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Abstract

This dissertation focuses on facilitating the analysis of probabilistic models for physical sys-

tems. To that end, novel contributions are made to various aspects of the problem, namely, 1)

development of efficient algorithms for solving stochastic system of equations governing the phys-

ical problem, 2) stochastic basis adaptation methods to compute the solution in reduced stochas-

tic dimensional space and 3) stochastic upscaling methods to find coarse-scale models from the

fine-scale stochastic solutions. In particular, algorithms are developed for stochastic systems

that are governed by partial differential equations (PDEs) with random coefficients. Polynomial

chaos-based stochastic Galerkin and stochastic collocation methods are employed for solving

these equations. Solvers and preconditioners based on Gauss-Seidel and Jacobi algorithms are

explored for solving system of linear equations arising from stochastic Galerkin discretization of

PDEs with random input data. Gauss-Seidel and Jacobi algorithms are formulated such that the

existing software is leveraged in the computational effort. These algorithms are also used to de-

velop preconditioners to Krylov iterative methods. These solvers and preconditioners are tested

by solving a steady state diffusion equation and a steady state advection-diffusion equation. Upon

discretization, the former PDE results in a symmetric positive definite matrix on left-hand-side,

whereas the latter results in a non-symmetric positive definite matrix. The stochastic systems face

significant computational challenge due the curse of dimensionality as the solution often lives in

very high dimensional space. This challenge is addressed in the present work by recognizing the

low dimensional structure of many quantities of interest (QoI) even in problems that have been

embedded, via parameterization, in very high-dimensional settings. A new method for the char-

acterization of subspaces associated with low-dimensional QoI is presented here. The probability

12



density function of these QoI is found to be concentrated around one-dimensional subspaces for

which projection operators are developed. This approach builds on the properties of Gaussian

Hilbert spaces and associated tensor product spaces.

For many physical problems, the solution lives in multiple scales, and it is important to capture

the physics at all scales. To address this issue, a stochastic upscaling methodology is developed

in which the above developed algorithms and basis adaptation methods are used. In particular

upscaling methodology is demonstrated by developing a coarse scale stochastic porous medium

model that replaces a fine-scale which consists of flow past fixed solid inclusions. The inclusions

have stochastic spatially varying thermal conductivities and generate heat that is transported by

the fluid. The permeability and conductivity of the effective porous medium are constructed as

statistically dependent stochastic processes that are both explicitly dependent on the fine scale

random conductivity.

Another contribution of this thesis is development of a probabilistic framework for synthesiz-

ing high resolution micrographs from low resolution ones using a parametric texture model and

a particle filter. Information contained in high resolution micrographs is relevant to the accurate

prediction of microstructural behavior and the nucleation of instabilities. As these micrographs

may be tedious and uneconomical to obtain over an extended spatial domain, A statistical ap-

proach is proposed for interpolating fine details over a whole computational domain starting with

a low resolution prior and high resolution micrographs available only at a few spatial locations.

As a first step, a small set of high resolution micrographs are decomposed into a set of multi-

scale and multi-orientation subbands using a complex wavelet transform. Parameters of a texture

model are computed as the joint statistics of the decomposed subbands. The synthesis algorithm

then generates random micrographs satisfying the parameters of the texture model by recursively

13



updating the gray level values of the pixels in the input micrograph. A density-based Monte Carlo

filter is used at each step of the recursion to update the generated micrograph, using a low resolu-

tion micrograph at that location as a measurement. The process is continued until the synthesized

micrograph has the same statistics as those from the high resolution micrographs. The proposed

method combines a texture synthesis procedure with a particle filter and produces good quality

high resolution micrographs.
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Chapter 1

Introduction

1.1 Motivation

Many physical problems can be described with coupled stochastic nonlinear partial differential

equations. One such problem of interest is fluid flow through porous media coupled with heat

equation. In this work a collection of two-dimensional solid discs is considered to be micro

porous medium and the flow through pores at micro level can be modeled with Navier-Stokes

equations coupled with heat equation. Due to inherent randomness in this physical system, it

is modeled with uncertainty. Simulating such a system only at fine scale with Navier-Stokes

equations can be computationally intractable. Hence, multi-scale modeling approach is employed

where, coarse scale equations are modeled with Darcy-Brinkman equations. To avoid the com-

plexity due to turbulence, the simulations are performed at a low Reynolds number, so that the

flow is laminar. The coupling between the fluid flow and heat transfer is achieved through tem-

perature dependent viscosity and fluid density. The multi-scale treatment of the problem makes

the simulation numerically feasible but one has to be careful to maintain sufficient accuracy while

making the multi-scale approximation. The main objective of this research is to come up with

1



stochastic upscaling approach so that the coarse scale porous media model can simulate the so-

lution with required accuracy. Since the coarse scale models are much smaller compared to the

fine-scale models, they are computationally less expensive to solve.

Another problem considered in this work is probabilistic treatment of high resolution micro-

graph synthesis from low resolution ones using a parametric texture model and a particle filter.

High resolution microstructural information is required as a prerequisite for the multi-scale mod-

eling and analysis of composite structures, and in particular to track the nucleation of instabilities

in material behavior. As it remains expensive to experimentally obtain high resolution micro-

graphs throughout a computational domain where coarse-scale behavior is being assessed, proce-

dures for gleaning equivalent information from lower resolution images have demonstrated their

value in computational materials science Ghosh et al. (2006), Valiveti and Ghosh (2007).

1.2 Problem statement

In this work, stochastic upscaling methodology is developed to model the flow through porous

media coupled with heat equations. At fine scale, fluid flow through an array of solid circular

discs is modeled with Navier-Stokes equations Betchen et al. (2006), Chandesris et al. (2006),

Nakayama et al. (2002) coupled with heat equation to model heat transfer between solid and fluid

domain.

Randomness in the the system is modeled by treating thermal conductivity of the solid region

as a random filed. Spectral stochastic finite element methods are used to solve these stochastic par-

tial differential equations. In these methods random coefficients and the solution are represented

2



Figure 1.1: Fine scale domain modeled with an array of solid discs and coarse scale domain

modeled as porous media

as series expansion of polynomial chaos basis, where, polynomial chaos basis are orthogonal

polynomials in terms of input random variables.

It is computationally intractable to solve Navier-Stokes equations with random parameters at

the fine scale. To overcome this difficulty, an approximate porous media model is proposed at

the coarse scale that will compute the solution of interest accurately. The equations governing

the flow at coarse scale are modeled with Darcy-Brinkman equations Schmidt et al. (2010). A

stochastic upscaling procedure is followed to compute the parameters of the coarse scale model.

The parameters of the coarse scale model that are to be computed from the stochastic upscaling

method are permeability and thermal conductivity random fields at the coarse scale. Figure 1.1

shows fine scale and coarse scale domain modeled in 2-dimensions.

To synthesize high resolution micrographs, from low resolution ones, it is shown in chapter 6

that, a parametric texture model based in wavelet transformation and a particle filter can be used

to accurately simulate the microstructural feature of the local domain. Starting with an image

x0 that represents the low-resolution micrograph at a location, our aim is to synthesize an image

x at the same location, representing the high-resolution micrograph, that is constrained, in some

3



sense, by our knowledge of experimental high resolution data available at few locations and low

resolution data available at the point of interest. In order to complete the statement of the problem,

we must specify the nature of the constraints (i.e. the specific functionals or features that describe

our knowledge of the high resolution data). In what follows, a texture model will be used to

provide a context in which features of a micrograph are quantified. This model will be constructed

from available high resolution data and presumed to be valid everywhere else. Specifically, the

texture model will be identified with the joint statistics of the subbands in a particular wavelet

decomposition, namely, a steerable pyramid decomposition. Associated with this model is a

mapping f that maps x0 into x such that x has the joint statistics corresponding to the model.

In our work, we use a Bayesian framework where the experimental low resolution micrograph

play the role of measurement used to update a prior model synthesized from a very small set of

high resolution micrographs. We use a particle filter, namely a density-based Monte Carlo filter

to implement the Bayesian formulation.

1.3 Stochastic upscaling

Objective of stochastic upscaling in this work is to identify the coarse scale models that capture the

quantities of interest with good accuracy. The parameters of the coarse scale models are computed

using volume average method. Further, stochastic basis adaptation methods are developed to

represent the coarse scale parameters in the reduced stochastic dimension.
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1.4 Challenges

There are many modeling, numerical and computational challenges involved in this problem.

Significant modeling challenges in this problem are to choose the right governing equations and

boundary conditions in both fine and coarse scale problems, to choose the spatial dependence of

the coarse scale parameters and to come up with the appropriate distance measure between the

quantities of interest at fine and coarse scales. Other modeling challenge is in representing the

uncertainty at both the scales.

The numerical challenges involved are instabilities in the finite element formulations of in-

compressible flows. Main sources of these instabilities are spurious node to node oscillations in

the velocity field in the advection dominated flow and spurious pressure modes in Navier-Stokes

and Darcy-Brinkman equations due to equal order interpolation in pressure and velocity field in

finite element discretizations. To address this issue, stabilization methods should be employed

in the finite element discretization. In this work, stabilizations methods such as Streamline-

upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin (PSPG) formulations Brooks

and Hughes (1982), Shadid et al. (2006), Tezduyar (1992) are used.

There are many computational challenges in solving this problem. At fine scale and coarse

scale, the governing equations are coupled stochastic nonlinear partial differential equations. In

the optimizations process, these partial differential equations should be solved efficiently and ac-

curately. The stochastic partial differential equations at the fine scale are Navier-Stokes equations,

which are very complex to solve even in the deterministic case. Spectral stochastic Galerkin pro-

jections are used to discretize the stochastic partial differential equations. The linear algebraic

equations arising from the discretization of these equations are very large in size and it is very
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challenging to solve these equations efficiently. To address these issues, efficient solvers and

preconditioners are proposed in chapter 3 based on Gauss-Seidel and Jacobi algorithms. To ex-

plain Gauss-Seidel and Jacobi algorithms let Ax = b be a system of linear equations, where,

A = [aij ], b = {bi} and x = {xj} the Gauss-Seidel algorithms can be written as,

x
(k+1)
j =

1

aij



bi −
∑

j>i

aijx
(k)
j −

∑

j<i

aijx
(k+1)
j



 , (1.1)

and the Jacobi algorithm can be written as

x
(k+1)
j =

1

aij



bi −
∑

j 6=i

aijx
(k)
j



 , (1.2)

These algorithms are adapted to solve the linear equations arising from spectral stochastic finite

element discretization. The stochastic Galerkin system of equations for all the partial differential

equations are formulated using Albany application software developed at Sandia National Labs.

The solvers and preconditioners are incorporated as Stokhos package of Trilinos developed at

Sandia National Labs.

Another computational challenge arises due to curse of dimensionality in stochastic Galerkin

projections. As the number of input random variables (stochastic dimension) increases, the num-

ber of stochastic basis functions to represent the solution increases exponentially. Because of this

curse of dimensionality, there is a limitation to go to larger stochastic dimensions. To address this

issue by further reducing the size of the problem, dimension reduction methods based on basis

adaptation discussed in chapter 4 will be used. In these methods, a new set of random variables

in the reduced stochastic space is obtained b finding an isometry matrix A, the relates the new
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set to the original set of random variables, η = Aξ. Here, ξ = {ξ1, · · · , ξd}T are the original

set of random variables and η = {η1, · · · , ηl}T are the new set such that, l << d. The new

set of random variables are adapted to specific quantities of interest (QoI) such that the solution

of these QoI can be represented accurately with few random variables. Identifying the right set

of random variables that are adapted to QoI is not unique. In chapter 4, various cases such as

linear, quadratic basis adaptation is discussed. It is also shown that, if the QoI is scalar, it can be

accurately represented in only on e random variable. Both, intrusive and non-intrusive methods

can be employed for basis adaptation procedure.

This manuscript is organized as follows. Chapter 2 provides a brief introduction to stochastic

Galerkin methods. Chapter 3 describes the solvers and preconditiners based on Gauss-Seidel and

jacobi algorithms to solve stochastic Galerkin system of equations efficiently. In chapter 4, ba-

sis adaptation methods for dimension reduction is presented. Chapter 5 describes the stochastic

upscaling methodology for a stochastic coupled nonlinear problem and shows the use of tools

developed in chapters 3 and 4. Finally chapter 6 describes the probabilistic treatment of micro-

graphs and their synthesis procedure from known statistical data.
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Chapter 2

Stochastic Galerkin methods

2.1 Introduction

Real life physical problems are often modeled as partial differential equations (PDEs) where the

coefficients of the partial differential equations are treated as random parameters to represent

uncertainty in the problem. Monte Carlo techniques are popular methods to solve these problems

as they only require solutions to the PDE for a given set of realizations of the input random

coefficients. More recently however, the stochastic finite element methods Babuška et al. (2004),

Ghanem and Spanos (1991) have become a popular choice for solving these problems because of

their advantages over Monte Carlo methods. These methods compute statistical properties of the

solution more efficiently than Monte Carlo methods when the number of sources of uncertainty

is not too large and the solution exhibits some degree of regularity with respect to these sources.

2.2 Stochastic partial differential equations

Let D be an open subset of Rn and (Ω,Σ, P ) be a complete probability space with sample space

Ω, σ-algebra Σ and probability measure P . We are interested in studying the following stochastic
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partial differential equation: find a random field, u(x, ω) : D × Ω → R such that the following

holds P -almost surely (P -a.s.):

L(x, ω;u) = f(x, ω) in D× Ω, (2.1)

subject to the boundary condition

B(x, ω;u) = g(x, ω) on ∂D× Ω, (2.2)

where L is a differential operator and B is a boundary operator.

2.3 Input random field model

Uncertainty in stochastic PDEs is often arises by treating coefficients in the differential operator,

L(x, ω;u), as a random fields. For computational purposes, each stochastic coefficient a(x, ω)

must be discretized in both spatial and stochastic domains. To this end, it is often approximated

with a truncated series expansion that separates the spatial variable x from the stochastic variable

ω resulting in a representation by a finite number of random variables. For this representation,

second order information such as the covariance function of the random field is required. In

the present problem, two cases of random field models are considered. In the first case, the

random field is assumed to be uniformly distributed and is approximated through a truncated

Karhunen-Loève expansion. In the second case, the random field is assumed to have a log-normal

distribution, that is a(x, ω) = exp (g(x, ω)) where g(x, ω) is a Gaussian random field, and is

approximated by a truncated polynomial chaos expansion.
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2.3.1 Karhunen-Loève expansion

Let C(x1, x2) = E[a(x1, ω)a(x2, ω)] be the covariance function of the random field a(x, ω),

where E[·] denotes mathematical expectation. Then a(x, ω) can be approximated through its

truncated Karhunen-Loève (K-L) expansion Ghanem and Spanos (1991) given by

a(x, ω) ≈ ã(x, ξ(ω)) = a0(x) +

M
∑

i=1

√

λiai(x)ξi(ω), (2.3)

where a0(x) is the mean of the random field a(x, ω) and {(λi, ai(x))}i≥1 are solutions of the

integral eigenvalue problem

∫

D
C(x1, x2)ai(x2)dx2 = λiai(x1). (2.4)

The eigenvalues λi are positive and non-increasing, and the eigenfunctions ai(x) are orthonormal,

that is,
∫

D
ai(x)aj(x) = δij , (2.5)

where δij is the Kronecker delta. In Eq. 2.3, {ξi}Mi=1 are uncorrelated random variables with zero

mean. As a first test-case, the diffusion coefficient a(x, ω) is modeled as a random field with

following exponential covariance function

C(x1, x2) = σ2 exp(−‖x1 − x2‖1/L) (2.6)

such that the random variables ξi(ω) in the K-L expansion are uniformly distributed. We further

assume that the random variables are independent.
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2.3.2 Polynomial chaos expansion

The K-L expansion approximates a random field by a linear combination of a finite set of random

variables. To maintain positivity of the random field, such a representation is only appropriate if

the random variables are bounded Ullmann (2010). For unbounded random variables (e.g., log-

normal) a nonlinear polynomial chaos representation is more appropriate. The polynomial chaos

expansion Ghanem and Spanos (1991), Weiner (1963) is used to approximate a random field in

terms of multi-variate orthogonal polynomials. Let ξ = (ξ1, · · · , ξM )T be the random variables

from a truncated K-L expansion of a given random field g(x, ω), that is

g(x, ω) ≈ g̃(x, ξ(ω)) = g0(x) +

M
∑

i=1

√

λigi(x)ξi(ω). (2.7)

Assume a(x, ω) is then given by a nonlinear transformation of g(x, ω). Then a(x, ω) can be repre-

sented through nonlinear functionals of the random variables ξi(ω). It has been shown in Ghanem

and Spanos (1991), Weiner (1963) that this functional dependence can be expanded in terms of

multi-dimensional orthogonal polynomials, called polynomial chaos, as

a(x, ω) = â0(x) +

∞
∑

i1=1

âi1(x)Γ1(ξi1(ω)) +

∞
∑

i1=1

i1
∑

i2=1

âi1i2Γ2(ξi1(ω), ξi2(ω)) + · · · (2.8)

where Γn(ξi1 , · · · , ξin) is the multi-dimensional polynomial chaos of order n in random variables

(ξi1 , · · · , ξin). A one-to-one mapping of polynomials {Γi} to a set of polynomials with ordered

indices {ψi(ξ)} can be introduced Ghanem and Spanos (1991). After substituting {ψi} in Eq. 2.8
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and truncating the series to finite number of terms Nξ, the random field a(x, ω) can thus be

approximated as

a(x, ω) ≈ ã(x, ξ(ω)) = a0(x) +

Nξ
∑

i=1

ai(x)ψi(ξ). (2.9)

The polynomials {ψi(ξ)} are orthogonal with respect to the inner product defined by expectation

in the stochastic space,

〈ψi(ξ), ψj(ξ)〉 ≡
∫

Ω
ψi(ξ(ω))ψj(ξ(ω))dP (ω) = δij . (2.10)

As a second test-case, the diffusion coefficient a(x, ω), is modeled as a log-normal random

field Ghanem (1999) where a(x, ω) = exp[g(x, ω)] and g(x, ω) is a Gaussian random field with

exponential covariance (2.6). Here, g(x, ω) is approximated with a truncated K-L expansion (2.7).

In this case the random variables ξi are standard normal random variables and thus are inde-

pendent and a(x, ω) can be approximated with truncated polynomial chaos expansion (2.9). It

also can be shown that the polynomials {ψi} are tensor products of one-dimensional Hermite

polynomials. For a given total polynomial order p, the total number of polynomials {ψi(ξ)} is

Nξ + 1 = (M+p)!
M !p! .

2.4 Stochastic Galerkin method

Let H1
0 (D) be the subspace of the Sobolev space H1(D) that vanishes on the boundary ∂D and

is equipped with the norm ‖u‖H1
0 (D) = [

∫

D |∇u|2dx]
1
2 . Problem (2.1) can then be written in the
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following equivalent variational form Ghanem and Doostan (2006): find u ∈ H1
0 (D) ⊗ L2(Ω)

such that

b(u, v) = l(v), ∀v ∈ H1
0 (D)⊗ L2(Ω), (2.11)

where b(u, v) is a continuous and coercive bilinear form and l(v) is a continuous bounded lin-

ear functional. In the stochastic Galerkin method, we seek the solution of the variational prob-

lem (2.11) in a tensor product space Xh⊗Yp, where, Xh ⊂ H1
0 (D) is finite dimensional space of

continuous polynomials corresponding to the spatial discretization of D and Yp ⊂ L2(Ω) is the

space of random variables spanned by polynomial chaos Ghanem and Spanos (1991) of order up

to p. Then the finite dimensional approximation uXhYp(x, ω) of the exact solution u(x, ω) on the

tensor product space Xh ⊗ Yp is given as the solution to

b(uXhYp , v) = l(v) ∀v ∈ Xh ⊗ Yp. (2.12)

In equation (2.12) the input random field a(x, ω) in the bilinear form b(uXhYp , v) can be ap-

proximated using either a K-L expansion or a polynomial chaos expansion depending on a choice

of model for the random field. The finite dimensional approximation uXhYp(x, ω) is represented

with truncated polynomial chaos expansion, where the multidimensional polynomial chaos are

orthogonal with respect to the probability measure of the underlying random variables. The re-

sulting set of coupled PDEs are then discretized using standard techniques such as the finite ele-

ment or finite difference methods. In the present problem, the set of coupled PDEs are discretized

using the finite element method and the resulting system of linear equations can be written as
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Nξ
∑

j=0

P̂
∑

i=0

cijkKiuj = fk, k = 0, · · · , Nξ, (2.13)

where fk = E{f(x, ξ)ψk}, cijk = E{ξiψjψk} and P̂ = M when a(x, ω) is approximated by a

truncated K-L expansion, or cijk = E{ψiψjψk} and P̂ = N̂ξ when a(x, ω) is approximated by

a polynomial chaos expansion. Here {Ki ∈ R
Nx×Nx}P̂i=0 are the polynomial chaos coefficients

of the stiffness matrix (section (3.4) of Powell and Elman (2009)) and {uj ∈ R
Nx}Nξ

j=0 are the

polynomial chaos coefficients of the discrete solution vector

uj = [u0j , . . . , uNxj ]
T , j = 0, . . . , Nξ. (2.14)

Equation (2.13) can be written in the form of a global stochastic stiffness matrix of size ((Nξ+

1)×Nx) by ((Nξ + 1)×Nx) as

























K0,0 K0,1 · · · K0,Nξ

K1,0 K1,1 · · · K1,Nξ

...
...

...
...

KNξ,0 KNξ,1 · · · KNξ,Nξ

























×















































u1

u2

...

uNξ















































=















































f1

f2

...

fNξ















































(2.15)

where Kj,k =
∑P̂

i=0 cijkKi. We will denote this system as K̄ū = f̄ . In practice it is prohibitive

to assemble and store the global stochastic stiffness matrix in this form, rather each block of the

stochastic stiffness matrix can be computed from the {Ki} when needed. The stochastic stiff-

ness matrix is block sparse, which means that some of the off-diagonal blocks are zero matrices,

because of the fact that the cijk defined above vanishes for certain combination of i, j and k.
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It is also interesting to note that the diagonal blocks are dominant over the off-diagonal blocks

because, the diagonal blocks have the contribution from mean stiffness matrix K0, whereas the

off-diagonal blocks do not have the contribution from mean stiffness matrix. These properties of

block sparsity and diagonal dominance are exploited to develop solvers and preconditioners based

on Jacobi and Gauss-Seidel algorithms.
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Chapter 3

Iterative solvers and preconditioners

3.1 Introduction

The linear algebraic equations arising from the discretization of these equations are very large

in size and it is very challenging to solve these equations efficiently. In this work solvers and

preconditioners based on Jacobi and Gauss-Seidel algorithms are developed to solve the system

of equations arising from the stochastic finite element methods.

3.2 Solution methods for stochastic Galerkin systems

In this section, various solver techniques and preconditioning methods for solving the linear

algebraic equations arising from stochastic Galerkin discretizations (2.13) are described. The

solver methods discussed are: relaxation methods, namely, a Jacobi mean method and a Gauss-

Seidel mean method, and Krylov-based iterative methods Saad (1996). Also various stochastic

preconditioners used to accelerate convergence of the Krylov methods are discussed, including

mean-based Powell and Elman (2009), Gauss-Seidel mean, approximate Gauss-Seidel mean, ap-

proximate Jacobi mean and Kronecker product Ullmann (2010) preconditioners. The relaxation
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schemes can be viewed as fixed point iterations on a preconditioned system Saad (1996). In Jacobi

and Gauss-Seidel methods, mean splitting is used rather than traditional diagonal block splitting

as it allows use of the same mean matrix K0 for all inner deterministic solves (and thus reuse of

the preconditioner P0 ≈ K0).

3.2.1 Jacobi mean algorithm

In this method, systems of equations of size equal to that of the deterministic system are solved

iteratively by updating the right-hand-side to obtain the solution to the stochastic Galerkin system

of equations (2.13):

ckk0K0u
new
k = fk −

Nξ
∑

j=0

P̂
∑

i=1

cijkKiu
old
j , k = 0, · · · , Nξ. (3.1)

The above system of equations are solved for k = 0, · · · , Nξ using any solution technique appro-

priate for the mean matrix K0. Thus existing legacy software can be used with minimal modifi-

cation to solve the stochastic Galerkin system. In this work, Krylov-based iterative methods with

appropriate preconditioners will be used. One cycle of solves from k = 0, · · · , Nξ is considered

one Jacobi outer iteration, and after each outer iteration, the right-hand-side in equation (3.1) is

updated replacing {uoldj } with the new solution {unewj }. These outer iterations are continued

until the required convergence tolerance is achieved. The Jacobi mean algorithm is shown in

Algorithm 1.
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Algorithm 1 Jacobi mean algorithm

1. Choose initial guess ū0 and compute residual r̄ = K̄ū0 − f̄

2. Iteration count, itr = 0

3. while
‖r̄‖2
‖f̄‖2

> tol do

4. for k = 0 . . . Nξ do

5. Solve ckk0K0u
(itr+1)
k = fk −

∑Nξ

j=0

∑P̂
i=1 cijkKiu

(itr)
j

6. end for

7. itr = itr + 1

8. r̄ = K̄ūitr − f̄

9. end while.

Note that for a given outer iteration, all of the right-hand-sides for k = 0, · · · , Nξ are available

simultaneously, and thus their solution can be efficiently parallelized. Moreover block algorithms

optimized for multiple right-hand-sides may be used to further increase performance. Finally this

approach does not require a large amount of memory to compute the solution. The disadvantage

of the method is that it may not converge or may converge very slowly when the diagonal blocks

of the stochastic stiffness matrix are less dominant over off-diagonal blocks.

3.2.2 Gauss-Seidel mean iterative method

The Gauss-Seidel method considered is similar to the Jacobi method, except the right-hand-side

in equation (3.1) is updated after each deterministic solve with the newly computed unewk . Sym-

bolically this is written

ckk0K0u
new
k = fk −

k−1
∑

j=0

P̂
∑

i=1

cijkKiu
new
j −

Nξ
∑

j=k

P̂
∑

i=1

cijkKiu
old
j , k = 0, · · · , Nξ. (3.2)
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As before, one cycle of solves from k = 0, · · · , Nξ is considered one outer iteration of the Gauss-

Seidel method, and these outer iterations are repeated until the required convergence tolerance is

achieved. Note however that computing the updates as shown here would result in a large number

of duplicated matrix-vector products Kiuj for each outer iteration. Instead, after each unewk is

computed by solving the mean linear system, we first compute y = Kiu
new
k for all i in which cijk

is nonzero for any j. Then for each corresponding j we update fj ← fj−cijky. This allows all of

the right-hand-sides to be updated as required using the fewest number of matrix-vector products

and without resorting to storing intermediate products. The complete Gauss-Seidel algorithm is

shown in Algorithm 2.
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Algorithm 2 Gauss-Seidel mean algorithm

1. Choose initial guess ū0 and compute residual r̄ = f̄ − K̄ū0

2. Iteration count, itr = 0

3. Initialize z̄ = r̄

4. while
‖r̄‖2
‖f̄‖2

> tol do

5. r̄ = f̄

6. for k = 0 . . . Nξ do

7. Solve ckk0K0uk = zk

8. zk = fk

9. for i = 1, . . . , P̂

10. y = Kiuk

11. for j = 1, . . . , Nξ

12. if cijk 6= 0 then

13. zj = zj − cijky

14. rj = rj − cijky

15. endif

16. end for

17. end for

18. rk = rk − ckk0K0uk

19. end for

20. itr = itr + 1

21. end while.
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Often this method converges in fewer iterations than the Jacobi method, at the expense of no

longer having all of the right-hand-sides available simultaneously. Unlike diagonal block splitting

methods defined in Rosseel and Vandewalle (2010), mean block splitting is used in both Jacobi

and Gauss-Seidel algorithms and hence the left-hand-side matrix is the mean matrix for all inner

deterministic problems and only the right-hand-side changes. In such cases recycled Krylov basis

methods could be explored to increase performance.

3.2.3 Krylov based iterative methods with matrix-free operations

Krylov based iterative methods Saad (1996) such as the conjugate gradient (CG) method and the

generalized minimal residual (GMRES) method can be used to solve the stochastic Galerkin sys-

tem (2.13) in which matrix vector products v̄ = K̄ū are computed using “matrix-free” operations:

vk =

Nξ
∑

j=0

P̂
∑

i=0

cijkKiuj , k = 0, · · · , Nξ. (3.3)

If the matrix vector products are computed from Eq. 3.3, it is not required to assemble the full

stochastic Galerkin stiffness matrix, drastically decreasing memory requirements. However if

a large number of iterations of a Krylov method such as GMRES are required, allocation of

the Krylov basis may still require a very large amount of memory. Thus good preconditioning

strategies for the stochastic Galerkin system are required, several of which will be discussed

below.

21



Mean-based preconditioner

The mean-based preconditioner Powell and Elman (2009) is given by P = diag{P0, · · · ,P0}

where P0 ≈ K0 is a preconditioner for the mean. The mean-based preconditioner is very efficient

to compute and apply, since it only must be generated once from a matrix that is of the size of

the deterministic system. However it doesn’t incorporate any higher-order stochastic information,

thus its performance degrades as the stochastic dimension, polynomial order, or random field

variance increases Ullmann (2010).

Gauss-Seidel preconditioner

One or more outer iterations of the Gauss-Seidel mean algorithm can be used as a preconditioner

to the Krylov based iterative methods. An advantage of this method is that the cost of applying

the preconditioner can be controlled by adjusting the tolerance of the inner deterministic solves

and number of outer iterations. Decreasing this tolerance and increasing the number of outer it-

erations will reduce the number of iterations in the Krylov method, but make the preconditioner

more expensive to apply, and thus these must be balanced to minimize overall computational cost.

Generally we have found the cost of the preconditioner to be dominated by solving the mean sys-

tems, and thus the performance was improved by loosening the outer solver tolerance or limiting

the number of outer iterations. In the results presented below we limited the preconditioner is

limited to only one Gauss-Seidel iteration.
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Approximate Gauss-Seidel preconditioner

The process of increasing the inner solver tolerance can be taken to its extreme of replacing the

inner mean solves by application of the mean preconditioner. As with the Gauss-Seidel precondi-

tioner above, we found experimentally that this approach worked best with only one Gauss-Seidel

iteration, and adding additional iterations did not improve the quality of the preconditioner. We

also found that the cost of the preconditioner was reduced dramatically if only the first-order terms

in the expansion for the stiffness matrix were used in the preconditioner and using higher-order

terms did not improve performance. It is referred as the approximate Gauss-Seidel preconditioner

here.

Approximate Jacobi preconditioner

Similar to the approximate Gauss-Seidel preconditioner, Jacobi iterations can be used using a

preconditioner in place of the mean stiffness matrix. In this case we used two outer Jacobi it-

erations, since the first iteration is equivalent to mean-based preconditioning (i.e., the additional

terms on the right-hand-side of equation (3.1) are zero). Increasing the number of outer iterations

did not improve the efficiency of the overall solver. It is referred as the approximate Jacobi pre-

conditioner. Both approximate Gauss-Seidel and approximate Jacobi preconditioners are found

to be very effective in reducing the number of Krylov iterations and are also not very expensive

to apply.
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Kronecker product preconditioner

The Kronecker product preconditioner Ullmann (2010) is defined as P1 = G⊗K0, where K0 is

mean stiffness matrix and G is

G =
P̂
∑

i=0

tr(KT
i K0)

tr(KT
0 K0)

Gi (3.4)

where, Gi(j, k) = cijk. Unlike, the mean-based preconditioner, the Kronecker product precon-

ditioner incorporates higher order stochastic information and hence the Krylov based algorithm

converges in fewer iterations. However the disadvantage is that the cost of constructing the Kro-

necker product preconditioner is larger than that of mean-based preconditioner, and it is also more

expensive to apply. Over all, solution time is found to be less than that with mean-based precon-

ditioner as reported in Ullmann (2010). However, it was found in the numerical experiments that

the approximate Gauss-Seidel and approximate Jacobi preconditioner performed better than the

Kronecker product preconditioner.

3.3 Problem Statement

In this work a stochastic steady-state elliptic diffusion equation with Dirichlet boundary condi-

tions Elman et al. (2011) is used as test problem for various stochastic PDE solution methods.

Assume a(x, ω) : D × Ω→ R is a random field that is bounded and strictly positive, that is,

0 < al ≤ a(x, ω) ≤ au <∞ a.e. in D× Ω. (3.5)
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For the steady-state diffusion equation, we wish to compute a random field u(x, ω) : D×Ω→ R,

such that the following holds P -almost surely (P -a.s.):

−∇.(a(x, ω)∇u(x, ω)) = f(x, ω) in D× Ω, (3.6)

u(x, ω) = u0 on ∂D× Ω. (3.7)

Problem (3.6) can then be written in the following equivalent variational form Ghanem and

Doostan (2006): find u ∈ H1
0 (D)⊗ L2(Ω) such that

b(u, v) = l(v), ∀v ∈ H1
0 (D)⊗ L2(Ω), (3.8)

where b(u, v) is the continuous and coercive (from assumption (3.5)) bilinear form given by

b(u, v) = E

[∫

D
a∇u · ∇vdx

]

, ∀u, v ∈ H1
0 (D)⊗ L2(Ω). (3.9)

and l(v) is the continuous bounded linear functional given by

l(v) = E

[∫

D
fvdx

]

, ∀v ∈ H1
0 (D)⊗ L2(Ω). (3.10)

From the Lax-Milgram lemma, equation (3.8) has unique a solution in H1
0 (D)⊗ L2(Ω).
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3.4 Sparse grid collocation method

In the collocation method, the solution to the PDE is sampled at a pre-selected set of points called

collocation points, Θ = (ξ(1), · · · , ξ(N)). The stochastic solution is constructed by interpolating

at these collocation points,

u(x, ξ) ≈
N
∑

k=0

uk(x)Lk(ξ), (3.11)

where {Lk(ξ)} are Lagrange interpolatory polynomials defined by (Lk(ξl) = δkl) and uk is the

solution of following deterministic diffusion equation,

−∇.(a(x, ξ(k))∇uk(x) = f(x, ξ(k)) in D, (3.12)

uk(x) = uk0 on ∂D. (3.13)

The collocation points can be chosen as tensor products of 1-D Gaussian quadrature points

and the interpolating polynomials as tensor products of 1-D Lagrange interpolating functions.

However the number of collocation points then grows exponentially with the number of random

variables. An alternative method is to use Smolyak sparse grid quadrature (Nobile et al. (2008),

Smolyak (1963)) where collocation points that do not increase asymptotic accuracy are removed

from the tensor product grid. This results in many fewer collocation points but still more than

the number of stochastic degrees of freedom in the stochastic Galerkin method. This method is

fully non-intrusive and is easy to implement with existing legacy software (once the sparse grid is

generated) Adams et al. (2010).
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3.5 Numerical illustration

To compare the performance of different solvers and preconditioners discussed above, a 2-D

stochastic diffusion equation and a 2-D stochastic advection-diffusion equation presented in sec-

tion 3.3 are solved using the stochastic Galerkin method described in section 2.4. In the above

two problems, the diffusion coefficient is modeled as both a random field discretized using a

truncated K-L expansion with uniform random variables (section 2.3.1) and a log-normal random

field discretized using a truncated polynomial chaos expansion (section 2.3.2). In the first case,

the orthogonal polynomials used in the stochastic Galerkin method are tensor products of 1-D

Legendre polynomials and in the second case tensor products of Hermite polynomials are used.

For simplicity a constant unit force f(x, ω) = 1 is used as the right-hand-side in equation (3.6).

The spatial dimensions are discretized using standard finite element mesh with linear quadrilat-

eral elements. In advection-diffusion equation, the parameter, ~w = [1, 1]T . The corresponding

stochastic Galerkin linear system is constructed using the Stokhos and Epetra packages in Trilinos.

For the Jacobi solver, Gauss-Seidel solver, Gauss-Seidel preconditioner, and stochastic colloca-

tion method, the linear systems are solved via multi-grid preconditioned GMRES provided by the

AztecOO and ML packages in Trilinos. To use CG, a symmetric version of the Gauss-Seidel pre-

conditioner is required which comprises of one forward and one backward Gauss-Seidel iteration,

and hence it is twice as expensive as that of one forward Gauss-Seidel iteration. It was observed

from numerical tests that the symmetric Gauss-Seidel improved the number of Krylov iterations

slightly, though its cost is twice that of the non-symmetric Gauss-Seidel preconditioner. Hence,

GMRES algorithm is employed for both diffusion and advection-diffusion problems instead of

CG.
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For the numerical comparisons, the domain D = [−0.5, 0.5]× [−0.5, 0.5] is discretized into

a 64× 64 grid resulting in a total number of nodes, Nx = 4096. In figure (3.1) the solution time

for the stochastic Galerkin method, scaled by the deterministic solution time at the mean of the

random field, is compared for different mesh sizes (32 × 32, 64 × 64, 96 × 96 and 128 × 128)

for the diffusion problem demonstrating that the solution time does not depend strongly on the

mesh size (as is to be expected for the multigrid preconditioner). The scaled solution time for

these solvers and preconditioning techniques as a function of the standard deviation of the input

random field, stochastic dimension, and polynomial order are then tabulated in Tables 3.1-3.12. In

the tables, the number of Krylov iterations for the aforementioned preconditioners and iterations

for Gauss-Seidel and Jacobi solvers are provided in parentheses. In the tables, MB, AGS, AJ, GS

and KP are the mean-based, approximate Gauss-Seidel, approximate Jacobi, Gauss-Seidel and

Kronecker-product preconditioners respectively. GS in the solution methods refers to the Gauss-

Seidel mean algorithm (Algorithm-2). “Jacobi” refers to the Jacobi mean algorithm (Algorithm-

1). The solution tolerance for all of the stochastic Galerkin solvers is 1e−12. For the Gauss-Seidel

and Jacobi solvers, the inner solver tolerance is 3e−13. All the computations are performed using

a single core of an 8 core, Intel Xeon machine with 2.66 GHz and 16GB Memory.

Figures 3.2 and 3.3 show the plots of relative residual error vs iteration count for the stochastic

Galerkin system with stochastic dimension 4 and polynomial order 4 and standard deviation 0.1.

It can be observed that the matrix-free Krylov solver with the Gauss-Seidel preconditioner takes

the least number of iterations in case of uniform random field and Gauss-Seidel solver in case

of log-normal random field, whereas the Jacobi solver takes highest number of iterations in both

cases for a given tolerance. However in terms of solution time, the matrix-free Krylov solver with

the approximate Gauss-Seidel preconditioner is the most efficient compared to all other stochastic
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Galerkin solvers. Comparison in terms of iteration count alone is misleading to evaluate the

computational cost because, in each iteration the cost of preconditioner as observed in the case of

Gauss-Seidel preconditioner could be very high resulting in higher computational cost even with

small number of iterations. Hence we also compare the solution time for all preconditioners and

solvers.

In the tables, “Div” means diverged. In the case of the uniform random field with small

variance (σ = 0.1), it can be observed from Tables 3.1 and 3.2 that more intrusive Krylov-based

stochastic Galerkin solvers are more efficient than less intrusive Gauss-Seidel and Jacobi solvers.

Moreover the approximate Gauss-Seidel and Jacobi preconditioners are a significant improvement

over the traditional mean-based approach. However as the variance of the random field increases,

we can see from Table 3.3 that the Gauss-Seidel and Jacobi solvers suffer considerably, whereas

the the Krylov-based approaches (excluding the Gauss-Seidel preconditioner) still perform quite

well. This is not unexpected, as the operator becomes more indefinite as the variance increases.

In the case of the advection-diffusion equation, the stiffness matrix is non-symmetric.

Tables 3.4-3.6 show the scaled solution time for the advection-diffusion equation with the

diffusion coefficient modeled using a Karhunen-Loève with uniform random variables. We can

observe that the Krylov solver with the approximate Gauss-Seidel preconditioner performs better

than the rest of the Galerkin solvers. In the case of the random field with uniform random vari-

ables, the solution time for the diffusion equation is smaller than that for the advection-diffusion

equation. This observation could be due to the fact that the multi-grid preconditioner for solving

the deterministic diffusion equation is more efficient than that for solving the advection-diffusion

equation. Since the efficiency of the preconditioners and solvers based on Gauss-Seidel and Jacobi

algorithms depends heavily on the efficiency of the deterministic solver, a good preconditioner for
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the mean stiffness matrix will significantly improve the above mentioned stochastic Galerkin pre-

conditioners and solvers.

In the case of the log-normal random field, we can see from Tables 3.7 and 3.11 that Gauss-

Seidel and Jacobi solvers have not performed well in terms of solution time. The Gauss-Seidel

solver is comparable to the Krylov solver with the AGS preconditioner only in case of log-normal

random field and at higher polynomial chaos order. For higher variance of the random field, we see

from Table 3.9 that the Jacobi solver diverges. This problem might be addressed to some extent

by using the true diagonal matrix Kk,k =
∑M

i=0 cikkKi from global stochastic stiffness matrix as

the left-hand-side in the Jacobi solver and preconditioner instead of the mean matrix K0. In the

case of the log-normal random field, both the diffusion and advection-diffusion equations have

similar trends and the solution times are comparable. From the Krylov iteration count provided in

the parentheses of the tables, we can observe that the preconditiners and solvers based on Gauss-

Seidel and Jacobi are robust with respect to stochastic dimension and polynomial order, however

they are not robust with respect to the variance of the input random field.

(a) Stochastic dimension = 3 (b) Stochastic dimension = 4

Figure 3.1: Scaled Galerkin solution time vs solution error for varying polynomial chaos order

and spatial mesh for the diffusion problem with uniform random field
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(a) difusion coefficient modeled as uniform ran-

dom field

(b) difusion coefficient modeled as lognormal

random field

Figure 3.2: Relative residual norm vs iteration countto solve stochastic diffusion equation

(a) difusion coefficient modeled with uniform

random variables

(b) difusion coefficient modeled as lognormal

random field

Figure 3.3: Relative residual norm vs iteration count to solve stochastic advection-diffusion equa-

tion
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Table 3.1: Scaled solution time (# of iterations) vs stochastic dimension for random field with

uniform random variables, diffusion equation, PC order = 4 and σ=0.1

Stoch. Preconditioners for GMRES GS, Jacobi Solvers

dim MB AGS AJ GS KP GS Jacobi

1 10 (21) 6.5 (13) 12 (13) 46 (9) 7 (14) 67 (15) 121 (29)

2 39 (25) 24 (15) 43 (15) 168 (11) 28 (18) 256 (19) 490 (39)

3 108 (28) 62 (16) 109 (16) 429 (12) 86 (22) 723 (23) 1355 (46)

4 235 (29) 138 (17) 238 (17) 937 (13) 188 (23) 1587 (25) 2973 (50)

5 482 (30) 267 (17) 454 (17) 1706 (13) 408 (25) 2980 (26) 5725 (53)

6 890 (32) 490 (18) 822 (18) 3093 (14) 776 (27) 5639 (29) 10988 (59)

7 1456 (33) 787 (18) 1308 (18) 4902 (14) 1241 (27) 9361 (30) 19666 (61)

32



Table 3.2: Scaled solution time (# of iterations) vs order of polynomial chaos for random field

with uniform random variables, diffusion equation, Stoch. dim=4, σ = 0.1

PC Preconditioners for GMRES GS, Jacobi Solvers

order MB AGS AJ GS KP GS Jacobi

2 34 (22) 22 (14) 40 (14) 140 (9) 28 (18) 215 (16) 408 (32)

3 99 (26) 62 (16) 103 (15) 397 (11) 81 (21) 660 (21) 1216 (41)

4 235 (29) 138 (17) 238 (17) 937 (13) 188 (23) 1587 (25) 2973 (50)

5 523 (32) 285 (18) 480 (18) 1850 (14) 411 (25) 3344 (29) 6366 (59)

6 948 (35) 516 (19) 863 (19) 3265 (15) 774 (27) 6464 (32) 12327 (67)

7 1582 (37) 821 (19) 1439 (20) 5536 (16) 1338 (29) 11354 (35) 24511 (73)

Table 3.3: Scaled solution time (# of iterations) vs standard deviation (σ) of input random field,

for random field with uniform random variables, diffusion equation, Stoch dim = 4 and PC order

= 4

Preconditioners for GMRES GS, Jacobi Solvers

σ MB AGS AJ GS KP GS Jacobi

0.10 235 (29) 138 (17) 238 (17) 937 (13) 188 (23) 1587 (25) 2973 (50)

0.11 272 (33) 147 (18) 255 (18) 1005 (14) 217 (26) 1898 (30) 3666 (61)

0.12 298 (37) 164 (20) 283 (20) 1139 (16) 245 (29) 2374 (37) 4585 (75)

0.13 330 (41) 182 (22) 316 (22) 1340 (19) 283 (33) 3057 (48) 5998 (97)

0.14 384 (48) 211 (25) 361 (25) 1544 (22) 318 (38) 4152 (65) 8435 (133)

0.15 487 (60) 272 (31) 458 (31) 1956 (28) 382 (46) 6567 (101) 13525 (206)
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Table 3.4: Scaled solution time (# of iterations) vs stochastic dimension for random field with

uniform random variables, advection-diffusion equation, PC order = 4, and σ=0.1

Stoch. Preconditioners for GMRES GS, Jacobi Solvers

dim MB AGS AJ GS KP GS Jacobi

1 12 (24) 7 (15) 14 (15) 65 (12) 9 (18) 64 (14) 114 (27)

2 47 (30) 27 (17) 48 (17) 240 (15) 37 (23) 256 (19) 489 (39)

3 133 (34) 74 (19) 129 (19) 631 (17) 106 (27) 727 (23) 1353 (46)

4 291 (36) 165 (20) 285 (20) 1343 (18) 246 (29) 1579 (25) 3088 (52)

5 598 (38) 339 (21) 562 (21) 2571 (19) 532 (31) 3098 (27) 5941 (55)

6 1068 (40) 611 (22) 1012 (22) 4994 (21) 989 (34) 5808 (30) 11567 (62)

7 1740 (41) 976 (22) 1690 (22) 7589 (21) 1619 (35) 9951 (32) 21199 (64)
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Table 3.5: Scaled solution time (# of iterations) vs order of polynomial chaos for random field

with uniform random variables, advection-diffusion equation, Stoch. dim=4, σ = 0.1

PC Preconditioners for GMRES GS, Jacobi Solvers

order MB AGS AJ GS KP GS Jacobi

2 41 (26) 26 (16) 45 (16) 213 (13) 35 (22) 233 (17) 429 (33)

3 125 (32) 70 (18) 124 (18) 604 (16) 102 (26) 663 (21) 1278 (43)

4 291 (36) 165 (20) 285 (20) 1343 (18) 246 (29) 1579 (25) 3088 (52)

5 626 (40) 336 (21) 591 (22) 2654 (20) 543 (32) 3302 (29) 6436 (60)

6 1163 (44) 637 (23) 1104 (24) 5082 (22) 1008 (35) 6311 (33) 12558 (68)

7 1981 (47) 1062 (24) 1825 (25) 8443 (23) 1713 (38) 11143 (36) 25117 (74)

Table 3.6: Scaled solution time (# of iterations) vs standard deviation (σ) for random field with

uniform random variables, advection-diffusion equation, Stoch dim = 4, PC order = 4

Preconditioners for GMRES GS, Jacobi Solvers

σ MB AGS AJ GS KP GS Jacobi

0.10 291 (36) 165 (20) 285 (20) 1343 (18) 246 (29) 1579 (25) 3088 (52)

0.11 328 (41) 182 (22) 326 (23) 1556 (21) 284 (33) 1960 (31) 3711 (62)

0.12 389 (49) 218 (26) 371 (26) 1921 (25) 325 (39) 2404 (38) 4624 (76)

0.13 469 (58) 257 (30) 461 (31) 2430 (30) 380 (46) 3039 (48) 5975 (97)

0.14 589 (73) 324 (38) 565 (39) 2968 (38) 478 (57) 4123 (65) 8153 (131)

0.15 810 (101) 437 (52) 742 (52) 3949 (52) 650 (78) 6110 (96) 12514 (196)
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Table 3.7: Scaled solution time (# of iterations) vs stochastic dimension for log-normal random

field, diffusion equation, PC order = 4, and σ=0.1

Stoch. Preconditioners for GMRES GS, Jacobi Solvers

dim MB AGS AJ GS KP GS Jacobi

1 9 (16) 8 (13) 12 (12) 48 (9) 7 (12) 35.87 (8) 86 (20)

2 33 (17) 26 (13) 40 (12) 149 (9) 28 (14) 108 (8) 255 (20)

3 90 (17) 72 (13) 102 (12) 363 (9) 81 (15) 254 (8) 629 (21)

4 231 (17) 183 (13) 244 (12) 782 (9) 217 (15) 534 (8) 1327 (21)

5 594 (17) 473 (13) 577 (12) 1603 (9) 580 (15) 922 (8) 2292 (21)

6 1348 (17) 1060 (13) 1220 (12) 3060 (9) 1387 (15) 1613 (8) 4236 (21)

Table 3.8: Scaled solution time (# of iterations) vs order of polynomial chaos for log-normal

random field, diffusion equation, Stoch. dim=4, σ = 0.1

PC Preconditioners for GMRES GS, Jacobi Solvers

order MB AGS AJ GS KP GS Jacobi

2 25 (15) 23 (13) 36 (12) 116 (7) 24 (14) 94 (7) 202 (16)

3 77 (16) 65 (13) 97 (12) 355 (9) 70 (14) 253 (8) 566 (19)

4 231 (17) 183 (13) 244 (12) 782 (9) 217 (15) 534 (8) 1327 (21)

5 738 (18) 593 (14) 644 (12) 1888 (10) 664 (15) 918 (8) 2642 (24)

6 2181 (19) 1645 (14) 1660 (12) 4111 (10) 1963 (15) 1606 (8) 5046 (26)
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Table 3.9: Scaled solution time (# of iterations) vs standard deviation (σ) for log-normal random

field, diffusion equation, Stoch dim = 4 and PC order = 4

Preconditioners for GMRES GS, Jacobi Solvers

σ MB AGS AJ GS KP GS Jacobi

0.10 231 (17) 183 (13) 244 (12) 782 (9) 217 (15) 534 (8) 1327 (21)

0.15 275 (20) 217 (15) 267 (13) 942 (11) 243 (17) 638 (10) 2030 (33)

0.20 332 (24) 247 (17) 285 (14) 1184 (14) 273 (19) 764 (12) 3897 (62)

0.25 377 (27) 286 (20) 288 (14) 1340 (16) 302 (21) 957 (15) 18672 (268)

0.30 456 (32) 328 (23) 346 (17) 1583 (19) 333 (23) 1150 (18) Div

0.35 518 (37) 372 (26) 591 (29) 1827 (22) 359 (25) 1406 (22) Div

Table 3.10: Sacled solution time (# of iterations) vs stochastic dimension for log-normal random

field, advection-diffusion equation, PC order = 4 and σ=0.1

Stoch. Preconditioners for GMRES GS, Jacobi Solvers

dim MB AGS AJ GS KP GS Jacobi

1 9 (16) 8 (13) 12 (12) 48 (9) 12 (12) 36 (8) 81 (19)

2 33 (17) 26 (13) 40 (12) 148 (9) 40 (12) 108 (8) 255 (20)

3 89 (17) 72 (13) 102 (12) 396 (10) 102 (12) 252 (8) 627 (21)

4 229 (17) 184 (13) 241 (12) 858 (10) 215 (12) 507 (8) 1263 (21)

5 594 (17) 473 (13) 576 (12) 1765 (10) 572 (12) 915 (8) 2399 (22)

6 1426 (18) 1061 (13) 1221 (12) 3345 (10) 1370 (15) 1737 (8) 4044 (22)
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Table 3.11: Scaled solution time (# of iterations) vs order of polynomial chaos for log-normal

random field, advection-diffusion equation, Stoch. dim=4, σ = 0.1

PC Preconditioners for GMRES GS, Jacobi Solvers

order MB AGS AJ GS KP GS Jacobi

2 25 (15) 23 (13) 36 (12) 129 (8) 36 (12) 94 (7) 202 (16)

3 77 (16) 65 (13) 97 (12) 353 (9) 96 (12) 252 (8) 564 (19)

4 229 (17) 184 (13) 241 (12) 858 (10) 215 (12) 507 (8) 1263 (21)

5 733 (18) 585 (14) 645 (12) 1882 (10) 640 (12) 1030 (9) 2631 (24)

6 2157 (19) 1664 (14) 1784 (13) 4085 (10) 1938 (15) 1731 (9) 4821 (26)

Table 3.12: Scaled solution time (# of iterations) vs standard deviation (σ) for log-normal random

field, advection-diffusion equation, Stoch dim = 4 and PC order = 4

Preconditioners for GMRES GS, Jacobi Solvers

σ MB AGS AJ GS KP GS Jacobi

0.10 229 (17) 184 (13) 241(12) 858 (10) 215 (15) 507 (8) 1263 (21)

0.15 275 (20) 214 (15) 267 (13) 1020 (12) 266 (13) 634 (10) 2083 (34)

0.20 333 (24) 255 (18) 285 (14) 1177 (14) 285 (14) 825 (13) 3889 (62)

0.25 391 (28) 285 (20) 305 (15) 1415 (17) 304 (15) 1018 (16) 17511 (254)

0.30 464 (33) 328 (23) 361 (18) 1656 (20) 362 (18) 1210 (19) Div

0.35 529 (38) 387 (27) 660 (32) 1979 (24) 664 (32) 1464 (23) Div
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Chapter 4

Basis adaptation - dimension reduction

4.1 Introduction

The curse of dimensionality is a significant challenge that remains at the forefront of scientific

computing. We address it in the present paper by recognizing the low dimensional structure of

many quantities of interest (QoI) even in problems that have been embedded, via parameterization,

in very high-dimensional settings. We take advantage of the geometric structure associated with

the parameterization to discover very low-dimensional structure around which the probabilistic

content of the QoI is concentrated.

Recent advances in sensing technologies have enabled querying the natural world with reso-

lutions that continue to shed new light on many physical processes that underlie phase transfor-

mation and other instabilities. The mathematical formulation of these problems typically involves

systems of coupled equations parameterized with stochastic processes that attempt to capture the

effect of unmodeled features on the state variables. This stochastic parameterization naturally

embeds the problem in a high dimensional parameter space where methods of white-noise cal-

culus have recently been adapted to characterizing and estimating the solution of these equations
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Ghanem and Spanos (1991), Holden et al. (1996), Xiu and Karniadakis (2002). While this setting

served to develop general insight into the significance of the stochastic component on the pre-

dictability of associated physical processes, it continues to present challenges when dealing with

realistic problems that involve very high-dimensional parameterizations. The difficulty is asso-

ciated with the observation that, in addition to the fine spatio-temporal discretization required to

resolve underlying physical phenomena, resolving the dependence in parameter space increases

the number of degrees of freedom exponentially with the number of parameters involved. Some

attempts have been made in recent years to address this problem by pursuing sparse Doostan

and Iaccarino (2009), Doostan and Owhadi (2011), Schwab and Gittelson (2011) or multilevel

Doostan et al. (2007) representations that have succeeded in reducing the computational effort by

an order of magnitude. Given the exponential growth with dimension, however, the residual effort

remains often prohibitive.

This complexity is inherited from the mathematical construction used to describe the physi-

cal processes involved, and often belies the simplicity of many quantities of interest (QoI) upon

which decisions are eventually based. These QoI’s have typically slow dynamics and pertain to

a small number of functionals of the solution. Thus while describing the full solution field as

a high-dimensional mathematical object may seem conceptually reasonable, a similar character-

ization of inherently low-dimensional quantities seems like an overkill and begs for a rational

reduction. Equation-free and projective integration approaches C. Gear et al. (2003) present a

useful methodology for tackling these problems when the functional dependence of the QoI on

the parameterization of the original problem is not significant to the QoI. In this paper we proceed

along different lines, capitalizing on the mathematical structure of Gaussian Hilbert spaces and the

associated Homogeneous Chaos space obtained from them through a tensor product construction,
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to obtain a reduced model that, while capturing the probabilistic content of the QoI, characterizes

its functional dependence on the original parameterization. This can be important for carrying out

deterministic and stochastic sensitivity analyses and worth of information studies. The approach

hinges on Gaussian parameterization of the problem. This does not signify that the parameters

in the problem are assumed to be Gaussian, but rather that they are functions of some underlying

Gaussian variables or processes. In a first step, an isometry is applied to an underlying Gaussian

variables to induce a particular desired structure in the representation of the solution. In a second

step, a reduction through projection of the resulting representation is carried out that has a prob-

abilistic interpretation, thus providing further justification for the algebraic manipulations. The

methodology is demonstrated on an algebraic problem and a problem associated with an elliptic

equation from elasticity with stochastic coefficients.

4.2 Polynomial Chaos Decomposition

Consider an experiment described by the probability triple (Ω,F , P ) and ξ = (ξ1, · · · , ξd) a set

of independent Gausssian random variables on Ω. Let H denote the Gaussian space spanned by ξ

and F(H) the σ-algebra generated by H . For notational simplicity, let L2(Ω) be a shorthand for

L2(Ω,F(H), P ). Denote by H :n: the space of d-dimensional polynomials in ξ of exact degree

n. When generated by Gaussian variables, H :n: is also referred to as the Homogeneous Chaos of

order n. Then it can be shown thatL2(Ω) =
⊕

nH
:n: Janson (1999). Given this construction, any

basis in H induces a corresponding basis in H :n: and L2(Ω). The main contribution of this paper

is to adapt the hilbertian basis in L2(Ω) by a judicious basis transformation in the underlying

Gaussian space H . Introducing the multi-index α = (α1 · · · , αd), then each H :n: is spanned
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by {hα, |α| = n}, the set of multivariate Hermite polynomials of order n. We introduce a

normalization of these polynomials

ψα(ξ) = Hα(ξ)/
√
α! , ‖Hα‖2L2(Ω) = α! , (4.1)

and consider q : Rd 7→ R such that
∫

Rd(q(x))
2e−

1
2
xTxdx < ∞. Then q ∈ L2(Ω) and can be

represented in a Polynomial Chaos decomposition of the form Ghanem and Spanos (1991),

qp(ξ) =
∑

|α|≤p

qαψα(ξ), (4.2)

where limp→∞ qp(ξ) = q(ξ) in the L2(Ω) norm. In the above, |α| = ∑d
i=1 αi and α! =

∏d
i=1 αi!.

In order to guide our basis adaptation process, we next introduce a few sets of multi-indices.

Denote by Ip the set of all d-dimensional multi-indices of degree less than or equal to p, by Ei the

subset of Ip corresponding to non-zero indices only at the ith location, and let E =
⋃d

i=1 Ei. Also

let Eij (i 6= j) denote the subset of Ip with zeros except at locations i and j. Moreover, let ei and

eij denote the unit vectors in Ei and Eij , respectively, where the non-zero entries are equal to 1.

4.2.1 Change of Basis

Let A be an isometry on R
d and let η be defined as

η = Aξ AAT = I . (4.3)
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Also, let qA be the image of q under this mapping, qA(η)
∆
= q(ξ). Since η is also a basis in H ,

the nth order Hermite polynomials in η span H :n. Letting

ψA
α (ξ) = ψα(η) , (4.4)

and given the respective expansions of q and qA in the forms,

q(ξ) =
∑

α∈Ip

qαψα(ξ), qA(η) =
∑

β∈Ip

qAβ ψβ(η) , (4.5)

results in

qAβ =
∑

α∈Ip

qα(ψα, ψ
A
β ) , (4.6)

where (ψα, ψβ) is the inner product defined as expectation of the product relative to the Gaussian

measure.

4.2.2 Reduction via Projection

Consider a subspace VI of L2(Ω) spanned by {ψA
β ;β ∈ I}, where I ⊂ Ip. The projection of qA

on VI , denoted by qA,I , can be expressed in the form

qA,I(η) =
∑

β∈I

∑

α∈Ip

qα(ψα, ψ
A
β )ψβ(η) . (4.7)

Alternatively, the projection of qA on VI can be expressed with respect to {ψα(ξ)}, resulting in

qA,I(η) =
∑

γ∈Ip

qIγψγ(ξ) . (4.8)
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This yields,

qIγ =
∑

β∈I

∑

α∈Ip

qα(ψα, ψ
A
β )(ψA

β , ψγ) (4.9)

Denoting qI = {qIγ ;γ ∈ I} and q = {qα;α ∈ Ip}, the projection qI is clearly the restriction

of q to VI . The accuracy of qI as an approximant to q is thus dependent both on the choice of A

and on I. Clearly, as A approaches the identity map on R
d and I approaches Ip, qI approaches

q. Also, if A is fixed as the identity map, then this approximation merely consists of selecting

particular terms in the standard polynomial expansion of q. The introduction of A provides a

parameterization of the projections and hence additional freedom for adapting the approximation.

Introducing the Gramian C defined by its components Cαβ = (ψα, ψ
A
β ), the error associated

with a projection on VI can be expressed as,

q − qI =
[

I −CCT
]

q . (4.10)

It is clear that the null space of I−CCT and the spectrum of C are shaped by both A and I. Our

construction does not attempt to minimize any measure of this error, but rather seeks probabilistic

arguments for the construction of A and the selection of the projection set I.

4.3 Special Cases

Two special cases are now considered where A is used to introduce knowledge about q into the

process of basis adaptation.
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4.3.1 Case where Gaussian components of q are known

If the projection of q on the Gaussian subspace, H , is known, possibly through some extraneous

numerical effort, a very interesting reduction ensues. Specifically, let A be constructed such that

η1 =
∑

α∈I1

qαψα(ξ) =

d
∑

i=1

qeiξi (4.11)

so that the first component of η captures the complete Gaussian component of q. Let the remain-

ing components of the vector η be constructed through a Gram-Schmidt procedure, yielding the

matrix A. Furthermore, let the set I introduced previously consist of all multi-indices that refer-

ence only η1 up to degree p, and is thus specified as I = E1. In this case, qA(η) and qA,I(η) are

given respectively as,

qA(η) = qA0 + qAe1η1 +
∑

1<|β|≤p

qAβ ψβ(η)

= qA0 + qAe1η1 +
∑

1<|β|≤p

β∈E1

qAβ ψβ(η) +
∑

1<|β|≤p

β 6∈E1

qAβ ψβ(η) . (4.12)

and

qA,I(η) = qA0 +
∑

β∈E1

qAβ ψβ(η) (4.13)

and the error in the representation is given as,

qA(η)− qA,I(η) =
∑

1<|β|≤p

β 6∈E1

qAβ ψβ(η) (4.14)
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which has mean zero and is orthogonal to all the Gaussian terms. Thus, starting with a knowledge

of the Gaussian component of q (i.e. its projection on the Gaussian chaos), an isomery A is

constructed such that this whole projection is carried by a single dimension. The choice of I is

then merely adapted to the situation where the probability measure of q is concentrated around

this leading dimension. Clearly, the set I can be enlarged by activating successive η’s in the list of

multi-indices. In the limit when all η are active, I = Ip and an exact representation is obtained.

4.3.2 Case where quadratic components of q are known

It is assumed in this subsection that the quadratic components of q are known. An expression of

q that highlights the second order terms takes the form,

q(ξ) = q0 +

d
∑

i=1

q̂iξi +

d
∑

i=1

d
∑

j=1

q̂ij(ξiξj − δij) +
∑

3≤α≤p

qαψα(ξ) (4.15)

where q̂i = qei , q̂ij = qeij/
√
2, and q̂ii = q2ei/

√
2. The second order truncation of equation

(4.15) can be re-written as

qII(ξ) = (q0 −
d

∑

i=1

q̂ii) +
d

∑

i=1

q̂iξi +
d

∑

i=1

d
∑

j=1

q̂ijξiξj . (4.16)

Let matrix S have entries q̂ij , and let η = Aξ where

ASA = D (4.17)
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where D is a diagonal matrix whose elements are denoted as di. Thus A and D are, respectively,

the matrix of eigenvectors and the eigenvalues of the symmetric matrix S, and thus A is clearly a

unitary operator. Noting that the trace of A is equal to the trace of D, qA(η) takes the form,

qA(η) = q0 +

d
∑

i=1

biηi +

d
∑

i=1

di(η
2
i − 1) +

∑

|β|>2

qβψβ(η) , (4.18)

where bi =
∑d

j=1 aij q̂j and aij denotes elements of A. Letting I = E , the projection on VI takes

the form,

qA,I = q0 +
d

∑

i=1

∑

β∈Ei

qAβ ψβ(η) , (4.19)

which captures exactly the second order effects while including the higher order effects only along

one-dimensional subspaces. This approximation can be achieved using d one-dimensional poly-

nomial approximations, each of order p. Clearly, constructing the operator A requires additional

work to evaluate the second order approximation of function q. The error associated with this

approximation can be expressed as

qA(η)− qA,I(η) =
∑

2<|β|≤p

β 6∈E

qAβ ψβ(η) . (4.20)

The error reflects the interaction between the ηi components with polynomial order greater than

2. It can be reduced by augmenting VI with these higher-order interactions.
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4.4 Application to Equations with Random Coefficients

Consider the situation where u ∈ V is the solution of an equation with random coefficients, V is

some appropriate function space that has at least the structure of a topological vector space. Let

Lξ denote the operator representing this equation and which is parameterized by ξ ∈ R
d, a vector

of independent Gaussian variables. We note that this does not mean that the parameters of the

underlying model are themselves Gaussian variables, but merely that they have been described

as functions of such variables. We are interested in characterizing the probabilistic structure,

through its chaos decomposition, of a functional, q, on V . The problem could then be posed as

characterizing the solution of the following equation subject to sufficient additional constraints

(such as boundary or initial conditions),

Lξ[u] = 0 ∀u ∈ V ⊗ L2(Ω)

q(ξ) = f(u(ξ)) , (4.21)

where the dependence of u and q on ξ is emphasized. We assume throughout that Lξ and f are

such that u and q are square-integrable with respect to the density of ξ, and they therefore admit

polynomial chaos decompositions.

4.4.1 Non-Intrusive Implementation

A good transformation A is such that the function q does not vary significantly except along a

small subset of η in which case integrals of q over the whole ξ space can be expressed as much

lower-dimensional integrals with respect to that subset.
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The coefficients in the chaos decomposition of q can be expressed as an integral which is then

approximated through quadrature as,

qβ =

∫

Rd

q(ξ) ψβ(ξ) e
1
2
ξT ξ dξ ≈

s
∑

r=1

q(ξ(r))wr , β ∈ Ip (4.22)

where {ξ(r)} and {wr} are the coordinates and associated weights for a d-dimensional quadrature

rule with s points, and the integrand is the solution of the following deterministic problem

Lξ(r) [u] = 0 u ∈ V, r = 1, · · · , s

q(ξ(r)) = f(u(ξ(r))), r = 1, · · · , s . (4.23)

The computational burden of carrying out the above high-dimensional quadrature increases with

|β| and quickly becomes prohibitive. This procedure can be used, however, to construct a first or-

der (|β| = 1) or second order (|β| = 2) representation, from which an isometry A is constructed

as described above. Assuming, for instance, that the projection of the solution on the Gaussian

subspace has been computed using a d-dimensional quadrature as described in this section, equa-

tion (4.11) is used to construct A, and then a one dimensional representation of q is sought in the

form,

q = q0 +
∑

β∈E1

qβψβ(η) . (4.24)

The coefficients qβ in this expansion can now be obtained through one-dimensional so-point

quadrature with respect to η1 in the form,
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qβ =

so
∑

r=1

q(η(r))ψβ(η
(r))wr , β ∈ E1 , (4.25)

where η(r) = (η
(r)
1 , 0, · · · , 0), and q(η(r)) is obtained by solving the following equations,

ξ(r) = A−1η(r), r = 1, · · · , so

Lξ(r) [u] = 0 u ∈ V, r = 1, · · · , so

q(η(r)) = f(u(ξ(r))), r = 1, · · · , so . (4.26)

In this case, and as previously explained, A is merely constrained by requiring η = Aξ, and

its construction completed through an arbitrary Gram-Schmidt procedure. Clearly, the non-

uniqueness of A will be manifested in the first of equations (4.26). For quantities of interest

that are strongly dominated by η1, however, it is expected that this arbitrariness in specifying ξ is

inconsequential in evaluating the integral.

4.4.2 Intrusive Implementation

In some instances, reduction of the multi-dimensional integral as indicated above may not be

justified. In that case, a procedure as explained in this subsection can be implemented. It will

again be assumed that some effort has already been expanded in computing the isometry A that

is adapted to q, together with an approximating subspace VI . Without loss of generality, and to

keep the focus of the presentation on the basis adaptation procedure, it is assumed throughout

this section that Lξ is a linear operator. Describing u in its polynomial chaos decomposition, and
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requiring the error to be orthogonal to the approximating space results in the following system of

deterministic equations to be solved for the coefficients uβ,

∑

β∈Ip

(Lξ[uβ] ψβ, ψγ) = 0 ∀γ ∈ Ip . (4.27)

where (., .) is the inner product introduced in equation (4.6). In some instances, the operator Lξ

lends itself to a chaos decomposition, whereby we can introduce the deterministic operators Lα

in the form,

Lα = (Lξ, ψα) , α ∈ Ip , (4.28)

resulting in

∑

β∈Ip

∑

α∈Ip

Lα[uβ] (ψαψβ, ψγ) = 0 ∀γ ∈ Ip . (4.29)

If the solution is instead represented relative to the adapted basis η the following set of equa-

tions ensues,

∑

β∈Ip

∑

α∈Ip

Lα[uβ]
(

ψαψ
A
β , ψ

A
γ

)

= 0 ∀γ ∈ Ip , (4.30)

where
(

ψαψ
A
β , ψ

A
γ

)

is an integral with respect to the Gaussian measure, and represents an intrin-

sic property of Hermite polynomials that could be evaluated ahead of the numerical solution of the

equations. While analytical expressions for this integral can be obtained, it may be most effective

to tabulate it, for different values of A, using numerical quadrature in R
d. The integrand in this

quadrature is an inexpensive function whose value is independent of the physics of the problem

or the accuracy of the discretization scheme of the space-time continuum (once A is known).
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4.4.3 Adapted Representation of Model Parameters

It is reasonable to expect that different quantities of interest should poll the parameters of the

model differently for relevant information. Given the mathematical formalism adopted in this

paper for model reduction, namely basis adaptation and orthogonal projection, this issue can be

stated clearly and concisely. For that, we revisit the intrusive implementation in section (4.4.4.4.2)

and we express the random operator Lξ in terms of its polynomial chaos decomposition relative

to η, with equations (4.28) and (4.30) replaced by the following equations, respectively,

Lα = (Lξ, ψA
α ) α ∈ I , (4.31)

and

∑

β∈I

∑

α∈Ip

Lα[uβ]
(

ψA
αψ

A
β , ψ

A
γ

)

= 0 ∀γ ∈ I , (4.32)

where we have, in addition, accounted for the projection of the solution on VI . Since both η and

ξ are standard orthogonal gaussian vectors,

(

ψA
αψ

A
β , ψ

A
γ

)

= (ψαψβ, ψγ) , (4.33)

and equation (4.32) can be rewritten as,

∑

β∈I

∑

α∈I

Lα[uβ] (ψαψβ, ψγ) +
∑

β∈I

∑

α 6∈I

Lα[uβ] (ψαψβ, ψγ) = 0 ∀γ ∈ I . (4.34)

52



If the multi-index set I is chosen to be orthgonal to its complement in Ip (which is indeed the case

for the two proposed choices of the cases consi dered in sections 4.3.4.3.1 and 4.3.4.3.2, then the

second double summation in the last equation vanishes, and one is left with a problem identical

in structure to the original problem stated in equation (4.29). Thus, if we had the foresight of

knowing the subset I before solving the problem, and expanding the model parameters along

that multi-index set, the solution of that problem for the QoI would coincide with the solution

for the QoI obtained from a full-dimensional solution of the problem. In general, however, it is

not possible to expand the model parameters, ahead of time, with respect to the multi-index set I

since this set characterizes the yet to be determined solution. The value of the foregoing analysis,

however, is to recognize that to any given QoI adapted to the multi-index set I, there exists a

commensurate characterization of the model parameters, obtained via projection, that quantifies

how much of these properties is needed for the accurate estimation of the QoI.

4.5 Numerical Example

We now consider two examples, demonstrating the applicability of the foregoing analysis to prob-

lems specified, respectively, by algebraic and partial differential equations.

4.5.1 Algebraic Equation

Consider the function ĥ : Rd 7→ R given by the expression,

ĥ(ξ̂1, · · · , ξ̂d) =
d

1 + b

d
∏

i=1

(1 + aiξ̂i + biξ̂
2
i )

d
∑

j=1

d
∏

i=1
i 6=j

(1 + aiξ̂i + biξ̂
2
i )

(4.35)
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Figure 4.1: Probability density function of h(ξ). Results using a full 10-dimensional solution and

the reduced approximations using prior knowledge on the Gaussian content and quadratic content

of QoI.

which represents the effective modulus for d springs in series, each of modulus (1+aiξ̂i+ biξ̂
2
i ).

Correlation is introduced between the N (0, 1) Gaussian random variables ξ̂i in the form of

E{ξ̂iξ̂j} = σ2e−|i−j|/l. A Karhunen-Loeve expansion is first affected to transform the set {ξ̂i}

into a set of independent random variables {ξi}. All d terms are retained in the resulting expan-

sion, and the induced mapping, h, has an L2 expansion with respect to the Hermite polynomials

with coefficients {hα}. Evaluating the coefficients in the full third order 10-dimensional expan-

sion required a level 5 Smolyak quadrature (8761 function evaluations). First and second order

expansions are obtained by specifying, respectively, Ip = I1 and Ip = I2. Coefficients in these

expansions can be obtained via level 2 (21 function evaluations) and level 3 (221 function eval-

uations) Smolyak quadratures, respectively. Matrix A is then obtained as indicated by equations

(4.11) and (4.17), and the set I is identified, respectively, with E1 and E . The numerical results

below are associated with statistically identical springs with bi = b = 1, ai = 0.5, σ = 0.05 and
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p = 3. The correlation length of the springs was taken as l = 4 We note that the effective modulus

becomes increasingly Gaussian as the correlation length approaches zero. Figure (4.1) shows the

results for the probability density function of h, for both linear and quadratic prior knowledge.

The quality of the approximation in the tail region is also shown.

4.5.2 Linear Elasticity with Nonlinear Quantities of Interest

As a second example, consider an elastic material occupying a square domain and subjected to

a uniform pressure along its boundary with an empty circular inclusion. Due to symmetry, only

a quarter of the domain is analysed with suitable boundary conditions, as depicted in Figure

(2). The material behavior is assumed to be characterized in the realm of linear elasticity as a

plane stress problem. It is further assumed that the modulus of elasticity of the medium is a

spatially-varying stochastic process while Poisson ratio is a deterministic constant over space.

This assumption is clearly inconsistent with linear elasticity since the modulus of elasticity and

Poisson ratio are both dependent on the same microstructure. Our working assumption, however,

is consistent with observations of much smaller statistical scatter in Poisson ratio than the modulus

of elasticity, and can be viewed as resulting in a model that is a perturbation to mathematical

elasticity. The governing equations are discretized using the finite element method according to

the mesh shown in Figure (4.2). The modulus of elasticity is assumed to be the exponential of

a Gaussian field and is defined by its normalized spatially uniform mean value, E0 = 1N/m2.,

an isotropic exponentially decaying covariance function with correlation coefficient equal to L/8

where L = 1m is the length of one side of the square domain, and a coefficient of variation

equal to 0.5. Poisson ratio is taken to be 0.25, and the pressure along the boundary with the

inclusion is taken as 0.1 N/m2. A Karhunen-Loeve expansion is used to discretize the Gaussian
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Figure 4.2: Elastic domain with random Young’s modulus and subjected to uniform internal pres-

sure. Point A (0.2977,0.1417) is highlighted.

process associated with the modulus of elasticity, with 10 terms retained in its expansion (d = 10).

The exponential of this representation is then developed in a 3rd order 10-dimensional Hermite

polynomial expansion. The solution to the elasticity equations with this representation of material

properties consists of two displacement fields (one along each spatial dimension) that form a 2-

variate spatial stochastic process. A polynomial chaos expansion of this process up to order 3 in

all 10 dimensions is carried out using level-5 Smolyak quadrature, as a benchmark against which

to verify the model reduction results. This provides our estimate for the process u. We then focus

attention on two separate scalar quantities of interest (QoI). The first QoI is a linear functional

of u and consists of the displacement in the horizontal direction at one point in the domain. The

second QoI is a nonlinear functional and consists of the maximum vonMises stress over the two

dimensional spatial extent of the problem. VonMises stress, σ, at any given point in the material

is given as σ =
√

σ21 − σ1σ2 + σ22 where σ1 and σ2 are the two principal stresses at that location.

As a motivation to the reduction methodology developed in this paper, we computed the

Karhunen-Loeve expansion of the Gaussian component of the x-displacement process, and used

the Gaussian random variable associated with its dominant mode to construct a 1-dimensional
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polynomial chaos approximation of the first QoI described above. Figure (4.3) compares the

results from this 1-dimensional approximation against the full 10-dimensional evaluation of the

QoI and the approximations according to the two methods described in this paper. It is clear that

the reduction using the dominant KL variable fails to capture the probabilistic measure of the QoI,

emphasizing the need for more rational adaptation strategies. The probability density functions

of the first QoI obtained using the two procedures described earlier in the paper are shown in the

same figure. The linear (Gaussian) approximation is obtained using a level 2 Smolyak quadrature

whereas the quadratic approximation required a level 3 rule. The match is amazing even in the

tail of the distributions, using just the one-dimensional approximation. Figure (4.4) shows a

comparison of the polynomial chaos coefficients associated with a 10-dimensional approximation

and the approximation obtained using a sequence of 10 one-dimensional solutions adapted to

the quadratic components of QoI. It is clear that the terms being neglected in the proposed 1d

reduction have minor contribution to the L2 error.

Figure (4.5) shows analogous results for the second, nonlinear, QoI. In this case, an approx-

imation built around the Gaussian content of the QoI is insufficient to completely characterize

its probability density function. The reduced model obtained by including information from the

second order terms, however, provides an excellent approximation.

The analysis presented in section 4.4.3 is applied to the present problem. Figure (4.6) shows

the the first six polynomial chaos coefficients of Young’s modulus associated with an expansion

of the lognormal process. Note the global features in these coefficients. Figure (4.7) shows the

same quantities for the problem adapted to the QoI specified by the vonMises stresses at point A.

Note the localization around pointA in the polynomial chaos coefficients, induced by the quantity

of interest.
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Figure 4.3: Probability density function of x–displacement at point A. Results using a 1) full 10-

dimensional solution and the approximations using the 2) dominant component in the Karhunen-

Loeve expansion of the stochastic process associated with the solution, 3) the 1-d approximation

associated with Gaussian prior knowledge, and 4) sequence of 10 1-d approximations associated

with quadratic prior knowledge.

Figure 4.4: Coefficients of the PC expansion of the x-displacement at pointA. Results using a full

10-dimensional solution and the reduced approximation using prior knowledge on the quadratic

content of QoI.
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Figure 4.5: Probability density function of the maximum vonMises stress over the spatial do-

main of the problem. Results using 1) full 10-dimensional solution and the approximations using

the 2) 1-d approximation associated with Gaussian prior knowledge, and 3) sequence of 10 1-d

approximations associated with quadratic prior knowledge.

This correspondance between a QoI and certain features of model parameters should have

implications on the characterization of material properties from experimental data and could serve

as a guide for the development of adapted regularization strategies for the associated inverse

problem. That invesigation, however, is beyond the scope of the present work where we limit

ourselves at noting the presence of such an interplay.

4.5.3 Random eigenvalue problem

Eigenvalue analysis has very important application in structural dynamics to find fundamental

frequency of the dynamical system and and corresponding eigenmodes. When parameters of the

system of the system are random, the eigenvalue problem becomes, random eigenvalue analysis.
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Figure 4.6: The first six coefficients of the elasticity modulus with respect to a polynomial chaos

expansion in the original gaussian variables ξ.

Figure 4.7: The first six coefficients of the elasticity modulus with respect to a polynomial chaos

expansion in the one-dimensional gaussian variable η1.
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Deterministic eigenvalue problem

Let K̄ ∈ R
n×n and M̄ ∈ R

n×n be stiffness and mass matrices obtained from finite element

discretization. To find fundamental frequency and corresponding mode shapes of the dynamical

system, following eigenvalue problem has to be solved,

K̄φ̄ = λ̄M̄ φ̄, λ̄ ∈ R, φ̄ ∈ R
n, (4.36)

where, λ and φ are eigenvalue and eigenvector respectively.

Random eigenvalue problem

When there is uncertainty in the system, then the eigenvalue problem becomes following random

eigenvalue problem,

K(θ)φ(θ) = λ(θ)M(θ)φ(θ), θ ∈ Ω

where, K(θ) ∈ R
n×n, M(θ) ∈ R

n×n are random stiffness and mass matrices, λ(θ) ∈ R, φ(θ) ∈

R
n are random eigenvalue and corresponding random eigenvector and (Ω,F , µ) is underlying

probability space with sample space Ω, σ-algebra, F and probability measure µ such that, each

sample point θ ∈ Ω.

Polynomial chaos approach

Random eigenvalue problem discussed in section 4.5.3 can be solved using polynomial chaos

expansion method discussed in section 2. Stiffness matrix K, mass matrix M , eigenvalue λ and

eigenvector φ can be expanded in terms of polynomial chaos inL2(Ω,F , µ) asK =
∑P−1

i=0 Kiψi(ξ),

M =
∑P−1

i=0 Miψi(ξ), λ =
∑P−1

i=0 λiψi(ξ) and φ =
∑P−1

i=0 φiψi(ξ), where ξ = {ξi, · · · , ξd}T .

61



Random eigenvalue problem can be solved using stochastic Galerkin or stochastic collocation

methods. Stochastic Galerkin projection of random eigenvalue problem results in following cou-

pled system of equations,

P−1
∑

i=0

P−1
∑

j=0

E{ψiψjψk}Kiφj =

P−1
∑

i=0

P−1
∑

j=0

E{ψiψjψlψk}λiMjφl, k = 0, · · · , P − 1. (4.37)

Stochastic collocation method involves solving deterministic eiegenvalue problems at a given set

of quadrature points.

K(ξ(q))φ(ξ(q)) = λ(ξ(q))M(ξ(q))φ(ξ(q)), q = 1, · · · , qn

In this work stochastic collocation methods is used for testing basis adaptation methods for ran-

dom eigenvalue problem. The basis adaptation methodology can be readily applied to random

Figure 4.8: 2-d cantilever beam meshed with quad4 elements, is fixed on left end and eigenvalue

analysis is performed

eigenvalue problem to represent the eigenvalue in one random variable and solve a one dimen-

sional random eigenvalue problem to compute the eigenvalue accurately. These approaches are

tested in two structural systems, a two dimensional cantilever beam shown in figure 4.8 and a wind

turbine blade sgown in figure 4.9. Figure 4.10 shows the probability density functions of first six
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Figure 4.9: Wind turbine blade meshed with quad4 elements, is fixed in all 6 dof on one end and

eigenvalue analysis is performed

eigenvalues of a two dimensional cantilever beam and figure 4.12 shows the pdfs of first six eigen-

values of the wind turbine. It can be observed from both cantilever beam and the wind turbine

blade problems that the eigenvalues can be captured very accurately using one dimensional basis

adaptation. Although the eigenvector corresponding to each eigenvalue can be computed after

the eigenvalue is computed, gain in the computational effort has to be investigated. To adapt the

basis adaptation to eigenvectos, let {φ̄i}ri=1 be a set of deterministic eigenvectors, then a random

eigenvector φ(l)(ξ) cane be can be projected on to the deterministic set of nominal eigenvectore

{φ̄i}ri=1 to get coefficients,

φ(l)(ξ) =
P−1
∑

i=0

φ
(l)
i ψ(ξ)

φ(l)(ξ) =

r
∑

j=1

φ̄
(l)
j

P−1
∑

i=0

a
(l)
ij ψi(ξ), (4.38)
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(a) first eigenvalue (b) second eigenvalue (c) third eigenvalue

(d) fourth eigenvalue (e) fifth eigenvalue (f) sixth eigenvalue

Figure 4.10: pdf of eigenvalues of 2-d cantilever beam in 6d ξ and in 1d η

then, the coefficients, φ̄
(l)
j can be computed as quantities of interest using basis adaptation meth-

ods. The first coefficient φ̄
(l)
1 , polynomial chaos coefficients computed in reduced dimension

form basis adaptation is in very good agreement with those computed in high dimension. How-

ever, there is a significant error in other coefficients. It could be due to the lower magnitude of the

second and third coefficients.
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(a) first eigenvalue (b) second eigenvalue (c) third eigenvalue

(d) fourth eigenvalue (e) fifth eigenvalue (f) sixth eigenvalue

Figure 4.11: pdf of eigenvalues of wind turbine blade in 6d ξ and in 1d η

(a) φ̄
(l)
1 (b) φ̄

(l)
2 (c) φ̄

(l)
3

Figure 4.12: Polynomial chaos coefficients of of φ̄
(l)
j in 6d ξ and in 1d η
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Chapter 5

Stochastic upscaling

5.1 Introduction

In this chapter, stochastic upscaling methodology for a steady state laminar flow through an ar-

ray circular solid discs and heat transfer explored. The fine scale problem is modeled using

Navier-Stokes equations and solid discs act as heat source (sink). The uncertainty in the system

is modeled by treating thermal conductivity of the solid discs as a random filed. At coarse scale

the medium is modeled as a porous medium and Darcy-Brinkman equations are used. Due to

temperature dependent fluid density and fluid viscosity, the uncertainty in the fine scale is prop-

agated to fluid flow and parameters such as permeability and thermal conductivity at the coarse

scale. Volume average method is adopted to compute the permeability and thermal conductivity

at the coarse scale from fine scale solution. Polynomial chaos expansion methodology is used

to solve stochastic partial differential equations at fine and coarse scales. Preconditioners devel-

oped in chapter 3 are used to solved stochastic Galerkin system of equations efficiently. Basis

adaption methods developed in chapter 4 used to further reduce the stochastic dimension while
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computing the coarse scale parameters, namely, for stochastic dimension reduction for computing

permeability random field and thermal conductivity random field.

5.2 Problem statement

Many physical problems can be described with coupled stochastic nonlinear partial differential

equations. One such problem of interest is fluid flow through porous media coupled with heat

equation. At fine scale the porous media problem can be solved using Navier-Stokes equation.

However, it is computationally very expensive to solve using Navier-Stokes equations with ran-

dom parameters. For this reason, the system upscaled to porous media equations and parameters

of the porous media are computed from fine scale solutions. Uncertainty at the fines scale is

modeled by treating the thermal conductivity of the solid discs as a log-normal random field. The

uncertainty at the fine sale is propagated to the coarse scale which can be modeled by treating the

permeability and thermal conductivity as random parameters. To solve these stochastic partial dif-

ferential equations at fine and coarse scales, use spectral stochastic finite element method Ghanem

and Spanos (1991) is used. Stabilized finite element methods Tezduyar (1992) are used to circum-

vent the problem of instability due to spurious pressure modes that arise due to equal order in-

terpolation for pressure and velocity fields in finite element discretization of incompressible fluid

flow equations.

Figure 5.1 shows fine scale and coarse scale domain modeled in 2-dimensions.
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Figure 5.1: Fine scale domain modeled with an array of solid discs and coarse scale domain

modeled as porous media

5.2.1 Navier-Stokes equations at fine-scale

At fine scale, two dimensional system is modeled as an incompressible flow though an array of

solid circular discs. Heat transfer between solid circular discs and the fluid is modeled through

a coupled heat equation. As the fluid flows through the space between the discs, heat is trans-

ferred from discs to the fluid. Uncertainty due to thermal conductivity of the solid discs is

propagated to the fluid velocity, pressure and temperature through, temperature dependent fluid

viscosity and fluid density. This physics at the fine scale can be modeled with Navier-Stokes

equations Nakayama et al. (2002) and heat equation as

ρf (∇ · u) = 0 (5.1)

ρf (∇ · u)u = −∇P + µf∇2u+ ρff (5.2)

ρfcp,f [∇ · (uT )] = kf∇2T (5.3)
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where, equations 5.1, 5.2 and 5.3 are the continuity, conservation of momentum (Navier-Stokes)

and energy equations respectively. In these equations, u is the velocity vector of the fluid, P is

pressure in the fluid, T is the temperature and f is the forcing term.

5.2.2 Darcy-Brinkman equations at coarse-scale

At coarse scale the domain is treated as a porous medium with heat source in the solid region and

the physics is modeled with the Darcy-Forchheimer equation Schmidt et al. (2010). The equations

governing flow through porous media are as follows,

ρf (∇ · ũ) = 0 (5.4)

ρf
ρf
φ
(∇ · ũ)ũ = −φ∇P̃ + µf∇2ũ− φµf

K
ũ+ φρf f̃ (5.5)

∇ ·
(

ρ̄C̄ũT̄
)

= k̄eff∇2T̄ + ˙̄Q (5.6)

where, equations 5.4 and 5.5 are the continuity and momentum equations and 5.6 is the heat

equation under thermal equilibrium between fluid and solid phases.

where, ũ is the velocity of the fluid, P̃ is the pressure in the fluid, φ is the porosity of the

medium, C̄ is the specific heat K is the permeability, k̄eff is effective heat conductivity of porous

media and Q̇s is heat source in the solid.
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At the coarse scale, uncertainty in the system can be represented by treating the permeability

and thermal conductivity as random parameters. To solve these stochastic partial differential

equations at fine and coarse scales, spectral stochastic Galerkin projection method Ghanem and

Spanos (1991) will be used. Stabilized finite element methods Shadid et al. (2006), Tezduyar

(1992) are used to circumvent the problem of spurious pressure modes that arises due to equal

order interpolation in solving incompressible Navier-Stokes equations.

5.3 Stochastic upscaling

Stochastic upscaling is achieved by computing the coarse scale random parameters using volume

average method from the fine scale solution. Further, stochastic basis adaptation methods are used

to represent the coarse scale parameters in reduced stochastic dimension.

5.3.1 Permeability

The coarse scale permeability is computed by volume average method Nakayama et al. (2002).

At low velocity the Darcy law can be used to compute the permeability

−∂〈P 〉
∂xi

= µk−1
ij 〈uj〉 (5.7)

Where, 〈P 〉 and 〈u〉 are volume averaged pressure and velocity obtained from fine scale solution.

Volume average is computed as

〈a〉 = 1

V

∫

V
adV (5.8)
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where V is the representative volume considered for averaging. The solution of the fine scale

stochastic partial differential equations are obtained using non-intrusive Smolyak quadrature method.

At each quadrature point, a deterministic fine scale problems is solved and fine scale, velocity,

pressure and temperature distribution are obtained. From the velocity and pressure solution, a

permeability filed is constructed for each solution. Due to very small variability of pressure gra-

dient is y-direction, the permeability is considered only along x-direction. From the quadrature

points, polynomial chaos expansion of the permeability filed and higher order statistics can be

readily computed. Figure 5.8, shows the mean and standard deviation of the permeability field.

Thus the uncertainty due to thermal conductivity in the fine scale problem is propagated to the

coarse scale problem through the coarse scale permeability parameter. Further, the covariance

function of the permeability field is constructed and Karhunen-Loève analysis is performed to

find the dominant eigenvalues and eigenmodes.

5.3.2 Thermal conductivity

Thermal conductivity of the porous media is upscaled from the finescale heat equations. At coarse

sclae thermal conductivity relates the Darcy velocity to the temperature distribution at the coarse

scale. The coarse scale heat equation is written as

∇ ·
(

ρ̄C̄ũT̄
)

= k̄eff∇2T̄ (5.9)

Above relation can be rewritten as

ρ̄C̄∇ ·
(

ũT̄
)

= k̄eff∇ · (∇T̄ ) (5.10)
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Where, ρ̄ and C̄ density of the fluid and specific heat at the coarse scale. k̄eff is effective thermal

condictivity of the porous media ũ is the coarse scale velocity and T̄ is the coarse scale tempera-

ture. Writing above equation interms of fine scale solution,u and T ,

ρ̄C̄

∫

D
∇ · (uT ) dA = k̄eff

∫

D
∇ · (∇T )dA. (5.11)

Using Gauss-divergence theorem, area integrals in the above equations can be converted intoline

integrals as follows,

ρ̄C̄

∫

C
~n · (uT ) ds = k̄eff

∫

C
~n · (∇T )ds, (5.12)

where, u and T are velocity and temperature from the fine scale solution.

5.4 Basis adaptation to find QoI

In this section, we discus the basis adaptation methods to compute the permeability random filed

in reduced dimension. From the volume average method discussed in section 5.3, permeability

random field k(x, ξ) can be computed from the fine scale solution as following polynomial chaos

expansion,

k(x, ξ) =

p
∑

i=0

ki(x)ψ(ξ), (5.13)
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where, ξ = {ξ1, · · · , ξd}T is the input random vector obtained from truncated Karhunen-Loeve

expansion of the thermal conductivity random field at the fine-scale. Thermal conductivity ran-

dom field is modeled with log-normal distribution and hence, it can be expanded in terms of

Hermite polynomials of standard Gaussian random variables ξ.

5.4.1 Linear basis adaptation

Linear basis adaptation for permeability random field is pursued by computing a new set of ran-

dom variables η = Aξ using an isometry A such that AAT = I . A is not unique and one way

to construct A is using the Gaussian components in the PC expansion of the quantity of interest

(QoI). In the current problem, the permeability k(x, ξ at a spatial location xj can be computed as

a QoI in the reduced dimension. That is ,

η1 =

d
∑

i=1

ki(xj)ξi, (5.14)

here, ki(xj), after normalization forms the first row of matrix A. Rest of the rows in the matrix

A can be constructed using Gram-Schmidt process. Now the permeability at location, xj can be

constructed in reduced stochastic dimension η, with very few randm variables. However, using

linear basis adaptation, new set of η has to be computed for each spatial location.

5.4.2 Quadratic basis adaptation

Quadratic basis adaptation procedure can be pursued when, the quadratic terms in the polynomial

chaos expansion QoI are known. In this case the isometry matrix A is obtained as follows,

ASAT = D, (5.15)
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, where D is the diagonal matrix, whose elements di are eigenvalues and A is the matrix of

eigen vectors of symmetric matrix S. Here, matrix S contains the quadratic terms in the PC

expansion of the QoI. This transformation eliminates, the cross terms in the PC expansion and

hence reduces the d-dimensional stochastic Galerkin system in ξ to d one dimensional systems in

ηi, i = 1, · · · , d. As seen in the case, linear basis adaptation, quadratic adaptation also, uses new

set of η at each location and hence, it is difficult to construct entire permeability random field

simultaneously. To address this issue, we pursue, basis adaptation using, KL expansion of the

Gaussian part of the random filed which is discussed in the next section. Figures 5.10 show the

permeability at points 3 and 20, computed using linear and quadratic basis adaptation separately.

5.4.3 Basis adaptation with KL expansion

When, the QoI is a scalar, it can be effectively represented in one random variable, using linear

or quadratic basis adaptations discussed in the previous sections. However, if the QoI is a random

field, above methods can’t be used to simultaneously construct entire random filed. For this reason

we use, when the Gaussian part of the permeability random field kg = k0(x) +
∑d

i=1 ki(x)ξ is

known, we construct the isometry from KL expansion of the covariance covkg of the Gaussian

part of the permeability field,

covkg(x1, x2) =

d
∑

i=1

ki(x1)ki(x2), (5.16)

and

kg(x, ξ) = k̃0 +
d

∑

i=1

√
γik̃i(x)ηi, (5.17)

74



where, ηi are the new set of standard normal random variables and can be computed as

ηi =
1√
γi

∫

kg(x, ξ)k̃i(x)dx, (5.18)

Figure 5.9(b) shows the decay, of the eigenvalues (γi). It can be observed that the decay of random

variable is very sharp and very few number (2-3) of random variables is sufficient to represent the

entire permeability random field. Figure 5.12 shows the pdf of permeability computed at a point

using, full ten dimensional ξ, reduced one, two and three dimensional η. It can be observed that,

three random, variables η1, η2 and η3 are sufficient to capture the pdf accurately.

5.5 Results and discussion

A two dimensional fluid flow problem is considered with the geometry shown in figure 5.2. Red

circles are the solid discs with heat source and the rest of the domain is fluid flow domain. Ther-

mal conductivity of the solid discs is modeled as a log normal random field with mean 150 and

coefficient of variation 1.0. Temperature dependent fluid density and viscosity are used to main-

tain a coupling between fluid flow and heat equations. A Neumann boundary condition of ve-

locity, 50cm/s is applied on the left side boundary and velocities at top and bottom boundaries

are provided as zero Dirichlet boundary condition. Heat source in the solid discs is provided by

specifying a Dirichlet boundary condition at a small region inside the solid disc. Figure 5.3 shows

two realizations of the thermal conductivity. Figure 5.9(a) shows the decay of eigenvalues from

Karhunen-Loève analysis of thermal conductivity random filed and figure 5.9(b) shows the decay

of eigenvalues from Karhunen-Loève analysis of the Gaussian part of the permeability random

filed at the coarse scale. Figures 5.4, 5.6 and 5.7 show the mean and standard deviation of the
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velocity in x-direction, pressure and temperature respectively. Figures 5.8(a) and 5.8(b) show the

mean and standard deviation of the coarse scale permeability.

Figure 5.2: Fluid and solid regions meshed with 2-d quad4 elements

(a) Realization 1

(b) Realization 2

Figure 5.3: Realizations of the thermal conductivity in the circular discs

Figure 5.10 shows the pdfs of permeability of the coarse scale parameter at two spatial lo-

cations (at point number 3 and 20) computed using 10-dimensional ξ-space and reduced 1-

dimensional and 2-dimensional η-space. It can be observed the the coarse scale permeability
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(a) Mean of ux (b) std. dev. of ux

Figure 5.4: Mean and std. dev of velocity in x-direction in 10d ξ and order 3

(a) Mean of uy (b) std. dev. of uy

Figure 5.5: Mean and std. dev of velocity in y-direction in 10d ξ and order 3

(a) Mean of pressure (b) std. dev. of presure

Figure 5.6: Mean and std. dev of pressure in 10d ξ and order 3

(a) Mean of temperature (b) std. dev. of temperature

Figure 5.7: Mean and std. dev of temperature in 10d ξ and order 3

parameter represented in reduced dimension is very accurate. However, with this method, a new

set of η has to be identified for each spatial locations. Alternately, figure 5.12 shows the pdfs of

permeability computed in reduced dimension using basis adaptation based on Karhunen-Loève
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(a) mean of k11 (b) std. dev. of k11

Figure 5.8: Mean and std. dev. of permeability component k11 using volume averaging

(a) mean of k11 (b) std. dev. of k11

Figure 5.9: Eigenevalues obianed from KL expansion of thermeal conductivity at finescale and

the eigen values obtained from KL analysis of Gaussian part of permeability at coarse scale

expansion as discussed in section 5.4.3. Using this method, entire permeability is computed

simultaneously, but needs 3-dimensional space with η1, η2 and η3. Figure 5.12 shows thermal

conductivity computed at point 20 using the basis adaptation method based on Karhunen-Loève

expansion.
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(a) Permeability at point 3 (b) Permeability at point 20

Figure 5.10: Permeability computed at points 3 and 20, using linear and quadratic basis adaptation

methods. Here, the basis adapted for each spatial point (QoI) separately

(a) Permeability at point 3 (b) Permeability at point 20

Figure 5.11: Permeability computed at points 3 and 20 using basis adaptation method, where

new random variables η are obtained from Karhunen-Loeve analysis of the Gaussian part of the

random filed. Here, basis is adapted for all spatial points (QoI) simultaneously.
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Figure 5.12: Thermal conductivity computed at points 20 using basis adaptation method, where

new random variables η are obtained from Karhunen-Loeve analysis of the Gaussian part of the

random filed. Here, basis is adapted for all spatial points (QoI) simultaneously.
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Chapter 6

High resolution micrograph synthesis

6.1 Introduction

Recent capabilities in the multi-scale modeling and simulation of material behavior have been

matched by technologies for sensing and characterizing materials at distinct spatial scales. Several

technical challenges ensue in the process of pairing multi-scale models to multi-scale data, one

of which is addressed in this paper namely that of characterizing knowledge about multi-scale

material structure in a manner that is conducive to probabilistic conditioning and updating.

In this work experimental data provided through micrographs are considered, which are dig-

ital images of the microstructure taken through a microscope, showing a magnified view of the

material domain, and allowing digital representation of fine-scale features. In this paper, the terms

“image”, “texture” and “micrograph” are used interchangeably. High resolution microstructural

information is required as a prerequisite for the multi-scale modeling and analysis of compos-

ite structures, and in particular to track the nucleation of instabilities in material behavior. As it

remains expensive to experimentally obtain high resolution micrographs throughout a computa-

tional domain where coarse-scale behavior is being assessed, procedures for gleaning equivalent
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information from lower resolution images have demonstrated their value in computational mate-

rials science Ghosh et al. (2006), Valiveti and Ghosh (2007). This paper contributes to that body

of knowledge by developing a statistical procedure that updates low resolution priors with spa-

tially localized high resolution data using a parametric texture model and a particle filter. Three

approaches are commonly used, in light of their simplicity, for generating high resolution images

from lower resolution ones. These are based on nearest neighbor, bilinear and cubic interpola-

tion methods Lehmann et al. (1999). In the nearest neighbor interpolation method, a piecewise

constant interpolation maps the low resolution to the high resolution image, typically producing

blocky images. Bilinear and cubic interpolation methods smoothen these discontinuities, while

still allowing for a blur in the high resolution image. Methods based on wavelet based interpo-

lation with gradient based enhancement (WIGE) and higher-order polynomial interpolation with

gradient based enhancement (PIGE) techniques have been proposed and successfully adapted

to problems of computational multi-scale material modeling Ghosh et al. (2006), Valiveti and

Ghosh (2007). In WIGE, high resolution images are obtained by interpolating low resolution

images using wavelet basis with the interpolated images enhanced using gradient based meth-

ods calibrated from a few high resolution images. In PIGE, higher order polynomial bases are

used for interpolation. In these methods, gradient based enhancement accounts for the position

of calibration images relative to the spatial location of the simulated image. Both WIGE and

PIGE methods are shown to be very effective in synthesizing high resolution images from low

resolution ones with the aid of few calibrating high resolution images. In Singh et al. (2006),

digital micrographs are simulated by representing the microstructures with two-point correlation

function. Characterization and simulation of three-dimensional microstructures is also discussed

in Groeber et al. (2008a,b), Rollett et al. (2007), Tewari et al. (2004). In these approaches, the
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synthesized micrographs are deterministic and do not account for uncertainty in experimentally

obtained micrographs. Other common and effective approaches for microstructure modeling in-

clude Markov random field (MRF) models whereby a Gibbs distribution is used to represent a

microstructure and Gibbs sampling method is used for micrograph synthesis Geman and Geman

(1984), Geman and Graffigne (1986). Parameters of the Markov random field model are typi-

cally estimated from a small number of calibrating images and the micrographs are synthesized

using Markov chain Monte Carlo (MCMC) methods. A large number of parameters is required to

produce high resolution features with MRF models and estimating them with credible confidence

from few calibrating images remains a challenge. Numerous variations on and enhancements to

standard MRF have adapted it to specific situations which have included deterministic relaxation

for image classification Berthod et al. (1996), Fan and Xia (2003), texture segmentation based

on wavelets and hidden Markov tree models Choi and Baraniuk (2001). A Markov random field

model for image segmentation that combines both color and texture features has also been pro-

posed Kato and Pong (2000) as well as image imputing based on hierarchical Bayesian models to

reconstruct image from partially observed multivariate data Dass and Nair (2003). Quantification

of microstructural variance in the formalism of stochastic processes is developed in Niezgoda

et al. (2011). Algorithms based on sequential testing and feature learning have also been de-

veloped for face detection applications Fleuret and Geman (2001) while edge preserving image

restoration with Huber-Markov random field models has been used to restore degraded images Pan

and Reeves (2006), and procedures based on Gibbs reaction-diffusion have yielded a theory for

learning generic prior models from a set of natural images Zhu and Mumford (1997). Maxi-

mum a posteriori (MAP) estimation methods have also been used for image restoration Schultz

and Stevenson (1994) sometimes in conjunction with adaptive parameter estimation Zhang et al.
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(2005). An approach based on filters, random fields and maximum entropy (FRAME) Zhu et al.

(1998) has also been very effective in capturing high resolution features in the image, but remains

computationally expensive. Its equivalence with Julesz ensembles has also been investigated Wu

et al. (2000). Finally, a parametric texture models based on an over complete complex wavelet

transform was also used Portilla and Simoncelli (2000) to model micrographs based on the steer-

able pyramid decomposition of texture (Simoncelli and Freeman (1995), Simoncelli et al. (2000)).

In this paper, a similar texture model Portilla and Simoncelli (2000) is used with parameters ob-

tained from a few high resolution calibrating images and low resolution image at the synthesis

location. A particle filter is used to estimate the high resolution micrograph at a location given

the low resolution micrograph at that location.

In this work, a Bayesian framework is used, where the experimental low resolution micro-

graph play the role of measurement used to update a prior model synthesized from a very small

set of high resolution micrographs. A particle filter, namely a density-based Monte Carlo filter is

used to implement the Bayesian formulation. In Tipireddy et al. (2009), Kalman filter is used for

system identification based on multiple static and dynamic test data. Kalman filter methodology

can not be used in our problem, because the state equation in the filtering problem is modeled as

an implicit micrograph synthesis algorithm, where as the Kalman filter requires the state equation

to be a linear equation. Monte Carlo based particle filters Doucet et al. (2000), Ghosh et al. (2008),

Gordon et al. (1993), Manohar and Roy (2006), Tanizaki (1996) are used for system identification

of dynamical system. In this work a density-based Monte Carlo filter proposed in Tanizaki (1996)

is used. Synthesis of high resolution micrographs from low resolution images with parametric tex-

ture model proposed in Portilla and Simoncelli (2000) along with the density-based Monte Carlo

filter Tanizaki (1996) is demonstrated in our paper. The main contribution of the present work
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is to compute the parameters of the texture model from high resolution calibrating images and

low resolution images and combine particle filter with a texture synthesis model to characterize

the high resolution micrograph. The paper is organized as follows. Motivation of the work is de-

scribed with the problem statement in section “Problem statement”. In section “Parametric texture

model”, the parametric model along with the synthesis algorithm is described. Section “Density-

based Monte Carlo filter” illustrates the density-based Monte Carlo filter. Numerical experiments

are provided in section “Numerical illustration”.

6.2 Problem statement

Figure 6.1 shows a low resolution microscopic image of cast aluminum alloy W319. At locations

A and B marked on the low resolution image, high resolution images are obtained from scanning

electron microscopy.

Figure 6.1: Low resolution micrograph Low resolution, low magnification digital image of cast

aluminum alloy W319, for which high resolution images are available at points A and B
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Figure 6.2 shows experimentally taken high resolution micrographs using scanning electron

microscope at locations A and B. Figure 6.3 shows magnified low resolution micrographs avail-

able at locations A, B and C. Our objective is to simulate high resolution micrographs at all the

locations where the high resolution microscopic images are not available. The proposed high

resolution micrograph synthesis methodology is demonstrated by generating a high resolution

micrograph at location C. The procedure can be repeated to simulate the high resolution micro-

graphs at other locations.

(a) A (b) B

Figure 6.2: High resolution digital image of cast aluminum alloy W319 at A and B

Starting with an image x0 that represents the low-resolution micrograph at location C, our aim

is to synthesize an image x at the same location, representing the high-resolution micrograph, that

is constrained, in some sense, by our knowledge of high resolution data at locations A and B and

low resolution data at C. In order to complete the statement of the problem, we must specify the

nature of the constraints (i.e. the specific functionals or features that describe our knowledge of

the high resolution data). In what follows, a texture model will be used to provide a context in
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(a) A (b) B (c) C

Figure 6.3: Low resolution digital image of cast aluminum alloy W319 at A, B and C

which features of a micrograph are quantified. This model will be constructed from available high

resolution data and presumed to be valid everywhere else. Specifically, the texture model will be

identified with the joint statistics of the subbands in a particular wavelet decomposition, namely,

a steerable pyramid decomposition. Associated with this model is a mapping f that maps x0 into

x such that x has the joint statistics corresponding to the model.

The texture model maps an initial micrograph x0 into a high resolution micrograph x. Let

xi0 be a set of distinct initial micrographs, then the texture model maps each micrograph xi0 into

a high resolution micrograph xi such that the parameters (joint statistics of the subbands) of

each micrograph, xi are same as those of the texture model. However the visible microstructural

features of each xi will be different from each other and also from those observed in the low

resolution micrograph at that location. A Bayesian framework is employed using a particle filter,

such that a high resolution micrograph x is selected from all possible micrographs xi that is also

consistent with the local microstructure. Based on maximum-entropy arguments, prior knowledge

for the Bayesian framework takes the form of a Gaussian distribution with an interpolated low

resolution micrograph as a mean and an assumed variance. The Likelihood is obtained from the
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texture model f , that maps low resolution image x0 to high resolution image x. To complete the

specification of the Bayesian problem, observations consisting of a low resolution micrograph

available at location C are used to update the prior.

A parametric texture model based on complex wavelet transform is used to represent the

micrograph. High resolution micrograph is selected randomly from all possible micrographs

satisfying a set of constraint functions, which will be discussed in section “Julesz conjecture

and constraint functions”. The synthesis is performed by recursively projecting the initial guess

of the micrograph onto the constraint surfaces using gradient projection methods Portilla and

Simoncelli (2000). Density-based Monte Carlo filter Tanizaki (1996) along with the gradient

projection algorithms are used to synthesize the high resolution micrograph at location C that

is consistent with experimentally obtained low resolution micrograph at the same location. The

problem is formulated as an estimation of a high resolution micrograph at location C using high

resolution calibrating images available at locations A and B and low resolution image available at

location C. The parametrization of the texture model is discussed in section “Parameter estimation

sketch”. Texture parameters at location C are estimated from the parameters of images at locations

A and B and those of coarse scale image at location C. The high resolution image at location C

is simulated by recursively adjusting the pixel values of the iterates to satisfy a set of constraint

functions and is updated using density-based Monte Carlo filter with coarse scale image at C as

an observation.
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6.3 Parametric texture model

A texture is modeled as a real two dimensional random field, X(i, j) defined on a finite lattice,

(i, j) ∈ L ⊂ Z
2. Here X(i, j) takes gray level values in [0, 255] ⊂ N. In this section we describe

the steerable pyramid decomposition, which is a particular decomposition based on the complex

wavelet transform of an image. A steerable pyramid acts as a filter and decomposes the image into

multi-level, multi-oriented subbands. Joint statistics of the subbands, described in section “Pa-

rameter estimation sketch” are used as the parameters of the texture model. Section “Micrograph

synthesis procedure” describes the texture synthesis procedure.

Julesz conjecture and constraint functions

The Julesz conjecture (Julesz (1962), Zhu et al. (1998), Portilla and Simoncelli (2000)) states that

there exists a set of functions {φk : R|L| 7→ R, k = 1, · · · , Nc} , called constraint functions Por-

tilla and Simoncelli (2000) such that samples drawn from any two random fields are visually

indistinguishable under some conditions, if expectations over this set of functions are equal. That

is,

E[φk(X)] = E[φk(Y )]⇒ Xand Y are perceptually indistinguishable, (6.1)

where, {φk(·)} is the set of constraint functions acting on a random filed and E[·] is mathematical

expectation. To compute the expectations, practical ergodicity defined in Portilla and Simoncelli

(2000) is assumed. Specifically, a homogeneous random field X has the property of practical

ergodicity with respect to function φ : R
|L| → R, with tolerance ε, and probability p, if and
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only if the spatial average of φ over a realization drawn from X is a good approximation to the

expectation of φ with sufficiently high probability. More concretely,

Px

(

|φ(x(n,m))− E[φ(X)]| < ε
)

≥ p . (6.2)

In the present case, where realizations refer to sample images x(i, j), the spatial average of the

functional φ can be approximated as,

φ(x(n,m)) =
1

L

∑

(i,j)∈L

φ (x(⌊n+ i⌋N , ⌊m+ j⌋M )) , (6.3)

where, ⌊·⌋N means that the result is taken modulo N . With these definitions, our objective then

is to draw samples from random field X satisfying statistical constraints of the form,

E[φk(X)] = ck, ∀k . (6.4)

The values ck in these constraints are computed from calibrating image x(i, j) and constitute the

parameters of the texture model. The set of all samples satisfying equation 6.4 is referred to as

the Julesz ensemble Zhu et al. (1998) given by

Tφ,C = {x : E[φk(X)] = ck, ∀k} . (6.5)

6.3.1 Steerable pyramid decomposition

A parametric texture model based on over-complete complex wavelet transform Portilla and Si-

moncelli (2000) is used in this work. The complex wavelet transform decomposes the calibrating
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image into multi-scale, multi-oriented subbands. The joint statistics of the decomposed sub-

bands are used as the parameters of the texture model. The decomposition is known as steerable

pyramid when the basis functions are directional derivatives. The filters used in this decompo-

sition are polar-separable in the Fourier domain. The traditional orthogonal separable wavelet

decomposition suffers from aliasing whereas the steerable pyramid decomposition overcomes

this limitation since the support of lowpass filter obeys the Nyquist sampling criterion Portilla

and Simoncelli (2000). A disadvantage with the steerable pyramid decomposition is that the basis

is over-complete. A system is said to be over-complete if the the number of basis functions used

to represent a vector is larger than required. Translation and rotation invariance of the steerable

pyramid is important to represent the oblique orientations properly. Filters used in the steerable

pyramid belong to one of three categories, namely low-pass, high-pass or oriented band-pass

filters which are characterized by their respective response functions,

L(r) =


























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2 cos
(

π
2 log2

(

4r
π

))

, π
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2
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4

0, r ≥ π
2

, (6.6)

H(r) =






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


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


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cos
(

π
2 log2

(

2r
π

))

, π
4 < r < π

2

1, r ≤ π
4

0, r ≥ π
2

, (6.7)

and

Bk(r, θ) = H(r)Gk(θ), k ∈ [0,K − 1], (6.8)
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where the angular part of Bk is given by,

Gk(θ) =















αk

[

cos
(

θ − πk
K

)]K−1
,

∣

∣θ − πk
K

∣

∣ < π
2

0, otherwise

. (6.9)

Here, r and θ are polar coordinates and αk = 2k−1 (K−1)!√
K[2(K−1)]!

. L(r) and H(r) are low-pass

and high-pass filters respectively and {Bk(r, θ)} are oriented band-pass filters. The steerable

pyramid decomposition is initiated by splitting an image into high-pass and low-pass subbands.

The low-pass band is further decomposed into a set of orientation bands and the low-pass residual

band. The low-pass residual band is sub-sampled by two and the decomposition in the next level

is carried out by further decomposing the sub-sampled low-pass residual band into orientation

bands and low-pass residual band. The procedure is continued till the image is decomposed into

required number of pyramid levels. A system diagram for steerable pyramid is shown in fig 6.4.

In our work four orientation bands and four pyramids with a total of 18 subbands are used

(16 orientation bands, one high-pass and one low pass residual band). Figure 6.5 shows the real

parts of four level and four orientation steerable pyramid subbands and low-pass residual band.

High-pass subband is not shown in figure 6.5.

6.3.2 Parameter estimation sketch

Outline for estimating parameters of the texture model from a sample image is described in the

following steps:

(i). Decompose the high resolution sample image x into high-pass subband, h0, orientation

bands, {bs,k, s = 1, · · · , 4, k = 1, · · · , 4} and low-pass residual bands, {l0, l1, l2, l3, l4}.
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Figure 6.4: Steerable pyramid diagram Block diagram for the steerable pyramid Portilla and

Simoncelli (2000), Simoncelli and Freeman (1995). Input image is initially split into high-pass

and low-pass bands. Low-pass band is further decomposed into a set of oriented subbands and

low-pass residual band. The recursive decomposition is achieved by inserting the diagram in

dotted lines into the solid circle.

Figure 6.5: Real parts of subbands Real parts of steerable pyramid orientation bands(4 orientations

and 4 scales) and low-pass subband of image at location A. High-Pass subband is not shown here.
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(ii). Compute a set of joint statistics on the decomposed subbands. Following are the statis-

tics Portilla and Simoncelli (2000) that are considered as parameters of the texture model:

• Marginal statistics are the statistics of gray-level values of the pixels in the image.

– Mean, µ1(x) = E{x(i, j)}.

– Variance, µ2(x) = E{(x(i, j)− µ1(x))2}

– Skewness, η(x) = µ3(x)
(µ2(x))1.5

– Kurtosis, κ(x) = µ4(x)
(µ2(x))2

– Range = [min(x)),max(x)]

where, µn(x) = E{(x(i, j) − µ1(x))n}, ∀n > 1. In the parametric texture model,

mean µ1(x), variance µ2(x), skewness η(x), kurtosis κ(x), minimum and maximum

of the sample image, variance of the high-pass band µ2(h0), skewness {η(l0), η(l1), η(l2), η(l3), η(l4)}

and kurtosis, {κ(l0), κ(l1), κ(l2), κ(l3), κ(l4)} of partially reconstructed low-pass im-

ages at each scale, {l0, l1, l2, l3, l4} are considered as a set of parameters from marginal

statistics.

• Raw coefficient correlations, are defined as the central samples of auto-correlation of

the partially reconstructed low-pass images, Ak(n,m) = E{lk(i, j)lk(⌊i+n⌋N , ⌊j+

m⌋M )}. In the texture model, auto correlations of the partially reconstructed low-pass

images, {l0, l1, l2, l3, l4} at each scale, are used as a set of parameters. These statistics

characterize the salient spatial frequencies and the regularity of the texture Portilla

and Simoncelli (2000).

• Coefficient magnitude statistics are defined as the central samples of auto-correlation

of magnitude of each subband, cross correlation of magnitude of each subband with
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those of the other orientations at the same scale, cross correlation of subband mag-

nitudes with those of all orientations at a coarser scale. Cross-correlation of any two

subbands bs(i, j) and bt(i, j) is given as Cs,t(n,m) = E{bs(i, j)bt(⌊i + n⌋N , ⌊j +

m⌋M )}. These represent the structures such as edges, bars and corners in the image.

• Cross-scale phase statistics are cross-correlation of the real part of the coefficients

with both the real and imaginary part of the phase doubled coefficients at all orien-

tations at the next coarser scale. The rate at which the phase changes for fine scale

coefficients is twice the rate change for coarse scale coefficients Portilla and Simon-

celli (2000). To compensate for the difference in rate of phase change, the cross

correlations are computed between the phase doubled coarse scale coefficients and

fine scale coefficients. These statistics distinguish edges from lines.

All the joint statistics described in the above list are used as the parameters of the texture

model. Practical ergodicity described in section “Julesz conjecture and constraint func-

tions” is used to compute expectations E[·] in the above expressions .

(iii). Once a set of parameters is computed from high resolution micrograph, a micrograph with

that set of parameters can be constructed using the synthesis procedure described in the

next section.

6.3.3 Micrograph synthesis procedure

The synthesis procedure proposed in Portilla and Simoncelli (2000) to generate an image with

desired parameters is described in the following steps. The parameters of the texture model are

computed from calibrating images as joint statistics of the decomposed subbands.
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(i). The synthesis procedure is initiated by choosing as initial guess an image with mean and

variance equal to those of the target image.

(ii). The initial image is decomposed into multi-scale, multi-oriented subbands and joint statis-

tics of the desired image are imposed recursively using gradient projection method Portilla

and Simoncelli (2000).

(iii). Starting from coarse scale to fine scale, statistical constrains are imposed on low-pass and

orientation bands while simultaneously reconstructing the low-pass image.

(iv). Auto-correlation, skewness and kurtosis of the reconstructed low-pass image at the fine

scale are adjusted and resulting low-pass image is added to variance adjusted high-pass

image to obtain the fine scale image.

(v). The marginal statistics are adjusted on the pixels of the reconstructed image in step-4.

(vi). The procedure is repeated from step-2 to step-5 until the image with desired statistics is

generated.

(vii). This algorithm synthesizes an image that is statistically equivalent to the sample images

from which the parameters are estimated.

Fig 6.6 shows one iteration step of synthesis algorithm. This algorithm can be used to simulate

many statistically equivalent micrographs for a given set of parameters. But the simulated micro-

graphs will not be visually similar to the calibrating micrograph from which the parameters are

computed. When a low resolution microscopic image from an experiment is available, data as-

similation methods can be used to synthesize a high resolution micrograph that is consistent with

the low resolution image. We use the Matlab tools provided at Simoncelli (2009) for steerable
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pyramid decomposition and micrograph synthesis. In the next section a particle filter known as

the density-based Monte Carlo filter Tanizaki (1996) along with micrograph synthesis procedure

is used to simulate high resolution micrographs that are consistent with the corresponding low

resolution one.

Figure 6.6: Block diagram of the recursive micrograph synthesis procedure

6.4 Density-based Monte Carlo filter

The density-based Monte Carlo filter is a nonlinear, non-Gaussian filter proposed in Tanizaki

(1996) for state estimation of a dynamical system. In the current problem, an image is synthesized

by an extension of the procedure described in section “Micrograph synthesis procedure”. In the

synthesis procedure, an initial guess of the image is assumed and the desired joint statistics are

imposed on the initial guess to obtain a new image. Let f be an implicit algorithm that implements

steps 2-5 in the synthesis procedure shown in section “Micrograph synthesis procedure”. The

parameters of the texture model are repeatedly imposed on the initial image x0 such that the

final image has the desired parameters. That is the implicit function f acts on x0 to generate

x1, on x1 to generate x2 and in general acts on xk−1 to generate xk. Action of f on xk−1 to

generate xk, is shown in figure 6.6. We treat this as one function evaluation in the synthesis

algorithm. Let x0, x1, · · · , xk denote the images, modeled as random fields, generated at each

function evaluation of the synthesis algorithm. These are construed as successive states of a
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dynamical system where an implicit algorithm takes a dynamical state (in the present case, the

state is a random field) xk−1 to xk where xk depends only on xk−1 and the parameters of the

texture model. Here, function evaluation steps, k = 0, · · · ,K are treated analogous to time

steps in the dynamical system. Coarse scale images available at synthesis locations are treated as

measurements and are used in the measurement equation of the particle filter algorithm to update

the estimated image at each synthesis step. The state and measurement equations of the dynamical

system can thus be written as

xk = f(xk−1) + ηk, state equation (6.10)

yk = g(xk) + εk, measurement equation (6.11)

where, xk is the synthesized image at kth step in the recursive synthesis process, f is an implicit

algorithm relating xk to xk−1 as shown in figure 6.6 and g is a coarsening operator relating state

xk and observation yk. Here, coarsening operator is an averaging operator that averages 8 × 8

pixels in fine scale image to produce one pixel in the coarse scale image. Errors in the synthesis

process and experimental measurements are modeled as additive white Gaussian noise processes

ηk and εk respectively. The covariance of the noises are assumed to be known and are indeed

parameters of the filter. Let Xk = {x0, · · · , xk} be a vector of states and Yk = {y0, · · · , yk}

be a vector of measurements. In our work, measurements are assumed to consist of a coarse

scale image available at location C and does not change with each synthesis step. Hence, we

assume, Yk = {y0, y1 = y0, · · · , yk = y0}. The joint probability density of all the states and the

measurements is given by

P (Xk, Yk) = P (Yk|Xk)P (Xk), (6.12)
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where, P (Yk|Xk) and P (Xk) can be written as,

P (Yk|Xk) =

k
∏

s=1

P (ys|xs) (6.13)

and

P (Xk) = P (x0)
k
∏

s=1

P (xs|xs−1). (6.14)

The conditional densities, P (ys|xs) and P (xs|xs−1), are obtained from the measurement and

state equations respectively. From equations 6.13 and 6.14, the filter density P (xk|Yk) can be

written as,

P (xk|Yk) =
∫

P (Yk|Xk)P (Xk)dXk−1
∫

P (Yk|Xk)P (Xk)dXk
. (6.15)

The estimated micrograph, x̂k at step k, can be obtained by computing expectation of xk with

respect to the filtering density, P (xk|Yk), i.e.,

x̂k =

∫

xkP (Yk|Xk)P (Xk)dXk
∫

P (Yk|Xk)P (Xk)dXk
. (6.16)

Evaluating the integrals in equation 6.16 using Monte Carlo sampling results in the filter

estimate x̂k at step k. Generating n random samples of x0 and ηs for s = {1, · · · , k}, a set of

random draws Xi,s can be obtained from the state equation as

xi,s = f(xi,s−1, ηi,s), i = 1, · · · , n & s = 1, · · · , k . (6.17)
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The filtering estimate x̂k in equation (6.16) is approximated by drawing samples of xk using

Monte Carlo sampling according to,

x̂k =

∑n
i=1 xi,kP (Yk|Xi,k)
∑n

i=1 P (Yk|Xi,k)
. (6.18)

Using equation 6.12,

x̂k =

∑n
i=1 xi,k

∏k
s=1 P (ys|xi,s)

∑n
i=1

∏k
s=1 P (ys|xi,s)

, (6.19)

where, (ys|xi,s) ∼ N ((gs(xi,s)), cov(εs)) denotes the likelihood and x̂k is the filter estimate.

Here, Xi,k is a collection of random draws, defined as Xi,k = {xi,0, · · · , xi,k}. Equation (6.18)

can be written as

x̂k =

n
∑

i=1

xi,kwi,k, (6.20)

where the weight function wi,k is defined as

wi,k =
P (yk|(xi,k)wi,k−1

∑n
j=1 P (yk|(xj,k)wj,k

, (6.21)

such that
∑n

i=1wi,k = 1. For the initial step, when k = 0, equal weights are assigned for all the

samples {xi, 0}ni=1, i.e., wi,0 =
1
n . Writing ek = (xk − x̂k), the variance of ek can be written as

Σ∗
k =

∫

eke
T
k (P (Yk|Xk))

2P (Xk)dXk

(
∫

(P (Yk|Xk))P (Xk)dXk)2
(6.22)

and the sample variance can be written as

Σk =

∑n
i=1 eke

T
k (P (Yk|Xk))

2P (Xk)

(
∑n

i=1(P (Yk|Xk))P (Xk))2
(6.23)
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Σk =

n
∑

i=1

(xi,k − x̂k)(xi,k − x̂k)Tw2
i,k. (6.24)

The following limiting conditions as n goes to infinity can be verified Tanizaki (1996)

• x̂k −→ E(xk|Yk) almost surely,

• √n(xk − E(xk|Yk)) −→ N(0,Σ∗
k) in distribution ,

• nΣk −→ Σ∗
k almost surely.

Following the above constructions, the computational procedure of the density-based Monte Carlo

filter is as follows:

(i). The random draws of the initial state x0, represented as xi,0 are taken from the initial density

P (x0),

(ii). Given xi,k−1 and ηi,k−1, estimates of xi,k are obtained from the state equation 6.10,

(iii). Given the initial weight wi,0, weight functions wi,k for i = 1, · · · , n and k = 1, · · · ,K are

obtained from equation 6.21,

(iv). Finally, the filtered state x̂k is evaluated from equation 6.20 while the variance of the error

in the estimate is computed from equation 6.24.

Fig 6.7 shows the block diagram of the micrograph synthesis using parametric texture model

and density-based Monte Carlo filter.

6.5 Numerical illustration

The high resolution micrograph synthesis procedure is demonstrated by synthesizing a high res-

olution micrograph at location C starting with low resolution micrograph at that location and
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Figure 6.7: Block diagram of synthesis procedure with particle filter. Block diagram of the recur-

sive micrograph synthesis procedure along with the density-based Monte Carlo filter.

high resolution calibrating micrographs available at locations A and B as shown in figures 6.1

and 6.2. The procedure can be repeated to construct high resolution micrographs at any other

location. Two cases are considered to construct high resolution micrographs. In the first case

(figures 6.8, 6.10 and 6.12), a parametric texture model with the synthesis procedure described

in section “Micrograph synthesis procedure” is used to construct a high resolution micrograph,

whereas in the second case (figures 6.9, 6.11 and 6.13), the parametric texture model along with

the density-based Monte Carlo filter described in section “Density-based Monte Carlo filter” is

used to estimate a high resolution micrograph.

(a) High resolution A (b) micrograph-1 (c) micrograph-2 (d) micrograph-3

Figure 6.8: Micrograph at A synthesized without particle filter. Micrographs from left to right

show respectively, the experimental high resolution micrograph, synthesized micrographs without

particle filter which are statistically equivalent with high resolution micrograph at location A.
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(a) High resolution A (b) Low resolution A (c) Estimated A

Figure 6.9: Micrograph at A synthesized with particle filter. From 6.9(a) to 6.9(c), experimental

high resolution micrograph, experimental low resolution micrograph and high resolution micro-

graph synthesized with texture model and particle filter at location A.

(a) High resolution B (b) micrograph-1 (c) micrograph-2 (d) micrograph-3

Figure 6.10: Micrograph at B synthesized without particle filter. Micrographs from left to right

show respectively, the experimental high resolution micrograph, synthesized micrographs without

particle filter which are statistically equivalent with high resolution micrograph at location B.

When the particle filter is not used, the synthesis procedure does not make use of the low res-

olution micrographs available at a given location. It uses only the parameters of the texture model

obtained from the calibrating micrographs. The synthesis process with distinct initial guesses re-

sults in statistically equivalent high resolution micrographs, that have visually distinct microstruc-

tural features. To validate the synthesis procedure, high resolution micrographs are synthesized

at locations A and B where experimental high resolution micrographs are available. Figure 6.8(a)
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(a) High resolution B (b) Low resolution B (c) Estimated B

Figure 6.11: Micrograph at B synthesized with particle filter. From6.11(a) to 6.11(c), experi-

mental high resolution micrograph, experimental low resolution micrograph and high resolution

micrograph synthesized with texture model and particle filter at location B.

(a) High resolution C (b) micrograph-1 (c) micrograph-2 (d) micrograph-3

Figure 6.12: Micrograph at C synthesized without particle filter. Micrographs from left to right

show respectively, the experimental high resolution micrograph, synthesized micrographs without

particle filter which are statistically equivalent with high resolution micrograph at location C.

High resolution micrograph at location C is used only for comparison and is not used in the

synthesis process.

shows a high resolution micrograph obtained experimentally at location A and figures 6.8(b) –

6.8(d) show synthesized micrographs whose joint statistics are the same as those of 6.8(a) but

with visibly distinct microstructural features. Similarly figure 6.10(a) shows an experimental

high resolution micrograph at location B and figures 6.10(b) – 6.10(d) show corresponding syn-

thesized micrographs. Parameters of the texture model for the synthesis of these micrographs at

locations A and B are obtained using high resolution micrographs available at these locations.
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(a) High resolution C (b) Low resolution C (c) Estimated C

Figure 6.13: Micrograph at C synthesized with particle filter. From 6.13(a) to 6.13(c), experi-

mental high resolution micrograph, experimental low resolution micrograph and high resolution

micrograph synthesized with texture model and particle filter at location C. High resolution mi-

crograph at location C is used only for comparison and is not used in the synthesis process.

In case of location C, on the other hand, we assume that an experimental high resolution micro-

graph is not available and we aim to synthesize one. The parameters of the texture model for C

are obtained from a low resolution micrograph at C and high resolution micrographs available

at locations A and B. Pixel statistics and low-pass band statistics which account for total gray

scale levels are computed from low resolution micrograph at C and the rest of the parameters

which determine high resolution feature are computed as averages of the parameters from A and

B. Figure 6.12(a) shows experimental high resolution micrograph and figures 6.12(b) – 6.12(d)

show corresponding synthesized micrographs at location C. Here high resolution micrograph at

location C (figure 6.12(a)) is used only for comparison and is not used in the synthesis process.

In the second case, high resolution micrographs of the microstructure are estimated in the

Bayesian context using the density-based Monte Carlo filter (section “Density-based Monte Carlo

filter”) where the texture synthesis process (section “Micrograph synthesis procedure”) is treated

as a dynamical system and the experimental low resolution micrograph at a given location is

105



treated as measurement used to update the dynamical state. It is reiterated that the high resolu-

tion micrograph at C is synthesized using the low resolution micrograph at C and high resolution

micrographs at A and B together with a texture model and a particle filter. The parameters of

the texture model for A, B and C are obtained similarly to before. For estimating high resolution

micrographs at locations A, B and C, experimental low resolution micrographs at corresponding

locations are used as measurements in the filtering algorithm. Low resolution micrographs are

also used as the statistical average of the initial probability density function in the algorithm. The

algorithm convergence is slowed for other choices of initial average. Measurement and process

noises are assumed to be zero mean Gaussian random fields with 0.01 coefficient of variation.

In the particle filter algorithm, 25 Monte Carlo samples are used to estimate the high resolu-

tion micrographs. Figure 6.9(a) and figure 6.9(b) show high and low resolution micrographs

obtained experimentally at location A, figure 6.9(c) is the estimated high resolution micrograph

at location A using density-based Monte Carlo filter along with the texture synthesis procedure.

Figures 6.11(a)– 6.11(c) show the experimental high resolution, experimental low resolution, es-

timated high resolution micrographs at location B. At location C, figure 6.13(a) and figure 6.13(b)

are experimental high and low resolution micrographs, figure 6.13(c) is the estimated high reso-

lution micrograph. It should be noted that the high resolution features of micrograph at location

C (figure 6.13(c)), are recovered using information from experimental low resolution micrograph

at C and experimental high resolution micrographs at A and B.

It is again worth comparing figure 6.12 showing the synthesis of high resolution micrograph

using only the parametric texture model with figure 6.13 showing high resolution micrograph

synthesized using texture model along with the particle filter. It can be clearly observed that

the estimated high resolution micrograph with particle filter (figure 6.13(c)) provides information
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about the local microstructure that cannot be gleaned from previous approaches. Resolving this

level of detail is paramount in physical problems where bifurcation is initiated by spatially local

events.

6.6 Appendix

Here, we provide the pseudo-code for high resolution micrograph synthesis using the parametric

texture model and density based Monte-Carlo filter. A few high resolution micrographs are de-

composed using steerable pyramid method and the parameters of the texture model are obtained

as joint statistics of the decomposed subbands described in “Parameter estimation sketch”.

Algorithm 3 Recursive micrograph syntheis procedure

1. Compuete parameters p from sample micrographs

2. Assume initial guess x0

3. Compute parameters p̃ from x0

4. while p̃ 6= p do

5. Decompose xk into subbands, h0, {bs,k, s = 1, · · · , 4, k = 1, · · · , 4} and {l0, l1, l2, l3, l4}

6. Compute the parameters p̃ from above subbands

7. From coarse to fine scale, impose desired statistics and reconstruct l0

8. Impose auto-correlation on l0

9. Impose skewness and kurtosis on l0

10. Impose variance on h0

11. Construct finescale micrograph xk+1 = l0 + h0

12. Impose pixel level statistics on xk+1

13. end while.
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Algorithm 4 Density based Monte-Carlo filter

1. Draw initial samples xi,0 from density P (x0)

2. for k = 1 to K do

3. Compute xi,k = f(xi,k−1 + ηi,k−1), where f is micrograph synthesis algorinthm 3

4. Compute wights wi,k from equation 6.21

5. end for

6. Estimate x̂ from equation 6.20 and variance from equation 6.24.

108



Bibliography

Adams, B. M., Dalbey, K. R., Eldred, M. S., Gay, D. M., Swiler, L. P., Bohnhoff, W. J., Eddy,

J. P., Haskell, K., and Hough, P. D. 2010. DAKOTA, A Multilevel Parallel Object-Oriented

Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and

Sensitivity Analysis. Sandia National Laboratories, tech. rep.sand2010-2183 edition.
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