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Abstract

The concept of substructure deletion proposed for the analysis of a rigid embedded 

foundation was adapted for the analysis of site amplification effects in alluvial valleys. A 

major modification was made for the present application such that the boundary 

integration equation method was used for both the finite size interior problem and semi-

infinite exterior wave radiation problem. The modification was made to reduce the 

possible incompatibility between the finite element method, a volume formulation, and the 

boundary integral equation method, a surface formulation. The substructure deletion 

concept allows simple, century-old, basic Green’s Functions to be used to produce 

excellent wave scattering results for topographical irregularities as well as arbitrarily 

shaped alluvial valleys overlying a stiffer bedrock. The concept is applicable to three-

dimensional geometries as well as two-dimensional problems. Results are given for 

incident SH, P, SV and Rayleigh waves.
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Chapter 1 

Introduction

It is well-known to a geophysics researcher that a theoretically generated wave solution

from a fault rupture model seems overly simplistic compared to a recorded seismogram.

Although there are major approximations made in a well-defined dip-slip or strike-slip

model, the inhomogeneous contents along the wave path, from the fault to the recording

station, contribute in a major way to the complexity of the recorded wave form.

Since many civilizations were founded near a water source with an alluvial deposit to

grow vegetation and sustain life; it is therefore highly likely that an urban earthquake would

be amplified by soft alluvium deposit over a stiff bedrock. The duration of the seismic

event could be longer due to wave energy trapped within the top layers of sediment. It is

relatively easy for wave energy to enter the soft upper layers from the rock layers below

because of the contrast of material strength. Once the wave energy entered the softer layers,

it is trapped there as a large percentage of the outgoing waves are reflected from the stiffer

lower layers. This phenomenon leads to prolonged seismic records as it requires time for

the interior wave energy to dissipate into the lower layers and not return.

Effect of site conditions on earthquake intensity has always been an important part of

earthquake engineering. It was noticed that during earthquakes degree of damage to similar

structures located on different site conditions is not the same and this started the investigation

and research on effect of soil conditions on earthquake strong motion. In the 1989 Loma

Prieta earthquake, the greatest damage occurred in areas where site response increased the

ground motion (Holzer et al.,1994). In the 1994 Northridge earthquake, distribution of

damage was irregular throughout Los Angeles even within a distance of 1 Km. Seismic
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recording have been found different at sites which are located only 200 meters from each

other. This inconsistency in seismic risk indicates the effects of site conditions are major

factors (Holzer, 1994, Hatzell, 1996 and Field, 2000).

There are at least two types of site-effects that can enhance earthquake damage: one

is soil failure such as liquefaction and the other is geological compositions which amplify

incoming waves. In the 1985 Mexico City earthquake the catastrophic damage to buildings

and bridges was identified as a result of amplification of waves in soft clay on much stiffer

soil or rock. During this particular earthquake long duration induced soil resonance without

much soil nonlinearity (Anderson et al, 1986). In the 2000 Western Tottori earthquake in

Japan, a detailed study of damage to wooden houses indicated a pattern that site condition

has strong effects (Matsunami et al, 2002). In the 1989 Loma Prieta and the 1996 Kobe

earthquakes, two well-documented events (Iwata et al, 1996, Aguirre and Irikura, 1998,

Ishihara and Kijima, 2001), both site amplification and soil liquefaction was reported.

1.1. Effects of site amplification on structural response during earthquakes

It is of great interest to study the effects of site amplification because of the direct impact

it has on the response of structures during earthquakes. In the 1985 Chile earthquake the one-

and two-story buildings, which were built on volcanic or sedimentary rocks and alluvium,

resulted in resonance; wave amplification caused higher spectral acceleration values. In the

1985 Mexico City earthquake large amplitudes were results of site amplification effects and

it has certain dominant frequencies associated with the geological conditions of the area

(Ordaz et al, 2000). It was reported (Anderson et al, 1986) that the medium-rise structures

were damaged most seriously.

Matsunami et al (2002) conducted a research on damage to wooden houses in

Shimoenoki, Tottori, Japan, by the 2000 Western Tottori earthquake. They concluded
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that damage was the result of variation of site amplification factors at frequencies between

2 and 5 Hz and that frequency range is close to the first natural frequency of the wooden

buildings. Zhang et al (2003) conducted research on the effects of site amplification on

structural response of base-fixed 6-storey framed structure. They used the finite elements

method with the aid of boundary elements to study structural response on a soft clay site.

They concluded that soil nonlinearity has a significant influence on structural response

if the site response has a period near the fundamental period of the structure. Wong et al

(1977) measured the response near a canyon in Pasadena generated by a nine-storey building

excited harmonically by a shaker at its roof. The observed results indicated that surficial

irregularities can affect the incoming wave amplitudes.

Hao and Chouw (2008) studied the response of bridge structures to site amplified ground

motions. They utilized the Australian design spectrum for bedrock movement simulation

and described the subsoil properties using a combined finite element and boundary element

method. Their results show the importance of site amplification. The authors indicated that

site amplification can result in relative response between two adjacent bridge locations and

it can cause pounding which damages bridge girders.

1.2 Empirical Modeling of Site Amplification

Many researchers have estimated site amplification from weak and strong motion records

including S waves, coda waves, and ambient noise. Kagami et al (1982) found that spectral

amplitude of long period microtremors increases as the thickness of soil deposit increases.

Therefore, observation of long period microtremors at a number of stations can help estimate

deep soil amplification.

Borcherdt (1994), used the Loma Prieta strong motion record and averaged site

amplification factors over the short period (0.1-0.5 sec), intermediate period (0.5-1.5 sec),
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mid period (0.4-2 sec), and long period (1.5-5 sec) bands. These coefficients were obtained

from Fourier amplitude spectra for the radial and transverse components of ground motion.

Site amplification in recent building codes are developed from the averages of amplification

estimates in short and mid period.

Crouse and McGuire (1996) estimated site coefficients utilizing empirical attenuation

curves developed from strong motion recording of 16 US earthquakes considering various

spectral magnitude and acceleration levels.

Su et al (1996) concluded that site amplification determined from S waves and coda

waves are consistent within epicentral distance greater than focal depth, the reason for

the inconsistency within smaller distances is that S waves can be affected by the wave

propagation path. Stations in this study were located on sites with various geological

characteristics, including alluvial sites. The authors indicated that for deep alluvial sites,

such as San Francisco, further study need to be conducted since the generation of resonant

waves is possible.

Harmsen (1997) derived amplification factors relative to a single reference rock site

(Caltech Seismic Lab) using the inversion approach of Andrews (1986). Strong motion data

from main shock recordings in the San Fernando Valley and the Los Angeles basin from

the 1971 San Fernando, the 1987 Whittier, the 1991 Sierra Madre and the 1994 Northridge

earthquakes were used. Amplification factors were proposed through linear relationships

for intermediate (0.5-1.5 Hz) and high (2.0-6.0 Hz) frequency bands.

Trifunac and Todorovska (2000) studied site amplification factors based on weak and

strong motions. Their results show that small amplitude waves (aftershocks, coda waves

and small earthquakes) cannot be used for the prediction of site amplification factors in the

near field if the soil response is nonlinear.
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Yamanaka et al (2008) observed the ground motions of the 2007 Noto Hanto earthquake

aftershocks. Their results suggest that amplification mechanism in Terrace deposits is

different from Quaternary sediments. They reported that amplitude of spectral ratios is

twice those of microtremors; but there is a linear correlation between them. They indicated

that microtremors can be used for estimating site effects in shallow soils.

Taylor et al (2009) developed a method for estimating site factors from ambient noise.

Based on their results for hard rock sites, amplitudes are lower and resonance peaks are

narrower as compared to softer sites. At higher amplitudes, the spectral peaks are more

symmetric and have higher frequencies because sites with higher amplification have lower

densities and smaller strain nonlinearity.

1.3 Site amplification Factors in Seismic Building Codes

Starting in the 1990s shear wave velocity in the upper 30 m of soil (Vs30) has been

incorporated in building codes around the world. In the United States, Uniform Building

Code (UBC) 1997, in Europe, Eurocode 8 (1998) and in Canada National Building Code

of Canada (NBCC) 2005 are examples.

In the United Sates, site coefficient S which depends on local soil conditions was

introduced in 1978 (ATC, 1987) for calculating seismic force of buildings. Values of S

were small and independent of level of shaking and they only amplified the long period of

the spectrum. Over the years, using analytical results, laboratory and instrumental results,

recorded amplification of earthquake waves (in soft soil during the Loma Prieta earthquake

in 1989), it has been shown that the S factor does not incorporate all the necessary site

characteristics for seismic design.
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After some new studies, new site characterization and site coefficients were introduced

to 1994 edition of Seismic Provision of National Earthquake Hazard Reduction Program

(NEHRP, 1994) and 1997 Uniform Building Code (UBC 1997). The newFa andFv defined

site coefficients at the short and large periods, respectively. The factors depend on both site

class and the intensity of rock motion, and they decrease as the level of rock seismic hazard

increases. The reason for this reduction is based on soil non-linearity. Average shear wave

velocity in the upper 30m of the site is used for site classification; 30 m is the typical depth

of the soil boring tests which provide detailed site properties.

Code provisions are based on National Earthquake Hazard Reduction Program (NEHRP

1994) soil classification schemes (BSSC 2003). NEHRP provides amplification factors

based on Vs30 (Finn and Wightman, 2003). Fa and Fv were developed from averages of

amplification estimates in short and mid period from the research conducted by Borcherdt

(1994). Loma Prieta strong motion records were applied to average site amplification factors

over the short period (0.1-0.5 sec), intermediate period (0.5-1.5 sec), mid period (0.4-2 sec),

and long period (1.5-5 sec) bands.

Dobry and Lai (2000) studied development of understanding site response and

implementation of it in US seismic codes. They concluded that effects of soil and

rock below upper 30 m, basin edge, other two-dimensional and three-dimensional effects,

some combination of sites, earthquakes and period ranges are not considered in the

code. Liquefaction and strong soil nonlinearity are also not sufficiently considered. They

suggested that microzonation of cities and urban areas can be included to improve the

simplifications used in codes. Fig. 1.1 and Fig. 1.2 show seismic zones of Kobe, Japan, and

Taiwan, respectively.
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Figure 1.1. Geologic map of Kobe, Japan, and the site characterization locations.

The near-surface S-wave slowness Ss(30) range is shown for each SASW site

Anderson et al (1996) studied seismograms for vertically incident S waves through

flat, solid, elastic layers. The authors investigated the effect of both surficial and underling

geology on peak amplitude and integrated the squared amplitude of the seismogram. Their

results show that 30 m is too thin of a layer for a typical earthquake with focal depth of 10 to

15 km and that 30 m represents only 0.3% of the propagation path. Unless the shear wave
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velocity is as low as 300 m/sec, the top layer is less than the wavelength, even at 10Hz. The

conclusion is that the geological effects on ground motion cannot be determined based on

near surface properties alone.

Based on research conducted by Lee et al (2010) average shear velocity in the upper 30 m

of soil alone should not be used in site classification or scaling strong motion amplitudes.

Their results suggest using a parameter which considers much deeper soil layer thickness

and also near surface geology. Hassani et al (2011) suggest that shear wave velocity in the

top 30 m is not sufficient for site classification and site effect calculation.

Huang et al (2010) developed Next Generation Attenuation (NGA) relationships using

strong motion recordings of shallow earthquakes and compared their results with site

coefficients in ASCE 7 and NEHRP provisions. Based on their results for VS30 smaller

than 270 m/s, site factors significantly depend on period and are greater than the NEHRP

provision site factors.

Le Pense et al (2011) investigated the influence of soil properties and site geometry

of sediment filled valleys on earthquake response spectra. Based on their studies

current building codes consider site effects only based on a one-dimensional analysis and

avoided complex cases of irregular two-dimensional configurations. They indicated two-

dimensional complex site effects have higher amplification of seismic waves than one-

dimensional site effects, furthermore, it causes extension of signal length.

1.4 Analytical Modeling of Site Amplification

In addition to the observed site amplification effects during earthquakes, there is still a

need to simulate these effects using analytical models. The wave propagation problem in

solids involves a vector wave equation with at least two body wave speeds. Additionally,
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Figure 1.2. Location and Geology of Taiwan sites
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surface Love waves (antiplane motion) travel with frequency dependent phase velocities and

each mode of that has a different characteristic. There are Rayleigh waves (inplane motion)

which have a retrograde type of motion and is to be blamed for many landslide episodes.

Because of the complexity of the problem, there are still limited viable theoretical solutions

to adequately simulate the site amplification problem in three-dimensions.

Modern numerical tools such as finite elements and finite differences can theoretically

handle material and geometrical nonlinearities but the size of this geophysical problem is

so large that artificial boundaries must be introduce to limit the problem size. There are

still issues to be resolved for numerical instabilities of the artificial boundary algorithms.

The number of unknown variables increase quickly in a three-dimensional analysis and the

problem can easily become unmanageable.

The continuum mechanics solution cannot handle nonlinear material properties but it

offers solutions which allows the far-field conditions to be modeled by a basic half space

configuration. The Sommerfeld radiation boundary condition at infinity allowed solutions

to be obtained so there is basically no concern for reflected waves from an artificial boundary.

The far field can be modeled approximately by a homogenous half space or a layered half

space with horizontal layers. Within the linear model framework, the continuum mechanics

models can help explain the physics of wave scattering, reflection and diffraction involved

in the site amplification problem.

Using SH-wave models, Trifunac (1971) explained the amplitude of waves on the surface

of an alluvial valley could be an order of magnitude larger than the amplitude of the bedrock

beneath. The amplification factor is dependent of the contrast of material properties as well

as the geometrical configurations of the layers. Other researchers such as Wong and Trifunac

(1974) and Lee (1985) also contributed similar conclusions for different layer geometries.
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Wong (1982) studied the effects of P, SV and Rayleigh waves on an arbitrary shaped

canyon and concluded that topographical irregularities can affect wave amplitudes. Kawase

H. (1988), Sanchez-Sesma and Campillo (1991), Dravinski and Mossessian (1987) provided

more excellent results in that same area. Gatmiri et al (2007, 2009) performed in the time

domain a hybrid method which includes a finite element model for sedimentary layer and

a boundary element method for the bedrock. The authors also suggested shape factors for

possible use in building codes, an attempt to improve the existing one-dimensional wave

propagation model currently employed. Dravinski and Wilson (2001) extended the study

of wave scattering to include anistropic effects. Dravinski and Mossessian (1990) also did

analysis for a three-dimensional alluvial valley by providing interesting transient response

at various locations. Most of the above analyses were performed using an indirect boundary

integral method where the wave solutions are generated by sources not directly on the

boundary of the wave scatterer.

Le Pense et al (2011) investigated the influence of soil properties and site geometry

of sediment filled valleys on earthquake response spectra. The authors indicated that two-

dimensional and complex site effects could yield higher amplification of seismic waves

than one-dimensional site effects. Their research conducted resulted in a two-dimensional

method for calculating site amplification of trapezoidal valleys with various geometrical

characteristics and soil properties.

The boundary integral equation method, based on the representation theorem introduced

by DeHoop (1958) and subsequent work by Haskell (1966, 1969), has the ability to handle

irregular geometries and it seems to be an excellent tool for wave scattering problem with

some simplification of the actual geological conditions. But the basic component, the

Green’s Functions, are difficult to calculate. In the particular case of a layered medium with

buried sources and buried observers, the program code could require several thousand lines
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(Apsel, 1979). Furthermore, there are singularities to be dealt with. The above reasons lead

to the fact that it is not yet a popular approach among earth scientists.

In this dissertation, the concept of substructure Deletion as proposed by Dasgupta (1980)

to solve rigid embedded foundation problems will be adapted to analyze site amplification

problems. This method can replace the depth dependence of the buried Green’s Functions by

representing those characteristics by a finite layer of the same material. As proposed, if a fill-

in layer of the same material is placed on top of the irregular interface, the combination will

merge to become a basic half space. With a basic half space, the traction Green’s Function

matrix at the surface of the half space is zero because the half plane surface is stress free.

Therefore, only the displacement Green’s Function matrix needs to be calculated. And

since there is no depth dependence for the Green’s Functions, the problem is significantly

simpler, perhaps by an order of magnitude in effort. Betti (1994) applied the same method

to a three-dimensional embedded foundation using the boundary integral equation method

for both media I and II while Dasgupta originated the method by using the finite element

method for the fill-in layer.

The present application applies the same concept to analyze surface or subsurface

irregularities and their effects on wave amplification. The two applications are different and

the substructure deletion concept should be more efficient for the present site amplification

problem because the lateral dimensions of a typical alluvial valley is much larger than

its depth, therefore, the fill-in layer is thin in aspect ratio compared to those employed

for embedded foundations. From a physics point of view, the traction-displacement

relationships for the half space and that for the irregular interface should not be appreciably

different.
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The main challenge of the present application would be that the motion at every point

of the model is of interest. Unlike the foundation analysis, where the traction at the surface

of the rigid foundation is only an intermediate result, they are later integrated to yield

one complex number per frequency, i.e., the impedance function of the foundation. The

inaccuracies of the traction solution would be diminished by the surface integration. The

shorter wavelengths are also filtered out by the rigidity of the foundation, a phenomenon

known as kinematic interaction. For site amplification studies, however, the point-by-point

solution is needed because the overall response at the surface of the entire canyon or alluvial

valley is of interest. The development in the later chapters will demonstrate the value of

the substructure deletion concept as a potential tool to analyze complex three-dimensional

wave scattering problems.

13



Chapter 2

Theoretical Development

There are two of the major analysis methods available for dynamics problems: the

finite element method and the continuum mechanics method. The finite element method

is excellent for three-dimensional geometrical and material modeling of finite size models,

but the vast scale of geophysical problems make computation not feasible because of issues

associated with an artificial boundary introduced to limit the model size. The continuum

methods are limited by the number of coordinate systems which are amenable to solutions

for the vector elastic wave equation.

Most geophysics related wave propagation problems are simplified to that with a half-

space configuration in which the out-going waves are assumed to radiate away and not

return. The far-field approximation is crude, simply a half-space or a layered half-space

with horizontal layers. The near-field locations demand more detailed modeling and the

boundary integral equation method seems to be the most promising analysis tool to meet

the challenge.

The form of the representation theorem (Haskell 1969) for waves generated by sources

from a surface S is

�u(�rp) =
∫
S

[
U(�rp|�r)

]
�t(�r) dS −

∫
S

[
T (�rp|�r)

]
�u(�r) dS . (2.1)

Using the above integral representation, the displacement vector �u(�rp) at any location

�rp within the homogeneous soil medium can be calculated in terms of the boundary

displacement �u(�r) and the boundary traction �t(�r). The derivation of Eq. (2.1) is based

on the reciprocal theorem and it is explained in Appendix A. The surface S represents the
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scattering surface of the problem and must be defined so it is consistent with the Green’s

Function matrices [U ] and [T ]. If a semi-infinite medium is considered,S can have an infinite

dimension to cover the entire half space surface if full-space Green’s Functions were used.

However, if local conditions of a particular site is of greater interest, the far-field can be

assumed to be a half-space surface and it is expedient to use Green’s Function matrices, [U ]

and [T ] such that the stress free boundary condition at the half-space surface is accounted

for automatically. With this condition, the surface S would be reduced to that of a localized,

finite size wave scatterer, S, between points A and B as shown in Fig. 2.1. The boundary

condition of the free surface from A to x→ −∞ and from B to x→∞ are accounted for

by using the Green’s Function derived specifically for a half-space configuration.

Figure 2.1. A Basic Half Space Model
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2.1 Level of Difficulty of Various Wave Propagation Models

The boundary integral equation, as shown in Eq. (2.1), is applicable to a large number of

wave propagation problems. It is particular important for modeling wave problems where

the outgoing waves are not expected to return. For this reason, the analysis is normally

concentrated near the scattering surface S and the details of the far field is less important.

This method has an advantage over methods such as the finite element or the finite difference

method because the information far removed from the points of interest is critical to the

stability of the numerical algorithm.

One of the difficulties of using Eq. (2.1) is that the Green’s Functions have singularities.

For two-dimensional problems, the displacement matrix [U ] has the integrable singularity

of log r as r → 0 and the traction matrix [T ] has a 1/r singularity. For three-dimensional

models, the displacement matrix [U ] has the integrable singularity of 1/r as r → 0 and the

traction matrix [T ] has a 1/r2 singularity. In both cases, the Principle Value integral must

be taken for the integration of the [T ] matrix in the second term on the right side of Eq. (2.1)

when the observation point �rp is placed on the surface to form an integral equation.

In addition to the challenges met while dealing with the singularities, the Green’s

Functions are difficult to evaluate for some cases and nearly impossible for others. The

purpose of this section is to explore the relative difficulties of the problems and then

propose a way to simplify the formulation to achieve the solution with less complicated

Green’s Functions. It is important to note that the principle of superposition which led to

the development of Eq. (2.1) is applicable only to linear problems.

Shown in Fig. 2.2a is a simplified model of an alluvial layer overlying the bedrock.

This schematic represents both two-dimensional and three-dimensional models. Region I

represents the alluvial valley and it has a finite dimension as shown in Fig. 2.2b. Region II
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Figure 2.2. A Medium With Contrasting Stiffness

has an irregular interface carved out of a basic half-space configuration and it is assumed to

have infinite dimensions in the lower portion of the model.

To use Eq. (2.1) to model the alluvial layer as shown in Fig. 2.2b, the Green’s Functions

for an infinite medium are used. The scatterer’s surface S would be the two faces which

enclose the body. The traction matrix [T ] would be calculated using the normal vector n̂

directed outward from the medium. This is known as an interior problem and the model

possesses resonance behavior typical of a finite model. The Green’s Functions for an infinite
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space are formed by basic algebraic and trigonometric functions as shown in Appendix

B, Section B.1 for two-dimensional anti-plane wave problems, Appendix C, Section C.1

for two-dimensional plane strain wave problems and Appendix F, Section F.1 for three-

dimensional problems. Although many of the expressions seem lengthy and tedious, they

can be calculated easily with a computer program. The geometry of the alluvial layer can be

approximated by a parametric surface or a Triangulated Irregular Network (TIN) surface,

the latter for three-dimensional models.

To use Eq. (2.1) to model a half space with an irregular surface as shown in Fig. 2.2c,

the main challenge is the numerical evaluation of the Green’s Functions with buried sources

and observation points both placed beneath the surface. Even for the case of a homogeneous

half space, the Green’s Functions have the form of an infinite integral over wave number to

represent a superposition of body waves of all incident angles. The two-dimensional anti-

plane SH-wave problem is the only exception, its Greens Function can be written in terms of

Bessel’s Function using a mirror image to form the stress-free boundary (Section B.2). For

all the other cases, however, the complete expression for the Green’s Functions is worthy of

an entire dissertation such as that provided by Apsel (1979) for a layered viscoelastic half

space. The expressions for plane strain or three-dimensional Green’s Functions provided

in Appendices C and F are those with sources and observations on the half space surface

only. With the proposed method in the next two sections, the use of the more complicated

Green’s Functions can be avoided.

2.2 The Concept of Substructure Deletion

The substructure Deletion concept as proposed by Dasgupta (1980) can replace the depth

dependence of the buried Green’s Functions by representing those characteristics by a finite

volume of the same material. As proposed, if a fill-in layer of the same material is placed
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on top of the irregular surface, the combination becomes a basic half space as shown in

Fig. 2.3a. With a basic half space, the traction Green’s Function matrix [T ] at the surface

of the half space in Eq. (2.1) is zero because the half plane surface is stress free. Therefore,

only the displacement Green’s Function matrix [U ] needs to be calculated. And since there

is no depth dependence for the Green’s Functions, the problem is simpler by an order of

magnitude in effort. The Green’s Functions on the surface of a half space are given in

Sections B.3, C.2 and F.2 for the two-dimensional anti-plane, two-dimensional plane strain

and three-dimensional problems, respectively.

Figure 2.3. Two Media With The Same Material
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To clarify the procedures of this concept, it is proposed to first develop the traction-

displacement relationship of a flat half space surface between points A and B as shown in

Fig. 2.3a. That can be done by setting [T ] to zero in Eq. (2.1). The next step is to recognize

the combination of medium I and medium II in Fig. 2.3b is the same as a flat half space

surface. The traction-displacement relationship of the fill-in layer can be obtained using

full-space Green’s Functions while the traction-displacement relationship of the underlying

medium with an irregular surface, Fig. 2.3c, is much more complicated to obtain. It is

proposed to subtract, using matrix manipulation, the traction-displacement relationship for

the fill-in layer from that of the half space, and the difference would yield the traction-

displacement relationship of the irregular subsurface beneath the surface. This concept is

expected to be applicable to both two-dimensional and three-dimensional problems.

Since its original proposal over 30 years ago, the substructure deletion method has not

been developed further to reach its great potential. Dasgupta (1980) applied the method to

a deeply embedded two-dimensional foundations using a finite element model to represent

the fill-in portion and the boundary integral equation method for the plane half space model.

Betti (1991) applied the same method to a three-dimensional embedded foundation using

the boundary integral equation method for both media I and II. The present application

applies the same concept to analyze surface or subsurface irregularities and their effects on

wave amplification. The two applications are different and the substructure deletion concept

should be more efficient for the site amplification problem because the lateral dimensions

of a typical alluvial valley is much larger than its depth, therefore, the fill-in layer is thin

in aspect ratio compared to those of embedded foundations. From a physics point of view,

the traction-displacement relationships for the half space and that for the irregular surface

should not be appreciably different.
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The main challenge of the present application would be that the motion at every point

of the model is of interest. In the foundation analysis, the traction at the surface of the

rigid foundation is only an intermediate result, they are integrated to yield one complex

number per frequency, and that would be the impedance function of the foundation. The

inaccuracies of the traction solution would decrease by the surface integration. The shorter

wavelengths are to be filtered out by the rigidity of the foundation. For site amplification

studies, however, the point-by-point solution is needed because the overall response at the

surface of the entire canyon or alluvial valley is of interest. For that reason, obtaining high

frequency results could pose a more severe challenge.

The remaining chapters of this dissertation would address the feasibility of this method

to be applied to practical site amplification problems.

2.3 Theoretical Development of the Proposed Method

From Eq. (2.1), the boundary integral equation on the stress-free surface of a

homogeneous half space can be simplified to

�u(�rp) =
∫
S

[
U(�rp|�r)

]
�t(�r) dS , (2.2)

because the traction matrix [T ] is zero on a stress-free half space surface. In the above

equation, the displacement vector at any point on the surface, �rp, can be calculated as a

surface integral of the tractions at the same surface multiplied by the displacement Green’s

Functions [U ]. Eq. (2.2) is a vector formulation of a boundary value problem which yields

a unique solution to the vector wave equation. After the boundary values are determined,

Eq. (2.2) can be used to calculate the wave solution at other locations away from S.
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A numerical solution of Eq. (2.2) can be accomplished by first subdividing S into N

subregions, Si, i = 1, 2, . . . , N , then, it can be expressed as

�u(�rp) =
N∑
j=1

∫
Sj

[
U(�rp|�r)

]
�t(�r) dS , (2.3)

with �rp placed within the confine of S. The next step is to approximate �t(�r) as a constant

vector,�tj , within subregion Si as a zero order approximation. It has been shown in previous

formulations of this type (Wong 1975), that higher order approximations often do not

improve the accuracy because the traction distribution has unusually high values at the

edges. Therefore, a constant value which represents the average traction distribution in the

subregions provides a good approximation. With the above assumptions, Eq. (2.3) can be

simplified to

�u(�rp) =
N∑
j=1

(∫
Sj

[U(�rp|�r)] dS
)
�tj . (2.4)

Assign the source point of the Green’s Function, �rp, to be equal to �ri, the centroid of the

subregions, Si, then Eq. (2.4) can be expressed as a 3× 3 matrix equation

�ui =
N∑
j=1

[Uij ]�tj , i = 1, 2, . . . , N, (2.5)

in which �ui is the displacement vector at the centroid of Si and

[Uij ] =
∫
Sj

[U(�ri|�r)] dS , (2.6)

is the influence matrices. Replace the summation in Eq. (2.5) by a matrix equation of order

3N × 3N and it can be expressed as

�u =
[
U
]
�t . (2.7)
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The concept for two-dimension problems is the same, except the order of the matrix equation

is 2N × 2N for a two-dimension P-SV wave problem and N × N for a two-dimensional

SH-wave problem.

For later application, the above equation will be denoted as

�u1 =
[
UH11
]
�t1 , (2.8)

in which the subscribe 1 refers to surface 1 (Fig. 2.3a) and the superscript of the influence

matrix, H , marks it as the formulation for a half space surface.

Consider now the application of Eq. (2.1) to the fill-in layer model as shown in Fig. 2.3b.

The representation theorem, Eq. (2.1), can be changed into a boundary integral equation by

limiting the source point �rp onto surface S to leave an integral equation of the form

1
2�u(�rp) =

∫
S

[
U(�rp|�r)

]
�t(�r) dS −

∫
S

[
T (�rp|�r)

]
�u(�r) dS , �rp on S . (2.9)

In the above equation, the displacement vector at any point on the surface, �rp, can be

calculated as a surface integral of the displacements and tractions on the same surface

multiplied by the traction and displacement Green’s Functions, respectively. The factor, 1
2 ,

is the result of the principle value integral of the [T ] matrix when the source point is located

on the surface S.

A numerical solution of Eq. (2.9) can be accomplished by first subdividing S into N

subregions, Si, i = 1, 2, . . . , N . Then, Eq. (2.9) can be expressed as

1
2�u(�rp) =

N∑
j=1

∫
Sj

[
U(�rp|�r)

]
�t(�r) dS −

N∑
j=1

∫
Sj

[
T (�rp|�r)

]
�u(�r) dS , (2.10)
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with �rp placed on S. The next step is to approximate�t(�r) as a constant vector,�tj and �u(�r) as

a constant vector, �uj , on Sj , as a zeroth order approximation. With the above assumptions,

Eq. (2.10) can be simplified to

N∑
j=1

(∫
Sj

[U(�rp|�r)] dS
)
�tj = 1

2�u(�rp) +
N∑
j=1

(∫
Sj

[T (�rp|�r)] dS
)
�uj . (2.11)

Assign the source point of the Green’s Function, �rp, to be equal to �ri, the centroid of the

subregions, Si, Eq. (2.11) can be expressed as a 3× 3 matrix equation

N∑
j=1

[Uij ]�tj = 1
2�ui +

N∑
j=1

[Tij ]�uj , i = 1, 2, . . . , N, (2.12)

in which

[Uij ] =
∫
Sj

[U(�ri|�r)] dS , (2.13)

and

[Tij ] =
∫
Sj

[T (�ri|�r)] dS , (2.14)

will be referred to as the influence matrices. Replace the summation in Eq. (2.12) by a

matrix equation of order 3N × 3N and it can be expressed as

[
U
]
�t =

( 1
2

[
I
]
+
[
T
])
�u , (2.15)

in which �u contains the displacement vectors at the centroids of the N subregions.

Since the fill-in layer has both surfaces 1 and 2, Eq. (2.15) needs to be reorganized for

application by using partitioned matrices as

[
[U11] [U12]
[U21] [U22]

]{
�t1
�t2

}
=
[ 1

2 [I] + [T11] [T12]
[T21] 1

2 [I] + [T22]

]{
�u1
�u2

}
, (2.16)
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in which the subscribes, 1 and 2, represent the surfaces, 1 and 2, respectively. To simplify

algebraic derivation, there is no superscribe assigned to this model.

The last remaining model is the boundary integral equation formulation of the embedded

surface as shown in Fig. 2.3c. To be consistent with the half space model notation used in

Eq. (2.8), the matrix representation for the embedded surface model can be written as

[
UE22
]
�tE2 =

( 1
2 [I] +

[
TE22
])
�uE2 , (2.17)

in which the subscribes 2 represents surface 2 as shown in Fig. 2.3c and the superscribe

E denotes the embedded subsurface. Unlike the formulations in Eq. (2.8) and Eq. (2.15),

the numerical integration of Eq. (2.17) will not be performed. Rather, the matrices
[
UE22
]

and 1
2 [I] +

[
TE22
]

will be obtained through matrix manipulation of the components of the

half space model and the fill-in layer model. The radiation of waves will be provided by[
UH11
]

and the irregular surface depth dependence will be accounted for by the submatrices

in Eq. (2.16).

The first step is to invert the
( 1

2 [I] + [T ]
)

matrix of the fill-in layer in Eq. (2.16) to yield

a compliance matrix [G] defined as

{
�u1
�u2

}
=
[

[G11] [G12]
[G21] [G22]

]{
�t1
�t2

}
. (2.18)

The next step is to rewrite Eq. (2.17) in a similar manner to

�uE2 =
[
GE22

]
�tE2 . (2.19)

The operation to obtain Eq. (2.18) requires perhaps the largest effort as the large matrix

involves both surfaces 1 and 2. The form in Eq. (2.19) is actually not calculated, it is a

symbolic form to be achieved by the substructure deletion concept, i.e., the matrix
[
GE22

]
is
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to be obtained using the submatrices of Eq. (2.18) and Eq. (2.8). There is no extra operation

to obtain a compliance matrix for surface 1 of the half space model as it is already in that

form due to the stress free conditions of the half space surface. To achieve a consistent

notation, rewrite Eq. (2.8) in the form

�uH1 =
[
GH11

]
�tH1 , (2.20)

in which
[
GH11

]
is the same as

[
UH11
]

in Eq. (2.8).

To assemble the matrices, apply the boundary conditions shown below:

�u1 = �uH1 , (2.21a)

�t1 = �tH1 , (2.21b)

�u2 = �uE2 , (2.21c)

�t2 = −�tE2 . (2.21d)

The sign of Eq. (2.21d) is opposite because the outer normal of the two formulations are

in opposite directions. The fill-in layer is an interior problem while the irregular half space

surface is an exterior problem.

The expansion of the first row of the matrix equation in Eq. (2.18) yields

�u1 = [G11]�t1 + [G12]�t2 . (2.22)

Applying the boundary conditions Eq. (2.21a) and Eq. (2.21b) to Eq. (2.20) to yield

�u1 = �uH1 = [GH11]�t
H
1 = [GH11]�t1 . (2.23)

The substitution of Eq. (2.23) into Eq. (2.22) generates

[GH11]�t1 = [G11]�t1 + [G12]�t2 . (2.24)
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The above equation is now in a form to relate the tractions of the two surfaces as

�t1 =
(
[GH11]− [G11]

)−1
[G12]�t2 . (2.25)

Expand now the second row of the matrix equation in Eq. (2.18) in the form

�u2 = [G21]�t1 + [G22]�t2 , (2.26)

and the substitution of Eq. (2.25) into Eq. (2.26) generates the equation

�u2 =
(
[G22] + [G21]

(
[GH11]− [G11]

)−1
[G12]

)
�t2 . (2.27)

Apply now boundary conditions in Eq. (2.21c) and Eq. (2.21d), the above equation can be

written as

�uE2 = −
(
[G22] + [G21]

(
[GH11]− [G11]

)−1
[G12]

)
�tE2 . (2.28)

With the comparison between the above equation and Eq. (2.19), it is clear that

[GE22] = −
(
[G22] + [G21]

(
[GH11]− [G11]

)−1
[G12]

)
. (2.29)

Therefore, the compliance matrix of the irregular surface 2 is obtained using the half space

compliance matrix [GH11] and the four submatrices of the fill-in layer’s compliance matrix

without the Green’s Functions of a buried load with subsurface displacements and tractions.

Dasgupta (1970) has the same equation in his application, the major difference is that

his compliance matrix for the fill-in layer was formed using the finite element method

whereas the corresponding matrix for this application will be obtained using full-space

Green’s Functions. It is anticipated that the present formulation would have less issues

with compatibility. Another advantage of using the boundary integral equation method over

the finite element method is the reduction of one spatial dimension. For two-dimensional

problems, finite element uses an area formulation whereas boundary integral equation uses

27



line segments. Similarly in three-dimensional problems, the reduction is from a volume

formulation to a surface formulation. One more factor is that the degrees of freedom inside

the bounding surfaces are of no practical value in site amplification studies, only the response

at the free surface is of interest.

The present application is formulated to obtain results for wave amplification effects of

alluvial layers; Dasgupta introduced his method with the intention of obtaining impedance

functions for embedded foundations. For soil-structure interaction problems, some

foundations are deeply embedded and there is a limitation of how deep this formulation

can be extended. For most alluvial valleys of interest, the depths are much smaller than the

layers’ lateral dimensions. For example, in geophysics, a typical sedimentary valley has a

depth of the order of 2 to 3 km, but the lateral dimension is of the order of 20 km, or more.

Therefore, the aspect ratio of the layer is not deeply embedded and the substructure deletion

concept should be effective. The irregularity of the layer could aid the understanding of

the local effects of wave focusing as the incident, refracted and reflected waves interfere

constructively or destructively.

2.4 Accuracy of the Modified Substructure Deletion Method

The simplest cases to test the effectiveness of the Substructure Deletion Method are those

of two-dimensional SH wave problems. Consider first the case of an elliptical cylindrical

foundation embedded in an elastic half space as shown in Fig. 2.4. A more special case of a

circular foundation has a simple exact solution (Luco 1968) and in this particular case, the

ratio h/a is 1. The exact solution for the traction is

�t0 = μkΔH(2)
1 (ka)/H(2)

0 (ka) , (2.30)
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Figure 2.4. An Embedded Elliptical Foundation in an Elastic Half Space

in which μ is the shear modulus of the soil medium, k = ω/β is the wave number, Δ

is the displacement of the embedded foundation, a is the radius of the circular cylinder,

H
(2)
0 andH(2)

1 are the Hankel Functions of the Second Kind of zeroth order and first order,

respectively. The traction is constant throughout the symmetrical cylindrical surface.

To obtain the approximate solution using the substructure deletion method, calculate the

traction �t by inverting Eq. (2.19) as

�t = [GE22]
−1Δ , (2.31)

in which [GE22]
−1 is to be calculated by the formula in Eq. (2.29). The results for a0 =

ωa/β = 1 is shown in Fig. 2.5. In the top figure, the number of segments used to approximate

the cylindrical surface, N , is 20. The results are oscillatory and are not accurate. The real

part of the traction represents the stiffness of the foundation and the imaginary part is related

to the radiation damping of the foundation. In both cases, the results in the top figure is not
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acceptable. On the other hand, the impedance function, being the integral of the oscillatory

traction, has an error of 10% or less. Better results can be obtained using a more refined

grid of 40 segments and the results are shown in the center figure of Fig. 2.5. Finally, 320

segments are used to obtain the results in the lower figure of Fig. 2.5 and the results are

excellent, especially near the center portion of the foundation surface. There are still some

small oscillation near the steeper portion of the foundation surface.

It is anticipated that an even more refine model may not completely eliminate the small

errors at the edge, it is perhaps the limitation of this method when the aspect ratio of the

scatterer’s geometry is deeply embedded. A shallower geometry is attempted next as the

aspect ratio is decreased to h/a = 0.5. Shown in Fig. 2.6 are the results for the elliptical

foundation. The exact solution can no longer be obtained using Eq. (2.30), the exact solution

for an elliptical foundation requires the use of Matthieu Functions (Wong, 1974). In this

particular test, the comparative “exact” solution is calculated using the boundary integral

equation method using the embedded Green’s Function. The proven results will be labeled

as “benchmark” in the figures. For the anti-plane case, the embedded Green’s Function is

not difficult to obtain (Appendix B, Section B.2).

As shown in the figure, the traction is no longer constant throughout the elliptical surface.

The results by the substructure deletion method are remarkably accurate, indicating that for

shallower geometries, it is effective. The value of a0 = ωa/β is 1 for Fig.2.6, therefore,

the wavelength is long and it is not numerically challenging.

Shown in Fig. 2.7 are the results for an elliptical foundation with the dimensionless

frequency a0 equals to 4. The wavelength is now shorter than the lateral dimension of the

elliptical foundation. In the top figure, it shows that the number of segments equals to 20 is

not sufficient to obtain a good solution. But the more refined cases ofN = 40 andN = 320
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Figure 2.5. Comparison of Results for a Circular Foundation at a0 = 1.
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Figure 2.6. Comparison of Results for an Elliptical Foundation at a0 = 1.
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offered excellent results. It is clear that the potential of the substructure deletion method is

excellent, especially for shallower geometries.

Shown in Fig. 2.8 is the average error resulted from the substructure deletion method.

Three different depth ratios were chosen to illustrate the effectiveness of the method

for shallow (b/a=0.25), medium (b/a=1) and deep (b/a=2) embedment. The errors were

accumulated as the magnitude of the difference between the substructure deletion results

and those of the benchmark solutions. The average decreases as N , the number of line

segments used, increases. There are four dimensionless frequencies chosen in each figure,

from a lower wave number to a high wave number. It is expected that the method would

perform better at lower frequencies. Fig. 2.8 shows clearly that the substructure deletion

method would perform most efficiently when the aspect ratio of the scatterer is shallow and

it performs well for higher frequencies as well. It is perhaps too demanding for substructure

deletion to work when the frequency is high and the fill-in medium is required to extend far

beneath the surface. The results forN < 100 are not shown in the lower figure because the

cumulative errors are too large.

2.5 Response of a Canyon to Incident SH-Waves

Another relatively simple case to test the validity of the substructure deletion method is

the response of an elliptical canyon to incident SH-waves. Show in Fig. 2.9 is the schematic

of the canyon with aspect ratio h/a and an incident wave making an angle of θ with the

x−axis. Since the surface of the canyon is traction free, the boundary conditions can be

stated as

�tS = −�tff , (2.32)
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Figure 2.7. Comparison of Results for an Elliptical Foundation at a0 = 4.
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Figure 2.8. Average Error Comparisons as a function of Scattterer Depth.
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Figure 2.9. An Elliptical Canyon Subjected to Incident SH-Waves

in which �tS is the scattered wave from the canyon and �tff is the traction of the free-field

motion. The traction free half space surface is already dealt with by the definition of the

Green’s Functions.

The total displacement field, �ut in the half space medium can be expressed as the

superposition of the scattered wave and the free-field motion as

�ut = �uS + �uff . (2.33)

Applying the relationship given in Eq. (2.19), the scattered wave displacement can be written

as

�us =
[
GE22

]
�ts = −[GE22]�tff , (2.34)

and the total displacement field can be determined as

�ut = �uff − [GE22]�tff . (2.35)
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The free-field displacement, �uff , in Eq. (2.35) can be obtained using Eq. (D.75) in

Appendix D. The free-field traction, �tff , can be computed using the expressions for τxz

and τyz in Appendix D, Eqs. (D.77) and (D.78), respectively. Use an equation similar to

Eq. (B9), i.e.,

�tff = τxznx + τyzny (2.36)

to obtain �tff ; nx and ny are the x and y components, respectively, of the outer normal n̂.

The results for SH-wave incidence were obtained for incidence angles of θ = 30◦ and

θ = 90◦. Both curves are plotted on the figures for various values of N . The case of

θ = 90◦ has a symmetrical response on both sides of the canyon but the inclined incident

case of θ = 30◦ the response is higher on the side of the wave approach. It is the shielding

property of the canyon which causes the response to be lower on the rear. The results shown

in Fig. 2.10 are excellent at a0 = 1, the low frequency case. Higher values of a0 are used

in Fig. 2.11, a0 = 2 for the case of N = 20, a0 = 3 for the case of N = 40 and a0 = 6

for N = 320. All figures show the capability of the proposed method for wave scattering.

Perhaps this method is limited for highly embedded foundation in the field of soil-structure

interaction. But it appears to be excellent for wave amplification studies. High frequency

results, for an equivalent a0 as high as 100 will be presented in Chapter Three.

2.6 Response of an arbitrary shape Canyon to Incident SH-Waves

This section continues with the demonstration of the effectiveness of the substructure

deletion concept by applying the numerical procedure to an arbitrary shaped. Shown in

Fig. 2.12 is such a canyon. The geometry can be best described as an arc with a small

amplitude sine function superimpose on it. Even though the model geometry is a smooth

one, the method should be able to handle all geometries. This one was chosen for the

convenience of grid generation.
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Figure 2.10. A Circular Canyon Subjected to Incident SH-Waves at a0 = 1
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Figure 2.11. A Circular Canyon Subjected to Incident SH-Waves at Higher Values of a0.
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Figure 2.12. An Arbitrary Shaped Canyon

With this new model, there is a way to compare it to a solution obtained by another

method, for example, the Boundary Integral Method because it is an antiplane problem.

But with an anticipation to later chapters where there is no comparative solution available,

the comparisons in this section will be done by comparing results of the same method for

different level of model refinement.

Shown in Fig. 2.13, Fig. 2.14 and Fig. 2.15 are results of the present method for

dimensionless frequency, η, of 2, 4 and 8, respectively. In each figure, there are results

for three angles of incident, 30◦, 60◦ and 90◦. Three solutions with the number of line

segments, N , equals to 40, 80 and 160 are presented. It is not difficult to calculate results

for N = 320, but the solution for the case of N equal to 160 has already converged. In

Chapter Three, when the transfer functions are calculated for one thousand dimensionless

frequencies, N = 320 is the model refinement used.
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Figure 2.13. Arbitrary Shape Canyon Response at η = 2
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Figure 2.14. Arbitrary Shape Canyon Response at η = 4
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The results presented demonstrate the method is convergent. Even for the case when

N = 40, the results are excellent at the locations where a solution is available, the limited

number of segments used cannot provide a value at locations that the more refined model

could offer. Based on the results in this chapter, it can be concluded that the substructure

deletion is excellent for site amplification studies.
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Figure 2.15. Arbitrary Shape Canyon Response at η = 8
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Chapter 3

Site Amplification for Anti-Plane Problems

In Chapter Two, the substructure deletion method was shown to be effective for forming

a compliance matrix for an embedded geometry in a half space. The verification were

performed using (1) a rigid embedded foundation with a prescribed displacement boundary

condition and (2) a surfacial irregularity of a canyon with a prescribed traction-free boundary

condition under the influence of incident waves.

In this chapter, the application will add an extra alluvial layer of different material on

top of the carved out half space configuration. This problem is more interesting from the

site amplification point of view because the softer layer on top of a bedrock can create

amplification of an order of magnitude higher than the free field motion (Trifunac, 1971).

The top layer has very little resistance for the incident wave to enter from the bedrock,

but it would be difficult for the wave energy to leave the soft layer because of the stiffness

contrast. This phenomenon explains the trapped energy within a layer and the duration of

motion could increase substantially. Some of these effects could be partially explained using

a horizontal stack of layers with stiffness contrast and vertically incident waves. But the

present proposed method could add to the understanding of focusing effects by an arbitrary

shaped soft layer and perhaps more energy being trapped within the layer with no horizontal

outlet to the far field. The effect of incident waves of various angles could also be studied

using the present method; it has been shown for many years that an alluvial valley at a large

distance from the epicenter would receive most of its seismic energy from waves traveling

horizontally.
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3.1 Boundary Conditions for Alluvial Valley Problem

Consider an alluvial layer to be added to the carved out half space configuration as

shown in Fig. 2.2. The half space bedrock and the alluvial layer model have different

material properties, the most prominent of which, for boundary condition applications, is

the shear modulus, μ. Letμ represents the shear modulus of the bedrock (irregular half space

model) and μv represents the shear modulus of the alluvial valley. Other material properties

involved in the problem includes ρ, the mass density and β, the shear wave velocity. For

elastic material, the properties are related as μ = ρβ2 and μv = ρvβ
2
v .

The dynamic characteristics of the half space with an irregular embedded surface can

be summarized in a matrix equation, Eq (2.19), written as

�uE2 =
[
GE22

]
�tE2 . (3.1)

The actual calculation of [GE22] is to be done using Eq. (2.29). For the alluvial layer, the

dynamic characteristics can be summarized by a matrix equation such as that in Eq. (2.18),

i.e., {
�u1
�u2

}
=
[

[G11] [G12]
[G21] [G22]

]{
�t1
�t2

}
. (3.2)

In Eq. (2.18), the layer model has the same properties as those of the half space model

and it was used as a part of the substructure deletion process. Eq. (3.2) was written the

same way with two notable differences: (1) The material properties of the alluvial layer

is vastly different from those of the underlying half space and (2) the top surface, labeled

with the index “1”, does not have to be a flat surface. A different grid generation algorithm

is to be used for the surface “1” while surface “2” should have the same configuration as

the irregular embedded surface of the half space. For the problems to be studied in this

chapter, the motion at the top surface is of the greatest interest because that is the location

of civilization.
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To apply the boundary conditions, let the subscripts a, r and ff represent the alluvial

layer, the rock half space and the free field motion (incident wave motion), respectively. In

the half space, the total wave field is the sum of the free field motion and the scattered wave

from the interface; in the alluvial layer, the wave motion is that of the scattered waves from

the interface. To ensure a compatibility of displacement at the layer interface, apply the

condition

�usr + �uff = �usa , (3.3)

and the continuous stress condition can be applied using tractions as

�tsr + �tff = −�tsa . (3.4)

The negative sign in Eq. (3.4) is a result of the fact that the outward normal vectors of the

rock layer and the alluvial layer are in opposite directions as shown in Fig. 2.2.

Assigning values to displacements and tractions in Eq. (3.2), the matrix equation for the

alluvial layer is [
[Ga11] [Ga12]
[Ga21] [Ga22]

]{
�0
�tsa

}
=
{
�utop
�usa

}
. (3.5)

In the above equation, the traction at the free surface of the alluvial layer was set to zero,

whereas the vector �tsa is to be determined. Rewrite the upper submatrix equation as

�utop = [Ga12]�tsa , (3.5)

and that is the vehicle to obtain the motion at the free alluvial layer surface after the vector

�tsa is determined. The lower submatrix equation can be written as

�usa = [Ga22]�tsa . (3.6)

The substitution of Eq. (3.6) into Eq. (3.3) yields

[Ga22]�tsa = �usr + �uff . (3.7)
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Using the bedrock equation, Eq. (3.1), and assigning the boundary values yields

�usr =
[
GE22

]
�tsr . (3.8)

Replace �usr in Eq. (3.7) by Eq. (3.8), the boundary condition displacement compatibility

becomes

[Ga22]�tsa =
[
GE22

]
�tsr + �uff . (3.9)

Replace �tsr in Eq. (3.9) by the traction boundary condition in Eq. (3.4), Eq. (3.9) can be

written as

[Ga22]�tsa =
[
GE22

](−�tsa − �tff)+ �uff . (3.10)

Reorder Eq. (3.10) in the form,

(
[Ga22] + [GE22]

)
�tsa = �uff − [GE22]�tff , (3.11)

and the boundary traction can be obtained using a matrix inversion as

�tsa =
(
[Ga22] + [GE22]

)−1(
�uff − [GE22]�tff

)
. (3.12)

After �tsa is determined, the response at the top surface of the alluvial layer can be obtained

using Eq. (3.5).

3.2 Comparison with Exact Solutions

There are several exact series solutions for two-dimensional SH-wave problems that

could be used as a benchmark. Trifunac (1971) presented results for a circular cylindrical

alluvial valley overlying a half space. The results were obtained using a separation of

variable technique for partial differential equation and the solution was written as an infinite

series in Hankel Functions and harmonic functions. Later, Wong and Trifunac (1974)

presented results for an elliptical cylindrical alluvial valley overlying a half space; the results
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Figure 3.1. Models with Available Solutions

were obtained using a similar method for partial differential equation and the solution was

written as an infinite series in Mathieu Functions. These results could be identified as “exact

solutions” in the traditional sense. The numerical results of the substructure deletion method

will be compared against those results for accuracy.

In both of the exact solution in which the proposed method is to be compared against,

the basic model can be illustrated by Fig. 3.1. The material property of the bedrock was

represented by μ, the shear modulus, ρ, the mass density, and β, the shear wave velocity

of the medium. For the alluvial valley, the respective material properties were represented

by μv , ρv and βv . In the case of the comparisons, the ratios of μ/μv = 6 and ρ/ρv = 1.5

were used. Since an elastic material requires only two constants to define, the shear wave

velocity β can be calculated as β =
√
μ/ρ and that gives rise to a ratio of β/βv = 0.5. One

interesting parameter on the results is that the wave number k = ω/β would be different for

the bedrock and the valley; the wave number kv would be twice that of k. Therefore, the

wavelength within the alluvial valley would be shorter and more amplitude variation over

distance is expected.
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Figure 3.2. Results for Circular Valley for η = 0.5

The angle of incidence, θ, will be a prominent parameter in the comparison because the

effect on ground motion is highly dependent on the direction of the incident wave energy.

Since the geometry of the wave scatterer is symmetric, of angles of 0◦, 30◦, 60◦ and 90◦

are selected to be used. For the circular cylindrical valley comparison, the aspect ratio of

b/a = 1 will be used. The elliptical valley has more flexibility in the geometry and several
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Figure 3.3. Results for Circular Valley for η = 1.0

values were presented. But the case of a shallower geometry, b/a = 0.3, will be used for

comparison.

Shown in Fig. 3.2 is the comparison of the substructure deletion results with the exact

solution. The curves of the present numerical solution are identified by solid line for a

horizontally incident wave (θ = 0) and various length segments of dashed lines for three
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other angles. The digitized results from Trifunac (1971) are plotted with symbols, open-

circles for θ = 0, triangles for θ = 30◦, squares for θ = 60◦ and inverted triangles for

θ = 90◦. The comparison of the four curves and the symbols are remarkable in their

consistency since two different methods were used. No legends for the symbols were given

in the figures as the results for the different incident angles were easily distinguishable.

In Fig. 3.3 the comparison is for a higher dimensionless frequency, η = 1. The value

of η is that of the bedrock, the value for the valley, ηv is actually two times higher for

the present case study, i.e., ηv = 2. The agreement between these two methods is again

excellent, demonstrating that the substructure deletion method is performing properly.

The comparison now turns to another infinite series solution, that of an elliptical valley

with an aspect ratio of b/a = 0.3. The comparative results are shown in Fig. 3.4. The

dimensionless frequency of this case would be slightly higher, η = 1.5 and ηv = 3, to

see if the performance of the proposed method is valid for a higher frequency. Given the

resolution of the published figures available for digitization, the results match well and the

comparison further elevates the confidence of the newer method.

3.3 Solutions at High Frequencies

From the previously published results, even the infinite series solutions, it is difficult to

produce results at higher frequencies, e.g., η > 3. Since there are no published results to

compare against, a form of self comparison will be performed by using the present method

for different values of N , the number of subregions (line segments) used for the solution.

In Fig. 3.5, three different values of N , 80, 160 and 320, were used. The value of N

is the number of line segments used for the generation of the half space matrix, [GH11], the

number of line segments for the grid to generate the full-space matrix would be 2N . The
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Figure 3.4. Results for Elliptical Valley for η = 1.5

dimensionless frequencies used for the calculation in Fig. 3.5 is ηv = 8 and three angles

of incidence were considered: θ = 30◦, 60◦ and 90◦. As shown in the figure, there is no

appreciable difference between the results of the models, showing a convergent trend that is

accurate even at high frequencies. There are some spots where theN = 80 solution appears
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to be deficient, but those are locations where the less refined model did not offer a sample

point.

3.4 Response of an Arbitrary Shaped Alluvial Valley

Consider now the response of an arbitrary shaped alluvial valley overlying bedrock.

The interface of the two materials, the bedrock and the alluvium, has a shape similar to the

arbitrary shaped canyon in Chapter Two, but shallower. The top surface of the alluvium is

represented by a small amplitude sine function. Again, any shape could be used with this

numerical method, only the grid generation program needs to be changed.

With this layer model, many different parameters can be utilized to gain as much physical

understanding of the problem as possible. In later sections, time histories will be used to

gain a different perspective. In the present section, use the same contrast ratios for the two

materials as described in section 3.2, i.e., μ/μv = 6, ρ/ρv = 1.5 and β/βv = 0.5.

Shown in Fig. 3.7 is the variation of ground motion on the surface of the alluvial valley

for the lower dimensionless frequencies of η equal to 0.5, 1.0 and 1.5. These are the typical

values used for the exact series solution by previous authors. The values of η is that of the

bedrock, meaning it is the ratio of the incident wavelength to the width of the alluvial valley.

But the wavelength in the valley is two times shorter because of the ratio, β/βv = 0.5.

Therefore, there are significant variation over the surface of the alluvial valley even at

these lower dimensionless frequencies. Within each of three sub-figures, results for four

angles of incident, θ = 0◦, 30◦, 60◦ and 90◦, are plotted. The results demonstrate that the

direction of wave arrival is a significant factor which contributes to site amplification. In

future development of seismic ground excitation levels for building codes, some form of

risk analysis is recommended when amplification factors are determined.
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Figure 3.5. High Frequency Calculation at ηv = 8
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Figure 3.6. An Arbitrary Shape Alluvial Valley

Fig. 3.8 shows the response of the alluvial valley when subjected to the higher

dimensionless frequencies of η equal to 2, 3 and 4. The graphs are also plotted for 4

incident angles as those in Fig. 3.7. The variation of surface response paints a very busy

picture and it is difficult to physically understand the significance of such a graph. Although

many high values, some as high as an order of magnitude larger than the unit amplitude of

the incident wave, are observed on the surface of the alluvial valley, there are also quiet spots

where the amplitude may be lower than 1. The same location, where there is a quiet zone

in one particular frequency, may have a high amplitude in another frequency. It is clear that

a constant-frequency amplitude plot is not the best way to assess seismic site amplification

effects. Another avenue for assessing the risk of site amplification is to use time histories.

In the next section, the response at various locations of the alluvial valley to incident wave

impluse time functions will be presented. The time history results will provide another

method to analyze the amplification factor of a soft alluvial layer.

One interesting observation to bring out from the results is that the low amplitude spots

are actually locations where a large torsional response might exist (Trifunac, 1971). The
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Figure 3.7. Low Frequency Response of Alluvial Valley
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Figure 3.8. High Frequency Response of Alluvial Valley
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Figure 3.9. Response of Alluvial at η = 4. Left Side Incident

59

0

6

12

|U
z|

0

6

12

|U
z|

-1 0 1
0

6

12

x/a

|U
z|

 N=320
 N=160
 N=80

 θ=0o

 θ=45o

 θ=90o



amplitude plots show only the absolute value of the displacement, therefore, two large

amplitudes on either side of a low amplitude generally point to a sign change and the large

displacements are actually out of phase by 180◦. This situation in a SH-wave problem

describes a torsional response.

In the work of the exact series solutions for the circular valley (Trifunac, 1971) and the

elliptical valley (Wong and Trifunac, 1974), there are four example angles are used for the

analysis. But since the current arbitrary shaped alluvial valley, shown in Fig. 3.6, is not

symmetric about the y-axis, the wave arrival from an opposite direction would also cause a

different variation of ground motion. Fig. 3.9 and Fig. 3.10 serve two purposes, one is to

show the response of the alluvial valley at a high dimensionless frequency of η = 4 and six

different incident angles, 0◦, 45◦, 90◦, 120◦, 150◦ and 180◦. The other purpose to show

the convergence of the solution by using a less refined model of N = 80, and compare its

accuracy to models with N = 160 and N = 320. The comparisons are excellent and they

are also excellent for larger values of η, but the graphical representations of those cases are

difficult.

With the confidence gained from all forms of testing, the results in Section 3.5 will take

the results to a high limit when the transfer functions at selected locations are computed.

The high values of dimensionless frequency will reach ka = 100, or η = 100/π; meaning

there will be over 60 wavelengths within the alluvial valley. The transfer functions will be

plotted to show the outstanding stability of this numerical formulation.

3.5 Computation of Time Histories

Since the numerical solution using the substructure deletion concept is performed in the

frequency domain, time histories could be obtained using Fourier Synthesis. The Fourier
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Figure 3.10. Response of Alluvial at η = 4. Right Side Incident
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Transform pair can be expressed as

F (ω) =
∫ ∞

−∞
f(t) e−iωt dt , (3.13)

as the forward transformation and

f(t) =
1
2π

∫ ∞

−∞
F (ω) eiωt dω , (3.14)

as the inverse transformation. The factor, 1/2π, is sometimes distributed evenly to both

parts of the pair as 1/
√

2π

Consider the input motion to be in a form of a Ricker Wavelet as shown in Fig. 3.11. It

has a mathematical form of

A(t) =
(
1− 2π2f2t2

)
e−π2f2t , (3.15)

in which f = 1/tp is the wavelet’s peak frequency. There are three wavelets illustrated in

Fig. 3.11, the high frequency wavelet has a period of tp = 0.75 and a peak frequency of

f = 4/3. The medium frequency wavelet has a period of tp = 1.5 and a peak frequency of

f = 2/3. The long period wavelet has a period of tp = 3 and a peak frequency of f = 1/3.

This wavelet is frequently used in seismic simulation as it has a very definite frequency band

and it is a good input function.

If the complex frequency content of the incident wave time history can be obtained as

A(ω) =
∫ ∞

−∞
A(t) e−iωt dt , (3.16)

the response at the surface of the alluvial valley can be computed as

u(t) =
1
2π

∫ ∞

−∞
T (ω)A(ω) eiωt dω , (3.17)
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Figure 3.11. Ricker Wavelets and their Fourier Transforms
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where T (ω) is the complex transfer function determined at a certain location based on a

unit input of the incident wave. To obtain the transfer function, pick a location from the

graphs shown in Section 3.4 and calculated the response (amplitude and phase) over the

entire frequency spectrum.

Calculations were made to find the transfer functions at seven selected locations as

shown in Fig. 3.6 for various stiffness ratios, μ/μv = 3, 6 and 9, angles of incidence from

both sides of the alluvial valley. There are many parameters to be dealt with, but many

interesting physical phenomena can be observed by this numerical simulation.

Shown in Fig. 3.12 are two transfer functions plotted versus dimensionless parameter

ka from 0 to 100. a is the width of the alluvial valley and k is the wave number defined as

k = ω/β. ka is related to η used in the previous sections as η = ka/π. Therefore, the value

of ka = 100 is equivalent to η > 32, a high dimensionless frequency rarely performed in

previous research reports. In the top figure of Fig. 3.12 is the transfer function of Station 1

(a/8 from the left edge) for vertical incident SH-wave and a stiffness ratio of μ/μv = 3, The

solid line represents the real part of the complex transfer function and the short dash line

represents the imaginary part. For Fourier synthesis, the transfer function must be complex

so that the correct phases are accounted for. The second figure of Fig. 3.12 is the amplitude

of the complex transfer function, it was plotted to show that the results are stable over a

large frequency band. The 3rd and the 4th figures of Fig. 3.12 shown the complex transfer

function and its amplitude for a stiffness contrast ratio of μ/μv = 6. It is clear that transfer

function values are much larger because the wave energy would be trapped in the softer

layer.

It is important to point out that the media parameters used do not include viscous

damping. This decision was made to avoid introducing one extra parameter into the

64



Figure 3.12. Complex Transfer Functions and Their Amplitudes
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analysis. The fact that the transfer functions appear to be damped, i.e., no infinite values at

resonance frequencies of the alluvial valley, is that radiation damping exists in the model.

The Sommerfeld boundary condition at infinity was satisfied automatically by the choice of

Green’s Functions for the exterior medium.

Working in the frequency domain, it is impossible to extract the valuable quantity of

duration. Putting physical dimensions into the analysis, let β = 1250 m/sec as the shear

wave velocity of the bedrock and the width of the alluvial valley is 10.3 km. Seven recording

stations are selected equally spaced over the alluvial valley’s surface as shown in Fig. 3.6

with the distance between the station approximately equal to 1.3 km. Shown in Fig. 3.13 is

the case where the incident wave has an angle of 90◦ and the stiffness ratio of μ/μv = 6.

The vertical scale of the responses is normalized to the incident pulse as 1, therefore, the

peak values represent the actual site amplification factors. The duration of the input pulse

is approximately 2.5 seconds, but the response, due to site amplification, could go on for

about 80 seconds. At station 5, the amplification reached as high as 6, based mainly on the

secondary refracted waves. As shown, the response on the alluvial valley is quite different

from the simple incident pulse. If an incident wave with a longer duration is used as the

input, the amplitude of the response could be much higher.

Shown in Fig. 3.14 is the response with the same parameters as Fig. 3.13 except the

angle of incident is θ = 0. Since it is a horizontal incident wave, the response starts earlier

on Station 1 and much later on Station 7. It is interesting to note that the reflection from the

back of the alluvial valley interface arrives at Station 7 a long time before it reached Station

1. For this incident angle, the largest amplitude is less, about 4.5 times the strength of the

incident pulse.
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Figure 3.13. Response to Ricker Wavelet with Vertically Incident SH-Wave
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Figure 3.14. Response to Ricker Wavelet with Horizontally Incident SH-Wave
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Figure 3.15. Response at Station 4 to Ricker Wavelet with Various Incident Angles

69

0 20 40 60 80 100
Time (seconds)

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

 Station 4, θ=0o

 Station 4, θ=30o

 Station 4, θ=60o

 Station 4, θ=90o

 Station 4, θ=120o

 Station 4, θ=150o

 Station 4, θ=180o



In Fig. 3.15, the response at Station 4, near the midpoint of the alluvial valley, is shown

for seven incident angles, θ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦. The angle θ = 0◦

represents the incident waves coming from the left side of the valley and θ = 180◦ represents

that from the right side. The stiffness ratio remains μ/μv = 6. This figure demonstrates

that the response at a recording station is a function of the location of the seismic source.

In Fig. 3.16, the effect of stiffness ratio is examined. Three Different values, μ/μv = 3,

6 and 9 are used. The responses at Station 4 for all three stiffness contrasts were recorded

for incident angles of θ = 30◦ and θ = 90◦. As expected, the amplification is larger for

a softer alluvial valley, but the most important difference is the duration. Seismic energy

would be trapped inside a softer layer longer as it is difficult to transmit and radiate the wave

back into the bedrock. A more complex input time function than a Ricker Wavelet could

cause much larger amplification as waves constructively interfere with each other.
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Figure 3.16. Response at Station 4 as a Function of Stiffness Ratios
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Chapter 4

Wave Scattering by a Canyon for In-Plane Waves

In chapter Two, the substructure deletion method was shown to be effective for scattering

of SH-waves by two-dimensional canyons. This chapter the method will be explored for

in-plane motion. The number of degrees of freedom will increase by a factor of two as

the inplane motion includes a vertical and a horizontal component of displacement. As

described by wave propagation books, such as Ewing et al (1957), whenever an inplane

wave strikes a boundary, mode conversion would occur. An incident compressional wave

striking a boundary at an inclined angle would result in a reflection of a compressional

wave and a shear wave. The same scenario would apply for a shear wave (SV) incident for a

limited range of angles. This phenomenon is caused by the fact that the compressional wave

and the shear wave have different velocities. The physics involved in this inplane problem

is more advanced than those covered for the SH-wave diffraction problems.

The Green’s Functions to be used for the formulation in this chapter will come from

Appendix C. The Green’s Function for the interior problem are those covered in Section

C.1 and they are in the form of Hankel Functions. The Green’s Functions for the exterior

problem are the infinite integrals shown in Section C.2, better known as the solution to the

Lamb’s problem (Lamb, 1903).

4.1 Validation of Plane Strain Green’s Functions

One benchmark to test the validity of this calculation is to match the results given by Luco

and Westman (1971) for the compliance functions of a rigid strip foundation on a half space

as shown in Fig. 4.1. The width of the foundation is 2b and the results for the compliances

are given as a function of a dimensionless frequency defined as a0 = ωb/β, in which β
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Figure 4.1. A Rigid Strip Foundation

is the shear wave velocity of the soil medium. The dimensionless compliance functions

were normalized as Cvv = πμΔy/Py for the vertical component and Chh = πμΔx/Px

for the horizontal component. Deltax and Deltay are the harmonic displacements of the

foundation in the x and the y directions, respectively. The parameter μ is the shear modulus

of the soil medium and the harmonic forces, Px and Py , are the driving forces in the x and

the y directions, respectively.

To calculate the compliance functions, the plane strain Green’s Functions on the surface

of a homogeneous half space must be computed. Therefore, if the comparison is successful,

it would validate that particular subprogram. Shown in Fig. 4.2 are the vertical compliance

functions, Cvv , for three different Poisson’s ratios, ν = 0, 0.25 and 0.33. The solid

lines in each subfigures are the computed real parts and the dashed line are the computed

imaginary parts. The open circles represent the real part of the results provided by Luco

and Westman (1972) and the open triangle symbols represent the imaginary part. The

results match remarkable well, considering they were computed using completely different
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Figure 4.2. Comparison of Compliance Functions Cvv
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methods. The Poisson’s Ratio affects the ratio of the body wave speed; the ratio of shear

wave velocity over compressional wave velocity, γ = β/α, is related to the Poisson’s Ratio

as
√

(1− 2ν)/(2(1− ν)).

Figure 4.3. Comparison of Compliance Functions Chh
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Shown in Fig. 4.3 are the compliances for the horizontal component, Chh. The

comparison is again right on. The ν = 0.33 case was not given by the authors for this

component. With these two tests, the Green’s Functions appear to be correct. A welded

boundary condition was used for the computation at the foundation’s interface with the soil

medium.

For this particular application, the results converged quickly with very few subregions

used for the approximation of the foundation surface. Shown in Fig. 4.4 is a comparison

between results calculated using N = 20, 40, 80 and 160 subregions; the numerical results

are within one or two percent of each other and the differences are not noticeable in the

figure.

The reason this exercise was performed is to test the convergence and stability of the

method. Initially, the results for the highly refined model were actually worse and that

prompted an exercise to make sure the Green’s Functions were calculated correctly. The

Lamb’s solutions shown in Eq. (C24) through (C27) are complex infinite integral and they

contain a singularity known as the Raleigh Pole. To simplify the calculation, especially for

an undamped medium, contour integration was employed and the results offered simpler

and more manageable integrals and expressions in Eq. (C28) to (C31).

Two particular integrals, involve an infinite limit in the forms of

∫ ∞

0

√
1 + k2

(2k2 + 1)2 − 4k2
√
k2 + γ2

√
k2 + 1

e−a0kxdk , (4.1)

and ∫ ∞

0

√
k2 + γ2

(2k2 + 1)2 − 4k2
√
k2 + γ2

√
k2 + 1

e−a0kxdk , (4.2)
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Figure 4.4. Compliance Functions Cvv with Various Levels of Approximation
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Figure 4.5. Compliance Functions Chh with Various Levels of Approximation
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are the troublesome ones if the argument a0x is very small. In the case of the highly refined

models, the subregions, or the line segments, are very short and that leads to a small value

of a0x, especially at a low dimensionless frequency of a0.

For normal values of a0x, the exponential function decays rapidly in both Eq. (4.1)

and (4.2) and the numerical evaluation is simple. For extremely small values of a0x, the

exponential function approaches 1 and the remaining integrand has the following limit:

√
1 + k2

(2k2 + 1)2 − 4k2
√
k2 + γ2

√
k2 + 1

≈ 1
2(1− γ2)k

, (4.3)

as k approaches infinity. The integral of 1/k would result in a logarithmic singularity.

The modified method used to evaluate Eq. (4.1) is to split it into 3 integrals as follows:

∫ ∞

0

√
1 + k2

(2k2 + 1)2 − 4k2
√
k2 + γ2

√
k2 + 1

e−a0kxdk

=
∫ 1

0

√
1 + k2

(2k2 + 1)2 − 4k2
√
k2 + γ2

√
k2 + 1

e−a0kxdk

+
∫ R

1

[ √
1 + k2

(2k2 + 1)2 − 4k2
√
k2 + γ2

√
k2 + 1

− 1
2(1− γ2)k

]
e−a0kxdk

+
1

2(1− γ2)

∫ ∞

1

1
k
e−a0kxdk . (4.4)

The first integral on the right hand side is simple to evaluate numerically, it is a finite integral.

The second is integrated from 0 to R, an arbitrary value. If R is chosen to be 1000, the

difference in the bracket at the upper limit is near zero, accurate to the order of 6 significant

digits. The third integral is known as the Exponential Integral and it can be evaluated as

E1(a0). The Exponential Integral can be evaluate as a series (Abramowitz and Stegun,

1970) as

E1(z) = −γ − log z −
∞∑
n=1

(−1)n zn

nn!
(4.5)
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where γ = 0.5772156649 is the Euler Number. With the expressions in Eq. (4.4), the

log(a0x) singularity has been isolated and it can be integrated analytically over x to for the

diagonal elements of the singular matrices. A similar method could be used for Eq. (4.2).

After this improvement is made, the matrix [GH11] as shown in Eq. (2.8) can be evaluated

consistently, no matter how refined the model maybe.

Figure 4.6. Amplitude Comparisons for P-Wave Incident, η = 1
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4.2 Comparison with Available Results

There are a number of results available for wave scattering of P or SV-waves by arbitrary

shaped canyons. Unlike the SH-wave problem where the half space boundary condition

could be satisfied by symmetry, The boundary conditions for plane strain problems are

much more difficult. Wong (1979) obtained his results using a least square approximation

for the boundary conditions by placing sources within the boundary to provide the wave

form for the scattered waves. From that paper, some results were provided for an elliptical

canyon.

Shown in Fig. 4.6 are the results for P-wave incidence. The aspect ratio of the canyon

is b/a = 1, a circular cylindrical canyon. Two angles of incident were considered, θ = 60◦

and 90◦. For both cases there is a horizontal component |Ux| and a vertical component |Uy|,
represented by a solid line and a dashed line, respectively. The results from Wong (1979) are

plotted as open circles for |Ux| and as open squares for |Uy|. The dimensionless frequency

is η = 1. The results matched with about 20% difference. The overall shape of the response

variation is correct even though there are some differences. One possible reason for the

discrepancy is limitation of computer resources back in the late 1970s, there was no way to

justify the cost of a model which has 320 subregions. The substructure deletion results are

from a refined model. Later results will confirm that accurate results in the inplane model

require a more refined model than the antiplane model.

Shown in Fig. 4.7 are the results for SV-wave incidence. The same two angles were

used as in the P-wave case. The aspect ratio of the canyon is b/a = 1, a circular cylindrical

canyon, as previously. But it needs to be pointed out that the SV-wave angle cannot be

smaller than 60◦ for a Poisson Ratio of 1/3. Therefore, 60◦ is a critical angle with a large

amplitude free field motion. The amplitudes for the free field motion as a function of angles
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Figure 4.7. Amplitude Comparisons for SV-Wave Incident, η = 1

are shown in Appendix D. Judging from the fact that the two methods are significantly

different, the agreement of the results is acceptable.

Another explanation for the discrepancy is that a circular canyon, having an aspect ratio

of b/a = 1 is considered to be a deep canyon. It is expected that a shallower canyon would be

better modeled by the substructure deletion method. Shown in Fig. 4.8 are the results from

three different depths of canyon, b/a = 0.25, 0.50 and 1.00. For the two shallower cases,
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Figure 4.8. Aspect Ratio Comparison. SV-wave Incidence, θ = 60◦, η = 1
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two different models were made, one with N = 160 (represented by short dashed lines)

and another with double the refinement atN = 320 (represented by long dashed lines). For

an angle of 60◦, it is clear that the shallower geometry model requires fewer line segments

to create an accurate solution. The two models with different refinement matched perfectly

for b/a = 0.25 and only minor differences existed for b/a = 0.50. The lower figure shows

that as the canyon depth becomes deeper, when b/a = 1.0, the results differed noticeably.

A third highly refined model with N = 640 was added to this case (represented by a solid

line) and it shows a consistency of convergence. This exercise explains the differences

shown in Fig. 4.6 and Fig. 4.7 as the older research lacks the computing resource for further

refinement.

A similar conclusion can be drawn using Fig. 4.9 for an incident angle of 90◦. The results

match with excellent accuracy if the canyon is shallow, this explains why the substructure

deletion method would work well for site amplification studies, but not as well for deeply

embedded foundations.

4.3 Response of an arbitrary shape Canyon to Incident P and SV-Waves

The response of an arbitrary shape canyon subjected to incident P and SV waves will be

presented in this section. The same canyon as depicted in Fig. 2.12 will be used. One

particular feature of this canyon is that left side of the model is a concave curve and

it has no noticaeable effect of the diffraction of SH-waves. But this minor feature has

important influence on the diffraction of inplane waves because there are now two wave

speeds involved.

It is well known that an incident P-wave could generate a reflected SV-wave in addition

to a reflected P-wave (Ewing et al 1957). Also, for a limited range of angles, an incident

SV-wave could generate a reflected P-wave in addition to a reflected SV-wave. The detail
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Figure 4.9. Aspect Ratio Comparison. SV-wave Incidence, θ = 90◦, η = 1
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Figure 4.10. P-wave Incidence, η = 1
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Figure 4.11. P-wave Incidence, η = 2
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derivation of this simplest of boundary value problem, that with a flat surface, is given in

Appendix D. As for a concave surface of the arbitrary shaped canyon, the incident body

waves, at a certain angle, could impinge upon the curved surface and that the gradual change

of slope will cause the reflected waves to interfere with each other. The result is an oscillatory

response on the left side of the canyon as the wave type convert from compressional wave

to shear wave, or vice versa.

The amplitude of the variation increases as the dimension frequency η is increased from

1 to 2 to 5; the slope of the concave surface is more prominent for waves with shorter

wavelengths. The six figures from Fig. 4.10 to Fig. 4.15 include P-wave incidence for three

dimensionless frequencies and SV-wave incidence for the same dimensionless frequencies.

The number of subregions used for the computation was N = 320.
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Figure 4.12. P-wave Incidence, η = 5
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Figure 4.13. SV-wave Incidence, η = 1
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Figure 4.14. SV-wave Incidence, η = 2
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Figure 4.15. SV-wave Incidence, η = 5
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Chapter 5

Site Amplification for Plane Strain Problems

From the development of previous chapters, it is now feasible to analyze an alluvial

valley overlying a stiffer bedrock and subjected to inplane body waves. This problem is

difficult in nature because of mode conversion between compressional and shear waves.

A portion of the reflected waves is also converted into Raleigh surface waves. As much

as it is still a two-dimensional problem; there is a lot of physical phenomena that must be

understood before a full three-dimensional analysis can be made with strong fundamental

knowledge of the elastic wave propagation problem.

There are some results available for comparison, such as Gatmiri et al (2007, 2009), who

presented time dependent results for a trapezoidal alluvial valley overlying a stiff bedrock

for vertically propagating SV-waves. The results were obtained using finite element for the

alluvial layer and a boundary element solution for the bedrock. Since the authors’ objective

was to recommend changes to the existing code, it would be difficult to compare the results

obtained using the substructure deletion method to those presented in the time domain and

in the form of response spectra.

5.1 Validation of Results Using Model Refinement

As performed several times previously in this dissertation, one criterion used was

to compare the results of models using different levels of refinement by controlling the

parameter N , the number of subregions used to represent the soil interface. To do this

comparative study, consider an alluvial layer to be added to the carved out half space

configuration as shown in Fig. 3.1. the half space model and the alluvial layer model, in this

case an ellipse with an aspect ratio of b/a. The two media have different material properties,
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the most prominent of which, for boundary condition applications, is the shear modulus,

μ. Let μ represents the shear modulus of the bedrock (irregular half space model) and μv

represents the shear modulus of the alluvial layer. Other material properties involved in the

problem includes rho, the mass density and β, the shear wave velocity. For elastic material,

the properties are related as μ = ρβ2 and μv = ρvβ
2
v . For inplane waves, there is one more

parameter of interest, the Poisson’s Ratio, ν. This ratio influences the ratio of the shear

wave velocity to the compressional wave velocity. For the present study, ν was chosen to be

1/3 for both the bedrock and the alluvium. With ν = 1/3, γ = β/α = 1/2 for both media.

The same approach as that used in the latter part of Section 4.2 will be employed to

determine if the results for the response of an alluvial layer is convergent. In Fig. 4.8 and

Fig. 4.9, it was shown that the accuracy for the substructure deletion method is best when

the aspect ratio is relatively small. Shown in Fig. 5.1 are results obtained using the ratios

β/βv = 2 and μ/μv = 6. The angle, θ = 60◦, was arbitrarily chosen. The top figure of

Fig. 5.1 shows that the results for the aspect ratio b/a = 0.25 usingN = 160 andN = 320

are basically the same and their plots match exactly in the figure. It is difficult to discern

which component is vertical or horizontal because of the plot style chosen, but the aim of

this figure to show whether the results are convergent, not to analyze the physics of the

problem. It is safe to say that less refined models could be used for shallower geometries

for the dimensionless frequency η = 1.

In the center figure, the aspect ratio of b/a = 0.5 is presented. The results are also

practically the same. The lower plot has the aspect ratio of b/a = 1, that of a circular

cylindrical shape, the results of the two models have larger deviations. It is supposed that

an even finer model could be used, as was done in Fig. 4.8 and Fig. 4.9, but it is clear that

the substructure deletion method performs best when the geometry of the scatterer is not

deeply embedded.
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Figure 5.1. Aspect Ratio Comparison. P-wave Incidence, θ = 60◦, η = 1
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Figure 5.2. Aspect Ratio Comparison. SV-wave Incidence, θ = 60◦, η = 1
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Shown in Fig. 5.2 is a similar type of comparison except the incident wave is an SV-wave.

The same angle, θ = 60◦, was chosen but this angle is a critical angle for the Poisson’s Ratio

of 1/3. As shown in a table in Appendix D, the angle θ cannot be less than 60◦ and still

remain a plane wave. The free field amplitude for an SV-wave at 60◦ is ux = 3.4179 and

uy = 0. Therefore the large amplitudes shown in Fig. 5.2 are partly due to the large free-

field amplitudes. The same conclusion can be made as that for Fig. 5.1. For the remaining

part of Chapter 5, all the models have aspect ratios of the order of 1:4, layer depth versus

layer width.

5.2 Response of an Elliptical Alluvial Valley to P and SV-waves

In several models for SH-wave analysis presented by Trifunac (1972), Wong and

Trifunac (1974) and Wong (1979), the elliptical canyon or elliptical alluvial valley were

used. The main reason for the first two references was that an exact infinite series solution

could be obtained using Bessel’s Functions and Matthieu Functions. But the third reference,

able to handle an arbitrary shape canyon, use the elliptical shape nonetheless because the

aspect ratio parameter, b/a, is convenient.

This section will includes some results to complete the series of solutions provided for

an elliptical alluvial valley. Shown in Fig. 5.3, 5.4 and 5.5 are the variation of ground

amplitudes on top of the elliptical alluvial valley for incident P-waves. The various lines

represent the amplitudes for different incident angles of θ = 30◦, 60◦ and 90◦. The upper

figures show the horizontal displacement amplitudes and the lower figures show the vertical

displacement amplitudes. The phases are not shown to simplify the figures, they will be

included in the time history calculations in Section 5.4.

Unlike the SH-wave problem, where the free field amplitude is always 2 times the

incident amplitude because of the constructive interference between the incident wave and

97



Figure 5.3. Amplitude Variation of Alluvial Valley to Incident P-waves, η = 1

its reflected wave from a plane boundary. The P-wave incident has a P-wave reflection

and a SV-wave reflection (except for θ = 90◦) because of mode energy conversion due to

the wave speed difference between the two waves. From the table in Appendix D, Section

D.2.1, the free field amplitudes for θ = 30◦ are |ux| = 1.3949 and |uy| = 1.1168. When

θ = 60◦, the amplitudes are |ux| = 0.9633 and |uy| = 1.7411. These values are to be

used to judge the site amplification factors, the amplification over the free field values. For
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Figure 5.4. Amplitude Variation of Alluvial Valley to Incident P-waves, η = 2

vertically incident P-wave, the amplitudes are |ux| = 0 and |uy| = 2 because there is no

mode conversion for wave incidence normal to the plane half space boundary.

The results for dimensionless frequencies of η = 1 (Fig. 5.3) and η = 2 (Fig. 5.4),

the variation of amplitudes is quite regular in nature, having smooth response curves.

In particular, the case θ = 90◦ has symmetrical results for both vertical and horizontal

components. There are higher amplitudes along the surface of the alluvial valley depending
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Figure 5.5. Amplitude Variation of Alluvial Valley to Incident P-waves, η = 5

on the angle of wave incident. They are caused by constructive and destructive interference

of diffracted waves. The results for the case where the dimensionless frequency is η = 5,

the variation patterns are too busy to be explained using physical interpretation. In this

particular case, there are five wavelengths inside the alluvial valley and many modes inside

the alluvial valley are excited. The fact the amplitudes are not even higher during resonance

100

0

2

4

6

8

H
or

iz
on

ta
l A

m
pl

itu
de

-1.0 -.5 .0 .5 1.00

2

4

6

8

x/a

V
er

tic
al

 A
m

pl
itu

de
 θ=90
 θ=60
 θ=30

 η=5 (P)
 b/a=0.25



for an undamped model is that radiation damping exists by wave energy escaping from the

valley to the far field.

Beside the complicated variation patterns, there is one interesting fact to observe: there

are location on the surface where the amplitudes are near zero. They appear to be quiet zones

but the motion is deceptive because they are the locations where the rotational components

are the largest. For the case of SH-waves as shown in Chapter Three, the large rotational

components signify torsional responses. In the present case, the large rotational components

are those of rocking for the vertical component. The low amplitude zone for the horizontal

displacement is that of a standing wave oscillating between compression and tension.

The response to incident P-wave was also repeated for SV-waves in Fig. 5.6, Fig. 5.7

and Fig. 5.8 for η = 1, 2 and 5, respectively. Again, the free field motion amplitude is

not a simple 2 as in the SH-wave case, mode conversion causes different amplitudes and

angles for the reflected waves. As explained in Ewing et al (1957), the boundary conditions

at the plane boundary requires that the apparent velocity at the free surface for both the

compressional wave and the shear wave to be the same. That requirement coerce the waves

to travel at different angles. For the case of SV-wave incident, the P-wave travels in the

horizontal direction when SV-wave is at the critical angle. The critical angle is a function

of Poisson’s Ratio and in the particular case of nu = 1/3, the critical angle is 60◦. When

the angle is smaller than the critical angle, it would be impossible for the reflected P-wave

to have a slow enough phase velocity to match the boundary condition.

From the table in Appendix D, Section D.3.1, the free field amplitudes for θ = 60◦

are |ux| = 3.4179 and |uy| = 0. For θ = 75◦, the amplitudes are |ux| = 1.9438 and

|uy| = 0.4970. These values are to be used to judge the site amplification factors, the

amplification over the free field values. For vertically incident SV-wave, the amplitudes are
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Figure 5.6. Amplitude Variation of Alluvial Valley to Incident SV-waves, η = 1

|ux| = 2 and |uy| = 0 because there is no mode conversion for wave incidence normal to

the plane half space boundary.

As seen from the response curve on the top of the alluvial valley surface, the amplitudes

for SV-wave incidence are significantly larger than those from P-wave incidence. Partly the

large amplitudes are due to the large free field motion amplitudes, but since the horizontal

motion is so large, there is sloshing type of behavior for the soft soil inside the valley,
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Figure 5.7. Amplitude Variation of Alluvial Valley to Incident SV-waves, η = 2

reminiscing of the terrible shaking of the Mexico City earthquake. The amplification is not

as pronounced for vertical motion caused by a P-wave incidence because the thin layer has

a larger stiffness in the vertical direction. One other factor is that the P-wave has a longer

wavelength because of a faster wave velocity and the alluvial valley appears to be smaller

as compared to the wavelength. For a Poisson’s ratio of 1/3, the compressional wave travels

at twice the speed of a shear wave.
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Figure 5.8. Amplitude Variation of Alluvial Valley to Incident SV-waves, η = 5

5.3 Response of an Arbitrary Shape Alluvial Valley to P and SV-waves

Consider now the response of an arbitrary shaped alluvial valley overlying bedrock. The

same model used in Chapter 3 (Fig. 3.6) will be used in this section as well. The interface of

the two materials, the bedrock and the alluvium, has a shape similar to the arbitrary shaped

canyon in Chapter Two, but shallower. The basic shape of the interface is a superposition of

an arc and a small amplitude sine function. The top surface of the alluvium is represented by
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another small amplitude sine function. Again, any shape could be used with this numerical

method, the x and y coordinates for any two-dimensional geometry could be obtained by a

grid generation program.

Figure 5.9. Low Frequency Response of Alluvial Valley to P-wave Incidence, η = 1

105

0

2

4

6

H
or

iz
on

ta
l A

m
pl

itu
de

-1.0 -.5 .0 .5 1.00

2

4

6

x/a

V
er

tic
al

 A
m

pl
itu

de

 θ=90
 θ=60
 θ=120
 θ=30
 θ=150

 η=1 (P)



Since there are many parameters that could vary, the material properties to be used in the

remaining sections of this chapter would beμ/μv = 6, ρ/ρv = 1.5, β/βv = 0.5, β/α = 0.5

and βv/αv = 0.5. With the alluvial valley and also the alluvium-bedrock interface being

not symmetric about the y-axis, wave incidence from the left side or the right side of the

valley would generate a different response. For that reason, 5 angles are considered for

P-wave incidence, θ = 30◦, 60◦, 90◦, 120◦ and 150◦. In Fig. 5.9 and Fig. 5.10. The solid

line will identify the response to vertically incident P-wave and different length of dash lines

represent the others.

One interesting result to indicate is that the response to a vertically incident P-wave is no

longer symmetrical about the y-axis because the alluvial valley itself has a nonsymmetrical

shape. That was one of the limitations of the elliptical alluvial valley model, that it is

symmetric about the y-axis. The response to a medium dimensionless frequency of η = 2

is significantly higher than that of the lower dimensionless frequency η = 1. It will be noted

in the next section, and was also noted back in Chapter Three, that there is a certain limit to

the site amplification factor, it would not become unrealistically high because of radiation

damping in the semi-infinite medium.

Shown in Fig. 5.11 and Fig. 5.12 are the response curves at the alluvial valley’s surface

subjected to SV-wave incidence. Five angles are considered for SV-wave incidence, θ =

60◦, 75◦, 90◦, 105◦ and 120◦. In these figures, the solid line will identify the response

to vertically incident SV-wave and different length of dash lines represent the others. As

explained in the previous section, SV-wave incidence has a larger amplitude from the free

field motion itself, therefore, the response is in general higher.
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Figure 5.10. Medium Frequency Response of Alluvial Valley to P-wave Incidence, η = 2

5.4 Time History Calculation for Alluvial Valley Surface

The concept of Fourier Transform was explained in Section 3.5 and the method applies

in this section as well. The input Ricker Wavelet is the same but it represents the strength

of the unit pulse, P or SV, arriving at the site. The maximum value of the response at the

site is then the site amplification factor for that particular location. Transfer Functions are
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Figure 5.11. Low Frequency Response of Alluvial Valley to SV-wave Incidence, η = 1

calculated for many parameters and stored in files ready to be used. There are simply too

many interesting cases to show, therefore, only a few selected cases will be presented.

Shown in Fig. 5.13 are the transfer functions for Station 4 (fig. 3.6). The top figure

includes the real and the imaginary parts of the ux component of motion. Both the real

and the imaginary parts are needed for the Fourier Transformation because the phases are

important for superposition purposes. The second part of the figure is the amplitude of the
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Figure 5.12. Medium Frequency Response of Alluvial Valley to SV-wave Incidence, η = 2

complex ux function. The maximum value of the transfer function amplitude is about 12

but that does not mean the time history will have a maximum of 12 because the phases could

invoke subtraction as well. This is interesting that the amplitude of the transfer function has

a limit, depending on the material contrast of the two soil media. Although the theory for

an undamped medium, the radiation damping resulted from outgoing waves prevents the

amplitude to be out of control.

109

0

5

10

15

H
or

iz
on

ta
l A

m
pl

itu
de

-1.0 -.5 .0 .5 1.00

5

10

15

x/a

V
er

tic
al

 A
m

pl
itu

de

 θ=90
 θ=75
 θ=105
 θ=60
 θ=120

 η=2 (SV)



Figure 5.13. Transfer Functions for ux and uy at Station 4
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Figure 5.14. Transfer Functions for ux and uy at Station 4
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In the third subfigure of Fig. 5.13 is the transfer function for the vertical component

uy . For a wave propagation problem with an irregular shaped alluvial valley, it is expected

all components will be excited. The ratio of the amplitudes can be different for various

incidence angles. Since over 90% of the computation effort comes from the formation of

the embedded matrix [GE22], computation for a large array of incident waves is a relatively

small effort. It is recommended that a probabilistic model could be used to estimate the

site amplification factors, including all effects such as variation of material properties,

characteristics of wave types and directions of wave arrival.

Shown in Fig. 5.14 and Fig. 5.15 are the time histories for the horizontal ux component

and the vertical uy component, respectively. The response functions were calculated for a

P-wave incidence with angle θ = 120◦, i.e., the wave arriving from the right side of the

alluvial valley. Because of the mode conversion effects, the wave forms appear to be more

complicated than those observed for SH-waves in Chapter 3. It is anticipated that a three-

dimensional model would generate even more complicated time histories as reflected waves

would arrive from all directions. The time history response functions were generated by one

simple pulse, that of the Ricker Wavelet, but it managed to create a response with significant

duration. Clearly, site amplification effect would cause the duration of the seismic event to

be significantly longer.

The time history responses to a SV-wave incident at the angle of θ = 75◦ are shown

in Fig 5.16 for the horizontal component ux and in Fig. 5.17 for the vertical component

uy . The nature of the incident wave has an influence on the generated waveform and it is

anticipated that for a typical seismic event, many different types of waves would arrive at the

site of interest, including many surface waves. This dissertation fails to analyze the effects

of Love Waves because the bedrock was modeled as a homogeneous half space. Future

work could extend to include layers and the modeling would be more sophisticated. But the
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Figure 5.15. Vertical Response to P-wave Incidence, θ = 120◦
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Figure 5.16. Horizontal Response to SV-wave Incidence, θ = 75◦
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Figure 5.17. Vertical Response to SV-wave Incidence, θ = 75◦
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substructure deletion method opens up a new avenue for the development of tools to handle

the three-dimensional problem, especially those with shallow aspect ratios.

There is one other interesting wave to examine for inplane problems, that of the Rayleigh

Wave at the surface of a half space. Truly no such wave exists in nature because there is

no homogeneous half space on this planet. But academically there is such a wave and

it propagates at a speed slower than the shear wave speed. In Lamb’s solution, i.e., the

half space Green’s Function used in the present application, there is a Rayleigh Pole in each

function. That indicates that the Rayleigh Wave would be excited by wave scattering around

the canyons and alluvial valleys studied.

In Appendix D, Section D.5, a table is shown for the Rayleigh Wave speed as a function of

Poisson’s Ratio, ν̄. When the Poisson’s Ratio is 1/3, the Rayleigh Wave speed is 0.932526β.

There is also a ratio of vertical amplitude to horizontal amplitude of 1.565199. The two

components of displacement are out of phase by 90◦, creating a retrograde or rolling type

of motion.

Shown in Fig. 5.18 are some time histories related to Rayleigh Wave incidence. The

top two figures are the horizontal and vertical displacements of the incident pulse. The

vertical component is a factor of 1.565199 higher; it is also out of phase with the horizontal

component. When one component reaches zero, the other reaches the maximum, and vice

versa. The third and the fourth figures in Fig. 5.18 show the horizontal and vertical response

at station 1, near the edge of the alluvial valley. It appears even at station 1 the characteristics

of the Rayleigh Wave were lost. The horizontal component is now larger than the vertical

component and the phase difference of 90◦ is no longer discernable.

As shown in Eq. (D.92) and Eq. (D.93), the free field displacements of a Rayleigh Wave

attenuate exponentially with respect to depth. The rate of attenuation is especially high for
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Figure 5.18. Response to Rayleigh wave Incidence
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Figure 5.19. Attenuation of Rayleigh Wave Over Distance
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high wave numbers k. For this reason, the incident Rayleigh Wave cannot reach the base of

the alluvial valley at higher frequencies. The wave must therefore enter the alluvial valley

only at its edge and most of the incident energy would be reflected. Shown in Fig. 5.19 are

the responses to a Rayleigh Wave incidence at Stations 1, 2 and 3. There is a quick decay

of amplitudes further back into the alluvial valley at stations 4 through 7 and they were not

presented in the figure.

It is anticipated that many modes of Rayleigh Waves would have a larger influence on

the response of an alluvial valley. However, a layered medium must be used to model the

bedrock to be able to analyze these most interesting cases and they are beyond the scope of

this dissertation.
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Chapter 6

Conclusions

The concept of Substructure Deletion, pioneered by Professor Dasgupta for the

calculation of embedded rigid foundations, was adapted to analyze site amplification

problems in this dissertation. The concept simplified the calculation of the so-called

boundary element solution which allows the outgoing waves to escape into the far-field

to be represented by a simple half space or a horizontally layered half space.

The substructure deletion concept uses only the Green’s Functions on the surface of the

basic half space model, the effects of buried sources are accounted for by adding to the

irregular embedded interface a replacement soil of the same material to form a whole half

space. The replacement soil model, being finite in size, could be modeled with size-limited

methods such as finite element or finite difference. The displacement-traction relationship

for the embedded interface could then be obtained by a matrix manipulation and subsequent

subtraction of the finite model matrix (of the same material) from the surface formulation of

the half space. There are major advantages of this method because the compliance matrix for

a flat surface has no traction because of the free surface boundary condition, thus eliminating

the need to generate stress Green’s Functions. The flat surface also allows geometrical

modeling advantages, if the elements have equal size, the compliance matrix (displacement-

traction relationship) could be formed using symmetry arguments and similarity arguments

so that only one row of the matrix needs to be constructed. The computation time can be

reduced by an order of magnitude using these advantages.

Since its introduction in 1979, there has been limited application of this method in the

soil-structure interaction field. Perhaps modeling deeply embedded foundations is a difficult
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challenge for this concept, having the buried interface too far away from the flat half space

surface. There might have been other issues with the compatibility of the finite element

formulation and the continuum mechanics formulation. The present application uses the

boundary integral equation formulation for both the interior (finite model) and the exterior

models, thus eliminating the alleged compatibility issues. Another possible advantage of

the present application is that site amplification problems have models which are not deeply

embedded beneath the free surface. The typical aspect ratio of an alluvial valley is of

the order of 1:10, depth versus lateral dimensions. This fact plays into the favor of the

substructure deletion concept.

A careful formulation, by computing all values using extra precision, showed that this

method can be formulated to provide a stable solution, even for high frequencies. One

major difference between the rigid embedded foundation problem and the site amplification

problem is that the former targets only the integral of the surface results to obtain the

impedance function, thus smoothing over some inaccuracies of the results. For the site

amplification problem, results at every node on the free surface are of interest, therefore,

accurate computation is important. By making larger and larger models, the elements

become smaller and smaller, the task of handling Green’s Function singularities becomes

an issue and attention to detail was required to make the formulation perform properly.

The substructure deletion concept was tested against exact infinite series solution in the

SH-wave case, against simple rigid foundation calculation and against results in the plane

strain (P, SV, Rayleigh waves) case and the accuracy was founded to be excellent. For cases

where there are no comparative solutions, the numerical solution was tested using different

levels of refinement to ensure that the results converge. All these tests were conclusive that

the method performs well for site amplification problems.
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The computer programs developed for this dissertation were deployed to analyze several

samples of arbitrary shaped canyons and alluvial valleys. The calculation of transfer

functions to a dimensionless frequency of over 30 and the formulation was able to perform

in a stable fashion. This method can handle actual dimensions of the physical problems, tens

of kilometers in size with wavelengths less than one tenth of a kilometer. Using a boundary

integral formulation, it has one reduction in dimension compared to the volume formulation

such as finite element and finite difference. For three-dimensional wave scattering problems,

this substructure deletion concept should be able to make the problem manageable. Of

course, there is a limitation that the problem must be linear and that the material inside

the scatter’s surface must be homogeneous. But the number of problems that this method

can address makes it a good tool for numerical simulation; it can help create a better

understanding of the site amplification problem.

The contribution of this dissertation is the provision of a tool to analyze site amplification

problems for a better understanding of the physics of the problem. Since the current seismic

related building codes relied on one-dimensional vertically propagated wave solutions.

Subsequent research in this area have added the effects of two-dimensional geometry and

the concept of wave focusing to the possible explanation of why observed site amplification

factors are highly localized. The present method provides a way to obtain the response of

an alluvial valley to incident body waves from any direction and is able to handle surface

waves as well. The major computational cost of this method is during the process of matrix

formation, the computation of the alluvial valley response to various incident wave motion is

less than 5% of the effort if the matrix is stored in today’s terabyte storage units. This offers

a benefit that probabilistic methods could be employed by generating random response to

many different types of free field motion. The present method opens up possibilities for a

realistic analysis of the site amplificaton effects.
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The next step for the development of this method is to extend the solution to include

horizontal layers for the half space Green’s Functions. The finite replacement model to fill

that buried interface must also be layered. After the compliance matrix is developed for the

buried interface of the bedrock, fully three-dimensional arbitrary shaped and non-horizontal

layered alluvial valley could be placed on top and a linear solution of this major problem is

within reach.
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Appendix A

The Boundary Integral Equation Method

Applying the representation theorem of elastodynamics first introduce by DeHoop

(1958) and later applied by Haskell (1966, 1969), the waves in a medium can be represented

by sources placed at the surface of a scatterer. In particular, the wave motion in an exterior

medium, in which the outgoing waves are assumed to propagate into the far-field, can

be expressed in terms of the boundary values at the scatterer’s surface and the Green’s

functions of the propagating medium. The Green’s functions account for all soil properties

such as the configuration of layers, shear and compressional wave velocities, mass densities,

damping characteristics, etc. This integral representation theorem can be derived by using

Betti-Rayleigh relationship (Fung, 1965) to a body Ω as shown in Fig. A.1.

Figure A.1 – Schematic of the formulation of the Boundary Integral Equation.
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The body Ω, bounded by a surface S, is subjected to loading conditions with �t being the

traction vector applied at the surface and �f being the body force per unit volume within the

body. The displacement vector resulting from this loading condition is �u. Consider now the

action of a separate loading condition with �t∗ and �f∗, they will create a new displacement

vector �u∗. The reciprocal relationship, based on the principles of physics, can be written as

∫
S

�u∗T �t dS +
∫

Ω

�u∗T �f dΩ =
∫
S

�uT �t∗ dS +
∫

Ω
�uT �f∗ dΩ , (A1)

indicating that in a linear elastic solid, the work done by a set of forces acting through the

corresponding displacement produced by a second set of forces is equal to the work done

by the second set of forces acting through the corresponding displacements produced by the

first set of forces. The inner products of all four terms in Eq. (A1) are scalars.

To simplify Eq. (A1) for applications in this dissertation, the body force �f is assumed

to be zero. Re-ordering the inner-products of the right-hand-side of Eq. (A1), the equation

can be written as

∫
S

�u∗T �t dS =
∫
S

�t∗
T
�u dS +

∫
Ω

�f∗T �u dΩ . (A2)

To make Eq. (A2) useful for general applications, let the loading conditions annotated by “*”

be those generated by unit point loads in orthogonal directions. More specifically, consider 3

different cases where the body force �f∗ is a point force applied at location�rp = [xp, yp, zp]
T

:

CASE 1: Body force in the x-direction at point �rp:

�f∗
x =

[
δ(�r − �rp) , 0 , 0

]T
(A3a)
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CASE 2: Body force in the y-direction at point �rp:

�f∗
y =

[
0 , δ(�r − �rp) , 0

]T
(A3b)

CASE 3: Body force in the z-direction at point �rp:

�f∗
z =

[
0 , 0 , δ(�r − �rp)

]T
(A3c)

The resulting displacement vector �u∗ at �r = [x, y, z]T for the above loading conditions are

CASE 1:

�u∗
x =

[
Uxx(�rp|�r) , Uxy(�rp|�r) , Uxz(�rp|�r)

]T
(A4a)

CASE 2:

�u∗
y =

[
Uyx(�rp|�r) , Uyy(�rp|�r) , Uyz(�rp|�r)

]T
(A4b)

CASE 3:

�u∗
z =

[
Uzx(�rp|�r) , Uzy(�rp|�r) , Uzz(�rp|�r)

]T
(A4c)

in whichUij is the displacement in the êj-direction caused by a point load in the êi-direction.

The column vectors in Eq. (A4) represent the displacement Green’s functions. The index

notation for êi is defined as ê1 = ı̂, ê2 = ĵ and ê3 = k̂.

Following similar steps, the traction vector �t∗ at �r resulting from the given loading

conditions are

CASE 1:

�t∗x =
[
Txx(�rp|�r) , Txy(�rp|�r) , Txz(�rp|�r)

]T
(A5a)

CASE 2:

�t∗y =
[
Tyx(�rp|�r) , Tyy(�rp|�r) , Tyz(�rp|�r)

]T
(A5b)
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CASE 3:

�t∗z =
[
Tzx(�rp|�r) , Tzy(�rp|�r) , Tzz(�rp|�r)

]T
(A5c)

in which Tij is the traction developed at �r in the êj-direction by a point load at �rp in the

êi-direction. The traction vectors in Eq. (A5) can be calculated by performing the matrix

product of the Green’s function stress tensor and the direction cosines of the outward normal

vector ên on surface S as⎡
⎣TxTy
Tz

⎤
⎦ =

⎡
⎣σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎤
⎦
⎡
⎣nxny
nz

⎤
⎦ , (A6)

in which nx, ny and nz are the direction cosines of ên.

By substituting the three sets of loading conditions as defined in Eq (A3), Eq. (A2) can

be written with the Green’s Functions as a matrix equation in the following form,

∫
S

[
U(�rp|�r)

]
�t(�r) dS =

∫
S

[
T (�rp|�r)

]
�u(�r) dS + �u(�rp) , (A7)

in which

[
U(�rp|�r)

]
=

⎡
⎢⎢⎢⎣
Uxx(�rp|�r) Uxy(�rp|�r) Uxz(�rp|�r)

Uyx(�rp|�r) Uyy(�rp|�r) Uyz(�rp|�r)

Uzx(�rp|�r) Uzy(�rp|�r) Uzz(�rp|�r)

⎤
⎥⎥⎥⎦ , (A8)

[
T (�rp|�r)

]
=

⎡
⎢⎢⎢⎣
Txx(�rp|�r) Txy(�rp|�r) Txz(�rp|�r)

Tyx(�rp|�r) Tyy(�rp|�r) Tyz(�rp|�r)

Tzx(�rp|�r) Tzy(�rp|�r) Tzz(�rp|�r)

⎤
⎥⎥⎥⎦ , (A9)

and the vector �u(�rp) is the result of the integral

∫
Ω

⎡
⎣ δ(�r − �rp) 0 0

0 δ(�r − �rp) 0
0 0 δ(�r − �rp)

⎤
⎦
⎡
⎣u1(�r)
u2(�r)
u3(�r)

⎤
⎦ dΩ . (A10)

132



Using the integral representation of Eq. (A7), the displacement vector �u(�rp) at any

location �rp within the soil medium can be calculated in terms of the boundary displacement

�u(�r) and boundary traction �t(�r) as

�u(�rp) =
∫
S

[
U(�rp|�r)

]
�t(�r) dS −

∫
S

[
T (�rp|�r)

]
�u(�r) dS . (A11)

The integrals are evaluated over the surface S only.
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Appendix B

Anti-Plane Green’s Function Matrices

To calculate the response, �u, at observation point �rp, a representation theorem based on

the reciprocity relationship and the known displacements, �u, and known tractions, �t, at the

surface, S, can be written as

∫
S

[
U(�rp, �r)

]
�t(�r) dS −

∫
S

[
T (�rp, �r)

]
�u(�r) dS = �u(�rp) , (B1)

in which [U ] is the Green’s Function matrix for displacements, [T ] is the Green’s Function

matrix for tractions, and �r is the position vector on the surface S.

B.1 Green’s Functions for an Infinite Medium

For two-dimensional SH-wave problems, the component of interest is in the z-direction,

the representation theorem is simplified to

∫
S

Uzz(�rp, �r) tz(�r) dS −
∫
S

Tzz(�rp, �r)uz(�r) dS = uz(�rp) , (B2)

in which Uzz is the only applicable element of the matrix [U ] and it is defined as

Uzz = − i

4μ
H

(2)
0 (kR) , (B3)

where k is the wave number ω/β, β is the shear wave velocity,H(2)
0 is the Hankel Function

of the Second Kind and zeroth order, and

R =
√

(x− xp)2 + (y − yp)2 .
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The traction matrix [T ] is calculated using the stress matrix and the outward normal, �n, of

the surface S, defined as �n = [nx, ny, nz]T . One column of the traction matrix, [T ], can be

determine by the matrix product,

⎡
⎣TxiTyi
Tzi

⎤
⎦ =

⎡
⎣σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎤
⎦
i

⎡
⎣nxny
nz

⎤
⎦ (B4)

in which i is the direction of a point load at �rp and the stress matrix contains the stresses

generated by that point load.

The antiplane motion of SH-waves requires only one component of [T ] and it is defined

as

Tzz = [σzx σzy 0 ]

⎡
⎣nxny

0

⎤
⎦ = σzxnx + σzyny . (B5)

Using the shear modulus, μ, the stresses generated by an antiplane line load are

σzx = μ
∂Uzz
∂x

= − ik
4
H

(2)
1 (kR)

∂R

∂x
, (B6a)

σzy = μ
∂Uzz
∂y

= − ik
4
H

(2)
1 (kR)

∂R

∂y
, (B6b)

in which H(2)
1 is the Hankel Function of the Second Kind and first order,

∂R

∂x
=
x− xp
R

and
∂R

∂y
=
y − yp
R

. (B7)

B.2 Green’s Functions for a Semi-Infinite Medium

For two-dimensional SH-wave problems in a semi-infinite medium, the component

of interest is in the z-direction, the representation theorem is simplified to that shown in

Eq. (B2). But Uzz , the only applicable element of the matrix [U ], is obtained using a mirror

image with respect to the x−axis so that its symmetry generates a condition so that the shear
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stress σZy is 0 on the half-space boundary. The displacement Green’s Function, Uzz , can

therefore be written as

Uzz = − i

4μ

[
H

(2)
0 (kR1) +H

(2)
0 (kR2)

]
, (B8)

in which
R1 =

√
(x− xp)2 + (y − yp)2 ,

R2 =
√

(x− xp)2 + (y + yp)2 .

The traction matrix [T ] is calculated using the stress matrix, similar to that described in

Eq. (B4) of section B.1. The one component of interest for [T ] is defined as

Tzz = [σzx σzy 0 ]

⎡
⎣nxny

0

⎤
⎦ = σzxnx + σzyny . (B9)

Using the shear modulus, μ, the stresses generated by an antiplane line load are

σzx = μ
∂Uzz
∂x

= − ik
4

[
H

(2)
1 (kR1)

∂R1

∂x
+H

(2)
1 (kR2)

∂R2

∂x

]
, (B10a)

σzy = μ
∂Uzz
∂y

= − ik
4

[
H

(2)
1 (kR1)

∂R1

∂y
+H

(2)
1 (kR2)

∂R2

∂y

]
, (B10b)

with

∂R1

∂x
=
x− xp
R1

,
∂R2

∂x
=
x− xp
R2

,
∂R1

∂y
=
y − yp
R1

,
∂R2

∂y
=
y + yp
R2

.

(B11)

B.3 Surface Green’s Functions for a Semi-Infinite Medium

For the special case where the source and the observation points are both on the surface

of the half-space, the semi-infinite space Green’s function is simplified further as it is defined

as

Uzz = − i

2μ
H

(2)
0 (kR) , (B12)
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in whichR = |x−x0|. With the direction cosines of the outer normal defined bynx = 0 and

ny = 1, the traction Green’s Function Tzz = σzy and it is 0 everywhere on the half-space

surface. The representation theorem in Eq. (B2) is simplied to

∫
S

Uzz(�rp, �r) tz(�r) dS = uz(�rp) , (B13)

making the numerical solution much simpler.

137



Appendix C

Plane Strain Green’s Function Matrices

To obtain the two-dimensional Green’s function matrices [U ] and [T ] for application in

the representation theorm, the solution for displacements and stresses caused by a line load

must be considered. The first row of [U ], U11 and U12, corresponds to the horizontal and

vertical displacements induced by a horizontal line load while the second row of [U ], U21

andU22, correspond to the horizontal and vertical displacements produced by a vertical line

load, respectively.

The two rows of the matrix [T ] contain the tractions at the observation point generated

by the respective line loads described above. They are calculated as the matrix product of

the stress tensor generated by the line loads and the direction cosines of the outward normal

vector at the surface.

C.1 Green’s Functions for an Infinite Medium

For an infinite and homogeneous medium, the solution of a vertical line load can be

used to produce the solution of a horizontal line load using an orthogonal transformation. In

Section C.1.1, the solution for the vertical line load will be presented and the transformation

necessary to obtain the results for the horizontal line load will be given in Section C.1.2.

C.1.1 Displacements and Stresses Generated by a Vertical Line Load

Shown in Fig. C1 is a concentrated line loadQY in the positive y-direction. The solution

of the two-dimensional wave equation can be written in terms of two potential functions φ
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and ψ as shown in Lamb’s paper (1904) as

φ =
QY
4k2μ

∂

∂y
D0(hr) , (C1)

ψ =
QY
4k2μ

∂

∂x
D0(kr) , (C2)

in which r =
√
x2 + y2 ,x = xo−xs andy = yo−ys are the relative position coordinates of

the observation point with respect to the source point in thex- and y- directions, respectively.

The functionD0, used by Lamb (1904) is related to the Hankel Function as,D0 = −iH(2)
0 =

−Y0 − iJ0.

Figure C.1 – Vertical QY Line Force Configuration.

The argument of φ, hr = ωr/α, is a dimensionless frequency normalized by the

compressional wave velocity α, implying that φ is a potential for compressional waves.

ψ, on the other hand, is the shear wave potential because kr = ωr/β is normalized by the

shear wave velocity β. Note, the Hankel function of the second kind is used in this derivation

because it represents an outgoing wave as r →∞ when associated with the harmonic time

factor eiωt.
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For a unit load QY in the vertical direction, let the amplitude QY = 1, then

φ =
i

4k2μ

∂

∂y
H

(2)
0 (hr) , (C3)

and

ψ =
−i

4k2μ

∂

∂x
H

(2)
0 (kr) . (C4)

C.1.1.1 – Displacements

Using the potentials φ and ψ, the displacements in the x- and y-directions, respectively,

can be expressed as,

U21 =
∂φ

∂x
+
∂ψ

∂y

=
i

4k2μ

[
∂2

∂x∂y
H

(2)
0 (hr)− ∂2

∂y∂x
H

(2)
0 (kr)

]
, (C5)

and

U22 =
∂φ

∂y
− ∂ψ

∂x

=
i

4k2μ

[
∂2

∂y2H
(2)
0 (hr) +

∂2

∂x2H
(2)
0 (kr)

]
, (C6)

in which, the derivatives of the Hankel function are,

∂2

∂x2H
(2)
0 (kr) =

d2

dr2
H

(2)
0 (kr)

[
∂r

∂x

]2
+

d

dr
H

(2)
0 (kr)

[
∂2r

∂x2

]
, (C7a)

∂2

∂y2H
(2)
0 (kr) =

d2

dr2
H

(2)
0 (kr)

[
∂r

∂y

]2
+

d

dr
H

(2)
0 (kr)

[
∂2r

∂y2

]
, (C7b)

∂2

∂y∂x
H

(2)
0 (kr) =

d2

dr2
H

(2)
0 (kr)

[
∂r

∂x

][
∂r

∂y

]
+

d

dr
H

(2)
0 (kr)

[
∂2r

∂x∂y

]
, (C7c)

and

d

dr
H

(2)
0 (kr) = −kH(2)

1 (kr) , (C7d)

d2

dr2
H

(2)
0 (kr) = −k2

[
H

(2)
0 (kr)− 1

kr
H

(2)
1 (kr)

]
. (C7e)
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In the above expressions, the derivatives of the distance r can be written as

∂r

∂x
=
x

r
, (C8a)

∂r

∂y
=
y

r
, (C8b)

∂2r

∂x2 =
1
r

(
1− x2

r2

)
, (C8c)

∂2r

∂y2 =
1
r

(
1− y2

r2

)
, (C8d)

and

∂2r

∂x∂y
= −xy

r3
. (C8e)

The expressions in Eq. (C7a) to Eq. (C7e) are the same for the function, H(2)
0 (hr), except

the wave number k is replaced by h.

C.1.1.2 – Stresses

The stress components, σxxY
, σxyY

and σyyY
can be expressed in terms of the potential

functions φ and ψ as

1
μ
σxxY

= −k2φ− 2
∂2φ

∂y2 + 2
∂2ψ

∂x∂y
(C9)

=
i

4k2μ

[
−k2 ∂

∂y
H

(2)
0 (hr)− 2

∂3

∂y3H
(2)
0 (hr)− 2

∂3

∂x2∂y
H

(2)
0 (kr)

]
,

1
μ
σxyY

= 2
∂2φ

∂x∂y
− k2ψ − 2

∂2ψ

∂x2 (C10)

=
i

4k2μ

[
2

∂3

∂x∂y2H
(2)
0 (hr) + k2 ∂

∂x
H

(2)
0 (kr) + 2

∂3

∂x3H
(2)
0 (kr)

]
,

and

1
μ
σyyv = −k2φ− 2

∂2φ

∂x2 − 2
∂2ψ

∂x∂y
(C11)

=
i

4k2μ

[
−k2 ∂

∂y
H

(2)
0 (hr)− 2

∂3

∂x2∂y
H

(2)
0 (hr) + 2

∂3

∂x2∂y
H

(2)
0 (kr)

]
,
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in which,

∂

∂x
H

(2)
0 (kr) =

d

dr
H

(2)
0 (kr)

(
∂r

∂x

)
, (C12a)

∂

∂y
H

(2)
0 (kr) =

d

dr
H

(2)
0 (kr)

(
∂r

∂y

)
, (C12b)

∂3

∂x3H
(2)
0 (kr) =

d3

dr3
H

(2)
0 (kr)

(
∂r

∂x

)3

+ 3
d2

dr2
H

(2)
0 (kr)

(
∂r

∂x

)(
∂2r

∂x2

)

+
d

dr
H

(2)
0 (kr)

(
∂3r

∂x3

)
, (C12c)

∂3

∂y3H
(2)
0 (kr) =

d3

dr3
H

(2)
0 (kr)

(
∂r

∂y

)3

+ 3
d2

dr2
H

(2)
0 (kr)

(
∂r

∂y

)(
∂2r

∂y2

)

+
d

dr
H

(2)
0 (kr)

(
∂3r

∂y3

)
, (C12d)

∂3

∂x∂y2H
(2)
0 (kr) =

d3

dr3
H

(2)
0 (kr)

(
∂r

∂x

)(
∂r

∂y

)2

+
d

dr
H

(2)
0 (kr)

(
∂3r

∂x∂y2

)

+
d2

dr2
H

(2)
0 (kr)

[
∂2r

∂y2

∂r

∂x
+ 2

∂r

∂y

∂2r

∂x∂y

]
, (C12e)

∂3

∂x2∂y
H

(2)
0 (kr) =

d3

dr3
H

(2)
0 (kr)

(
∂r

∂x

)2(
∂r

∂y

)
+

d

dr
H

(2)
0 (kr)

(
∂3r

∂x2∂y

)

+
d2

dr2
H

(2)
0 (kr)

[
∂2r

∂x2

∂r

∂y
+ 2

∂r

∂x

∂2r

∂x∂y

]
, (C12f)

with

d3

dr3
H

(2)
0 (kr) = k3

{
H

(2)
1 (kr)

[
1− 2

(kr)2

]
+

1
kr
H

(2)
0 (kr)

}
, (C12g)

and the derivatives of the distance r expressed as

∂3r

∂x3 =
3x
r3

(
−1 +

x2

r2

)
, (C13a)

∂3r

∂y3 =
3y
r3

(
−1 +

y2

r2

)
, (C13b)

∂3r

∂x2∂y
=

y

r3

(
−1 + 3

x2

r2

)
, (C13c)

∂3r

∂x∂y2 =
x

r3

(
−1 + 3

y2

r2

)
. (C13d)
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The expressions in Eq. (C12a) to Eq. (C12e) are the same for the function,H(2)
0 (hr), except

the wave number k is replaced by h.

C.1.2 Displacements and Stresses Caused by a Horizontal Line Load

Since the infinite space is homogeneous and isotropic, the solution developed for a

vertical line load QY can be reused for a horizontal line load QX by doing a coordinate

transformation.

Figure C.2 – Horizontal QX Line Force Configuration.

Shown in Fig. C2 is an illustration of the horizontal line load in the x-direction using

the (x, y) coordinate system. Also in the same figure is the (x′, y′) coordinate system.
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The (x′, y′) system is rotated clockwise from the (x, y) system by 90◦. The orthogonal

transformation between these systems can be expressed as

[Q(xy ←− x′y′)] =
[

0 1
−1 0

]
. (C14)

To obtain the results for the horizontal point load QX , calculate the displacements and

stresses in the (x′, y′) system using the expressions presented in Section C.1.1. This is done

because QX is in the y′-direction, formerly the vertical direction. The values for the prime

coordinates can be obtained from the position vector of the present configuration as

[
x′

y′

]
= [Q]T

[
x
y

]
=
[

0 −1
0 1

] [
x
y

]
=
[−y
x

]
. (C15)

Use now the calculated displacements in the (x′, y′) system and transform them to the (x, y)

system using

[
ux
uy

]
= [Q]

[
ux′

uy′

]
=
[

0 1
−1 0

] [
ux′

uy′

]
=
[
uy′

−ux′

]
. (C16)

To transform the stress tensor, use the transformation of the form

[A(x, y)] = [Q][A(x′, y′)][Q]T , (C17)

in which [A] is any matrix, a tensor of second rank.

C.1.2.1 – Displacements

If the displacements in Section C.1 can be written in functional form as

[
U21(x′, y′)
U22(x′, y′)

]
,

then the displacements caused by a horizontal line load in the x-direction can be written as

[
U11(x, y)
U12(x, y)

]
=
[
U22(−y, x)
−U21(−y, x)

]
, (C18)
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in which the coordinates x, and y are the only parameters displayed because the material

properties of the viscoelastic medium remain unchanged.

C.1.2.2 – Stresses

If the stress tensor in Section D.1 can be written in functional form as

[
σxxY

(x′, y′) σxyY
(x′, y′)

σyxY
(x′, y′) σyyY

(x′, y′)

]
,

then the stresses caused by a horizontal line load in the x-direction can be written as

[
σxxX

(x, y) σxyX
(x, y)

σyxX
(x, y) σyyX

(x, y)

]
=
[
σyyY

(−y, x) −σyxY
(−y, x)

−σxyY
(−y, x) σxxY

(−y, x)
]

. (C19)

C.1.3 Formation of [U] and [T]

Using the equations formulated in the two previous sections, the matrices [U ] and [T ]

needed for the representation theorem can be formed as follows:

[U ] =
[
U11 U12
U21 U22

]
, (C20)

[T ] =
[
T11 T12
T21 T22

]
, (C21)

in which the matrix elements, Tij , can be calculated as

[
T11
T12

]T
=
[
σxxX

σxyX

σyxX
σyyX

] [
nx
ny

]
, (C22)

and [
T21
T22

]T
=
[
σxxY

σxyY

σyxY
σyyY

] [
nx
ny

]
. (C23)

In Eqn. (C22) and Eq. (C23), nx and ny are the direction cosines of the outer normal vector

of the boundary surface.
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C.2 Surface Green’s Functions for a Semi-Infinite Medium

To obtain the two-dimensional Green’s function matrices [U ] and [T ] for the surface

of a semi-infinite medium, the solution for displacements and stresses caused by a line

load must be considered. These solutions are available from the classical publication by

Professor Horace Lamb (1903) in the Philosophical Transaction of the Royal Philosophical

Society of London. In this section, the displacements and the line loads are all located at

the surface of the semi-infinite space, simplifying the geometry of the problem.

The two rows of matrix [T ] contain the tractions at the observation point generated by

the respective line loads described earlier. But since the stresses at the surface of the semi-

infinite medium, by definition of the boundary conditions, are zero, the traction Green’s

function matrix [T ] is zero.

With the presence of the half-space surface, the mathematical formulation of the Green’s

functions become more tedious because of mode conversions between the P and SV waves.

The advantage of a mirror image as exploited in Appendix B for SH-waves is no longer

possible.

Using the notation adapted by Ewing et al (1957), and after a normalization with respect

to kβ = ω/β, the infinite integrals for the displacement Green’s Functions can be expressed

as:

U12 =
i

2πμ

∫ ∞

−∞

k
(
2k2 − 1− 2νν′)

F (k)
e−ia0kx dk , (C24)

U22 = − 1
2πμ

∫ ∞

−∞

ν

F (k)
e−ia0kx dk , (C25)

U11 = − 1
2πμ

∫ ∞

−∞

ν′

F (k)
e−ia0kx dk , (C26)

U21 = − i

2πμ

∫ ∞

−∞

k
(
2k2 − 1− 2νν′)

F (k)
e−ia0kx dk , (C27)
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in which a0 = ω/β, ν =
√
k2 − γ2, ν′ =

√
k2 − 1, γ = β/α, and F (k) is the well-known

Rayleigh Determinant defined as F (k) = (2k2 − 1)2 − 4k2νν′. The magnitude of the

vertical and horizontal line sources were set at 1.

As it is given from Eq. (C24) to Eq. (C27), the infinite integrals are too complicated to

be evaluated analytically. They are also not amenable to numerical methods because the

Rayleigh Determinant has a root, known as the Rayleigh Pole, at k = s, within the interval

of integration. For example, when γ = β/α = 1/2, s = 1.07236. The location of the

Rayleigh Poleon the k-axis is dependent on material properties, it represents physically the

Rayleigh Surface Wave generated by the line sources.

Using a complex contour integration scheme as shown in detail in Chapter 2 of Ewing

et al (1957), the infinite integral can be transformed into combination of finite integrals and

residues that are relatively simple to evaluate numerically. They are shown below:

πμU11 = iπ

√
s2 − 1

Δ′
o(s, γ)

e−ia0sx − i
∫ γ

0

√
1− k2

Δ1(k, γ)
e−ia0kxdk

− i
∫ 1

γ

(2k2 − 1)2
√

1− k2

Δ2(k, γ)
e−ia0kxdk +

∫ ∞

0

√
1 + k2

Δ3(k, γ)
e−a0kxdk ,

(C28)

πμU21 = −π s(2s
2 − 1)− 2s

√
s2 − γ2

√
s2 − 1

Δ′
0(s, γ)

e−ia0sx

+ 2
∫ 1

γ

k(2k2 − 1)
√
k2 − γ2

√
1− k2

Δ2(k, γ)
e−ia0kx dk ,

(C29)

πμU12 = −πμU21 ,

(C30)

and
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πμU22 = iπ

√
s2 − γ2

Δ′
o(s, γ)

e−ia0sx − i
∫ γ

0

√
γ2 − k2

Δ1(k, γ)
e−ia0kxdk

− i
∫ 1

γ

4k2(k2 − γ2)
√

1− k2

Δ2(k, γ)
e−ia0kxdk +

∫ ∞

0

√
k2 + γ2

Δ3(k, γ)
e−a0kxdk .

(C31)

In the above expressions, the important functions and parameters are

Δ0(k, γ) = (2k2 − 1)2 − 4k2υυ′,

Δ1(k, γ) = (2k2 − 1)2 + 4k2
√
γ2 − k2

√
1− k2,

Δ2(k, γ) = (2k2 − 1)4 + 16k4(k2 − γ2)(1− k2),

Δ3(k, γ) = (2k2 + 1)2 − 4k2
√
k2 + γ2

√
k2 + 1,

Δ′
0(s, γ) =

d

dk
Δ0(k, γ)

∣∣∣∣
k=s

Δ′
0(s, γ) = 8s

[
(2s2 − 1)−

√
s2 − γ2

√
s2 − 1

]
− 4s3(2s2 − (1 + γ2))√

s2 − γ2
√
s2 − 1

υ =
√
k2 − γ2,

υ′ =
√
k2 − 1,

a0 = ωb/β,

and

γ = β/α.

The ratio of wave velocities, γ, can be expressed in terms of the Poisson Ratio, ν̄, as

γ =
√

(1− 2ν̄)/(2(1− ν̄)).

The basic soil properties referenced, α, β and ν̄ are the compressional wave velocity,

shear wave velocity and the Poisson’s ratio for the semi-infinite medium, respectively. In

elasticity, a combination of any two material constants is sufficient to uniquely determine

a medium. The value of s = cR/β, is the ratio of the Rayliegh Wave velocity cR to the
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shear wave velocity β. The value of s is the root of the equation Δ0(s, γ) = 0. Some

frequently used values of s are 1.14412, 1.08766, 1.07236 and 1.04678 for γ2 of 1
2 , 1

3 , 1
4

and 0, repsectively.

The expressions in Eq. (C28) through Eq. (C31) contain many terms and each term has

physical significance. The terms which contain Δ′
0(s, γ) as denominator are the Rayleigh

surface wave terms and they are the residues from contour integration. The wave speed is a

constant cR controlled by the value of s in the complex exponential. The terms containing
√

1− k2 are the contributions from S-waves; the radical expression is equivalent to a cosine

function and the integral from 0 to 1 is a summation of all S-waves with a range of incident

angles. Similarly, the integrals from 0 to γ which contains the radical
√
γ2 − k2 represent

the contributions from the P-waves. The range of admissible angles for P-waves is limited

by a critical angle which is a function of the material properties. Additional waves beyond

those described are not plane waves and they have complex amplitudes; their summation is

acccomplished by the infinite integral.

The process to obtain the contour integration expressions is tedious, but the results

can be coded simply in computer programs. Most integrals are finite and the four infinite

integrals have exponentially decaying integrands. The computational effort is minimal. The

difficulties which could arise numerically are either (1) the frequency ω is too high so that

the integration of the harmonic functions is a challenge, or (2) the value of x is too small. For

the latter case, the infinite integrals approach infinity as a logarithmic function. Therefore,

the singular term of this set of Green’s functions is the same as all other two-dimensional

Grren’s Functions discussed throughout this dissertation.
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Appendix D

Wave Motion in a Semi-Infinite Medium
D.1 – Two-Dimensional Plane-Strain Problem

A general three-dimensional wave field can be represented by the superpostion of plane

waves, therefore, it is a useful exercise to prepare an expression for several fundamental

waves.

The displacements in elastic wave propagation can be expressed in terms of derivatives

of two potential functions, φ and �ψ. The compressional wave potential, φ, is a scalar but

the shear wave potential, �ψ, is a vector. For the two-dimensional plane strain wave problem

under consideration, the z-component of the vector, ψz , is used and will be denoted as

the scalar symbol ψ herein. The in-plane horizontal displacement, u, and the vertical

displacement, v, can be written as (Ewing et al, 1957),

u =
∂φ

∂x
+
∂ψ

∂y
, (D.1a)

and

v =
∂φ

∂y
− ∂ψ

∂x
, (D.1b)

respectively. Defining the LaPlacian operator in two dimensions as

∇2 =
∂2

∂x2 +
∂2

∂y2 , (D.2)

the two-dimensional stresses are then

τxx = λ∇2φ+ 2μ
∂2φ

∂x2 + 2μ
∂2ψ

∂x∂y
(D.3a)

= (λ+ 2μ)∇2φ− 2μ
∂2φ

∂y2 + 2μ
∂2ψ

∂x∂y
,

150



τyy = λ∇2φ+ 2μ
∂2φ

∂y2 − 2μ
∂2ψ

∂x∂y
(D.3b)

= (λ+ 2μ)∇2φ− 2μ
∂2φ

∂x2 − 2μ
∂2ψ

∂y∂x
,

and

τxy = τyx = 2μ
∂2φ

∂x∂y
+ μ

∂2ψ

∂y2 − μ
∂2ψ

∂x2 . (D.3c)

D.2 – Incident P-Wave Solution

Let φi be the incident P-wave potential function, φr be the reflected P-wave potential

function and ψrbe the reflected SV-wave potential function. An additional shear wave

reflection, represented by ψr, is also necessary to satisfy both normal and shear stress

boundary conditions at the free surface as shown in Fig. D.1.

Figure D.1 – Incident and reflected P-wave.
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Define the potentials as

φi = Ae−ih(x cos e−y sin e) , (D.4a)

φr = Be−ih(x cos e+y sin e) , (D.4b)

ψr = Ce−ik(x cos f+y sin f) , (D.4c)

with h = ω/α and k = ω/β defined as the wave numbers. The second partial derivatives

of the potential functions can be written in the form

∂2φi

∂x2 = (−ih cos e)2φi , (D.5a)

∂2φr

∂x2 = (−ih cos e)2φr , (D.5b)

∂2ψr

∂x2 = (−ik cos f)2ψr , (D.5c)

∂2φi

∂y2 = (ih sin e)2φi , (D.5d)

∂2φr

∂y2 = (−ih sin e)2φr , (D.5e)

∂2ψr

∂y2 = (−ik sin f)2ψr , (D.5f)

∂2φi

∂x∂y
= (−ih cos e)(ih sin e)φi , (D.5g)

∂2φr

∂x∂y
= (−ih cos e)(−ih sin e)φr , (D.5h)

∂2ψr

∂x∂y
= (−ik cos f)(−ik sin f)ψr . (D.5i)

Now apply the boundary conditions, τyy|y=0 = 0 and τyx|y=0 = 0. The first boundary

condition yields,

τyy|y=0 = λ(−h2 cos2 e)[A+B]e−ihx cos e + (λ+ 2μ)(−h2 sin2 e)[A+B]e−ihx cos e

− 2μ(−k2 sin f cos f)Ce−ikx cos f , (D.6)
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and for the second boundary condition, τyy|y=0 = 0, to be true over the entire range of x,

the following requirement,

−ihx cos e = −ikx cos f , (D.7)

is necessary. The above relationship defines the angle, f , based on the incident angle, e.

The first boundary condition yields the following expression for the unknown coefficients,

[(λ+ 2μ)(−h2) + 2μh2 cos2 e]A (D.8)

+ [(λ+ 2μ)(−h2) + 2μh2 cos2 e]B + [2μk2 sin f cos f ]C = 0 .

The second boundary condition yields the relationship,

τyx|y=0 = 2μ(h2 cos e sin e)[A−B]e−ihx cos e + μ(−k2 sin2 f)Ce−ikx cos f

− μ(−k2 cos2 f)Ce−ikx cos f , (D.9)

and with the relationship, −ihx cos e = −ikx cos f , the second simultaneous equation for

the unknown coefficients is

μ[2h2 cos e sin e]A− μ[2h2 cos e sin e]B + μ[k2(cos2 f − sin2 f)]C = 0 . (D.10)

The simultaneous equations for unknowns B/A and C/A can be written in matrix form as

[
(λ+ 2μ)(−h2) + 2μh2 cos2 e 2μk2 sin f cos f

2μh2 cos e sin e −μk2(cos2 f − sin2 f)

]{
B/A
C/A

}

=
{

(λ+ 2μ)h2 − 2μh2 cos2 e
2μh2 cos e sin e

} . (D.11)

Define now the important material constant,

γ2 =
h2

k2 =
ω2/α2

ω2/β2 =
β2

α2 =
(
β

α

)2

, (D.12)
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which can be related to the Lame constant as

γ2 =
β2

α2 =
μ/ρ

(λ+ 2μ)/ρ
=

μ

λ+ 2μ
. (D.13)

With these new definitions, the matrix equation simplifies to

[−γ2 + 2γ4 cos2 e 2γ2 sin f cos f
2γ2 cos e sin e 1− 2 cos2 f

]{
B/A
C/A

}
=
{
γ2 − 2γ4 cos2 e
2γ2 cos e sin e

}
. (D.14)

The determinant of the matrix on the left side is

Δ = (−γ2 + 2γ4 cos2 e)(1− 2 cos2 f)− 4γ4 sin f cos f cos e sin e

= −γ2(1− 2γ2 cos2 e)(1− 2 cos2 f)− 4γ4 sin f cos f cos e sin e
. (D.15)

More simplification can be accomplished by recognizing that h cos e = k cos f , using the

relationship,

cos f =
h

k
cos e = γ cos e , (D.16)

The determinant can be written in a better form:

Δ = −γ2(1− 2γ2 cos2 e)2 − 4γ4 sin f cos f cos e sin e . (D.17)

Using Cramer’s Rule for the matrix equation, the solution for the unknown coefficients is

B

A
=

1
Δ

∣∣∣∣ γ2(1− 2γ2 cos2 e)2 2γ2 sin f cos f
2γ2 cos e sin e 1− 2 cos2 f

∣∣∣∣
=

1
Δ
[
γ2(1− 2γ2 cos2 e)2 − 4γ4 sin f cos f cos e sin e

] , (D.18)

and

C

A
=

1
Δ

∣∣∣∣ −γ2(1− 2γ2 cos2 e)2 γ2(1− 2γ2 cos2 e)2

2γ2 cos e sin e2γ2 cos e sin e

∣∣∣∣
=

1
Δ
[−4γ4(1− 2γ2 cos2 e) cos e sin e

] . (D.19)
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The above expressions are amenable to numerical computation, but a more symmetrical

expression can be obtained using the expression cos f = γ cos e. Manipulation by

trigonometric identities yields,

sin2 f = 1− cos2 f = 1− γ2 cos2 e , (D.20)

tan2 f =
sin2 f

cos2 f
=

1− γ2 cos2 e
γ2 cos2 e

=
sin2 e+ cos2 e− γ2 cos2 e

γ2 cos2 e

=
1
γ2 tan2 e+

(1− γ2)
γ2

, (D.21)

and

sin f cos f = tan f cos2 f = γ2 tan f cos2 e . (D.22)

With the angle e given as the input parameter, the first step is to determine tan f using

Eq. (D.21) and then calculate the coefficients B/A and C/A using the expressions

B

A
=
−(1− 2γ2 cos2 e)2 + 4γ4 tan f sin e cos3 e
(1− 2γ2 cos2 e)2 + 4γ4 tan f sin e cos3 e

, (D.23)

and

C

A
=

4γ2(1− 2γ2 cos2 e) cos e sin e
(1− 2γ2 cos2 e)2 + 4γ4 tan f sin e cos3 e

. (D.24)

The value of A can be determined from the amplitude of the incident P-wave, |P |, of a

compressional displacement pulse. The horizontal and vertical displacements of the incident

pulse are

ui =
∂φi

∂x
= (−ih cos e)φi , (D.25a)

and

vi =
∂φi

∂y
= (ih sin e)φi , (D.25b)

respectively. Now compute the magnitude, |P |, from the displacements,

|P | =
√

(ui)2 + (vi)2 =
√
i2h2 cos2 e A2 + i2h2 sin2 e A2 = ihA , (D.26)
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and in turn the coefficient A can be specified as

A =
|P |
ih

. (D.27)

D.2.1 – Displacement Wavefields for Incident P-Waves

With the unknown coefficients determined, the horizontal displacement for all x and for

y ≥ 0, is

u =
∂φ

∂x
+
∂ψ

∂y
= −ih cos e

(
φi + φr

)− ik sin fψr . (D.28)

Using the relationships

kγ =
ω

β

β

α
=
ω

α
= h , (D.29)

and

k sin f = k tan f cos f = tan f kγ cos e = h tan f cos e , (D.30)

the horizontal displacement within the semi-infinite medium can be written as

u(x, y) = −ih cos e
[
φi(x, y) + φr(x, y) + tan fψr(x, y)

]
. (D.31)

and the horizontal displacement at the free surface is simply,

|u(x, 0)| = P cos e
(

1 +
B

A
+
C

A
tan f

)
. (D.32)

The vertical displacement for all x and y ≥ 0 is,

v =
∂φ

∂y
− ∂ψ

∂x
= ih sin e

(
φi − φr)− (−ik cos f)ψr . (D.33)

Using the relationship between the angles,

k cos f = kγ cos e =
ω

β

β

α
cos e = h cos e , (D.34)
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then

v(x, y) = ih sin e
[
φi(x, y)− φr(x, y)]+ ih cos e ψr(x, y) . (D.35)

The vertical displacement at the free surface of the semi-infinite medium is

|v(x, 0)| = P

[
sin e

(
1− B

A

)
+
C

A
cos e

]
. (D.36)

Since the above expressions are strongly influenced by the ratio of shear to compressional

wave speeds, γ, it is convenient to relate γ to the Poisson’s Ratio, in this manner:

γ2 =
(1− 2ν)
2(1− ν) . (D.37)

Using ν = 1/3, γ2 = 1/4, the normalized amplitudes for a unit, incident P-wave are

e uff vff

10◦ 0.8792 0.5283
20◦ 1.2745 0.8581
30◦ 1.3949 1.1168
40◦ 1.3507 1.3488
50◦ 1.1966 1.5597
60◦ 0.9633 1.7411
70◦ 0.6733 1.8812
80◦ 0.3460 1.9697
90◦ 0.0000 2.0000

D.2.2 – Stress Wavefields for Incident P-Waves

For the purpose of calculating tractions at the wave scatterer’s surface, it is necessary to

hae the expressions for the stresses. Using the known coefficients, A, B/A, C/A in terms
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of P in eqns. (D.27), (D.23) and (D.24), respectively, the stresses can be expressed as

τxx = μ
[
(2h2 sin2 e− k2)

(
φi(x, y) + φr(x, y)

)− 2k2 sin f cos fψr(x, y)
]

,

(D.38)

τyy = μ
[
(2h2 cos2 e− k2)

(
φi(x, y) + φr(x, y)

)
+ 2k2 sin f cos fψr(x, y)

]
,

(D.39)

τxy = μ
[
2h2 sin e cos e

(
φi(x, y)− φr(x, y))+ k2(cos2 f − sin2 f)ψr(x, y)

]
,

(D.40)

in which the functions φi(x, y), φr(x, y) and ψr(x, y) are given in eqns. (D.4a), (D.4b) and

(D.4c), respectively.

D.3 – Incident SV-Wave Problem

Let ψi be the incident SV-wave potential function with a yet to be defined amplitude

D, ψr be the reflected SV-wave potential function and φr be the reflected P-wave potential

function written in the form,

ψi = De−ik(x cos f−y sin f) , (D.41a)

ψr = Ee−ik(x cos f+y sin f) , (D.41b)

and

φr = Fe−ih(x cos e+y sin e) , (D.41c)

in which h = ω/α and k = ω/β are the wave numbers. The unknown coefficients, E and

F are to be determined later using the boundary conditions. Similar to the incident P-wave

problem, φr is necessary to satisfy both boundary conditions at the free surface.

158



Figure D.2 – Incident and reflected SV-wave.

The second partial derivatives of the potential functions can be listed as

∂2ψi

∂x2 = (−ik cos f)2ψi , (D.42a)

∂2ψr

∂x2 = (−ik cos f)2ψr , (D.42b)

∂2φr

∂x2 = (−ih cos e)2φr , (D.42c)

∂2ψi

∂y2 = (ik sin f)2ψi , (D.42d)

∂2ψr

∂y2 = (−ik sin f)2ψr , (D.42e)

∂2φr

∂y2 = (−ih sin e)2φr , (D.42f)

∂2ψi

∂x∂y
= (−ik cos f)(ik sin f)ψi , (D.42g)

∂2ψr

∂x∂y
= (−ik cos f)(−ik sin f)ψr , (D.42h)

∂2φr

∂x∂y
= (−ih cos e)(−ih sin e)φr . (D.42i)
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Now apply the boundary conditions, τyy|y=0 = 0 and τyx|y=0 = 0. The first boundary

condition yields,

τyy|y=0 = λ(−h2 cos2 e)Fe−ihx cos e + (λ+ 2μ)(−h2 sin2 e)Fe−ihx cos e

− 2μ(−k2 sin f cos f D − k2 sin f cos f E)e−ikx cos f , (D.43)

For the second boundary condition, τyy|y=0 = 0, to be true over the entire range of x, the

following requirement,

−ihx cos e = −ikx cos f , (D.44)

is necessary. The above relationship defines e based on f , the incident angle. The first

boundary condition also yields the following expression for the unknown coefficients,

−h2(λ+ 2μ sin2 e)F − [2μk2 sin f cos f ](D − E) = 0 . (D.45)

The second boundary condition yields the relationship,

τyx|y=0 = 2μ(−h2 sin e cos e)Fe−ihx cos e + μ(−k2 sin2 f)[D + E]e−ikx cos f

− μ(−k2 cos2 f)[D + E]e−ikx cos f , (D.46)

With the relationship, −ihx cos e = −ikx cos f , the second simultaneous equation for the

unknown coefficients is

−2μh2 sin e cos e F + μk2(cos2 f − sin2 f)[D + E] = 0 . (D.47)

The simultaneous equations for unknowns E/D and F/D can be written in matrix form as

[
2μk2 sin f cos f −h2(λ+ 2μ sin2 e)

μk2(sin2 f − cos2 f) 2μh2 sin e cos e

]{
E/D
F/D

}

=
{

2μk2 sin f cos f
μk2(cos2 f − sin2 f)

} . (D.48)
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Now define the important material constant,

γ2 =
h2

k2 =
ω2/α2

ω2/β2 =
β2

α2 =
(
β

α

)2

, (D.49)

which can be related to the Lame constant as

γ2 =
β2

α2 =
μ/ρ

(λ+ 2μ)/ρ
=

μ

λ+ 2μ
. (D.50)

With the new definitions, the matrix equation simplifies to[
2 sin f cos f −1 + 2γ2 cos2 e

sin2 f − cos2 f 2γ2 sin e cos e

]{
E/D
F/D

}
=
{

2 sin f cos f
(cos2 f − sin2 f)

}
. (D.51)

The determinant of the matrix on the left side of the equation is

Δ = (1− 2γ2 cos2 e)(1− 2 cos2 f) + 4γ2 sin f cos f sin e cos e . (D.52)

More simplification can be accomplished by recognizing that h cos e = k cos f , and using

the relationship,

cos f =
h

k
cos e = γ cos e , (D.53)

the determinant can be written in a better form:

Δ = (1− 2γ2 cos2 e)2 + 4γ2 sin f cos f sin e cos e . (D.54)

Using Cramer’s Rule for the matrix equation, the solution for the unknown coefficients is,

E

D
=

1
Δ

∣∣∣∣ 2 sin f cos f −1 + 2γ2 cos2 e
(cos2 f − sin2 f) 2γ2 sin e cos e

∣∣∣∣
=
−(1− 2γ2 cos2 e)2 + 4γ2 sin f cos f sin e cos e
(1− 2γ2 cos2 e)2 + 4γ2 sin f cos f sin e cos e

, (D.55)

and

F

D
=

1
Δ

∣∣∣∣ 2 sin f cos f 2 sin f cos f
sin2 f − cos2 f (cos2 f − sin2 f)

∣∣∣∣
=

−4 sin f cos f(1− 2γ2 cos2 e)
(1− 2γ2 cos2 e)2 + 4γ2 sin f cos f sin e cos e

. (D.56)
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The value of D can be determined from the amplitude of the incident SV-wave, |S|, of a

shear displacement pulse. The horizontal and vertical displacements of the incident pulse

are

ui =
∂ψi

∂y
= (ik sin f)ψi , (D.57a)

and

vi = −∂ψ
i

∂x
= (ik cos f)ψi , (D.57b)

respectively. Now compute the magnitude, |S|, from the displacements,

|S| =
√

(ui)2 + (vi)2 =
√
i2k2 sin2 f D2 + i2k2 cos2 f D2 = ikD , (D.58)

or

D =
|S|
ik

. (D.59)

D.3.1 – Displacement Wavefields for Incident SV-waves

With the unknown coefficients determined, the horizontal displacement for all x and for

y ≥ 0, is

u =
∂φ

∂x
+
∂ψ

∂y
= −(ih cos e)φr + ik sin f

(
ψi − ψr) . (D.60)

Using the relationship

kγ =
ω

β

β

α
=
ω

α
= h , (D.61)

and

k sin f = k tan f cos f = tan f kγ cos e = h tan f cos e , (D.62)

the horizontal displacement within the semi-infinite medium can be written as

u(x, y) = ik
[
(−γ cos e)φr(x, y) + sin f

(
ψi(x, y)− ψr(x, y))] , (D.63)
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and the horizontal displacement at the free surface is simply,

|u(x, 0)| = S

[(
1− E

D

)
sin f − F

D
(γ cos e)

]
. (D.64)

The vertical displacement for all x and y ≥ 0, is

v =
∂φ

∂y
− ∂ψ

∂x
= −(ih sin e)φr + (ik cos f)

(
ψi + ψr

)
. (D.65)

Using the relationship

kγ = h , (D.66)

then

v(x, y) = ik
[
(−γ sin e)φr(x, y) + cos f

(
ψi(x, y) + ψr(x, y)

)]
. (D.67)

The vertical displacement at the free surface of the semi-infinite medium is

|v(x, 0)| = S

[(
1 +

E

D

)
cos f − F

D
γ sin e

]
. (D.68)

Using ν = 1/3 or γ2 = 1/4, the normalized amplitudes for a unit, incident SV-wave are

e uff vff

60◦ 3.4179 0.0000
65◦ 1.9877 0.6984
70◦ 1.9268 0.6275
75◦ 1.9438 0.4970
80◦ 1.9717 0.3417
85◦ 1.9925 0.1736
90◦ 2.0000 0.0000
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D.3.2 – Stress Wavefields for Incident SV-Waves

Using the known coefficients, D, E/D, F/D in terms of S in eqns. (D.59), (D.55) and

(D.56), respectively, the stresses can be expressed as

τxx = μ
[
(2h2 sin2 e− k2)φr(x, y) + 2k2 sin f cos f

(
ψi(x, y)− ψr(x, y))] ,

(D.69)

τyy = μ
[
(2h2 cos2 e− k2)φr(x, y)− 2k2 sin f cos f

(
ψi(x, y)− ψr(x, y))] ,

(D.70)

τxy = μ
[−2h2 sin e cos eφr(x, y) + k2(cos2 f − sin2 f)

(
ψi(x, y) + ψr(x, y)

)]
,

(D.71)

in which the functions ψi(x, y), ψr(x, y) and φr(x, y) are given in eqns. (D.41a), (D.41b)

and (D.41c), respectively.

D.4 – Incident SH-Wave Solution

Unlike the plane strain wave problems, the SH, or anti-plane wave solution does not

require potential functions, its solution satisfies the scalar wave equation and its harmonic

wave solution satisfies the scalar Helmholtz equation,

∇2uz + k2uz = 0 , (D.72)

in which k = ω/β is the wave number for shear waves.

There is no mode conversion in this case, therefore, the compressional wave potential is

absent. The incident SH-wave problem can be written easily by defining the incident wave,
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Figure D.3 – Incident and reflected SH-wave.

uiz , and the reflected wave, urz , as

uiz = Se−ik(x cos f−y sin f) , (D.73a)

and

urz = Se−ik(x cos f+y sin f) , (D.73b)

respectively. S is the amplitude of the incident wave pulse. It has been shown that a reflected

wave with the same amplitude, S, would satisfy the shear stress boundary condition at the

free surface as

τyz = μ
∂uz
∂y

∣∣∣∣∣
y=0

= 0 , (D.74)

in which uz = uiz + urz is the total displacement in the semi-infinite medium.

165

ψi ψr

f f
x

y



D.4.1 – Displacement Wavefields for Incident SH-Waves

The anti-plane displacement, uz , in the semi-infinite medium can be written as

uz(x, y) = 2Se−ikx cos f cos(ky sin f) . (D.75)

This is the summation of the incident and reflected waves as shown in Eq. (D.66). This shear

wave only solution is not dependent on Poisson’s Ratio, ν. The displacement amplitude at

the free surface is a constant,

|uz(x, 0)| = 2S . (D.76)

D.4.2 – Stress Wavefields for Incident SH-Waves

The shear stresses generated by incident SH-waves can be expressed simply as

τxz = −2iμk cos f e−ikx cos f cos(ky sin f) , (D.77)

τyz = −2μk sin f e−ikx cos f sin(ky sin f) . (D.78)

D.5 – Rayleigh Wave Solution

Unlike the body waves described in the previous sections, a semi-infinite medium is

amenable to a surface wave and its larger amplitudes are confined near the free surface. If

a harmonic wave function has the form

φ = Ae−iω
α (x cos e−y sin e) , (D.79)

it has an apparent velocity c on the free surface (y = 0). Consider the factor:

ω

α
x cos e =

ωx

α/ cos e
=
ωx

c
, (D.80)
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the apparent velocity is defined as c = α/ cos e for this particular case. If e→ 90◦, c→∞
because all particles on the surface appears to move in the same direction, therefore, it

appears on the surface as if the wave is moving with an infinite speed.

Consider the case when c < β < α by defining the compressional potential and shear

potential as

φ = Ae−iω
c (x±

√
c2

α2 −1 y) , (D.81a)

ψ = Be
−iω

c (x±
√

c2

β2 −1 y)
, (D.81b)

respectively. For the condition, c < β < α:
√

c2

β2 − 1 is complex. The second partial

derivatives of the potential functions can be listed as

∂2φ

∂x2 = (−iω
c

)2φ , (D.82a)

∂2ψ

∂x2 = (−iω
c

)2ψ , (D.82b)

∂2φ

∂y2 =

(
∓iω

c

√
c2

α2 − 1

)2

φ , (D.82c)

∂2ψ

∂y2 =

(
∓iω

c

√
c2

β2 − 1

)2

ψ , (D.82d)

∂2φ

∂x∂y
=
(
−iω

c

)(
∓iω

c

√
c2

α2 − 1

)
φ , (D.82e)

∂2ψ

∂x∂y
=
(
−iω

c

)(
∓iω

c

√
c2

β2 − 1

)
ψ , (D.82f)

The first boundary condition yields,

τyy|y=0 = (λ+ 2μ)∇2φ− 2μ
∂2φ

∂x2 − 2μ
∂2ψ

∂y∂x

= (λ+ 2μ)
[
−ω

2

c2
− ω2

c2

(
c2

α2 − 1
)]

Ae−iωx/c (D.83)

+ 2μ
ω2

c2
Ae−iωx/c − 2μ

[
∓ω

2

c2

√
c2

β2 − 1

]
Be−iωx/c = 0
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Remove the harmonic time factor and divide the equation by (ω/c)2 and (λ + 2μ), the

equation simplies to

(
c2

α2 − 2γ2
)
A∓

(
2γ2

√
c2

β2 − 1

)
B = 0 (D.84)

Similarly, the second boundary condition,

τyx|y=0 = 0 = 2μ
∂2ψ

∂y∂x
+ μ

∂2ψ

∂y2 − μ
∂2ψ

∂x2 (D.85)

can be simplified to

2

(
±
√
c2

α2 − 1

)
A+

(
c2

β2 − 2
)
B = 0 (D.86)

Using the relationship
c2

α2

1
γ2 =

c2

α2

α2

β2 =
c2

β2

The first equation can be written as

(
2− c2

β2

)
A± 2

(√
c2

β2 − 1

)
B = 0 (D.87)

The simultaneous equations can be written as a matrix equation as

⎡
⎢⎢⎢⎣
(

2− c2

β2

)
±2

√
c2

β2 − 1

∓2

√
c2

α2 − 1
(

2− c2

β2

)
⎤
⎥⎥⎥⎦
⎧⎨
⎩
A

B

⎫⎬
⎭ =

⎧⎨
⎩

0

0

⎫⎬
⎭ . (D.89)

The only nontrivial solution which exists is when the determinant of the above equation is

zero, i.e., (
2− c2

β2

)2

+ 4

(√
c2

α2 − 1

)(√
c2

β2 − 1

)
= 0 . (D.90)
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A simpler transcendental equation can be obtained by defining a parameter, q = c/β and

using the fact that c2/α2 = γ2q2, that

q6 − 8q4 + (24− 16γ2)q2 + 16(γ2 − 1) = 0 . (D.91)

The table below shows the ratio, c/β, of the Rayleigh wave speed to the shear wave velocity

as a function of the Poisson’s Ratio ν̄. The ratio, γ = β/α is also shown. The relationship

of γ and ν̄ can be expressed as γ2 = (1 − 2ν̄)/(2(1 − ν̄)). As shown, the Raleigh wave

speed is from 13.6% to 4.5% slower than the shear wave velocity; it is always slower than

the compressional wave velocity.

ν̄ c/β |Uy/Ux| γ2 γ

0.00 0.874032 1.272020 0.5000 0.7071
0.05 0.883695 1.302284 0.4737 0.6509
0.10 0.893106 1.336414 0.4444 0.6667
0.15 0.902220 1.375033 0.4118 0.6417
0.20 0.910996 1.418579 0.3750 0.6124
0.25 0.919402 1.467894 0.3333 0.5774
0.30 0.927412 1.523749 0.2857 0.5345
1/3 0.932526 1.565199 0.2500 0.5000
0.35 0.935013 1.587326 0.2308 0.4804
0.40 0.942195 1.659775 0.1667 0.4082
0.45 0.948959 1.742982 0.0909 0.3015
0.50 0.955312 1.839271 0.0000 0.0000

D.5.1 – Displacement Wavefields for Incident Rayleigh-Waves

Using eq. (D.87) to relate the coefficient B to A, choose the second sign to ensure that

the solution decays as y increases, i.e., a bounded solution. The horizontal and vertical

displacements can be written as

ux(x, y) = Re−ikx
[
e−ναy − 1

2

(
2− c2

β2

)
e−νβy

]
, (D.92)
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uy(x, y) = iRe−ikx

⎡
⎣−
√

1− c2

α2 e
−ναy +

(
2− c2

β2

)
2
√

1− c2

β2

e−νβy

⎤
⎦ . (D.93)

in which k = ω/c, R = −ikA, and

να = k

√
1− c2

α2 ,

νβ = k

√
1− c2

β2 .

The ratio of the surface amplitudes of Uy and Ux are also shown in the above table as a

function of ν̄. The uy component has an imaginary exponent while the coefficient for ux is

real; this indicated those two components are out of phase by π/2 and they together produce

a retrograde type of motion.

D.5.2 – Stress Wavefields for Incident Rayleigh-Waves

τxx(x, y) = iμkRe−ikx
[
−
(
c2

β2 + 2
(

1− c2

α2

))
e−ναy +

(
2− c2

β2

)
e−νβy

]
(D.94)

τyy(x, y) = iμkRe−ikx
[(

2− c2

β2

)(
e−ναy − e−νβy

)]
(D.95)

τxy(x, y) = μkRe−ikx

⎡
⎢⎣2να
k

e−ναy −
k
(
2− c2

β2

)2

2νβ
e−νβy

⎤
⎥⎦ (D.96)
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Appendix E

Accurate Calculation of Bessel’s Functions

E.1 Functions with Small to Medium Arguments

The Bessel’s Function of the First Kind and Zeroth Order can be determined as an infinite

series in the form:

J0(x) = S0 + S1 + S2 + S3 + S4 + . . .

= 1− (x/2)2

(1!)2
+

(x/2)4

(2!)2
− (x/2)6

(3!)2
+

(x/2)8

(4!)2
− . . . (E1)

To calculate the terms, let S0 = 1, then obtain the higher order terms in the series using the

recurrence relationship

Si = R0
iSi−1 ; i = 1, 2, 3, . . . (E2)

in which

R0
i = − x

2

4i2
. (E3)

To calculate the Bessel’s Function of the Second Kind and Zeroth Order, the terms in the

J0(x) can be reused as

Y0(x) =
2
π

[
log
(x

2

)
+ γ
]
J0(x) +

2
π

[S′
1 + S′

2 + S′
3 + S′

4 + . . . ] . (E4)

The terms of the infinite series for Y0(x) can be determined from those of the J0 series using

the equation:

S′
i = −αiSi ; i = 1, 2, 3, . . . (E5)

in which α0 = 0 and αi = αi−1 + 1/i. The contant γ = 0.57721566490153286 is the

Eluer’s constant.
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The Bessel’s Function of the First Kind and First Order can be determined as an infinite

series in the form:

J1(x) = T1 + T2 + T3 + T4 + . . .

=
x

2
− (x/2)3

1! 2!
+

(x/2)5

2! 3!
− (x/2)7

3! 4!
+ . . .

(E6)

To calculate the terms, let T1 = x/2, then obtain the higher order terms in the series using

the recurrence relationship

Ti = R1
iTi−1 ; i = 2, 3, 4, . . . (E7)

in which

R1
i = − x2

4i(i+ 1)
. (E8)

To calculate the Bessel’s Function of the Second Kind and First Order, the terms in the

J1(x) can be reused as

Y1(x) = − 2
πz

+
2
π

[
log
(x

2

)
+ γ
]
J1(x)− 1

π
[T ′

1 + T ′
2 + T ′

3 + T ′
4 + . . . ] . (E9)

The terms of the infinite series for Y0(x) can be determined from those of the J0(x) series

using the equation:

T ′
i = (αi−1 + αi) Ti ; i = 1, 2, 3, . . . (E10)

in which αi was defined earlier for Y0(x).

E.2 Functions with Large Arguments

For large aruments, the Hankel’s Asymptotic Expansion is more efficient as it can yield

accurate results with fewer terms. The expression for Bessel’s Function of the First Kind

and order n is

Jn(x) =

√
2
πx

[
cos
(
x− (n2 + 1

4

)
π
) · Pn(x)− sin

(
x− (n2 + 1

4

)
π
) ·Qn(x)] .

(E11)
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The expression for Bessel’s Function of the Second Kind and order n is similar,

Yn(x) =

√
2
πx

[
sin
(
x− (n2 + 1

4

)
π
) · Pn(x) + cos

(
x− (n2 + 1

4

)
π
) ·Qn(x)] .

(E12)

In the above expressions, Pn and Qn are defined as

Pn(x) =
∞∑
m=0

(−1)m(n, 2m)
(2x)2m

(E13a)

Qn(x) =
∞∑
m=0

(−1)m(n, 2m+ 1)
(2x)2m+1 (E13b)

in which the notation (n,m) is defined as

(n,m) =
(4n2 − 12)(4n2 − 32) . . . (4n2 − (2m− 1)2)

22mm!
(E14)

For the special case of J0(x) and Y0(x), the Hankel Asymptotic Expansions are expressed

as

J0(x) =

√
2
πx

[
cos
(
x− π

4

) · P0(x)− sin
(
x− π

4

) ·Q0(x)
]

(E15a)

Y0(x) =

√
2
πx

[
sin
(
x− π

4

) · P0(x) + cos
(
x− π

4

) ·Q0(x)
]

(E15b)

The series expansions for P0(x) and Q0(x) can be calculated as

P0(x) = S0 + S2 + S4 + S6 + . . . (E16a)

Q0(x) = T1 + T3 + T5 + T7 + . . . (E16b)

By recurrence, Si and Ti can be calculated as

Si = RiSi−1 , i = 2, 4, 6, . . . (E17a)

Ti = RiTi−1 , i = 3, 5, 7, . . . (E17b)
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if Ri is defined as

Ri = − (2i− 3)2(2i− 1)2

64i(i− 1)x2 , (E18)

with the initial values set as S0 = 1 and T1 = −1/(8x).

With the expansion as defined above,P0 andQ0 expanded to 8 terms have the coefficients

defined as

P0(x) =1− 9
128 x2 +

3675
32768 x4 −

2401245
4194304 x6 +

13043905875
2147483648 x8

− 30241281245175
274877906944 x10 +

213786613951685775
70368744177664 x12

− 1070401384414690453125
9007199254740992 x14 + . . . (E19)

Q0(x) =− 1
8 x

+
75

1024 x3 −
59535

262144 x5 +
57972915

33554432 x7 −
418854310875

17179869184 x9

+
1212400457192925
2199023255552 x11 −

10278202593831046875
562949953421312 x13

+
60013837619516978071875

72057594037927936 x15 − . . . (E20)

It is clear the coefficients would become larger and larger for the later terms. The

denominator with the large powers of x would nevertheless make the series convergent

when x is reasonably large.

The above formulas would have cancellation problems and the series can be made more

accurate if they can be rewritten using two-angle formulas as

J0(x) =

√
2
πx

β0(x) cos
(
x− π

4 − α0(x)
)

, (E21a)

Y0(x) =

√
2
πx

β0(x) sin
(
x− π

4 − α0(x)
)

, (E21b)

in which

β2
0(x) = P 2

0 (x) +Q2
0(x) , (E22)
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and

α0(x) = − tan−1
(
Q0(x)
P0(x)

)
. (E23)

To obtain the expression for β0(x), assume it has the form

β0(x) = a0 +
a2

x2 +
a4

x4 +
a6

x6 +
a8

x8 + . . .+
a14

x14 + . . . , (E24)

and substitute it in Eq. (E22) and match the coefficients according to the powers of x and

that yields the formula to be

β0(x) = 1− 1
16 x2 +

53
512 x4 −

4447
8192 x6 +

3066403
524288 x8

− 896631415
8388608 x10 +

796754802993
268435456 x12 −

500528959023471
4294967296 x14 + . . .

(E25)

To obtain α0, first assume a series r0(x) as

r0(x) =
a1

x
+
a3

x3 +
a5

x5 +
a7

x7 + . . .+
a15

x15 + . . . , (E26)

then obtain the unknown coefficients by comparing the polynomials of the two sides of the

equation

r0(x)P0(x) = −Q0(x) , (E27)

then the resulting polynomial is equal to −Q0(x)/P0(x). Apply now the series expansion

for tan−1 as

tan−1 r0 = r0 − r30
3

+
r50
5
− r70

7
+ . . . , (E28)

then α0(x) can be expressed as

α0(x) =
1

8 x
− 25

384 x3 +
1073

5120 x5 −
375733

229376 x7 +
55384775

2359296 x9

− 24713030909
46137344 x11 +

7780757249041
436207616 x13 −

5261793482424425
6442450944 x15 + . . .

(E29)

With these detailed expressions, x can be as small as 15 to obtain 15 digits of accuracy

(double precision) and as low as 10 to obtain 7 digits of accuracy (single precision).
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For the special case of J1(x) and Y1(x), the Hankel Asymptotic Expansions are

expressed as

J1(x) =

√
2
πx

[
cos
(
x− 3

4π
) · P1(x)− sin

(
x− 3

4π
) ·Q1(x)

]
(E30a)

Y1(x) =

√
2
πx

[
sin
(
x− 3

4π
) · P1(x) + cos

(
x− 3

4π
) ·Q1(x)

]
(E30b)

The series expansions for P1(x) and Q1(x) can be calculated as

P1(x) = S0 + S2 + S4 + S6 + . . . (E31a)

Q1(x) = T1 + T3 + T5 + T7 + . . . (E31b)

By recurrence, Si and Ti can be calculated as

Si = RiSi−1 , i = 2, 4, 6, . . . (E32a)

Ti = RiTi−1 , i = 3, 5, 7, . . . (E32b)

if Ri is defined as

Ri = − (4− (2i− 3)2)(4− (2i− 1)2)
64i(i− 1)x2 (E33)

with the initial values set as S0 = 1 and T1 = 3/(8x).

With the expansion as defined above,P1 andQ1 expanded to 8 terms have the coefficients

defined as

P1(x) =1 +
15

128 x2 −
4725

32768 x4 +
2837835

4194304 x6 −
14783093325

2147483648 x8

+
33424574007825

274877906944 x10 −
232376754295310625
70368744177664 x12

+
1149690375852815671875

9007199254740992 x14 − . . . (E34)

Q1(x) =
3

8 x
− 105

1024 x3 +
72765

262144 x5 −
66891825

33554432 x7 +
468131288625

17179869184 x9

− 1327867167401775
2199023255552 x11 +

11100458801337530625
562949953421312 x13

− 64152722972587114490625
72057594037927936 x15 + . . . (E35)
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As in the cases of the zeroth order functions, the coefficients become larger and larger for

the later terms, however, the series converge when x is reasonably large.

To eliminate the cancellation problems, the series can be made more accurate if they are

rewritten using two-angle formulas as

J1(x) =

√
2
πx

β1(x) cos
(
x− 3

4π − α1(x)
)

, (E36a)

Y1(x) =

√
2
πx

β1(x) sin
(
x− 3

4π − α1(x)
)

, (E36b)

in which

β2
1(x) = P 2

1 (x) +Q2
1(x) , (E37)

and

α1(x) = − tan−1
(
Q1(x)
P1(x)

)
. (E38)

To obtain the expression for β1(x), assume it has the form

β0(x) = a0 +
a2

x2 +
a4

x4 +
a6

x6 +
a8

x8 + . . .+
a14

x14 + . . . , (E39)

and substitute it in Eq. (xx) and match the coefficients according to the powers of x and that

yields the formula to be

β1(x) = 1 +
3

16 x2 −
99

512 x4 +
6597

8192 x6 −
4057965

524288 x8

+
1113686901
8388608 x10 −

951148335159
268435456 x12 +

581513783771781
4294967296 x14 − . . .

(E40)

To obtain α1, first assume a series r1(x) as

r1(x) =
a1

x
+
a3

x3 +
a5

x5 +
a7

x7 + . . .+
a15

x15 + . . . , (E41)

then obtain the unknown coefficients by comparing the polynomials of the two sides of the

equation

r1(x)P1(x) = −Q1(x) , (E42)
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then the resulting polynomial is equal to −Q1(x)/P1(x). Apply now the series expansion

for tan−1 as

tan−1 r1 = r1 − r31
3

+
r51
5
− r71

7
+ . . . , (E43)

then α1(x) can be expressed as

α1(x) = − 3
8 x

+
21

128 x3 −
1899

5120 x5 +
543483

229376 x7 −
8027901

262144 x9

+
30413055339
46137344 x11 −

9228545313147
436207616 x13 +

10139844510243441
10737418240 x15 − . . .

(E44)

With these expressions for J1 and Y1, x can be as small as 15 to obtain 15 digits of accuracy

(double precision) and as low as 10 to obtain 7 digits of accuracy (single precision).
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Appendix F

Three-Dimensional Green’s Function Matrices
Matrices for an Infinite Space

To obtain the three-dimensional Green’s function matrices, [U ] and [T ], for application

in the representation theorem, the solution for displacements and stresses generated by a

point load must be considered. The first row of [U ], i.e., U11, U12 and U13, correspond to

the displacements in the x, y and z-direction induced by a point load in the x-direction,

respectively. The second row of [U ], i.e.,U21,U22 andU23, correspond to the displacements

in the x, y and z-direction induced by a point load in the y-direction, respectively. The third

row of [U ], i.e.,U31,U32 andU33, correspond to the displacements in thex, y and z-direction

generated by a point load in the z-direction, respectively.

The respective rows of the 3×3 matrix, [T ], contain the tractions at the observation point

generated by the point loads described above. They are calculated as the matrix product of

the stresses generated by the point loads and the direction cosines of the outward normal

vector at the surface.

F.1 Green’s Functions for an Infinite Medium

For an infinite, homogeneous and isotropic medium, the solution of a vertical point load

can be used to produce the solutions for point loads in the x and the y-direction using an

orthogonal transformation.

F.1.1 Displacements and Stresses Generated by a Vertical Point Load

Shown in Fig. F.1 is a concentrated load Q in the positive z-direction. The solution of

the three-dimensional wave equation can be written in terms of two potential functions φ
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and χ as shown in Lamb’s paper (1904) as

φ =
−Q

4πk2μ

∂

∂z

(
e−ihr

r

)
, (F1)

χ =
Q

4πk2μ

(
e−ikr

r

)
, (F2)

in which r =
√
x2 + y2 + z2 , x = xo − xs, y = yo − ys and z = z0 − zs are the relative

position of the observation point with respect to the source point in the x, y and z-directions,

respectively.

Figure F.1 – Vertical QZ Point Force Configuration.

The argument of φ, hr = ωr/α, is a dimensionless frequency normalized by the

compressional wave velocity α, implying that φ is a potential for compressional waves.

On the other hand, χ is the shear wave potential because kr = ωr/β is normalized by

the shear wave velocity β. The exponential function with a negative argument is used in
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this derivation because it represents an outgoing wave as r →∞ when associated with the

harmonic time factor eiωt.

For a unit applied load Q in the vertical (Z) direction, let the amplitude Q = 1. Also,

define for convenience the parameters

γk =
(

1
4πμk2

)
, (F3)

εh =
(
e−ihr

r

)
, (F4)

and

εk =
(
e−ikr

r

)
, (F5)

so that equations (F1) and (F2) can be written as

φ = −γk ∂εh
∂z

and χ = γkεk .

F.1.1.1 – Displacements

Using the potentials φ and χ, the displacements for a vertical load in the x, y, and z-

directions, respectively, can be expressed as,

U31 =
∂φ

∂x
+

∂2χ

∂x∂z
(F6)

= γk

[
∂2

∂x∂z

(
εk − εh

)]

U32 =
∂φ

∂y
+

∂2χ

∂y∂z
(F7)

= γk

[
∂2

∂y∂z

(
εk − εh

)]
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and

U33 =
∂φ

∂z
+
∂2χ

∂z2 + k2χ (F8)

= γk

[
∂2

∂z2

(
εk − εh

)
+ k2εk

]

in which, the derivatives of εk are represented by

∂2εk
∂x∂z

=
xz

r3

[
3
r

(
1
r

+ ik

)
− k2

]
e−ikr, (F9a)

∂2εk
∂y∂z

=
yz

r3

[
3
r

(
1
r

+ ik

)
− k2

]
e−ikr, (F9b)

and

∂2εk
∂z2 =

1
r3

[
(3z2 − r2)

r

(
1
r

+ ik

)
− k2z2

]
e−ikr, (F9c)

The derivatives of εh are in the same form except the subscript and variable k should be

replaced by h.

F.1.1.2 – Stresses

The stress components, σxxZ
, σxyZ

, σxzZ
, σyyZ

, σyzZ
and σzzZ

can be expressed in

terms of the potential functions φ and χ as

1
μ
σxxZ

= −k2φ− 2
∂2φ

∂y2 − 2
∂2φ

∂z2 + 2
∂3χ

∂x2∂z
(F10)

= γk

[
k2 ∂εh

∂z
+ 2

∂3εh
∂y2∂z

+ 2
∂3εh
∂z3 + 2

∂3εk
∂x2∂z

]
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1
μ
σxyZ

= 2
∂2φ

∂x∂y
+ 2

∂3χ

∂x∂y∂z
(F11)

= 2γk

[
∂3

∂x∂y∂z

(
εk − εh

)]

1
μ
σxzZ

= 2
∂2φ

∂x∂z
+ 2

∂3χ

∂x∂z2 + k2 ∂χ

∂x
(F12)

= γk

[
2

∂3

∂x∂z2

(
εk − εh

)
+ k2 ∂εk

∂x

]

1
μ
σyyZ

= −k2φ− 2
∂2φ

∂x2 − 2
∂2φ

∂z2 + 2
∂3χ

∂y2∂z
(F13)

= γk

[
k2 ∂εh

∂z
+ 2

∂3εh
∂x2∂z

+ 2
∂3εh
∂z3 + 2

∂3εk
∂y2∂z

]

1
μ
σyzZ

= 2
∂2φ

∂y∂z
+ 2

∂3χ

∂y∂z2 + k2 ∂χ

∂y
(F14)

= γk

[
2

∂3

∂x∂z2

(
εk − εh

)
+ k2 ∂εk

∂y

]

and

1
μ
σzzZ

= −k2φ− 2
∂2φ

∂x2 − 2
∂2φ

∂y2 + 2
∂3χ

∂z3 + 2k2 ∂χ

∂z
(F15)

= γk

[
k2 ∂

∂z

(
εh + 2εk

)
+ 2

∂3εh
∂x2∂z

+ 2
∂3εh
∂y2∂z

+ 2
∂3εk
∂z3

]

in which,

∂εk
∂x

= − x

r2
[
ik +

1
r

]
e−ikr, (F16a)

∂εk
∂y

= − y

r2
[
ik +

1
r

]
e−ikr, (F16b)
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∂εk
∂z

= − z

r2
[
ik +

1
r

]
e−ikr, (F16c)

∂3εk
∂x2∂z

=
e−ikr

r3

{
−15xz

r3

(
1
r

+ ikx

)
+

3z
r

(
1
r

+ ik

)
+
k2x2z

r

(
6
r

+ ik

)
− k2z

}
(F16d)

∂3εk
∂y2∂z

=
e−ikr

r3

{
−15yz

r3

(
1
r

+ iky

)
+

3z
r

(
1
r

+ ik

)
+
k2y2z

r

(
6
r

+ ik

)
− k2z

}
(F16e)

∂3εk
∂z3 =

e−ikr

r3

{
−15z
r3

(
1
r

+ ikz2
)

+
9z
r

(
1
r

+ ik

)
+
k2z3

r

(
6
r

+ ik

)
− 3k2z

}
(F16f)

∂3εk
∂x∂y∂z

=
xyz

r4

{
−15
r2

(
1
r

+ ik

)
+ k2

(
6
r

+ ik

)}
e−ikr (F16g)

∂3εk
∂x∂z2 =

x

r3

{
(3r2 − 15z2)

r3

(
1
r

+ ik

)
+
k2z2

r

(
6
r

+ ik

)
− k2

}
e−ikr (F16h)

and

∂3εk
∂y∂z2 =

y

r3

{
(3r2 − 15z2)

r3

(
1
r

+ ik

)
+
k2z2

r

(
6
r

+ ik

)
− k2

}
e−ikr (F16i)

The above expressions are quite lengthy to list mathematically, but since the infinite space

is homogeneous and isotropic, the solution developed for a vertical point load QZ can be

reused for horizontal point loads QX and QY if proper transformations are performed. It
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will be shown in the next two sections that it is quite simple to obtain the expression for the

horizontal loads, only simple rearrangement of the spatial variables are required.

F.1.2 Displacements and Stresses Generated by a Point Load in the X-Direction

Shown in Fig. F.2 is an illustration of the horizontal point load in the x-direction using

the (x, y, z) coordinate system. Also in the same figure is the (x′, y′, z′) coordinate system.

The (x′, y′, z′) system is rotated from the (x, y, z) system by 90◦ about the y-axis. The

orthogonal transformation between these systems can be expressed as

[Q(xyz ←− x′y′z′)] =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ .

To obtain the results for the horizontal point load QX , two steps are required:

Figure F.2 – Horizontal QX Point Force Configuration.
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(1) Calculate the displacements and stresses in the (x′, y′, z′) system using the expressions

presented in Section F.1. This is done because QX is in the z′-direction, formerly the

vertical direction. The values for the prime coordinates can be obtained from the position

vector of the present configuration as⎡
⎣x′

y′

z′

⎤
⎦ = [Q]T

⎡
⎣xy
z

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦
⎡
⎣xy
z

⎤
⎦ =

⎡
⎣ yz
x

⎤
⎦ .

(2) Use the calculated displacements in the (x′, y′, z′) system and transform them to the

(x, y, z) system using⎡
⎣uxuy
uz

⎤
⎦ = [Q]

⎡
⎣ux′

uy′

uz′

⎤
⎦ =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦
⎡
⎣ux′

uy′

uz′

⎤
⎦ =

⎡
⎣ uz′

ux′

uy′

⎤
⎦ .

To transform the stress tensor, use the transformation of the form

[A(x, y, z)] = [Q][A(x′, y′, z′)][Q]T ,

in which [A] is any matrix, a tensor of second rank.

F.1.2.1 – Displacements

If the displacements in Section F.1 can be written in functional form as⎡
⎣U31(x′, y′, z′)
U32(x′, y′, z′)
U33(x′, y′, z′)

⎤
⎦

then the displacements caused by a horizontal point load in the x-direction can be written

as ⎡
⎣U11(x, y, z)
U12(x, y, z)
U13(x, y, z)

⎤
⎦ =

⎡
⎣U33(y, z, x)
U31(y, z, x)
U32(y, z, x)

⎤
⎦ (F17)

in which the coordinates x, y and z are the only parameters displayed because the material

properties of the viscoelastic medium remain unchanged.
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F.1.2.2 – Stresses

If the stress tensor in Section F.1 can be written in functional form as⎡
⎣σxxZ

(x′, y′, z′) σxyZ
(x′, y′, z′) σxzZ

(x′, y′, z′)
σyxZ

(x′, y′, z′) σyyZ
(x′, y′, z′) σyzZ

(x′, y′, z′)
σzxZ

(x′, y′, z′) σzyZ
(x′, y′, z′) σzzZ

(x′, y′, z′)

⎤
⎦

then the stresses caused by a horizontal point load in the x-direction can be written as⎡
⎣σxxX

(x, y, z) σxyX
(x, y, z) σxzX

(x, y, z)
σyxX

(x, y, z) σyyX
(x, y, z) σyzX

(x, y, z)
σzxX

(x, y, z) σzyX
(x, y, z) σzzX

(x, y, z)

⎤
⎦ (F18)

=

⎡
⎣ σzzZ

(y, z, x) σzxZ
(y, z, x) σzyZ

(y, z, x)
σxzZ

(y, z, x) σxxZ
(y, z, x) σxyZ

(y, z, x)
σyzZ

(y, z, x) σyxZ
(y, z, x) σyyZ

(y, z, x)

⎤
⎦

F.1.3 Displacements and Stresses Generated by a Point Load in the Y -Direction

Shown in Fig. F.3 is an illustration of the horizontal point load in the y-direction using

the (x, y, z) coordinate system. Also in the same figure is the (x′, y′, z′) coordinate system.

The (x′, y′, z′) system is rotated from the (x, y, z) system by 90◦ about the x-axis. The

orthogonal transformation between these systems can be expressed as

[Q(xyz ←− x′y′z′)] =

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦ .

To obtain the results for the horizontal point load QY , the same type of procedures as

those used in Section F.2 can be applied. First calculate the displacements and stresses in the

(x′, y′, z′) system using the expressions presented in Section F.1. This is done becauseQY

is in the z′-direction, formerly the vertical direction. The values for the prime coordinates

can be obtained from the position vector of the present configuration as⎡
⎣x′

y′

z′

⎤
⎦ = [Q]T

⎡
⎣xy
z

⎤
⎦ =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦
⎡
⎣xy
z

⎤
⎦ =

⎡
⎣ zx
y

⎤
⎦ .
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Figure F.3 – Horizontal QY Point Force Configuration.

Next use the calculated displacements in the (x′, y′, z′) system and transform them to the

(x, y, z) system using⎡
⎣uxuy
uz

⎤
⎦ = [Q]

⎡
⎣ux′

uy′

uz′

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦
⎡
⎣ux′

uy′

uz′

⎤
⎦ =

⎡
⎣ uy′

uz′

ux′

⎤
⎦ .

To transform the stress tensor, use the transformation of the form

[A(x, y, z)] = [Q][A(x′, y′, z′)][Q]T ,

in which [A] is any matrix, a tensor of second rank.

F.1.3.1 – Displacements

In terms of the displacements in Section F.1.1, the displacements caused by a horizontal

point load in the y-direction can be written as⎡
⎣U21(x, y, z)
U22(x, y, z)
U23(x, y, z)

⎤
⎦ =

⎡
⎣U32(z, x, y)
U33(z, x, y)
U31(z, x, y)

⎤
⎦ (F19)
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F.1.3.2 – Stresses

In terms of the stress tensor presented in Section F.1, the stresses caused by a horizontal

point load in the y-direction can be written as

⎡
⎣σxxY

(x, y, z) σxyY
(x, y, z) σxzY

(x, y, z)
σyxY

(x, y, z) σyyY
(x, y, z) σyzY

(x, y, z)
σzxY

(x, y, z) σzyY
(x, y, z) σzzY

(x, y, z)

⎤
⎦

=

⎡
⎣ σyyZ

(z, x, y) σyzZ
(z, x, y) σyxZ

(z, x, y)
σzyZ

(z, x, y) σzzZ
(z, x, y) σzxZ

(z, x, y)
σxyZ

(z, x, y) σxzZ
(z, x, y) σxxZ

(z, x, y)

⎤
⎦ (F20)

F.1.4 Formation of matrices [U ] and [T ]

Using the expressions derived in Sections F.1.1, F.1.2 and F.1.3, the Green’s function

matrices [U ] and [T ] for the boundary integral equation can be formed as

[U ] =

⎡
⎣U11 U12 U13
U21 U22 U23
U31 U32 U33

⎤
⎦ (F21)

and

[T ] =

⎡
⎣T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤
⎦ (F22)

in which the elements of [T ] can be calculated by the matrix products

⎡
⎣T11
T12
T13

⎤
⎦
T

=

⎡
⎣σxxX

σxyX
σxzX

σyxX
σyyX

σyzX

σzxX
σzyX

σzzX

⎤
⎦
⎡
⎣nxny
nz

⎤
⎦ (F23)

⎡
⎣T21
T22
T23

⎤
⎦
T

=

⎡
⎣σxxY

σxyY
σxzY

σyxY
σyyY

σyzY

σzxY
σzyY

σzzY

⎤
⎦
⎡
⎣nxny
nz

⎤
⎦ (F24)

and ⎡
⎣T31
T32
T33

⎤
⎦
T

=

⎡
⎣σxxZ

σxyZ
σxzZ

σyxZ
σyyZ

σyzZ

σzxZ
σzyZ

σzzZ

⎤
⎦
⎡
⎣nxny
nz

⎤
⎦ (F25)
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In the above equations, the vector elements nx, ny and nz are the direction cosines of the

outer normal vector at the boundary surface.

F.2 Surface Green’s Functions for a Semi-Infinite Medium

To obtain the three-dimensional Green’s function matrices [U ] and [T ] for the surface of

a semi-infinite medium, the solution for displacements and stresses caused by 3 orthogonal

point forces must be considered. These solutions are available from the classical publications

by Lamb (1903) and Nakano (1908). Because of the axisymmetric properties of a point

force, the cylindrical coordinates system was utilized for its solution and the results are

expressed in Hankel Transforms. In this section, the displacements and the point forces

are all located on the surface of the semi-infinite space, simplifying the geometry of the

problem.

The three rows of matrix [T ] contain the tractions at the surface S generated by the

respective point forces at the observation point as described earlier. But since the tractions

at the surface of the semi-infinite medium, as defined by the boundary conditions, are zero,

the traction Green’s function matrix [T ] is zero.

F.2.1 Surface Displacements Generated by Point Forces

With the presence of the half-space surface, the mathematical formulation of the Green’s

functions become more tedious than the infinite space formulation because of the mode

conversions between the compressional and shear waves. The advantage of a mirror image

as exploited in Appendix B for SH-waves is not possible for the present scenario. The

normal practice for a half spce formulation is to use a mirror image source to eliminate one
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of the surface stresses and to use the Hankel Transform to remove the other component. The

Hankel Transforms leave the solutions in the form of an infinite integral as shown below:

Case One: A vertical Point Source

uzz =
fzz
μr

Pz = − Pz
2πμ

(ao
r

)∫ ∞

0

kν

(2k2 − 1)2 − 4k2νν′ J0(a0k) dk , (F26)

urz =
frz
μr

Pz =
Pz
2πμ

(ao
r

)∫ ∞

0

k2[(2k2 − 1)− 2νν′]
(2k2 − 1)2 − 4k2νν′ J1(a0k) dk , (F27)

uψz =
fψz
μr

Pz = 0 . (F28)

Case Two: A Horizontal Point Source

urr =
frr
μr

Pr cosψ

=
Pr
2πμ

(ao
r

)
cosψ

[ ∫ ∞

0

kν′ (J2(a0k)− J0(a0k)) dk
(2k2 − 1)2 − 4k2νν′

+
∫ ∞

0

k

ν′ (J2(a0k) + J0(a0k)) dk
]

, (F29)

uzr =
fzr
μr

Pr cosψ

= − Pr
2πμ

(ao
r

)
cosψ

∫ ∞

0

k2[(2k2 − 1)− 2νν′]
(2k2 − 1)2 − 4k2νν′ J1(a0k) dk , (F30)

uψr =
fψr
μr

Pr sinψ

=
Pr
2πμ

(ao
r

)
sinψ

[ ∫ ∞

0

kν′ (J2(a0k) + J0(a0k)) dk
(2k2 − 1)2 − 4k2νν′

+
∫ ∞

0

k

ν′ (J2(a0k)− J0(a0k)) dk
]

. (F31)

in which a0 = ωr/β, ν =
√
k2 − γ2, ν′ =

√
k2 − 1 and γ = β/α.

Eq. (F29) and Eq. (F31) have integrals which do not contain the Rayleigh Determinant,

F (k) = (2k2 − 1)2 − 4k2νν′, but rather a denominator of the form ν′ =
√
k2 − 1. These
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terms are motion caused by pure shear waves without interaction with the compressional

waves. These integrals are absent in the motion generated by a vertical point force.

To simplify the numerical implmentation, contour integration can be used to evaluate

the infinite integrals as were the cases in Appendix C.

F.2.2 Formation of [U ] and [T ]

Since the Green’s Functions given in Section F.2.1 were derived using a cylindrical

coordinate system, some re-organization is necessary to put the results into a form for the

applications in this dissertation. The displacements for the vertical point force can be uaed

quite readily by transformingur anduψ intoux anduy using simple triginometric functions;

the vertical displacement is already in the z-direction. The displacement for the horizontal

force must be converted and applied to two different horizontal directions in the x− and y−
directions by shifting the azimuthal properties of the results.

Consider now the coordinate system illustrated in Fig. F.4. Note that the polar coordinate

system is defined with the z-axis pointing downward, which is the typical convention for

classical geophysical problems. The origin of the polar coordinate system is defined at the

source point, �rp, therefore, the observation point, �r, is located at the coordinates, (r, ψ, z),

in which

r = |�r − �rp| =
√

(x− xp)2 + (y − yp)2 (F32)

and

ψ = arg(�r − �rp) = tan−1
(
y − yp
x− xp

)
. (F33)
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Figure F.4 – The Definition of the Cylindrical Coordinate System.

The z-dependency of the Green’s Functions is included in the functions f .

Using the polar coordinate system, all horizontal point forces can be represented by

Pr(ψ0) because the reference angle can be varied to match any orientation. Therefore, the

general displacement-force relationship can be written in a form of a 3× 2 matrix as⎧⎨
⎩
ur(r, ψ)
uψ(r, ψ)
uz(r, ψ)

⎫⎬
⎭ =

1
μr

⎡
⎣ frr cos(ψ − ψ0) frz
fψr sin(ψ − ψ0) 0
fzr cos(ψ − ψ0) fzz

⎤
⎦{Pr(ψ0)

Pz

}
. (F34)

To obtain a displacement-force relationship in the Cartesian coordinate system, the following

mapping of the forces and the displacements may be used:⎧⎨
⎩
Px(�rp)
Py(�rp)
Pz(�rp)

⎫⎬
⎭ =

⎧⎨
⎩

Pr(0)
Pr(π/2)
Pz

⎫⎬
⎭ , (F35)

and ⎧⎨
⎩
ux(�r)
uy(�r)
uz(�r)

⎫⎬
⎭ =

⎡
⎣ cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦
⎧⎨
⎩
ur(r, ψ)
uψ(r, ψ)
uz(r, ψ)

⎫⎬
⎭ . (F36)

193

r

xy

z

ψ ψ0

Pr

Pz

Py Px



The first, Eq. (F34), can be used with Eq. (F35) to relate the displacements in polar

coordinates to the forces in Cartesian Coordinates as⎧⎨
⎩
ur(r, ψ)
uψ(r, ψ)
uz(r, ψ)

⎫⎬
⎭ =

1
μr

⎡
⎣ frr cosψ frr sinψ frz
fψr sinψ −fψr cosψ 0
fzr cosψ fzr sinψ fzz

⎤
⎦
⎧⎨
⎩
Px(�rp)
Py(�rp)
Pz(�rp)

⎫⎬
⎭ , (F37)

Now apply the transformation (F36) to both sides of Eq. (F37). The result is a displacement-

force relationship in Cartesian coordinates written as⎧⎨
⎩
ux(�r)
uy(�r)
uz(�r)

⎫⎬
⎭ =

1
μr

[
G
]⎧⎨⎩

Px(�rp)
Py(�rp)
Pz(�rp)

⎫⎬
⎭ , (F38)

in which

[
G
]

=

⎡
⎢⎣
frr cos2 ψ − fψr sin2 ψ (frr + fψr) sinψ cosψ frz cosψ
(frr + fψr) sinψ cosψ frr sin2 ψ − fψr cos2 ψ frz sinψ

fzr cosψ −fzr sinψ fzz

⎤
⎥⎦ . (F39)

Using Cartesian coordinates, the factors, sinψ and cosψ, can be evaluated simply as

sinψ =
y − yp
r

, (F40)

and

cosψ =
x− xp
r

. (F41)

If the elements of matrix [G] are defined with subscripts as

[
G
]

=

⎡
⎣Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz

⎤
⎦ , (F42)

then the matrix [U(�rp|�r)] can be formed as

[
U(�rp|�r)

]
=

1
μr

⎡
⎣Gxx Gyx Gzx
Gxy Gyy Gzy
Gxz Gyz Gzz

⎤
⎦ . (F43)

A column in [G] represents the displacements caused by a point load in a particular direction,

following the order x, y, z, respectively. In the matrix [U(�rp|�r)], however, the same

displacement components are stored as a row. The reason for this transposition can be

observed by the definition of [U ] in Appendix A.
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