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Abstract

In the coastal area, defined as the region between the shoreline and some offshore limit

where the depth can no longer influence the waves, complex behavior of waves is an-

ticipated due to various physical effects such as turbulence, wave-structure interaction,

wave-current interaction, wave breaking and fluid-density variations. For modeling of

nearshore hydrodynamics, many numerical models have been developed so far, but many

of such effects are not yet considered appropriately.

In this dissertation, depth-integrated numerical models used in long wave simulation

are developed for better understanding of complicated hydrodynamics at the nearshore.

First, a non-dispersive shallow water equation model and dispersive Boussinesq model

are two-way coupled. The fundamental purpose of the coupling effort is to develop the

capability to seamlessly model long wave evolution from deep to shallow water with fine

scale resolution, without the loss of locally important physics. Second, a set of depth-

integrated equations describing combined wave-current flows are derived mathematically

and discretized numerically. To account for the effect of turbulent interaction between

waves and underlying currents with arbitrary profile, new additional stresses are intro-

duced, which represent radiation stress of waves over the ambient current field. Finally,

a numerical model for gravity waves propagating over variable density fluids is developed

xii



by allowing horizontal and vertical variation of fluid density. Throughout the derivation,

density change effects appear as correction terms while the internal wave effects on the

free surface waves in a two-layer system are accounted for through direct inclusion of

the internal wave velocity component. For each of the studied topics, numerical tests

are performed to support accuracy and applicability. Consequently, we have developed a

comprehensive tool for numerical simulation of complex nearshore hydrodynamics.
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Chapter 1

Introduction

1.1 Motivation

“We will never control the furious Earth,

but through our scientific understanding of its nature,

we may be able to prevent tragic and costly losses” 1

A series of recent gigantic disasters in the oceanic area, including the 2004 Indian

tsunami and 2011 Tohoku tsunami remind us of the importance of understanding nature,

especially ocean dynamics. Researchers have made great progress in developing tools

for modeling and predicting the meteorological and oceanographic environments covering

the immense ocean. Thinking of the lifespan of transoceanic waves, whether generated

by wind stress or other source of energy in the deep ocean, travel over the ocean and

reach at the shoreline after various types of physical transformations such as shoaling,

1This quote is from Furious Earth: The Science and Nature of Earthquakes, Volcanoes, and Tsunamis.

by Ellen J. Prager, McGraw-Hill, 1st ed., 1999
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refracting, interacting with other flows or structures, and breaking, many of which occur

at the nearshore region.

Therefore, it is yet challenging to model a comprehensive evolution of waves from

deep ocean to the shallow coastal area without loss of accuracy in physics. Three di-

mensional Navier-Stokes equations will be the best choice, unless there is concern about

computational resources or numerical issues. In reality, however, it seems too far from

practical, since we are not capable of dealing with the complexity and multi-scale behavior

without any assumptions aiming to simplify the problem. With the purpose of practi-

cal application, many numerical tools have been developed for long wave modeling with

different levels of approximation. Established examples include COMCOT(Cornell Multi-

grid Coupled Tsunami Model), MOST(Method of Splitting Tsunami), FUNWAVE(Fully

Nonlinear Wave Model), COULWAVE(Cornell University Long and Intermediate Wave

Modeling Package) and others.

The majority of existing long wave models have their theoretical basis on either non-

dispersive shallow water equations or Boussinesq-type equations. Shallow water equation

models neglect the dispersive property of waves, permitting depth-uniform velocity pro-

files, and a huge efficiency is gained through modeling with these 2HD(horizontal dimen-

sion) equations. Yet, it is still argued that the application of a non-dispersive model in

the nearshore area seems to be insufficient for accurate representation of certain physics,

since nearshore hydrodynamics may involve many complex features.

The dispersive property of intermediate waves need to be accounted for, as it can

be important in the shallow regions in some circumstances. In the nearshore where the

water depth is very shallow and amplitude and wavelength can become high and short,

2



nonlinear and bathymetric interactions occur across a wide range of frequencies. The in-

teractions among waves of various frequencies can locally generate various shorter-crested,

or dispersive waves components. Thus, an application of the dispersive wave model to

the nearshore environment is considered useful and needed for practical purposes.

Another complex situation occurs in coastal area when inhomogeneous types of fluid

flows such as waves, currents and tides co-exist and interact with each other. Gravity

waves arriving at coastal regions interact with the background current flow, which is

usually driven by tides, thermocline, salinity variations and river mouth discharges. In

consequence, the combined effects of waves and currents need to be considered for accurate

modeling of nearshore physics such as morphodynamic changes, mixing and transport of

solutes.

Freshwater and seawater are often found in estuaries in coastal regions. Thus the

fluid densities are subject to change horizontally and vertically due to thermal and saline

variability. This density variation will result in complex physical processes contrary to

uniform density fluids. Therefore, density-variation is a primary concern in estuarine

hydrodynamics. Wave-breaking, sedimentations, and wave interaction with coastal struc-

tures are worthy of mention as other interesting issues, as they often occur in nearshore

area.

The wave-related, physical problems mentioned above tend to make nearshore hydro-

dynamics more complex than those in deep water. Sometimes, such dynamics result in

unexplainable events, looking like supernatural phenomena and require dedicated consid-

erations of the controlling physics. An excellent example can be found during the 2011

3



Figure 1.1: A huge whirlpool generated by 2011 Tohoku Tsunami traps a boat in port of
Oarai, Japan (Courtesy of Reuters/Kyodo)

Tohoku tsunami, which created a huge whirlpool when it reached a harbour near Oarai

city, Japan(see Figure 1.1).

This example describes how significantly the local physics can govern the nearshore

hydrodynamics and how big their impacts are. Thus, accurate and computationally effi-

cient modeling of nearshore hydrodynamics with consideration of physical complexities is

extremely important in that imprecise prediction will cause tremendous loss of properties

and sometimes threaten our lives. Thinking of the rapidly-expanding populations toward

shorelines, such efforts seem to be urgently in need.

4



Hydrodynamic complexities in the nearshore are recognized as important and so are

popular topics in coastal and ocean engineering. However, comprehensive modeling of

complex behavior of waves is not yet achieved and most of complexities remain unrealized

in present numerical models. As Boussinesq models include nonlinearity and frequency

dispersion of waves at the shallow region, other physical factors embedded in nearshore hy-

drodynamics can be elucidated physically and mathematically in the Boussinesq context.

Thus it may be valuable to study various hydrodynamic complexities at the nearshore in

this framework.

1.2 Objectives of Study

The main objective of this research is to introduce a set of numerical models used in long

wave simulation without the loss of locally important physics in the nearshore. To this

end, we extended the conventional Boussinesq-type investigations in three ways. First,

a non-dispersive shallow water model and dispersive Boussinesq model will be two-way

coupled to develop a seamless model for long wave evolution from deep to shallow water

with fine scale resolution, without the loss of locally important physics. In such an effort,

it needs to be postulated that a more physically complete attempt at long wave mod-

eling can be achieved through the integration of a shallow water equation model with

a Boussinesq-type model. The former is computationally in charge of propagation of

waves in the deep ocean, while the latter can be concentrated on a specific area of inter-

est, typically nearshore where waves are prone to high nonlinearity and local frequency

dispersion.

5



Second, a set of depth-integrated equations describing combined wave-current flows

will be derived mathematically and discretized numerically. In the nearshore area, gravity

waves heavily interact not only with the bottom geometry but also with the currents which

are usually driven by tides, thermocline, salinity variations and river mouth discharges.

To account for the effect of turbulent interaction between waves and underlying currents,

additional stresses will need to be introduced to represent the intensity of turbulent

interaction between waves and currents.

Finally, a numerical model for gravity waves propagating over variable density fluids

will be developed by allowing horizontal and vertical variation of fluid density. Through-

out the derivation, density change effects as well as internal wave effects on the free

surface waves will be accounted for and will appear as correction terms to the conven-

tional Boussinesq equations of uniform density. For each of the studied topics, numerical

tests will be performed to support its accuracy and applicability.

1.3 Organization

In Chapter 2, non-dispersive shallow water and dispersive, Boussinesq-type numerical

models used in long wave modeling, as well as an approach to two-way couple these

models together, are introduced. The two model components are briefly introduced, and

the physical mismatch between the two models is examined analytically. Then, a general

benchmark test has been undertaken to provide a parameter range for expected accuracy

and stability of the coupled model. Finally, the model is applied to the 2004 Indian Ocean

tsunami.
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In Chapter 3, a set of depth-integrated equations describing combined wave-current

flows is derived and validated. To account for the effect of turbulence induced by nonlin-

ear interaction between waves and currents, additional stresses are introduced. Using a

parameter b, an additional stress is defined to represent the intensity of turbulent inter-

action between waves and currents. An appropriate estimation on b is provided through

Kemp and Simons(1982, 1983)’s experiments. Accuracy of the model is examined through

three experimental data sets, which resemble various types of hydraulic situations in the

nearshore.

In Chapter 4, by allowing horizontal and vertical changes of fluid-density, depth-

integrated model equations for long surface waves over variable density fluid are derived

mathematically and discretized numerically. Proposed model is applied to surface wave

propagations over either horizontally or vertically varying density fluids for the verifica-

tion.

In Chapter 5, the conclusions of the dissertation are summarized. Also included are

suggestions for the future works.
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Chapter 2

Nested and Multi-Physics Modeling of Long Waves

In this chapter, non-dispersive shallow water and dispersive, Boussinesq-type numerical

models used in long wave modeling, as well as an approach to two-way couple these models

together are introduced. The fundamental purpose of the coupling effort is to develop

the capability to seamlessly model long wave(e.g., tsunamis) evolution from generation to

inundation with fine scale resolution, without the loss of locally important physics. The

two model components are briefly introduced, and the physical mismatch between the two

models is examined analytically. As coupling of numerically and physically heterogeneous

models may result in undesirable errors, a general benchmark test has been undertaken

to provide a parameter range for expected accuracy and stability. Long wave propagation

onto a shallow shelf is simulated to validate the coupled model, examining the importance

of dispersive and nonlinear effects in the nearshore area, as well as the utility of the coupled

modeling system. Finally, the model is applied to the 2004 Indian Ocean tsunami. In

this test, the local dynamics experienced in the Port of Salalah in Oman, as documented

by Okal et al. (2006), are recreated.
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2.1 Introduction

As a long gravity wave propagates over a non-uniform ocean bottom, shoaling and re-

fraction can have a transforming effect. The response of waves to bathymetric changes

results in deformation of the amplitude and wavelength, permitting waves to conserve

mass and momentum. Many efforts have been made to construct a relationship between

wave height and water depth, and using various levels of approximation (e.g. linear

waves) it is possible. For the approximation of long and intermediate length (or shallow

and intermediate depth) waves, two physical characteristics of waves, nonlinearity and

frequency dispersion, are generally employed.

Under a “true” long wave, frequency dispersion is negligible. This assumption yields a

hydrostatic pressure field and a horizontal velocity that is uniform over depth. A tsunami

is often considered a long wave. Frequency dispersion in a tsunami can be ignored when

the tsunami wavelength, typically on the order of 100km in the deep ocean, is considerably

larger than water depth. Therefore, the usual approach to describe tsunami evolution is

to take either the linear or nonlinear shallow-water models as the governing equations.

A number of computational models based on this approximation exist, and some are

introduced here. MOST (Method of Splitting Tsunami) developed by Titov and Synolakis

(1998) is capable of predicting wave height or inundation using a technique where two-

dimensional equations are split into a pair of one-dimensional equations. Liu et al.(1998),

on the other hand, presented COMCOT (Cornell Multi-grid Coupled Tsunami Model)

adopting the staggered leap-frog integration with an upwind scheme for the nonlinear
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convective terms. COMCOT can also model tsunami propagation and some nearshore-

dynamics such as run-up. GTM (Global Tsunami Model) was designated for assessment

of tsunami hazard, inundation, mapping and prediction of the tsunami arrival time by

Kowalik et al.(2005). More recently, aided by adaptive finite volume methods for wave

propagation, TsunamiClaw (Conservation Laws) has been created as a work of George

and LeVeque (2006). Lastly, TsunAWI uses the finite element method with the advantage

of flexibility in grid generation, and was found to be comparable to the multi-grid, nested

modeling approach (Harig et al., 2007).

Even though all of these models employ different numerical techniques, all solve

the linear and/or nonlinear shallow water equations. Depending on the wavelength of

the tsunami, however, frequency dispersion effects can be significant. Specifically, nei-

ther hydro-static pressure nor depth-constant horizontal velocity can be presumed. For

transoceanic propagation of a tsunami as well as landslide-generated tsunami, the dis-

persive effects, estimated through the ratio of water depth to wavelength, should be

included to yield more accurate results (e.g. Yoon(2002), Lynett et al.(2003), Grilli et

al.(2007)). For this reason, some efforts to add the frequency dispersion effect into non-

dispersive models through numerical truncation error have been made(e.g. Yoon(2002),

Burwell(2007)). Despite such attempts to mimic physical dispersion, it is still an attrac-

tive challenge to model tsunami with the Boussinesq or Navier-Stokes equations with

the aim to, hopefully, obtain more realistic wave predictions. Corresponding examples

include COULWAVE(Cornell University Long and Intermediate Wave Modeling Pack-

age) by Lynett et al.(2003), GEOWAVE, which is equipped with the FUNWAVE(Fully
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Nonlinear Wave Model) engine, by Grilli et al.(2007), and recent work by Saito and

Furumura(2009).

The above mentioned computational models aim, of course, for accurate prediction

of nearshore physics such as wave shoaling, wave-diffraction and refraction, run-up and

nonlinear interactions of waves, each with their specialized advantages, e.g., small compu-

tational time of COMCOT or rigorous representation of physics in the Boussinesq model.

In coastal regions, where the water depth is very shallow and amplitude and wavelength

can become high and short, nonlinear and bathymetric interactions across a wide range

of frequencies occur. These interactions can locally generate various shorter-crested, or

dispersive waves components. A well known example is the transformation of a tsunami

front into an undular bore. Thus, the nearshore is expected to be nonlinear and (pos-

sibly) dispersive, and Boussinesq model is appropriate, as addressed in some literature

(e.g. Lynett(2006)). In related efforts, Kim et al.(2009) have presented a depth-integrated

model for weakly dispersive, turbulent and rotational fluid flows. This approach permits

the explicit inclusion of viscous effects in shallow water, coupled with the nonlinear and

weakly-dispersive physics of the Boussinesq model. With accuracy, this model can simu-

late nonlinear and weakly dispersive nearshore dynamics, as well as large eddies generated

by long waves and currents.

Here it is postulated that a more physically complete attempt at tsunami model-

ing can be achieved through the integration of a shallow water equation model with a

Boussinesq model. COMCOT is computationally ”in charge” of generation and propaga-

tion of tsunamis in the deep, open ocean, which in general will be the huge majority of a

simulation domain. On the other hand, the Boussinesq effort can be concentrated on a
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specific area of interest, typically nearshore where waves are prone to high nonlinearity,

turbulence, and local frequency dispersion.

This chapter aims to introduce a set of numerical models used in tsunami modeling, as

well a method to couple them together. The fundamental purpose of the coupling effort is

to develop the capability to seamlessly model tsunami evolution from generation to inun-

dation with fine scale resolution, without the loss of locally relevant physics. In addition

to this, local turbulent structures, such as eddies and gyres, generated by tsunamis in the

nearshore area or around coastal structures can be studied with the coupled model.

The outline of this chapter is as follows. In the first two sections, the model com-

ponents, the shallow water wave equation model (COMCOT) and the Boussinesq-type

model, will be briefly introduced with their numerical scheme. Physical and numerical

“mismatches” between the two models will be discussed analytically, which is followed

by the coupling method given in detail. The next section is devoted to the validation

of the coupled model through a benchmark test with wide-varying conditions and re-

sulting guidance for general use. A typical problem of long wave propagation into the

coast is given in following section. Finally, the presented model is applied to the 2004

Sumatra tsunami to investigate nearshore dynamics, with a particular focus on the eddies

generated inside a harbor basin.

2.2 Shallow Water Equation Model

As introduced above, Liu et al.(1998) presented a nested multi-grid model which has the

option of using either the linear or the nonlinear shallow water equations (NLSW) with
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two different types of coordinate systems, namely Cartesian or spherical. This general

framework includes the effects of bottom friction as well as a special treatment for the

moving shoreline. The model named COMCOT v.1.6 has been adapted here to simulate

tsunami propagation across oceanic basins.

2.2.1 Governing Physics

The nonlinear shallow equations including bottom frictional effects in conservative form

are:

∂ζ

∂t
+
∂M

∂x
+
∂N

∂y
= 0 (2.1)

∂M

∂t
+

∂

∂x

(
M2

H

)
+

∂

∂y

(
MN

H

)
+ gH

∂ζ

∂x
+ τx = 0 (2.2)

∂N

∂t
+

∂

∂x

(
MN

H

)
+

∂

∂y

(
N2

H

)
+ gH

∂ζ

∂y
+ τy = 0 (2.3)

in which ζ is the surface elevation, h is the still water depth, H = h + ζ is the total

water depth, and M , N are the volume fluxes in the x and y directions, defined respec-

tively as Hu and Hv. The bottom friction terms τx, τy in the momentum equations are

approximated in COMCOT via Manning’s formulation

τx =
gm2

H7/3
M
(
M2 +N2

)1/2
(2.4)

τy =
gm2

H7/3
N
(
M2 +N2

)1/2
(2.5)
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where m is the Manning’s relative roughness coefficient. Note that the above equation set

is the nonlinear solver in COMCOT; the linear solver of course neglects the convection

terms in the momentum equations, and does include the Coriolis force when solving in

spherical coordinates.

2.2.2 Numerical Scheme

The numerical scheme employed by COMCOT is the explicit leap-frog difference method.

Nonlinear terms in the model are approximated with upwind finite differences and linear

terms by two-point centered finite differences. This numerical scheme is stable and robust

but is a low-order accurate method, meaning that it is susceptible to numerical dispersion

and dissipation errors. The finite difference forms for the continuity and momentum

equations are described in Appendix A. The finite difference stencil of this scheme is

depicted in Figure 2.1, suggesting two neighboring points on each side of a calculation

point are necessary for each location calculation of derivatives.

For the present study, COMCOT has been parallelized for use on shared-memory

computers, such as multi-processors and/or multi-core computers. OpenMP was used

for the parallelization, which is the standard method for shared-memory parallelization.

The parallel model has been tested up to 8 processors, and shows a near linear speed-up

(using 8 processors reduces CPU time by a factor of 1/8).

To generate the tsunami from an undersea earthquake, COMCOT uses the fault model

of Okada (1985). The main assumptions of this model are a rectangular fault plane within

an elastic deformation. The fault model predicts the deformation of the seafloor, which

corresponds directly to the initial deformation of the ocean water free surface. There are
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Figure 2.1: Finite difference stencils for COMCOT
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a number of parameters which govern the fault model:

• Latitude and longitude of epicenter

• Focal depth

• Length and width of fault plane

• Dislocation

• Strike angle

• Slip angle

• Dip angle

Once the earthquake has been described with the above parameter set, COMCOT

is able to propagate the initial disturbance across oceans. For propagation across deep

ocean waters, COMCOT gives the option of using the linear version of the shallow water

equations. This version is solved considerably faster, in the computational sense, than

the nonlinear version, and can be used with confidence as long as the tsunami wave

height is a very small fraction of the depth, practically less than 1/25 ∼ 1/50 of the local

depth. When this threshold is exceeded, the nonlinear version of COMCOT is required for

accurate results. Generally, if runup or nearshore wave heights are needed, the nonlinear

version of the model should be used.

For runup calculations, COMCOT utilizes a simple but accurate moving shoreline

algorithm. The continuously sloping beach profile is approximated as a stair-stepped

profile. When the water level exceeds the elevation of the “stair” above, the water floods
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that “step” and the shoreline moves landward (inundation). This approach has shown to

re-produce analytical solutions reasonably and field data as well as any other published,

shallow-water equation model.

2.3 Boussinesq Equation Model

Recently, Kim et al.(2009) have presented a depth-integrated model for weakly dispersive,

turbulent and rotational fluid flows. It is derived from the spatially-filtered Navier-Stokes

equations in order to consider viscous effects of a turbulent fluid. Accordingly, this model

includes approximated bottom-induced turbulence and thereby the associated vertical

and horizontal rotational effects can be captured. In the present study, we have adopted

the Boussinesq model of Kim et al.(2009) to simulate the nearshore hydrodynamics and

turbulence effects such as large eddies and wakes generated in the nearshore.

2.3.1 Governing Physics

The Boussinesq-type equations including turbulent viscosity and the associated horizontal

and vertical vorticity terms are given in conservative form below:

∂H

∂t
+
∂HUα

∂x
+
∂HVα
∂y

+Dc = 0 (2.6)

∂HUα

∂t
+
∂HU2

α

∂x
+
∂HUαVα

∂y
+ gH

∂ζ

∂x
+HDx

m + UαDc = 0 (2.7)

17



∂HVα
∂t

+
∂HUαVα

∂x
+
∂HV 2

α

∂y
+ gH

∂ζ

∂y
+HDy

m + VαDc = 0 (2.8)

where Uα and Vα are the x and y component velocities at zα = −0.531h and Dx
m, D

y
m

are 2nd order correction terms of the depth-integrated momentum equations as defined

in Kim et al.(2009). Likewise Dc includes 2nd order correction terms in the continuity

equation. It is noted that the dispersive, viscous, and vorticity corrections are included

as these 2nd order terms. All 2nd order terms can be found in Appendix B.

2.3.2 Numerical Scheme

To numerically solve the governing equations in conservative form, a highly accurate

and stable model is developed. The numerical method uses a fourth-order MUSCL-TVD

(Monotone Upstream-centered Schemes for Conservation Laws- Total Variation Dimin-

ishing) scheme to solve the leading order (shallow water) terms, while for the dispersive

terms, a cell averaged finite volume method is implemented. For the time integration,

a third order Adams-Bashforth predictor and the fourth-order Adams-Moulton correc-

tor scheme has been used to keep numerical truncation errors small. It is noted that

Boussinesq-type models such as the one solved here, which include up to third-order spa-

tial derivatives, require a high-order solution scheme to keep the derivatives associated

with the numerical truncation error at least an order below those contained in the model

equations.
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The explicit predictor step is

ζn+1 = ζn +
∆t

12

(
23En − 16En−1 + 5En−2

)
(2.9)

Pn+1 = Pn +
∆t

12

(
23Fn − 16Fn−1 + 5Fn−2

)

+2Fn
1 − 3Fn−1

1 + Fn−2
1 + F p

v (2.10)

Qn+1 = Qn +
∆t

12

(
23Gn − 16Gn−1 + 5Gn−2

)

+2Gn
1 − 3Gn−1

1 +Gn−2
1 +Gp

v (2.11)

The implicit corrector step is

ζn+1 = ζn +
∆t

24

(
9En+1 + 19En − 5En−1 + En−2

)
(2.12)

Pn+1 = Pn +
∆t

24

(
9Fn+1 + 19Fn − 5Fn−1 + Fn−2

)

+Fn+1
1 − Fn

1 + F c
v (2.13)

19



Qn+1 = Qn +
∆t

24

(
9Gn+1 + 19Gn − 5Gn−1 +Gn−2

)

+Gn+1
1 −Gn

1 +Gc
v (2.14)

where P , Q are defined as

P = HUα +
H

2

(
z2α − ζ2

)
Uαxx + H (zα − ζ) (hUα)xx

− Hζx {ζUαx + (hUα)x} (2.15)

Q = HVα +
H

2

(
z2α − ζ2

)
Vαyy + H (zα − ζ) (hVα)yy

− Hζy

{
ζVαy + (hVα)y

}
(2.16)

where the superscript n denotes time level and the subscripts x and y imply derivatives

in the x and y direction, respectively. E, F , G, F1, G1, F
p
v , G

p
v, F c

v , G
c
v in the above

equations include a number of spatially discretized terms; all can be found in Appendix

C. The finite volume stencil for this scheme is displayed in Figure 2.2, which shows that

4 neighboring points are required for each local calculation.

2.4 Preliminary Discussion for Mismatches between Models

It is necessary to compare models in terms of both physical limitations and numerical

properties, as this will provide the basic guidance for coupling. There exist two major
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i

j

Figure 2.2: Finite volume stencil for Boussinesq Model

groups of errors, one from approximated equations and the other from the numerical

scheme, the so-called truncation error. Prior to our coupling work, we shall thus consider

the physical and numerical differences between COMCOT and the Boussinesq model,

since the models, of course, have different governing equations as well as very different

numerical solution schemes, which will cause a physical and numerical accuracy mismatch

along the coupling interface.

2.4.1 Mismatch in Physics

COMCOT, based on the shallow water equations, approximates the horizontal velocities

and pressure gradient to be constant with depth, so one can ignore vertical variation

of physics. On the other hand, Boussinesq-type equations allow (weak) vertical change

of horizontal velocity, expressed as quadratic function of z. This allowance of vertical

variation in the flow permits the model to include the effects of frequency dispersion. In
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addition to this, Kim et al.(2009) included viscous and rotational effects, which originate

from bottom-induced stress. Both frequency dispersion and viscous effects exist as cor-

rections to the leading order terms - the inviscid nonlinear shallow water equations. This

can be seen straightforwardly by eliminating 2nd order terms in Equations (2.6), (2.7)

and (2.8) and then comparing with Equations (2.1), (2.2) and (2.3). Also note that the

bottom friction terms in both models are included, but in a different manner; COMCOT

has ad-hoc added friction terms in the momentum equations, while the Boussinesq model

has both the bottom stress and a number of additional terms resulting from an explicit

inclusion of bottom stress in the derivation. Consequently, in order to avoid errors from

these physical differences, dispersive and viscous effects should be sufficiently small in

order for governing physics to be continuous across the model interface. In other words,

physics-driven model errors can be mitigated when the local relative depth(h/L) and

bottom friction along interface are small. Of course in a general, nonlinear simulation,

one can not for example guarantee the minimum simulated value of L a priori, but such

relations can be used as guidance for constructing a simulation.

2.4.2 Mismatch in Numerics

Different numerical solution schemes will produce different output even if solving the

same algebraic equations. Discretizing equations using any sort of numerical method

includes an error from truncation, and such errors of course depend on the numerical

scheme itself. As explained in the previous section, COMCOT and the Boussinesq model

employ different types of schemes; while both are fixed grid solvers, the spatial stencils

of the two schemes are very different, as are the time integration methods.
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Again, the Boussinesq solver is a fourth-order accurate scheme and COMCOT a

second-order scheme. Since all numerical truncation errors from the Boussinesq solver

are at least two orders of differentiation higher than those from the COMCOT solver, the

primary numerical error will originate from the nonlinear COMCOT model. Specifically,

the leading order truncation error arising from the upwind differencing can be given as:

Er = 0.5(1− Cr)u∆x
∂2u

∂x2
(2.17)

where Er is the numerical truncation error of the upwind difference and Cr is the local

courant number, given as (∆t
√
gh)/∆x. In general, it is not possible to ensure Cr ≈

1 in COMCOT for an arbitrary grid with variable bathymetry, and furthermore the

maximum allowable Cr in the COMCOT scheme according to stability analysis is 0.7

(in the Boussinesq it is 0.5 according to Kim et al. (2009) ). It is reasonable to assume

that Er ≈ O(u∆x∂2u
∂x2 ) for a generic geophysical simulation. Thus, the only solution to

ensure a precise numerical match across the coupling interface is to have a true long wave,

with negligible depth-averaged velocity curvature in the horizontal plane, at the interface

location. This conclusion is not surprising, as the shallow water based COMCOT model

has this as a general requirement for accuracy in any and all applications. By requiring

that, at the interface, the physics represented by COMCOT are valid for that location,

the mismatch in numerics essentially vanishes. If one was able to isolate the dispersive

and viscous effects in the Boussinesq domain, and such effects were small at the coupling

interface, the model matching would be best.
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From above discussion, it can be reasonably expected that the primary errors ex-

pected at the coupling interface are driven by physical differences in the model equations,

and specifically use of the COMCOT model for a hydrodynamic situation where it is,

strictly speaking, beyond its physical validity limits. Note that possibly large numerical

differences might also exist; however as discussed above these arise when the wave is not

practically long, and the velocity curvature is not negligible. This expectation implies

that some sort of special treatment to deal with the physics mismatch will be required

at the interface. This will be described in more detail in the next session. The general

approach will be to turn “off” of the high order terms in the Boussinesq model at the

interface and slowly turn them back “on” as one moves inside the Boussinesq domain.

The remaining model mismatch errors, controlled by slightly different viscous closures

and very different numerical schemes, will be mitigated by spatial filtering. Stability and

accuracy of this special treatment will be discussed as well.

2.5 Coupling Approach

The coupling method in which the shallow water model and Boussinesq model are inte-

grated is presented here. The constituents are two-way coupled. Boundary conditions on

the interfacing side of each model are provided by its counterpart model through data

exchange and overlapping grid points.

2.5.1 Coupling Method

To accommodate data exchange between the two models, the computational grids of both

models should be overlapping, as shown in Figure 2.3. Since each model has derivatives
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Domain calculated 

by COMCOT

Boundary condition 

from  Boussinsq model

Boundary condition 

from COMCOT

Domain calculated by 

Boussinesq

COMCOT domain Boussinesq domain Imaginary domain for coupling

Zone A

Figure 2.3: Schematic drawing of coupled grid system(“Zone A” is specified for Figure 2.4)

of different order in the corresponding governing equations, they each need a different

number of overlapping points. These overlapping points act as exterior boundary con-

ditions on the spatial edges of the computational domain; they are effectively imaginary

grid points with data values taken from the neighboring model. As seen in Figure 2.4,

COMCOT needs two points as a boundary condition whereas the Boussinesq model re-

quires four neighboring points due to the 4th order MUSCL-TVD scheme and 3rd order

spatial derivatives. Also, special attention must be paid to the calculation of velocity as

each model defines velocity (or flux) at a different location relative to a cell (grid points

are defined at the center of a cell). In the Boussinesq model, surface elevation as well as
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1. Calculation of 

COMCOT domain

2. Pass information from 

COMCOT to Boussinesq

3. Calculation of 

Boussinesq domain
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from Boussinesq

Boussinesq grid

COMCOT grid

Imaginary grid

Surface elevation and velocity at Boussinesq grid

Surface elevation at COMCOT grid

“Time-averaged” flux at COMCOT grid

Transfer of information

Figure 2.4: Data exchange schematic between COMCOT and Boussinesq grids (Detailed
view of “Zone A” in Figure 2.3)

velocity components are defined at center of the cell based. On the other hand, flux has

been placed at the interface of each cell in COMCOT model due to the staggered grid.

With this concept of the interface treatment, we propose the calculation algorithm

as shown in Figure 2.5. The algorithm consists of two main parts. The first part is the

COMCOT model calculation on the left side of Figure 2.5 and the other is the Boussinesq

model calculation on the right side. They exchange data every time step through two-way

coupling, as indicated by the boxes in the middle of Figure 2.5.

The coupling algorithm can be explained in more detail by proceeding step by step.

Let it be assumed that information up to time level t = tn is known. Note that the

numerical scheme of COMCOT is staggered not only in space but also in time. Therefore
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in COMCOT, flux is known at time level t = tn and the surface elevation at time level

t = tn−1/2. For the Boussinesq model, the surface elevation and velocities at time level

t = tn−1/2 are known. All dependent variables in the Boussinesq model are calculated at

the same time level, t = tn+1/2, whereas COMCOT simulates the surface elevation and

flux terms at the time level t = tn+1/2 and t = tn+1, respectively, following the leap frog

scheme. The coupled solution scheme is outlined below.

1. Calculate COMCOT free surface at time level t = tn+1/2 by solving the NLSW

continuity equation with flux information at time level t = tn and surface elevation

at time level t = tn−1/2.

2. Calculate all Predictor step values in the Boussinesq model, yielding initial predic-

tions at time level t = tn+1/2 for surface elevation as well as velocity.

3. Transfer Predictor Boussinesq surface elevation values and fluxes along the inter-

face at time level t = tn+1/2 and t = tn, respectively, into COMCOT as boundary

conditions. Note that Boussinesq flux term should be interpolated not only spa-

tially but also in time. Linear one-dimensional interpolation is used, numerically

consistent with the upwind differencing in COMCOT. If the grid size in each model

is not constant, utilize a two-dimensional (bi-linear) interpolation technique to give

appropriate boundary condition at the interface.

4. Calculate the COMCOT flux at time level t = tn+1 by solving the shallow water

momentum equation with surface elevation information at time level t = tn+1/2

along with flux at time level t = tn. In this step, the information transferred from

Boussinesq model has been used.
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5. Extract the boundary condition at time level t = tn+1/2 to be transferred from

COMCOT into the Boussinesq model. Again, note that the Boussinesq model does

not employ a staggered-grid in time. Having already calculated the COMCOT

surface elevation at time level t = tn+1/2, our interest will focus on getting the

COMCOT flux at time level t = tn+1/2. This can be done simply by taking average

two values both at time level t = tn and t = tn+1.

6. Transfer the COMCOT surface elevation and flux along the interface at time level

t = tn+1/2 into the Boussinesq as boundary conditions required for the implicit

corrector step.

7. Calculate the surface elevation and velocities at t = tn+1/2 from the Boussinesq

Corrector using COMCOT boundary conditions at time level t = tn+1/2.

8. Optionally, a filtering technique can be applied in order to remove spurious two-

grid wave components with high frequency. See the “Special Numerical Interface

Treatment” section below for details.

9. Return to step 1 for the next time step.

2.5.2 Coupling with Different Grid Size

Coupling with different grid sizes can also be accommodated. For the estimation of

information at an interface, an interpolation technique has been used. If the relative

29



position of a desired point in a grid is known, fa at the desired point(xa, ya) is calculated

by using bilinear interpolation as follows.

fa = (1− t)(1− u)fBL + t(1− u)fBR + tufTR + (1− t)ufTL (2.18)

in which

t ≡ xa − xL
xR − xL

, u ≡ ya − yB
yT − yB

(2.19)

where the subscript L,R,B and T in the above definition respectively means left, right,

bottom and top. Figure 2.6 shows the grid system for coupling with different grid sizes.

2.5.3 Special Numerical Interface Treatment

Each of the two numerical models coupled here has its own governing equations (ap-

proximated physics) and numerical scheme, and this can result in both a physical and

numerical mismatch along the interface, as discussed above. From a qualitative analysis of

the equations and numerical differences, it is extrapolated that large numerical differences

arise only when significant equation (physics) differences exist. This expectation was ob-

served during early testing of the interface. To reduce this primary error dependency on

the mismatch of model physics, the high-order dispersive terms in the Boussinesq model

are neglected at the interface. These terms are linearly ramped back into the equations

over a length of 20 grid points moving away from the COMCOT interface.

While forcing the two numerical schemes to solve similar governing equations at the

interface eliminates a large fraction of the interface error, the different viscous treatments

and numerical solvers will still incur some error in the simulation. This error commonly
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Figure 2.6: Grid system for different grid sizes between COMCOT and Boussinesq Model
(Lower-left corner section only)

takes the form of spurious high-frequency, two-grid wave components; in essence numerical

noise reflected off “improper” boundary conditions. To remove this spurious two-grid

wave component, the nine-point spatial filter is employed as suggested in Shapiro (1970).

ζi =
1

256
{186ζi + 56 (ζi−1 + ζi+1)− 28 (ζi−2 + ζi+2)

+8 (ζi−3 + ζi+3)− (ζi−4 + ζi+4)} (2.20)
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Note that application of this filter is common in high-order Boussinesq applications,

which tend to be prone to high frequency instability (e.g. Gobbi and Kirby, 1999), and is

not used in the COMCOT domain. The filter is typically applied throughout the entire

Boussinesq domain once every 100 time steps.

2.6 Validation

As discussed above, coupling of two heterogeneous models is subject to the generation

of undesirable errors. These errors are a function of wave nonlinearity and dispersion,

and are difficult to quantify directly for model operation. To define validity for practical

application, a general benchmark test is proposed with various initial, geometric, and nu-

merical conditions. For this simulation experiment, COMCOT’s nonlinear shallow water

equation model is coupled with the fully nonlinear version of the Boussinesq model. This

approach is taken in order to examine the typical applicability space, since this combi-

nation can be regarded as both the most physically well-matched coupling (compared

to using the linear COMCOT), and likely also the most common matching setup. The

ad-hoc modifications presented in the “Special Numerical Interface Treatment” are not

used here, to provide a more conservative result. Finally, output from these “validation”

simulations are evaluated, with a strong focus on stability and accuracy.

2.6.1 Gaussian Hump Simulation

The Gaussian hump initial condition is very useful for this test as the resulting water

surface disturbance radiates in all directions, forcing cross-derivatives in model to be
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non-zero; there is no dominant propagation direction. The Gaussian hump used here has

the initial free surface condition defined as,

ζ(x, y, t) = H0 exp

[
− 1

α2

{
(x− x0)

2 + (y − y0)
2
}]

(2.21)

where H0 is the initial height of the hump at its center (x0, y0) and α is the characteristic

horizontal lengthscale of the Gaussian hump. All initial velocities are set to zero. The

analytical solution for this case can be derived with the assumption of a small amplitude

wave, or equivalently a linearization of the governing equations. A solution using Fourier

decomposition can be found in Wei et al.(1995).

2.6.2 Physical and Numerical Setup

The test cases include various physical conditions with different initial H0/h and α/h,

in order to consider the effect of nonlinearity and frequency dispersion on the results.

Figure 2.7 shows the physical layout of the basin and computational grids. The length

of the basin has been fixed at 100m over all the simulations while the various other

parameters are changed. Nonlinearity is expressed in the typical format as ǫ = H0/h and

dispersion as µ = h/L∗. Here L∗, is a characteristic length scale of the initial condition,

given as the length between wave points at 5% H0, and graphically defined in Figure 2.8.

The tested range of this parameter is 0.0002 to 0.0193, a range common for tsunamis

where significant dispersion is not expected to be important. µ is not studied in this

parametric exercise; these results are only valid for incident long waves where COMCOT
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Figure 2.7: Physical concept of Gaussian hump simulations; top: front view, bottom:
plan view
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Figure 2.8: Definition sketch for L∗

can be expected to yield accurate predictions. Nonlinearity ranges from ǫ = 0.001 to

ǫ = 1.0.

Along with different combinations of physical conditions, numerical parameters are

varied as well. These numerical parameters, represented by the grid size ratio be-

tween COMCOT and Boussinesq model(r = ∆xC/∆xB ) and the CFL condition(Cr =

√
gh∆t/∆x) are set to cover a wide range of possible configurations. Additionally, the

ratio of the Boussinesq grid size to the water depth(e = ∆xB/h) is tracked to examine

some observed instability possibly due to a relatively small Boussinesq grid size.

Consequently, throughout the simulations, four dimensionless parameters (r, ǫ, Cr,

and e) are controlled so as to characterize factors affecting the numerical results. Those

parameters and their ranges are listed in Table 2.1, producing 320 unique parameter

combinations. For any four parameter set, a simulation is completely described in terms
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Table 2.1: Simulation Setup

r ǫ Cr e

1 0.001 0.01 1
2 0.01 0.05 2
4 0.1 0.1 5
6 1 0.5 10
10 - - -

of its physical and numerical configuration. The order by which all the parameters can

be calculated is as follows:

1. Calculate ∆xB using r (∆xC = 1.0m, nxC = 100 throughout all the simulations)

2. Next, the number of grid points in the Boussinesq domain can be determined as

nxB = r × (50− 1) + 1 + 4 + 4. Note that for imaginary, overlapping grids, 4 grids

are added on each edge

3. Calculate h using e

4. H0 can be obtained by ǫ(= H0/h)

5. The initial Gaussian surface is generated using α = 15 m

6. Finally, ∆t is determined using Cr(=
√
gh∆t/∆xB)

where ∆x, nx denote grid size and grid number, respectively, ∆t the time increment, h the

water depth, and H0 the height of hump, respectively. The non-dimensional simulation

time, t′ (= t
√
gh/L∗) = 30 has been used for all cases; all individual cases have approxi-

mately the same number of water surface fluctuations (characteristic periods) during each

simulation.
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Among the 320 runs, the most computationally expensive case will be the one with

r = 10, Cr = 0.01, and ǫ = 1.0 which corresponds to ∆xB = 0.1m, ∆t = 0.01sec and

nxB = 499. On the other hand, the set having r = 1, Cr = 0.5 and e = 10 which gives

∆xB = 1.0m, ∆t = 0.505sec and nxB = 58 will be the most rapid. Runs required a few

minutes to a few hours to complete on a desktop computer; the longest runs where those

which developed numerical instabilities, causing excessive iteration of the Boussinesq

corrector step.

2.6.3 Simulation Results

Comparison with an analytical solution is, of course, the ideal method to evaluate the

accuracy of a numerical model. However, the aforementioned analytical solution is be

obtained using linearization; most of the (ǫ) values tested would violate the required

assumption for linearization. Hence, the analytical solution will only be used to show

that the coupled numerical model is producing accurate results for the smallest (ǫ) cases.

Figure 2.9 shows the time series of water surface elevation at the center of the Boussiensq

domain when r = 1, ǫ = 0.001, Cr = 0.01 and e = 10. The comparison between numerical

and analytical data is excellent for this small amplitude case and the coupled model

works quite well. Snapshots of water surface elevation when r = 1, ǫ = 1, Cr = 0.01 and

e = 10 are also given in Figure 2.10. These snapshots are showing both the Boussinesq

and COMCOT surfaces, and there are no evident numerical errors along the interface, or

anywhere else in the domain.

Now, interest turns to evaluating output from all 320 simulations in some characteris-

tic way. Here, the time series of surface elevation at the center of the domain will be used
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Figure 2.9: Temporal variation of free surface elevation at the center of the wave basin
(r = 1, ǫ = 0.001, Cr = 0.01 and e = 10)
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Figure 2.10: Snapshots of water surface at 3 different times(r = 1, ǫ = 1, Cr = 0.01 and
e = 10)
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as the comparison basis. Considering that use of the linearized analytical solution is not

helpful for assessment of highly nonlinear cases, some other available data for accuracy

evaluation must be found. Here, a “base” case for each ǫ and µ combination is proposed.

Each base case uses r = 1 and Cr = 0.01 , which is expected to produce most accurate

and stable result for any physical parameter combination. Therefore, each simulation is

able to be evaluated relative to its base case, assumed to be the “correct” solution. Note,

however, that with this approach, it is not possible to state with absolute confidence that

the “base” case represents an accurate solution, only a stable, converged one. It is likely

that stability and accuracy occur in tandem, but this is not guaranteed. Simulations that

closely resemble the “base” case can be considered stable simulations, while simulations

that do not resemble the ”base” case are most likely unstable and inaccurate. Each nu-

merical result is rated with respect to the root mean square (RMS) difference from its

base case averaged through the last two dimensionless time units, from t′ = 28 to 30 .

An example depicting this procedure is shown in Figure 2.11. Note that if a particular

simulation crashes due to instability, this RMS difference is set to 1.0.

Despite the straightforward assessment of the simulation data, it is not a simple

matter to demonstrate the relation between the error and the 4 parameters. As indicated

in Table 2.1 and mentioned earlier, the 4 parameters are interrelated, yet affect the results

in different ways. For an explicit measure of accuracy and stability using the 4 correlated

parameters, a dimensionless parameter, the stability index γ, is introduced. The stability

index is a product of r, ǫ, Cr, and e and is expressed as

γ = raǫbCrced (2.22)
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e = 10

41



where the exponents a, b, c and d are to-be-determined by nonlinear regression analysis

on the processed data set. Through the stability index γ, the accuracy and stability

properties of a coupled model simulation can be characterized, approximately, before

said simulation is run. The higher the γ value, the more poorly behaved the simulation

should be. The exponents a, b, c and d are found through a best fit with the RMS error of

each simulation; the calibrated stability index should yield the RMS error expected late

in a simulation.

Through the nonlinear regression analysis, a, b, c and d are found as 0.0001, 0.0328,

0.0621 and -0.0040, respectively. This implies that the Courant number (Cr) is the most

dominant factor in a simulation, whereas the stability of the coupled model is insensitive

to both the grid ratio factor (r) and the depth-scaled grid length in the Boussinesq model

(e). Figure 2.12 shows the error distribution according to γ. It is not surprising that

the distribution of RMS error in Figure 2.12 resembles a typical cumulative probability

curve. There is a transition between stable simulations (RMS error 0) and unstable,

inaccurate simulations (RMS error 1), and this error “accumulates” with increasing γ.

From this result, it can roughly but conservatively be stated that the stability index γ is

recommended to be less than 0.9 to provide a high likelyhood of a stable simulation.

2.7 Tsunami Wave Fission Simulation

As mentioned in the Introduction, the Boussinesq model has the ability to yield a reason-

ably complete representation of coastal hydrodynamics. In this section, which is focused

on the demonstration of these properties through an efficient use of the coupled model,
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model verification will be performed using laboratory data. Matsuyama et al.(2007)

conducted an experiment in a 205m long channel using a large and undistorted scale

to investigate tsunami shoaling on the continental shelf. The incident waveform uses a

sinusoidal-shape wave with single cycle defined as

ζ = Asin

(
2π

T
t

)
, 0 ≤ t ≤ T

= 0, t > T (2.23)

where A is wave amplitude, T is period, and t is time. A single experimental case with

A=0.03m and T=20sec, which exhibits significant tsunami shoaling on the continental

shelf, is utilized for this study. The experimental set-up is depicted in Figure 2.13, where

the bathymetry includes a depth-varying shelf connected by two mild-slopes. Long waves

from the deep water depth become steeper and possibly short-crested when propagating

onto a shallow shelf; nonlinearity and dispersion effects may need to be taken into account

for an accurate representation of the long wave transformation.

For the offshore propagation region (Layers 1 and 2), the linear shallow water version

of COMCOT is applied using a relatively coarse grid size of 1.5 m and 0.3 m, respectively.

Along the nearshore area, the nonlinear shallow water equations (Layer 3) are coupled

with the Boussinesq model (Layer 4), both using the same relatively fine grid of 0.075 m.

Note that a second simulation, without using the Boussinesq model (i.e. Layer 4 removed),

was also performed. This will allow for a direct comparison between nearshore predictions

of COMCOT and the Boussinesq model, with both using precisely the same incident wave

44



Bathymetry

(side view)

h=4m

1

10

1
15

H=0.06m

T=20 sec
Shelf region

90m

x=0m

coastline

0.45m 1
200

10.81m35.5m

Grid setting*

(plan view)

Applied

Model

*  Grid size ratio is not actually scaled

LSW(Layer 1,  x=1.5m,  t=0.02sec)

LSW(Layer 2,   x=0.3m,  t=0.01sec)

NLSW(Layer 3,  x=0.075m,  t=0.005sec)

Boussinesq (Layer 4,  x=0.075m,  t=0.005sec)

x=90m

x

Figure 2.13: Definition sketch of a long wave propagating onto a shallow shelf
(LSW:Linear Shallow Water Equation, NLSW: Nonlinear Shallow Water Equation)

45



condition and numerical grid sizes. Figure 2.14 presents time series comparisons of water

surface elevation between the model results and measurements at different locations. The

coupled model comparisons are given in the left half of the figure, while the COMCOT-

only results are shown in the right half. Clearly different behavior of the wave front in the

shallow shelf region is predicted by the coupled and COMCOT-only models. The front

of the long wave becomes short-crested and generates (or strictly speaking, disintegrates

into) several solitons of different size (e.g., Madsen and Mei(1969)); this process is referred

to as tsunami wave fission in the literature. This transformation is the classic undular

bore formulation which is dispersive in nature, and thus not predictable by the shallow

water wave equations solved by COMCOT. The coupled model predicts a maximum sea

surface elevation at the front of the tsunami which is 2.0 times larger than COMCOT

alone, yielding a good agreement with measured data in both amplitude and speed. This

type of difference is highly local in nature, and provides a reasonable picture of the

magnitude and scale of dispersion-driven physics during nearshore tsunami evolution.

2.8 2004 Sumatra Tsunami Simulation

As a practical test, the coupled model is applied to the historical tsunami event of Decem-

ber 2004 in the Indian ocean, through which the comprehensive lifespan of a tsunami,

from its generation, propagation, shoaling, and run-up, might be investigated in true

scale. Our specific geographic focus is Port Salalah, along the southeastern Omani coast-

line. As noted in the model description, the Boussinesq model enhanced with the viscosity

and vorticity terms (i.e. Kim et al, 2009) is capable of simulating turbulence effects such
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Figure 2.14: Time histories of water surface elevations at 4 different locations. In the left
half of the figure are shown the coupled model results (solid line: Boussinesq model (Layer
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Figure 2.15: Initial surface elevation of 2004 Sumatra tsunami

as large eddies and wakes generated in the nearshore or harbors. Hence, another point of

interest, aside from the dispersion differences noted in the previous comparison, is pre-

dicting such complex turbulent physics, and this is one of the major advantages arising

from integrating the two models.

2.8.1 Simulation Setup

The bathymetric data and grid system has been organized to simulate 2004 Sumatra

tsunami using the multigrid system in COMCOT. Figure 2.15 shows the initial sea sur-

face elevation induced by the 2004 Sumatra earthquake within the entire computational

domain, covering from (45◦E, −10◦N) to (105◦E, 30◦N). Open ocean bathymetry and
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topography is taken from the GEBCO database, while shallow bathymetry off the coast

of Oman is taken from digitized nautical charts. The parent domain, numbered Layer 1,

has 4 subdomains given as Layers 2 through 5; higher numbered grids are nested within

lower numbered grids. Layer 3, for example, is nested within Layer 2, and has a finer

grid size and smaller time step. All the parameters necessary for simulation are listed in

Table 2.2. From Layer 1 to 4, COMCOT is applied. Near Port Salalah in Oman (Layer

5), the main area of interest, the Boussinesq model with the highest grid resolution is

applied in order to capture local and turbulent dynamics, such as vortices, inside the har-

bor. It is worthwhile to note that the grid resolution is decreased by a factor of 400 from

Layer 1 to Layer 5. Additionally, a readily calculated maximum stability index value, γ,

is 0.8, assuming that the nonlinearity (ǫ) and water depth are the conservative values of

1 and 23m, respectively. While this stability index is near the limit of our recommended

range, the use of the conservative values implies expected stability for this numerical

configuration.

For the generation of an initial surface condition for the tsunami, the three-subfault-

source condition of Wang and Liu(2006) has been applied; the parameters of which are

listed in Table 2.3. The runtime of the simulation is set to 830 minutes of physical

time. Additionally, for the purpose of comparison between the results with and without

coupling, another simulation using only COMCOT has been implemented with the same

configuration except the grid size of Layer 4. In this COMCOT-only simulation, the grid

resolution of layer 4 is set to 9.3 m, which is the resolution used by the Boussinesq layer

in the coupled model.
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Table 2.2: Grid setup for 2004 Sumatra Tsunami simulation

Layer No. x range(longitude,◦E) y range(latitude,◦N) nx×ny dx dt(sec) Model

Layer 1 45◦00′00′′ ∼ 105◦00′00′′ −10◦00′00′′ ∼ 30◦00′00′′ 1801×1201 2′ 1 LSW(S) a

Layer 2 45◦17′12′′ ∼ 61◦38′48′′ 12◦17′12′′ ∼ 28◦18′48′′ 2455×2405 24′′ 0.5 LSW(S)

Layer 3 52◦56′38′′ ∼ 56◦28′58′′ 16◦08′38′′ ∼ 18◦04′58′′ 2655×1455 4.8′′ 0.25 LSW(S)

Layer 4 53◦58′00′′ ∼ 54◦04′00′′ 16◦54′00′′ ∼ 17◦00′00′′ 600×600 18.5m 0.125 NLSW b

Layer 5 53◦59′46′′ ∼ 54◦01′18′′ 16◦55′46′′ ∼ 16◦57′19′′ 309×309 9.3m 0.125 BOUSSc

aLinear Shallow Water Model in Spherical Coordinates
bNon-Linear Shallow Water Model in Cartesian Coordinates
cBoussinesq Model in Cartesian Coordinates
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Table 2.3: Fault parameters for 2004 Sumatra earthquake

Parameter Fault 1 Fault 2 Fault 3

Latitude of epicenter(◦N) 7.6 4.15 11.85
Longitude of epicenter(◦E) 93 94.55 92.3

Focal depth(km) 5 5 5
Length of fault plane(km) 670 200 300
Width of fault plane(km) 150 150 150

Dislocation(m) 15 15 15
Strike angle(◦) 345 300 365
Slip angle(◦) 90 90 90
Dip angle(◦) 13 13 13

2.8.2 Results and Discussion

From the simulation result, the first tsunami waves arrive at Salalah port in Oman (Layer

5) approximately 420 minutes after the earthquake. This is comparable to the initial ar-

rival time at the Port of 433 minutes post-earthquake, as reported by Okal et al. (2006).

Afterward, successive attacks by a long train of tsunami waves caused a significant dis-

turbance inside and immediately near the harbor. These disturbances are given in Okal

et al.(2006) who discuss various ship incidents during the tsunami attack. They reported

that a freighter docked at the berth had broken its mooring lines and drifted in- and

outside the harbor, caught in a complex system of eddies and currents. The coupled

model system appears to be able to represent these chaotic dynamics. Figure 2.16 shows

one result of sea surface in each layer at 730minutes after tsunami generation, with an

extra plot for the vorticity inside the harbor taken from the Boussinesq layer. Along the

breakwater and coastline, the tsunami generates eddies of various sizes, and the flow is

chaotic. Vorticity evolution as the tsunami propagates into the harbor has been reason-

ably captured by the Boussinesq model and is depicted in Figure 2.17.
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Figure 2.16: Surface elevation (m) in all layers at time=730min. The lower row shows
the output from Layer 5, the Boussinesq model, of the free surface elevation (left) and
vorticity (1/s) (right).
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Figure 2.17: Vorticity (1/s) evolution inside Oman Salalah harbor at nine different times
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A comparison between the vorticity results of COMCOT and the Boussinesq model

is shown in Figure 2.18. Eddies are very weakly generated in COMCOT relative to the

Boussinesq model. While bottom drag, which generates the boundary shear layers that

curl up into the large eddies, are modeled differently in the two models, this is likely

not the reason for the large difference; for a given velocity the bottom friction from the

two formulations will be similar at this geophysical scale. The most likely cause of this

large difference is the numerical truncation error of the upwind differencing in COMCOT,

given as variable Er in section 4.2. This error can be expressed as

Er = 0.5(1− Cr)u∆x
∂2u

∂x2
= νnum

∂2u

∂x2
(2.24)

and so can clearly be viewed as a diffusion term. For a Cr ≈ 0.5 and flow speeds ranging

from 1-5 m/s, the numerical eddy viscosity, νnum, varies from ≈ 2 − 10 m2/s. This is a

very large diffusion coefficient, and taken with the expectation that the velocity curvature

is large inside boundary shear layers and eddies, it is evident that the numerical diffusion

in the COMCOT model is driving the large differences in the vorticity patterns. As the

two models predict different eddy patterns, the velocity predictions inside the harbor

will be equally varied. Specifically, with the large and interacting eddies predicted by

the coupled model, the simulated velocities are much larger. This kinematic aspect is

of great importance to harbors during tsunamis, as it is the currents that lead to drag

forces great enough to snap mooring lines, and transport large freighters as randomly

meandering “ghost” ships. If one is interested in simulating this rotational features,

numerical errors from low-order upwinding should be avoided.
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Figure 2.18: Comparison of vorticity (1/s) evolution by Boussinesq-coupled model (left)
and COMCOT-only (right)
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2.9 Summary

For the purpose of seamlessly modeling tsunami evolution from generation to inundation

with fine scale resolution, without the loss of important physics, a two-way coupled model

for tsunami simulation has been developed. The two components are the shallow-water

solver COMCOT and a dispersive, turbulent, and rotational Boussinesq model. A general

framework in which the coupled model is implemented is as follows: Since COMCOT is

well designed for generation and propagation of a tsunami in the open ocean, it will be

responsible for the computation of oceanic evolution. On the other hand, the final stage

of tsunami life, including nearshore dynamics such as inundation, nonlinear wave inter-

actions, steep bore fronts, and turbulent activity, will be described by a fully nonlinear

Boussinesq-type model. The Boussinesq model that can describe nearshore evolution of

a tsunami with high physical detail is designed to be located flexibly within COMCOT

as a nested layer.

As coupling of two heterogeneous models may result in undesirable errors, a general

benchmark test has been completed with various conditions provided for validity of the

coupled model application. With regard to stability and accuracy, the simulation output

is evaluated and general guidance for the coupled models application space has been

presented; the so-called stability index γ should be less than 0.9. As a further validation

of the coupled model in the nearshore region, long wave propagation onto a shallow shelf

has been examined and compared with laboratory data. Distinct dispersive effects at

the leading wave front have been observed through use of the Boussinesq model, which

demonstrates that near coastal areas, dispersive effects may be locally important.
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Finally, a recent tsunami event, the 2004 Sumatra tsunami, has been simulated with

a far field focus on the Port of Salalah. The coupled model has successfully simulated

various sizes of eddies generated by the tsunami through turbulence activity. The results

are further supported by observations addressed in Okal et al.(2006). It is found that

one needs to be very careful when using numerical solution schemes with leading order

diffusion errors to predict such rotational features, as this numerical error can rapidly

remove intense shear layers and strong eddies from the current field.
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Chapter 3

Interaction of Shallow Water Waves with Weakly Sheared

Currents of Arbitrary Profile

A set of depth-integrated equations describing combined wave-current flows is derived

in this chapter. To account for the turbulent effects by nonlinear interaction between

waves and underlying currents with arbitrary horizontal vorticity, additional stresses

are introduced. A parameter b is included in the additional stresses to represent the

radiation stress of waves over the ambient current field. Doppler shift effect is theoret-

ically proved to be retained appropriately in the equation set. To solve the equations,

a fourth-order MUSCL-TVD scheme incorporated with approximated Riemann solver,

is adopted for leading order terms while a cell-averaged finite volume method is utilized

for higher-order terms. The model results are validated through comparisons with three

experimental data sets. The first simulation is about the propagation of a long wave over

a depth-uniform or linearly-sheared current and the comparison with the measurements

shows good agreements. Then, based on Kemp and Simons(1982, 1983)’s experiments,

a reasonable value for b is estimated. Finally, the model is applied to a more complex

configuration where bichromatic waves are interacting with a spatially varying current.
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The simulated results clearly indicate that the model is capable of predicting the wave

and current flows more accurately.

3.1 Introduction

The coastal area involves hydrodynamic situations in which different flows such as waves,

currents and tides are coexisting and interacting with each other. In the shallow coastal

zones, in particular, a gravity wave is subject to interact with the current which is usually

driven by tides, thermocline, salinity variations and river mouth discharges. Morphody-

namic changes, mixing and transport of solutes in coastal region will be governed by the

combined wave-current flows. Therefore, the interaction between wave and current is of

prime importance to the physical processes in the coastal zone.

Waves and currents have different hydrodynamic properties which will allow the dis-

tinctions between them. For instance, waves transfer energy without conveying mass

while the currents transfer both energy and mass. Also, they have effects of different

timescales on the coastal environments. Sediment transport at nearshore area is driven

mainly by currents, and therefore evolves on the long-term scales (commonly on the or-

der of days). On the other hand, waves contribute to the sediment transportation on

shorter-time scale by the radiation stress. Therefore, both long-time scale and short-time

scale effects have to be included while studying the physical processes in wave-current

co-existing situations.
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In wave and current environments, the nonlinear interaction plays a significant role

and we cannot simply superpose the two components. Furthermore, the nonlinear interac-

tions have non-negligible impacts on hydrodynamics of wave-current system, especially in

the turbulent boundary layer with high roughness(e.g., Grant and Madsen(1979), Davies

et al.(1988)). Therefore, turbulent processes as well as velocity profiles are of particular

interest in the wave-current situation.

Turbulent interaction of wave and current has been investigated quite extensively

in the past decade, theoretically and experimentally. Laboratory experiments includes

Thomas(1981, 1990),Kemp and Simons(1982, 1983), Klopman(1994), Swan et al.(2001).

Most recently, Fernando et al.(2011) presented experimental results on wave-current in-

teraction at an angle along with comprehensive reviews on previous works. One inter-

esting finding in these experiments is that when the waves and currents are co-flowing

(or counter-flowing), mean velocity near the free surface tends to curl back (or forward),

giving negative (or positive) gradient of velocity (∂u/∂z). Smith(2006) mentioned that

the backward flows are introduced compensate for the Stokes drift effect by waves. A

possible explanation for this mixing-like process induced by waves is that the presence of

waves introduces additional shear stress over the underlying mean flow, yielding a modi-

fied Reynolds stresses in the combined wave-current field(e.g., You(1996), Groeneweg and

Klopman(1998), Huang and Mei(2003), Umeyama(2005), Yang et al.(2006), Lin(2008)).

Umeyama(2005) provided a feasible insight regarding these previously-mentioned physics

through laboratory investigations. They conducted series of experiments on wave-current

turbulent intensities and Reynolds stress in combined wave-current flows. Experiments
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showed the modification of Reynolds stress (i.e.,
〈
u′v′

〉
) by the action of waves on mean

flows.

On the other hand, numerical models for wave-current interaction have been devel-

oped for deep or for finite depth waves(e.g., Swan et al.(2001), Swan and James(2001),

Nwogu(2009)) and for long waves(e.g., Benjamin(1962), Freeman and Johnson(1970),

Shen(2001)). Grant and Madsen(1979) suggested different eddy viscosities in- and out-

side bottom boundary layers and some works stem from this(e.g., Christofferson and

Jonsson(1985), Davies et al.(1988)).

Majority of the turbulent wave-current model extensively examined near-bed physics

(e.g., Kim et al.(2001)) rather than covering entire water column. So far, some numerical

models have shown the capability to recreate aforementioned turbulence mixing process

throughout the depth, induced by waves on currents(e.g., Dingemans et al.(1996), Groen-

weweg and Klopman(1998), Olabarrieta et al.(2010)). In addition, some equations have

been proposed to describe the velocity profile of the mean flow either empirically (e.g.,

You(1996)) or analytically(e.g., Huang and Mei(2003), Yang et al.(2006)).

Interestingly, most of the previously-mentioned equations have added the higher or-

der correction terms to the leading order solution. Despite of the elaborative efforts to

understand these physics, little is developed to account numerically for turbulent wave-

current effect in shallow water flows. Models such as FUNWAVE(e.g., Kirby et al.(2003))

are capable of predicting wave-current interactions, however only few of these are pos-

sibly able to recreate such a non-explainable phenomena. Therefore, including higher

order correction effects will enhance the capability of the hydrodynamic model to study

wave-current flow field.
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In this chapter, we derived a set of depth-integrated equations describing combined

wave-current flows. The effects of turbulence introduced not only by bottom friction

but also by nonlinear interaction between the waves and the underlying currents with

arbitrary horizontal vorticity, are included.

This chapter is organized as follows. Firstly, wave-current interactions will be briefly

explored in following section. Next section will be devoted to the description of derivation

of the governing equations. Then, validity of the current model will be performed through

three numerical simulations. Final conclusion is made at the end of this chapter.

3.2 Brief Review on Wave-Current Interactions

Waves and currents are known to influence each other when existing together. For ex-

ample, waves propagating on an opposing current undergoes some transformations as

they become shorter and steeper. In the case where the opposite current speed exceeds

the wave group speed, the waves are more likely to break and thereby provide another

source of turbulence, compared to a wave on calm water(e.g., Yao and Wu(2005)). These

changes will hydrodynamically affect the current as it will be briefly illustrated below.

3.2.1 Waves over the Current

Waves traveling over underlying currents experience a modulation in their kinematics and

dynamics such as a change in wave number, frequency, and wave height. Waves become

steeper and higher on following currents whereas the opposite for opposing currents.

Moreover, underlying currents effectively control the wave frequency in such a way that

the wave period will be longer over the following currents and shorter over the opposing
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one. Doppler shift is a quite common concept to explain such modulations in dispersion

relationship. For uniform background currents, this effect can be mathematically proved

and expressed as,

σ2 = (ω − kuC)
2 = gk tanh kh (3.1)

where σ is intrinsic(or relative) angular frequency, ω the apparent(or absolute) angular

frequency, k the wave length, uC the current speed and h water depth. For linearly shear

current, it was found to be,

σ2 =

(
ω − kuCs +

W0

2
tanh kh

)2

= gk tanh kh (3.2)

where uCs is current velocity at free surface and W0 is current’s constant vorticity.

Another effect of the current on the wave is the refraction due to the current variation

in space, which is much similar to that by the bathymetric changes(Lin (2008)).

3.2.2 Currents under the Waves

Current fields also tend to be deformed by wave actions. The wave riding on the current

has many potential factors which may affect the mean flow field(e.g., a radiation stress or

bottom friction enhancement). The mechanism by which the wave change the currents

is yet unclear; however, it is believed that an additional shear stress exerts on the mean

flow owing to nonlinear wave-current interactions, feeding horizontal vorticity to the

interior flow. This stress is considered to be generated by the radiation stress of waves

and mean flows(Lin(2008)). Many experimental results showed consistently that this
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stress is capable to tilt forward or backward the current velocity depending on the wave-

current directions, and is maximized near the free surface with decreasing into the depth.

The vorticity of the current is also known to affect this mechanism(Swan et al.(2001)).

However, near-bed velocity is not significantly affected by such stress, so it can be modeled

using the general ‘log-law’ profile(Kemp and Simons (1982), Fernando et al. (2011)).

Although the above effect is relatively concentrated in the upper layer of the fluid, this

should be included for the complete description of velocity profile for accurate modeling.

Some equations have been proposed to identify the resultant velocity profile of mean flow

under wave action. You(1996), for instance, suggested semi-empirical equation based on

experimental record as,

u(z)

u∗
=

1

κ
log

z + h

δ
+ C

h

κu∗|u∗|
log

−z
h

(3.3)

where u(z) is mean flow velocity profile, u∗ is shear velocity, z is vertical axis directing

upward from free surface, κ is von Karman constant, h is water depth and δ is roughness

height. Dimensional parameter C can be obtained by empirical formula from You(1996),

but with some lack of consideration on waves properties. The second term of Equa-

tion 3.3 implies higher-order correction component to the first term(i.e., log-law profile

which has its origin in Prandtl’s mixing length hypothesis) under the wave-free situation.

Similar formulations can be found in Umeyama(2005) and Yang et al.(2006) with minor

differences.
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Typically, bed roughness is supposed to be enhanced by wave-current co-existence and

this idea can be realized theoretically by considering the bottom friction for combined

wave-current flows(e.g., see Grant and Madsen(1986)).

3.3 Boussinesq Equations for Waves and Currents

A set of depth-integrated equations for long waves under the current fields is derived in this

section. The perturbation approach to manipulate a primitive equation into a derivative

one is used in the present study. This technique is adopted to develop Boussinesq-type

equations including the effect of wave-current interactions. As are ‘standard’ Boussi-

nesq equations, nonlinearity and dispersive effects of long waves would be the basis in

the perturbation procedure. The viscous terms can be added as perturbed terms into

the inviscid Boussinesq equations to explain bottom-induced turbulence effects(Kim et

al.(2009)). The primary procedure to introduce a turbulence induced by wave-current

interaction, follows Kim el al.(2009).

3.3.1 Non-dimensionalized Governing Physics and Boundary Conditions

Physical variables are defined as shown in Figure 3.1 to describe the propagation of waves

over depth-varying currents. The variables are normalized by characteristic variables

introduced below. Typical length scale ℓ0 and h0 are used for horizontal and vertical
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coordinates, respectively. Using this set of scaling parameters, nondimensional variables

are obtained as,

(x, y) =
(x∗, y∗)

ℓ0
, z =

z∗

h0
, ζ =

ζ∗

h0
, h =

h∗

h0
, t =

t∗
√
gh0
ℓ0

,

(u, v) =
(u∗, v∗)√
gh0

, w =
w∗

µ
√
gh0

, p =
p∗

ρgh0
,

µ =
h0
ℓ0
, νht =

νh
∗

t

αh0
√
gh0

, νvt =
νv

∗

t

βh0
√
gh0

(3.4)

where ()∗ denotes dimensional variable, (u, v) and w represents velocity components in

(x, y) and z directions, respectively, ζ is surface elevation, t is time, p is pressure, g is

gravitational acceleration and ρ is density. νht and νvt represent turbulent eddy viscosities

in horizontal and vertical directions, respectively. Parameter µ is chosen to scale the

dispersion property of long waves. It is noted that no parameter for nonlinearity is

gained above, so that leads to fully nonlinear equations. In addition, small parameters

α and β are used for the viscous terms, whose full descriptions can be found in Kim et

al.(2009). While the procedures throughout the entire derivation fairly resemble Kim et

al.(2009), velocity u represents the instantaneous horizontal velocity including both wave

and current components. Therefore the velocity u means combined wave-current velocity

unless otherwise stated.

Within these parametric frameworks, continuity and Navier-Stokes equation can be

casted into normalized versions as follows.

∇ · u+ wz = 0 (3.5)
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Figure 3.1: Definition sketch of long wave propagation over underlying currents of arbi-
trary profile

ut + u · ∇u+ wuz +∇p = αµ∇ ·
(
νht ∇u

)
+
β

µ
(νvt uz)z (3.6)

µ2wt + µ2u · ∇w + µ2wwz + pz + 1 = αµ3∇ ·
(
νht ∇w

)
+ βµ (νvt wz)z (3.7)

where ∇ = (∂/∂x, ∂/∂y) is differential operator in horizontal plane and, u = (u, v)

is horizontal velocity vector of combined wave-current flows. Subscript z and t mean

derivative operators in vertical coordinate and time, respectively.

Conditions applied at free surface and at bottom boundaries are expressed in dimen-

sionless form, as well.

w = ζt + u · ∇ζ at z = ζ (3.8)
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w + u · ∇h = 0 at z = −h (3.9)

3.3.2 Reynolds Stresses Under Combined Wave-Current Flow

A definition of Reynolds stress under the wave-current condition is made in this section,

prior to working on derivations of the equation set. As briefly addressed in Chapter 3.2, an

underlying current influenced by the wave has a different velocity profile from that under

wave-free condition. This difference is mainly owing to the modified Reynolds stress,

which is suggested in Umeyama(2005) and Yang et al.(2006). These turbulence effects by

nonlinear wave-current interaction can be modeled through the modified Reynolds stress.

Based on Umeyama(2005) and Yang et al.(2006), the turbulent shear stress concerning

both bed roughness and nonlinear wave-current interaction is described as,

τ = τ b

(
ζ − z

ζ + h

)
+ τ bb

(
z + h

ζ + h

)
(3.10)

where τ = (τx, τy) is the shear stress, and τ b = (τxb , τ
y
b ) is bottom stress. τ bb =

(bxτxb , b
yτyb ) is additionally defined for convenient expression. Dimensionless parameter

b = (bx, by) which is identical to that of Yang et al.(2006), is used to represent the linear

distribution of turbulent shear stress by the wave-current interaction. The first term

on the right hand side represents simply the stress due to the bottom friction, whereas
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the second represents the stress induced by wave-current interaction. Therefore, ignor-

ing the second component will result in abandonment of turbulent mixing through the

wave-current interaction. Quadratic drag law is assumed to estimate the bottom stress

as,

τ b = ρfcwu|u| (3.11)

where u is ‘combined’ wave-current velocity, ρ is a density of fluid. Friction factor fcw

can be gained by the fcw = f/4, where f is estimated from a formula by Haaland(1983).

3.3.3 Subgrid Scale Turbulent Closure Model

In shallow water flows, the vertical eddy viscosity is assumed to be depth-constant (El-

der(1959)) and this allows us to simplify the three dimensional turbulence in nature into

two dimensional problem in horizontal plane. Hinterberger et al.(2007) developed an effi-

cient two dimensional model in shallow water flows and found that two dimensional depth-

averaged LES(Large Eddy Simulation) model produced sufficient accuracy for practical

purposes compared to the three dimensional LES. In the present work, Smagorinsky’s

model is utilized for horizontal subgrid eddy viscosity(νht ), while Elder(1959)’s model

adopted for vertical one(νvt ) in order to essentially capture the vortical features of wave-

current flows without the loss of the flow details(see Kim et al.(2009)).
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3.3.4 Depth-Integrated Momentum Equations for Waves and Currents

The assumption is made that the turbulent viscosity effects are as weak, and of a similar

order as dispersion. That is,

O(µ2) = O(µβ) ≪ 1 (3.12)

Either of µ2 and µβ can be utilized as a small parameter in the derivation, but the

former has been chosen(Kim et al.(2009)). Each physical variable is thereby expanded as

a power series of small parameter µ2 as follows.

f =
∞∑

n=1

µ2nfn, f = (p, u, v, w) with all fn = O(1) (3.13)

Limiting Equation 3.7 to the lowest order yields,

(p0)z + 1 = 0 (3.14)

which refers to hydrostatic status. Since ∇p0 is independent of vertical coordinates, we

can notice all z-dependency will be eliminated from leading order terms in Equation 3.6,

including u(i.e., u(x, y, z, t) = u0(x, y, t) +O(µ2)).

Depth integration of continuity equation, Equation 3.5, with applying the boundary

conditions, Equation 3.8 and 3.9, will produce,
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w0 = −z (∇ · u0)−∇ · (hu0) = −zS − T (3.15)

Vertical velocity expressed in terms of horizontal velocity, u0, allows us to eliminate

all the leading ordered vertical velocity in Equation 3.6 and 3.7, which means horizontal

vorticity(Ω) is at least second order(i.e. Ω0 = 0). This can be seen as follows, as well.

Ω∗ = u∗
z −∇w∗ = µ2

√
g

h0
(u1z −∇w0) +O(µ4)

= µ2
√

g

h0
Ω1 +O(µ4) (3.16)

To construct the horizontal velocity structure, we start from horizontal vorticity.

Depth integration of Ω1 from −h to z gives,

u1 = u1|z=−h −
{(

1

2
z2∇S + z∇T

)
−
(
1

2
h2∇S − h∇T

)}

+

∫ z

−h
Ω1dz

′ +O(µ2) (3.17)

Now, we can get the full description of horizontal velocity(u) by substituting Equa-

tion 3.17 into Equation 3.13 as follows,
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u = u0 + µ2
{
u1|z=−h −

1

2
z2∇S − z∇T +

1

2
h2∇S − h∇T (3.18)

+

∫ z

−h
Ω1dz

′

}
+O(µ4)

For a representative horizontal velocity, Nwogu(1993)’s depth, zα = −0.531h is chosen

and this yields

uα = u0 + µ2
{
u1|z=−h −

1

2
z2α∇S − zα∇T +

1

2
h2∇S − h∇T (3.19)

+

∫ zα

−h
Ω1dz

′

}
+O(µ4)

Then, subtracting Equation 3.19 from Equation 3.18 will produce the expression of u

in terms of uα as,

u = uα + µ2
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T +

∫ z

zα

Ω1dz
′

}
+O(µ4) (3.20)

Since u is the combined wave-current velocity, we can decompose it into separate ones.

The underlying current velocity(uC) of arbitrary profile is assumed be constant in time,

in the present study. Therefore, the horizontal vorticity of current will be of arbitrary

shape and assumed to be of O(µ2), i.e., weakly sheared according to Equation 3.16. The

horizontal velocity of combined wave-current field is expressed as,

72



u = uWα + uCα (3.21)

+ µ2
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T +

∫ z

zα

Ω1dz
′

}

+ O(µ4)

where uWα and uCα are the horizontal velocity vector at z = zα by waves and currents

respectively, satisfying uα = uWα + uCα. Note that we used u0 = uα +O(µ2) here. For

the simplicity of calculation, we will use uα instead of the decomposed ones.

Velocity of O(µ2) can also be interpreted as rotational and irrotational parts. From

Equation 3.16,
∫ z
zα

Ω1dz
′ is the rotational velocity which is generated either through the

turbulent shear stress(τ ) or through the intrinsically sheared current(uC) itself. Therefore

it follows that

τ + ρνvt (uC)z = ρνvt

(∫ z

zα

Ω1dz
′

)

z

= ρνvt Ω1 (3.22)

which also leads to

Ω1 =
τ b

ρνvt

(
ζ − z

ζ + h

)
+
τ bb

ρνvt

(
z + h

ζ + h

)
+ (uC)z (3.23)

using Equation 3.10. The rotational velocity component of O(µ2) will be obtained through

depth-integration of Ω1.
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∫ z

zα

Ω1dz
′ =

τ b

ρνvt

1

ζ + h

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}

+
τ bb

ρνvt

1

ζ + h

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}

+ (uC − uCα) (3.24)

By inserting Equation 3.24 into Equation 3.21, final structure of horizontal velocity

can be written up to O(µ2),

u = uα + µ2
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}
(3.25)

+ µ2Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}

+ µ2Ψb

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}

+ µ2 (uC − uCα) +O(µ4)

in which Ψ = τ b/ {ρνvt (ζ + h)} and Ψb = τ bb/ {ρνvt (ζ + h)} are defined. Equation 3.25

reveals that we have three sources of horizontal vorticity, two of which are bottom friction

and wave-current interaction while the remainder is the current’s external shear.

The horizontal velocity profile can be utilized for deriving depth-integrated momentum

equations. The remaining steps are somewhat tedious, so detailed procedures to derive a

depth-integrated equation are included in Appendix D.

As a result, the depth-integrated momentum equation including the effects of bottom-

induced turbulence and wave-current interaction, can be written as,
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(uα)t + uα · ∇uα +∇ζ + µ2
(
Hp +Ht +Hc + ξp + ξt + ξc

)

− αµ∇ ·
(
νht ∇uα

)
+ βµνvt ∇S + βµ

τ b

ρ(ζ + h)
− βµ

τ bb

ρ(ζ + h)

− βµνvt {(uC)z |z=ζ − (uC)z |z=−h}

= O(µ4, αµ3, βµ3) (3.26)

where

Ht =
(ζ − h)

2
(Ψζ)t −

(
ζ2 − ζh+ h2

)

6
Ψt +

[
Ψ

(
z2α
2

− ζzα

)]

t

+
(ζ − h)

2
∇{uα · (Ψζ)} −

(
ζ2 − ζh+ h2

)

6
∇ (uα ·Ψ)

+ ∇
[
uα ·

{
Ψ

(
1

2
z2α − ζzα

)}]
−Ψ

{(
ζ2 − ζh− 2h2

)
S

6
+

(ζ + h)T

2

}

− (Ψb)t

{
1

2
z2α + hzα −

(
ζ2 + 2ζh− 2h2

)

6

}

−
{
1

2
z2α −

(
ζ2 − ζh+ h2

)

6

}
∇ (uα ·Ψb)

+ ∇{uα · (Ψbh)}
{
1

2
(ζ − h)− zα

}

− Ψb

{(
2ζ2 + ζh− h2

)
S

6
+

(ζ + h)T

2

}
(3.27)
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Hp =
1

2
z2α∇St + zα∇Tt −

1

2
∇
(
ζ2St

)
−∇ (ζTt) + T∇T

+
1

2
∇
(
z2αuα · ∇S

)
+∇ (zαuα · ∇T ) + 1

2
∇
(
ζ2S2

)

− 1

2
∇
(
ζ2uα · ∇S

)
−∇ (ζuα · ∇T ) +∇ (ζTS) (3.28)

Hc =
1

ζ + h
∇
{
uWα ·

(∫ ζ

−h
uCdz

)}
−∇ (uWα · uCα)

− ζS + T

ζ + h
uC |z=ζ −

hS − T

ζ + h
uC |z=−h +

S

ζ + h

(∫ ζ

−h
uCdz

)
(3.29)

Also ξp =
(
ξpx , ξpy

)
, ξt =

(
ξtx , ξty

)
and ξc =

(
ξcx , ξcy

)
are described as

ξpx = −vα
{
(zα)x (zαSy + Ty)− (zα)y (zαSx + Tx)

}
(3.30)

−
{
(vα)x − (uα)y

}[{z2α
2

−
(
ζ2 − ζh+ h2

)

6

}
Sy +

{
zα − (ζ − h)

2

}
Ty

]

ξpy = uα

{
(zα)x (zαSy + Ty)− (zα)y (zαSx + Tx)

}
(3.31)

+
{
(vα)x − (uα)y

}[{z2α
2

−
(
ζ2 − ζh+ h2

)

6

}
Sx +

{
zα − (ζ − h)

2

}
Tx

]
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ξtx = −vα
[{

ψy

(
1

2
z2α − zαζ

)}

x

−
(
ζ2 − ζh+ h2

)

6
(ψy)x +

(ζ − h)

2
(ψyζ)x

−
{
ψx

(
1

2
z2α − zαζ

)}

y

+

(
ζ2 − ζh+ h2

)

6
(ψx)y −

(ζ − h)

2
(ψxζ)y

]

−
{
(vα)x − (uα)y

}
ψy

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}

+ vα

[{
ψy
b

(
1

2
z2α + zαh

)}

x

+

(
ζ2 − ζh+ h2

)

6

(
ψy
b

)
x
+

(ζ − h)

2

(
ψy
bh
)
x

−
{
ψx
b

(
1

2
z2α + zαh

)}

y

+

(
ζ2 − ζh+ h2

)

6
(ψx

b )y −
(ζ − h)

2
(ψx

b h)y

]

+
{
(vα)x − (uα)y

}
ψy
b

{
z2α
2

+ zαh−
(
2ζ2 + 2ζh− 2h2

)

6

}
(3.32)

ξty = uα

[{
ψy

(
1

2
z2α − zαζ

)}

x

−
(
ζ2 − ζh+ h2

)

6
(ψy)x +

(ζ − h)

2
(ψyζ)x

−
{
ψx

(
1

2
z2α − zαζ

)}

y

+

(
ζ2 − ζh+ h2

)

6
(ψx)y −

(ζ − h)

2
(ψxζ)y

]

+
{
(vα)x − (uα)y

}
ψx

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}

− uα

[{
ψy
b

(
1

2
z2α + zαh

)}

x

+

(
ζ2 − ζh+ h2

)

6

(
ψy
b

)
x
+

(ζ − h)

2

(
ψy
bh
)
x

−
{
ψx
b

(
1

2
z2α + zαh

)}

y

+

(
ζ2 − ζh+ h2

)

6
(ψx

b )y −
(ζ − h)

2
(ψx

b h)y

]

−
{
(vα)x − (uα)y

}
ψx
b

{
z2α
2

+ zαh−
(
2ζ2 + 2ζh− 2h2

)

6

}
(3.33)
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ξcx =
vα
ζ + h

{(∫ ζ

−h
uCdz

)

y

− ζyuC |z=ζ − hyuC |z=−h

−
(∫ ζ

−h
vCdz

)

x

+ ζxvC |z=ζ + hxvC |z=−h

}

− 1

ζ + h

{
(vα)x − (uα)y

}(∫ ζ

−h
vCdz

)
(3.34)

ξcy =
uα
ζ + h

{(∫ ζ

−h
vCdz

)

x

− ζxvC |z=ζ − hxvC |z=−h

−
(∫ ζ

−h
uCdz

)

y

+ ζyuC |z=ζ + hyuC |z=−h

}

+
1

ζ + h

{
(vα)x − (uα)y

}(∫ ζ

−h
uCdz

)
(3.35)

Note that uα = (uα, vα), Ψ = (ψx, ψy) and Ψb =
(
ψx
b , ψ

y
b

)
. In Equation 3.34 and

3.35 Leibnitz rule had been applied, as well.

3.3.5 Depth-Integrated Continuity Equation for Waves and Currents

Since Equation 3.5 does not include nonlinear terms, depth integrated continuity equation

can be obtained by fairly simple procedure. Integration of Equation 3.5 over the water

column with applications of boundary conditions (Equation 3.8 and 3.9) gives

∇ ·
∫ ζ

−h
udz + ζt = 0 (3.36)
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where we used Leibnitz’s rule for differentiating of integral terms.

Substituting Equation 3.25 into above equation will approximate this equation into

depth-integrated one, yielding

ζt +∇{(ζ + h)uα}+ µ2
(
N p +N t +N c

)
= O

(
µ4
)

(3.37)

where

N p = −∇ ·
[
(ζ + h)

{(
ζ2 − ζh+ h2

6
− z2α

2

)
∇S +

(
ζ − h

2
− zα

)
∇T
}]

(3.38)

N t = ∇ ·
[
Ψ (ζ + h)

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}]

− ∇ ·
[
Ψb (ζ + h)

{
z2α
2

+ zαh−
(
2ζ2 + 2ζh− 2h2

)

6

}]
(3.39)

N c = ∇ ·
[∫ ζ

−h
uCdz − (ζ + h)uCα

]
(3.40)

3.3.6 Modulation of Dispersion Properties by Currents

Doppler shift is the effect of current on wave which should be included in wave-current

models, and may be verified analytically(Chen et al.(1998)). In this section, Doppler shift
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will be investigated through the comparison of dispersion property embedded in the gov-

erning equations, Equation 3.25 ,with the ‘analytical’ one. Assuming the steady current

field and the linear wave system, the dispersion relationship can be derived analytically

from the continuity Equation 3.37 and the momentum Equation 3.26. Subsequently,

the linearized one dimensional depth-integrated governing equations in a constant depth

under uniform current(uC = uCα) are written as,

ζt + h (uWα)x + uCζx + h3
(
1

3
+ γ

)
(uWα)xxx = 0 (3.41)

(uWα)t + uC (uWα)x + gζx + h2γ {(uWα)xxt + uC (uWα)xxx} = 0 (3.42)

where γ = (1/2) (zα/h)
2 + zα/h. All dimensions are recovered for the physical variables

without using ∗.

To obtain the linearized dispersion characteristics, we imagine sinusoidal waves prop-

agating with an angular frequency ω and wave number k, whose surface elevation and

velocity are defined as,

ζ = am exp {i(kx− ωt)} (3.43)
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uWα = um exp {i(kx− ωt)} (3.44)

where am is wave amplitude and um is the maximum velocity. Inserting Equation 3.43

and 3.44 into Equations 3.41 and 3.42 presents linear dispersion relationship as follows.

σ2 = (ω − uCk)
2 = ghk2

1−
(
1
3 + γ

)
(kh)2

1− γ(kh)2
(3.45)

As mentioned by Nwogu(1993), the value of γ(= −2/5) would exactly confirm Doppler

effect when compared to Pade(2,2) approximant of linear dispersion relation of first-order

Stoke’s theory, while some errors have been found in Chen et al.(1998) in some other

Boussinesq models. For long waves in a range of kh < π, above approximation will give

overall good agreement to exact linear dispersion with an error less than 5%, but the value

of -0.39 for γ has been used for extended range of applicable kh and better accuracy. As

a result, it is demonstrated that correct Doppler shift property retains in the equations.

3.3.7 Free parameter (bx, by)

Reasonable estimation of free parameter (bx, by) is not yet achieved in spite of a com-

prehensive effort by some researchers(e.g., Yang et al.(2006)). In this part, reasonable

estimation for bx will be attempted as well as by.

Following the procedures in You(1996), with the use of Reynolds stress defined in

Equation 3.10, an empirical formula for assessment of bx can be drawn out as,
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(for following currents)

bx =
(Hω)kh

u∗|u∗| sinh kh

(
0.004

Hω

sinh kh
− 0.189|u∗|

)
(3.46)

(for opposing currents)

bx =
(Hω)kh

u∗|u∗| sinh kh

(
0.002

Hω

sinh kh
− 0.111|u∗|

)
(3.47)

In this estimation, the parameter bx has a quadratic function of wave height with non-

zero value of H at vertex. By intuition, this may not be reasonable since the magnitude

of bx would not be proportional to the wave height and the application of this estimation

resulted in poor agreements. Moreover, for phase-resolving model, direct application of

this estimation would be difficult unless the local wave characteristics(i.e., H, k, ω) are

known a prior. Therefore, an attempt to find an alternative way assessing bx is made

here.

The most two important factors governing wave-current interaction are considered

as radiation stress of waves and bed shear stress by currents. Radiation stress Sxx(or

momentum flux due to the the presence of waves) under the underlying currents are

clearly defined in Jonsson et al.(1978), and using the pressure and velocity expres-

sions(Equation D.2 and 3.25), it will be given as,
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Sxx =

〈∫ ζ

−h

(
p+ ρu2

)
dz

〉
− 1

2
ρg (h+ 〈ζ〉)2 − ρ

∫ ζ

−h
u2Cdz

=

〈
ρ

6
(h+ ζ)2 {3g − 3(Tt + uα · ∇T − TS)

+(St + uα · ∇S − S2)(h− 2ζ)
}

+
ρ

60

[
15Y 2(ζ + h)− 30Y (Tx)(ζ

2 − h2)

+ 10
{
2(Tx)

2 − (Sx)Y
}
(ζ3 + h3) + 15(Sx)(Tx)(ζ

4 − h4)

+3(Sx)
2(ζ5 + h5)

]〉

− 1

2
ρg (h+ 〈ζ〉)2 − ρ

∫ ζ

−h
u2Cdz (3.48)

which is ended up with well-known form when applying Airy theory in the absence of

background currents.

Sxx =
1

8
ρgH2

[
2kh

sinh 2kh
+

1

2

]
(3.49)

In Equation 3.48, <> denotes phase-averaging and Y = 2uα + z2αSx + 2zαTx. As a

reminder, S = ∇ · (uWα + uCα), T = ∇ · {h(uWα + uCα)} and the velocity used here is

‘potential’ part of Equation 3.25. Radiation stress in y direction(stress normal to y-plane)

can be obtained with the same procedure.

Here, Equation 3.48 would be preferred in phase-resolving model since Equation 3.46

and 3.47) may not be appropriate in the time-dependent frame such as Boussinesq-type

equations. Radiation stress scaled on currents stress will represent relative strength of
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wave-average effects over the time-mean flow. Therefore, the linear relation between

parameter bx and relative radiation stress of waves can be assumed as

bx = Cb
Sxx
τxCbh

(3.50)

where τxCb is bottom stress by currents. The value of Cb will be assessed in Chapter 3.4.2.

3.4 Validation

In this section, three numerical tests will be performed to validate the present model.

These numerical tests include the propagation of regular waves over uniform or depth-

varying currents in a constant depth, and bichromatic waves traveling over spatially

varying current field.

3.4.1 Waves over Uniform or Linearly-varying Currents

In the first test, waves deformed by uniform and sheared currents are examined. Swan(1990)

investigated a modification of the wave motion due to the current effects, in particular

the sheared currents. Four different cases within the relatively shallow or intermediate

depth regime (kh ≤ 3.0) are chosen. Two of them include following currents while the

rest include the opposing currents. The experimental parameters of waves and currents

are listed in table 3.1. In CASE 1F and 1A, the current fields are essentially uniform

throughout the water depth even though some shear may exist near the bottom. On the

other hand, strong linear shear has been developed by honeycomb in CASE 2F and 2A,
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Table 3.1: Wave and Current Conditions in Swan(1990)’s Experiments

Case Wave height Water depth Wave period kha Current Profile
am h T uC

1F 35.1mm 0.35m 1.412s 0.88 0.108m/s
1A 35.7mm 0.45m 0.877s 2.91 -0.120m/s
2F 31.5mm 0.35m 1.418s 0.85 following, linear shearb

2A 61.5mm 0.35m 1.420s 1.10 opposing, linear shearc

aCalculated from linear dispersion relationship with currents, i.e., Equation 3.1
bSee Figure 3.2 (a)
cSee Figure 3.2 (b)

resulting in a current profiles shown in Figure 3.2. Such current conditions represent a

low Froude number flow range (≈ 0.058 ∼ 0.091).

Numerical tests are performed based on the actual conditions of experiments with a

fixed grid size ∆x = 0.02m and a variable time step ∆t according to CFL condition (0.4 in

the present test). The current velocity is practically assumed to have no bottom boundary

layer as the channel bed is covered with plate glass in the experiment. This allows us

to simulate this case in the model without bottom-induced turbulence. Therefore, the

rotational effect is generated solely by the sheared current.

Figure 3.3 through Figure 3.5 show the simulated results for each case along with the

measured wave motions. The surface elevation and the oscillatory velocity in each figure

have been measured at a location in the computational domain, at least 3 wave lengths

far from the internal source of wave generation, during 2∼3 wave periods as Swan(1990)’s

attempt.

The velocity profiles at different depth levels are calculated using Equation 3.25. In

the depth-uniform currents cases(Figure 3.3 and 3.4), the computed surface elevation and

the velocity at different depth levels are generally in a good agreement with experiments
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Figure 3.2: Measured shear currents in the absence of waves in Swan(1990); (a) CASE2F;
(b) CASE2A

in both magnitude and phase, even though some errors are found in Figure 3.4 (d) which

are mostly owing to larger kh value(≈ 2.91).

Computations agree well with the measurements for the case of opposing sheared

current as shown in Figure 3.5. This demonstrates that the rotational behavior of currents

needs to be taken into account when describing the velocity field in the combined flow

of wave-current. The inclusion of the rotational terms due to the current’s vorticity

in Equation 3.25 represents practically its effects on the flow field. Furthermore, the

maximum values of oscillatory velocities given in Figure 3.6 are in good agreements with

the Stokes 3rd order solutions by Kishida and Sobey(1988). Therefore, this supports that

the effects of sheared currents are appropriately included in the velocity profile as well as

in the governing equations. As pointed out by Swan (1990), the conventional ‘potential’

86



0 0.5 1 1.5 2 2.5
−0.05

0

0.05

ζ 
(m

)

(a)

0 0.5 1 1.5 2 2.5

−0.2

−0.1

0

0.1

0.2

u
W

 (
m

/s
)

(b)

z=−0.1m

0 0.5 1 1.5 2 2.5

−0.2

−0.1

0

0.1

0.2

u
W

 (
m

/s
)

(c)

z=−0.2m

0 0.5 1 1.5 2 2.5

−0.2

−0.1

0

0.1

0.2

t(sec)

u
W

 (
m

/s
)

(d)

z=−0.3m

Figure 3.3: Comparison of wave records under following, uniform current (Case 1F)
between experiment(o) and numerical solution(-): surface elevation(a) and oscillating
velocities at z=-0.1m(b); at z=-0.2m(c); at z=-0.3m(d)
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Figure 3.4: Comparison of wave records under opposing, uniform current (Case 1A)
between experiment(o) and numerical solution(-): surface elevation(a) and oscillating
velocities at z=-0.15m(b); at z=-0.25m(c); at z=-0.35m(d)
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Figure 3.5: Comparison of wave records under opposing, linear shear current (Case 2A)
between experiment(o) and numerical solution(-): surface elevation(a) and oscillating
velocities at z=-0.1m(b); at z=-0.2m(c); at z=-0.3m(d)

89



approach is less descriptive for the general effect of current vorticity, even though the

Doppler effects are relatively well captured through it.
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Figure 3.6: Comparison of maximum wave velocity under following(a) and opposing(b)
linear shear current; experiment(o), numerical solution(-)

3.4.2 Waves and Turbulent Currents with Bed Roughness

For the turbulent current cases, reasonable estimation for the parameter bx is made to

consider the wave-current interaction. Through experimental data of waves and turbu-

lent currents, we can possibly assess an estimate for bx. Kemp and Simons(1982, 1983)

are providing various types of physical measurements including turbulent characteristics.
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Table 3.2: Wave and current characteristics in Kemp & Simons(1982, 1983)

Case Wave Wave Current Current
No. Height, H(m) Period, T (sec) Velocity, uCα(m/s) Shear velocity, u∗C(m/s)

WCA1 0.029 1.006 0.1983 0.00866
WCA3 0.0378 1.006 0.1983 0.00866
WCA4 0.0464 1.006 0.1983 0.00866
WCA5 0.0544 1.006 0.1983 0.00866
WDR1 0.0278 1.003 -0.1012 -0.00825
WDR3 0.0368 1.003 -0.1012 -0.00825
WDR4 0.045 1.003 -0.1012 -0.00825
WDR5 0.0487 1.003 -0.1012 -0.00825

They conducted experiments of the interaction between the wave and the turbulent cur-

rent, either following or opposing direction in a 14.5m long, 0.457m wide and 0.69m deep

channel. Test conditions listed in Table 3.2. They generated different bottom frictions for

the turbulent currents in the experiments by using either gloss-painted bed or triangular

wooden strips placed at bed.

Numerical simulations are set up using the actual scales of the experiments while

using ∆x = 0.01m and varying ∆t for the stability(CFL ≈ 0.4). Such a small grid

size(= 1/20h) will resolve the subdepth-scale motions of turbulence in depth-integrated

model(Hinterberger et al.(2007)).

The primary issue in these simulations is the application of a reasonable value for bx, in

order to ensure the turbulent effect of the interaction between waves and currents. Based

on Yang et al.(2006), an appropriate bx value for an initial attempt in the simulation can

be found. Then the final value of bx, which gives reasonable fit to the measurement in

each case can be found as seen in Figure 3.7 and 3.8. As anticipated, general features

of bx values are clearly seen from these results. The bx becomes negative (or positive)

in following current (or opposing current) with its magnitude proportional to the wave
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energy, i.e., radiation stress. It should be mentioned that the final values of bx are little

different from those in Yang(2006), since they employed ‘idealized’ log-law profile for

currents for the best fitting, instead of using real values from Kemp and Simons(1982,

1983). In the present study, however, ‘true’ shear stresses are directly applied to the

simulation.

Within this approach, the linear relationship between parameter bx and the relative

radiation stress(Sxx/τ
x
Cbh) in Equation 3.50 can be reasonably estimated. Figure 3.9

depicts the variation of the parameter bx with respect to the relative radiation stress.

Indeed, there may exist two different ways to calculate Sxx in wave-current co-existing

condition. The first way is by using Equation 3.48 and the other by completely ignor-

ing the presence of the underlying currents, i.e., letting uC = 0 in Equation 3.48. As

seen in the figure, however, clear correlation between the parameter bx and the relative

radiation stress can be found. This result is consistent with our assumption in Equa-

tion 3.50. Moreover for both cases, almost identical regressed lines about bx values, each

having either Cb =-0.007674 or -0.00661, are obtained with minor errors. Meanwhile

You(1996)’s empirical formulas(Equation 3.46 and 3.47) make inappropriate estimation

as addressed before. Consequently, bx values can be dynamically determined from the

following equation, using local characteristics of waves and currents.

bx = −0.00661
Sxx
τxCbh

(3.51)
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Figure 3.7: Mean-velocity profiles of combined waves and currents; (a)WCA1; (b)WCA3;
(c)WCA4; (d)WCA5
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Figure 3.8: Mean-velocity profiles of combined waves and currents; (a)WDR1; (b)WDR3;
(c)WDR4; (d)WDR5
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This equation opens, in the numerical implementation, a self-adaptive way to assess the

parameter bx. Finally, the turbulent wave-current interaction which fully depend on the

local wave and current properties can be considered in the model.

3.4.3 Bichromatic Waves and Uniform Currents in a Vayring Depth

A complex hydraulic situation is expected when bichromatic waves interact with the

current as explored in Dong et al.(2009)’ experiments. It is well known that bound long

waves can be generated by the nonlinear wave-wave interactions in still water, but the

influence of underlying currents on their generation is yet not totally understood. Dong et

al.(2009) conducted laboratory experiments of bichromatic wave groups propagating over

the current in wave flume of 50m length, 3m width(reduced to 0.8m in the experiment)

and 1m depth. A smooth bed of varying slope is also considered at the flume bottom as

depicted in Figure 3.10. A bichromatic wave is composed of two sinusoidal waves of same

amplitude with different frequencies as shown below.

ζ = a1 cos (k1x− 2πf1t) + a2 cos (k2x− 2πf2t) (3.52)

where ai, fi and ki(i = 1, 2) are the wave amplitudes, frequencies and wave numbers,

respectively. Underlying currents will have either following or opposing directions to the

wave propagation. It is also revealed from their measurements that the current variation

along the changing depth can be effectively estimated from continuity and is almost

depth-uniform. Thus, the current field is idealized through continuity in the simulation.

The largest Froude number of currents in the experiments is 0.054 which ensures a weak
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Figure 3.10: Experimental setup of bichromatic waves under an ambient currents by Dong
et al.(2009)

Table 3.3: Bichromatic waves and current characteristics in Dong et al.(2009)

f1(Hz) f2(Hz) a1(cm) a2(cm) Current(cm/s)

1.1 0.9 1.75 1.75 6, -6, 12, -12

current condition without hydraulic jump. Table 3.3 lists the details of the bichromatic

waves and the current conditions used in the experiments.

Numerical simulation is set up based on the above information while using ∆x =

0.01m and ∆t corresponding to CFL (=0.4) conditions. Runtime is set to 200s and this

ensures at least 100 bichromatic waves and 20 sub-harmonic long waves (f1−f2 = 0.2Hz)

are generated. To analyze the sub-harmonic bound long waves and obtain local wave

amplitude, FFT(Fast Fourier Transform) technique is adopted using the same frequency

rate(40Hz) as Dong et al.(2009). Figure 3.11 to 3.13 show simulation results compared

with experimental data, presenting the spatial variation of Hrms along the flume. In

Figure 3.11, which is the result of pure wave condition, calculated Hrms of both primary

and bound long waves are in good agreement with experiments, as well as with the ana-

lytical solution derived by Longuet-Higgins and Stewart(1962). Also, the overall shoaling

process due to the varying depth is well represented.
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For the following current conditions, both measured and calculated primary wave

Hrms are clearly decreased by about 10% due to the Doppler shift effect as shown in

Figure 3.12 (a). On the other hand, increased Hrms of primary waves are calculated for

the opposing current case, and this is also consistent with the measurement in Figure 3.13.

As seen from Figure 3.12 (b) and 3.13 (b), in both following and opposing current cases,

Doppler effect is well characterized for sub-harmonic bound long waves.

Finally, to see the current effect on wave energy modulation clearly, calculated ampli-

tude spectra of bichromatic waves are presented in Figure 3.14. It is revealed that some

of wave energy at higher frequency component is relocated to the lower frequency for all

cases. In the opposing current case, such tendency becomes most dramatic and this is

consistent with Dong et al.(2009)’s observations.

Comparisons between wave amplitude spectra at three different location (x =7m, 18m,

and 24m) indicate also that as the waves propagate over shoaling depth, the sub-harmonic

component energies develop for pure wave and for following current cases. Meanwhile,

it is not obvious for the opposing current case because relatively strong current exists at

shallower depth.

3.5 Summary

A set of depth-integrated equations describing combined wave-current flows is derived in

this chapter. It is well known that the presence of waves over the mean flow introduces

additional stresses. With a parameter b, a linear shear profile can be defined to represent

such stresses by wave-current interaction.

99



5 10 15 20 25
0

1

2

3

4

5

6

7

x(m)

H
rm

s
(c

m
)

(a)

 

 

Numerical

Measured

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

L
o
n
g
 w

a
v
e
 a

m
p
lit

u
d
e
(m

m
)

x(m)

(b)

 

 

Numerical

Measured

Figure 3.12: Spatial variation of ; (a)Hrms of bicromatic waves; (b)Amplitude of bounding
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Figure 3.14: Calculated amplitude spectra of bichromatic waves with and without cur-
rents

102



Doppler shift effect embedded in a system of equations is elucidated by limiting the

equations into one dimensional linear case. It is confirmed that Doppler shift property

retains in the equation set.

To implement the present model numerically, a fourth-order MUSCL-TVD scheme in-

corporated with approximated Riemann solver, is adopted for leading order terms whereas

a cell-averaged finite volume method is utilized for higher-order terms. Accuracy of the

model is then examined through three experimental data sets. The simulated results

on long waves propagating over either uniform or sheared current, agree well with the

measurements. It is found that the vorticity of the current needs to be taken into ac-

count when describing the velocity of wave-current flows more accurately. Through the

inclusion of rotational terms in the velocity profiles, we’re able to practically consider the

effects of current’s vorticity on the flow field.

Validity of the inclusion of additional stress term is also investigated through the

simulation on turbulent current interacting with waves. Using Kemp and Simons(1982,

1983)’s experimental data, reasonable estimation of parameter b is provided. Based on

provided values, b has been physically defined through linear relationship with relative

radiation stress of waves.

As a final attempt, the model is applied to a complex configuration, where bichromatic

waves interact with spatially varying currents. Subharmonic bound long waves generated

by wave-wave interaction are well recreated in the presence of background currents and

the comparisons with measurements show good agreements. Consequently, the results

clearly indicate that the present model is capable of predicting both wave and current

flows accurately.
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Chapter 4

A Depth-Integrated Model for Free Surface Waves

Propagating over Fluids with Weak Vertical and Horizontal

Density Variation

In this chapter, we consider the density change of fluids in the depth-integrated long wave

model. By allowing horizontal and vertical variation of fluid density, a depth-integrated

model for long gravity waves over variable density fluid has been developed, where density

change effects are included as correction terms. In particular, two-layer fluid system is

chosen as vertical density variations, where interfacial wave effects on the free surface

is accounted for through direct inclusion of velocity component of the interfacial wave.

For the numerical implementation of the model, a finite volume scheme coupled with

approximate Riemann solver is adopted for leading order terms while cell-centered finite

volume methods are utilized for others.

Numerical tests have been performed to verify the model, in which the density field

is configured to vary either horizontally or vertically. For horizontal variation of fluid

density, a pneumatic breakwater system is simulated and fair agreement is observed
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between computed and measured data, showing that the current induced by the upward

bubble flux is responsible for wave attenuation to some degree. To investigate the effects of

internal motions on the free surface, a two-layer fluid system with monochromatic internal

wave motion is tested numerically. Comparison of simulated results with measured and

analytical data shows good agreement. Lastly, nonlinear interaction between external-

and internal-mode surface waves are studied numerical and analytically, and the model

is shown to have nonlinear accuracy similar to published Boussinesq-type models.

4.1 Introduction

Freshwater and seawater are often coexisting in the estuaries in the coastal regions. Thus

the fluid densities are subject to change horizontally and vertically due to thermal and

saline changes. This density variation will result in complex physical processes on the

contrary to the uniform density fluids. For example, in the horizontally varying density

fluids, the hydrostatic pressure will be imbalanced between the fluids and this pressure

difference will cause the fluid to move. Armi and Farmer (1986) provide an example of

the exchange of the two fluids through the contraction, and Wood (1970) provides an

example of the classical lock-exchange problems. Moreover, in the density varying flow,

the momentum needed to convey the lighter fluid is less, and that implies a significant

change in the kinematics of the problem.

On the other hand, the density variation inherently implies a three dimensional prob-

lem in the natural oceanic system Mellor (1991). Therefore, the 3D hydrodynamic model
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coupled with the density transport model is commonly adopted for the simulation of the

variable density fluid flows (e.g., Kanarsk and Maderich 2003).

Different approaches have been made to solve this problem. For instance, in the

horizontally varying density flows, the initial setup of the horizontally separated two fluids

with different densities is assumed to study the gravity current generated at the lock-

exchange configurations (e.g., Lowe et al. (2005)), or in the bi-directional flows through

contractions (e.g., Armi and Farmer (1986)). Those studies focused on the internal physics

of the problem such as the diffusion and the mixing caused by the barotropic forces.

Recently, Leighton et al.(2010) examined the effect of the horizontally varying density

conditions on the free surface physics. They presented one-phase, one-dimensional model

for vertically well-mixed shallow flows with horizontal density gradient; however, they

neglected the vertical variation of the fluid density.

In the vertically stratified fluids, they are usually simplified to a two-layer system

with different densities as in the estuarine system. In the stable stratification, there will

be no driving force and therefore the two fluids will stay without any motion. However,

if an initial disturbance is introduced at the interface, this disturbance will propagate as

an oscillating form in order to keep the balance between the gravity and the buoyancy.

Meanwhile, this internal motion will affect the hydrodynamics of the entire water column

including the free surface.

Topographical configuration could act as a source for internal wave generation at the

interface of the two-layer system (e.g., Farmer and Armi(1999), Helfrich and Melville(2006)).

Researchers are interested in the physical properties of these internal waves such as am-

plitude and frequency dispersion without compromising the free surface waves. They
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imposed the rigid-lid assumption on the upper boundary condition, thus they simplified

the relevant physical problem in order to focus solely on the internal wave physics (e.g.,

Evans and Ford(1996)). Numerous models have been developed for investigating the

internal wave propagation over the shallow and the deep waters applying the rigid-lid as-

sumption (Koop and Butler(1981), Segur and Hammack(1982), Choi and Camassa(1999),

Debsarma et al.(2010)).

However, there are some evidences showing that sub-surface movement can affect the

free surface. For instance, the theoretical studies of Lamb(1932), Phillips(1977), Hwung et

al.(2009) and the experiment by Umeyama(2002) which shows the surface wave excitation

by internal waves. Moreover, the observation by Elachi and Apel(1976) have confirmed

the importance of including the free surface. Although some numerical models apply

the free surface condition for long internal waves (Choi and Camassa(1996), Părău and

Dias(2001), Lynett and Liu(2002b), Nguyen and Dias(2008), Liu and Wang(2012)), they

did not consider the free surface dynamics appropriately.

In reality there are many occasions where the free surface gravity waves exist with in-

ternal waves and interact with each other. Therefore, nonlinear interactions between

internal and surface waves have also been explored in the literatures experimentally

(Lewis et al.(1974), Joyce(1974)) and theoretically(Ma(1982), Donato(1999), Liu(2006),

Selezov et al.(2010), Craig et al.(2011)). Triad resonance interaction is investigated in

(Alam(2012), Hill and Foda(1998)). Most of the previously mentioned numerical models

solve the two sets of equations, which are generated from the two-layer fluid system. This

will require more computational time and resources than the one equation set (Lynett

and Liu(2004)). The depth-integrated approach, for the shallow water regime has been
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well established for the past few decades. The vertical structure of some physical quan-

tities such as velocity and pressure fields is represented by polynomials and successfully

describes the long wave formulations.

In the present study, for the purpose of efficiently but physically accurate modeling of

surface waves over varying density, a new attempt based on depth-integration has been

made. This attempt will include the effects on the surface waves by density variation

as well as internal motions at the interface of two immiscible fluids with different den-

sities. Density-variation effects on the free surface are included as correction terms in

the Boussinesq-type models. The internal wave effect on the free surface is considered

through direct inclusion of internal wave kinematics as weak components of the velocity

profile. Long wave assumptions for both surface and internal waves are also implemented

in the model derivation. Thus, the present model is designed to study the problem of

long wave propagation over the density-varying fluids.

This chapter is organized as follows. In the following section, depth-integrated model

equations for long surface waves over variable density fluid are derived mathematically.

Then, the model is applied to the surface wave propagation over either horizontally or

vertically varying density fluids. An exercise to investigate nonlinear property of the

designed model has been also performed as surface and internal wave interactions. The

results are then compared with experimental and analytical data for the validation. Final

conclusion is made in subsection 4.5.
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4.2 Mathematical Formulation

A mathematical model for weakly dispersive wave propagation over a varying-density

fluid is derived in this section. A standard Boussinesq-type approach (e.g., Lynett and

Liu(2002a), Kim et al.(2009)) is followed during the derivation to obtain a vertically-

independent equation set. Worthy of note here is that we use the term ‘Boussinesq’

as related to weakly dispersive and nonlinear; we are not implying the same namesake

commonly referenced in the oceanography field when including buoyancy effects.

4.2.1 Governing Physics and Boundary Conditions

To derive a mathematical governing system of equations, the basic physical parameters are

defined as in Figure 4.1. A two-layer fluid stably separated by a small, but finite, thickness

pycnocline is assumed to be incompressible and immiscible. Appropriate parametric scales

are now introduced to normalize the governing equations as well as boundary conditions.

Typical for long wave scaling, ℓ0 and h0, the wavelength and water depth, are used

for horizontal and vertical coordinates, respectively. Additionally, ρb is a characteristic

fluid density of the entire fluid system. Using this set of scaling parameters, normalized

variables are introduced as,

(x, y) =
(x′, y′)

ℓ0
, z =

z′

h0
, ζ =

ζ ′

h0
, h =

h′

h0
, t =

t′
√
gh0
ℓ0

,

(u, v) =
(u′, v′)√
gh0

, w =
w′

µ
√
gh0

, p =
p′

ρbgh0
, ρ =

ρ′

ρb
,

µ =
h0
ℓ0
, νht =

νh
′

t

αh0
√
gh0

, νvt =
νv

′

t

βh0
√
gh0

(4.1)
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where a prime denotes dimensional variable, (u, v) and w represents instantaneous hor-

izontal and vertical velocity, respectively. ζ is free-surface elevation which is a function

of (x,y,t), p is pressure, g is gravitational acceleration and ρ is density. Dimensionless

parameters α and β are used to scale the horizontal and vertical eddy viscosities νht and

νvt (Kim et al.(2009)), and velocities are scaled following long wave theory. Note that

there is no wave amplitude scale, which would otherwise appear in the ζ, pressure, and

velocity scalings; it is implicitly assumed that wave amplitude is the same order as the

water depth.

h  (x , y ) 

x  

y  
z   (x , y , t ) 

z  = 0 

z  = -h  

z  = z0  

l  (x , y ) 

u  (x , y ) 
 

Figure 4.1: Sketch of long wave propagation over two-layer fluids with horizontal density
variation

To examine the effects of spatially varaiable density on free surface waves, it is neces-

sary to parameterize the magnitude of the density change. The parameter γ is introduced

for quantifying the density variation, and is given as

γ =
∆ρ′

ρb
(4.2)
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The term ∆ρ′ is simply the characteristic density variation in the physical system to be

examined.

Following Kim and Lynett (2011), the dimensionless form of the spatially-filtered

continuity and Navier-Stokes equations for incompressible flow are

∇ · u+ wz = 0 (4.3)

ρ (ut + u · ∇u+ wuz) +∇p = αµ∇ ·
(
ρνht ∇u

)
+
β

µ
(ρνvt uz)z (4.4)

µ2ρ
(
wt + µ2u · ∇w + µ2wwz

)
+ pz + ρ = αµ3∇ ·

(
ρνht ∇w

)
+ βµ (ρνvt wz)z (4.5)

where ∇ is the horizontal derivative operator, subscripts z and t function as vertical and

time differentiations, respectively, and u = (u, v) is the horizontal velocity vector.

Conditions applied at free surface and at bottom boundaries in Fig 4.1 are expressed

in dimensionless form, as well:

w = ζt + u · ∇ζ at z = ζ (4.6)

w + u · ∇h = 0 at z = −h (4.7)
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Equations 4.3 to 4.7 represent the primitive equation set needed to describe the fluid

motion shown in Figure 4.1.

4.2.2 Derivation of Boussinesq-type Equations for Dispersive Waves

over Variable Density Fluid

With a few dimensionless parameters introduced, µ2 is chosen to expand the physical

variables. The assumption is made that the effect of density stratification and viscosity

are as weak, and of a similar order as dispersion. That is,

O(µ2) = O(µβ, γ) ≪ 1 (4.8)

The physical parameters, p, u, v, w are expanded as power series of µ2,

f =
∞∑

n=1

µ2nfn. (4.9)

The leading order terms of Equation 4.5 yields the hydrostatic condition,

(p0)z + ρ0 = 0 (4.10)

which accordingly guarantees,

u(x, y, z, t) = u0(x, y, t) +O(µ2) (4.11)
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Integrating the continuity equation over depth and applying the free surface and bottom

boundary conditions, Equations 4.6 and 4.7, will give the relationship between horizontal

and vertical velocities as,

w0 = −z (∇ · u0)−∇ · (hu0) = −zS − T (4.12)

In order to determine the horizontal velocity profile, horizontal vorticity(ω) is exam-

ined

ω′ = u′
z −∇w′ = µ2

√
g

h0
ω1 +O(µ4) (4.13)

which demonstrates that horizontal vorticity can at most first appear at O(µ2) within

our scaling. Assuming that ω1 is not zero permits rotational effects induced by bottom

stress to be directly included in the velocity profile (Kim et al.(2009)).

From the horizontal vorticity expression, the vertical profile of horizontal velocity can

be approximated by vertically integrating ω1 from −h to z,

u1 = u1|z=−h −
{(

1

2
z2∇S + z∇T

)
−
(
1

2
h2∇S − h∇T

)}

+

∫ z

−h
ω1dz +O(µ2) (4.14)

The integral of vorticity term appearing above remains as a “residual” velocity compo-

nent, and can be specified depending on the particular physics of the configuration at

hand (e.g. bottom or free surface stress, or stratification effects).
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The horizontal velocity up to O(µ2) can be then expressed as,

u = u0 + µ2
{
u1|z=−h −

1

2
z2∇S − z∇T +

1

2
h2∇S − h∇T (4.15)

+

∫ z

−h
ω1dz

}
+O(µ4)

and following Nwogo’s (1993) approach , we can define uα evaluated at z = zα as,

uα = u0 + µ2
{
u1|z=−h −

1

2
z2α∇S − zα∇T +

1

2
h2∇S − h∇T (4.16)

+

∫ zα

−h
ω1dz

}
+O(µ4)

Subtracting Equation 4.16 from Equation 4.15 finalizes the expression of u in terms of

uα as,

u = uα + µ2
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T +

∫ z

zα

ω1dz

}
+O(µ4) (4.17)

As a main purpose of this study is to extend the derivation to include internal motion

due to stratification, the horizontal velocity of the background internal motion, ui(z),

should be included. Here, this component is interpreted as part of the residual vorticity

acting on the barotropic wave, i.e.

∫ z

zα

ω1dz = u
i(z) +

∫ z

zα

ωs
1dz (4.18)
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where ωs
1 represents the horizontal vorticity due to a bottom stress only. This decompo-

sition yields

u = uα + µ2ui(z) (4.19)

+ µ2
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T +

∫ z

zα

ωs
1dz

}

+ O(µ4)

Note that in the above, it is implicitly admitted that O(γ) = O(µ2), as ui(z) is usually

scaled by reduced gravity (e.g., Lynett and Liu(2002b)). As a result, the direct inclusion

of density-driven internal kinematics into the velocity structure allows for consideration

internal motion effects on free surface waves. While the above expression is flexible in

terms of the ui(z) that can be accommodated, the theory is only valid if the magnitude

of this component is small.

For a quantitative description of ui(z), specific cases will be chosen later for ver-

ification. Regardless, the horizontal velocity with rotational terms(
∫ z
zα
ωs

1dz
′) remains

undetermined; these rotational terms are assumed related only to bottom stress(τ ) (i.e.

Kim et al.(2009)). Imposing a linear stress profile from zero at the free surface to τ b at

the bed,

ωs
1 =

τ b

ρνvt

(
ζ − z

ζ + h

)
, (4.20)
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is all the information required. Integration of ωs
1 produces a rotational velocity component

of O(µ2) as follows,

∫ z

zα

ωs
1dz

′ = Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}
(4.21)

where Ψ = τ b/ {ρνvt (ζ + h)}.

With this, horizontal velocity up to O(µ2) can be finally expressed as,

u = uα + µ2ui + µ2
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}
(4.22)

+ µ2Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}

+ O(µ4)

Utilizing the horizontal velocity profile above, the exact continuity equation can be

given in a depth-integrated format. Integrating Equation 4.3 from −h to ζ and applying

boundary conditions(Equation 4.6 and 4.7) gives,

∇ ·
∫ ζ

−h
udz + ζt = 0 (4.23)

To express this equation in terms of uα, Equation 4.22 is substituted, and after manipu-

lation yields

ζt +∇ · {(ζ + h)uα}+ µ2 (ND +NB +NI) = O(µ4) (4.24)
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where the second order terms are,

ND = −∇ ·
[
(ζ + h)

{(
ζ2 − ζh+ h2

6
− z2α

2

)
∇S +

(
ζ − h

2
− zα

)
∇T
}]

(4.25)

NB = ∇ ·
[
ψ (ζ + h)

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}]
(4.26)

NI = ∇ ·
{
(ζ + h)ui

}
(4.27)

where ui is the depth-averaged horizontal velocity vector due to internal motion.

While integration of the continuity equation was straightforward, derivation of a

depth-integrated momentum equation, however, needs a fairly complex procedure due

to nonlinearity in the equation and the desired removal (through substitution) of the hy-

drodynamic pressure term. To facilitate the final expression of our equations in a closed

(non-integral) form, the first functional restriction will be placed on the internal den-

sity field. Here a simple vertical density structure is assumed, however realistic enough

to resemble a physical configuration found commonly in oceans and lakes (e.g. Kao et

al.(1985)). A two-layer density profile is thereby specified as,

ρ(x, y, z) = ρ0(x, y)

{
1− γ tanh

(
z − z0
δ

)}
(4.28)
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where ρ0 is some average density of the two-layer system, z0 is the midpoint of the tanh

inflection separating the upper and lower layers, and δ is the finite transition pycnocline

thickness. Note that all terms in the above density profile expression are dimensionless;

density has been scaled by ρb and the three distance terms inside the tanh operator

have been scaled by the depth, h. A discrete two-layer density configuration thus can be

accommodated using the tanh function, eliminating any density discontinuity issues.

The steps to derive a final, depth-integrated equation are somewhat tedious, and are

included in detail in Appendix F. The resultant form of the depth-integrated momentum

equation appears as,

(uα)t + uα · ∇uα +∇ζ + ∇ρ0
ρ0

(ζ + h)

2
+ γRv

P

+ µ2
(
RD +RB +RI +Rh

P + ξ
)

− αµ
1

ρ0
∇ ·
(
ρ0ν

h
t ∇uα

)
+ βµνvt ∇S

+ βµ
1

ρ0

τ b

ζ + h
− βµνvt

{(
ui
)
z
|z=ζ −

(
ui
)
z
|z=−h

}

= O(µ4, αµ3, βµ3) (4.29)

in which the higher order terms are defined as,

RD =
1

2
z2α∇St + zα∇Tt −

1

2
∇
(
ζ2St

)
−∇ (ζTt) + T∇T

+
1

2
∇
(
z2αuα · ∇S

)
+∇ (zαuα · ∇T ) + 1

2
∇
(
ζ2S2

)

− 1

2
∇
(
ζ2uα · ∇S

)
−∇ (ζuα · ∇T ) +∇ (ζTS) (4.30)
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RB =
(ζ − h)

2
(Ψζ)t −

(
ζ2 − ζh+ h2

)

6
Ψt +

[
Ψ

(
z2α
2

− ζzα

)]

t

(4.31)

+
(ζ − h)

2
∇{uα · (Ψζ)} −

(
ζ2 − ζh+ h2

)

6
∇ (uα ·Ψ)

+ ∇
[
uα ·

{
Ψ

(
1

2
z2α − ζzα

)}]
−Ψ

{(
ζ2 − ζh− 2h2

)
S

6
+

(ζ + h)T

2

}

RI = ui
t +∇

(
uα · ui

)
(4.32)

Rh
P =

∇ρ0
ρ0

{−2ζ + h

6

(
St + uα · ∇S − S2

)

− 1

2
(Tt + uα · ∇T − ST )

}
(4.33)

Rv
P =

δ

ζ + h
{(uα)t + uα · ∇uα} ×

[
ln

{
cosh

(−h− z0
δ

)}
− ln

{
cosh

(
ζ − z0
δ

)}]

− 1

ρ0
∇
{
ρ0δ ln cosh

(
ζ − z0
δ

)}

+
1

ρ0

1

ζ + h

∫ ζ

−h
∇
{
ρ0δ ln cosh

(
z − z0
δ

)}
dz (4.34)
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And ξ =
(
ξx, ξy

)
are described as

ξx = −vα
{
(zα)x (zαSy + Ty)− (zα)y (zαSx + Tx)

}
(4.35)

−
{
(vα)x − (uα)y

}[{z2α
2

−
(
ζ2 − ζh+ h2

)

6

}
Sy +

{
zα − (ζ − h)

2

}
Ty

]

− vα

[{
ψy

(
1

2
z2α − zαζ

)}

x

−
(
ζ2 − ζh+ h2

)

6
(ψy)x +

(ζ − h)

2
(ψyζ)x

−
{
ψx

(
1

2
z2α − zαζ

)}

y

+

(
ζ2 − ζh+ h2

)

6
(ψx)y −

(ζ − h)

2
(ψxζ)y

]

−
{
(vα)x − (uα)y

}
ψy

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}

+ viα

{
(vα)x − (uα)y

}

ξy = uα

{
(zα)x (zαSy + Ty)− (zα)y (zαSx + Tx)

}
(4.36)

+
{
(vα)x − (uα)y

}[{z2α
2

−
(
ζ2 − ζh+ h2

)

6

}
Sx +

{
zα − (ζ − h)

2

}
Tx

]

+ uα

[{
ψy

(
1

2
z2α − zαζ

)}

x

−
(
ζ2 − ζh+ h2

)

6
(ψy)x +

(ζ − h)

2
(ψyζ)x

−
{
ψx

(
1

2
z2α − zαζ

)}

y

+

(
ζ2 − ζh+ h2

)

6
(ψx)y −

(ζ − h)

2
(ψxζ)y

]

+
{
(vα)x − (uα)y

}
ψx

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}

+ uiα

{
(uα)y − (vα)x

}

where uα = (uα, vα) and Ψ = (ψx, ψy). In Equation 4.29, each higher order term implies

weak effects by frequency dispersion(RD), bottom stress(RB), internal motion(RI) and

density variation(Rh
P and Rv

P ).
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4.3 Limiting Cases of Derived Model

4.3.1 Linear, Inviscid Equations

Eliminating all nonlinear terms in ζ and uα, assuming that ζ/h is very small, and con-

verting to dimensional form yields the linear system:

ζt + ∇ · (huα)−∇ ·
[(

h3

6
− hz2α

2

)
∇S −

(
h2

2
+ hzα

)
∇T
]

+ ∇ ·
(
hui
)

= 0 (4.37)

(uα)t + g∇ζ + 1

2
z2α∇St + zα∇Tt

+ ui
t +∇

(
uα · ui

)

+
∇ρ0
ρ0

[
1

2g
+

(
1

6
St −

1

2h
Tt

)]
+ (Rv

P )linear

= 0 (4.38)

where g is gravity and (Rv
P )linear is constructed in the same manner as Equation 4.34,

with the only difference being the nonlinear uα · ∇uα removed from the first line and

all ζ set to zero. Both of the above equations are presented such that the standard,

free-surface-only wave terms are shown in the first line, and the terms driven by the

internal flow and stratification are given in the subsequent lines. In the second line of

the linear momentum equation ( 4.38) above are the forcing terms associated with the
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depth-averaged internal flow, while in the third line are the two terms due to horizontal

and vertical density gradients, respectively.

4.3.2 First-Order Nonlinear, Inviscid Equations

Here, we include only first order nonlinear terms; ζ/h is no longer negligible. The dimen-

sional system becomes

ζt + ∇ · (Huα)−∇ ·
[(

h3

6
− Hz2α

2

)
∇S −

(
h2

2
+Hzα

)
∇T
]

+ ∇ ·
(
Hui

)

= 0 (4.39)

(uα)t + uα · ∇uα + g∇ζ + 1

2
z2α∇St + zα∇Tt

− ∇ (ζTt) + T∇T +
1

2
∇
(
z2αuα · ∇S

)
+∇ (zαuα · ∇T )

+ ui
t +∇

(
uα · ui

)
+Rv

P

+
∇ρ0
ρ0

{
H

2g
+

[
ζ

3h
St +

1

6

(
St + uα · ∇S − S2

)
− 1

2h
(Tt + uα · ∇T − ST )

]}

= 0 (4.40)

where H = h+ ζ. Again, the standard Boussinesq-type terms are given first in the above

equations. This nonlinear system will be analyzed later in this chapter to determine its

analytical behavior. It is noted here that, in the absence of any vertical or horizontal

density gradient, all “new” terms disappear, with the exception of the ui in both the
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continuity and momentum equations. While these terms have been discussed in this

study in the framework of internal motion, the effects of any type of imposed external

flow could be accommodated through ui.

4.4 Model Validation

In this section, the model is applied to various types of problems in which the fluid

density field is configured to vary either horizontally or vertically. Calculated results

from these simulations are then compared to experimental data or analytical solutions for

verification. Complete details of the numerical scheme used in the following examples can

be found in G. It is noted that for the remainder of the chapter, as simplified analytical

and laboratory cases are examined, all terms related to viscosity (with coefficients α or

β) are neglected.

4.4.1 Horizontally Varying Fluid Density - Pneumatic Breakwater

In this section, free surface wave propagation in a fluid with a horizontal density gradient

is considered. The fluid is assumed to be well-mixed vertically such that stratification

effects(RI and Rv
P ) can be ignored. While this physical setup is a reasonable represen-

tation of a common coastal situation (e.g. wind waves near a river mouth or inside an

estuary), published experimental data in this configuration is very limited. The reason

for this lack of available data is likely due to the complexity of the experimental setup; a

horizontal density gradient is not stable, and continuous forcing is required to maintain

it. With this in mind, the model derived here will be compared with the available data

such that the behavior of the model might be assessed. Data from a two-phase flow
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(air/water), pneumatic breakwater experiment is chosen. The bubbly area around the

pneumatic breakwater is regarded as low-density fluid while the surrounding clear water

maintains a constant density.

Most the studies of pneumatic breakwater focus on the surface currents generated

by bottom-generated bubbly flows, which are believed to be the main drivers of wave

attenuations(Taylor(1955), Lo(1991)). Nonetheless, a sudden drop of density at the bub-

bly zone is responsible for some wave energy blockage, in that less momentum can be

transported through the lower density, bubbly fluid. In this section the present model

will be applied to pneumatic breakwater simulation, in which horizontal density gradient

effects in wave attenuation are evaluated.

There are a few laboratory studies on pneumatic breakwaters(e.g., Straub et al.(1959),

Bulson(1963), Zhang et al.(2010)). Among these, Zhang et al.(2010) carried out a labo-

ratory test on the performance of pneumatic breakwaters at a 1:15 model scale. Using

relatively long incident waves, they measured wave height behind the pneumatic break-

water to quantify wave transmission through the bubble system. Figure 4.2 describes

experimental setup of pneumatic breakwater. The wave tank has dimensions of 2m in

width, 1.8m in depth and 69m in length, and the air discharge pipe is installed along

the bottom. Through orifices of 0.8mm in diameter, spaced 0.01m along the pipe, air

is discharged into the water to create a bubble curtain. To examine the breakwater

performance as a function of different hydraulic conditions, two different wave periods

and four different air fluxes are tested. Table 4.1 summarizes experimental conditions at

laboratory scale.
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air discharger air bubble ( a)  

Figure 4.2: Experimental setup of pneumatic breakwater(Zhang et al.(2010))

Table 4.1: Experiment conditions of pneumatic breakwater(Zhang et al.(2010))

Water depth 0.8 m
Wave height 0.236 m
Wave period 1.29s, 1.55s
Air amount 10 m3/h, 20 m3/h, 30 m3/h, 40 m3/h

For the numerical simulation, a computational domain based on the wave tank dimen-

sions is constructed using ∆x = 0.025m. A flexible time step, ∆t is adopted according

to CFL stability condition. During the simulation, transmitted wave height is measured

behind the low density region. One remaining issue in creating numerical configuration

is to conceptualize the bubbly field into an “equivalent” fluid zone of low density. To this

end, some simplifying assumptions are made. For shallow flows, the lateral distribution

of bubble concentration at any depth is given by a top-hat profile. Moreover, as seen

in Figure 4.3 (a), bubbles are assumed to be scattered, forming a linear slope (=1/10)

under the wavy condition, as indicated in Zhang et al.(2010). Slip velocity(us) of the
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Figure 4.3: Simplified density field of bubbly fluids; (a)Depth-varying ρ(z) (b)Depth-
constant ρ

rising bubble is given empirically by(Clift et al.(1978)),

us =





4474m/s× r1.357b if 0 ≤ rb ≤ 0.7mm

0.23m/s if 0.7mm < rb ≤ 5.1mm

4.202m/s× r0.547b if rb > 5.1mm

(4.41)

where rb is bubble radius and approximately the same as orifice radius(Ma et al.(2012)).

Fluid velocity(uw) is determined by (Milgram et al.(1983)),

uw = 1.5us (4.42)
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Table 4.2: Parameters for simplified density fields of bubbly area

Air amount(ql) Slip velocity(us) Fluid velocity(uw) ρ Width(W )

5 m3/h/m 0.11 m/s 0.67 m/s 938.52 0.08m
10 m3/h/m 0.11 m/s 0.67 m/s 880.77 0.08m
15 m3/h/m 0.11 m/s 0.67 m/s 826.20 0.08m
20 m3/h/m 0.11 m/s 0.67 m/s 774.89 0.08m

The total rising velocity of bubbles is then (us + uw).

Guided by these assumptions, the density of the bubbly zone can be calculated as

ρ(z) =

{
1− qa

2S (h+ z) (us + uw)

}
ρw +

qa
2S (h+ z) (us + uw)

ρa (4.43)

in which ρa and ρw represent densities of air(= 1.269kg/m3) and water(= 1000kg/m3),

respectively. S denotes side slope of bubbly zone and qa represents injected air volume

per unit width. For depth-integrated model use, ρ(z) is depth-averaged, as depicted in

Figure 4.3 (b). Calculated quantities for density fields are listed in Table 4.2.

The computed results of the transmission coefficient(Kt = transmitted wave height

divided by incident wave height) are plotted in Figure 4.4 and Figure 4.5 with measure-

ment. As expected, the effects of the density transition can be found in both results,

indicating greater air volume discharge yields less transmission through the pneumatic

breakwater. Comparison between calculation and measurement shows good agreement

although the numerical simulations have a clear over-prediction bias. The likely reason

for this discrepancy is the numerical neglect of the bubble-induced currents. However,

the model provides the proper parametric trends and dependencies, and the accuracy is

reasonable.
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Figure 4.4: Comparison of transmission coefficient(Kt) between measurement and calcu-
lation; T=1.55 sec

4.4.2 Waves Excited by Internal Motion: Linear Surface Waves

In this section two-layer internal flow is considered, in which an internal wave travels

along the interface. Being concerned with vertical stratification only, terms associated

with horizontal density variation (Rh
P ) are neglected.

It is well-known that the presence of interfacial motion in a two-layer fluid excites free

surface motion (Lamb(1932), Phillips(1977)). Lamb(1932) obtained an exact solution

about the surface disturbance due to an internal wave using linear potential theory. Such
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Figure 4.5: Comparison of transmission coefficient(Kt) between measurement and calcu-
lation; T=1.29 sec

disturbances at the free surface propagate along with internal waves, whose dispersive

properties are locked to the internal motion.

Within the presented derivation, the profile ui(z) has up to this point been considered

arbitrary. To account for internal wave effects on the free surface modes, a reasonable

description of internal wave velocity ui(z) is needed here. First, the simplified two-layer

system as shown in Figure 4.6 is presented. Density and undisturbed thickness of upper
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Figure 4.6: Simplified two-layer system with interfacial wave a

aIdea underlying the plot assumes internal-mode interfacial wave(ηi) generates internal-mode surface
wave(ηs), For the definition of internal-mode, see Părău and Dias(2001)

layer are ρu and hu, while the lower layer has ρl and hl. The disturbances propagating

along the surface(ηs) and interface(ηi) are defined as simply as

ηs = as cosϑi (4.44)

ηi = ai cosϑi (4.45)

in which as and ai represent wave amplitudes at the surface and interface, respectively,

and ϑi
(
= kix− σit+ ǫ

)
is the phase function with arbitrary shift ǫ. Note that, ki and

σi are assumed to follow the internal wave dispersion relation(Lamb(1932)) as below,
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{
ρu
ρl

tanh
(
kihu

)
tanh

(
kihl

)
+ 1

}(
σi
)4

− gki
{
tanh

(
kihu

)
+ tanh

(
kihl

)} (
σi
)2

+ tanh
(
kihu

)
tanh

(
kihl

)(
1− ρu

ρl

)
g2
(
ki
)2

= 0 (4.46)

Following Liu(2006), who developed an analytic solution based on potential theory,

the linear solution of ui can be expressed as,

ui(z) =





[
A cosh

{
ki(z + hl)

}
+B sinh

{
ki(z + hl)

}]
cosϑi (ηi ≤ z ≤ ηs)

C cosh
{
(ki(z + hu + hl)

}
cosϑi (−hl ≤ z ≤ ηi)

(4.47)

where A,B,C are

A =
ai

σi

[
g

(
1− ρl

ρu

)
+

ρl
(
σi
)2

ρuki tanh (kihl)

]
(4.48)

B =
aiσi

ki
(4.49)

C =
aiσi

ki sinh (kihl)
(4.50)
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The depth-averaged internal velocity, ui, is needed by the model, and can be calculated

as

ui =
1

hu + hl

∫ ηs

−(hu+hl)
ui(z)dz

=
σi

ki(hu + hl)

{
σi

(σi)2 cosh (kihu)− gki sinh (kihu)

}
ai cosϑi (4.51)

from the linear theory. Using the relationship between ai and as (Lamb(1932), Liu(2006))

as =
σi

(σi)2 cosh (kihu)− gki sinh (kihu)
ai, (4.52)

Equation 4.51 can be further simplified to,

ui =
σi

ki(hu + hl)
ηs (4.53)

As only linear internal waves are examined, any non-linear correction for large am-

plitude waves is neglected. With the above solution, however, it can be deduced that

two-layer internal waves produce a mean instantaneous flux which excites linear sur-

face motion. The above expression for depth-averaged internal velocity, when using in

the derived model, will produce locked surface models that should reproduce the linear,

dispersive solution above exactly. This can be seen using the linearized version of Equa-

tion G.1. Assuming that water depth is constant, density has no gradient in horizontal

plane, and only the internal-mode free surface wave exists, whose dispersion property is

locked to the internal waves, Equaton 4.53 can be exactly obtained. Also note that for
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other types of internal wave structures(e.g, solitary waves), ui can be straightforwardly

obtained and applied to Equation 4.22, but will not be derived here.

Now, surface movement excitation due to internal motion will be examined with

experimental and numerical data. For laboratory data, Umeyama(2002) is used here. He

used a 3m-long, 0.15m-wide and 0.22m-deep wave tank equipped with an oil-pressure-

type wave maker on one end and wave-absorber on the other to generate internal waves.

The density profile measured in the experiment is recreated and shown in Figure 4.7,

with approximated value by Equation 4.28 for the comparison.
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Figure 4.7: Measured(solid) and approximately calculated(dashed) density profile in
Umeyama(2002)
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Table 4.3: Experiment conditions of internal waves in two-layer(Umeyama(2002))

CASE I CASE II

Wave amplitude(ai) 0.005 m 0.005 m
Wave period(T i) 5.4 sec 6.4 sec

Low layer thickness(hl) 0.15m 0.15m
Upper layer thickness(hu) 0.15m 0.15m
Pycnocline thickness(δ) 0.006m 0.006m
Low layer density (ρl) 1050 kg/m3 1050 kg/m3

Upper layer density(ρu) 1000 kg/m3 1000 kg/m3

Since the pycnocline thickness is found to be extremely small(δ = δ′/h′ = 0.006m/0.30m=

0.02), the Rv
P term, which is O(µ2δ) can be neglected. Table 4.3 summarizes test con-

ditions of the experiment. It should be noted here that internal waves propagate as the

internal-mode waves of of Equation 4.46. There is no external-mode wave either at surface

or at the interface1.

The physical layout of the experiment is mapped to the computational domain for

numerical implementation, in which ∆x = 0.02m and ∆t = 0.002sec have been chosen.

Simulated results of the free surface elevation induced by internal waves are presented

in Figure 4.8 and 4.9, including both experimental data and analytical solutions (Equa-

tion 4.52) for comparison. Expected agreement between numerical and analytical results

is found. Some disagreement with measurement is seen in both in magnitude and phase

of the free surface waves. Considering the small scale and measurement complexity in

these laboratory tests, the calculation gives reasonable results.

1Referring to the internal/external-mode, this study follows Părău and Dias(2001)’s direction.
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Figure 4.8: Measured(dashed), numerical(solid) and analytical(dot) surface elevation in
CASE I

4.4.3 Waves Excited by Internal Motion: Nonlinear Surface Waves

As explored in the previous section, surface waves are generated by internal waves ac-

cording to the linear solutions. These waves are locked to the phase of the internal waves,

and so are linearly governed by the internal wave dispersion relation. In a more general

situation where the free gravity waves, such as wind waves or tsunamis, propagate on

the surface, there may exist some nonlinear coupling between these two modes. Thus, in

this section, the nonlinear interaction between internal- and external-mode surface waves
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Figure 4.9: Measured(dashed), numerical(solid) and analytical(dot) surface elevation in
CASE II

are investigated. This analysis will rely on quantifying the analytical behavior of the

first-order nonlinear system, as given in Section 4.3.2.

Previous nonlinear similar analysis for Boussinesq-type equations can be found in,

for example, Kennedy et al.(2001) and Lynett and Liu(2004), among numerous others.

Stokes theory is a well-defined and easily-used method that can be appropriately adopted
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here. Following Kennedy et al.(2001), the first-order-nonlinear equation model in one-

horizontal dimension, with constant depth, and weak horizontal and vertical density

gradients is given as
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where the superscript [1] and [2] represent first and second order solutions in the Stokes

system, respectively. Suppose that there are internal- and external-mode surface waves

expressed as,

ζ [1] = ζe + ζi = ae cosϑe + ai cosϑi (4.56)

u[1]α = be cosϑe (4.57)

ui = bi cosϑi (4.58)
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where superscripts i and e imply internal- and external-mode components, respectively.

Again, the internal-mode surface wave has been generated by internal interfacial waves

while the external-mode surface wave is assumed a free gravity wave on the air-fluid

surface. The amplitude of free surface displacement and velocity are symbolized by a and

b.

Second-order solutions are then assumed as,

ζ [2] = aee cos (2ϑe) + aii cos
(
2ϑi
)
+ a+ cos

(
ϑe + ϑi

)
+ a− cos

(
ϑe − ϑi

)
(4.59)

u[2]α = bee cos (2ϑe) + bii cos
(
2ϑi
)
+ b+ cos

(
ϑe + ϑi

)
+ b− cos

(
ϑe − ϑi

)
(4.60)

in which superscripts ii and ee are for self-interactions, whereas + and − are for the super-

and sub-harmonic components, respectively. The phase function is ϑ(i,e) = k(i,e)x −

σ(i,e)t+ ǫ(i,e). Substituting first and second order solutions into Equation 4.54 and 4.55,

and collecting super- and sub-harmonic terms, a± can be obtained as,

a± =
M±

22L
±
1 −M±

12L
±
2

M±
11M

±
22 −M±

12M
±
21

(4.61)

where

M±
11 = σe ± σi (4.62)
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This solution may be compared with an exact potential solution of Liu(2006), who

derived second-order analytical expressions for internal and surface waves in a two-layer

density-stratified fluid. By manipulating Liu’s solution, the amplitude of super- and

sub-harmonic waves, a±exact can be expressed (see Appendix H).

Figure 4.10 presents the comparison of super- and sub-harmonic wave amplitudes

between the presented model and potential solutions when hu = 0.5, hl = 0.5 and

ρu/ρl = 0.9. The contours show model accuracy relative to potential theory; values

near 1.0 are desired. As expected with the derived, long-wave-based model, accurate

results are seen at small wave numbers and errors grow as wave number increases. Both
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super-harmonic and sub-harmonic wave amplitudes tend to be underpredicted as wave

dispersion increases. From this analysis, it is concluded that nonlinear interaction be-

tween internal- and external-mode surface waves can be predicted reasonably within the

range of keh < 0.3 and kih < 0.7.
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Figure 4.10: Second-order super-harmonic and sub-harmonic amplitude relative to the
exact solution(a±/a±exact)

4.5 Summary

By allowing horizontal and vertical variation of fluid density, a depth-integrated model for

long gravity waves over variable density fluid has been developed in the present chapter.
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To include density change effects, correction terms to represent horizontal and vertical

density change are added to typical Boussinesq model of uniform density. In particular,

two-layer fluid system is chosen as vertical density variations, where interfacial wave effects

on free surface is additionally considered through direct inclusion of velocity component of

interfacial wave. During the derivation of equation set, internal wave structure is kept as

generic form within the long internal wave approximation for general use, To numerically

solve derived equations, finite volume scheme coupled with approximated Riemann solver

is adopted for leading order terms while cell-centered finite volume methods are used for

others.

Then, numerical model is applied to various type of problems in which density field

is configured to vary either horizontally or vertically. For horizontal variation of fluid

density, pneumatic breakwater system is simulated to assess density drop effects and fair

agreement is seen between computed and measured data, conceding that current effect

by bubbly flux is responsible for wave attenuation in some degree. Interfacial wave of

two-layer fluid system, as the case of vertical density variation is tested to investigate how

the internal motions affects free surface. As Lamb(1932) analyzed, surface disturbance

by internal wave is observed in numerical results, which is in complete agreement with

analytical solution and thus provides an insight on how the internal motions within two-

layer fluid system affects surface motions. Lastly, nonlinear interaction between external-

and internal-mode surface waves are studied numerically and analytically, which gives

reasonable range of wave numbers for practical application.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

This dissertation studies long wave modeling using the Boussinesq-type approach, fo-

cusing on the complex physics locally-induced at the nearshore such as bottom-induced

turbulence, wave-current interactions and variable-density flows. The following summa-

rizes the major conclusions from each section of this dissertation.

In Chapter 2, a two-way coupled model for long wave simulation has been proposed

for the purpose of seamlessly modeling long wave evolution from the deep ocean to the

shoreline, with fine scale resolution, and without the loss of important physics in the

nearshore. The two components are the shallow-water solver COMCOT and a dispersive,

turbulent, and rotational Boussinesq model. A general benchmark test has been com-

pleted with various conditions provided for validity of the coupled model application. As

a further validation of the coupled model, long wave propagation onto a shallow shelf has

been examined and compared with laboratory data. The results demonstrate that near

coastal areas, dispersive effects may be locally important. As a final test, a recent tsunami
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event, the 2004 Sumatra tsunami, has been simulated with a far field focus on the Port of

Salalah. The coupled model has successfully simulated various sizes of eddies generated

by the tsunami through turbulent activity, and these local physics are confirmed by the

observations presented in Okal et al.(2006).

In Chapter 3, a set of depth-integrated equations describing combined wave-current

flows are derived mathematically and discretized numerically. The Doppler shift effect, a

basic property in wave-current models, is confirmed analytically by limiting the equations

into a one dimensional linear set. For the formulation of velocity component in deriva-

tion, additional stresses introduced by nonlinear wave-current interaction are considered

in addition to the bottom-induced stress. Using a parameter b, an additional stress is

defined to represent the intensity of turbulent interaction between waves and currents.

An appropriate estimation of b is provided through Kemp and Simons(1982, 1983)’s ex-

periments. Long wave propagation over either depth-uniform or linearly-sheared current

fields are tested for validation. Comparison of numerical calculations with measurement

reveals that the rotational behavior of currents needs to be taken into account when de-

scribing the coupled wave-current velocity field. As a final attempt, the model is applied

to a complex configuration, which contains both wave-wave and wave-current interaction,

as well as spatial variation of background currents. Subharmonic bound long waves gen-

erated by wave-wave interaction are well recreated in the presence of background currents

and the comparison with the measurements shows good agreement.

In Chapter 4, by allowing horizontal and vertical variation of fluid density, a depth-

integrated model for long gravity waves over a variable density fluid has been devel-

oped. Throughout the derivation, density change effects appear as correction terms to a
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Boussinesq-type model of uniform density while internal wave effects on free surface waves

in a two-layer fluid system are accounted for through direct inclusion of the internal wave

velocity field. For general use of the model, the internal wave structure is kept arbitrary.

Then, a numerical model is applied to various type of problems in which the density field

is configured to vary either horizontally or vertically. A pneumatic breakwater system

is tested by the model to examine horizontal density drop effects, and fair agreement is

seen between calculated and measured data. A two-layer internal wave with weak density

stratification is simulated to investigate how internal motions affect the free surface. Nu-

merical results show complete agreement with an analytical solution, providing insight on

how the internal motions within a two-layer fluid system affect surface motions. Lastly,

nonlinear interaction between external- and internal-mode surface waves is studied nu-

merically and analytically, which gives reasonable range of wave conditions for practical

application.

5.2 Future Works

The following are future research ideas to improve the accuracy and applicability of

presented models. For further understanding of the mixing and transport properties of the

nearshore flows, an unsteady density and current field, which should be two-way coupled

with a hydrodynamic model, will be considered. With this, more practical application of

the model can be expected.

Regarding the numerical technique, a non-diffusive numerical scheme is in need since

numerical diffusion, as we explored in the first topic, may affect the current patterns and
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thus lead to numerical errors. At the same time, a more robust and accurate solver can be

sought for the application of the model to more challenging problems. Fine-resolution(less

than O(1m)) modeling at the large vicinity of coastal areas may be a valuable effort. To

capture the local physics and to reduce numerical errors which are increasing with grid

size, fine-scale simulations are regarded as necessary measures. To this end, present

model will be parallelized by MPI for practical implementation. Lastly, comparison of

the wave-current model with field data will be performed, for the rigorous validation of

wave-current model.
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Appendix A

Numerical Scheme of COMCOT

The numerical solution scheme employed by COMCOT is the explicit leap-frog difference

method. Nonlinear terms in the model are approximated with upwind finite differences.

The final forms for the continuity and momentum equations are described below:
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where the coefficients of the upwind scheme are obtained by
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Bottom friction terms are given as
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Appendix B

Second order terms in Boussinesq Equation
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and (ψx, ψy) = ψ.
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Appendix C

Variables in Numerical Scheme of Boussinesq Model

E = ELO + ED + EV (C.1)

F = FLO + FD + Uα(ED + EV ) (C.2)

G = GLO +GD + Vα(ED + EV ) (C.3)

ELO, FLO, and GLO are rewritten by

ELO = −∂HUα

∂x
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∂y
(C.4)
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and ED, EV , FD, GD, F1 and G1 are defined as
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F p
v , G

p
v, F c

v and Gc
v are rewritten by
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Appendix D

Derivation of Momentum Equation in Wave-Current Model

Vertical momentum equation, Equation 3.7 with the use of Equation 3.25 will give,

µ2 {(w0)t + uα · ∇w0 + w0 (w0)z}+ pz + 1 = O
(
µ4, αµ3, βµ3

)
(D.1)

Integrating this equation in z direction from z to ζ then gives an vertical expression

of pressure field including hydrodynamic terms as,
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Note that we used Equation 3.15. To derive a horizontal momentum equation of

depth-integrated form, we first substitute Equation 3.25 and D.2 into Equation 3.6.

Accordingly, unsteady term can be expressed as,

ut = (uα)t + µ2
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}

t

+ µ2
[
Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

t

+ µ2
[
Ψb

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}]

t

+ O(µ4) (D.3)

Horizontal convection term is given as,

u · ∇u = uα · ∇uα + µ2∇
[
uα ·

{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}]

+ µ2∇
[
uα ·Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

+ µ2∇
[
uα ·Ψb

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}]

+ µ2∇ [uWα · {uC − uCα}]

+ µ2
(
ξp + ξt + ξc

)
+O(µ4) (D.4)

by virtue of vector identity, ∇ (A ·B) = A · ∇B +B · ∇A+A× (∇×B) +B × (∇×A),

which spawns ξp, ξt and ξc terms defined respectively as,

ξp = − uα ×
[
∇×

{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}]

−
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}
× (∇× uα) (D.5)
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ξt = − uα × (∇×Ψ)

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}

− Ψ× (∇× uα)

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}

− uα × (∇×Ψb)

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}

− Ψb × (∇× uα)

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}
(D.6)

ξc = −uWα × {∇× (uC − uCα)} − (uC − uCα)× (∇× uWα) (D.7)

Of note, these terms are associated to vertical vorticity which can be incurred from either

horizontally rotational or irrotational flows(Chen et al.(2003)).

Vertical convective term becomes,

w (u)z = µ2
(
z2S∇S + zT∇S + zS∇T + T∇T + w0Ω1

)
+O(µ4) (D.8)

And pressure gradient term on the right hand side of Equation 3.6 produces,

∇p = ∇ζ

+ µ2
{
1

2
z2∇St −

1

2
∇
(
ζ2St

)
+ z∇Tt −∇ (ζTt) +

1

2
z2∇ (uα · ∇S)

− 1

2
∇
(
ζ2uα · ∇S

)
+ z∇ (uα · ∇T )−∇ (ζuα · ∇T )− 1

2
z2∇S2

+
1

2
∇
(
ζ2S2

)
− z∇ (TS) +∇ (ζTS)

}

+ O(µ4, αµ3, βµ3) (D.9)

Then, horizontal and vertical viscosity terms are written,
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αµ∇ ·
(
νht ∇u

)
= αµ∇ ·

(
νht ∇uα

)
+O(αµ3) (D.10)

β

µ
(νvt uz)z = −βµνvt ∇S − βµ

τ b

ρ(ζ + h)
+ βµ

τ bb

ρ(ζ + h)

+ βµνvt (uC)zz +O(βµ3) (D.11)

Adding up all these components subsequently makes the depth-integrated momentum

equations as,

(uα)t + uα · ∇uα +∇ζ

+ µ2
1

2
z2α∇St + µ2zα∇Tt − µ2

1

2
∇
(
ζ2St

)
− µ2∇ (ζTt) + µ2T∇T

+ µ2
1

2
∇
(
z2αuα · ∇S

)
+ µ2∇ (zαuα · ∇T ) + µ2

1

2
∇
(
ζ2S2

)

− µ2
1

2
∇
(
ζ2uα · ∇S

)
− µ2∇ (ζuα · ∇T ) + µ2∇ (ζTS)

+ µ2
[
Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

t

+ µ2
[
Ψb

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}]

t

+ µ2∇
[
uα ·Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

+ µ2∇
[
uα ·Ψb

{
−1

2

(
z2α − z2

)
+ h (z − zα)

}]

+ µ2∇{uWα · (uC − uCα)}+ µ2 (w0Ω1) + µ2
(
ξp + ξt + ξc

)

− αµ∇ ·
(
νht ∇uα

)
+ βµνvt ∇S + βµ

τ b

ρ(ζ + h)
− βµ

τ bb

ρ(ζ + h)

− βµνvt (uC)zz

= O(µ4, αµ3, βµ3) (D.12)
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Now our concern turns to elimination of z dependency, as a final effort. Among

others, depth-averaging procedure proposed by Chen(2006) is employed to get the depth-

integrated momentum equation without any z dependency. Except depth-invariant terms,

i.e., terms from irrotational velocity, all others including ξp should be depth-averaged

defined as, for example,

1

ζ + h

∫ ζ

−h
z2dz =

1

3

(
ζ2 − ζh+ h2

)
(D.13)

The final equation is provided in the main body of this chapter
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Appendix E

Numerical Scheme in Wave-Current Model

The system of equations are discretized to develop numerical solutions. All the spatial

derivative terms are discretized by using a conservative finite volume method, while the

temporal derivative terms by third-order Adams-Bashforth predictor and the fourth-

order Adams-Moulton corrector scheme. For the application of finite volume method,

governing equations are in a conservative form to effectively represent conservation laws.

Subsequently, a complete set of equations in a conservative form can be obtained by

equating each term using an assumption of ht = 0.

(ζ + h)t + {(ζ + h)uα}x + {(ζ + h) vα}y + C = 0 (E.1)

{(ζ + h)uα}t +

{
(ζ + h)u2α +

1

2
g (ζ + h)2

}

x

+ {(ζ + h)uαvα}y

− g (ζ + h)hx + (ζ + h)Mx + uαC = 0 (E.2)

{(ζ + h) vα}t + {(ζ + h)uαvα}x +
{
(ζ + h) v2α +

1

2
g (ζ + h)2

}

y

− g (ζ + h)hy + (ζ + h)My + vαC = 0 (E.3)
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where

C =
(
N p +N t +N c

)
(E.4)

(Mx,My) = Hp +Ht +Hc + ξp + ξt + ξc

− ∇ ·
(
νht ∇uα

)
+ νvt ∇S +

τ b

(ζ + h) ρ
− τ bb

(ζ + h) ρ

− νvt {(uC)z |z=ζ − (uC)z |z=−h} (E.5)

Note that all physical parameters are valued in units without ∗. Strictly speaking, above

governing system is not yet casted in strong conservative form(thus weak-conservative

form) due to the bottom slope term as well as higher order terms, which are thought of

as sources or sinks in the equations. The presence of such terms prevents the achievement

of overall conservation of mass and momentum, which may thus lead to inferior shock

capturing capability in regions of very large shock curvature(Vinokur(1974)). Bottom

slope term of leading order, therefore, needs some special treatment to physically and

numerically satisfy the conservation law. In this study, surface gradient method intro-

duced by Zhou et al.(2001) is employed to preserve conservative property of mass and

momentum even in stationary flow condition.

E.1 Finite Volume Method

Godunov scheme coupled with a Riemann solver is one of the most successful technique to

solve hyperbolic system of conservation laws. As a practical advantage for hydrodynamic

modeling, it is capable to capture the shock-like discontinuities such as bores by wave

breaking or hydraulic jumps by abrupt bathymetric changes. Since the higher order

discretization is required for high degree of accuracy, the high frequency oscillation errors
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due to over- or under-shoot are anticipated when using a classic Godunov scheme. So-

called Godunov theorem proved that linear scheme can not be free of spurious oscillations

to get higher order accuracy and this urges the needs for TVD treatment by means

of reconstructing. Therefore, fourth-order compact MUSCL-TVD(Monotone Upstream-

centered Scheme for Conservation Law - TVD) scheme is used in this study to solve leading

order conservative part of the governing equations(Kim et al.(2009)). Reconstructed

values at each interface of piecewise volume, which usually are limited by slope limiter

functions, can be then solved by approximated HLL Riemann solver(Toro (2002)). On

the other hand, higer-order terms are discretized by a cell averaged finite volume method

given by Lacor et al.(2003).

E.2 Time Marching

The governing equations are marched through time by a third-order Adams-Bashforth

predictor and a fourth-order Adams-Moulton corrector scheme.

At the predictor step, values at new time step (n + 1) are evaluated explicitly by

known values at three time steps, (n− 2), (n− 1) and n, which can be described as

ζn+1 = ζn +
∆t

12

(
23En − 16En−1 + 5En−2

)
(E.6)

Pn+1 = Pn +
∆t

12

(
23Fn − 16Fn−1 + 5Fn−2

)

+2Fn
1 − 3Fn−1

1 + Fn−2
1 + F p

v (E.7)

Qn+1 = Qn +
∆t

12

(
23Gn − 16Gn−1 + 5Gn−2

)

+2Gn
1 − 3Gn−1

1 +Gn−2
1 +Gp

v (E.8)

where the superscript n denotes time step. And P , Q are defined as
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P = (ζ + h)uα +
(ζ + h)

2

(
z2α − ζ2

)
(uα)xx + (ζ + h) (zα − ζ) (huα)xx

− (ζ + h) ζx {ζ (uα)x + (huα)x} (E.9)

Q = (ζ + h) vα +
(ζ + h)

2

(
z2α − ζ2

)
(vα)yy + (ζ + h) (zα − ζ) (hvα)yy

− (ζ + h) ζy

{
ζ (vα)y + (hvα)y

}
(E.10)

E, F , G, F1, G1, F
p
v , G

p
v, F c

v , G
c
v in the above equations are defined respectively, as

E = ELO + EHO (E.11)

F = FLO + FHO + uαEHO (E.12)

G = GLO +GHO + vαEHO (E.13)

ELO, FLO, and GLO are rewritten by

ELO = −{(h+ ζ)uα}x − {(h+ ζ) vα}y (E.14)

FLO = −
{
(h+ ζ)u2α +

1

2
g (h+ ζ)2

}

x

− {(h+ ζ)uαvα}y + g (h+ ζ)hx (E.15)

GLO = −{(h+ ζ)uαvα}x −
{
(h+ ζ) v2α +

1

2
g (h+ ζ)2

}

y

+ g (h+ ζ)hy (E.16)
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and EHO, FHO, GHO, F1 and G1 are defined as

EHO =

[
(h+ ζ)

{(
ζ2 − ζh+ h2

6
− 1

2
z2α

)
∇S +

(
ζ − h

2
− zα

)
∇T
}]

x

+

[
(h+ ζ)

{(
ζ2 − ζh+ h2

6
− 1

2
z2α

)
∇S +

(
ζ − h

2
− zα

)
∇T
}]

y

−
[
(h+ ζ)ψx

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}]

x

−
[
(h+ ζ)ψy

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}]

y

+

[
(h+ ζ)ψx

b

{
z2α
2

+ zαζ −
(
2ζ2 + 2ζh− 2h2

)

6

}]

x

+

[
(h+ ζ)ψy

b

{
z2α
2

+ zαζ −
(
2ζ2 + 2ζh− 2h2

)

6

}]

y

−
[∫ ζ

−h
uCdz − (h+ ζ)uCα

]

x

−
[∫ ζ

−h
vCdz − (h+ ζ) vCα

]

y

(E.17)
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(FHO, GHO) = (h+ ζ)

[
1

2
∇
(
ζ2uα · ∇S

)
+∇ (ζuα · ∇T )− 1

2
∇
(
ζ2S2

)

− 1

2
∇
(
z2αuα · ∇S

)
−∇ (zαuα · ∇T )−∇ (ζTS)

− (T∇T )−∇{E (ζS + T )} − ξp
]

− E (ζS + T )∇ζ − 1

2

(
ζ2 − z2α

)
E∇S − (ζ − zα)E∇T

+ (h+ ζ)

[(
ζ2 − ζh+ h2

)

6
∇ (uα ·Ψ)− (ζ − h)

2
∇{uα · (Ψζ)}

+ Ψ

{(
ζ2 + ζh− 2h2

)
S

6
+

(h+ ζ)T

2

}

− ∇
{
uα ·

(
Ψ

(
z2α
2

− ζzα

))}
− ξt

]

+ (h+ ζ)

[{
z2α
2

−
(
ζ2 − ζh+ h2

)

6

}
∇ (uα ·Ψb)

−
{
(ζ − h)

2
− zα

}
∇{uα · (Ψbh)}

+ Ψb

{(
2ζ2 + ζh− h2

)
S

6
+

(h+ ζ)T

2

}]

+ (ζ + h)
{
∇ (uWα · uCα)− ξc

}
−∇

{
uWα ·

(∫ ζ

−h
uCdz

)}

+ (ζS + T )uC |z=ζ + (hS − T )uC |z=−h − S

(∫ ζ

−h
uCdz

)

+ (h+ ζ)

[
∇ ·
(
νht ∇uα

)
− νvt ∇S − τ b − τ bb

(ζ + h) ρ

+ νvt {(uC)z |z=ζ − (uC)z |z=−h}] (E.18)

F1 =
1

2
(h+ ζ)

(
ζ2 − z2α

)
(vα)xy − (h+ ζ) (zα − ζ) (hvα)xy

+ (h+ ζ) ζx

{
ζ (vα)y + (hvα)y

}
(E.19)
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G1 =
1

2
(h+ ζ)

(
ζ2 − z2α

)
(uα)xy − (h+ ζ) (zα − ζ) (huα)xy

+ (h+ ζ) ζy {ζ (uα)x + (huα)x} (E.20)

F p
v , G

p
v, F c

v and Gc
v are rewritten by

F p
v =

(h+ ζ)n
(
ζ2 − ζh+ h2 − 3z2α

)n

6

{
2 (ψx)n − 3 (ψx)n−1 + (ψx)n−2

}

− (h+ ζ)n (ζ − h− 2zα)
n

2

{
2 (ψxζ)n − 3 (ψxζ)n−1 + (ψxζ)n−2

}

+
(h+ ζ)n

(
3z2a + 6hzα − ζ2 − 2ζh+ 2h2

)n

6{
2 (ψx

b )
n − 3 (ψx

b )
n−1 + (ψx

b )
n−2
}

(E.21)

Gp
v =

(h+ ζ)n
(
ζ2 − ζh+ h2 − 3z2α

)n

6

{
2 (ψy)n − 3 (ψy)n−1 + (ψy)n−2

}

− (h+ ζ)n (ζ − h− 2zα)
n

2

{
2 (ψyζ)n − 3 (ψyζ)n−1 + (ψyζ)n−2

}

+
(h+ ζ)n

(
3z2a + 6hzα − ζ2 − 2ζh+ 2h2

)n

6{
2
(
ψy
b

)n − 3
(
ψy
b

)n−1
+
(
ψy
b

)n−2
}

(E.22)

F c
v =

(h+ ζ)n+1 (ζ2 − ζh+ h2 − 3z2α
)n+1

6

{
(ψx)n+1 − (ψx)n

}

− (h+ ζ)n+1 (ζ − h− 2zα)
n+1

2

{
(ψxζ)n+1 − (ψxζ)n

}

+
(h+ ζ)n+1 (3z2a + 6hzα − ζ2 − 2ζh+ 2h2

)n+1

6{
(ψx

b )
n+1 − (ψx

b )
n
}

(E.23)
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Gc
v =

(h+ ζ)n+1 (ζ2 − ζh+ h2 − 3z2α
)n+1

6

{
(ψy)n+1 − (ψy)n

}

− (h+ ζ)n+1 (ζ − h− 2zα)
n+1

2

{
(ψyζ)n+1 − (ψyζ)n

}

+
(h+ ζ)n+1 (3z2a + 6hzα − ζ2 − 2ζh+ 2h2

)n+1

6{(
ψy
b

)n+1 −
(
ψy
b

)n}
(E.24)

With values at all four time steps including (n + 1), whose values are resulted by

predictor step, another new values at time step (n + 1) are obtained through implicit

corrector step.

ζn+1 = ζn +
∆t

24

(
9En+1 + 19En − 5En−1 + En−2

)
(E.25)

Pn+1 = Pn +
∆t

24

(
9Fn+1 + 19Fn − 5Fn−1 + Fn−2

)

+Fn+1
1 − Fn

1 + F c
v (E.26)

Qn+1 = Qn +
∆t

24

(
9Gn+1 + 19Gn − 5Gn−1 +Gn−2

)

+Gn+1
1 −Gn

1 +Gc
v (E.27)

Once this interative step ensures the relative error between the values at predictor

and at corrector is less then 0.0001, the velocity components, uα and vα can be extracted

from P and Q using tridiagonal matrix, which come from the discretized version of

Equation E.9 and E.10,
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P = (uα)i−1,j (ζ + hi,j)

{
z2α − ζ2

2∆x2
+

(zα − ζ)hi−1,j

∆x2
+

ζxζ

2∆x
+
ζxhi−1,j

2∆x

}

+ (uα)i,j (ζ + hi,j)

{
1− z2α − ζ2

∆x2
− 2 (zα − ζ)hi,j

∆x2

}
(E.28)

+ (uα)i+1,j (ζ + hi,j)

{
z2α − ζ2

2∆x2
+

(zα − ζ)hi+1,j

∆x2
− ζxζ

2∆x
− ζxhi−1,j

2∆x

}

Q = (vα)i,j−1 (ζ + hi,j)

{
z2α − ζ2

2∆y2
+

(zα − ζ)hi,j−1

∆y2
+

ζyζ

2∆y
+
ζyhi,j−1

2∆y

}

+ (vα)i,j (ζ + hi,j)

{
1− z2α − ζ2

∆y2
− 2 (zα − ζ)hi,j

∆y2

}
(E.29)

+ (vα)i,j+1 (ζ + hi,j)

{
z2α − ζ2

2∆y2
+

(zα − ζ)hi,j+1

∆y2
− ζyζ

2∆y
− ζyhi,j−1

2∆y

}

where subscript (i, j) identifies cell location.
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Appendix F

Derivation of Momentum Equation of Boussinesq Model

for Variable Density Fluid Flows

From the vertical momentum equation, the pressure field will be extracted. Substituting

Equation 4.22 into Equation 4.5 yields

µ2ρ0 {(w0)t + uα · ∇w0 + w0 (w0)z}+ pz + ρ0

{
1− γ tanh

(
z − z0
δ

)}

= O
(
µ4, αµ3, βµ3, γµ2

)
(F.1)

Integrating the equation above with respect to z provides the expression for pressure,

p = ρ0 (ζ − z)− γδρ0

[
ln

{
cosh

(
ζ − z0
δ

)}
− ln

{
cosh

(
z − z0
δ

)}]

+µ2ρ0

{
1

2

(
z2 − ζ2

)
St + (z − ζ)Tt +

1

2

(
z2 − ζ2

)
uα · ∇S

+(z − ζ)uα · ∇T − 1

2

(
z2 − ζ2

)
S2 − (z − ζ)TS

}

+O
(
µ4, αµ3, βµ3, γµ2

)
(F.2)

It is noted that Equation 4.12 has also be applied in the above equation.
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To derive a depth-integrated momentum equation for uα, Equation 4.22 and F.2 can

be applied to Equation 4.4 where each term is written as,

ρut = ρ0 (uα)t − γ tanh

(
z − z0
δ

)
ρ0 (uα)t + µ2ρ0

(
ui
)
t

+ µ2ρ0

{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}

t

+ µ2ρ0

[
Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

t

+O(µ4, γµ2) (F.3)

ρu · ∇u = ρ0uα · ∇uα − γ tanh

(
z − z0
δ

)
ρ0uα · ∇uα + µ2ρ0∇

(
uα · ui

)

+ µ2ρ0∇
[
uα ·

{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}]

+ µ2ρ0∇
[
uα ·Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

+ µ2ρ0ξ +O(µ4, γµ2) (F.4)

ρw (u)z = µ2ρ0
(
z2S∇S + zT∇S + zS∇T + T∇T + w0ω1

)
+O(µ4, γµ2) (F.5)
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∇p = ∇{ρ0 (ζ − z)}

− γ∇
(
ρ0δ

[
ln

{
cosh

(
ζ − z0
δ

)}
− ln

{
cosh

(
z − z0
δ

)}])

+ µ2ρ0

{
1

2
z2∇St −

1

2
∇
(
ζ2St

)
+ z∇Tt −∇ (ζTt) +

1

2
z2∇ (uα · ∇S)

− 1

2
∇
(
ζ2uα · ∇S

)
+ z∇ (uα · ∇T )−∇ (ζuα · ∇T )− 1

2
z2∇S2

+
1

2
∇
(
ζ2S2

)
− z∇ (TS) +∇ (ζTS)

}

+ µ2 (∇ρ0)
{
1

2

(
z2 − ζ2

)
St + (z − ζ)Tt +

1

2

(
z2 − ζ2

)
uα · ∇S

+ (z − ζ)uα · ∇T − 1

2

(
z2 − ζ2

)
S2 − (z − ζ)TS

}

+ O(µ4, αµ3, βµ3, γµ2) (F.6)

αµ∇ ·
(
ρνht ∇u

)
= αµ∇ ·

(
ρ0ν

h
t ∇uα

)
+O(αµ3, αγµ) (F.7)

β

µ
(ρνvt uz)z = −βµρ0νvt ∇S − βµ

τ b

ζ + h
+ βµρ0ν

v
t

(
ui
)
zz

+O(βµ3, βγµ) (F.8)

In Equation F.4, ξ is defined as,

ξ = − uα ×
[
∇×

{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}]

−
{
1

2

(
z2α − z2

)
∇S + (zα − z)∇T

}
× (∇× uα)

− uα ×
(
∇× ui

)
− ui × (∇× uα)

− uα × (∇×Ψ)

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}

− Ψ× (∇× uα)

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}
(F.9)
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Equation F.3 to F.8 are substituted into Equation 4.4 to produce the horizontal mo-

mentum equation written in terms of uα. Thus,

(uα)t + uα · ∇uα +∇ζ + ∇ρ0
ρ0

(ζ − z)

+ µ2
{
−1

2
∇
(
ζ2St

)
−∇ (ζTt) +

1

2
ζ2∇St + zα∇Tt

− 1

2
∇
(
ζ2uα · ∇S

)
−∇ (ζuα · ∇T ) + 1

2
∇
(
ζ2S2

)

+
1

2
∇
(
z2αuα · ∇S

)
+∇ (zαu · ∇T ) + T∇T +∇ (ζTS)

}

+ µ2
[
Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

t

+ µ2∇
[
uα ·Ψ

{
1

2

(
z2α − z2

)
+ ζ (z − zα)

}]

− µ2Ψ (ζ − z) (zS + T ) + µ2ξ + µ2
(
ui
t +∇uα · ui

)

+ µ2
∇ρ0
ρ0

{
1

2

(
z2 − ζ2

)
St + (z − ζ)Tt +

1

2

(
z2 − ζ2

)
uα · ∇S

+ (z − ζ)uα · ∇T − 1

2

(
z2 − ζ2

)
S2 − (z − ζ)TS

}

− γ

{
tanh

(
z − z0
δ

)
(uα)t − tanh

(
z − z0
δ

)
uα · ∇uα

− 1

ρ0
∇
(
ρ0δ

[
ln

{
cosh

(
ζ − z0
δ

)}
− ln

{
cosh

(
z − z0
δ

)}])}

= αµ
1

ρ0
∇ ·
(
ρ0ν

h
t ∇uα

)

−βµνvt ∇S − βµ
1

ρ0

τ b

ζ + h
+ βµνvt

(
ui
)
zz

(F.10)

Now, the remaining procedure is to eliminate z dependency in the above equation;

depth-averaging is employed (i.e. Chen(2006)) over the entire equation. This final equa-

tion is provided in the main body of the manuscript.
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Appendix G

Numerical Formulation

The derived Equations 4.24 and 4.29 will be discretized to find numerical solutions.

In the present work, a conservative-form finite volume method is adopted for spatial

derivatives while 3rd order Adams-Bashforth predictor and 4th order Adams-Moulton

corrector scheme is used for time integration.

Prior to discretization of the governing system, Equation 4.24 and 4.29 are converted

to the conservative form before applying the finite volume method. In this section, all

dimensions are recovered with primes(′) omitted for convenience. Utilizing a fixed bottom

assumption(ht = 0), the conservative form of the continuity and momentum equations

can be obtained as,

Ht + (Huα)x + (Hvα)y + (ND +NB +NI) = 0 (G.1)

(Huα)t +

(
Hu2α +

1

2
gH2

)

x

+ (Huαvα)y − gHhx +
1

2

(ρ0)x
ρ0

gH2

+ HMx + uα (ND +NB +NI) = 0 (G.2)

183



(Hvα)t + (Huαvα)x +

(
Hv2α +

1

2
gH2

)

y

− gHhy +
1

2

(ρ0)y
ρ0

gH2

+ HMy + vα (ND +NB +NI) = 0 (G.3)

where H = ζ + h and terms of O(µ2, γ, αµ, βµ) are given by

(Mx,My) = RD +RB +RI +Rh
P +Rv

P + ξ

− 1

ρ0
∇ ·
(
ρ0ν

h
t ∇uα

)
+ νvt ∇S +

τ b

Hρ0

− νvt
(
ui
z|z=ζ − ui

z|z=−h

)
(G.4)

G.1 Time Integration

Time derivative terms in the above equations are solved by a third-order Adams-Bashforth

predictor and a fourth-order Adams-Moulton corrector scheme(Wei et al.(1995), Lynett

and Liu(2002a)) to minimize truncation error to order of O(∆t3)(Liu and Wang(2012)).

Through an iterative predictor-corrector time-marching scheme, the solution at the next

time step, (n+ 1) can be found.

The explicit predictor step is given by,

ζn+1 = ζn +
∆t

12

(
23En − 16En−1 + 5En−2

)
(G.5)

Pn+1 = Pn +
∆t

12

(
23Fn − 16Fn−1 + 5Fn−2

)

+2Fn
3 − 3Fn−1

3 + Fn−2
3 + F p

4 (G.6)

Qn+1 = Qn +
∆t

12

(
23Gn − 16Gn−1 + 5Gn−2

)

+2Gn
3 − 3Gn−1

3 +Gn−2
3 +Gp

4 (G.7)
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and the implicit corrector step is written as,

ζn+1 = ζn +
∆t

24

(
9En+1 + 19En − 5En−1 + En−2

)
(G.8)

Pn+1 = Pn +
∆t

24

(
9Fn+1 + 19Fn − 5Fn−1 + Fn−2

)

+Fn+1
3 − Fn

3 + F c
4 (G.9)

Qn+1 = Qn +
∆t

24

(
9Gn+1 + 19Gn − 5Gn−1 +Gn−2

)

+Gn+1
3 −Gn

3 +Gc
4 (G.10)

where the superscript n denotes time step and P , Q are defined numerically as (Kim et

al.(2009))

P = (uα)i−1,j Hi,j

{
z2α − ζ2

2∆x2
+

(zα − ζ)hi−1,j

∆x2
+

ζxζ

2∆x
+
ζxhi−1,j

2∆x

}

+ (uα)i,j Hi,j

{
1− z2α − ζ2

∆x2
− 2 (zα − ζ)hi,j

∆x2

}
(G.11)

+ (uα)i+1,j Hi,j

{
z2α − ζ2

2∆x2
+

(zα − ζ)hi+1,j

∆x2
− ζxζ

2∆x
− ζxhi−1,j

2∆x

}

Q = (vα)i,j−1Hi,j

{
z2α − ζ2

2∆y2
+

(zα − ζ)hi,j−1

∆y2
+

ζyζ

2∆y
+
ζyhi,j−1

2∆y

}

+ (vα)i,j Hi,j

{
1− z2α − ζ2

∆y2
− 2 (zα − ζ)hi,j

∆y2

}
(G.12)

+ (vα)i,j+1Hi,j

{
z2α − ζ2

2∆y2
+

(zα − ζ)hi,j+1

∆y2
− ζyζ

2∆y
− ζyhi,j−1

2∆y

}

Subscript (i, j) in P and Q identifies cell location. All other terms included in Equa-

tion G.5 to G.10 are given below:
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E = E1 + E2 (G.13)

F = F1 + F2 + uαE2 (G.14)

G = G1 +G1 + vαE2 (G.15)

E1, F1, and G1 are rewritten by

E1 = −{Huα}x − {Hvα}y (G.16)

F1 = −
{
Hu2α +

1

2
gH2

}

x

− {Huαvα}y + gHhx −
1

2

(ρ0)x
ρ0

gH2 (G.17)

G1 = −{Huαvα}x −
{
Hv2α +

1

2
gH2

}

y

+ gHhy −
1

2

(ρ0)y
ρ0

gH2 (G.18)

and E2, F2, G2, F3, G3 are expressed as

E2 =

[
H

{(
ζ2 − ζh+ h2

6
− 1

2
z2α

)
∇S +

(
ζ − h

2
− zα

)
∇T
}]

x

+

[
H

{(
ζ2 − ζh+ h2

6
− 1

2
z2α

)
∇S +

(
ζ − h

2
− zα

)
∇T
}]

y

−
[
Hψx

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}]

x

−
[
Hψy

{
z2α
2

− zαζ +

(
2ζ2 − 2ζh− h2

)

6

}]

y

−
[
Hui

]

x
−
[
Hvi

]

y
(G.19)
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(F2, G2) = H

[
1

2
∇
(
ζ2uα · ∇S

)
+∇ (ζuα · ∇T )− 1

2
∇
(
ζ2S2

)

− 1

2
∇
(
z2αuα · ∇S

)
−∇ (zαuα · ∇T )−∇ (ζTS)

− (T∇T )−∇{E (ζS + T )}]−Hξ

− E (ζS + T )∇ζ − 1

2

(
ζ2 − z2α

)
E∇S − (ζ − zα)E∇T

+ H

[(
ζ2 − ζh+ h2

)

6
∇ (uα ·Ψ)− (ζ − h)

2
∇{uα · (Ψζ)}

+ Ψ

{(
ζ2 + ζh− 2h2

)
S

6
+
HT

2

}

− ∇
{
uα ·

(
Ψ

(
z2α
2

− ζzα

))}]
−H∇

(
uα · ui

)

− ∇ρ0
ρ0

{
H(−2ζ + h)

6
(uα · ∇S − S2)− H

2
(uα · ∇T − ST )

}

− δ(uα · ∇uα)

[
ln

{
cosh

(−h− z0
δ

)}
− ln

{
cosh

(
ζ − z0
δ

)}]

+
H

ρ0
∇
{
ρ0δ ln cosh

(
ζ − z0
δ

)}

− 1

ρ0

∫ ζ

−h
∇
{
ρ0δ ln cosh

(
z − z0
δ

)}
dz

+ H

[
1

ρ0
∇ ·
(
ρ0ν

h
t ∇uα

)
− νvt ∇S − τ b

Hρ0

+ νvt
{
ui
z|z=ζ − ui

z|z=−h

}]
(G.20)

F3 =
1

2
H
(
ζ2 − z2α

)
(vα)xy −H (zα − ζ) (hvα)xy

+ Hζx

{
ζ (vα)y + (hvα)y

}
(G.21)
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G3 =
1

2
H
(
ζ2 − z2α

)
(uα)xy −H (zα − ζ) (huα)xy

+ Hζy {ζ (uα)x + (huα)x} (G.22)

F p
4 , G

p
4, F

c
4 and Gc

4 are rewritten by

F p
4 =

Hn
(
ζ2 − ζh+ h2 − 3z2α

)n

6
Σp(ψx)− Hn (ζ − h− 2zα)

n

2
Σp(ψxζ)

+ HnΣp(ui)− Hn (h− 2ζ)n

6

(ρ0)x
ρ0

Σp(S) +
Hn

2

(ρ0)x
ρ0

Σp(T )

− δ

[
ln

{
cosh

(−h− z0
δ

)}
− ln

{
cosh

(
ζ − z0
δ

)}]n
Σp(uα) (G.23)

Gp
4 =

Hn
(
ζ2 − ζh+ h2 − 3z2α

)n

6
Σp(ψy)− Hn (ζ − h− 2zα)

n

2
Σp(ψyζ)

+ HnΣp
(
vi
)
− Hn (h− 2ζ)n

6

(ρ0)y
ρ0

Σp(S) +
Hn

2

(ρ0)y
ρ0

Σp(T )

− δ

[
ln

{
cosh

(−h− z0
δ

)}
− ln

{
cosh

(
ζ − z0
δ

)}]n
Σp(vα) (G.24)

F c
4 =

Hn+1
(
ζ2 − ζh+ h2 − 3z2α

)n+1

6
Σc(ψx)− Hn+1 (ζ − h− 2zα)

n+1

2
Σc(ψxζ)

+ Hn+1Σc
(
ui
)
− Hn+1 (h− 2ζ)n+1

6

(ρ0)x
ρ0

Σc(S) +
Hn+1

2

(ρ0)x
ρ0

Σc(T )

− δ

[
ln

{
cosh

(−h− z0
δ

)}
− ln

{
cosh

(
ζ − z0
δ

)}]n+1

Σc (uα) (G.25)
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Gc
4 =

Hn+1
(
ζ2 − ζh+ h2 − 3z2α

)n+1

6
Σc(ψy)− Hn+1 (ζ − h− 2zα)

n+1

2
Σc(ψyζ)

+ Hn+1Σc
(
vi
)
− Hn+1 (h− 2ζ)n+1

6

(ρ0)y
ρ0

Σc(S) +
Hn+1

2

(ρ0)y
ρ0

Σc(T )

− δ

[
ln

{
cosh

(−h− z0
δ

)}
− ln

{
cosh

(
ζ − z0
δ

)}]n+1

Σc (vα) (G.26)

where Σp(φ) = 2φn − 3φn−1 + φn−2 and Σc(φ) = φn+1 − φn.

G.2 Spatial Discretization : Finite Volume Method

Recently, finite volume schemes coupled with Riemann solvers have been successfully ap-

plied to shallow water (Erduran et al.(2005)) and Boussinesq-type(Tonelli and Petti(2009),

Kim et al.(2009), Shi et al.(2012)) equations, and have shown relatively robust per-

formance. For the shallow water terms embedded in Equation G.1, G.2 and G.3, a

4th order compact MUSCL-TVD scheme has been applied and combined with the HLL

Riemann solver(Kim et al.(2009)). The fractional volume flux determination procedure

used in this study is described here. The interface value of any conservative quantity

(q = H,Huα, Hvα) is constructed by,

qLi+1/2 = qi +
1

6

{
∆∗qi−1/2 + 2∆∗q̃i+1/2

}
(G.27)

qRi+1/2 = qi+1 −
1

6

{
2∆∗qi+1/2 +∆∗q̃i+3/2

}
(G.28)
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where superscript L and R denotes the values at the left-hand and the right-hand side of

the interface(i+ 1/2), respectively. ∆∗q and ∆∗q̃ in the above can be calculated from

∆∗qi−1/2 = minmod
(
∆∗qi−1/2, b∆

∗qi+1/2

)

∆∗q̃i+1/2 = minmod
(
∆∗qi+1/2, b∆

∗qi−1/2

)

∆∗qi+1/2 = minmod
(
∆∗qi+1/2, b∆

∗qi+3/2

)

∆∗q̃i+3/2 = minmod
(
∆∗qi+3/2, b∆

∗qi+1/2

)





(G.29)

in which

∆∗qi+1/2 = ∆qi+1/2 −
1

6
∆3qi+1/2 (G.30)

∆3qi+1/2 = ∆qi−1/2 − 2∆qi+1/2 +∆qi+3/2 (G.31)

∆qi−1/2 = minmod
(
∆qi−1/2, b1∆qi+1/2, b1∆qi+3/2

)

∆qi+1/2 = minmod
(
∆qi+1/2, b1∆qi+3/2, b1∆qi−1/2

)

∆qi+3/2 = minmod
(
∆qi+3/2, b1∆qi−1/2, b1∆qi+1/2

)





(G.32)

The Minmod limiter function used in Equation G.29 and G.32 is defined by

minmod(x, y) = sign(x)max [0,min {|x|, y sign(x)}]

minmod(x, y, z) = sign(x)max [0,min {|x|, y sign(x), z sign(x)}]





(G.33)
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The coefficients b and b1 in Equation G.29 and G.32 are set to 2 and 4, respectively. It

is noted that ignoring the 3rd order component(∆3q) in Equation G.30 will degrade the

scheme from 4th to 3rd order.

Constructed interface values(qL, qR) poses local Riemann problem, so are input for

computing numerical fluxes through a HLL approximate Riemann solver, given by (Toro,

2002)

Θ
(
qL, qR

)
=





Θ
(
qL
)

if sL ≥ 0

Θ∗
(
qL, qR

)
if sL < 0 < sR

Θ
(
qR
)

if sR ≤ 0

(G.34)

where

Θ∗
(
qL, qR

)
=
sRΘ

(
qL
)
− sLΘ

(
qR
)
+ sRsL

(
qR − qL

)

sR − sL
(G.35)

The wave speeds used here are given by

sL = uL −
√
gHLϕL, sR = uR +

√
gHRϕR (G.36)

in which flux ϕ(L,R) is given by

ϕ(L,R) =





√
1
2
(H∗+H(L,R))H∗

H(L,R)2
, H∗ > H(L,R) (shock)

1 , H∗ ≤ H(L,R) (rarefaction)

(G.37)

H∗ =
1

g

{
1

2

(√
gHL +

√
gHR

)
+

1

4

(
uL − uR

)}2

(G.38)
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The remaining terms, including higher order spatial derivatives, are differenced by

the cell averaged finite volume method proposed by Lacor et al.(2003).
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Appendix H

Second-order Sub- and Super-harmonic Solution in

Two-layer Fluids

a±exact =

∑5
j=1Π

±
j Λ

±
j

Det±
(H.1)

where

Π±
1 = −K±

25K
±
33K

±
42K

±
51 +K±

23K
±
35K

±
42K

±
51 +K±

25K
±
33K

±
41K

±
52

− K±
23K

±
35K

±
41K

±
52 (H.2)

Π±
2 = K±

15K
±
33K

±
42K

±
51 −K±

15K
±
33K

±
41K

±
52 (H.3)

Π±
3 = −K±

15K
±
23K

±
42K

±
51 +K±

15K
±
23K

±
41K

±
52 (H.4)

Π±
4 = K±

25K
±
33K

±
51 −K±

23K
±
35K

±
51 −K±

15K
±
23K

±
31K

±
52 (H.5)
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Π±
5 = −K±

25K
±
33K

±
41 +K±

23K
±
35K

±
41 +K±

15K
±
23K

±
31K

±
42 (H.6)

Λ±
1 = −1

2

(
keAea

i0 + kiAia
e0
)

(H.7)

Λ±
2 = −1

2

(
ke cosh (kehl)Cea

i0 + ki cosh
(
kihl

)
Cia

e0
)

(H.8)

Λ±
3 =

1

2

ρu
ρl

{
keσeBea

i0 + kiσiBia
e0 + keki (AeAi ±BeBi)

}

−1

2

{
keσe sinh (kehl)Cea

i0 + kiσi sinh
(
kihl

)
Cia

e0

−kekiCeCi cosh
(
k∓hl

)}
(H.9)

Λ±
4 = −1

2

[
keai {Ae cosh (k

ehu) +Be sinh (k
ehu)}

+kiae
{
Ai cosh

(
kihu

)
+Bi sinh

(
kihu

)}]
(H.10)

Λ±
5 =

1

2

[
keσeai {Ae sinh (k

ehu) +Be cosh (k
ehu)}

+kiσiae
{
Ai sinh

(
kihu

)
+Bi cosh

(
kihu

)}

−kekiae
{
(AeAi ∓BeBi) cosh

(
k∓hu

)

+(BeAi ∓BiAe) sinh
(
k∓hu

)}]
(H.11)

Det± = K±
25K

±
33K

±
44K

±
51 −K±

23K
±
35K

±
44K

±
51 −K±

15K
±
23K

±
31K

±
44K

±
52

−K±
25K

±
33K

±
41K

±
54 +K±

23K
±
35K

±
41K

±
54 +K±

15K
±
23K

±
31K

±
42K

±
54 (H.12)
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Variables Ai, Bi, Ci, ai and K
±
ijare,

Ai =
ai0

σi

[
g

(
1− ρl

ρu

)
+

ρl
(
σi
)2

ρuki tanh(kihl)

]
(H.13)

Bi =
σiai0

ki
(H.14)

Ci =
σiai0

ki sinh(kihl)
(H.15)

ai =

(
σi
)2
ai0

(σi)2 cosh(kihu)− gki sinh(kihu)
(H.16)

and

K±
15 = σ±/k±, K±

23 = sinh
(
k±hl

)
, K±

25 = σ±/k±,

K±
31 = −σ±ρl/ρu, K±

33 = σ± cosh
(
k±hl

)
, K±

35 = g (ρl/ρu − 1) ,

K±
41 = sinh

(
k±hu

)
, K±

42 = cosh
(
k±hu

)
, K±

44 = σ±/k±

K±
51 = −σ± cosh

(
k±hu

)
, K±

52 = −σ± sinh
(
k±hu

)
, K±

54 = g (H.17)

Similarly, Ae, Be, Ce, ae can be expressed.
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