For
an angle of 60°, it is clear that the shallower geometry model requires fewer line segments
to create an accurate solution. The two models with different refinement matched perfectly
for b/a = 0.25 and only minor differences existed for b/a = 0.50. The lower figure shows
that as the canyon depth becomes deeper, when b/a = 1.0, the results differed noticeably.
A third highly refined model with N = 640 was added to this case (represented by a solid
line) and it shows a consistency of convergence. This exercise explains the differences
shownin Fig. 4.6 and Fig. 4.7 asthe older research lacks the computing resource for further

refinement.

A similar conclusion canbedrawnusing Fig. 4.9 for anincident angleof 90°. Theresults
match with excellent accuracy if the canyon is shallow, this explains why the substructure
deletion method would work well for site amplification studies, but not as well for deeply

embedded foundations.
4.3 Response of an arbitrary shape Canyon to Incident P and SV-Waves

Theresponse of an arbitrary shape canyon subjected to incident P and SV waveswill be
presented in this section. The same canyon as depicted in Fig. 2.12 will be used. One
particular feature of this canyon is that left side of the model is a concave curve and
it has no noticaeable effect of the diffraction of SH-waves. But this minor feature has
important influence on the diffraction of inplane waves because there are now two wave

speeds invol ved.

It iswell known that an incident P-wave could generate areflected SV-wave in addition
to areflected P-wave (Ewing et al 1957). Also, for alimited range of angles, an incident

SV-wave could generate a reflected P-wave in addition to a reflected SV-wave. The detall
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Figure 4.10. P-wave Incidence, n = 1
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derivation of this ssmplest of boundary value problem, that with a flat surface, is givenin
Appendix D. As for a concave surface of the arbitrary shaped canyon, the incident body
waves, at acertain angle, could impinge upon the curved surface and that the gradual change
of slopewill causethereflected wavestointerferewith each other. Theresultisan oscillatory
response on the left side of the canyon as the wave type convert from compressional wave

to shear wave, or vice versa.

The amplitude of the variation increases as the dimension frequency 7 isincreased from
1 to 2 to 5; the slope of the concave surface is more prominent for waves with shorter
wavelengths. The six figuresfrom Fig. 4.10 to Fig. 4.15 include P-wave incidence for three
dimensionless frequencies and SV-wave incidence for the same dimensionless frequencies.

The number of subregions used for the computation was N = 320.
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Chapter 5

Site Amplification for Plane Strain Problems

From the development of previous chapters, it is now feasible to analyze an aluvia
valley overlying a stiffer bedrock and subjected to inplane body waves. This problem is
difficult in nature because of mode conversion between compressional and shear waves.
A portion of the reflected waves is also converted into Raleigh surface waves. As much
asitis till atwo-dimensional problem; thereis alot of physical phenomena that must be
understood before a full three-dimensional analysis can be made with strong fundamental

knowledge of the elastic wave propagation problem.

Thereare someresultsavailablefor comparison, such as Gatmiri et al (2007, 2009), who
presented time dependent results for a trapezoidal aluvial valley overlying a stiff bedrock
for vertically propagating SV-waves. The results were obtained using finite element for the
aluvial layer and aboundary element solution for the bedrock. Sincethe authors' objective
was to recommend changes to the existing code, it would be difficult to compare the results
obtained using the substructure deletion method to those presented in the time domain and

in the form of response spectra.
5.1 Validation of Results Using Model Refinement

As performed several times previously in this dissertation, one criterion used was
to compare the results of models using different levels of refinement by controlling the
parameter NV, the number of subregions used to represent the soil interface. To do this
comparative study, consider an alluvial layer to be added to the carved out half space
configuration asshownin Fig. 3.1. the half space model and the aluvial layer model, inthis

casean ellipsewith an aspect ratio of b/a. Thetwo mediahave different material properties,
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the most prominent of which, for boundary condition applications, is the shear modulus,
1. Let u represents the shear modulus of the bedrock (irregular half space model) and 1,
represents the shear modulus of the aluvial layer. Other material propertiesinvolved in the
problem includesrho, the mass density and 3, the shear wave velocity. For elastic material,
the propertiesarerelated as . = p3? and 1, = p,,32. For inplane waves, thereis one more
parameter of interest, the Poisson’s Ratio, v. This ratio influences the ratio of the shear
wave velocity to the compressional wave velocity. For the present study, v was chosen to be

1/3 for both the bedrock and the alluvium. Withv = 1/3,v = 8/a = 1/2 for both media

The same approach as that used in the latter part of Section 4.2 will be employed to
determine if the results for the response of an alluvial layer is convergent. In Fig. 4.8 and
Fig. 4.9, it was shown that the accuracy for the substructure deletion method is best when
the aspect ratio is relatively small. Shown in Fig. 5.1 are results obtained using the ratios
B/B, = 2and u/u, = 6. Theangle, # = 60°, was arbitrarily chosen. The top figure of
Fig. 5.1 shows that the results for the aspect ratio b/a = 0.25 using N = 160 and N = 320
are basically the same and their plots match exactly in the figure. It is difficult to discern
which component is vertical or horizontal because of the plot style chosen, but the aim of
this figure to show whether the results are convergent, not to analyze the physics of the
problem. It is safe to say that less refined models could be used for shallower geometries

for the dimensionless frequency n = 1.

In the center figure, the aspect ratio of b/a = 0.5 is presented. The results are also
practically the same. The lower plot has the aspect ratio of b/a = 1, that of a circular
cylindrical shape, the results of the two models have larger deviations. It is supposed that
an even finer model could be used, as was done in Fig. 4.8 and Fig. 4.9, but it is clear that
the substructure deletion method performs best when the geometry of the scatterer is not

deeply embedded.
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Figure 5.1. Aspect Ratio Comparison. P-wave Incidence, 6 = 60°,n = 1
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Figure 5.2. Aspect Ratio Comparison. SV-wave Incidence, § = 60°, 7 =1

e e
o N b

o N b OO

e e
o N b

o N b OO
T T T T T 717

e e
o N b

n=1 (SV)
b/a=0.25
0=600

b/a=0.50

l';Ol\»)-hCDm

b/a=1.00

96



ShowninFig. 5.2isasimilar typeof comparison except theincident waveisan SV-wave.
Thesameangle, 6 = 60°, waschosen but thisangleisacritical anglefor the Poisson’sRatio
of 1/3. Asshown in atable in Appendix D, the angle 6 cannot be less than 60° and still
remain a plane wave. The free field amplitude for an SV-wave at 60° isu, = 3.4179 and
u, = 0. Therefore the large amplitudes shown in Fig. 5.2 are partly due to the large free-
field amplitudes. The same conclusion can be made as that for Fig. 5.1. For the remaining
part of Chapter 5, all the models have aspect ratios of the order of 1:4, layer depth versus
layer width.

5.2 Response of an Elliptical Alluvial Valley to P and SV-waves

In severa models for SH-wave analysis presented by Trifunac (1972), Wong and
Trifunac (1974) and Wong (1979), the élliptical canyon or éliptical aluvial valley were
used. The main reason for the first two references was that an exact infinite series solution
could be obtained using Bessel’ s Functions and Matthieu Functions. But thethird reference,
able to handle an arbitrary shape canyon, use the elliptical shape nonetheless because the

aspect ratio parameter, b/a, is convenient.

This section will includes some results to complete the series of solutions provided for
an eliptical aluvial valley. Shown in Fig. 5.3, 5.4 and 5.5 are the variation of ground
amplitudes on top of the elliptical aluvial valley for incident P-waves. The various lines
represent the amplitudes for different incident angles of # = 30°, 60° and 90°. The upper
figures show the horizontal displacement amplitudes and the lower figures show the vertical
displacement amplitudes. The phases are not shown to simplify the figures, they will be

included in the time history calculations in Section 5.4.

Unlike the SH-wave problem, where the free field amplitude is aways 2 times the

incident amplitude because of the constructive interference between the incident wave and
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Figure 5.3. Amplitude Variation of Alluvial Valley to Incident P-waves, n = 1

its reflected wave from a plane boundary. The P-wave incident has a P-wave reflection
and a SV-wave reflection (except for # = 90°) because of mode energy conversion due to
the wave speed difference between the two waves. From the table in Appendix D, Section
D.2.1, the free field amplitudes for § = 30° are |u,| = 1.3949 and |u,| = 1.1168. When
§ = 60°, the amplitudes are |u,| = 0.9633 and |u,| = 1.7411. These values are to be

used to judge the site amplification factors, the amplification over the free field values. For
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Figure 5.4. Amplitude Variation of Alluvial Valey to Incident P-waves, n = 2

vertically incident P-wave, the amplitudes are |u,| = 0 and |u, | = 2 because there is no

mode conversion for wave incidence normal to the plane half space boundary.

The results for dimensionless frequencies of n = 1 (Fig. 5.3) and n = 2 (Fig. 5.4),
the variation of amplitudes is quite regular in nature, having smooth response curves.
In particular, the case # = 90° has symmetrical results for both vertical and horizontal

components. There are higher amplitudes along the surface of the alluvial valley depending

99



8 rr T 1t 1 1t 11717 1 1T 1T 1T 1T T 1T T T1
[¢))
©
=
=
£
<
©
=
o
N
o
I
- N ]
S _// \ /\\ I |
E \ i\ I \
o ) A N \ ,\
E \ N\ / \‘\ l \» ’I ‘\ //\\ /’ \\ \ N ‘\ /
E 4 f\\\ / \/\\\‘ / // 4 \\\ ,\ |1|/\\ ,’/ \/ \ | ﬂ\\/ \ /\ )
S ;/- I’I 1\ \ > \\, ' \ | / “‘ ’,/V \\\ l//l \/I\ ,ll J{ // )\ \_
40:-) 2 —I,l ‘\\ \/l /’ \ ,’l‘ \/ ‘\J \ / ‘ll X/ \\l /I[ \ 7‘/ ,,',\\‘ Ill\ / \\ /\\1
> - \b\\ :/ ! U “\/ \II/ \ ’ \‘\‘/ \1/ l‘l / \71
T I I I Y I B/
90 -5 0 5 1.0
x/a

Figure 5.5. Amplitude Variation of Alluvial Valey to Incident P-waves, n = 5

on the angle of wave incident. They are caused by constructive and destructive interference
of diffracted waves. The results for the case where the dimensionless frequency isn = 5,
the variation patterns are too busy to be explained using physical interpretation. In this
particular case, there are five wavelengths inside the alluvial valley and many modesinside

thealluvial valley are excited. Thefact the amplitudes are not even higher during resonance
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for an undamped model is that radiation damping exists by wave energy escaping from the
valley to thefar field.

Beside the complicated variation patterns, there is one interesting fact to observe: there
arelocation onthe surface wherethe amplitudes are near zero. They appear to be quiet zones
but the motion is deceptive because they are the locations where the rotational components
are the largest. For the case of SH-waves as shown in Chapter Three, the large rotational
componentssignify torsional responses. Inthe present case, thelargerotational components
are those of rocking for the vertical component. The low amplitude zone for the horizontal

displacement is that of a standing wave oscillating between compression and tension.

The response to incident P-wave was also repeated for SV-waves in Fig. 5.6, Fig. 5.7
and Fig. 5.8 for n = 1, 2 and 5, respectively. Again, the free field motion amplitude is
not asimple 2 as in the SH-wave case, mode conversion causes different amplitudes and
anglesfor thereflected waves. Asexplained in Ewing et al (1957), the boundary conditions
at the plane boundary requires that the apparent velocity at the free surface for both the
compressional wave and the shear wave to be the same. That requirement coerce the waves
to travel at different angles. For the case of SV-wave incident, the P-wave travels in the
horizontal direction when SV-wave is at the critical angle. The critical angleis afunction
of Poisson’s Ratio and in the particular case of nu = 1/3, the critical angleis 60°. When
the angle is smaller than the critical angle, it would be impossible for the reflected P-wave

to have a slow enough phase velocity to match the boundary condition.

From the table in Appendix D, Section D.3.1, the free field amplitudes for 6 = 60°
are |uy| = 3.4179 and |u,| = 0. For § = 75°, the amplitudes are |u,| = 1.9438 and
luy| = 0.4970. These values are to be used to judge the site amplification factors, the

amplification over thefreefield values. For vertically incident SV-wave, the amplitudes are
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Figure 5.6. Amplitude Variation of Alluvia Valley to Incident SV-waves, n = 1

|uz| = 2 and |u,| = 0 because there is no mode conversion for wave incidence normal to

the plane half space boundary.

As seen from the response curve on the top of the aluvial valley surface, the amplitudes
for SV-waveincidence are significantly larger than those from P-waveincidence. Partly the
large amplitudes are due to the large free field motion amplitudes, but since the horizontal

motion is so large, there is sloshing type of behavior for the soft soil inside the valley,
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Figure 5.7. Amplitude Variation of Alluvial Valley to Incident SV-waves, = 2

reminiscing of the terrible shaking of the Mexico City earthquake. The amplification is not
as pronounced for vertical motion caused by a P-wave incidence because the thin layer has
alarger stiffness in the vertical direction. One other factor is that the P-wave has alonger
wavelength because of afaster wave velocity and the aluvial valley appears to be smaller
as compared to the wavelength. For aPoisson’sratio of 1/3, the compressiona wave travels

at twice the speed of a shear wave.

103



S e s s B B B E S N DL B
©
S - =5(8V) ]
2 [ 1g/a—(() 25) .
S 10: e N
E 10 H \ / \ //\\ -\ :
T [ PR /N
< -f— “ ! ]
Ioi i 7
L H— —
c
S SfA .
N Ul B
S — —
5 L .
L -
ol 1 1 v M M
Y [ s s s s s s s s s B B
o - 0=90 |
U — I'\ —
s L \ — 6=75
5 101 | 6=60 -
v e e =
E L a .
— r | / -
< — /In\\ / \\\ f’ l‘ / \\\ 7
—_— N / | I A
< b LA A h \ 7\ _]
o 5H N “‘ /! \\\/Il /) \\\ ! \ /JI \\‘ //\\ / \\\ n
- - N ] \J | ! /R / Y AN ~ ~
f | ‘ \ -
< ALY AL AR TR
FAWNAAA b AR VATAY IR\ AT
e VY @ WG WY
-1.0 -.5 .0 5 1.0
x/a

Figure 5.8. Amplitude Variation of Alluvial Valley to Incident SV-waves, n = 5

5.3 Response of an Arbitrary Shape Alluvial Valley to P and SV-waves

Consider now theresponse of an arbitrary shaped alluvial valley overlying bedrock. The
same model used in Chapter 3 (Fig. 3.6) will beused inthissection aswell. Theinterface of
the two materials, the bedrock and the alluvium, has a shape similar to the arbitrary shaped
canyon in Chapter Two, but shallower. The basic shape of the interface is a superposition of

an arc and asmall amplitude sinefunction. Thetop surface of thealluvium isrepresented by
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another small amplitude sine function. Again, any shape could be used with this numerical

method, the = and y coordinates for any two-dimensional geometry could be obtained by a

grid generation program.

Horizontal Amplitude

Vertical Amplitude

Figure 5.9. Low Frequency Response of Alluvial Valley to P-wave Incidence, n = 1
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Sincethere are many parametersthat could vary, the material propertiesto be usedin the
remaining sectionsof thischapter wouldbe ./ ., = 6, p/p, = 1.5,3/3, = 0.5, 3/ac = 0.5
and (3, /a, = 0.5. With the aluvia valley and aso the alluvium-bedrock interface being
not symmetric about the y-axis, wave incidence from the left side or the right side of the
valley would generate a different response. For that reason, 5 angles are considered for
P-wave incidence, 6 = 30°, 60°, 90°, 120° and 150°. In Fig. 5.9 and Fig. 5.10. The solid
linewill identify the responseto vertically incident P-wave and different length of dash lines

represent the others.

Oneinteresting result to indicateisthat the responseto avertically incident P-waveisno
longer symmetrical about the y-axis because the aluvial valley itself has anonsymmetrical
shape. That was one of the limitations of the elliptical aluvial valley model, that it is
symmetric about the y-axis. The response to a medium dimensionless frequency of n = 2
issignificantly higher than that of the lower dimensionlessfrequency n = 1. It will be noted
in the next section, and was also noted back in Chapter Three, that thereisacertain limit to
the site amplification factor, it would not become unrealistically high because of radiation

damping in the semi-infinite medium.

Shownin Fig. 5.11 and Fig. 5.12 are the response curves at the alluvial valley’s surface
subjected to SV-wave incidence. Five angles are considered for SV-wave incidence, 6 =
60°, 75°, 90°, 105° and 120°. In these figures, the solid line will identify the response
to vertically incident SV-wave and different length of dash lines represent the others. As
explained in the previous section, SV-wave incidence has a larger amplitude from the free

field motion itself, therefore, the response isin genera higher.
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Figure 5.10. Medium Frequency Response of Alluvia Valley to P-wave Incidence, n = 2

5.4 Time History Calculation for Alluvial Valley Surface

The concept of Fourier Transform was explained in Section 3.5 and the method applies
in this section as well. The input Ricker Wavelet is the same but it represents the strength
of the unit pulse, P or SV, arriving at the site. The maximum value of the response at the

site is then the site amplification factor for that particular location. Transfer Functions are
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Figure 5.11. Low Frequency Response of Alluvial Valley to SV-wave Incidence, n = 1

calculated for many parameters and stored in files ready to be used. There are simply too

many interesting cases to show, therefore, only afew selected cases will be presented.

Shown in Fig. 5.13 are the transfer functions for Station 4 (fig. 3.6). The top figure
includes the real and the imaginary parts of the u,, component of motion. Both the real
and the imaginary parts are needed for the Fourier Transformation because the phases are

important for superposition purposes. The second part of the figure is the amplitude of the

108



S e s s B B B E S N DL B
o
© - _
B B //\\\ 1
%_ : ’/ \\\ :
S 10 ]
< [ / \ N
< _
S 5 =
N ]
S 3
T )

0

S [ s s s s e s S N A A
. T 6=90 n=2 (SV)]
& [ ——— =5 ’
2. 6=105 .
B 100 0=60 -
- — =120 e ]
('_5 | /,/ e \\\ / \ _
RS ) 7
o
>

Figure 5.12. Medium Frequency Response of Alluvia Valley to SV-wave Incidence, n = 2

complex u, function. The maximum value of the transfer function amplitude is about 12
but that does not mean the time history will have amaximum of 12 because the phases could
invoke subtraction aswell. Thisisinteresting that the amplitude of the transfer function has
alimit, depending on the material contrast of the two soil media. Although the theory for
an undamped medium, the radiation damping resulted from outgoing waves prevents the

amplitude to be out of control.
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Figure 5.13. Transfer Functions for v, and u, at Station 4
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Figure 5.14. Transfer Functions for u, and u, at Station 4
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In the third subfigure of Fig. 5.13 is the transfer function for the vertical component
u,,. For awave propagation problem with an irregular shaped alluvial valley, it is expected
all components will be excited. The ratio of the amplitudes can be different for various
incidence angles. Since over 90% of the computation effort comes from the formation of
the embedded matrix [GZ,], computation for alarge array of incident wavesis arelatively
small effort. It is recommended that a probabilistic model could be used to estimate the
site amplification factors, including all effects such as variation of material properties,

characteristics of wave types and directions of wave arrival.

Shownin Fig. 5.14 and Fig. 5.15 are the time histories for the horizontal u,, component
and the vertical «,, component, respectively. The response functions were calculated for a
P-wave incidence with angle & = 120°, i.e., the wave arriving from the right side of the
aluvial valley. Because of the mode conversion effects, the wave forms appear to be more
complicated than those observed for SH-waves in Chapter 3. It is anticipated that a three-
dimensional model would generate even more complicated time histories asreflected waves
would arrivefrom al directions. Thetime history response functions were generated by one
simple pulse, that of the Ricker Wavelet, but it managed to create aresponse with significant
duration. Clearly, site amplification effect would cause the duration of the seismic event to

be significantly longer.

The time history responses to a SV-wave incident at the angle of § = 75° are shown
in Fig 5.16 for the horizontal component .. and in Fig. 5.17 for the vertica component
uy. The nature of the incident wave has an influence on the generated waveform and it is
anticipated that for atypical seismic event, many different types of waveswould arrive at the
site of interest, including many surface waves. This dissertation fails to analyze the effects
of Love Waves because the bedrock was modeled as a homogeneous half space. Future

work could extend to include layers and the modeling would be more sophisticated. But the

112



Station 1, 6=120°

Station 2

Station 3

Station 4

Station 5

M| Station 6

i | Station 7
AL A A~ e Ao N
JATM LA SadiAL || 1 ki
| |
V |
LLL L b b b b e e L e L e L L
0 20 40 60 80 100

Time (seconds)

Figure 5.15. Vertical Response to P-wave Incidence, 6 = 120°
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Station 1, 6=75°
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Figure 5.16. Horizontal Response to SV-wave Incidence, 6 = 75°
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Station 1, 6=759
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Figure 5.17. Vertical Response to SV-wave Incidence, § = 75°
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substructure del etion method opens up a new avenue for the development of toolsto handle

the three-dimensional problem, especially those with shallow aspect ratios.

Thereisoneother interesting waveto examinefor inplane problems, that of the Rayleigh
Wave at the surface of a half space. Truly no such wave exists in nature because there is
no homogeneous half space on this planet. But academically there is such a wave and
it propagates at a speed slower than the shear wave speed. In Lamb’s solution, i.e., the
half space Green’s Function used in the present application, thereisaRayleigh Polein each
function. That indicatesthat the Rayleigh Wave would be excited by wave scattering around

the canyons and alluvial valleys studied.

InAppendix D, SectionD.5, atableisshownfor the Rayleigh Wave speed asafunction of
Poisson’sRatio, 7. When the Poisson’sRatio is 1/3, the Rayleigh Wave speedis0.9325263.
There is aso aratio of vertical amplitude to horizontal amplitude of 1.565199. The two
components of displacement are out of phase by 90°, creating a retrograde or rolling type

of motion.

Shown in Fig. 5.18 are some time histories related to Rayleigh Wave incidence. The
top two figures are the horizontal and vertical displacements of the incident pulse. The
vertical component isafactor of 1.565199 higher; it isaso out of phase with the horizontal
component. When one component reaches zero, the other reaches the maximum, and vice
versa. Thethird and the fourth figuresin Fig. 5.18 show the horizontal and vertical response
at station 1, near theedge of the alluvial valley. It appearseven at station 1 the characteristics
of the Rayleigh Wave were lost. The horizontal component is now larger than the vertical

component and the phase difference of 90° isno longer discernable.

Asshownin Eqg. (D.92) and Eq. (D.93), the free field displacements of aRayleigh Wave

attenuate exponentially with respect to depth. The rate of attenuation is especially high for
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high wave numbers k. For thisreason, the incident Rayleigh Wave cannot reach the base of
the alluvial valley at higher frequencies. The wave must therefore enter the alluvial valley
only at its edge and most of the incident energy would be reflected. Shown in Fig. 5.19 are
the responses to a Rayleigh Wave incidence at Stations 1, 2 and 3. There is a quick decay
of amplitudes further back into the alluvial valley at stations 4 through 7 and they were not

presented in the figure.

It is anticipated that many modes of Rayleigh Waves would have a larger influence on
the response of an aluvial valley. However, alayered medium must be used to model the
bedrock to be able to analyze these most interesting cases and they are beyond the scope of

this dissertation.
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Chapter 6

Conclusions

The concept of Substructure Deletion, pioneered by Professor Dasgupta for the
calculation of embedded rigid foundations, was adapted to analyze site amplification
problems in this dissertation. The concept simplified the calculation of the so-called
boundary element solution which allows the outgoing waves to escape into the far-field

to be represented by a simple half space or a horizontally layered half space.

The substructure del etion concept uses only the Green’s Functions on the surface of the
basic half space model, the effects of buried sources are accounted for by adding to the
irregular embedded interface a replacement soil of the same material to form awhole half
space. The replacement soil model, being finitein size, could be modeled with size-limited
methods such as finite element or finite difference. The displacement-traction relationship
for the embedded interface could then be obtained by amatrix manipul ation and subsequent
subtraction of the finite model matrix (of the same material) from the surface formulation of
the half space. There aremgjor advantages of this method because the compliance matrix for
aflat surface has no traction because of the free surface boundary condition, thus eliminating
the need to generate stress Green's Functions. The flat surface also allows geometrical
modeling advantages, if the elements have equal size, the compliance matrix (displacement-
traction relationship) could be formed using symmetry arguments and similarity arguments
so that only one row of the matrix needs to be constructed. The computation time can be

reduced by an order of magnitude using these advantages.

Sinceitsintroduction in 1979, there has been limited application of this method in the

soil-structureinteractionfield. Perhaps modeling deeply embedded foundationsisadifficult
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challenge for this concept, having the buried interface too far away from the flat half space
surface. There might have been other issues with the compatibility of the finite element
formulation and the continuum mechanics formulation. The present application uses the
boundary integral equation formulation for both the interior (finite model) and the exterior
models, thus eliminating the alleged compatibility issues. Another possible advantage of
the present application isthat site amplification problems have model s which are not deeply
embedded beneath the free surface. The typical aspect ratio of an aluvial valley is of
the order of 1:10, depth versus lateral dimensions. This fact plays into the favor of the

substructure deletion concept.

A careful formulation, by computing all values using extra precision, showed that this
method can be formulated to provide a stable solution, even for high frequencies. One
major difference between the rigid embedded foundation problem and the site amplification
problem is that the former targets only the integral of the surface results to obtain the
impedance function, thus smoothing over some inaccuracies of the results. For the site
amplification problem, results at every node on the free surface are of interest, therefore,
accurate computation is important. By making larger and larger models, the elements
become smaller and smaller, the task of handling Green’s Function singularities becomes

an issue and attention to detail was required to make the formulation perform properly.

The substructure del etion concept was tested against exact infinite series solution in the
SH-wave case, against simple rigid foundation calculation and against results in the plane
strain (P, SV, Rayleigh waves) case and the accuracy was founded to be excellent. For cases
where there are no comparative solutions, the numerical solution was tested using different
levels of refinement to ensure that the results converge. All these tests were conclusive that

the method performs well for site amplification problems.
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The computer programs devel oped for thisdissertation were deployed to analyze severd
samples of arbitrary shaped canyons and aluvial valeys. The calculation of transfer
functions to a dimensionless frequency of over 30 and the formulation was able to perform
inastablefashion. Thismethod can handle actual dimensions of the physical problems, tens
of kilometersin size with wavelengths less than one tenth of akilometer. Using aboundary
integral formulation, it has one reduction in dimension compared to the volume formulation
such asfiniteelement and finite difference. For three-dimensional wave scattering problems,
this substructure deletion concept should be able to make the problem manageable. Of
course, there is a limitation that the problem must be linear and that the material inside
the scatter’s surface must be homogeneous. But the number of problems that this method
can address makes it a good tool for numerica simulation; it can help create a better

understanding of the site amplification problem.

The contribution of thisdissertation isthe provision of atool to analyze siteamplification
problemsfor abetter understanding of the physics of the problem. Sincethe current seismic
related building codes relied on one-dimensional vertically propagated wave solutions.
Subsequent research in this area have added the effects of two-dimensional geometry and
the concept of wave focusing to the possible explanation of why observed site amplification
factors are highly localized. The present method provides a way to obtain the response of
an dluvial valley to incident body waves from any direction and is able to handle surface
waves aswell. The major computational cost of this method is during the process of matrix
formation, the computation of thealluvial valley responseto variousincident wave motionis
lessthan 5% of the effort if the matrix is stored in today’ sterabyte storage units. Thisoffers
a benefit that probabilistic methods could be employed by generating random response to
many different types of free field motion. The present method opens up possibilities for a

realistic analysis of the site amplificaton effects.
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The next step for the development of this method is to extend the solution to include
horizontal layers for the half space Green’s Functions. The finite replacement model to fill
that buried interface must also be layered. After the compliance matrix is developed for the
buried interface of the bedrock, fully three-dimensional arbitrary shaped and non-horizontal
layered alluvial valley could be placed on top and alinear solution of this major problemis

within reach.
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Appendix A
The Boundary Integral Equation Method

Applying the representation theorem of elastodynamics first introduce by DeHoop
(1958) and later applied by Haskell (1966, 1969), the wavesin amedium can be represented
by sources placed at the surface of a scatterer. In particular, the wave motion in an exterior
medium, in which the outgoing waves are assumed to propagate into the far-field, can
be expressed in terms of the boundary values at the scatterer’s surface and the Green's
functions of the propagating medium. The Green’s functions account for al soil properties
such asthe configuration of layers, shear and compressional wave vel ocities, mass densities,
damping characteristics, etc. Thisintegral representation theorem can be derived by using

Betti-Rayleigh relationship (Fung, 1965) to abody (2 as shown in Fig. A.1.

Q g e
i A
\, \
i s

Figure A.1 — Schematic of the formulation of the Boundary Integral Equation.
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The body €2, bounded by asurface S, is subjected to loading conditions with ¢ being the
traction vector applied at the surface and f being the body force per unit volume within the
body. The displacement vector resulting from thisloading conditionis«. Consider now the
action of a separate loading condition with ¢* and f*, they will create a new displacement
vector v*. Thereciprocal relationship, based on the principles of physics, can be written as

/J*Tt*ds+/uindQ:/ﬁTﬁdSJr/anldQ , (A1)
S Q S

Q

indicating that in alinear elastic solid, the work done by a set of forces acting through the
corresponding displacement produced by a second set of forcesis equal to the work done
by the second set of forces acting through the corresponding displacements produced by the

first set of forces. The inner products of all four termsin Eq. (A1) are scalars.

To smplify Eq. (A1) for applications in this dissertation, the body force f is assumed
to be zero. Re-ordering the inner-products of the right-hand-side of Eq. (A1), the equation

can be written as
/u?ﬂT{dS:/ﬁTﬁds+/ Flaas (A2)
S S Q

Tomake Eq. (A2) useful for general applications, let theloading conditionsannotated by “*”
bethose generated by unit point loadsin orthogonal directions. More specifically, consider 3

different caseswherethe body force f* isapoint forceapplied at location 7, = [z, yp, zp]T

CASE 1: Body forcein the z-direction at point 77,:

]

= |s(F-7) , 0 , o]T (A3a)
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CASE 2: Body force in the y-direction at point 77,:

[o . 6(F—7)) o]T (A3b)

<
I

a3
I
| — |
o
o
([«%Y
—
=
|
-l
N—
| I
S~

(A3c)

The resulting displacement vector u* at 7 = [z, , 2] for the above loading conditions are

CASE 1.

0= [Ualr) | Un@lR) . Ueln)] (Ata)
CASE 2.

iy =[Okl UnlR) U0 (Ath)
CASE 3

it = [Uall®) . Un@lR) . UnlR) ] (Ate)

inwhich U;; isthedisplacement inthe ¢ ;-direction caused by apoint load intheé;-direction.
The column vectors in EQ. (A4) represent the displacement Green’s functions. The index

notation for ¢; isdefined asé;, = i, é, = jand é;5 = k.

Following similar steps, the traction vector t* at 7 resulting from the given loading

conditions are

CASE 1

L L L . T
b= Tl o Tyl Tl (450)

CASE 2:

T
b= | D@l o Tl TRl | (ABb)
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CASE 3

—

T
E=[Ta@l) o Tyl Tl | (A50)

in which Tj; is the traction developed at 7 in the é;-direction by a point load at 7, in the
é;-direction. The traction vectorsin Eq. (A5) can be calculated by performing the matrix
product of the Green’ sfunction stresstensor and the direction cosines of the outward normal

vector ¢,, on surface S as

T, Owz Oxy Ogzz Ng
Ty | = |0ya Oyy Oy Ty ) (A6)
TZ O‘Z"E O-zy O-ZZ nZ

inwhich n,, n,, and n, are the direction cosines of é,,.

By substituting the three sets of loading conditions as defined in Eq (A3), Eq. (A2) can

be written with the Green’s Functions as a matrix equation in the following form,

[lvGninds = [ 160 ]a@wds +a@) . (4n)
S S

in which . . oo
Umx(rp|7:j ny(Tp‘F) Um(rph‘)

y(7p[) - Uy (7p|7) : (48)

Uy
U. (Tp|7:> Us- (Fp|F)
T, (Tp‘ ) Tm(Fp’F)

[T | = | Tya(Fpl7) Tyy (117 Ty (7pl7) : (A9)

Tea(Tp|7)  Toy(Fp|7)  Toz(7p|7)
and the vector (7,) istheresult of the integral

[5(?@) 0 0 ] [ul(F)]
/ 0 5(F — 7)) 0 ug(7) | dQ . (A10)
@ 0 —7p) 7)
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Using the integral representation of Eq. (A7), the displacement vector (r,) at any

location 7, within the soil medium can be cal culated in terms of the boundary displacement

—

4(7) and boundary traction () as

() = /[ U (7|7 | 87 dS — / @Mds . (A11)

The integrals are evaluated over the surface S only.
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Appendix B
Anti-Plane Green’s Function Matrices

To calculate the response, , at observation point 77, arepresentation theorem based on
the reciprocity relationship and the known displacements, i, and known tractions, ¢, at the

surface, .S, can be written as

/S U, 7)) ds - /S (T, 7)| @) ds = a(7,) (B1)

in which [U] isthe Green’s Function matrix for displacements, [T'] is the Green’s Function

matrix for tractions, and i is the position vector on the surface S.
B.1 Green’s Functions for an Infinite Medium

For two-dimensional SH-wave problems, the component of interest isin the z-direction,

the representation theorem is simplified to

/Uzz(rp, #)1.(7) dS — / (P P) s (F) S = s (7)) (B2)
s
inwhich U, isthe only applicable element of the matrix [U] and it is defined as

Lor(2)
= ——H : B
U. 1o (kR) (B3)

where k isthe wave number w /3, (3 isthe shear wave velocity, H(()Z) isthe Hankel Function

of the Second Kind and zeroth order, and

R= \/x—xp (Y — yp)?
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The traction matrix [T'] is calculated using the stress matrix and the outward normal, 7, of
the surface S, defined as# = [n,,, n,, n,]T. Onecolumn of the traction matrix, [, can be

determine by the matrix product,

Tmi Ogzx Ozy Ogxz Ny
Tyi | = | Oyx Oyy Oyz Ty (B4)
Tzi Ozz Ozy Ozz |. | TNz

K3
in which ¢ is the direction of a point load at 77, and the stress matrix contains the stresses

generated by that point |oad.
The antiplane motion of SH-waves requires only one component of [7] and it is defined

Ny
T..=1[00 0y 0]|ny| =0.ng+0yny . (B5)
0

Using the shear modulus, 1, the stresses generated by an antiplane line load are

oU,, ik OR

o _ W ae(2)
oU,, ik OR
Ty = Hg = —ZHf)(kR)a—y , (B6b)

inwhich H 1(2) is the Hankel Function of the Second Kind and first order,

%_J;—xp a_R_Z/—Z/p
dr R dy R

B.2 Green’s Functions for a Semi-Infinite Medium

For two-dimensional SH-wave problems in a semi-infinite medium, the component
of interest is in the z-direction, the representation theorem is smplified to that shown in
Eq. (B2). But U. ., the only applicable element of the matrix [U], is obtained using amirror

image with respect to the z—axis so that its symmetry generates a condition so that the shear
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stress o z,, is 0 on the half-space boundary. The displacement Green’s Function, U, can

therefore be written as

i
Ve =11 [HSQ)(le) + H§? (kRy) : (B8)

inwhich

Rlz\/(x_xp)2+(y_yp)2 )

Ry = /(@ = 2,)? + (y + p)?

The traction matrix [T] is calculated using the stress matrix, similar to that described in

Eq. (B4) of section B.1. The one component of interest for [7'] is defined as
Ny
T.. =[020 0sy 0] |y | =02ng+0zyny ) (B9)
0

Using the shear modulus, 1, the stresses generated by an antiplane line load are

- GUzZ o Zk (2) 8R (2) 6R2
0oz = P = =~ {H (kRy)—— e + H" (kRy)— o ) (B10a)
8UZZ ik (2) 8R (2) 8R2
y = = H” (kRy + H,” (kR ) B10b
7=l == [HP GRS P G L (o
with
ORy _xz—w ORy, x—wp OR1 _ y—yp IRy _ Y+
8x R1 ’ 8I RQ ’ 8y Rl ’ 8y RQ

(B11)
B.3 Surface Green’s Functions for a Semi-Infinite Medium

For the special case where the source and the observation points are both on the surface
of the half-space, the semi-infinite space Green’sfunctionissimplified further asit isdefined
as

L )
U..=—-—HkR) | B12
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inwhich R = |z —x|. Withthedirection cosinesof the outer normal defined by n,, = 0 and
n, = 1, thetraction Green's Function 7., = o, and it is 0 everywhere on the half-space

surface. The representation theorem in Eq. (B2) issimplied to

/S U (7, #) 6.(7) dS = ws (7)) (B13)

making the numerical solution much simpler.
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Appendix C
Plane Strain Green’s Function Matrices

To obtain the two-dimensional Green's function matrices [U] and [T'] for application in
the representation theorm, the solution for displacements and stresses caused by aline load
must be considered. The first row of [U], Uy; and U, 2, corresponds to the horizontal and
vertical displacements induced by a horizontal line load while the second row of [U], Us;
and Uso, correspond to the horizontal and vertical displacements produced by avertical line

load, respectively.

The two rows of the matrix [T'] contain the tractions at the observation point generated
by the respective line loads described above. They are calculated as the matrix product of
the stress tensor generated by the line loads and the direction cosines of the outward normal

vector at the surface.
C.1 Green’s Functions for an Infinite Medium

For an infinite and homogeneous medium, the solution of a vertical line load can be
used to produce the solution of ahorizontal line load using an orthogonal transformation. In
Section C.1.1, the solution for the vertical lineload will be presented and the transformation

necessary to obtain the results for the horizontal line load will be given in Section C.1.2.
C.1.1 Displacements and Stresses Generated by a Vertical Line Load

ShowninFig. Clisaconcentrated lineload )y inthe positive y-direction. The solution

of the two-dimensional wave equation can be written in terms of two potential functions ¢
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and ¢ as shown in Lamb’s paper (1904) as

~ Qy 0

o= Ma—yDo(hT) ) (C1)
_ Qy 0
V=g Dalkr) (C2)

inwhichr = \/W x = z,—xsandy = y,—ys aretherelative position coordinates of
the observation point with respect to the source point inthe - and y- directions, respectively.
Thefunction Dy, used by Lamb (1904) isrelated to theHankel Functionas, Dy = —@'H(EQ) =
—Yo —iJo.

\
8

Figure C.1 — Vertical Qy Line Force Configuration.

The argument of ¢, hr = wr/a, is a dimensionless frequency normalized by the
compressional wave velocity «, implying that ¢ is a potential for compressional waves.
1, on the other hand, is the shear wave potential because kr = wr /3 isnormalized by the
shear wavevelocity 3. Note, the Hankel function of the second kind isused in thisderivation
because it represents an outgoing wave asr — oo when associated with the harmonic time

factor e™t,
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For aunit load Oy in the vertical direction, let the amplitude @y = 1, then

1 0
0= Tz gyt ) (C3)
and
! aH@)k C4
T GO (C4)

C.1.1.1 - Displacements

Using the potentials ¢ and «, the displacementsin the - and y-directions, respectively,

can be expressed as,
dp O
a1 = ox + oy
i 0? 02
= i [ B ) = )| (©5)
and
dp O
Uz = 8_y or
i 0? 0?
= {a—gﬂﬂéz)(hr)Jr 5ozt (kr )} , (C6)

in which, the derivatives of the Hankel function are,

82 (2) d2 (2) -87”- 2 d (2) 82?“
2 u -2y e ot ar
St ) = smP e |50+ SaPen | e
82 (2) d2 (2) -8’/“- 2 d (2) 82’/“
8_y2H0 (l{?T’) = WHO (]{77”) -a—y- + d’r‘H (k’ )|:a—y2:| y (C?b)
0? () d? (2) [Or] [ oOr d (2 0?r
H -2 THE L Lg
oyoz~ ° (kr) dr2 0 (kr) | Ox | [83;] + dr Y (kr) {axay}  (CTe)
and
d%Héz)(kr) = —kHD (kr) | (C7d)
& ) () L@
WHO (lf’f') = —]{72 {HO (k?”) — HHI (]{77'):| . (C?@)
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In the above expressions, the derivatives of the distance r can be written as

% - % , (C8a)
g—; - % , (C'8h)

and
aizgy - _i_g ' (C8e)

The expressionsin Eg. (C7a) to Eq. (C7e) are the same for the function, Hé2) (hr), except

the wave number & is replaced by h.
C.1.1.2 — Stresses

The stress components, ., , 04y, ando,,, can beexpressed in terms of the potential

functions ¢ and ) as

L uay = K- 20 5 120 L (€9)
_ 4];’2 {_ 12 6% H® (hr) — 2 ;y H (hr) — 2 83:82303/ H<2)(kr)] ;
= 4;% [2 axa;y2 HE (hr) + kQ%HS2)(k ) + 2%11 2 (o )} :
and
—0yy, = —k*¢ — 2% - 263;;2 (C11)
- 4;%[ kQG%HSQ)(h )2 afzga Hy? (hr) +2 6238 Hy? (kr )} ;
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in which,

0 d or
Ser ) = P () (C120)
0 d or
o) = S HP 0 () (C120)
A A o\’ LA (9 or\ [ 9*r
83@3H (kr) = dr3 Ho™ (kr ox +3d 3 Ho™ (kr) z ) \ 02

5)
83 (2) d3 (2) 87“ 3 d2 (2) 87“ 82
é)ng (kr) = - Hy” (kr) —> + 35 H (k:r)(ay> <8y>
) 1

af;y2 H (kr) = C;‘—;Hg”(m <§—;) <g—;>2 — C%Héz)(kr) < ai;;2>
8;3@}1(2)(1{:7») = j—;Hé2)(kT) g—;)z(g—;) + iH@)(k )< 8izgy)
+ %Hém(k ) gz g; + 2% aiQay] ! (C12/)
with
d—H@)(kr) = k3{H£2)(k:r){ 2 } + ng”(k;r)} . (C12g)
dr3 (kr)? kr
and the derivatives of the distance r expressed as
g—ig = i—f (—1 + f—i) : (C13a)
% :i—g(—l+i—2 , (C13b)
% - r% (-1 + 3f—z) : (C13¢)
ai—;ryQ - f—3 <—1 + 3‘2{—2) . (C13d)
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Theexpressionsin Eq. (C12a) to Eq. (C12e) arethe samefor the function, HéQ) (hr), except

the wave number £ isreplaced by h.
C.1.2 Displacements and Stresses Caused by a Horizontal Line Load

Since the infinite space is homogeneous and isotropic, the solution developed for a
vertical line load @y can be reused for a horizonta line load @) x by doing a coordinate

transformation.

Figure C.2 —Horizontal @ x Line Force Configuration.

Shown in Fig. C2 is an illustration of the horizontal line load in the z-direction using

the (z,y) coordinate system. Also in the same figure is the (z’,y’) coordinate system.
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The (2/,y") system is rotated clockwise from the (x, y) system by 90°. The orthogonal

transformation between these systems can be expressed as
1 0 1
@y —al= % 5] (C14)

To obtain the results for the horizontal point load @ x, calculate the displacements and
stressesinthe (z/, y') system using the expressions presented in Section C.1.1. Thisisdone
because Q x isin the y’-direction, formerly the vertical direction. The values for the prime

coordinates can be obtained from the position vector of the present configuration as

F-er )= -] - e

Use now the cal cul ated displacementsinthe (2, y') system and transform them to the («, /)

{Zﬂ =@l {Zﬂ - [—01 (1)} {Zz} = {_ujx} : (C'16)

To transform the stress tensor, use the transformation of the form

system using

[A(z, )] = [QAG", QT (C17)
in which [A] isany matrix, atensor of second rank.
C.1.2.1 - Displacements

If the displacementsin Section C.1 can be written in functional form as

[t

then the displacements caused by ahorizontal line load in the z-direction can be written as

[%Eim B {—IIJJQ;((_—Z’,?)} : (C18)
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in which the coordinates x, and y are the only parameters displayed because the material

properties of the viscoelastic medium remain unchanged.
C.1.2.2 — Stresses

If the stress tensor in Section D.1 can be written in functional form as

{Umy(x',y/) Uwyy(xlvy/)]
nyy(x’,y’) Uyyy(xlay/)

then the stresses caused by a horizontal line load in the x-direction can be written as

Trxx (l’,y) Owyx (x’y) — O'yyy(—y,l') _O'yIY(_yax>
Oyax (x’y> Oyyx ($7y):| B {—%yy(—y,x) U;rxy(—y,x) :| : (019)

C.1.3 Formation of [U] and [T]

Using the equations formulated in the two previous sections, the matrices [U] and [T']

needed for the representation theorem can be formed as follows:

o= ] (20)
[T]Z{% %ﬂ : (C21)

in which the matrix elements, T;;, can be calculated as

- - T -
Tll — Ogxx nyX Ny (022)
| Thz | | Oyzx  Oyyx | [Ty ’
and
- - T -
T21 — Uxmy Ua:yy Ny ) (023)
| T22 | | Oyzy  Oyyy | [Ty

In Eqgn. (C22) and Eq. (C23), n, and n,, are the direction cosines of the outer normal vector

of the boundary surface.
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C.2 Surface Green’s Functions for a Semi-Infinite Medium

To obtain the two-dimensional Green’s function matrices [U] and [T] for the surface
of a semi-infinite medium, the solution for displacements and stresses caused by a line
load must be considered. These solutions are available from the classical publication by
Professor Horace Lamb (1903) in the Philosophical Transaction of the Royal Philosophical
Society of London. In this section, the displacements and the line loads are all located at

the surface of the semi-infinite space, simplifying the geometry of the problem.

The two rows of matrix [T'] contain the tractions at the observation point generated by
the respective line loads described earlier. But since the stresses at the surface of the semi-
infinite medium, by definition of the boundary conditions, are zero, the traction Green's

function matrix [T] is zero.

With the presence of the half-space surface, the mathematical formulation of the Green's
functions become more tedious because of mode conversions between the P and SV waves.
The advantage of a mirror image as exploited in Appendix B for SH-waves is no longer

possible.

Using the notation adapted by Ewing et al (1957), and after anormalization with respect

to kg = w/ 3, theinfiniteintegralsfor the displacement Green's Functions can be expressed

as.
i [ k(2K -1-2w) .
Ug = — —laok® qp C24
12 27_(_/1/ - F(k') € ) ( )
1 v :
Usp = — —iaok qp; 25
22 e /_OO F(k) e ) ( )
1 [~ v o
_ _ —tapokx dl{? 2
=5 | Fwe | 2
i [ EQEE-1-20)
=— —laoke g 27
) M T e
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inwhichag =w/B,v = k2> — 42,V = Vk? — 1,7 = §/a, and F (k) isthewell-known
Rayleigh Determinant defined as F'(k) = (2k? — 1)? — 4k%*vv'. The magnitude of the

vertical and horizontal line sources were set at 1.

Asitisgiven from Eq. (C24) to Eq. (C27), the infinite integrals are too complicated to
be evaluated analytically. They are also not amenable to numerical methods because the
Rayleigh Determinant has aroot, known as the Rayleigh Pole, a k& = s, within the interval
of integration. For example, when v = /o = 1/2, s = 1.07236. The location of the
Rayleigh Poleon the k-axis is dependent on material properties, it represents physically the

Rayleigh Surface Wave generated by the line sources.

Using a complex contour integration scheme as shown in detail in Chapter 2 of Ewing
et a (1957), theinfinite integral can be transformed into combination of finiteintegrals and

residues that are relatively ssimple to evaluate numerically. They are shown below:

\/1 — k2 -
fzaosac o fzao xdk
Ui = A’ (S ’y
2 _ 2 / 2
. Z/ (Zk ) 1 k —zaokxdk / 1 + k —aokxdk 7
~ A (]{? ) Ag k ’7
(C28)
o s(282—1) —25y/s2 —2Vs2 — 1 R
Tt = By(5.7)
1 2 _ 2 _ 42 2
k; 2k k 1—-k -
4 2/ \/ \/ e—zaok:r dk ,
Y AQ(kJ /Y)
(C29)
TulUia = —mpls ,
(C30)

and
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wulse = im~——— Gt e taosT _ z'/V < il e taokz gr.
AZ(S/Y) 0 Al(kv'y)
_ Z‘/l 4k2(k2 — ’72) \4 1— k2 —zaokmdk +/ \/ k2 + ’Y —aokmdk
Y A2(k7’7) 7)

(C31)
In the above expressions, the important functions and parameters are

Aok, ) = (2k* — 1) — 4k,

Aq(k,y) = (267 = 1)° + 4k /92 — E2V/1 - 2,

Ag(k,y) = (2k% — 1)* + 16k*(k* — ) (1 — k?),

As(k,y) = (2K +1)* = 4>/ + 2V k2 + 1,

d
Aj(s,y) = %Ao(k %)

k=s
45%(25% — (1 + 42
Ay(s, 7)‘83[28 “1) Vs 2V o - \/;_72(\/:2—11)
v = \/m,
v =Vk2 -1,
ap = wb/f,
and
v =B/

The ratio of wave velocities, v, can be expressed in terms of the Poisson Ratio, v, as

v = /@ —20)/(2(1 - v)).

The basic soil properties referenced, «, 3 and v are the compressional wave velocity,
shear wave velocity and the Poisson’s ratio for the semi-infinite medium, respectively. In
elasticity, a combination of any two material constants is sufficient to uniquely determine

amedium. Thevalue of s = cr/f, istheratio of the Rayliegh Wave velocity cr to the
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shear wave velocity 3. The value of s is the root of the equation Aq(s,~y) = 0. Some
frequently used values of s are 1.14412, 1.08766, 1.07236 and 1.04678 for 2 of 3, &, &

and O, repsectively.

The expressionsin Eq. (C28) through Eg. (C31) contain many terms and each term has
physical significance. The terms which contain A{(s,~y) as denominator are the Rayleigh
surface wave terms and they are the residues from contour integration. The wave speed isa
constant ¢ controlled by the value of s in the complex exponential. The terms containing
V1 — k2 arethe contributions from S-waves; theradical expression isequivalent to acosine
function and the integral from 0 to 1 isasummation of all S-waves with arange of incident
angles. Similarly, the integrals from 0 to  which contains the radical /72 — k2 represent
the contributions from the P-waves. The range of admissible angles for P-wavesis limited
by acritical angle which isafunction of the material properties. Additional waves beyond
those described are not plane waves and they have complex amplitudes; their summationis

acccomplished by theinfinite integral.

The process to obtain the contour integration expressions is tedious, but the results
can be coded simply in computer programs. Most integrals are finite and the four infinite
integralshave exponentially decaying integrands. The computational effortisminimal. The
difficulties which could arise numerically are either (1) the frequency w istoo high so that
theintegration of the harmonic functionsisachallenge, or (2) thevalue of x istoo small. For
the latter case, the infinite integrals approach infinity as alogarithmic function. Therefore,
the singular term of this set of Green’s functions is the same as al other two-dimensional

Grren’s Functions discussed throughout this dissertation.
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Appendix D
Wave Motion in a Semi-Infinite Medium

D.1 — Two-Dimensional Plane-Strain Problem

A general three-dimensiona wave field can be represented by the superpostion of plane
waves, therefore, it is a useful exercise to prepare an expression for several fundamental

Wwaves.

The displacementsin elastic wave propagation can be expressed in terms of derivatives
of two potential functions, ¢ and zE The compressional wave potential, ¢, is ascalar but
the shear wave potential, ¥, isavector. For the two-dimensional plane strain wave problem
under consideration, the z-component of the vector, v, is used and will be denoted as
the scalar symbol v herein. The in-plane horizontal displacement, u, and the vertical

displacement, v, can be written as (Ewing et a, 1957),

_ 0o Oy
u= o + ay ) (D.1a)
and
06 oY
v = 9y ou , (D.1b)

respectively. Defining the LaPlacian operator in two dimensions as

0? 0?
2 P— [ [
Ve = 902 + 0y : (D.2)
the two-dimensional stresses are then
0%¢ 0%
e = A\V20 + 2 2 D.
T, AV + M8x2+ 'u(‘?:cay (D.3a)
0%¢ 0%

— 2W)V2h — 21—~ + 2
(A+2p)V=6 Moz T M gmy

150



826 924

_ 2 o
Tyy = AV 0+ 2 952 2“8:603/ (D.3b)
82¢5 82w
= 21)V3h — 2p—o — 2
and
82¢ 821p 82¢
Toy = Tyz = 2'u8$3y + ,uayQ —lg3 (D.3c)

D.2 — Incident P-Wave Solution

Let ¢* be the incident P-wave potential function, ¢” be the reflected P-wave potential
function and " be the reflected SV-wave potential function. An additional shear wave
reflection, represented by ", is also necessary to satisfy both normal and shear stress

boundary conditions at the free surface as shown in Fig. D.1.

T
e e/

Y W

Figure D.1 — Incident and reflected P-wave.
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Define the potentials as

¢i _ Ae—ih(mcose—ysine) , (D4a)
gbr _ Befih(m cos e+ysine) 7 (D4b)
wr _ Ce—ik(:c cos f+ysin f) : (D4C)

with h = w/a and k = w/3 defined as the wave numbers. The second partial derivatives

of the potential functions can be written in the form

(982;;1 = (—ihcose)?¢’ , (D.5a)
(982;;7" = (—ihcose)?p" ) (D.5b)
382;@7" = (—ikcos f)*y" , (D.5¢)
%?; = (ihsine)?¢’ | (D.5d)
%2;5; = (—ihsine)?¢" , (D.5e)
R

S = (Ciksinf Py (D))
g;g; —= (—ihcose)(ihsine)o’ , (D.59g)
%" , - ,

920y = (—ihcose)(—ihsine)¢ , (D.5h)
O*y" , oo , ,
920y = (—ik cos f)(—iksin f)y . (D.5i)

Now apply the boundary conditions, 7,,|,—0 = 0 and 7,;|,—0 = 0. The first boundary

condition yields,

Tyyly=0 = AN(—h? cos? €)[A + Ble "¢ 4 (X 4 2u)(—h?sin? €)[A + Ble thecose

— 2u(—k?sin f cos f)Ce~ ke cos/ , (D.6)
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and for the second boundary condition, 7,,,|,—o = 0, to be true over the entire range of z,

the following requirement,
—thx cose = —ikx cos f : (D.7)

is necessary. The above relationship defines the angle, f, based on the incident angle, e.

The first boundary condition yields the following expression for the unknown coefficients,

[(X + 2p)(—h?) + 2uh? cos® e] A (D.8)

+ [(X + 2u) (—h?) + 2uh? cos® €] B + [2uk? sin f cos f]C = 0.
The second boundary condition yields the relationship,

Tyzly=0 = 2u(h? cosesine)[A — Ble ™ cose 1 (—k? sin? f)Cehrcost

— pu(—k? cos? f)Ce~tkucos ] ) (D.9)

and with the relationship, —ihx cose = —ikx cos f, the second simultaneous equation for

the unknown coefficientsis
p[2h? cos esin e] A — p[2h? cosesine] B + u[k*(cos® f —sin® f)]C =0.  (D.10)

The simultaneous eguations for unknowns B /A and C'/A can be written in matrix form as

(A + 2u)(—h?) + 2uh? cos® e 2uk? sin f cos f 1 { B/A }

21h? cos esin e —uk?(cos? f —sin® f) | | C/A (DA1)
[ (A +2u)h? — 2uh? cos? e .
- 241h? cosesine
Define now the important material constant,
B2 w2/a2 32 3 2
2_ 0 _ =2 (= D.12
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which can be related to the Lame constant as

2
o' AN+2u)/p  A+2u
With these new definitions, the matrix equation ssmplifiesto
—v2 +2y%cos?e  2v?sin f cos f B/A 72 — 2y*cos?e
2 : 2 - 2 . . (D14)
2v“cosesine 1 —2cos” f C/A 2v“cosesine
The determinant of the matrix on the left sideis
A = (—7* 4+ 2% cos? e)(1 — 2cos? f) — 4y*sin f cos f cosesine
(D.15)

= —~%(1 — 2y cos? e)(1 — 2cos? f) — 4y* sin f cos f cosesine

More ssimplification can be accomplished by recognizing that h cose = k cos f, using the
relationship,

h
cos f = 7 cose = ycose , (D.16)

The determinant can be written in a better form:
A = —~7%(1 — 292 cos? €)® — 4y* sin f cos f cosesine : (D.17)

Using Cramer’s Rule for the matrix equation, the solution for the unknown coefficientsis

B 1 ‘72(1 — 272 cos?e)?  2y%sin fcos f
- - ) : B :
A ? 2v° cosesine 1—2cos” f (D.18)
= A [72(1 — 272 cos? 6)2 — 4~y sin f cos f cos esin e]
and

c 1 ’ —72(1 — 292 cos? e)? v2(1 — 292 cos? e)?

T — A 2 . 2 .

A ? 2v“ cosesine2y cosesine (D.19)

= A [—474(1 — 272 cos? e) cos e sin e}
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The above expressions are amenable to numerical computation, but a more symmetrical
expression can be obtained using the expression cos f = ~vcose. Manipulation by

trigonometric identities yields,

sin? f=1—cos® f=1—9%cos’e : (D.20)
5 sin?f 1—~2cos’e sin?e+cos?e —~2cose
tan” f = cos? f B ~v2 cos? e B ~v2 cos? e

) : (D.21)

— — tanZe + (1—7%)

= an” e o

and

sin f cos f = tan f cos® f =% tan f cos® e . (D.22)

With the angle e given as the input parameter, the first step is to determine tan f using

Eq. (D.21) and then calculate the coefficients B/A and C' /A using the expressions

B —(1—2v%cos?e)? + 4yt tan fsinecos® e

B _ , D.23
A (1 —2v2cos?e)? 4+ 4y* tan fsinecos3 e ( )
and
C 4~2(1 — 272 cos? i
¢ _ 74 ( % cos e)coseélne (D.24)
A (1 —2v2cos?e)? + 4y*tan fsinecos3 e

The value of A can be determined from the amplitude of the incident P-wave, | P|, of a

compressional displacement pulse. Thehorizontal and vertical displacementsof theincident

pulse are
i 09 i
u' = o = (—thcose)p , (D.25a)
and
i 09t i
vt = 9y (thsine)p : (D.25b)

respectively. Now compute the magnitude, | P|, from the displacements,

|P| = v/ (u?)? + (v')% = Vi2h2 cos? e A2 + i2h2sin% e A2 = ihA ,  (D.26)
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and in turn the coefficient A can be specified as

D.2.1 - Displacement Wavefields for Incident P-Waves

(D.27)

With the unknown coefficients determined, the horizontal displacement for all x and for

y > 0,is
o 8(25 aw - . 1 r - : T
U= + By zhcose(¢ +¢) ik sin f4
Using the relationships
wpfh  w
M=3a=a="
and

ksin f = ktan f cos f = tan f kycose = htan f cose

the horizontal displacement within the semi-infinite medium can be written as

u(z,y) = —ihcose [¢'(z,y) + ¢" (,y) + tan fY" (2, y)]
and the horizontal displacement at the free surface is ssmply,

B C
|u(z,0)] = Pcose (1~|— 1 + Ztanf)

The vertical displacement for all z andy > 0 is,

v = Z—Z) — Z_ﬁ :ihsine(qﬁi —gbr) — (—ikcos f)y"

Using the relationship between the angles,

k:cosf:k:'ycose:gécose:hcose ,
oXe’

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)

(D.34)
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then

v(z,y) = ihsine [d)i(:z:, y) — @' (z, y)] + thcose Y (x,y) ) (D.35)

The vertical displacement at the free surface of the semi-infinite mediumis

B C
= P |si 1—— — . D.
lv(z,0)] {sme ( A) + " cose] (D.36)
Since the above expressions are strongly influenced by the ratio of shear to compressional
wave speeds, v, it is convenient to relate  to the Poisson’s Ratio, in this manner:

o (1—2v)
T

(D.37)

Using v = 1/3,~42 = 1/4, the normalized amplitudes for a unit, incident P-wave are

¢ ulf "y
10° 0.8792 0.5283
20° 1.2745 0.8581
30° 1.3949 1.1168
40° 1.3507 1.3488
50° 1.1966 1.5597
60° 0.9633 1.7411
70° 0.6733 1.8812
80° 0.3460 1.9697
90° 0.0000 2.0000

D.2.2 — Stress Wavefields for Incident P-Waves

For the purpose of calculating tractions at the wave scatterer’s surface, it is necessary to

hae the expressions for the stresses. Using the known coefficients, A, B/A, C'/A in terms
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of Pinegns. (D.27), (D.23) and (D.24), respectively, the stresses can be expressed as

Tow = 1 [(20% sin® e — k?) (@' (z,y) + ¢"(2,y)) — 2k sin f cos fy" (z,y)]

(D.38)
Tyy = 1 [(2h% cos® e — k) (¢'(z,y) + ¢"(z,y)) + 2k” sin f cos fY" (z,y)] :
(D.39)
Ty = p [2h?sinecose (¢ (z,y) — ¢ (z,y)) + k*(cos® f —sin® /)o" (z,y)]
(D.40)

inwhich the functions ¢*(z, v), ¢" (z, y) and ¢" (z, y) aregivenin egns. (D.4a), (D.4b) and
(D.4c), respectively.

D.3 - Incident SV-Wave Problem

Let * be the incident SV-wave potential function with a yet to be defined amplitude
D, y" bethe reflected SV-wave potential function and ¢” be the reflected P-wave potential

function written in the form,

Wi = De~ik(@cos f-ysin f) : (D.41a)
YT = Ee~ik(@cos frysing) (D.41b)
and
o = Fe—ih(z cosetysine) : (D.41c)

inwhich h = w/a and k = w/ 3 are the wave numbers. The unknown coefficients, £ and
F areto be determined later using the boundary conditions. Similar to the incident P-wave

problem, ¢ is necessary to satisfy both boundary conditions at the free surface.
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Figure D.2 — Incident and reflected SV-wave.

The second partial derivatives of the potential functions can be listed as

({?;;b; = (—ikcos )% , (D.42a)
862;#; = (—ikcos f)*¢y" ; (D.42b)
% = (—ihcose)?¢" , (D.42c¢)
% = (iksin f)*y" | (D.42d)
% = (—iksin f)%y" : (D.42¢)
247

% = (—ihsine)?¢" , (D.42f)
%! . o ;

920y = (—ikcos f)(iksin f)y ) (D.42q)
%" . o r

920, = (—ikcos f)(—iksin f)y ) (D.42h)
%" , oo . .
920y = (—ihcose)(—ihsine)¢ : (D.424)
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Now apply the boundary conditions, 7,,|,—0 = 0 and 7;|,—0 = 0. The first boundary

condition yields,

Tyyly=0 = A(—h? cos? e)Fe*ihx ©ose 1 (X4 2u)(—h?sin? e)Fe*ihx cose
— 2u(—k?%sin f cos f D — k?sin f cos f E)e”Fzcosf , (D.43)
For the second boundary condition, 7,,|,—0 = 0, to be true over the entire range of z, the

following requirement,

—ihx cose = —ikx cos f : (D.44)

is necessary. The above relationship defines e based on f, the incident angle. The first

boundary condition also yields the following expression for the unknown coefficients,
—h?(\+2usin® e)F — 2uk?sin fcos f}(D — E) =0 . (D.45)
The second boundary condition yields the relationship,

Tyz|y=0 = 2p(—h?sinecose) Fe @ cose 1 (—k?sin? f)[D + E]e~ k@ cos/

— u(—k? cos? f)[D + E)e~tkecos/ , (D.46)

With the relationship, —ihx cos e = —ikx cos f, the second simultaneous equation for the

unknown coefficientsis
—2uh?sinecose F 4 pk?(cos® f —sin® f)[D + E] =0 . (D.47)

The simultaneous equations for unknowns £/ D and F'/ D can be written in matrix form as
20k? sin f cos f —h?(\ +2usin®e)] [ E/D
pk?(sin? f — cos? f) 2u1h? sin e cos e F/D

B 241k? sin f cos f
| pk?(cos? f —sin® f)

(D.48)
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Now define the important material constant,

MWt g (E)Q , (D.49)

— 2 w232 o2

which can be related to the Lame constant as

N S
V=== =
a AN+2u)/p  A+2u

(D.50)

With the new definitions, the matrix equation simplifiesto

2sin fcosf  —1+2y%cos?e| [ E/D
sin® f —cos? f  2vy%sinecose F/D

_ 2sin f cos f
N { (cos? f — sin? f) } - (D:51)

The determinant of the matrix on the left side of the equation is
A = (1 —2v%cos?e)(1 — 2cos? f) + 4y sin f cos fsinecose : (D.52)

More simplification can be accomplished by recognizing that 2 cose = k cos f, and using
the relationship,

h
cos [ = 7 cose = ycose , (D.53)

the determinant can be written in a better form:
A = (1 —2y%cos?e)? + 4y?sin f cos fsinecose . (D.54)

Using Cramer’s Rule for the matrix equation, the solution for the unknown coefficientsis,

L1 2sin f cos f —1+42vy2cos?e
D A |(cos®f—sin®f) 2¢%sinecose
_ —(1—27%cos?e)* + 4v?sin f cos fsinecose (D.55)
(1 —2y2cos?e)? 4 42 sin f cos fsinecose ’ '
and
£ 1| 2sinfcosf 2sin f cos f
D A |sin®f—cos®’ f (cos®f—sin® f)
—4sin fcos f(1 — 2y2 cos? e) (D.56)

B (1 —2v2cos?e)? 4+ 492 sin f cos fsinecose
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The value of D can be determined from the amplitude of the incident SV-wave, |S|, of a

shear displacement pulse. The horizontal and vertical displacements of the incident pulse

are

u' = {ZZZ = (iksin f)y" , (D.57a)
and

Vi — %ﬁl — (ikcos Y | (D.57b)

respectively. Now compute the magnitude, |.S|, from the displacements,

181 = V)2 + ()2 = /2K sin® f D2+ 2k2cos? f D2 = ikD ,  (D.59)

or

_ 1S
D=1 (D.59)

D.3.1 — Displacement Wavefields for Incident SV-waves

With the unknown coefficients determined, the horizontal displacement for al « and for

y>0,is
0o oY . o ; -
u= o a—y:—(zhcose)¢ + iksin f (¢" — ¢") : (D.60)
Using the relationship
wf  w
kv—ga—a—h ; (D.61)
and
ksin f = ktan f cos f = tan f kycose = htan f cose ) (D.62)

the horizontal displacement within the semi-infinite medium can be written as

w(z,y) =ik [(—ycose)d"(z,y) +sin f (V' (z,y) — ¢ (z,9))] (D.63)
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and the horizontal displacement at the free surface is ssmply,

ute.0)] =5 |

The vertical displacement for all z andy > 0, is

_0¢ _0y _
v oy Or
Using the relationship

then

v(z,y) =ik [(—ysine)” (z,y) + cos f (V' (x,y) +¥"(2,y))]

The vertical displacement at the free surface of the semi-infinite mediumis

o0 = (

—(ihsine)¢” + (ik cos f) (@Z)i + ")

COS S
7ysie

E
1—5)sinf——

D

F

F

(vycose)

(D.64)

(D.65)

(D.66)

(D.67)

(D.683)

Using v = 1/3 or 4% = 1/4, the normalized amplitudes for a unit, incident SV-wave are

¢ ulf ol

60° 3.4179 0.0000
65° 1.9877 0.6984
70° 1.9268 0.6275
75° 1.9438 0.4970
80° 1.9717 0.3417
85° 1.9925 0.1736
90° 2.0000 0.0000
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D.3.2 — Stress Wavefields for Incident SV-Waves

Using the known coefficients, D, E/D, F'/D intermsof S in egns. (D.59), (D.55) and

(D.56), respectively, the stresses can be expressed as

Tex = H [(2h2 Sil’l2 € — k2)¢r(x7 y) + 2k2 Sinf cos f (wl(x, y) B wr(x’ y>)] ’

(D.69)
Tyy = 1 [(20% cos® e — k%)¢" (2, y) — 2k?sin f cos f (¢ (x,y) — ¢ (2,9))]
(D.70)
Tay = i [~2h2 sin e cos e¢” (z,y) + k2(cos? f — sin® f) (V' (z,y) + 0" (2,9))]
(D.71)

in which the functions v (, y), ¥" (x,y) and ¢" (z, y) are given in eqns. (D.414), (D.41b)
and (D.41c), respectively.
D.4 — Incident SH-Wave Solution

Unlike the plane strain wave problems, the SH, or anti-plane wave solution does not
require potential functions, its solution satisfies the scalar wave equation and its harmonic

wave solution satisfies the scalar Helmholtz equation,
Vu, + k*u, =0 , (D.72)
inwhich k = w/3 isthe wave number for shear waves.

There isno mode conversion in this case, therefore, the compressional wave potential is

absent. Theincident SH-wave problem can be written easily by defining the incident wave,
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Figure D.3 — Incident and reflected SH-wave.

u!, and the reflected wave, u”, as

uzz — Sefik(xcosffysinf)

: (D.73a)
and

ul = Se~tk(@cos frysinf) , (D.73b)

respectively. S istheamplitude of theincident wave pulse. It hasbeen shown that areflected
wave with the same amplitude, S, would satisfy the shear stress boundary condition at the

free surface as
ou,
T =
Yyz ILL ay B
y_

=0 (D.74)
0

inwhichu, = u’ + u? isthe total displacement in the semi-infinite medium.
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D.4.1 — Displacement Wavefields for Incident SH-Waves

The anti-plane displacement, «, in the semi-infinite medium can be written as
u,(z,y) = 28e” 7SS cos(kysin f) . (D.75)

Thisisthe summation of theincident and reflected wavesas shownin Eq. (D.66). Thisshear
wave only solution is not dependent on Poisson’s Ratio, v. The displacement amplitude at

the free surface is a constant,

lu,(z,0)] =28 . (D.76)

D.4.2 — Stress Wavefields for Incident SH-Waves

The shear stresses generated by incident SH-waves can be expressed smply as

Tor = —2ipk cos f e~ k=SS cog(kysin f) ) (D.77)

Ty. = —2uksin f e * 7SS gin(kysin f) ‘ (D.78)

D.5 — Rayleigh Wave Solution

Unlike the body waves described in the previous sections, a semi-infinite medium is
amenable to a surface wave and its larger amplitudes are confined near the free surface. If

a harmonic wave function has the form

¢ _ A@ii% (z cose—ysine) 7 (D79)
it has an apparent velocity ¢ on the free surface (y = 0). Consider the factor:
Yicose= L YT , (D.80)
e a/ cose c
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the apparent velocity isdefined asc = «/ cos e for this particular case. If e — 90°, ¢ — o
because all particles on the surface appears to move in the same direction, therefore, it

appears on the surface as if the wave is moving with an infinite speed.

Consider the case when ¢ < 3 < « by defining the compressional potential and shear

potential as

6= Ac" 2@tV Z-1y) (D.81a)

= Be*i%(x:l:1 [ -1v)

respectively. For the condition, ¢ < 3 < a: /% — 1 is complex. The second partial

, (D.81b)

derivatives of the potential functions can be listed as

0% W
902 (—lg)% ; (D.82a)
0% W
a0 = (_,Z)% , (D.82b)
A (T 2 ¢ (D.82c)
oy? eV ’ o
0% w [c? i
0% W w |
0% W w [c?
oxdy (_ZE> <$Zz 52 1) 4 ’ (D-82f)
The first boundary condition yields,
0% 0%
Tyyly=0 = (A + 2u) V2 — 2#@ - 2M0y8x
wQ w2 62 —iwzx/c
= (A +2p) [—0—2 -3 (; — 1>] Ae~w/ (D.83)
w2 —twzx/c w2 C2 —iwzx/c
—1—2,uc—2Ae e —2u ZFC—2 ?—1 Be e =0

167



Remove the harmonic time factor and divide the equation by (w/c)? and (A + 2u), the

equation simplies to

c? c?
(——272)A:F 2724/ = —1| B =0 (D.84)

042 52
Similarly, the second boundary condition,

toatl) 0 toatl)

x — = :2 — D.
Tyaly=0 =0 Hogor T H o Mo (D.85)
can be simplified to

c2 c?

2+ @‘1 A+<@—2)B:0 (D.86)

Using the relationship

21 _dat &

a2 72 a2 52 52

The first equation can be written as

(2—;—22>Ai2< ;—2—1)320 (D.87)

The simultaneous equations can be written as a matrix equation as

<2§—22) +2 ;—2221 {A}{O} Ds9)
e (o) 110

The only nontrivial solution which exists is when the determinant of the above equation is

(2—;—22)2+4< ;—22—1>< ;—22—1>:0 : (D.90)

Zero, i.e.,
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A simpler transcendental equation can be obtained by defining a parameter, ¢ = ¢/ and

using the fact that c2/a? = 242, that

¢ — 8¢ + (24 — 167*)¢*> + 16(v* —1) =0

(D.91)

Thetable below showstheratio, ¢/ 3, of the Rayleigh wave speed to the shear wave velocity

as afunction of the Poisson’s Ratio . Theratio, v = 3/« isaso shown. The relationship

of v and 7 can be expressed asv? = (1 — 20)/(2(1 — v)). As shown, the Raleigh wave

speed is from 13.6% to 4.5% slower than the shear wave velocity; it is aways slower than

the compressional wave velocity.

v c/B U y /U] ’72 Y
0.00 0.874032 1.272020 0.5000 0.7071
0.05 0.883695 1.302284 0.4737 0.6509
0.10 0.893106 1.336414 0.4444 0.6667
0.15 0902220 1375033 04118 0.6417
0.20 091099 1418579 03750 0.6124
025 0919402 1467894 03333 0.5774
0.30 0927412 1523749 0.2857 0.5345
1/3 0.932526 1565199 0.2500 0.5000
035 0935013 1587326 0.2308 0.4804
040 0942195 1659775 0.1667 0.4082
045 0948959 1.742982 0.0909 0.3015
050 0955312 1.839271 0.0000 0.0000

D.5.1 — Displacement Wavefields for Incident Rayleigh-Waves

Using eg. (D.87) to relate the coefficient B to A, choose the second sign to ensure that

the solution decays as y increases, i.e., a bounded solution. The horizontal and vertical

displacements can be written as

Ux(a:?/y) = Re_ikx |:6_Vo‘y —

1, &
2 32

=

(D.92)
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(D.93)

inwhichk =w/c, R = —ikA, and

/ 62
Va:k 1—$ y
[ C2

The ratio of the surface amplitudes of U, and U, are also shown in the above table as a

function of v. The u,, component has an imaginary exponent while the coefficient for «, is

real; thisindicated those two components are out of phase by /2 and they together produce

aretrograde type of motion.

D.5.2 — Stress Wavefields for Incident Rayleigh-Waves

To(@,y) = ipkRe ™

Ty (T, y) = ipkRe ™"

Tuy(2,y) = pkRe™ "

_ (;—22 +2 (1 - ;—Z)) e VeV 4 (2 - ;—22) e_”‘”’}

(D.94)
P
(2 - @) (ever — e_yﬁy>] (D.95)
2\ 2
2& e Vel _ M e vBY (D.96)

k‘ 2V5
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Appendix E

Accurate Calculation of Bessal’s Functions

E.1 Functions with Small to Medium Arguments

TheBessdal’sFunction of the First Kind and Zeroth Order can be determined asaninfinite

seriesin theform:

J0($)250+51+SQ+53+S4—|—...

@2 @2 (@2 (2 (E1)
T hay Tey ey Tayr

To calculate theterms, let Sy = 1, then obtain the higher order termsin the series using the

recurrence relationship

Si = R?Sifl ) 1= 1, 2, 3, ce (EQ)
in which
2
0 Xz
R ) E

To calculate the Bessal’s Function of the Second Kind and Zeroth Order, the terms in the

Jo(z) can bereused as
2 x 2 ,
Yo@) = = [log (5) +9] Jo(@) + Z[85 + Sp+ S+ Si+...] . (B4)

Thetermsof theinfinite seriesfor Yy (z) can be determined from those of the .J, seriesusing
the equation:
S{ = —aiSi 3 1= 1,2,3,... (E5)

inwhich ag = 0 and o; = «;—1 + 1/i. The contant v = 0.57721566490153286 is the

Eluer’s constant.
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The Bessal’s Function of the First Kind and First Order can be determined as an infinite

seriesin the form:
Ji(@) =Ty +To+T3+Ty+...
_x @2F @2 (@) (E6)

2 12! 2! 3! 314!
To calculate the terms, let 77 = /2, then obtain the higher order terms in the series using

the recurrence relationship

T, =RiT,_, i=2,3,4,... (E7)
inwhich
2
Rl—__T E8
‘ 4i(i+ 1) (E8)

To calculate the Bessal's Function of the Second Kind and First Order, the terms in the

J1(z) can bereused as

1
T+ T+ Ts+Ty+...] . (E9)

™

Vilr) =+ 2 log(5) +4] 1)

The terms of theinfinite seriesfor Y (x) can be determined from those of the Jy(z) series

using the equation:
T = (i1 4+ )Ty 5 i=1,2,3,... (£10)

(2

in which «; was defined earlier for Yy ().
E.2 Functions with Large Arguments

For large aruments, the Hankel’s Asymptotic Expansion is more efficient asit can yield
accurate results with fewer terms. The expression for Bessel’s Function of the First Kind

and order n is



The expression for Bessel’s Function of the Second Kind and order » issimilar,

Ya(e) =/ = [sin (& = (3 + §) 7) - Pulz) +cos (z = (§ + 1) 1) - Qn ()]
(E12)
In the above expressions, P,, and ),, are defined as
= (=1D)™(n,2m)

P,(z) = mz_:o @) (E13a)
Qnlz) =) Pl)gg;;fﬁf D (E13b)

m=0

in which the notation (n, m) is defined as
(n,m):(4n —1%)(4n* —3%)...(4n* — (2m — 1)) (B14)

22m qm|

For the special case of Jy(z) and Yy (x), the Hankel Asymptotic Expansions are expressed

% [cos (m — %) - Py(x) — sin (l’ — %) : Qo(ﬂfﬂ (E15a)
% [sin (z — %) - Py(z) +cos (z — F) - Qo(z)] (E15b)

The series expansions for Py(x) and Qo (z) can be calculated as

P0($>:SQ+SQ+S4+S6+ (E16a)

Qo(z)=Th+Ts5+Ts+T7+ ... (E'16b)
By recurrence, S; and T; can be calculated as

SZ' = RiSi—l 5 1= 2, 4, 6, . (El?a)

T, = RiTj_; , i=3,57,... (E17b)
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if R; isdefined as
(20 — 3)%(2i — 1)?
L 1
Hi 647 (i — 1)x2 ’ (E18)

with theinitial valuesset as Sp = 1 and 77 = —1/(8z).

Withthe expansion asdefined above, P, and Q, expanded to 8termshavethe coefficients
defined as

Pola) =1 — O, 3675 2401245 1304390587
O T T 19842 T 32768 7 4194304 26 2147483648 8
_ 30241281245175 |, 213786613951685775
274877906944 210 ' 70368744177664 212
1070401384414690453125
— (E19)
9007199254740992 214
Oule) = L4 75 59585 ST9TIOL5 418854310875
T T8 T 10240% 26214445 3355443227 17179869184 o9

1212400457192925  10278202593831046875

2199023255552 #11  562949953421312 z13
60013837619516978071875

72057594037927936 x5

(E20)

It is clear the coefficients would become larger and larger for the later terms. The
denominator with the large powers of = would nevertheless make the series convergent

when z isreasonably large.

The above formulas would have cancellation problems and the series can be made more

accurate if they can be rewritten using two-angle formulas as

Jo(z) = \/gﬁ()(l‘) cos (z — T — ap(x)) : (E21a)
Yo(z) = \/%ﬁ()(l‘) sin (z — I — ap(x)) , (E21b)

inwhich
By (z) = P () + Q3(z) (E22)
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and

_1 [ Qo(2)
= —tan™" : E2
ap () an (Po(x) (E23)
To obtain the expression for 5y (x), assume it has the form
a9 ay ae as aiq
ﬁo(x)ZGO+F+F+E+$+”'+F+"' , (E24)

and substitute it in Eqg. (E22) and match the coefficients according to the powers of x and
that yields the formulato be

1 53 4447 3066403

=1- -
fo(z) 16 2 + 512 x4 8192 z6 * 524288 x8

896631415 N 796754802993 500528959023471 (E25)
8388608 210 268435456 x12 4294967296 x14
To obtain «y, first assume aseries ro(x) as
a1 as as ar ais
rg(x):;—f—ﬁ—kﬁ—kﬁ—i—...—i—ﬁ—l—... , (E26)

then obtain the unknown coefficients by comparing the polynomials of the two sides of the
equation

ro(z) Po(x) = —Qo(x) ; (E27)

then the resulting polynomial is equal to —Qq(z)/Py(x). Apply now the series expansion

for tan=! as
7’3 ,,,5 ,,,7

tanlrg=ro— <+ 2 — 94 E2

an” 1o =ro — 3 + 3 - + ) (E28)
then o (x) can be expressed as

1 25 1073 375733 5384775
Oéo([lf) =95 . 3 + 5 - 7 +
8z 384«x 0120 x 229376 x 2359296 (E29)

24713030909 ~ 7780757249041  5261793482424425

T 16137344 211 | 436207616 213 6442450044 715
With these detailed expressions, = can be as small as 15 to obtain 15 digits of accuracy

(double precision) and as low as 10 to obtain 7 digits of accuracy (single precision).
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For the special case of J;(z) and Y;(z), the Hankel Asymptotic Expansions are

expressed as
Ji(z) = % [cos (z — 37) - Pi(z) —sin (z — 27) - Q1 ()]
Yi(z) = ;—x [sin (z — 27) - Pi(2) 4 cos (z — 27) - Q1(w)]

The series expansions for P; (x) and Q1 (z) can be calculated as
Pi(x) =S+ So+S4+ Se+ ...
Qu(z) =T+ Ts+Ts+Tr +...
By recurrence, S; and T; can be calculated as
S; =R;S;_1 , i=2,4.6,...
T, = R;T;1 , 1=3,5,7,...

if R; isdefined as

(4— (20 —3)*)(4—(2i —1)%)
647 (i — 1)

with theinitial valuesset as Sp = 1 and 77 = 3/(8x).

R = —

(E30a)

(E300)

(E31a)

(E31b)

(E'32a)

(E32b)

(E33)

Withthe expansion asdefined above, P, and (Q; expanded to 8termshavethe coefficients

defined as

15 4725 2837835 14783093325

12827 32768 2% ' 4104304 20 2147483648 2°
33424574007825  232376754295310625

274877906944 10 70368744177664 112
1149690375852815671875

9007199254740992 x4

3 105 72765 66891825 468131288625

Qi(z) =—

(E34)

1327867167401775  11100458801337530625

2199023255552 211 * 562949953421312 x13
64152722972587114490625

72057594037927936 215

z 1024 23 * 262144 15 33554432 7 * 17179869184 z?

(E35)
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As in the cases of the zeroth order functions, the coefficients become larger and larger for

the later terms, however, the series converge when x is reasonably large.

To eliminate the cancellation problems, the series can be made more accurate if they are

rewritten using two-angle formulas as

Ji(z) = \/;%;/31CU)cos(x-— 31— o (z)) ) (E36a)
Yi(z) =1/ % Bi(z)sin (z — 37 — oy (z)) , (E'36b)
inwhich
Bi(e) = Pi(z) + Qi(x) (E37)
and
_ 1 [ @Qi(x)
a1(x) = —tan (Pl(x)) : (E38)
To obtain the expression for 3, (), assumeit has the form
ﬁo(m):ao+%+%+%+%+...+%+... , (E39)

and substitute it in Eq. (xx) and match the coefficients according to the powers of x and that

yields the formulato be

Buz) =1+ 3. 99 N 6597 4057965
n= 1622 51224 ' 819226 524288 28 (BA0)

1113686901 951148335159  581513783771781

8388608 z10 268435456 x12 + 4294967296 x4

To obtain a4, first assume aseriesry (z) as

aq as as ay ais
Tl(x)zz-f—ﬁﬁ—ﬁ"f—ﬁ-f—...-f—ﬁ-f-... , (E41)

then obtain the unknown coefficients by comparing the polynomials of the two sides of the
equation
ri(z)Pi(z) = —Q1(z) ; (£42)
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then the resulting polynomial isequa to —Q1(z)/P1(z). Apply now the series expansion

for tan—! as
7,3 7,5 7,7
tan~tp =9 — L4 L L 43
e - ) (E43)
then «; () can be expressed as
o (z) = — 3 n 21 1899 n 543483 _ 8027901
! 8z 12823 512025 229376 27 262144 29 (E44)

30413055339 9228545313147  10139844510243441

46137344 211 436207616 x13 * 10737418240 =15

With these expressionsfor J; and Y3, « can be assmall as 15 to obtain 15 digits of accuracy

(double precision) and as low as 10 to obtain 7 digits of accuracy (single precision).
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Appendix F

Three-Dimensional Green’'s Function Matrices
Matrices for an Infinite Space

To obtain the three-dimensional Green’s function matrices, [U] and [1], for application
in the representation theorem, the solution for displacements and stresses generated by a
point load must be considered. The first row of [U], i.e., U1, U12 and Uy 3, correspond to
the displacements in the x, y and z-direction induced by a point load in the z-direction,
respectively. Thesecondrow of [U],i.e., Us1, Usy and Usg, correspond to the displacements
inthe x, y and z-direction induced by a point load in the y-direction, respectively. Thethird
row of [U],i.e., Us1, Usy and Uss, correspond to thedisplacementsinthez, y and z-direction

generated by a point load in the z-direction, respectively.

Therespective rowsof the 3 x 3 matrix, [7'], contain thetractions at the observation point
generated by the point loads described above. They are calculated as the matrix product of
the stresses generated by the point loads and the direction cosines of the outward normal

vector at the surface.
F.1 Green’s Functions for an Infinite Medium

For an infinite, homogeneous and i sotropic medium, the solution of avertical point load
can be used to produce the solutions for point loads in the = and the y-direction using an

orthogonal transformation.
F.1.1 Displacements and Stresses Generated by a Vertical Point Load

Shown in Fig. F.1 isaconcentrated load () in the positive z-direction. The solution of

the three-dimensional wave equation can be written in terms of two potential functions ¢
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and x as shown in Lamb’s paper (1904) as

B —Q o e—ihr

¢_47rk2u§( r )’ (1)
—ikr

= () (F2)

inwhichr = /22 +y2 4+ 22,2 =2, — x5,y = Yo — ys aNd z = 25 — z, aretherelative
position of the observation point with respect to the source point in the x, y and z-directions,

respectively.

Qz

x Y

Figure F.1 — Vertical () Point Force Configuration.

The argument of ¢, hr = wr/a, is a dimensionless frequency normalized by the
compressional wave velocity «, implying that ¢ is a potential for compressional waves.
On the other hand, x is the shear wave potential because kr = wr/f3 is normalized by

the shear wave velocity 5. The exponential function with a negative argument is used in
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this derivation because it represents an outgoing wave as» — oo when associated with the

harmonic time factor e®?.

For a unit applied load @ in the vertical (Z) direction, let the amplitude @ = 1. Also,

define for convenience the parameters

%:(Eﬁﬁ’ (F3)

o= (25). (F4)

and

ey = (e_rk) (F5)

so that equations (F1) and (F2) can be written as

Oe
O =~k v h and X = Vk€k
VA

F.1.1.1 - Displacements

Using the potentials ¢ and y, the displacements for a vertical load in the z, vy, and z-

directions, respectively, can be expressed as,

09 | 9%y
Un = or + 0x0z (F6)
32
= g tee))
09
Usy = 8_y + Dy02 (F7)

82
= T [8y8z (€k - 5h)}
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and

0 0?
Usz = a—f + _6z>2< + k*x (F8)
82
= Y% |:322 (Sk — 8h) + kzék‘|

in which, the derivatives of ¢, are represented by

0%, xz [3 /1 1 .
|2 = k) — ]{52 —ikr F9
oxrdz r3 |r (r T ) | ¢ ’ (F9a)

0% yz [3 (1 o] ik
121z . . —ikr F
oyo= 18 |7 (r —Hk) k | e ", (F'9b)
and
0%ey, 1 [(322—7r%) /1 ikr
5 =3 {% (; +zk) — kQZQ} etk (F9c)

The derivatives of ¢;, are in the same form except the subscript and variable k£ should be

replaced by h.
F.1.1.2 — Stresses

The stress components, 0., Ozy, s Oxzys Oyyyy Oyz, aNd 0., CanN be expressed in

terms of the potential functions ¢ and y as

1 ) 9% 9% 93y

- = — — — 1

[ Owas Ko 255~ 253 T 2530, (F10)
aéh 836h 83€h 83€k

= k> 2 2
T 0z + 3y28z+ 023 * 0120z
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0%¢ 5 93x

o, — 9
Tryz dzdy * dx0ydz (F11)
83
= [axﬁyaz (ex gh)l
—0 = a% +2 + k2= Ox F12
w A 8x82 8x82 Ox (F12)
83 85k
- [2 010722 (61 —en) T2, oz }
Py %9 9’x
i — _ 2 _ —
Oyyz k¢ 283@‘2 2 9.2 + 28y282 (F'13)
Oep, D3¢ D3¢ D3¢
_ 2 h h k
= % {k - "2o20: TP T 3y28z}
32¢ X 2 aX
—0y., = 9
uay 8y8z + 8022 +k ay (F'14)
(93 6€k
-k [2 0x0z2 (gk ) i dy }
Py 0% ox
—O0zz = _k2 -2 - 2
[T 6255 =250+ 26)23 + 242 (F15)
0 D¢ D3¢ D3¢
_ 2 0 h h k
= |k 0z (en +2ex) + 28x28z + 2(9y28z + 0z3
Lor. 1 —ikr
—:—T—Z[@k—k;]e ) (F'16a)
e 1]e—“ﬂ" (F'16b)
r2 r ’

183



8€k z 1

a - _7‘_2 |:’lk + ;]e_ikr, (Fch)
3 —ikr 1 1 1 ka 2
i~ {5 () ()« B () )
(F'16d)
3 —ikr 1 1 1 k2 2
i (A (o) (o) 22 ()]
(F'16e)
o3 —ihr 15z (1 9z (1 k22% (6
ggkze . {— BZ (—+z‘kz2)+—z(—+z‘k)+ z (—+z‘k)—3k‘22}
0z r oo\ roAr AT
(F16f)
03¢ TYZz 15 /1 . 6 . —ikr
Geoydn = T {‘72 (; “k) e (? “’“) } o .

3 2_1 2 1 2.2 .
e _ {—(37" b%") (— +ik) + Wz (9 +ik> —kQ}e“ﬂ“ (F16h)

r T T

and

3 2 1 2 1 k2 2 )
0%k _ Y {—(?W 52) (— + zk) p 22 <§ + zkz) - k2} e~ (F16i)
T

oyoz?2  r3

The above expressions are quite lengthy to list mathematically, but since the infinite space
is homogeneous and isotropic, the solution developed for a vertical point load Q7 can be

reused for horizontal point loads () x and Qv if proper transformations are performed. It
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will be shown in the next two sections that it is quite ssmple to obtain the expression for the

horizontal loads, only simple rearrangement of the spatial variables are required.
F.1.2 Displacements and Stresses Generated by a Point Load in the X -Direction

Shown in Fig. F.2 isan illustration of the horizontal point load in the x-direction using
the (x, y, z) coordinate system. Alsointhe samefigureisthe (2', 1/, z’) coordinate system.
The (2/,y/, 2') system is rotated from the (z,y, z) system by 90° about the y-axis. The

orthogonal transformation between these systems can be expressed as

[Qzyz «— ay')] =

S = O
_ o O
O O =

To obtain the results for the horizontal point load @ x, two steps are required:

/

25

A

Qx

/
x, 2z’ Y, T

Figure F.2 —Horizontal ) x Point Force Configuration.
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(1) Caculatethe displacementsand stressesinthe (z/, ¢/, z’) system using the expressions
presented in Section F.1. Thisis done because (Q x isin the z’-direction, formerly the

vertical direction. Thevaluesfor the prime coordinates can be obtained from the position
vector of the present configuration as

HRGAR IR

(2) Use the calculated displacements in the (z/, 3/, 2’) system and transform them to the
(z,y, 2) system using

)

To transform the stress tensor, use the transformation of the form

_ o o

1
0
0

oS = O

INEINSIR

o = O
— o o
O O =

[A(z,y, 2)] = [QIIA(,y/, Q"
in which [A] isany matrix, atensor of second rank.
F.1.2.1 - Displacements

If the displacementsin Section F.1 can be written in functional form as

Usy (56’7 9/7 Z’)
Usa(z',y', 2')
Uss(z',y', %)

then the displacements caused by a horizontal point load in the z-direction can be written

Ull('rvy?Z) Ugg(y,Z,fL')
U12<:I:7 Y, Z) = U31(y7 Z, I) (F17)
U13(.T,y,2) U32<y,2,$>

in which the coordinates x, y and z are the only parameters displayed because the material

properties of the viscoel astic medium remain unchanged.
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F.1.2.2 — Stresses

If the stress tensor in Section F.1 can be written in functional form as

Ouny (XY, 7)) Oy, (2, y’,z’) Oy (2, y’,z’)
Uywz@/vylazl) Uyyz(i’fl y ') UyzZ(i'?I y 2')
Oray(0,Y 7)) 0oy, (@)Y, 2") 0., (@Y, 2)

then the stresses caused by a horizontal point load in the z-direction can be written as

Opax (T,Y, 2
O-yIX (m7 y’

z) ) )

z) ) ) (£'18)
Orax (T,Y,2) 0oy (2,9,2) 022y (2,9, 2)

( ( (

( ( (

( ( (

Oz27\Y,%, ) Ozxz\Y, 2
= | Ozzz\Y, %, ) Ozxrz\Y, 2,
Oyzy (Y5 2,2)  Oyay (Y, 2

F.1.3 Displacements and Stresses Generated by a Point Load in the Y-Direction

Shown in Fig. F3 isan illustration of the horizontal point load in the y-direction using
the (z, y, z) coordinate system. Alsointhe samefigureisthe («’, 4/, z’) coordinate system.
The (2/,y/, 2') system is rotated from the (z, y, z) system by 90° about the z-axis. The

orthogonal transformation between these systems can be expressed as

[Qzyz «— a'y')] =

— o O
o O =
S = O

To obtain the results for the horizontal point load @y, the same type of procedures as
those used in Section F.2 can be applied. First calculatethe displacementsand stressesinthe
(«',y', 2’) system using the expressions presented in Section F.1. Thisisdone because QQy
isin the z’-direction, formerly the vertical direction. The values for the prime coordinates

can be obtained from the position vector of the present configuration as

T x 0 0 1 x z
y | = [Q]T yl=11 0 0 yl|=|=
z' z 0 1 0 z Y
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Qy

/ /
T,y Y,z

Figure F.3 —Horizontal Qy Point Force Configuration.

Next use the calculated displacementsin the (2', 4/, z’) system and transform them to the

(z,y, z) System using

To transform the stress tensor, use the transformation of the form
[A(z,y,2)] = [QI[A(", ¥/, 2RI,

in which [A] isany matrix, atensor of second rank.

F.1.3.1 — Displacements

In terms of the displacementsin Section F.1.1, the displacements caused by a horizontal

point load in the y-direction can be written as

U21(1'7y72’) U32(Z7$7y)
UQQ(:Bay?Z) = U33(Z,$,y) (F]'g)
U23(37;y72) U31<Z,.'13,y)

188



F.1.3.2 — Stresses

In terms of the stresstensor presented in Section F.1, the stresses caused by a horizontal

point load in the y-direction can be written as

Oy (T, Y, 2)  Ouyy (T,9,2)  Ouzy (2,9, 2)
O-Zlﬂﬁy(x7yaz) O-yyY('Tm%Z) O-yZY(x7y>Z>
UZ$Y<x7yaZ) UZyY(x7y72) O-ZZY<:U7y7’Z)
O.yyz(zvxay) O'yzZ(Z,l‘,y) Uymz(zaxay)
= UZ:UZ('va?y) O-ZZZ(Z7$7y) O-Z&Jz('z?xvy)
Uﬂﬁyz(zﬂxvy) O-IZZ(Zaxvy> O-Ixz(zvx7y)

(F20)

F.1.4 Formation of matrices [U] and [T

Using the expressions derived in Sections F.1.1, F.1.2 and F.1.3, the Green’s function

matrices [U] and [1'] for the boundary integral equation can be formed as

Ui Uz Uiz
[U] = U21 U22 U23 (F21)
U1 Usx Uss
and
Ty, T2 Tis
[T] = T21 T22 T23 (F22)
T31 T30 Tz3
in which the elements of [7'] can be calculated by the matrix products
- - T -
Tll Uxxx nyx szx Ny
Tho = | Oyzx Oyyx Oyzx Ny (F23)
_T13 i _szx UzyX Ozzx n;
[ T21 1" [ Ozxxy U:ryy Oxzy Ny
T = | Oyzy Oyyy Oyzy Ny (F24)
| T23 ] | Oz2y  Ozyy Ozzy Ny
and
- - T -
T31 Oxzxy Owyz Ogzy Ny
T3 = | Oyzz Oyyz Oyzz Ty (F25)
_T33 i _szz O2yz Ozz2y n;
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In the above equations, the vector elements ., n,, and n, are the direction cosines of the

outer normal vector at the boundary surface.

F.2 Surface Green’s Functions for a Semi-Infinite Medium

To obtain the three-dimensional Green’sfunction matrices U] and [1'] for the surface of
a semi-infinite medium, the solution for displacements and stresses caused by 3 orthogonal
point forcesmust beconsidered. Thesesolutionsareavailablefromtheclassical publications
by Lamb (1903) and Nakano (1908). Because of the axisymmetric properties of a point
force, the cylindrical coordinates system was utilized for its solution and the results are
expressed in Hankel Transforms. In this section, the displacements and the point forces
are al located on the surface of the semi-infinite space, simplifying the geometry of the

problem.

The three rows of matrix [1] contain the tractions at the surface S generated by the
respective point forces at the observation point as described earlier. But since the tractions
at the surface of the semi-infinite medium, as defined by the boundary conditions, are zero,

the traction Green’s function matrix [T'] is zero.

F.2.1 Surface Displacements Generated by Point Forces

With the presence of the half-space surface, the mathematical formulation of the Green’s
functions become more tedious than the infinite space formulation because of the mode
conversions between the compressiona and shear waves. The advantage of amirror image
as exploited in Appendix B for SH-waves is not possible for the present scenario. The

normal practice for ahalf spce formulation isto use amirror image source to eliminate one
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of the surface stresses and to use the Hankel Transform to remove the other component. The

Hankel Transforms leave the solutions in the form of an infinite integral as shown below:

Case One: A vertical Point Source

fzz z / ]{PV
== . (F2
! pr 27m ( ) (2k2 —1)% — 4k2v1/ Jo(aok) dk (£726)
frz z / 2]€2 - 1 21/V/]
rz — z = ’ F9
! ur 27r,u 2k2 — 1) — 4k Jl(aok) dk (F27)

Case Two: A Horizontal Point Source

_ Pk <a0> cost) {/OOO kv' (Ja(aok) — Jo(apk)) dk

2 \ r (2k2 — 1)2 — 4k2v1/
>k
+/ o (J2(aok) + Jo(aok)) dk] : (£29)
0
Uyp — Jor P, cosv
/M"
k2[(2k2 — 1) — 2v/]
= k) dk F
QW 08 / (2k2 — 1)2 — k2w 7 Ji(aok) . (F30)

Ugpr = MPT sin v
ur

. PT Qo . o kV’ (Jg(aok) + Jo(a,ok’)) dk
= 2 ( > siny {/0 (2k2 — 1)2 — 4k2v/

+ /0 005 (J2(aok) — Jo(aok)) dk] : (F31)

inwhichag = wr/B,v =+/k2 =42, =Vk2 —1andy = 3/a.

Eq. (F29) and Eq. (F31) have integrals which do not contain the Rayleigh Determinant,
F(k) = (2k* — 1)% — 4k?v1/, but rather adenominator of the form v/ = /k2 — 1. These
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terms are motion caused by pure shear waves without interaction with the compressional

waves. Theseintegrals are absent in the motion generated by a vertical point force.

To simplify the numerical implmentation, contour integration can be used to evaluate

the infinite integrals as were the cases in Appendix C.

F.2.2 Formation of [U] and [T]

Since the Green’s Functions given in Section F.2.1 were derived using a cylindrical
coordinate system, some re-organization is necessary to put the results into a form for the
applications in this dissertation. The displacements for the vertical point force can be uaed
quitereadily by transforming u,. and ., into u,, and v, using simpletriginometric functions,
the vertical displacement is already in the z-direction. The displacement for the horizontal
force must be converted and applied to two different horizontal directionsinthe z— and y—

directions by shifting the azimuthal properties of the results.

Consider now the coordinate systemillustrated in Fig. F.4. Notethat the polar coordinate
system is defined with the z-axis pointing downward, which is the typical convention for
classical geophysical problems. The origin of the polar coordinate system is defined at the

source point, 7, therefore, the observation point, 7, is located at the coordinates, (r, 1, z),

inwhich
r= 7=l = (@ = 2)2 4 (y — v)? (F32)
and
W = arg(F — 7,) = tan~? (i{ - iz) : (F'33)
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Figure F.4 — The Definition of the Cylindrical Coordinate System.
The z-dependency of the Green’s Functionsisincluded in the functions f.

Using the polar coordinate system, all horizontal point forces can be represented by
P..() because the reference angle can be varied to match any orientation. Therefore, the
genera displacement-force relationship can be writtenin aform of a3 x 2 matrix as

ur(raw) 1 frr COS(lb - %) frz
. P,
{ Uy (7, 9) } = [fw sin(¢p — o) 0 { ](Dwo) } i (F'34)
Uz (7", 77/}) H fzr COS(¢ - 7700) fzz ?

To obtainadisplacement-forcerel ationshipinthe Cartesian coordinate system, thefollowing

mapping of the forces and the displacements may be used:

Py(7p) P:(0)
by(rp) ¢ = Br(7/2) ) (F'35)
P () P,
and
Uy (7) cosy —siny 0 up(r, )
uy(7) p = | siny  cosyp 0O Uy (7, 7) . (F'36)
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The first, Eq. (F34), can be used with Eq. (F35) to relate the displacements in polar

coordinates to the forces in Cartesian Coordinates as

Uy (7“7 w) 1 frrcost frrsina Jra Py (Fp>
wo(rt) b= -0 | Jorsing —fupcosy 0 | SR b (F3D)
Uz(ra¢) H fzr COS¢ fzr SiIlQ/J fzz Pz(Fp)

Now apply thetransformation (F36) to both sides of Eq. (F37). Theresult isadisplacement-

force relationship in Cartesian coordinates written as

U () . P, (7,)
uy(7) ¢ = —[G] § Py(7p) : (£738)

Uy (F) HT P, (Fp)
inwhich
fTTCOS2’¢J—f¢TSiI127/) (frr"’fwr)SinquCOSw szCOSlD
[G} _ (frr + fq/)r) sin 77/} COS 1/) frr SiIl2 1/) — fq/)r cos? w frz sin 77/} ) (F39)

farcos —f.rsine faz

Using Cartesian coordinates, the factors, sin ¢) and cos v, can be evaluated simply as

singp =L (F40)
T
and
cosy) = R (F41)
T
If the elements of matrix [G] are defined with subscripts as
Gmx Gwy sz
[G} = | Gyz Gyy Gy ) (F42)
Goo Gzy Gis
then the matrix [U (7, |7)] can be formed as
1 Gx:r Gym Gza:
[U(FP‘F)] -~ Gay Gyy Goy (F'43)
HGe. Gy G

A columnin [G] representsthe di splacements caused by apoint load inaparticular direction,
following the order z, y, z, respectively. In the matrix [U(7|7)], however, the same
displacement components are stored as a row. The reason for this transposition can be

observed by the definition of [U] in Appendix A.
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