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Abstract

Model-based predictions are critically dependent on assumptions and hypotheses that

are not based on first principles and that cannot necessarily be justified based on known

prevalent physics.Constitutive models, for instance, fall under this category. While these

predictive tools are typically calibrated using observational data, little is usually done

with the scatter in the thus-calibrated model parameters. In this study, this scatter is used

to characterize the parameters as stochastic processes and a procedure is developed to

carry out model validation for ascertaining the confidence in the predictions from the

model.

Most parameters in model-based predictive tools are heterogeneous in nature and

have a large range of variability. Thus the study aims at improving these predictive tools

by using the Polynomial Chaos methodology to capture this heterogeneity and provide

a more realistic description of the system’s behavior. Consequently, a data assimilation

technique based on forecasting the error statistics using the Polynomial Chaos method-

ology is developed. The proposed method allows the propagation of a stochastic rep-

resentation of the unknown variables using Polynomial Chaos instead of propagating

an ensemble of model states forward in time as is suggested within the framework of

the Ensemble Kalman Filter (EnKF) . This overcomes some of the drawbacks of the

EnKF. Using the proposed method, the update preserves all the statistics of the posterior

unlike the EnKF which maintains the first two moments only. At any instant in time,

xi



the probability density function of the model state or parameters can be easily obtained

by simulating the Polynomial Chaos basis. Furthermore it allows representation of non-

Gaussian measurement and parameter uncertainties in a simpler, less taxing way without

the necessity of managing a large ensemble. The proposed method is used for realis-

tic nonlinear models, and its efficiency is first demonstrated for reservoir characteriza-

tion using automatic history matching and then for tracking the fluid front dynamics to

maximize the waterflooding sweeping efficiency by controlling the injection rates. The

developed methodology is also used for system identification of civil structures with

strong nonlinear behavior.

History matching, the act of calibrating a reservoir model to match the observed

reservoir behavior, has been extensively studied in recent years. Standard methods for

reservoir characterization required adjoint or gradient based methods to compute the

gradient of the objective function and consequently minimize it. The computational

cost of such methods increases exponentially as the number of model parameters or

observational data increase. Recently, the EnKF was introduced for automatic history

matching . The Ensemble Kalman Filter uses a Monte Carlo scheme for achieving sat-

isfactory history matching results at a relatively low computational cost. In this study,

the developed data assimilation methodology is used for improving the prediction of

reservoir behavior. To enhance the forecasting ability of a reservoir model, first a better

description of the reservoir’s geological and petrophysical features using a stochastic

approach is adopted, and then the new data assimilation method based on forecasting

the error statistics using the Polynomial Chaos (PC) methodology, is employed. The

reservoir model developed in this study is that of multiphase immiscible flow in a ran-

domly heterogeneous porous media. The model uncertainty is quantified by modeling

the intrinsic permeability and porosity of the porous medium as stochastic processes

via their PC expansions. The Spectral Stochastic Finite Element Method (SSFEM) is

xii



used to solve the multiphase flow equations. SSFEM is integrated within SUNDANCE

2.0, a software developed in Sandia National Laboratories for solving partial differential

equations using finite element methods. Thus, SUNDANCE is used for the analysis or

prediction step of the reservoir characterization, and an algorithm using the newmat C++

library is developed for updating the model via the new data assimilation methodology.

Using the same underlying physics, the proposed method is coupled with a control

loop for the purpose of optimizing the fluid front dynamics in flow in porous media

problem through rate control methods. The rate control is carried out using the devel-

oped data assimilation technique; the water injection rates are included as part of the

state vector, and are continuously updated so as to minimize the mismatch between the

predicted front and a specified target front.

The second application of the proposed method aims at presenting a robust sys-

tem identification technique for strongly nonlinear dynamics by combining the filtering

methodology with a non-parametric representation of the system’s nonlinearity. First a

non-parametric representation of the system nonlinearity is adopted. The Polynomial

Chaos expansion is employed to characterize the uncertainty within the model, and then

the proposed data assimilation technique is used to characterize the robust stochastic

polynomial representation of the system’s non-linearity. This enables monitoring the

system’s reaction and identifying any obscure changes within its behavior. The pre-

sented methodology is applied for the structural health monitoring of a four story shear

building subject to a ground excitation. The corresponding results prove that the pro-

posed system identification techniques accurately detects changes in the system behavior

in spite of measurement and modeling noises.

The results obtained from these two applications depict the efficiency of the pro-

posed method for parameter estimation problems. The combination of the Ensemble

Kalman Filter with the Polynomial Chaos methodology thus proves to be an efficient

xiii



sequential data assimilation technique that surpasses standard Kalman Filtering tech-

niques while maintaining a relatively low computational cost.
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Chapter 1

Introduction

Data assimilation aims at predicting and estimating true state unknowns by combining

the observed information with the underlying dynamical model. It is an interdisciplinary

field involving engineering, mathematics, and physical sciences. Most data assimilation

methods can be classified as either control or estimation theory methods. Control the-

ory methods are mainly the gradient based methods. The computational cost of these

methods increases exponentially as the number of unknown parameters increases. This

study focuses on estimation theory methods with Kalman Filter at their heart. It aims

at developing a new data assimilation methodology based on combining the Kalman

Filtering techniques with the Polynomial Chaos methodology.

The Kalman Filter is a sequential data assimilation methodology, that integrates the

model forward in time, and whenever measurements are available, they are used to reini-

tialize the model before the integration continues [Kal60]. It is an optimal state estima-

tion process applied to dynamical systems involving random perturbations. The Kalman

Filter provides a linear, unbiased, minimum variance algorithm to optimally estimate the

state of the system from noisy measurements. If the model turns out to be nonlinear or

a parameter estimation is required, a linearization procedure is usually performed in

deriving the filtering equations [CC91]. The Kalman Filter thus obtained is known as

the extended Kalman Filter (EKF). The ensemble Kalman Filter was lately introduced

[Eve94] to overcome some of the drawbacks of the EKF. The EnKF considers the effects

of the higher order statistics that were neglected by the EKF due to linearization, but pre-

serves the first two moments only when propagating the error statistics. It also reduces

1



the computational cost of the EKF by presenting simpler techniques for propagating the

model errors.

This study presents a data assimilation method based on forecasting the error statis-

tics using the Polynomial Chaos methodology. Instead of propagating an ensemble of

model states forward in time as is suggested within the framework of the EnKF, the

proposed method allows the propagation of a stochastic representation of the unknown

variables using Polynomial Chaos. This overcomes some of the drawbacks of the EnKF.

Using the proposed method, the update preserves all the statistics of the posterior unlike

the EnKF which maintains the first two moments only. Furthermore, at any instant in

time, the probability density function of the model state or parameters can be easily

obtained by simulating the Polynomial Chaos basis. It also allows the representation

of non-Gaussian measurement and parameter uncertainties in a simpler, less taxing way

without the necessity of managing a large ensemble. The computational load for rele-

vant accuracy is comparable to that of the EnKF and the storage size is limited to the

number of terms in the PC expansion of the model states. The proposed method can

be used for realistic nonlinear models, and its efficiency is demonstrated on a reser-

voir characterization using automatic history matching, for front tracking of the flow in

porous media, and for system identification of structures with strong nonlinearities.

1.1 Reservoir Characterization

Reservoir simulation is a powerful tool for reservoir characterization and management.

It enhances the production forecasting process. The efficiency of a reservoir model

relies on its ability to characterize the geological and petrophysical features of the actual

field. One of the most commonly used methods for reservoir characterization is the

automatic history matching methodology. History matching aims at estimating reservoir

2



parameters such as porosities and permeabilities so as to minimize the square of the

mismatch between observations and computed values.

In short, history matching is a parameter estimation problem aiming at finding the

probability density function of the parameters and associated model states based on mea-

surements related to these states and possibly the parameters themselves [Eve05]. Well

established history matching techniques rely on the gradient type methods for mini-

mization of cost functions [Ca74, CDL75, Ma93]. The gradient-based approach was

extended for multiscale estimation [GMNU03, Aan05]. Further the gradual deforma-

tion method introduced by Roggero and Hu [RH98] has gained some interest. These

traditional history matching techniques suffer from some drawbacks [NBJ06]:

• They are usually only performed after period of years on a campaign basis.

• Ad hoc matching techniques are applied, and the process usually involves manual

adjustment of model parameters instead of systematic updating.

• Measurement and modeling uncertainties in the state vector are usually not explic-

itly taken into account.

• Often, the resulting history matched model violates essential geological con-

straints.

• The most critical issue is that although the updated model may reproduce the

production data perfectly, it has little or no predictive capacity because it may

have been over fitted by adjusting a large number of unknown parameters using a

much smaller number of measurements.
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Various techniques for automated history matching have been developed over the

past decade to address these issues. The Ensemble Kalman Filter (EnKF) intro-

duced by Evensen [Eve94, BLE98, Eve03] was recently used for online estima-

tion of reservoir parameters and state variables given the production history data

[NMV02, NJAV03, GO05, GR05, LO05, WC05]. Although, the EnKF yields satis-

factory history matching results it has some drawbacks. The EnKF copes badly with

non-Gaussian probability density functions since it requires a large ensemble size to

accurately characterize the statistics of the corresponding functions [Kiv03]. Thus, this

study presents a variation of the EnKF that allows the propagation of a stochastic rep-

resentation of the variables using the Polynomial Chaos expansion. Consequently all

the statistics of the random variables are preserved. First, it is required to accurately

represent the geological features of the reservoir and the fluid flowing within, and con-

sequently uncertainty must be quantified. Major sources of uncertainty in the process of

history matching and production forecasting include [AML05]:

• Measurement errors

• Uncertain description of geological and fluid parameters

• Model errors and imperfections

The model uncertainty is quantified by modeling the intrinsic permeability and

porosity of the porous medium as stochastic processes via their Polynomial Chaos

expansions. This yields a system of coupled nonlinear stochastic partial differential

equations. The Spectral Stochastic Finite Element Method (SSFEM) proposed by

Ghanem and Spanos [GS03] is employed to solve this system at discrete time steps.

SSFEM is an extension of the deterministic finite element method (FEM) to stochastic

boundary value problems. In the context of SSFEM, the randomness in the problem is

regarded as an additional dimension with an associated Hilbert space of L2 functions in
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which a set of basis functions is identified. This set is known as Polynomial Chaos and

is used to discretize the random dimension [GS03, Wie38]. The SSFEM is integrated

within SUNDANCE 2.0 [Lon04], a finite element partial differential equation solver,

for maximal computational efficiency. SUNDANCE is a toolkit that allows construction

of an entire parallel simulator and its derivatives using a high-level symbolic language.

It is sufficient to specify the weak formulation of the partial differential equation and

its discretization along with a finite element mesh to obtain a solution. The proposed

method is then used to filter the stochastic representations obtained by the SSFEM. The

proposed history matching technique is used for the characterization of both one dimen-

sional and two dimensional heterogeneous reservoirs. Different ways for representing

the medium uncertainties are discussed, and the obtained results reveal the efficiency of

the proposed scheme.

1.2 Front Tracking

Another important aspect in reservoir simulations is the maximization of some measure

of the displacement efficiency. In cases where the injected fluid composition is fixed,

the only given way to control the front dynamics is through controlling the allocation of

the injected fluid to the injection wells. Therefore, to maximize the sweeping efficiency

of the water flooding process, an algorithm to update the injection flow rate so as to

maintain a specified front is devised. The algorithm uses the proposed filtering scheme

and it aims at minimizing the mismatch between the predicted water saturation and a

discretization of the objective front. This is coupled with the history matching technique

described earlier rendering a flow control problem which takes into consideration the

effects of parametric, modeling, and measurement uncertainties. This has been an active

research area in the past couple of decades [NBJ06, SY00, FR86, FR87, Ash88].
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Using the same underlying physics described earlier, the proposed method is coupled

with a control loop for the purpose of optimizing the fluid front dynamics in flow in

porous media problem through rate control methods. The rate control is carried out

using the developed data assimilation technique; the water injection rates are included

as part of the state vector, and are continuously updated so as to minimize the mismatch

between the predicted front and a specified target front. The efficiency of this control

approach is demonstrated on a two dimensional reservoir model with two injectors and

multiple producers. The aim is to maintain a uniform flow throughout the simulation.

1.3 Structural Health Monitoring

Numerous structural engineering problems exhibit non-linear dynamical behavior with

uncertain and complex governing laws. With the recent technological advances, sensors

and other monitoring devices became more accurate and abundant. Therefore, their

use for health monitoring of civil structures gained popularity. The major problem that

remained is to devise the proper mathematical models that can cope with and analyze

the humongous measurements data flow. This has been a very active research area over

the past decade [GS95, LBL02, ZFYM02, FBL05, FIIN05, GF06].

System identification and damage detection in most real life structures must be

adapted to uncertainties and noise sources that can not be modeled as Gaussian pro-

cesses. These uncertainties are typically associated with modeling, parametric, and

measurement errors. In cases where these uncertainties are significant, standard iden-

tification and damage detection techniques are either unsuitable or inefficient. In this

study, a system identification procedure based on coupling robust non-parametric non-

linear models with the Polynomial Chaos methodology in the context of the Kalman

Filtering techniques is presented. First a non-parametric representation of the system
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nonlinearity is adopted. The Polynomial Chaos expansion is employed to characterize

the uncertainty within the model, and then the proposed data assimilation technique is

used to characterize the robust stochastic polynomial representation of the system’s non-

linearity which enables monitoring the system’s reaction and identifying any obscure

changes within its behavior.

The presented methodology is applied for the structural health monitoring of a four

story shear building subject to a ground excitation. The corresponding results prove that

the proposed system identification techniques accurately detects changes in the system

behavior in spite of measurement and modeling noises.

1.4 Summary of Original Contributions

This section provides a summary of the original contributions presented in this study:

• A stochastic sequential data assimilation technique based on forecasting the error

statistics using the Polynomial Chaos methodology is presented. This enables

the calibration of predictive models by characterizing the parameters as stochastic

processes.

• The application of the proposed technique for reservoir characterization is an

innovative approach that allows approximating the higher order statistics of the

production forecast. The use of PC to represent the uncertainty in the reservoir

model and the measurement help convey the actual medium in a more realistic

way.

• A novel control approach using the Polynomial Chaos Kalman Filter is presented

for optimizing the fluid front dynamics in porous media using rate control.
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• The Polynomial Chaos methodology is used to characterize the uncertainty in

robust non-parametric representations of structural systems nonlinearities. The

latter is coupled with the developed data assimilation technique to render a robust

structural health monitoring methodology.

The details of all the aforementioned approaches are presented in the following chap-

ters.

1.5 Outline

Chapter two gives a review of the various methods used in this study to represent uncer-

tainties. It presents the details of the Polynomial Chaos expansion, and shows the imple-

mentation details of the Spectral Stochastic Finite Element Method. Furthermore, chap-

ter two present a model reduction technique to improve the computational efficiency of

the Spectral Stochastic Finite Element Method for solving high dimensional stochastic

systems.

In chapter three, sequential data assimilation techniques with a focus on the Kalman

Filter and its various nonlinear extensions are discussed. The implementation details of

a novel data assimilation technique based on coupling the Ensemble Kalman Filter with

the Polynomial Chaos methodology are given.

Chapter four presents the basics of transport and flow in porous media. The gov-

erning flow equations are derived, and the various geological and petrophysical features

of the reservoir and fluid parameters are discussed. The efficiency of automatic His-

tory matching using the proposed filter is demonstrated. Furthermore, a rate control

technique for optimizing the sweep efficiency in the water flooding process is devised.

In chapter five, the proposed filter is applied for the system identification of highly

nonlinear structures. Non-parametric representations of the structural nonlinearity are
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discussed, and the setup is applied to the structural health monitoring of a four story

shear building subject to a ground excitation.

Chapter six gives a description of SUNDANCE’s capabilities. It presents the imple-

mentation details of the spectral library within SUNDANCE, and gives a detailed exam-

ple as a guide for users to follow.

Finally, some concluding remarks and future research direction are mentioned.
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Chapter 2

Uncertainty Representation

Uncertainty in physical data and phenomena could be attributed to two sources. The

first one is the inherently irregular phenomena which could not be described determin-

istically, and the other is the phenomena that are not uncertain in nature but to which

uncertainties could be attributed due to lack of available data [GS03]. Therefore, in

order for any numerical model of a physical system to be useful, these uncertainties

have to be accurately represented in the model and proper numerical schemes should be

used for the analysis. To have a complete understanding of the approach used in this

study, it is important to introduce some mathematical concepts.

LetH be the Hilbert space of functions [Ode79] defined over a domainD with values

on the real line R. Denote by (Ω,Ψ, P ) a probability space where Ω represents the

domain, Ψ a measurable subset of the domain, and P is a measure on Ψ with P (Ω) = 1

. A random variable is defined as a mapping Ω → P . Let x be an element of D and θ an

element of Ω. Then, Θ denotes the space of functions mapping Ω to the real line. The

inner products overH and Θ are defined using the Lebesgue measure and the probability

measure respectively. For any two elements hi(x) and hj(x) in H , the inner product is

defined as,

(hi(x), hj(x)) =

∫

D

hi(x)hj(x)dx. (2.1)

Similarly, for any two elements α(θ) and β(θ) in Ω, the inner product is defined as,

(α(θ), β(θ)) =

∫

Ω

α(θ)β(θ)dP, (2.2)
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where dP is a probability measure. Elements in the Hilbert spaces described above are

said to orthogonal if their inner product is zero. A random process is then defined as a

function in the product space D × Ω.

In what follows, some of the available techniques for addressing problems with

stochasticity are reviewed. First different methods for representing the uncertainty

are described, and then the details of the Spectral Stochastic Finite Element Method

(SSFEM) as a tool for analyzing stochastic models is presented. The computational cost

of the SSFEM depends on the mesh size, the dimension of the polynomial chaos expan-

sion of the random variables, and the order of the polynomial chaos (PC) expansion

of the solution. Specifically, the size of the linear system resulting from the SSFEM

increases rapidly as the number of terms in the PC expansion grows. Therefore, a

stochastic model reduction technique is presented to help cope with this problem.

2.1 Karhunen-Loeve Expansion

In cases where uncertainties possess a well defined covariance function, the Monte Carlo

simulation is the most widely used method for representing the randomness. It consists

of sampling the functions in a random, collocation like, scheme. Therefore, it requires a

large ensemble of samples to accurately represent the process statistics. The Karhunen-

Loeve expansion[Loe77] is a more theoretically appealing way to represent these func-

tions. It is a Fourier-type series representation of random processes. It is based on

the spectral decomposition of the covariance function of the stochastic process being

represented. The expansion takes the following form:

Y (x, θ) = 〈Y (x)〉 +
∞
∑

i=1

ξi(θ)
√

λiφi(x) (2.3)
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where,

〈ξi〉 = 0, 〈ξiξj〉 = δij, i, j = 1, ..., µ ξ0 ≡ 1. (2.4)

In the above equation, θ is a random index spanning a domain in the space of random

events, and the product ξi(θ)
√
λi represents the random amplitude associated with the

deterministic shape functions φi(x), and 〈.〉 denotes the mathematical expectation oper-

ator. The sets {φi}∞i=1 and {λi}∞i=1 are associated with the solution to the covariance

kernel integral eigenvalue problem,

∫

D

C(x1, x2)φi(x2)dx2 = λiφi(x1) (2.5)

whereD denotes the spatial extent of the stochastic process, and C(x1, x2) is the covari-

ance function.

In practice, the Karhunen-Loeve expansion is usually truncated to a finite number of

terms,

Y (x, θ) = 〈Y (x)〉 +

µ
∑

i=1

ξi(θ)
√

λiφi(x). (2.6)

The number of terms is dependent on the distribution of the random pattern of the

stochastic processes being modeled. The closer the process is to white noise, the more

terms are required, while if a random variable is to be represented, a single term in

the expansion is sufficient. This is directly correlated with eigenvalues resulting from

solving the covariance kernel problem. The series is truncated after the first µ largest

generalized eigenvalues of 2.5 such that
∑µ

i=1 λi/
∑

i λi is sufficiently close to one. The

monotonic decay of the eigenvalues is guaranteed by the symmetry of the covariance

function and the rate of the decay is related to the correlation length of the process being

expanded. Figure 2.1 shows the monotonic decay of the eigenvalues λi.

The Karhunen-Loeve expansion is mean-squared convergent and optimal provided

that the process being expanded has a finite variance. It is optimal in the sense that the
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Figure 2.1: Contribution of successive scales of fluctuations in the KL expansion

mean square error resulting from a finite representation of the process Y (x, θ) is mini-

mized. The disadvantage of the Karhunen Loeve expansion is that its use is limited to

the prior knowledge of the covariance function. Therefore more general representation

are necessary for representing different processes.

2.2 Polynomial Chaos Expansion

The Polynomial Chaos expansion is more general than the Karhunen Loeve expansion

in the sense that it does not require prior knowledge of the covariance function. It is used

to represent the solution of a stochastic partial differential equation which is usually a

function of the problem parameters. The expansion involves an infinite basis set that

completely spans the L2 space of random variables, and whose elements are orthogonal

polynomials. It can be shown [CM47] that, provided the solution has a finite variance,
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this functional dependence could be expressed in terms of polynomials in Gaussian

random variables, in the form,

u(x; θ) = a0(x)Γ0 +
∞
∑

i1=1

ai1(x)Γ1(ξi1(θ)) + (2.7)

∞
∑

i1=1

∞
∑

i2=1

ai1i2(x)Γ2(ξi1(θ)ξi2(θ)) + . . .

In this equation, Γn(ξi1 , . . . , ξin) denotes the nth order polynomial chaos in the variables

(ξi1 , . . . , ξin). These are generalizations of the multidimensional Hermite polynomials,

and ai1,...,iN are deterministic coefficients in the expansion [Wie38]. Upon introducing a

one to one mapping to a set of ordered indices {ψi} and truncating the polynomial chaos

expansion after the P th term, the above equation can be written as

u(x; θ) =
P
∑

j=0

uj(x)ψj(θ). (2.8)

These polynomials are orthogonal with respect to the joint probability measure of

(ξi1 , . . . , ξin); i.e. their inner product, 〈ψjψk〉, is equal to zero for j 6= k. The jth

order polynomial, ψj(ξ) can be explicitly evaluated as,

ψo(ξ) = 1 (2.9)

ψ1(ξi1) = ξi1 (2.10)

ψ2(ξi1 , ξi2) = ξi1ξi2 − δi1i2 (2.11)

ψ3(ξi1 , ξi2 , ξi3) = ξi1ξi2ξi3 − ξi1δi1i2 − ξi2δi1i3 − ξi3δi1i2 (2.12)
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where δij is the Kronecker delta. In general, the Polynomial Chaos of order n can be

obtained as,

ψn(ξi1 , . . . , ξin) = (−1)ne
1

2
ξT ξ(

∂ne
−1

2
ξT ξ

∂ξi1 . . . ξin
). (2.13)

Once the deterministic coefficients {ui} are calculated, a complete probabilistic charac-

terization of the stochastic process is achieved.

A truncated Polynomial Chaos can be refined along the random dimension by either

adding more random variables to the set {ξi(θ)} or by increasing the order of the polyno-

mials in the PC expansion. Note that the total number of terms P + 1 in a PC expansion

with order less than or equal to p in M random dimensions is given by

P + 1 =
(p+M)!

M !p!
. (2.14)

2.3 Polynomial Chaos Representation of Some Func-

tions of Stochastic Processes

In many stochastic systems, one is often faced with the obstacle of efficiently repre-

senting functions of stochastic processes be they dependent or independent, Gaussian

or Non-Gaussian. These function could be ratios, products, or even polynomials of

stochastic processes. As long as these functions belong to L2, they admit their own

Polynomial Chaos representations. In this study algorithms are devised to perform these

functions on the PC expansion of the random processes.
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2.3.1 The Lognormal Process

Consider the process l(x, z) obtained from the Gaussian field Y (x, z) via exponentia-

tion. This process is a stochastic field having a lognormal marginal probability distribu-

tion. It can be represented in terms of multidimensional Hermite polynomials orthogo-

nal with respect to the Gaussian measure [Gha99],

l(x, z; θ) =
P
∑

i=0

ψi(θ)li(x, z). (2.15)

The zeroth order term in the polynomial chaos expansion refers to the mean of the

process and is given by,

l0(x, z) = exp[µY +
σ2

Y

2
] (2.16)

where µY and σY denote the mean and standard deviation of the Gaussian random field

Y respectively. The higher order terms are

li(x, z) =
〈l(x, z)ψi〉

〈ψ2
i 〉

=

〈

eY (x,z)ψi

〉

〈ψ2
i 〉

. (2.17)

The denominator can be easily evaluated and tabulated, and the numerator could be

expressed as [Gha99]

〈l(x, z)ψi〉 = exp[Y0(x, z) +
1

2

N
∑

j=1

Y 2
j (x, z)] 〈ψi(η)〉 , (2.18)

where 〈ψi(η)〉 represents the average of the polynomial chaos centered around Yi. Con-

sequently, the lognormal process can be represented as,

l(x, z; θ) = lo(x, z)(1 +
N
∑

i=1

ξi(θ)Yi(x, z)+
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N
∑

i=1

N
∑

j=1

(ξi(θ)ξj(θ) − δij)

〈(ξiξj − δij)2〉 Yi(x, z)Yj(x, z) + ...). (2.19)

2.3.2 Product of Two or More Stochastic Processes

Consider two random processes, A(x, θ) and B(x, θ), and their respective Polynomial

Chaos approximations:

Â(x, θ) =
P
∑

i=0

Ai(x)ψi(ξ), (2.20)

B̂(x, θ) =
P
∑

j=0

Bj(x)ψj(ξ). (2.21)

We need to determine the PC expansion of the process, C, obtained from the product

of A and B,

Ĉ(x, θ) =
P
∑

k=0

Ck(x)ψk(ξ) =
P
∑

i=0

Ai(x)ψi(ξ)
P
∑

j=0

Bj(x)ψj(ξ). (2.22)

The Ck coefficients are obtained by projection on a higher order chaos.

Ck(x) =
P
∑

i=0

P
∑

j=0

Ai(x)Bj(x)Cijk ∀k ∈ 0, . . . , P (2.23)

where

Cijk =
〈ψiψjψk〉
〈ψ2

k〉
. (2.24)

This can be easily extended to the product of three processes,

Dl(x) =
P
∑

i=0

P
∑

j=0

P
∑

k=0

Ai(x)Bj(x)Ck(x)Dijkl ∀l ∈ 0, . . . , P (2.25)
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where

Dijkl =
〈ψiψjψkψl〉

〈ψ2
l 〉

. (2.26)

For computing the PC expansion of a polynomial, each product is computed sep-

arately using the above machinery, and then addition and subtraction are carried on.

Addition and Subtraction are performed by adding/subtracting the corresponding PC

coefficients of the variables being added/subtracted.

2.3.3 Ratio of Two Stochastic Processes

Consider the stochastic process given by a ratio of two different stochastic processes

C(x; θ) =
A(x; θ)

B(x; θ)
(2.27)

using the polynomial chaos expansion to represent the latter equation yields,

P
∑

k=0

Ck(x)ψk(ξ) =

∑P
i=0Ai(x)ψi(ξ)

∑P
j=0Bj(x)ψj(ξ)

(2.28)

cross-multiplying, and requiring the difference to be orthogonal to the approximating

space spanned by the Polynomial Chaos {ψl}P
l=0 yields,

P
∑

k=0

P
∑

j=0

Ck(x)Bj(x)
〈ψjψkψl〉
〈ψ2

l 〉
= Al(x) ∀l ∈ 0, . . . , P . (2.29)

Expanding the equation for all values of l results in a system of linear algebraic

equations which when solved gives the deterministic chaos coordinates of C. The size

of the resulting system is equal to the number of terms used in the chaos representation

of the approximation.
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2.4 Uncertainty Propagation: The Spectral Stochastic

Finite Element Method

The SSFEM proposed by Ghanem and Spanos [GS03] is an extension of the determin-

istic finite element method FEM to stochastic boundary value problems. In the context

of SSFEM, the randomness in the problem is regarded as an additional dimension with

an associated Hilbert space of L2 functions in which a set of basis functions is identified.

This set is known as Polynomial Chaos and is used to discretize the random dimension

[GS03, Wie38].

In the deterministic finite element method, the spatial domain is replaced by a set

of nodes that represent the finite element mesh and the resulting solution is expressed

in terms of nodal degrees of freedom ui, i = 1, . . . , N augmented into a vector U . The

strain energy V e stored in each element Ae is expressed as,

V e =
1

2

∫

Ae

σT (x, z)ǫ(x, z)dAe (2.30)

where dAe is a differential element inAe, and σ(x, z) and ǫ(x, z) are the stress and strain

vector respectively. For simplicity, assume that the model specified for the analysis is a

plane strain linearly elastic one, the stress maybe expressed in terms of the strain as,

σ = Deǫ (2.31)

where De is the stochastic plane strain matrix of constitutive relations. The two dimen-

sional displacement vector u(θ) representing the longitudinal and transverse displace-

ments within each element can be expressed in terms of the nodal displacements of the

element in the form

u(θ) = N e(r, s)U e(θ) (2.32)
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where N e(r, s) is the local interpolation matrix, U e(θ) is the random nodal response

vector, and r and s are local coordinates over the element. The total strain energy V is

obtained by summing the contributions from all the elements. This procedure gives

V =
1

2

Ne
∑

e=1

U eT

∫ 1

0

∫ 1

0

BeTDe(x, z; θ)Be|Je|drdsU e (2.33)

where |Je| denotes the determinant of the Jacobian of the transformation that maps an

arbitrary element (e) onto the three-nodded triangle with sides equal to one, and Be is

the matrix that describes the dependence of strains on displacements.

The polynomial chaos expansion of the matrix of constitutive properties may be

substituted in the above equation to transform the latter into,

V =
1

2
UT

P
∑

k=0

Kkψk(θ)U. (2.34)

Minimizing the total potential energy with respect to U , and expanding the response

vector U using Polynomial Chaos, lead to the following equation

P1
∑

i=0

Kiψi

P2
∑

j=0

Ujψj − F = 0 (2.35)

where F is the vector of nodal forces, and Uj is the deterministic coordinate vector of the

response and is evaluated as the solution of the following system of algebraic equations

P2
∑

j=0

KjkUj = Fk, k = 0, 1, 2, ..., P2 (2.36)

where,

Kjk =

P1
∑

i=0

CijkKi (2.37)
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Fk = 〈ψkF 〉 (2.38)

Cijk = 〈ψiψjψk〉 . (2.39)

The size of the resulting linear system could rapidly increase with the growing num-

ber of terms in the polynomial chaos expansion, and with a fine mesh, one could foresee

significant computational challenges. This emphasizes the need for establishing a reduc-

tion method that computationally simplifies the problem while preserving the accuracy

and veracity of the SSFEM.

2.5 Stochastic Model Reductions

The stochastic model reduction for chaos representation method [DGRH] aims at obtain-

ing an alternative to the polynomial chaos basis for representing the response. In order

to do so, the method involves solving the problem using the complete order polyno-

mial chaos basis on a coarse mesh. From the resulting solution, the covariance kernel

of the response is estimated, and used to approximate the dominant Karhunen-Loeve

representation of the response,

u(x, z; θ) = 〈u(x, z)〉 +

µ
∑

i=1

√
νiηi(θ)φi(x, z). (2.40)

Moreover, noting the differentiability properties of the response u, it has been suggested

[DGRH] that optimality in a more adapted functional space can be achieved by using

a modified version of the Karhune-Loeve expansion known as the Hilbert-Karhunen-

Loeve representation. Accordingly the sets {νi} and {φi} are associated with the solu-

tion of the following eigenvalue problem

(R(., x2, z2), φi(x2, z2))E(D) = νiφi(x1, z1) ∀i. (2.41)
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where R(x1, z1, x2, z2) = 〈(u(x1, z1) − 〈u(x1, z1)〉)(u(x2, z2) − 〈u(x2, z2)〉)〉, and

(., .)E(D) denotes the inner product induced by the energy norm associated with the

mean of the process D(x, z). The random variables {ηi} characterized on the coarse

mesh are assumed to retain their joint probabilistic measure as the solution is approx-

imated on the fine mesh. Furthermore, each of the ηi’s is expressed in a Polynomial

Chaos representation that is assumed to be well approximated on the coarse mesh. This

method was applied for a Benchmark study that was presented in ICOSSAR’05 and

whose details will be presented in what follows [GSD07].

2.6 Application to the Embankment Dam Problem

The embankment dam problem of the benchmark study is treated using the newly devel-

oped Stochastic Model Reduction for Polynomial Chaos Representations method. The

elastic and shear moduli of the material, in the present problem, are modeled as two

stochastic processes that are explicit functions of the same process possessing a rela-

tively low correlation length. The state of the system can thus be viewed as a function

defined on a high-dimensional space, associated with the fluctuations of the underlying

process. In such a setting, the spectral stochastic finite element method (SSFEM) for the

specified spatial discretization is computationally prohibitive. The approach adopted in

this paper enables the stochastic characterization of a fine mesh problem based on the

high dimensional polynomial chaos solution of a coarse mesh analysis. The problem

to be examined is that of an embankment dam with trapezoidal cross-section made of

earth or rock fill subject to compressive deterministic loading conditions as is shown in
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Figure 2.2: Schematic of the Embankment Dam

Figure 2.2. Due to the nature of the material, it is proposed to model the low strain elas-

tic and shear moduli as non-homogeneous lognormal random fields E(x, z) and G(x, z)

respectively,

E(x, z) = mE(z) + σE(z)
eY (x,z) −my

σy

(2.42)

G(x, z) = mG(z) + σG(z)
eY (x,z) −my

σy

, (2.43)

where mE(z) and mG(z) are the means, σE(z) and σG(z) are the standard deviations,

Y (x, z) is a homogeneous, zero mean, unit variance Gaussian random field with given

autocorrelation function RY (∆x,∆z) given by eq. 2.44, mY = E[eY ] = e0.5 and

σ2
Y = V ar[eY ] = e2 − e [ICO04],

RY (∆X,∆Z) = exp(−|∆X|
10

− |∆Z|
3

). (2.44)

Table 2 of [ICO04] presents the properties of the low strain elastic parameters. The elas-

tic moduli are represented as dependent stochastic processes possessing a relatively low

correlation length, and consequently the problem can be viewed as a function defined on

a very high dimensional space. The spatial domain is discretized into triangular, 3-node,

plane strain finite elements. Figure 2.3 shows the proposed mesh of 2160 elements.
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2.6.1 Implementation Details

First, the Karhunen-Loeve expansion is employed to help reduce the dimensionality of

the problem. A Galerkin type procedure is applied to transform the Fredholm equation

to a generalized eigenvalue problem which is solved for the eigenvalues λi’s and eigen-

vectors φi’s of the covariance kernel. Figure 2.4 shows the computed eigenvalues of

the given covariance kernel. It shows that the decay of the eigenvalues is rather slow

because of the relatively low correlation length provided; this indicates the necessity of

using a big number of terms in the KL expansion.
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Figure 2.4: Eigenvalues λn of the Exponential Covariance Kernel

Knowing the significance of each of the random dimensions in the problem, the

total number of terms in the polynomial chaos representation of the response must be
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decided. Many terms are often used in the Polynomial Chaos expansion. For stability

issues, the minimum order of chaos expansion of the process D(x, z) should be at least

twice that of the response u [MK04]. This way the computational cost of the solution

is greatly reduced without sacrificing the method’s accuracy. The problem at hand is

solved for various combinations of the number of terms in the the KL and increasing

orders of PC expansions to test the convergence of the response.

Due to computational difficulties in experimenting with high dimensional solutions,

the problem was first solved, based on the proposed fine mesh, using a relatively low

number of dimensions in the KL expansion, and the solution was investigated for sec-

ond, third, and fourth order PC expansions. It turns out, as is shown in figure 2.5 that the

significance of adding the third order terms is negligible. Figures 2.5 a and b show the

nodal variances convergence of the the horizontal and vertical displacements for 2 terms

in the KL expansion of the solution (M = 2) and as the order of the PC expansion

(p) is increased. Similar results were obtained for 3 and 4 terms in the KL expansion,

and results obtained using the stochastic model reductions for 15 and 20 terms in the

KL expansion confirmed that the second order is sufficient to portray the uncertainty

in the response. Although the SSFEM converged for a second order polynomial chaos

expansion, results were still vastly remote from the solution obtained through a Monte

Carlo simulation of the problem. This implies that more terms in the KL expansion are

needed.

As noted earlier, as the number of terms in the polynomial chaos expansion

increases, the computational cost of SSFEM rises significantly. The size of the resulting

algebraic system that is to be solved for the deterministic coefficients of the response is

N(P + 1) ×N(P + 1) where N is the number of nodal degrees of freedom.

25



0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Node Number

N
o

d
a

l 
V

a
ri
a

n
c
e

 H
o

ri
z
o

n
ta

l 
D

is
p

la
c
e

m
e

n
t

M=2 P=1
M=2 P=2
M=2 P=3

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Node Number

N
o

d
a

l 
V

a
ri
a

n
c
e

 V
e

rt
ic

a
l 
D

is
p

la
c
e

m
e

n
t

M=2 P=1
M=2 P=2
M=2 P=3

(a) (b)

Figure 2.5: The Significance of third order chaos expansion on the response.

For the embankment dam problem, the proposed mesh has 2294 degrees of freedom.

In order to attain convergence, it was determined through computational experimenta-

tion using the stochastic model reduction method that about 60 terms in the KL expan-

sion are needed. The corresponding total number of terms needed in the polynomial

chaos second order expansion is 1891 which leaves us with a linear algebraic system in

4337954 unknowns. Solving such a system requires a super computer with very high

memory capacity.

To solve this problem, the stochastic model reduction method is used. A coarse mesh

of 60 elements shown in figure 2.6 is used to carry out the full SSFEM analysis. The

solution obtained from solving the problem on the coarse scale is expressed as,

U(θ) =
P
∑

i=0

Uiψi(θ) (2.45)

where, U is an N × 1 vector containing the horizontal and vertical nodal displacements.

Having the above approximation, the covariance kernel of the response is estimated as

RUU = 〈(
P
∑

i=1

Uiψi)(
P
∑

j=1

Ujψj)
T 〉 =

P
∑

i=1

UiU
T
i

〈

ψ2
i

〉

(2.46)
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Figure 2.6: Coarse Mesh of 60 elements

Now, the Hilbert-Karhunen-Loeve expansion can be obtained by solving equation

2.41 using a Galerkin projection scheme on the coarse mesh, which will lead to a discrete

generalized eigenvalue problem whose size is determined by the number of degrees of

freedom of the coarse discretization. In discrete form, the eigenvalue problem becomes,

KT
0 RK0f = νK0f (2.47)

where K0 is the stiffness matrix associated with the mean of the process D(x, z)

and obtained from the SSFEM solution on the coarse mesh. It should be noted that K0

is readily available from the current analysis on the coarse mesh. The matrix R is the

covariance of the solution, ν is a diagonal matrix whose elements are the eigenvalues

of the generalized eigenvalue problem, and f a matrix containing the corresponding

eigenvectors. The Hilbert-Karhunen-Loeve representation is given by

u(x, z; θ) = 〈u(x, z)〉 +
∑

i

√
νifi(x, z)ηi(θ) (2.48)

The above expansion can be truncated after the first µ largest generalized eigenvalues

of (2.47) such that
∑µ

i=1 νi/
∑

i νi is sufficiently close to one. Now, the set of random
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variables {ηi}µ
i=1 are recasted by a linear transformation of the set of the polynomial

chaos basis {ψi}P
i=1 [DGRH].

ηi(θ) =
P
∑

j=1

αijψj(θ) ∀i (2.49)

where

αij =
fT

i K0Uj√
νi

; ∀i, j. (2.50)

The fine scale problem involves the finite dimensional space of piecewise continu-

ous polynomials corresponding to the spatial discretization shown in figure 2 and the

space of random variables spanned by the basis {ηi}µ
i=1 [DGRH]. The application of the

SSFEM becomes
P
∑

i=0

Kiψi

µ
∑

j=0

Ujηj − F = 0 (2.51)

µ
∑

j=0

KjkUj = Fk, k = 0, 1, 2, . . . , µ (2.52)

where,

Kjk =
P
∑

i=0

dijkKi (2.53)

Fk = 〈ηkF 〉 (2.54)

dijk = 〈ψiηjηk〉 (2.55)

dijk =

〈

ψi

(

P
∑

m=1

αjmψm

)(

P
∑

n=1

αknψn

)〉

=
P
∑

m=1

P
∑

n=1

αjmαkn 〈ψiψmψn〉

=
P
∑

m=1

P
∑

n=1

αjmαkncimn ∀ j, k. (2.56)

Where the coefficients cimn := 〈ψiψmψn〉 are already tabulated [GS03].
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Figure 2.7: The response representation using a 15 dimensional second order expansion

obtained via SSFEM and SSFEM with Stochastic Model Reductions

The stochastic model reduction is first verified on a reduced version of the problem.

The second order solution in 15 stochastic dimensions is obtained using only SSFEM

and the combination of SSFEM and stochastic model reductions. The results show great

compatibility and are presented in figure 2.7.

The problem is solved using the stochastic model reduction for chaos expansions for

a range of terms in the KL expansion starting with 15 dimensions, for which compari-

son is made with SSFEM, and ending with 60 dimensions which gives close results to

those obtained from a Monte Carlo simulation. Using a sixty dimensional polynomial

expanded up to second order, 1891 bases are required to capture the uncertainty of the

response using SSFEM analysis on the coarse scale problem. Using the coarse mesh
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solution to obtain the covariance matrix of the response, the eigenvalue problem (2.47)

is solved to obtain the number of significant basis for the fine mesh analysis. Figure

2.8 gives the decay of the eigenvalues of (2.47). Note that 29 new bases are sufficient to

capture the uncertainty in the response for the fine scale problem. The response obtained

using these 29 basis in a SSFEM analysis on the fine scale is presented in the analysis

section. Clearly the computation costs associated with 29 bases in random dimensions

are dramatically less than those of the full order SSFEM with 1891 bases.
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Figure 2.8: Eigenvalues of equation 2.47

2.6.2 Analysis of Results

To assess the validity of the results obtained by the SSFEM and test its effectiveness

and convergence, the same problem is also treated using a Monte Carlo Simulation.

The Monte Carlo simulation logic involves solving the whole system once for every

realization in a statistical sample associated with the random system, and consequently

synthesizing a corresponding sample of the random solution [Sch01b]. The elastic and

shear moduli are simulated by sampling an n-dimensional Gaussian random vector and
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simulating the field Y (x, z) based on the solution of the integral eigenvalue problem of

the covariance kernel given by 2.44.

Y (x, z; θ) = Y0(x, z) +
N
∑

i=1

√

λiφi(x, z)ξi(θ) (2.57)

For each simulation, the response is obtained by solving the deterministic finite element

problem. After 150,000 simulations, the solution seems to have converged in both mean

and variance. The results obtained from the 150,000 Monte Carlo simulations are plotted

together with those from SSFEM with 60 random dimensions expanded up to second

order in figure 2.9. The responses obtained from the two methods seem to be very

coherent, although while using the same machine for the computations, the Monte Carlo

simulations take about 24 hours while the SSFEM with stochastic model reductions take

less than 8 hours.

The goal behind solving the problem is estimating the probability of failure of the

embankment dam for different combinations of the cohesive strength c, the friction angle

φ, the soil mass density γ, and the top load q. Failure is defined when the Mohr-Coulomb

criterion is satisfied in at least one point in the analysis domain,

τ ≥ c+ σntanφ (2.58)

where τ is the shear stress, and σn is the normal stress.

For plane strain conditions, element stresses in the analysis plane are calculated as:

σ = DBU, (2.59)
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Figure 2.9: The response’s representation obtained from 150000 Monte Carlo Simula-

tions as Compared to those resulting from a 60 dimensional second order Chaos expan-

sion

where σ is a 3-dimensional vector whose components are σx, σy, and τxy respectively.

Representing these terms by their Polynomial Chaos decompositions yields,

P2
∑

i=0

σiηi =

P2
∑

i=0

P1
∑

j=0

DjBUiηiψj. (2.60)

Accordingly, the deterministic shapes of the stress vector are calculated from those of the

constitutive relations matrix and response vector via the above relation by projecting on

a higher order chaos. Consequently, the stress vector corresponding to each element in

the mesh, is represented by a polynomial function of sixty Gaussian random variables.
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Table 2.1: Probability of failure for different load and material strength combinations

1 2 3

Cohesive Strength c 125 KPa 225 KPa 150 KPa

Friction Angle φ 30o 22o 40o

Mass Density γ 1800Kg/m3 1800Kg/m3 1800Kg/m3

Top Load q 30 KPa 30 KPa 30 KPa

Pf (MonteCarlo) 1.70 E -03 2.20 E-05 3.40E-04

Pf (M = 60 P = 2) 2.0E-03 2.0E-05 6.5E-04

This vector is simulated by sampling the ξ’s and the Mohr-Coulomb failure criteria

is checked for each element.Clearly, the computational cost of sampling the basis is

negligible as compared to solving the problem via a Monte Carlo Simulation. Failure is

defined when the Mohr-Coulomb failure criterion is satisfied in at least one element in

the domain. 100,000 samples of the stress vector are simulated and the failures obtained

are presented in table 1.
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Chapter 3

Sequential Data Assimilation for

Stochastic Models

3.1 Overview of Data Assimilation

Data assimilation is a novel and versatile methodology for estimating unknown state

variables and parameters. It relies on a set of observational data and the underlying

dynamical principles governing the system under observation. General schemes for

data assimilation often relate to either estimation theory or control theory, but some

approaches like direct minimization, stochastic and hybrid methods can be used in both

frameworks. Most of these schemes are based on the least-squares criteria which have

had a great success. The optimality of the least squares may degenerate in the cases

of very noisy and sparse data, or in the presence of multi-modal probability density

functions. In such situations melding criteria, such as the maximum likelihood, minimax

criterion or associated variations might be more appropriate. [RL00].

3.1.1 Control Theory

Control theory or variational assimilation approaches such as the generalized inverse

and adjoint methods perform a global time-space adjustment of the model solution to

all observations and thus solve a smoothing problem. The aim of these methods is to

minimize a cost function reducing the time space misfit between the simulated data and

the observations, with the constraints of the model equations and their parameters. The

34



dynamical model could be either considered as a strong constraint, i.e. it is to be exactly

fulfilled, or a weak one.

In the case where the dynamical system, F (θ) = 0, describing the temporal evo-

lution of the models state variable θ is a strong constraint, the variational approach is

known as the adjoint method. Within the assimilation period the initial and boundary

conditions and the parameter values control the evolution of the model variables. Vari-

ables describing these conditions are commonly denoted as control variables, u. The

approach consists of minimizing a cost function J resulting from the summation of

two components. The first weights the uncertainties in the initial conditions, boundary

conditions and parameters with their respective a priori error covariances. The other is

the sum over time of all data-model misfits at observation locations, weighted by mea-

surement error covariances [RL00]. This optimization procedure is called the adjoint

method, because the adjoint model equations offer a sophisticated but relative cheap way

to calculate the gradient of the cost function. This is done by introducing the Lagrange

function,

L = J +

∫

D

∫

T

λ(x, t)F (θ, x, t)dtdx, (3.1)

where D and T are the spatial and temporal domains respectively. Partial differentiation

with respect to the Lagrange multipliers , also denoted as adjoint variables, returns the

model equations:

∂L
∂λ

= F (θ) = 0, (3.2)

while the differentiation with respect to θ yields the adjoint model equations, which

describe the temporal evolution of the Lagrange multipliers:

∂L
∂θ

= Adj(λ) +
∂J

∂θ
= 0. (3.3)
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The third condition entails differentiating with respect to the control variables u:

∂L
∂u

= 0. (3.4)

The latter insures that the optimal choice of the control variables u have been selected.

Under the above condition the gradient ∇uJ can be easily calculated as:

∇uJ = ∇uL =
∂L
∂u

(3.5)

=
∂L
∂u

+
∂L
∂λ

∂λ

∂u
+
∂L
∂θ

∂θ

∂u
. (3.6)

The second and third term in the above equation vanish since ∂L
∂θ

= 0 and ∂L
∂λ

= 0, and

thus the calculation of the gradient ∇uJ simplifies to,

∇uJ =
∂J

∂u
+

∫

D

∫

T

λ(x, t)
∂F (θ, x, t)

∂u
dtdx. (3.7)

The generalized inverse method is used when the inverse problem is expanded to

weakly fit the constraints of both the data and the dynamics. Using this approach, the

estimate is still defined in a least square sense; the cost function to be minimized is the

same as that in the adjoint method, but a third term consisting of the dynamical model

uncertainties weighted by a priori model error covariances is now added. The dynamical

model uncertainties thus couple the state evolution with the adjoint evolution. This

coupling renders the iterative solution of the backward and forward equations difficult

[RL00].
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3.1.2 Direct Minimization Methods

These methods aim at minimizing cost functions similar to those defined for the general-

ized inverse problem but without utilizing the Euler-Lagrange equations. Iterative meth-

ods are generally used to determine the direction of the descending cost function. At

each iteration, a line search minimization is performed to determine the lowest descend-

ing direction. The method of steepest descend is the simplest of these approaches, but

it is the slowest since it converges linearly. The conjugate-gradient method on the other

hand calculates the search direction orthogonal to the local Hessian Matrix. It has a good

convergence rate and a low storage requirements. Other descent methods are the New-

ton and quasi-Newton methods, but the problem with all these approaches is that they

are very sensitive to the choice of initial conditions. This is because they are basically

local minimization schemes.

When the cost functions become sufficiently non-linear, non-local methods become

more attractive. Of these methods, it is important to note the methods of simulated

annealing and Genetic algorithms. In the simulated annealing method, each point s of

the search space is compared to a state of some physical system, and the function to be

minimized is interpreted as the internal energy of the system in that state. Therefore the

goal is to bring the system, from an arbitrary initial state, to a state with the minimum

possible energy. The advantages are the origin in theoretical physics, which leads to

convergence criteria, and the relative independence on the specifics of the cost function

and initial guess, which allows nonlocal searches. The main disadvantages are the large

computer requirements and, in practice, uncertain convergence to the global minimum

[KGV83].

Genetic algorithms are based upon searches generated in analogy to the genetic evo-

lution of natural organisms. At each iteration of the search, the genetic scheme keeps a

population of approximate solutions. The population is evolved by manipulations of past
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populations that mimic genetic transformations such that the likelihood of producing

better data-fitted generations increases for new populations. Genetic algorithms allow

nonlocal minimum searches, but convergence to the global minimum is not assured due

to the limited theoretical base [Sch01a].

3.1.3 Estimation Theory

In estimation theory, statistical approaches are used to estimate the state of a dynam-

ical system by combining all available knowledge pertaining to the system including

the measurements and the modeling theories. Of significant importance in the estima-

tion process is the a priori hypotheses and melding criterion since they determine the

influence of dynamics and data onto the state estimate.

One of the most widely used tools in estimation theory is the Kalman Filter, which

gives a sequential, unbiased, minimum error variance estimate based upon a linear com-

bination of all past measurements and dynamics. Many extensions of the Kalman Filter

have been developed over time to tackle the different challenges associated with the

problem of sequential data assimilation. The Kalman Filter and its various extensions

are the focus of this chapter.

In what follows, a review of the most commonly used Kalman Filtering techniques

is presented, leading us to the description of proposed data assimilation methodology

which combines the Kalman Filtering techniques with the Polynomial Chaos machinery.

3.2 The Kalman Filter

The Kalman Filter (KF) also known as the Kalman-Bucy Filter was developed in 1960

by R.E. Kalman [Kal60]. It is an optimal sequential data assimilation method for linear

dynamics and measurement processes with Gaussian error statistics. It provides a linear,
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unbiased, minimum variance algorithm to optimally estimate the state of the system

from noisy measurements. With the recent technological advancements, the KF became

more useful for very complex real-time applications such as, video and laser tracking

systems, satellite navigation, radars, ballistic missile trajectories estimation, Fire control

. . . .

This section is devoted for developing the Kalman filtering ”prediction-correction”

algorithm based on the optimality criterion of least-squares unbiased estimation. Con-

sider a linear system with the following state-space description,

xk+1 = Akxk + Γkξk, (3.8)

zk = Hkxk + ηk (3.9)

where Ak, Γk, and Hk are constant known matrices, and {ξk} and {ηk} are respectively

system and observation noise sequences with known statistical information. For the KF,

{ξk} and {ηk} are assumed to be sequences of zero-mean Gaussian white noise such

that V ar(ξk) = Qk and V ar(ηk) = Rk are positive definite matrices and E(ξkηl) = 0

for all k and l. The initial state x0 is also assumed to be independent of ξk and ηk for all

k.

Let x̂k/k−1 be the to be the a priori state estimate at step k given knowledge of the

process prior to step k, and x̂k/k be the a posteriori state estimate at step k given the

measurement zk. The a priori and a posteriori estimate of the errors are then defined as,

ek/k−1 = xk − x̂k/k−1 (3.10)

ek/k = xk − x̂k/k, (3.11)
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and their respective error covariance as,

Pk/k−1 = E[ek/k−1e
T
k/k−1] (3.12)

Pk/k = E[ek/ke
T
k/k]. (3.13)

The a posteriori estimate x̂k/k is obtained as a combination of the a priori estimate

x̂k/k−1, the measurement zk, and the measurement prediction Hkx̂k/k−1,

x̂k/k = x̂k/k−1 +KG(zk −Hkx̂k/k−1). (3.14)

The difference (zk − Hkx̂k/k−1) is known as the innovation sequence or residual. The

matrix KG is chosen to be the gain or blending factor that minimizes the a posteriori

error covariance 3.13. The following sections presents the details for achieving this

matrix.

3.2.1 Derivation of the Kalman Gain

The error covariance matrix associated with the a posteriori estimate is defined as:

Pk = E[ek/ke
T
k/k] = E[(xk − x̂k/k)(xk − x̂k/k)

T ]. (3.15)

If we replace equation 3.9 in 3.14 and substitute the resultant in 3.15, the expression for

the a posteriori covariance matrix becomes:

Pk = E[[(xk − x̂k/k−1) −KG(Hkxk + ηk −Hkx̂k/k−1)] (3.16)

[(xk − x̂k/k−1) −KG(Hkxk + ηk −Hkx̂k/k−1)]
T ].
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Evaluating the expectations and noting that (xk − x̂k/k−1) is the a priori estimation error

gives,

Pk = (I −KGHk)Pk/k−1(I −KGHk)
T +KGRkK

T
G. (3.17)

The latter is a general expression, and it is valid for all KG, optimal or otherwise. The

goal is to find a specificKG that minimizes the individual terms along the major diagonal

of Pk. This optimization can be done in several ways, but the documentation mostly fol-

lowed in the literature is that which follows the completing the square approach [Bro83].

The subscripts are dropped in the remaining of this derivation to avoid unnecessary clut-

ter in the expressions. In what follows the a priori estimate is denoted by a − superscript.

Upon expanding and regrouping the terms in the Pk, we have:

P = P− − (KHP− − P−HTKT ) +K(HP−HT +R)KT , (3.18)

where the second term in the above equation is Linear in K, and the third is a quadratic

function of K. It is assumed the (HP−HT + R) is symmetric, and thus can be written

in factored form as SST i.e.,

SST = HP−HT +R. (3.19)

Therefore, the expression of P may now be rewritten as,

P = P− − (KHP− − P−HTKT ) +KSSTKT . (3.20)

In order to complete the square, P is expressed in the form,

P = P− + (KS − A)(KS − A)T − AAT , (3.21)
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where A is independent from K. If 3.21 is expanded and compared term by term with

3.20, the following equality must hold:

KSAT + ASTKT = KHP− + P−HTKT . (3.22)

Hence, it is easily noticed that 3.22 is only satisfied if A is expressed as,

A = P−HT (ST )−1. (3.23)

Only the second term in 3.21 involves K; it is the product of a matrix with its transpose,

which ensures that all terms along the major diagonal will be nonnegative. The aim is

to minimize the diagonal terms K; therefore, the best way to do that is to adjust K so

that the middle term in 3.21 is zero. Hence, K is chosen so that

KS = A. (3.24)

The Kalman Gain matrix is thus given as,

K = AS−1 (3.25)

= P−HT (ST )−1S−1

= P−HT (SST )−1.

But, SST is the factored form of (HP−HT + R), and therefore the final expression of

the optimum K is,

K = P−HT (HP−HT +R)−1 (3.26)
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Combining all the results above, we arrive at the Kalman filter algorithm [CC91]:

P0,0 = V ar(x0) (3.27)

Pk,k−1 = Ak−1Pk−1,k−1A
T
k−1 + Γk−1Qk−1Γ

T
k−1

KG = Pk,k−1H
T
k (HkPk,k−1H

T
k +Rk)

−1

Pk,k = (I −KGHk)Pk,k−1

x̂0/0 = E(x0)

x̂k/k−1 = Ak−1x̂k−1,k−1

x̂k/k = x̂k/k−1 +KG(zk −Hkx̂k/k−1)

k = 1, 2, . . .

Figure 3.1: The Kalman Filter Loop.
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3.2.2 Relationship to Recursive Bayesian Estimation

The true state of the dynamical system is considered as an unknown Markov process.

Similarly the observational data are basically the hidden states of a Markov model. The

Markov assumption implies that the true state is independent of all earlier states given

the immediately previous one,

p(xk/x0, x1, . . . , xk−1) = p(xk/xk−1). (3.28)

Furthermore, the measurement at the kth time step is only dependent on the current state

and conditionally independent of all other states given the current one,

p(zk/x0, x1, . . . , xk) = p(zk/xk). (3.29)

Under these assumptions the probability density function of all the states in the hidden

Markov Model can be expressed as,

p(x0, . . . , xk, z1, . . . , zk) = p(x0)Π
k
i=1p(zi/xi)p(xi/xi−1). (3.30)

The Kalman Filter is used to estimate the state x; the associated probability density is

that corresponding to the current state conditioned on all the measurements available at

the current time,

p(xk/z0, z1, . . . , zk−1) =

∫

p(xk/xk−1)p(xk−1/z0, z1, . . . , zk−1)dxk−1. (3.31)

After the kth measurement we have,

p(xk/z0, z1, . . . , zk) =
p(zk/xk)p(xk/z0, . . . , zk−1)

p(zk/z0, . . . , zk−1)
. (3.32)
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The denominator is a normalizing term,

p(zk/z0, z1, . . . , zk−1) =

∫

p(zk/xk)p(xk/z0, z1, . . . , zk−1)dxk, (3.33)

and the remaining probability distributions are,

p(xk/xk−1) = N(Axk−1, Qk) (3.34)

p(zk/xk) = N(Hxk, Rk) (3.35)

p(xk−1/z0, . . . , zk−1) = N(x̂k, Pk−1), (3.36)

where N(m,σ) is a the standard normal distribution with mean m and a σ standard

deviation.

3.3 The Extended Kalman Filter

Once the model dynamics turn out to be nonlinear, a linearization technique is imple-

mented in deriving the filter equations. A real time linear Taylor approximation

approach through which the nonlinear functions are recursively linearized around most

recent estimate is considered. The resulting filter is known as the extended Kalman

Filter (EKF). Note that the model nonlinearity also arises when solving parameter esti-

mation problems even when the underlying dynamics is that of a simple linear model.

Therefore, a nonlinear model arises once there exists a nonlinear dynamical model of

the form,

xk+1 = fk(xk) +Bk(xk)ξk (3.37)

zk = gk(xk) + ηk, (3.38)
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or when a system (even a linear one) is augmented with an equation describing the

dynamics of the unknown parameters. The EKF yields statistically acceptable results

for most nonlinear dynamical systems but there is a high chance that EKF updates are

poorer than the nominal ones especially in the events where the initial uncertainty and

measurement error are large [Bro83].

After linearizing the nonlinear function, the system is treated in the same way as in

the KF. Consequently the EKF algorithm is [CC91]:

P0,0 = V ar(x0), x̂0 = E(x0) (3.39)

For k = 1, 2, . . . ,

Pk,k−1 =

[

∂fk−1

∂xk−1

(x̂k−1)

]

Pk−1,k−1

[

∂fk−1

∂xk−1

(x̂k−1)

]T

+Bk−1(x̂k−1)Qk−1B
T
k−1(x̂k−1)

x̂k/k−1 = fk−1(x̂k−1)

KG = Pk,k−1

[

∂gk

∂xk

(x̂k/k−1)

]T

.

[

[

∂gk

∂xk

(x̂k/k−1)

]

Pk,k−1

[

∂gk

∂xk

(x̂k/k−1)

]T

+Rk

]−1

Pk,k =

[

I −KG

[

∂gk

∂xk

(x̂k/k−1)

]]

Pk,k−1

x̂k/k = x̂k/k−1 +KG

(

zk − gk(x̂k/k−1)
)

3.4 The Unscented Kalman Filter

The unscented Kalman filter [JU97] (UKF) is built on the idea that a set of discretely

sampled points can be used to characterize the mean and covariance of the unknown

model state. It uses a deterministic sampling technique known as the unscented trans-

form to pick a minimal set of sample points (called sigma points) around the mean.
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These sigma points are then propagated through the non-linear functions and the covari-

ance of the estimate is then recovered. Using the unscented transformation approach, an

n-dimensional random variable x with mean x̄ and covariance Pxx is approximated by

2n+ 1 weighted points given by

X0 = x̄ W0 = k/(n+ k) (3.40)

Xi = x̄+ (
√

(n+ k)Pxx)i Wi = 1/2(n+ k)

Xi+n = x̄− (
√

(n+ k)Pxx)i Wi+n = 1/2(n+ k),

where k ∈ R, (
√

(n+ k)Pxx)i is the ith row or column of the matrix square root of

(n + k)Pxx and Wi is the weight associated with the ith point. The algorithm of the

UKF can thus be summarized in the following algorithm: [JU97]

1. Create the set of sigma points by applying the set of equations 3.41 on the system’s

initial conditions.

2. Each point in the set is propagated through the process model,

Xi(k + 1/k) = f [Xi(k/k)]. (3.41)

3. The predicted mean is computed as

x̂(k + 1/k) =
2n
∑

i=0

WiXi(k + 1/k). (3.42)

4. The corresponding covariance is computed as,

P (k + 1/K) =
2n
∑

i=0

WiXi(k + 1/k) − x̂(k + 1/k)Xi(k + 1/k) − x̂(k + 1/k)T .

(3.43)
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5. Each of the prediction points is instantiated through the observation model,

Zi(k + 1/k) = h[Xi(k + 1/k), k] (3.44)

6. The predicted observation is calculated by

ẑ(k + 1/k) =
2n
∑

i=0

WiZi(k + 1/k). (3.45)

7. Given that the observation noise is additive and independent, the innovation

covariance is,

Pzz(k + 1/k) = R(k + 1)+ (3.46)

2n
∑

i=0

Wi[Zi(k + 1/k) − ẑ(k + 1/k)][Zi(k + 1/k) − ẑ(k + 1/k)]T

8. The cross correlation matrix is determined by

Pxz(k + 1/k) =
2n
∑

i=0

Wi[Xi(k + 1/k)− x̂(k + 1/k)][Xi(k + 1/k)− ẑ(k + 1/k)]T

(3.47)

3.5 The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) proposed by Evensen [Eve94] and clarified by

Burgers et al. [BLE98] aims at resolving some of the drawbacks of the EKF. The EnKF

is based on forecasting the error statistics using Monte Carlo methods which turns out to

be a better alternative to solving the traditional and computationally expensive approx-

imate error covariance equation used in the EKF. It was designed to resolve two major

problems related to the use of the EKF with nonlinear dynamics in large state spaces.
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The first is that the EKF adopts an approximate closure scheme, and the second is the

huge computational requirements associated with the storage and forward integration

of the error covariance matrix [Eve03]. Since its development, the EnKF has been

extensively used in various research areas such as ocean engineering, weather forecast,

petroleum engineering, hydrology, system identification . . .

3.5.1 Practical Implementation of the EnKF

As mentioned earlier, the EnKF propagates an ensemble of state vectors forward in

time. The initial ensemble is chosen so that it properly represents the error statistics of

the initial guess of the model states. Therefore, the initial ensemble is usually created

by adding some kind of perturbations to a best-guess estimate, and then the ensemble is

integrated over a time interval covering a few characteristic time scales of the dynamical

system.

Let A be the matrix holding the ensemble members xi ∈ ℜn,

A = (x1, x2, . . . , xN) ∈ ℜn×N , (3.48)

whereN is the number of ensemble members, and n is the size of the model state vector.

The ensemble mean is then given by,

Ā = A1N , (3.49)

where 1N ∈ ℜN×N is a matrix with all its elements equal to 1/N . The ensemble pertur-

bation matrix is defined as,

A′ = A − Ā = A (I − 1N) , (3.50)
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and the ensemble covariance matrix Pe ∈ ℜn×n as,

Pe =
A′(A′)T

N − 1
. (3.51)

A new ensemble of observations is generated at each correction step, by adding

perturbations drawn from a distribution with zero mean and covariance equal to the

measurement error covariance matrix [BLE98]. Let d ∈ ℜm, where m is the number of

measurements, be a vector of measurements. The ensemble of observations,

D = (d1,d2, . . . ,dN) ∈ ℜm×N , (3.52)

is obtained by perturbing the measurement vector d as follows,

dj = d + ǫj, j = 1, . . . , N. (3.53)

The corresponding measurement error covariance matrix is given by

Re =
ΥΥT

N − 1
, (3.54)

where Υ is the ensemble of perturbations,

Υ = (ǫ1, ǫ2, . . . , ǫN) ∈ ℜm×N . (3.55)

The analysis or updating step can be performed on either each of the model state

ensemble members,

x
k/k
j = x

k/k−1
j + Gke

(dj −Hx
k/k−1
j ), (3.56)
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or on the ensemble itself

Ak/k = Ak/k−1 + Gke
(D − HAk/k−1), (3.57)

where Gke
is the KF gain matrix

Gke
= PeHT (HPeHT + Re)

−1. (3.58)

3.6 The Particle Filter

The particle filters, also known as the Sequential Monte Carlo methods (SMC), are

a set of flexible simulation-based methods for sampling from a sequence of proba-

bility distributions; each distribution being only known up to a normalising constant.

These methods are similar to the importance sampling methods and they often serve

as replacements for the Ensemble Kalman Filter and the Unscented Kalman Filter with

the advantage that they approach the Bayesian optimal estimate if a sufficient number

of samples is used. These filters are a sequential analogue of the Markov Chain Monte

Carlo (MCMC) methods. While the MCMC is used to model the full posterior distri-

bution p(x0, x1, . . . , xk/y0, y1, . . . , yk) of a hidden state or parameter x given a set of

observation y0, y1, . . . , yk, the particle filter aims at estimating xk from the a posteriori

distribution p(xk/y0, y1, . . . , yk) [DdFG01].

One of the most commonly used particle filtering algorithms, is the Sampling Impor-

tance Resampling (SIR) algorithm. It is a sequential verion of the importance sampling

method that aims at approximating a distribution using a weighted set of particles. Parti-

cle filters are beyond the scope of this study, a brief overview of these filters is mentioned

for the sake of completeness.
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3.7 Coupling of Polynomial Chaos with the EnKF

The filter used in this study allows the propagation of a stochastic representation of

the unknown variables using Polynomial Chaos. This overcomes some of the draw-

backs of the EnKF. Using the proposed method, At any instant in time, the probability

density function of the model state or parameters can be easily obtained by simulat-

ing the Polynomial Chaos basis. Furthermore, this method allows representation of

non-Gaussian measurement and parameter uncertainties in a simpler, less taxing way

without the necessity of managing a large ensemble.

3.7.1 Representation of Error Statistics

The Kalman Filter defines the error covariance matrices of the forecast and analyzed

estimate in terms of the true state as,

Pf =
〈

(xf − xt)(xf − xt)T
〉

, (3.59)

Pa =
〈

(xa − xt)(xa − xt)T
〉

, (3.60)

where 〈〉 denotes the mathematical expectation, x is the model state vector at a particular

time, and the superscripts f , a, and t represent the forecast, analysis, and true state,

respectively. However, in the Polynomial Chaos based Kalman Filter, the true state is

not known, and therefore the error covariance matrices are defined using the Polynomial

Chaos representations of the model state. In the PCKF, the model state is given by,

x =
P
∑

i=0

xiψi(ξ), (3.61)
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where P +1 is the number of terms in the Polynomial Chaos expansion of the state vec-

tor, and {ψi} is the set of Hermite polynomials. Consequently, the covariance matrices

are defined around the mean, the zeroth order term, of the stochastic representation,

Pf ≈
〈

(
P
∑

i=0

xf
i ψi − xf

0)(
P
∑

i=0

xf
i ψi − xf

0)
T

〉

(3.62)

≈
〈

(
P
∑

i=1

xf
i ψi)(

P
∑

i=1

xf
i ψi)

T

〉

≈
P
∑

i=1

xf
i x

fT

i

〈

ψ2
i

〉

,

and similarly,

Pa ≈
P
∑

i=1

xa
i x

aT

i

〈

ψ2
i

〉

. (3.63)

The Polynomial Chaos representation depicts all the information available through

the complete probability density function, and therefore allows the propagation of all

the statistical moments of the unknown parameters and variables.

The observations are also treated as random variables represented via a Polynomial

Chaos expansion with a mean equal to the first-guess observations. Since the model and

measurement errors are assumed to be independent, the latter is represented as a Markov

process.

3.7.2 Analysis Scheme

For computational efficiency, the dimensionality and order of the Polynomial Chaos

expansion are homogenized through out the solution. These parameters are initially

defined based on the uncertainty within the problem at hand and are assumed to be

constant thereafter. Since the model state and measurement vectors are assumed inde-

pendent, the Polynomial Chaos representation of these variables have a sparse structure.
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Let A be the matrix holding the chaos coefficients of the state vector y ∈ Rn,

A = (x0, x1, . . . , xP ) ∈ Rn×P+1, (3.64)

where P+1 is the total number of terms in the Polynomial Chaos representation of x and

n is the size of the model state vector. The mean of x is stored in the first column of A

and is denoted by x0. The state perturbations are given by the higher order terms stored

in the remaining columns. Consequently, the state error covariance matrix P ∈ Rn×n is

defined as

P =
P
∑

i=1

xix
T
i

〈

ψ2
i

〉

. (3.65)

Given a vector of measurements d ∈ Rm, with m being the number of measurements, a

Polynomial chaos representation of the measurements is defined as

D =
P
∑

j=0

djψj(ξ), (3.66)

where the mean d0 is given by the actual measurement vector, and the higher order

terms represent the measurement uncertainties. The representation D can be stored in

the matrix

B = (d0, d1, . . . , dP ) ∈ Rm×P+1. (3.67)

From Eq. 3.66, we can construct the measurement error covariance matrix

R =
P
∑

i=1

did
T
i

〈

ψ2
i

〉

∈ Rm×m. (3.68)
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The Kalman Filter forecast step is carried out by employing a stochastic Galerkin

scheme, and the assimilation step simply consists of the traditional Kalman Filter cor-

rection step applied on the Polynomial Chaos expansion of the model state vector,

P
∑

i=0

xa
iψi =

P
∑

i=0

xf
i ψi + PHT (HPHT + R)−1(

P
∑

i=0

diψi − H

P
∑

i=0

xf
i ψi). (3.69)

Projecting on an approximating space spanned by the Polynomial Chaos {ψi}P
i=0 yields,

xa
i = xf

i + PHT (HPHT + R)−1(di − Hxf
i ) for i = 0, 1, . . . , P. (3.70)

In matrix form, the assimilation step is expressed as,

Aa = Af + PHT (HPHT + R)−1(B − HAf ). (3.71)
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Chapter 4

Multiphase Flow in Porous Media

Flow through porous media is a problem encountered in many realms of science and

engineering. Applications include ground water hydrology, reservoir engineering, soil

mechanics, chemical and Biomedical engineering . . . . In this study the focus is on reser-

voir engineering, but the proposed methods could be easily extended to other disciplines

of multiphase flow in porous media. Fluid motions in porous media are governed by the

same fundamental laws that govern their motion in the atmosphere, pipelines, rivers . . . .

These are the mass, momentum, and energy conservation laws. All the laws considered

in this study are valid at the macroscopic level, i.e. for a volume of porous medium

which is infinitely large with respect to the size of fluid particles and of the pores, but

can be infinitely small with respect to the size of the field itself [CJ86].

4.1 Flow Equations

In order to model a multiphase flow system, conservation of mass for each existing

phase is required. The general form of these equations can be expressed as

∂

∂t
(φρiSi) = −∇.

(

ρi
~Vi

)

+ qi i = 1, 2, . . . (4.1)

where i denotes the fluid phase, φ is the porosity of the medium, ρi is the density of

phase i, Si is the phase saturation, ~Vi is the phase velocity, qi is a source/sink term, and

t is time.
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Darcy’s laws is commonly used for calculating phase flow velocities. It was devel-

oped by Darcy in mid 19th century for one phase flow only. Muskat [Mus49] showed

experimentally that Darcy’s law remains valid for each fluid separately when two or

more immiscible fluids share the pore space. Darcy’s law for phase velocities is given

by

~Vi = −
~KKri

µi

(∇Pi − ρig∇z(x)) (4.2)

where ~K is the intrinsic permeability, Kri is the relative permeability of phase i, µi is

the viscosity of phase i, Pi is the pressure of phase i, g is the gravitational acceleration,

and z is the depth of the fluid. Substituting Eqs. 4.2 into Eqs. 4.1 yields the general

form of the flow equations for all phases,

∂

∂t
(φρiSi) = ∇.

[

ρi
~KKri

µi

(∇Pi − ρig∇z(x))
]

+ qi i = 1, 2, . . . (4.3)

The latter set of equations signify that the flow in porous media is driven by gravity,

pressure gradients, and viscous forces. It also incorporates the effects of porous matrix

compressibility, fluid compressibility, capillary pressure, and spatial variability of per-

meability and porosity. The nonlinearity arises from the interdependence of the phase

relative permeabilities and capillary pressure on the phase saturations.

4.2 Features of the Reservoir and the Fluids

In this section, the details of the geological features of the reservoir and the fluids

are presented. In the following, the physical properties and characteristics of all the

unknown parameters in eqs. 4.3 are described.

57



4.2.1 Density and Viscosity

The density and the viscosity are intrinsic fluid properties. Density is defined as the mass

per unit volume, it varies mainly with temperature. In this study, fluid density variation

is neglected. The state equation for an ideal liquid with constant compressibility is given

by

ρ = ρo exp [c(p− po)] , (4.4)

and that for an ideal gas is

ρ =
W

RT
p (4.5)

where ρo is the fluid density at some reference pressure, po, c is the fluid’s compressibil-

ity, W is the molecular weight, R is the gas constant, and T is the absolute temperature.

Viscosity is the measure of the resistance to flow caused by the internal friction

within the fluid. Viscosity is also a function of temperature; it decreases as temperature

increases. The differences in the viscosities of two interacting immiscibe fluids cause

instabilities resulting in a phenomena known as viscous fingering. Fingering manifests

itself as unexpected macroscopic deformations in the inter facial boundary separating

the two fluids.

4.2.2 Porosity

Porosity of a medium is the percentage of void space existing between soil particles. It

is a function of the size-sorting and shape of the soil grains. Methods for computing the

porosity of a medium are well studied and documented [Bea72].

Consider at a point in the porous medium a volume ∆Ui much larger than a single

pore or grain. For this volume the following ratio is determined,

φi = (∆Uv)i /∆Ui (4.6)
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where (∆Uv)i is the volume of void space within ∆Ui. The medium’s volumetric poros-

ity, φ, at that point is defined as:

φ = lim
∆Ui→∆Uo

(∆Uv)i

∆Ui

(4.7)

where ∆Uo is the representative elementary volume (REV) of the porous medium at the

specified point.

4.2.3 Saturation and Residual Saturation

Saturation of a fluid is the ratio of the volume of the void filled with fluid to the total

void volume. The values of the saturations vary between zero and one, and the sum of

all coexisting fluid phases add up to one leading to the following constraint

n
∑

i

si = 1, (4.8)

where n is the number of existing phases in the system. Two critical values of the phase

saturations are identified, (1) Swc the saturation at which the injected fluid starts to flow,

and (2) Snc the saturation at which the displaced fluid ceases to flow. Swc and Snc are

the known as residual saturations.

4.2.4 Intrinsic and Relative Permeability

The Intrinsic permeability ~K is a tensorial quantity depending on the pore size opening

available for fluid flow. Moreover, ~K depends on the nature of the fluid saturating the

porous medium.

Relative permeability signifies the fraction of the pore space available for the phase

to flow. Recent studies [BBM87, MG87] have suggested that the relative permeability
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varies with the saturation in a tensorial behavior. For two phase flow, Brooks and Corey

[BC64] derived empirically-based expressions for the relative permeabilities of the wet-

ting and non wetting phases. Figure 4.1 presents typical two-phase relative permeability-

saturation relations. These permeability curves are expressed as

Krw = S(2+3λ)/λ
e (4.9)

and,

Krn = (1 − Se)
2(1 − S(2+λ)/λ

e ) (4.10)

where Krw and Krn are the relative permeability of the wetting non-wetting phases

respectively, λ is a model fitting parameter related to the pore size distribution of the

soil material, and Se is the reduced saturation given by

Se =
Sw − Swc

Sm − Swc

, (4.11)

where Sm is the maximum wetting phase saturation.

In the case of three-phase flow systems, theoretical models have been developed for

three-phase relative permeability curves [Sto70, DP89, FM84]. Two common beliefs

coexist for three-phase relative permeabilities. The first argues that the heterogeneity’s

effect on the relative permeability leads to the hysteretic behavior demonstrated by the

curves [Dul91, LP87, KP87]. The second argument suggests that the fluid channel net-

work available for the flow is mainly dependent on the fluid phase contents and not on

the saturation history of the medium which leads to the conclusion that relative perme-

ability curves are non-hysteretic [LGN89].
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Figure 4.1: Typical Relative Permeability Curves.

4.2.5 Capillary Pressure

The capillary pressure is the pressure differences that occur across the fluid-fluid inter-

faces of the coexisting phases in the subsurface. It is defined as

pc = pnw − pw, (4.12)

where pc is the capillary pressure, pnw is the pressure of the non-wetting phase, and

pw is the pressure of the wetting phase. In order to show which of the fluids is the

wetting one, one has to look at the meniscus separating the two fluids in a capillary tube:

the concavity of the meniscus is oriented toward the non-wetting fluid [CJ86]. Figure

4.2 demonstrates this phenomena. The capillary pressure increases with a decrease in

contact angle between the phases in the pore size. The smaller the pore radius, the

higher is the resistance to non-wetting phase to occupy a pore that is preoccupied with a

wetting phase. Therefore, the non-wetting phase usually occupies the larger pore spaces
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where there exist lower capillary resistance, and the wetting phase occupies the smaller

ones.

The capillary pressure can be expressed as a function of the wetting phase satura-

tion only. Empirical relationships describing this functional dependence are known as

the capillary pressure-saturation curves. Figure 4.3 shows a typical capillary pressure-

saturation curve. Brooks and Corey [BC64] developed a close form expression that

represents these curves for two phase flow. Brooks and Corey’s equation is,

pc = pdS
−1/λ
e pc ≥ pd, (4.13)

where pd is the displacement or threshold pressure which first gives rise to the oil

phase permeability.

Later, Parker et.al [PL87] extended Brooks and Corey’s model to three-phase flow

and came up with an expression for the capillary pressure that can be reduced to two-

phase flow as well. This model is given by

pc = Pd

(

S−1/m
e − 1

)1−m
pc ≥ 0, (4.14)

where m is a model fitting parameter.
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Figure 4.2: Determination of the wetting phase.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Wetting Phase Saturation

S
c
a
le

d
 C

a
p
ill

a
ry

 P
re

s
s
u
re

Drainage 

Imbibition 

Figure 4.3: Typical Capillary Pressure-Saturation Curve.

4.3 Characterization of Reservoir Simulation Models

Reservoir simulation is a powerful tool for reservoir characterization and management.

It enhances the production forecasting process. The efficiency of a reservoir model relies

on its ability to characterize the geological and petrophysical features of the actual field.
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One of the most commonly used methods for reservoir characterization is automatic

history matching. History matching aims at estimating reservoir parameters such as

porosities and permeabilities so as to minimize the square of the mismatch between

observations and computed values. The heterogeneities of the geological formations

and the uncertainties associated with the medium properties render history matching

a very complex and challenging phenomena. In this study a novel history matching

methodology based on the Polynomial Chaos Kalman Filter is presented.

This study deals with the two-phases immiscible flow water flooding reservoir engi-

neering problem. Initially the porous medium is assumed to be fully saturated with oil,

and water is pumped through one well to push the oil out through other wells in the field.

The governing flow equations consist of the water continuity equation,

φ

(

∂Sw

∂t

)

= ∇.
[

~KKrw

µw

(∇Pw − ρwg∇z(x))
]

+ qw, (4.15)

and the oil continuity equation,

φ

(

∂So

∂t

)

= ∇.
[

~KKro

µo

(∇Po − ρog∇z(x))
]

+ qo. (4.16)

These equations are subject to the following constraints:

Sw + So = 1 (4.17)

pc(Sw) = po − pw. (4.18)

4.3.1 Uncertainty Quantification

The heterogeneity in the porous medium is dealt with in the probabilistic sense, i.e. by

modeling the intrinsic permeability and porosity of the medium as stochastic processes
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via their Polynomial Chaos expansion. In this study, two scenarios are used for repre-

senting the uncertain medium properties. In the first, both the intrinsic permeability and

porosity are represented as stochastic processes using the Polynomial Chaos expansion:

K(x, θ) ≈ K̂(x, θ) =
M
∑

i=0

Ki(x)ψi(ξ(θ)), (4.19)

φ(x, θ) ≈ φ̂(x, θ) =
M
∑

j=0

φj(x)ψj(ξ(θ)), (4.20)

where {Ki(x)} and {φi(x)} are sets of deterministic functions to be estimated using

the proposed sequential data assimilation technique.

The second scenario suggests representing the intrinsic permeability of the porous

medium as a stochastic process while modeling the porosity as a random variable.

Therefore the ratio, α(x, θ), of the intrinsic permeability and porosity of the medium

is represented as,

α(x, θ) =
K(x, θ)

φ(θ)
≈ exp(

P
∑

i=0

αi(x)ψi(ξ(θ))), (4.21)

where {αi(x)} is a set of deterministic functions to be estimated using the proposed

sequential data assimilation technique. Although both scenarios work well, the first

requires more monitoring to guarantee that the estimated numbers remain physically

valid.

The solution of the resulting system of stochastic partial differential equations is also

represented via Polynomial Chaos,

Sw(x, θ) ≈ Ŝw(x, θ) =
P
∑

k=0

Swk
(x)ψk(ξ), (4.22)
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and

Pw(x, θ) ≈ P̂w(x, θ) =
P
∑

k=0

Pwk
(x)ψk(ξ), (4.23)

where {Pwk
} and {Swk

} are the deterministic nodal vectors to be solved for, P denotes

the number of terms in the Polynomial Chaos expansion, and {ψk(ξ)} is a basis set

consisting of orthogonal polynomial chaoses of consecutive orders.

The relative permeabilities and the capillary pressure are functions of water satu-

ration, and therefore, they are represented using their Polynomial Chaos expansion as

well. Fourth order polynomial approximations of the Brooks-Corey Model are adopted

and the relative permeabilities and capillary pressure are approximated as,

Krw ≈ K̂rw =
4
∑

i=0

(
P
∑

j=0

Sej
ψj)

ici + η(ξ), (4.24)

Kro ≈ K̂ro =
4
∑

i=0

(
P
∑

j=0

Sej
ψj)

ici + η(ξ), (4.25)

and

Pc ≈ P̂c =
4
∑

i=0

(
P
∑

j=0

Sej
ψj)

ici + η(ξ), (4.26)

where η represents the modeling error, and the coefficients c′is are numerically cal-

culated based on the value of the Brooks-Corey model fitting parameter, λ.

4.3.2 Model Formulation

The error, ǫ , resulting from truncating the Polynomial Chaos expansions at a finite num-

ber of terms is minimized by forcing it to be orthogonal to the solution space spanned
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by the basis set of orthogonal stochastic processes appearing in the Polynomial Chaos

expansion [GS03]. Mathematically, this is expressed as

〈ǫ, ψm〉 m = 1, 2, . . . , (4.27)

where 〈.〉 denotes mathematical expectation. This will yield a system of N × P + 1

nonlinear coupled algebraic equations to be solved for the deterministic coefficients

of the water saturation and pressure, where N is the number of nodes in the spatially

discretized mesh, and P + 1 is the total number of terms in the Polynomial Chaos

expansion [Hat98]. If the first scenario is adopted, the system is represented as,

P
∑

i=0

P
∑

j=0

φi

(

∂Swj

∂t

)

〈ψiψjψm〉 = (4.28)

∇.
[

P
∑

i=0

P
∑

j=0

P
∑

k=0

~KiKrwj

µw

(∇Pwk
) 〈ψiψjψkψm〉

]

+ qw 〈ψm〉 ∀m

P
∑

i=0

P
∑

j=0

φi

(−∂Swj

∂t

)

〈ψiψjψm〉 = (4.29)

∇.
[

P
∑

i=0

P
∑

j=0

P
∑

k=0

~KiKrwj

µw

∇ (Pwk
+ Pck

) 〈ψiψjψkψm〉
]

+ qo 〈ψm〉 ∀m,

where the expectations 〈ψiψjψm〉 and 〈ψiψjψkψm〉 are easily calculated and tabu-

lated in the literature [GS03]. On the other hand, when the second scenario is employed,

the resulting system is expressed as,
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P
∑

j=0

(

∂Swj

∂t

)

〈ψjψm〉 = (4.30)

∇.
[

P
∑

j=0

P
∑

k=0

Krwj

µw

(∇Pwk
)

〈

exp(
P
∑

i=0

αiψi)ψjψkψm

〉]

+ qw 〈ψm〉 ∀m

P
∑

j=0

(−∂Swj

∂t

)

〈ψjψm〉 = (4.31)

∇.
[

P
∑

j=0

P
∑

k=0

Krwj

µw

∇ (Pwk
+ Pck

)

〈

exp(
P
∑

i=0

αiψi)ψjψkψm

〉]

+ qo 〈ψm〉 ∀m.

Evaluating the above expectations is not a trivial task; an algorithm is developed to

evaluate them as a function of 〈ψiψjψm〉 by the using the method of change of variables

followed by employing the following Hermite polynomials identity,

2n/2ψn(
x+ y√

2
) =

n
∑

k=0

(

n

k

)

ψk(x)ψn−k(y). (4.32)

The spectral stochastic finite element method capabilities are developed within

SUNDANCE [Lon04], and the package is used to numerically solve the above stochas-

tic systems. Although the implementation of the second scenario is computationally

more expensive, it guarantees the positiveness of the estimated medium parameters.

4.4 Numerical Applications

Two synthetic sets of problems are selected to assess the efficiency of the proposed

history matching technique. The first one explores the one dimensional two-phase water

flooding, while the second solves the two dimensional two-phase model. In both sets,

the model state vector consists of all the reservoir variables that are uncertain and need to

be specified. These include the phase saturations and pressures as well as the suggested
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Table 4.1: Uncertainty Representation Using Polynomial Chaos

Source of Uncertainty Representation

Parametric (1) ξ1, ξ
2
1 − 1

Parametric (2) exp(ξ1)
Modeling ξ2

Measurement ξ3

representation of the medium properties. The objective is to statistically estimate the

medium properties through measurements of the water saturation at specific locations.

The modeling and measurement errors are assumed to be independent Gaussian

noises, and therefore, they are represented using one dimensional, first order Polyno-

mial Chaos expansions. Unlike the EnkF where the model error is represented using

an additive noise, in PCKF the model error is incorporated in the Brooks-Corey model.

In order to accommodate the fact that the medium properties may deviate from Gaus-

sianity, the unknown porosity and permeability of the medium are either modeled as

dependent one dimensional, second order Polynomial Chaos expansions according to

scenario one proposed earlier, or their ratio is expressed as an exponential function of a

one dimensional first order Polynomial Chaos Expansion as is explained in the second

scenario. Table 4.1 details the uncertainty representation in the numerical model.

4.4.1 One Dimensional Buckley-Leverett Problem

The first test problem is that of the incompressible water flood Buckley-Leverett exam-

ple. The relative permeabilities within the model are given by the Brooks-Corey model.

The reservoir is horizontal with a length of 1000ft, cross-sectional area of 10000ft2,

and constant initial water saturation Swi
= 0.16. Oil is produced at x = 1000ft at a rate

of 426.5ft3/day, and water is injected at x = 0 at the same rate. Three case studies are

69



developed on this problem. In all three cases, scenario one is adopted for representing

the parametric uncertainties.

4.4.1.1 Case 1: Homogeneous Medium

To Test the validity of the proposed approach, the same Brooks-Corey model parameter,

λ, is assumed for both the forward and inverse analysis. The field is assumed to be

homogeneous with an intrinsic permeability of 270md and a porosity of 0.275, and

measurements of the water saturation and pressure are available each 50ft every 10 time

steps. Figure 4.4 gives the statistical properties of the estimated parameters; it represents

the variation of these parameters with time. It is noticed that as more measurements

are available, the mean estimate converges toward the true model parameters, and the

Polynomial Chaos coefficients decay exponentially indicating a deterministic estimate.

This is expected since the model used to estimate the reservoir state is identical to the

model used for generating the measurements.

4.4.1.2 Case 2: Continuous Intrinsic Permeability and Porosity Profiles

In this case continuous profiles for the porosity and intrinsic permeability are assumed.

The measurements of the water saturation and pressure are also assumed available each

50ft every 10 time steps. However, the Brooks-Corey Model used to generate the mea-

surements has a fitting parameter λ = 2.2 while the the model used in the filtering

scheme has λ = 2.0. This will result in uncertainties within the estimate associated with

modeling errors. Figure 4.5 represents a Polynomial Chaos estimate of the medium

properties obtained after 2000 updates. Figure 4.6 shows the probability density func-

tions (pdf’s) of the estimated porosity and intrinsic permeability at quarter span. It
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(a) (b)

(c) (d)

Figure 4.4: Case 1: Estimate of medium properties: (a) Mean intrinsic permeability,

(b) Polynomial Chaos coefficients of intrinsic permeability, (c) mean porosity, and (d)

Polynomial Chaos coefficients of porosity

is clear from the obtained pdf’s that the porosity and intrinsic permeability have non-

Gaussian properties. In order to validate the estimated parameters, the estimated residual

water saturation is plotted against the true model state in figure 4.7.

4.4.1.3 Case 3: Discontinuous Porosity and Intrinsic Permeability Profiles

The only difference between cases 2 and 3 is that in the latter the porosity and intrinsic

permeability have discontinuous profiles. Figure 4.8 presents the estimated medium

properties. In Figure 4.9, the estimated residual water saturation profile is plotted along

with the true model state at different times during the simulation.
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Figure 4.5: Case 2: Estimate of medium properties: (a) Mean intrinsic permeability,

(b) Polynomial Chaos coefficients of intrinsic permeability, (c) mean porosity, and (d)

Polynomial Chaos coefficients of porosity
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Figure 4.6: Case 2. The probability density function of the estimated medium properties:

(a) intrinsic permeability, (b) porosity
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Figure 4.7: Case 2: (a) Mean residual water saturation, (b) Polynomial Chaos coeffi-

cients of the estimated residual water saturation
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Figure 4.8: Case 3. Estimate of medium properties: (a) Mean intrinsic permeability,

(b) Polynomial Chaos coefficients of intrinsic permeability, (c) mean porosity, and (d)

Polynomial Chaos coefficients of porosity
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Figure 4.9: Case 3: (a) Mean residual water saturation, (b) Polynomial Chaos coeffi-

cients of the last estimated residual water saturation

4.4.2 Two-Dimensional Water Flood Problem - Scenario 1

Two example problems are studies to explore the two dimensional water flood exam-

ple. In these problems, the relative permeabilities are also represented by a polynomial

approximation of the Brooks-Corey model. While the first example adopts scenario one

to represent the parametric uncertainties, scenario two is used in the second.

The first example consists of a rectangular reservoir with a length of 60ft, width of

60ft, cross-sectional area of 1ft2, and constant initial water saturation Swi
= 0.20. Oil

is produced at x = 60ft at a rate of 0.0323ft3/day, and water is injected at x = 0 at

the same rate. Measurements are available at 20 equidistant points within the domain

at a frequency of 10 time steps. Figure 4.10 gives the means of the estimated medium

properties. Although the estimated and true parameters are slightly different, it can

be noticed from figure 4.13 that the water front is captured accurately. This can be

explained by either the uncertainty prevalent in the estimated parameters and shown in

figures 4.11 and 4.12 or the non-uniqueness of the solution
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(a) (b)

(c) (d)

Figure 4.10: (a) mean of estimated intrinsic permeability, (b) true intrinsic permeability,

(c) mean of estimated porosity, and (d) true porosity

4.4.3 Two-Dimensional Water Flood Problem - Scenario 2

The second scenario is used to represent the parametric uncertainty in the second group

of problems. This problem consists of a rectangular domain of a length of 100ft, width

of 60ft, cross-sectional area of 1ft2, and constant initial water saturation Swi
= 0.20.

Oil is produced from one well at a rate of 7.94ft3/day, and water is injected from

two different point sources at rates of 3.83 and 4.11ft3/day, respectively. Figure 4.14

shows location of these wells along with the measurement locations. In this example,
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(a) (b)

(c) (d)

Figure 4.11: Polynomial Chaos coefficients of the estimated intrinsic permeability, (a)

ξ1 (b) ξ2 , (c) ξ3 , and (d) ξ2
1 − 1

measurements are also available at a frequency of 10 time steps. Figure 4.15 presents

the the medium properties of the forward problem used to generate the measurements.

In order, to assess the importance of the different terms in the Polynomial Chaos

expansion used to represent the unknown model parameters, three different approxima-

tions for the parametric and modeling uncertainties are assumed.
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(a) (b)

(c) (d)

Figure 4.12: Polynomial Chaos coefficients of the estimated intrinsic porosity, (a) ξ1 (b)

ξ2 , (c) ξ3 , and (d) ξ2
1 − 1

4.4.3.1 Case 1: Three Dimensions First Order Approximation

For this part, it is assumed that the unknown model parameters are represented as:

α = exp(α0 + α1ξ1), (4.33)
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(a) (b)

Figure 4.13: (a) Mean of the estimated residual water saturation, (b) true residual water

saturation

Figure 4.14: Example 2 Scenario 2: Problem Description

where α0 and α1 are the unknown coefficients to be estimated using the filtering scheme.

In this sub-example, the modeling and measurement error are considered Gaussian rep-

resented by ξ2 and ξ3 respectively. It is important to note that via this representation, the

parametric uncertainty is independent from other noise sources.

Figure 4.16 presents the agreement between the mean estimated and the actual water

saturation profiles. Figure 4.17 represents the coefficients of the exponential chaos
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Figure 4.15: Example 2 Scenario 2: The Medium properties of the forward problem

expansion used to represent the ratio of the permeability and porosity, and figure 4.18

shows the mean and variance of the estimated ratio.

4.4.3.2 Case 2: Coupled Three Dimensions Second Order Approximation

For this part, it is assumed that the unknown model parameters are represented as:

α = exp(α0 + α1ξ1 + α2ξ2 + α3ξ3), (4.34)

where α0, α1, α2 and α3 are the unknown coefficients to be estimated using the filtering

scheme. In this sub-example, the modeling error is considered Gaussian represented

by ξ3, while the modeling uncertainties are modeled as a second order one dimensional

expansion in terms of ξ1 and ξ2
1 − 1.

Figure 4.19 shows that using the latter approximation, a better agreement between

the mean estimated and the actual water saturation profiles is achieved. Figure 4.20
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Case 1: True (left) and Estimated (right) Water Saturation Profiles
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(a) (b)

Figure 4.17: Case 1: Estimated Chaos Coefficients of the exponential representation of

the Medium properties

(a) (b)

Figure 4.18: Case 1: The mean and variance of Estimated Medium property α = K
φ

represents the coefficients of the exponential chaos expansion used to represent the ratio

of the permeability and porosity, and figure 4.21 shows the mean and variance of the

estimated ratio.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Case 2: True (left) and Estimated (right) Water Saturation Profiles

82



Figure 4.20: Case 2: Estimated Chaos Coefficients of the exponential representation of

the Medium properties

4.4.3.3 Case 3: Coupled Ten Dimensions Second Order Approximation

In case three, it is assumed that the unknown model parameters are represented as:

α = exp(α0 +
10
∑

i=1

αiξi), (4.35)

where {αi}10
i=1 are the unknown coefficients to be estimated using the filtering scheme.

In this sub-example, the modeling error is considered Gaussian represented by ξ10, while

the modeling uncertainties are modeled as a second order one dimensional expansion in

terms of ξ1 and ξ2
1 − 1.
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(a) (b)

Figure 4.21: Case 2: The mean and variance of Estimated Medium property α = K
φ

Figure 4.22 shows the compatibility between the mean estimated and the actual

water saturation profiles, and figure 4.23 shows the mean and variance of the estimated

ratio.

(a) (b)

Figure 4.22: Case3: True (left) and Estimated (right) Water Saturation Profiles
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(a) (b)

Figure 4.23: Case 3: The mean and variance of Estimated Medium property α = K
φ

4.5 Control of Fluid Front Dynamics

Having characterized the reservoir simulation model, maximization of the displacement

efficiency becomes the new target. Such optimization is possible by controlling the

injection rate for a fixed arrangement of injection and production points. In this study

a fundamental approach which relies on the Polynomial Chaos Kalman Filter to control

the injection rates is provided. The benefits of such an approach are best realized when

“smart” wells having both measurement and control equipment are used. The approach

consists of two filtering loops as is portrayed in figure 4.24. The measurements are used

to update the model parameters, and based on the most recent updates another control

loop is used to control the injection rates. The objective is to minimize the mismatch

between the predicted front and a pre-specified target. The methodology is demon-

strated in a simple water flooding example using two injectors and multiple producers,

each equipped with several individually controllable inflow control valves. The model

parameters (permeabilities) and dynamic states (pressures and saturations) are updated

using measurements of the water saturation at various boreholes within the medium.

The setup of the problem is shown in figure 4.25. The problem objective is to maintain
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a uniform flow by adjusting the inflow rates. Two variations of the problem are solved.

The first assumes that the medium properties are known a priori, and thus the problem at

hand simplifies to a control problem only. The second problem aims at estimating both

the medium properties and controlling the injection rate to maintain a uniform front.

Figure 4.24: Front control flow chart
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Figure 4.25: Flow Control Example: Problem Setup

4.5.1 Example 1: Known Medium Properties

In the example 1, it is assumed that the medium properties are given. The ratio K/P is

represented as exp(α) where α is shown in figure 4.26. Therefore, the problem simpli-

fies to a control problem only where the injection rates are adjusted every 10 time steps

so as to minimize the difference between the predicted front and a pre-specified target

function. Two sources of uncertainty are represented in this example. The first is related

to the uncertainty in the injection rate. Although the injection rate is a deterministic

concept in practice, the uncertainty associated with it is modeled as a one dimensional

second order polynomial chaos expansion. This can be explained by associating the

scatter within the estimated rate with that of the predicted front. The aim is to deter-

mine a combination of rates that will render the desired front. The second source of

uncertainty is associated with the exactness of the target function. If it have a very small

tolerance, the latter uncertainty vanishes. In this problem it is modeled as a Gaussian

noise with a relatively small variance. Figure 4.27 shows the evolution of the estimated

injection rate with time. Figure 4.28 gives a comparison between the predicted and

estimated water saturation profiles at different times during the simulation.
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Figure 4.26: The coefficient α representing the Medium Properties
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Figure 4.27: Example 1: The estimated injection rate (a) Mean (b) Higher Order Coef-

ficients

4.5.2 Example 2: Stochastic Medium Properties

The second example is a combination of the reservoir characterization problem

described in the previous section and that of the control problem presented in exam-

ple 1. Here it is assumed that the medium properties are random and not known a priori.

Thus the ratio K/P is modeled as:

α = exp(α0 + α1ξ1 + α2ξ2 + α3ξ3), (4.36)
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where α0, α1, α2 and α3 are the unknown coefficients to be estimated using the filtering

scheme. Furthermore, in this example it is assumed that the characteristic model is not

known exactly, and therefore modeling errors are introduced. These are represented

as one dimensional PC expansions, ξ2. As in the history matching problems described

earlier, the measurement errors are also represented as one dimensional PC expansions,

ξ3. Finally, the uncertainty associated the water injection rates is represented as a one

dimensional second order PC expansion, ξ1.

Figure 4.29 shows the evolution of the estimated injection rate with time. Figure

4.30 gives a comparison between the predicted and estimated water saturation profiles

at different times during the simulation.

Furthermore, figure 4.31 gives the estimated coefficients αi of the medium proper-

ties.
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Figure 4.28: Example 1: Target (left) and Mean Estimated (right) Water Saturation

Profiles
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Figure 4.29: Example 2: The estimated injection rate (a) Mean (b) Higher Order Coef-

ficients
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Figure 4.30: Example 2: Target (left) and Mean Estimated (right) Water Saturation

Profiles
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Figure 4.31: Example 2: estimated coefficients of the medium properties
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Chapter 5

Structural Health Monitoring of

Highly Nonlinear Systems

5.1 Introduction

With the recent developments in monitoring technologies such as high performance sen-

sors, optical or wireless networks, and the global position system, health monitoring

of civil structures became a more accurate, faster, and cost efficient process. How-

ever, significant challenges associated with modeling the physical complexity of sys-

tems comprising these structures remain. This is mainly due to the fact that these sys-

tems exhibit non-linear dynamical behavior with uncertain and complex governing laws.

These uncertainties render standard system identification techniques either unsuitable or

inefficient. Therefore, the need rises for robust system identification algorithms that can

tackle the aforementioned challenges. This has been a very active research area over the

past decade [GS95, LBL02, ZFYM02, FBL05, FIIN05, GF06].

Sequential data assimilation has been widely used for structural health monitoring

and system identification problems. Many extensions of the Kalman Filter were devel-

oped as adaptations to important classes of these problems. While the Extended Kalman

Filter may fail in the presence of high non-linearities, Monte Carlo based Kalman Fil-

ters usually give satisfactory results. The Ensemble Kalman Filter (EnKF) [Eve94] was

recently used for damage detection in strongly nonlinear systems [GF06], where it is
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combined with non-parametric modeling techniques to tackle structural health monitor-

ing for non-linear systems. The EnKF uses a Monte Carlo Simulation scheme for char-

acterizing the noise in the system, and therefore allows representing non-Gaussian per-

turbations. Although this combination gives good results, it requires a relatively accurate

representation of the non-linear system dynamics. It also requires a large ensemble size

to quantify the non-Gaussian uncertainties in such systems and consequently imposes a

high computational cost.

The objective of this study is to propose a new system identification approach

based on coupling robust non-parametric non-linear models with the Polynomial Chaos

methodology [GS03] in the context of the Kalman Filtering techniques. The proposed

approach uses a Polynomial Chaos expansion of the nonparametric representation of

the system’s non-linearity to statistically characterize the system’s behavior. A filtering

technique that allows the propagation of a stochastic representation of the unknown vari-

ables using Polynomial Chaos is used to identify the chaos coefficients of the unknown

parameters in the model. The introduced filter is a modification of the EnKF that uses

the Polynomial Chaos methodology to represent uncertainties in the system. This allows

the representation of non-Gaussian uncertainties in a simpler, less taxing way without

the necessity of managing a large ensemble. It also allows obtaining the probability den-

sity function of the model state or parameters at any instant in time by simply simulating

the Polynomial Chaos basis.

5.2 Numerical Application

The efficiency of the proposed method is assessed by applying it to the structural health

monitoring of a the four story shear building shown in figure 5.1. This model has a

constant stiffness on each floor and a 5% damping ratio in all modes. All structural
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elements of this frame are assumed to involve hysteretic behavior, and it is supposed

that a change in the hysteretic loop of the first floor element occurs at some point. It

is of utmost importance to localize that point in time and track the state of the system

throughout and subsequent to that point.

Figure 5.1: Shear Building under analysis.

A synthetically generated dataset representing measurements of the displacements

and velocities at each floor is obtained by representing the hysteretic restoring force by

the Bouc-Wen model, which is therefore considered as the exact hysteretic behavior of

the system. Thus, the equation of motion of the system is given by,

Mü(t) + Cu̇(t) + αKelu(t) + (1 − α)Kinz(x, t) = −Mτ üg(t), (5.1)

where M, C, Kel, and Kin are the mass, damping, elastic and inelastic stiffness matrices

respectively; α is the ratio of the post yielding stiffness to the elastic stiffness, τ is the
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Table 5.1: Bouc-Wen Model Coefficients
BW Coef. pre-change post-change

α 0.15 0.15

β 0.1 10

γ 0.1 10

A 1 1

n 1 1

influence vector, u is the diplacement vector, x is the interstorey drift vector, and z is

n-dimensional evolutionary hysteretic vector whose ith component is give by the Bouc-

Wen model as,

żi = Aiẋi − βi |ẋi| |zi|ni−1 − γiẋi |zi|ni , i = 1, . . . , n. (5.2)

Table 5.1 presents the Bouc-Wen model parameters adopted in this application. The

structure is subject to a base motion specified by a time series consistent with the El-

Centro earthquake shown in figure 5.2, and a change of the first floor hysteric behavior

is assumed to take place five seconds after the excitation.

Two monitoring scenarios are considered. In both scenarios, observations of the

floor displacements and velocities are available at all floors. However, the frequency

of measurements is varied to explore the impact of hardware limitations on the perfor-

mance of the filter. In the first scenario, it is assumed that measurements are available

every 5 time steps, while they are given every 20 time steps during the second scenario.

A nonparametric representation of the system nonlinearity is adopted, and the filter-

ing technique is used to characterize the latter representation in order to capture any

ambiguous behavior of the structure examined.
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Figure 5.2: The Elcentro Excitation Applied to the Structure.

5.2.1 Non-parametric Representation of the Non-Linearity

The proposed filtering methodology is combined with a non-parametric modeling tech-

nique to tackle structural health monitoring of non-linear systems in a fashion similar

to that used earlier by Ghanem [GF06], but instead of adopting a deterministic non-

parametric representation of the non-linearity, a stochastic representation via Polyno-

mial Chaos is used. The basic idea behind the non-parametric identification technique

used is to determine an approximating analytical function F̂ , that approximates the

actual system non-linearities, with the form of F̂ including suitable basis functions that

are adapted to the problem at hand [MCC+04]. For general non-linear systems, a suit-

able choice of basis would be the list of terms in the power series expansion in the

doubly indexed series

S =
imax
∑

i=0

jmax
∑

j=0

uiu̇j, (5.3)
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where u and u̇ are used to represent the system’s displacement and velocity respectively.

Therefore, if imax = 3 and jmax = 3, the basis functions become

basis = {1, u̇, u̇2, u̇3, u, uu̇, uu̇2, uu̇3, u2, u2u̇, u2u̇2, u2u̇3, u3, u3u̇, u3u̇2, u3u̇3}. (5.4)

This notation readily generalizes from the SDOF case presented in Eqs. 5.3 and 5.4

as shown later. In the proposed method the displacements and velocities are stochastic

processes represented by their Polynomial Chaos expansion. Thus, the approximating

function is also expressed as a stochastic processes via a Polynomial Chaos representa-

tion.

The model adopted within the Kalman Filter is hence given by

Mü(t) + F(u, u̇) = −Mτ üg(t), (5.5)

where F is the non-parametric representation of the non-linearity whose ith floor com-

ponent is given by

F i ≈
∑

j

F i
j (u, u̇)ψj =

∑

j

ai
jψj(

∑

k

(ui
k − ui−1

k )ψk) +
∑

j

ai+1
j ψj(

∑

k

(ui
k − ui+1

k )ψk)

+
∑

j

bijψj(
∑

k

(ui
k − ui+1

k )ψk)
2 +

∑

j

bi+1
j ψj(

∑

k

(ui
k − ui+1

k )ψk)
2

+
∑

j

cijψj(
∑

k

(u̇i
k − u̇i−1

k )ψk) +
∑

j

ci+1
j ψj(

∑

k

(u̇i
k − u̇i+1

k )ψk)

+
∑

j

di
jψj(

∑

k

(ui
k − ui−1

k )ψk)(
∑

l

(u̇i
l − u̇i−1

l )ψl)

+
∑

j

di+1
j ψj(

∑

k

(ui
k − ui+1

k )ψk)(
∑

l

(u̇i
l − u̇i+1

l )ψl). (5.6)
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In Eq. 5.6 {aj}, {bj}, {cj}, and {dj} represent the Chaos coefficients of the unknown

parameters to be identified. The fourth order Runge-Kutta method is used for the time

stepping, and a stochastic Galerkin scheme is employed to solved the system at each

time step.

5.2.2 Results

In this application, it is assumed that observations of displacements and velocities from

all floors are available. The noise signals perturbing both the model and measurements

are modeled as first order, one dimensional, independent, Polynomial Chaos expan-

sions having zero-mean and an RMS of 0.05 and 0.001 respectively. The parameters’

uncertainties on the other hand, are modeled as second order, one dimensional, Poly-

nomial Chaos expansions whose coefficients are to be determined in accordance with

the available observations. This is done to incorporate the possibility that the unknown

parameters may deviate from Gaussianity. Furthermore, it is assumed that the first floor

undergoes a change in its hysteretic behavior 5 seconds after the ground excitation. The

purpose of the application is to detect this behavioral change.

5.2.2.1 Example 1: ∆t = 5 Time Steps

In the first example, it is assumed that the measurements of the floors’ displacements and

velocities are available every 5 time steps. Figures 5.3 and 5.4 describe the tracking of

the displacement and velocity for the first and fourth floor respectively. Excellent match

between the results estimated using the Polynomial Chaos based Kalman Filter and the

true states is observed. Figure 5.5 presents the evolution of the mean of the unknown

parameters identified by the proposed filtering technique. Error bars representing the

scatter in the estimated parameters are also present in figure 5.5. The different jumps

within the parameters are associated with the perks in the corresponding excitation.
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Figure 5.3: (a) Estimate of the first floor displacement ( ∆t = 5 time steps), (b) Estimate

of the first floor velocity (∆t = 5 time steps).
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Figure 5.4: (a) Estimate of the fourth floor displacement ( ∆t = 5 time steps), (b)

Estimate of the fourth floor velocity (∆t = 5 time steps).

Further investigation of the parameters indicate that the main changes take place in

the first floor following the 5sec time interval. Note that the parameters a and c in

floors 1 and 2 undergo the greatest jumps since they are associated with inter-story

drift and velocity, respectively. One of the main advantages of using the Polynomial

Chaos Kalman filter is that is provides a scatter around the estimated parameters. This is

represented by the probability density functions corresponding to each of the estimated

parameters. Figure 5.6 presents the pdf’s of the estimated floor 1 parameters.
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Figure 5.5: Estimate of the Mean floor parameters ( ∆t = 5 time steps): (a) first floor,

(b) second floor, (c) third floor, and (d) fourth floor

5.2.2.2 Example 2: ∆t = 20 Time Steps

In the second run, to test the limitation of the monitoring hardware and software, it

is assumed that the measurements are available every 20 time steps. Figures 5.7 and

5.8 describe the tracking of the displacement and velocity for the first and fourth floor

respectively. While the match between the results estimated using the Polynomial Chaos

based Kalman Filter and the true states is observed is not as good as the previous exam-

ple, the estimate still gives a good representation of the true state. Figure 5.9 presents

the evolution of the mean of the unknown parameters identified by the proposed filtering

technique. It is again readily noted that the change in hysteretic behavior is concentrated
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Figure 5.6: Probability density function of estimated floor 1 parameters ( ∆t = 5 time

steps): (a) “a”, (b) “b”, (c) “c”, and (d) “d”

at the first floor at a time after 5sec. Figure 5.10 presents the probability density func-

tions associated with the estimated first floor parameters. Although the mean of the

identified parameters is closely comparable to that in example 1, it is obvious that the

associated scatter has increased, and thus indicating a higher coefficient of variation.
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Figure 5.7: (a) Estimate of the first floor displacement ( ∆t = 20 time steps), (b) Esti-

mate of the first floor velocity (∆t = 20 time steps).
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Figure 5.8: (a) Estimate of the fourth floor displacement ( ∆t = 20 time steps), (b)

Estimate of the fourth floor velocity (∆t = 20 time steps).
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Figure 5.9: Estimate of the Mean floor parameters ( ∆t = 20 time steps): (a) first floor,

(b) second floor, (c) third floor, and (d) fourth floor
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Figure 5.10: Probability density function of estimated floor 1 parameters ( ∆t = 20 time

steps): (a) “a”, (b) “b”, (c) “c”, and (d) “d”
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Chapter 6

Sundance

Sundance is a system for rapid development of high-performance parallel finite-element

solutions of partial differential equations [Lon04]. This toolkit software is developed

mainly by Kevin Long in SANDIA National Laboratories. The high level nature of

Sundance relieves from worrying about the tedious and error-prone bookkeeping details.

It also allows a high degree of flexibility in the formulation, discretization, and the

solution of the problem. Moreover, Sundance can both assemble and solve problems in

parallel. One of its design goal, is to make parallel solutions as simple as serial ones.

Sundance is written in C++ programming language with optional python wrappers.

Therefore, it is necessary to know how to write and compile C++ codes to be able to use

it. Only a fraction of the objects and methods that make up Sundance are ever needed in

user code; most are used internally by Sundance.

Solution of partial differential equations is a complicated endeavor with many subtle

difficulties, and there is no standard approach to tackle all PDE’s. Sundance is a set of

high-level objects that will allow the user to build his own simulation code with a mini-

mal effort. Although, these objects shield the user from the rather tedious bookkeeping

details required in writing a finite-element code, they still require him to understand how

to do a proper formulation and discretization of a given problem.
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6.1 Guidelines for Using Sundance

• Finite Element methods for solving PDE’s are based on the PDE’s weak form.

Therefore, Sundance requires describing PDE’s by employing a high-level sym-

bolic notation for writing weak forms.

• The spatial discretization or mesh of problem can be created internally for simple

one dimensional or two dimensional problems, but for more complex problems it

is required to use a third-party mesher and import that mesh into Sundance.

• The FEM approximates PDE solution by a system of linear or nonlinear algebraic

equations. Many factors influence this approximation, namely, choice of weak

form, method of imposing Boundary Conditions, basis functions for the unknowns

in the problem, and more.

• Sundance has a built in Library linking to the famous TRILINOS solvers. There-

fore it suffice to identify the solver required for the problem and specify its param-

eters such as the tolerance level, the maximum number of iterations, linearization

or iteration method for nonlinear problems , and more.

• Solution of a time-dependent problem can be reduced to solving a sequence of

linear (or possibly nonlinear) problems, by timestepping or marching. Again,

there are many possible marching algorithms [Lon04].

6.2 SSFEM Using Sundance

In order to make use of Sundance in solving stochastic partial differential equations via

the SSFEM, certain modifications to the code are done. A spectral library is developed
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within Sundance to allow the high level implementation of the SSFEM. It entails defin-

ing a spectral basis whose type, dimensionality and order are to be specified along with

methods for computing the expectations over the space approximated by the specified

basis.

6.2.1 Example: One-dimensional Bar with a Random Stiffness

Consider a bar element of Length L, clamped at both ends and subject to a deterministic

static uniform body load P . It is assumed that the modulus of elasticity E associated

with the bar is a realization of a lognormal random process indexed over the spatial

domain occupied by the bar. It is also assumed that the bar has a uniform cross-sectional

area, A.

The governing differential equation for this problem is,

d

dx
(AE

du

dx
) = P. (6.1)

Although, this is a simple example, many of the complex Sundance syntax can be

demonstrated through its solution scheme. The boundary conditions, BCs, for the above

problem are,

u = 0 at x = 0 and x = L.

With the equation and BCs in hand, we can write the problem in weak form. Multiplying

by a test function v and integrating by parts, we have

∫

interior

dv

dx
AE

du

dx
−
∫

interior

vP (6.2)
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6.2.2 Step by Step Explanation

In this section a walk through the code for solving the problem is detailed. At the end,

the complete code is listed for reference.

6.2.2.1 Boilerplate

A dull but essential first step is to show the boilerplate C++ common to nearly every

Sundance code:

#include "Sundnace.hpp"

int main(int argc, char** argv)

{

try

{

Sundance::init(&argc, &argv);

/*

* Code Goes Here

*/

}

catch(exception& e)

{

Sundance::handleException(e);

}

Sundance::finalize();

}

These lines control initialization and result gathering for the problem, initializing and

finalizing MPI if MPI is being used, and other administrative tasks.
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6.2.2.2 Getting the Mesh

A mesh object is used by Sundance to represent a tessellation of the problem domain.

There are many ways of getting a mesh, all abstracted with the MeshSource interface.

Sundance is designed to work with different mesh underlying implementations, the

choice of which is done by specifying a MeshType object. In this example, we use

the BasicSimplicialMeshType which is a lightweight parallel simplicial mesh. For the

simple geometry associated with this problem, the discretization is done internally by

Sundance as follows,

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new

PartitionedLineMesher(0.0, 1.0, 10, meshType);

Mesh mesh = mesher.getMesh();

In this example, it is assumed that the total bar length is 1.0 discretized into 10 elements.

6.2.2.3 Defining the Domains of Integration

Having defined the mesh, it is time to define the domains on which the mesh equa-

tions and boundary conditions are to be applied. CellFilter objects are used to represent

domains and subdomains within a mesh. For this problem, we only need to define the

interior and the edges where the boundary conditions are to be applied. For the latter

purpose, the CellPredicate object is used. This object is a binary command used to test

whether a cell is in the boundary domain or not.

CELL_PREDICATE(LeftPointTest,{return fabs(x[0])< 1e-8;});

CELL_PREDICATE(RightPointTest,{return fabs(x[0]-1.0)< 1e-8;});

This identifies the extremities of the domain located at x = 0 and x = 1.0. Now, the

CellFilter object is used to define the separate domains:
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CellFilter interior = new MaximalCellFilter();

CellFilter points = new DimensionalCellFilter(0);

CellFilter leftPoint = points.subset(new LeftPointTest());

CellFilter rightPoint = points.subset(new RightPointTest());

6.2.2.4 Defining the Spectral Basis and the Spatial Interpolation Basis

The spectral basis is defined by specifying its type, the number of dimensions and the

order of the expansion used to generate it. For the purpose of implementing the SSFEM,

the Hermite polynomials basis is used and it is generated as follows,

int ndim = 1;

int order = 6;

SpectralBasis sbasis = new HermiteSpectralBasis(ndim, order);

Similarly, a spatial interpolation basis is defined by specifying its type and order. Given

these bases, we can now construct both the physical dicsretespace object and the random

one.

DiscreteSpace discSpace(mesh, new Lagrange(1), vecType);

The latter specifies that the problem utilizes a first order lagrangian interpolation on the

mesh.

6.2.2.5 Defining the Model Parameters and Excitation

The modulus of elasticity is defined as a lognormal process. Using the standard PCE

expansion for a lognormal variable, the different coefficients of the one-dimensional

sixth order expansion are obtained and stored in data files. Now, we have to read these

files into Sundance vectors and define the associated Spectral Expressions. Sundance

has built in function to read data files into Discrete Functions. This is done as follows,
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Expr E0 = new DiscreteFunction(discSpace, 0.0, "E0");

Vector<double> vec = DiscreteFunction::

discFunc(E0)->getVector();

const RefCountPtr<DOFMapBase>& dofMap =

DiscreteFunction::discFunc(E0)->map();

ifstream is("E0.dat");

int nNodes;

is >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError

"number of nodes in data file fieldData.dat is "

<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

Array<int> dofs(1);

double fVal;

for (int i=0; i<nNodes; i++)

{

dofMap->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is >> fVal;

vec.setElement(dof, fVal);

}

DiscreteFunction::discFunc(E0)->setVector(vec);

In a similar fashion, the remaining PCE coefficients of E are read into Sundance. The

excitation force is deterministic and hence its spectral representation is represented by

its value as the mean of the expansion and zero higher order terms.

/* array of coefficients for the spectra expression */

Array<Expr> Coeff(sbasis.nterms());
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Coeff[0] = 1.0;

Coeff[1] = 0.0;

Coeff[2] = 0.0;

Coeff[3] = 0.0;

Coeff[4] = 0.0;

Coeff[5] = 0.0;

Coeff[6] = 0.0;

Expr F = new SpectralExpr(sbasis, Coeff);

Expr A = 1.0;

Expr E = new SpectralExpr(sbasis,

List(E0, E1, E2, E3, E4, E5, E6));

6.2.2.6 Defining the Unknown and Test Functions

Expressions representing the test and unknown functions are defined easily:

Expr u = new UnknownFunction(new Lagrange(1), sbasis, "u");

Expr v = new TestFunction(new Lagrange(1), sbasis, "v");

6.2.2.7 Writing the Weak form

To write the weak form, we need to define the Quadrature rule for computing the integra-

tion first. We’ll use second-order Gaussian quadrature. The weak form with a quadrature

specification is written in Sundance as:

QuadratureFamily quad2 = new GaussianQuadrature(2);

Expr eqn = Integral(interior, (dx*v)*(E*(dx*u)), quad2)

+ Integral(interior, v*F, quad2) ;
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6.2.2.8 Writing the Essential Boundary Conditions

The weak form above contains the physics in the body of the domain plus the Neumann

BCs on the edges. We still need to apply the Dirichlet boundary condition on the inlet,

which we do with an EssentialBC object

Expr bc = EssentialBC(rightPoint, v*u , quad2)

+ EssentialBC(leftPoint, v*u, quad2);

6.2.2.9 Creating the Linear Problem Object

A LinearProblem object contains everything that is needed to assemble a discrete

approximation to our PDE: a mesh, a weak form, boundary conditions, specification of

test and unknown functions, and a specification of the low-level matrix and vector rep-

resentation to be used. We will use Epetra as our linear algebra representation, which is

specified by selecting the corresponding VectorType subtype,

VectorType<double> vecType = new EpetraVectorType();

Now the Linear problem object is defined as,

LinearProblem prob(mesh, eqn, bc, v, u, vecType);

6.2.2.10 Specifying the Solver and Solving the Problem

The BICGSTAB method with ILU preconditioning is used for solving the problem.

Level one preconditioning alond with a tolerance of 10−14 within 1000 iterations is

used. The whole setup is configured using the Parameterlist TRILINOS object to read

the specs from an xml file.

ParameterXMLFileReader reader("bicgstab.xml");

ParameterList solverParams = reader.getParameters();
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LinearSolver<double> linSolver

= LinearSolverBuilder::createSolver(solverParams);

Then the problem is simply solved by using the following command,

Expr soln = prob.solve(linSolver);

6.2.3 Complete Code for the Bar Problem

#include "Sundance.hpp"

CELL_PREDICATE(LeftPointTest, {return fabs(x[0]) < 1.0e-10;});

CELL_PREDICATE(RightPointTest, {return fabs(x[0]-1.0) < 1.0e-10;});

int main(int argc, char** argv)

{

try

{

Sundance::init(&argc, &argv);

VectorType<double> vecType = new EpetraVectorType();

/* Create a mesh. It will be of type BasisSimplicialMesh, and will

* be built using a PartitionedLinedMesher. */

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, 10, meshType);

Mesh mesh = mesher.getMesh();

/* Create a cell filter that will identify the maximal cells

* in the interior of the domain */

CellFilter interior = new MaximalCellFilter();

CellFilter points = new DimensionalCellFilter(0);

CellFilter leftPoint = points.subset(new LeftPointTest());

CellFilter rightPoint = points.subset(new RightPointTest());

/* Create the Spectral Basis */

int ndim = 1;
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int order = 6;

SpectralBasis sbasis = new HermiteSpectralBasis(ndim, order);

/* create an empty (zero-valued) discrete function */

DiscreteSpace discSpace(mesh, new Lagrange(1), vecType);

Expr E0 = new DiscreteFunction(discSpace, 0.0, "E0");

Vector<double> vec = DiscreteFunction::discFunc(E0)->getVector();

const RefCountPtr<DOFMapBase>& dofMap =

DiscreteFunction::discFunc(E0)->map();

ifstream is("E0.dat");

int nNodes;

is >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError,

"number of nodes in data file fieldData.dat is "

<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

Array<int> dofs(1);

double fVal;

for (int i=0; i<nNodes; i++)

{

dofMap->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is >> fVal;

vec.setElement(dof, fVal);

}

DiscreteFunction::discFunc(E0)->setVector(vec);

/* create an empty (zero-valued) discrete function */

Expr E1 = new DiscreteFunction(discSpace, 0.0, "E1");

Vector<double> vec1 = DiscreteFunction::discFunc(E1)->getVector();

const RefCountPtr<DOFMapBase>& dofMap1 =

DiscreteFunction::discFunc(E1)->map();

ifstream is1("E1.dat");
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is1 >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError,

"number of nodes in data file fieldData.dat is "

<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

for (int i=0; i<nNodes; i++)

{

dofMap1->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is1 >> fVal;

vec1.setElement(dof, fVal);

}

DiscreteFunction::discFunc(E1)->setVector(vec1);

/* create an empty (zero-valued) discrete function */

Expr E2 = new DiscreteFunction(discSpace, 0.0, "E2");

Vector<double> vec2 = DiscreteFunction::discFunc(E2)->getVector();

const RefCountPtr<DOFMapBase>& dofMap2 =

DiscreteFunction::discFunc(E2)->map();

ifstream is2("E2.dat");

is2 >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError,

"number of nodes in data file fieldData.dat is "

<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

for (int i=0; i<nNodes; i++)

{

dofMap2->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is2 >> fVal;

vec2.setElement(dof, fVal);

}
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DiscreteFunction::discFunc(E2)->setVector(vec2);

/* create an empty (zero-valued) discrete function */

Expr E3 = new DiscreteFunction(discSpace, 0.0, "E3");

Vector<double> vec3 = DiscreteFunction::discFunc(E3)->getVector();

const RefCountPtr<DOFMapBase>& dofMap3 =

DiscreteFunction::discFunc(E3)->map();

ifstream is3("E3.dat");

is3 >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError,

"number of nodes in data file fieldData.dat is "

<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

for (int i=0; i<nNodes; i++)

{

dofMap3->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is3 >> fVal;

vec3.setElement(dof, fVal);

}

DiscreteFunction::discFunc(E3)->setVector(vec3);

/* create an empty (zero-valued) discrete function */

Expr E4 = new DiscreteFunction(discSpace, 0.0, "E4");

Vector<double> vec4 = DiscreteFunction::discFunc(E4)->getVector();

const RefCountPtr<DOFMapBase>& dofMap4 =

DiscreteFunction::discFunc(E4)->map();

ifstream is4("E4.dat");

is4 >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError,

"number of nodes in data file fieldData.dat is "
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<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

for (int i=0; i<nNodes; i++)

{

dofMap4->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is4 >> fVal;

vec4.setElement(dof, fVal);

}

DiscreteFunction::discFunc(E4)->setVector(vec4);

/* create an empty (zero-valued) discrete function */

Expr E5 = new DiscreteFunction(discSpace, 0.0, "E5");

Vector<double> vec5 = DiscreteFunction::discFunc(E5)->getVector();

const RefCountPtr<DOFMapBase>& dofMap5 =

DiscreteFunction::discFunc(E5)->map();

ifstream is5("E5.dat");

is5 >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError,

"number of nodes in data file fieldData.dat is "

<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

for (int i=0; i<nNodes; i++)

{

dofMap5->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is5 >> fVal;

vec5.setElement(dof, fVal);

}

DiscreteFunction::discFunc(E5)->setVector(vec5);

/* create an empty (zero-valued) discrete function */
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Expr E6 = new DiscreteFunction(discSpace, 0.0, "E6");

Vector<double> vec6 = DiscreteFunction::discFunc(E6)->getVector();

const RefCountPtr<DOFMapBase>& dofMap6 =

DiscreteFunction::discFunc(E6)->map();

ifstream is6("E6.dat");

is6 >> nNodes;

TEST_FOR_EXCEPTION(mesh.numCells(0) != nNodes, RuntimeError,

"number of nodes in data file fieldData.dat is "

<< nNodes << " but number of nodes in mesh is "

<< mesh.numCells(0));

for (int i=0; i<nNodes; i++)

{

dofMap6 ->getDOFsForCell(0, i, 0, dofs);

int dof = dofs[0];

is6 >> fVal;

vec6.setElement(dof, fVal);

}

DiscreteFunction::discFunc(E6)->setVector(vec6);

/* Create Spectral Unknown And test Functions */

Expr u = new UnknownFunction(new Lagrange(1), sbasis, "u");

Expr v = new TestFunction(new Lagrange(1), sbasis, "v");

/* Create differential operator and coordinate functions */

Expr x = new CoordExpr(0);

Expr dx = new Derivative(0);

/* We need a quadrature rule for doing the integrations */

QuadratureFamily quad2 = new GaussianQuadrature(2);

/* array of coefficients for the spectra expression */

Array<Expr> Coeff(sbasis.nterms());

Coeff[0] = 1.0;

Coeff[1] = 0.0;

Coeff[2] = 0.0;

Coeff[3] = 0.0;

Coeff[4] = 0.0;
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Coeff[5] = 0.0;

Coeff[6] = 0.0;

Expr F = new SpectralExpr(sbasis, Coeff);

Expr A = 1.0;

Expr E = new SpectralExpr(sbasis, List(E0, E1, E2, E3, E4, E5, E6));

/* Define the weak form */

Expr eqn = Integral(interior, (dx*v)*(E*(dx*u)), quad2) +

Integral(interior, v*F, quad2) ;

/* Define the Dirichlet BC */

Expr bc = EssentialBC(rightPoint, v*u , quad2)+

EssentialBC(leftPoint, v*u, quad2);

/* We can now set up the linear problem! */

LinearProblem prob(mesh, eqn, bc, v, u, vecType);

/* Read the parameters for the linear solver from an XML file */

ParameterXMLFileReader reader("bicgstab.xml");

ParameterList solverParams = reader.getParameters();

LinearSolver<double> linSolver

= LinearSolverBuilder::createSolver(solverParams);

/* solve the problem */

Expr soln = prob.solve(linSolver);

FieldWriter wr = new MatlabWriter("Spectralbar");

wr.addMesh(mesh);

wr.addField("u0", new ExprFieldWrapper(soln[0]));

wr.addField("u1", new ExprFieldWrapper(soln[1]));

wr.addField("u2", new ExprFieldWrapper(soln[2]));

wr.addField("u3", new ExprFieldWrapper(soln[3]));

wr.addField("u4", new ExprFieldWrapper(soln[4]));

wr.addField("u5", new ExprFieldWrapper(soln[6]));

wr.write();
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}

catch(exception& e)

{

Sundance::handleException(e);

}

Sundance::finalize();

}
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Chapter 7

Conclusion

The combination of Polynomial Chaos with the Ensemble Kalman Filter renders an

efficient data assimilation methodology that surpasses standard Kalman Filtering tech-

niques while maintaining a relatively low computational cost. Although the proposed

method employs traditional Kalman Filter updating schemes, it preserves all the error

statistics, and hence allows the computation of the probability density function of the

uncertain parameters and variables at all time steps. This is done by simply simulating

the PC representations of these parameters. This simulation has a negligible computa-

tional cost.

Applying the proposed method for calibrating reservoir simulation models is an

innovative approach that allows approximating the higher order statistics of the pro-

duction forecast. The use of PC to represent the uncertainty in the reservoir model and

the measurement help convey the actual medium in a more realistic way. The proposed

method is tested on the one-dimensional Buckley-Leverett and the two-dimensional Five

Spot two-phase immiscible flow problems using synthesized measurement data. A novel

approach for representing the reservoir medium properties as a rational function is pre-

sented, and the obtained results depict the validity and effectiveness of the proposed

method.

The efficiency of the method is also conveyed through applying it for optimizing

the fluid front dynamics in porous media by using injection rate control. The obtained

results show that representing the controls as part of the Kalman Filter state vector is an

effective approach for controlling the flow and maintaining a desired target.
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The data assimilation technique is also applied for health monitoring of highly non-

linear structures. Together with the non-parametric representation of the nonlineari-

ties, the approach constitutes an effective system identification technique that accurately

detects any changes in the systems behavior. The Polynomial Chaos representation of

the non-parametric model for the nonlinearities is a robust innovative approach that per-

mits damage identification and tracking the dynamical state beyond that point. Using

Polynomial Chaos, the uncertainty associated with the assumed non-parametric model

is inherently present and thus represents the actual nonlinearity in a more accurate way.
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Appendix A

Complete SUNDANCE Reservoir

Characterization Codes

A.1 Two-Dimensional Water Flooding Problem - Sce-

nario 1

#include "Sundance.hpp"

int main(int argc, char** argv)

{

try

{

MPISession::init(&argc, &argv);

/* We will do our linear algebra using Epetra */

VectorType<double> vecType = new EpetraVectorType();

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new ExodusNetCDFMeshReader("square_60x60.ncdf", meshType);

Mesh mesh = mesher.getMesh();

/* Create a cell filter that will identify the maximal cells

in the interior of the domain */

CellFilter interior = new MaximalCellFilter();

CellFilter edges = new DimensionalCellFilter(1);

CellFilter Source = edges.labeledSubset(1);

CellFilter Sink = edges.labeledSubset(2);

/* Create the Spectral Basis */

int ndim = 3;

int order = 2;

int nterm = 5;

/* Hermite Basis truncated after 5 terms */

SpectralBasis sbasis = new HermiteSpectralBasis(ndim, order, nterm);

/* Create unknown and test functions, discretized using first-order
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* Lagrange interpolants */

BasisFamily L1 = new Lagrange(2);

Expr Se = new UnknownFunction(L1, sbasis, "Se");

Expr Ns = new TestFunction(L1, sbasis, "Ns");

Expr Pw = new UnknownFunction(L1, sbasis, "Pw");

Expr Nn = new TestFunction(L1, sbasis, "Nn");

/* Create differential operator and coordinate functions */

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

/* We need a quadrature rule for doing the integrations */

QuadratureFamily quad2 = new GaussianQuadrature(4);

DiscreteSpace d1(mesh, L1, vecType);

DiscreteSpace discSpace(mesh, List(L1, L1) , sbasis, vecType);

/* Initial Guess for the dynamic states */

Expr u0 = new DiscreteFunction(discSpace, 0.0, "u0");

/* Initial Condition for the Saturation */

Expr Se00 = new DiscreteFunction(d1, 0.0, "Se00");

Expr Se01 = new DiscreteFunction(d1, 0.0, "Se01");

Expr Se02 = new DiscreteFunction(d1, 0.0, "Se02");

Expr Se03 = new DiscreteFunction(d1, 0.0, "Se03");

Expr Se04 = new DiscreteFunction(d1, 0.0, "Se04");

Expr Se0 = new SpectralExpr(sbasis, List(Se00, Se01, Se02, Se03, Se04));

/* Medium Porosity */

Expr P0 = new DiscreteFunction(d1, 0.20, "P0");

Expr P1 = new DiscreteFunction(d1, 0.0, "P1");

Expr P2 = new DiscreteFunction(d1, 0.0, "P2");

Expr P3 = new DiscreteFunction(d1, 0.0, "P3");

Expr P4 = new DiscreteFunction(d1, 0.0, "P4");

/* Medium Permeability */

Expr K0 = new DiscreteFunction(d1, 170.0, "K0");

Expr K1 = new DiscreteFunction(d1, 0.0, "K1");

Expr K2 = new DiscreteFunction(d1, 0.0, "K2");

Expr K3 = new DiscreteFunction(d1, 0.0, "K3");

Expr K4 = new DiscreteFunction(d1, 0.0, "K4");

Vector<double> K1Vec = DiscreteFunction::discFunc(K1)->getVector();

Vector<double> P1Vec = DiscreteFunction::discFunc(P1)->getVector();

Vector<double> K4Vec = DiscreteFunction::discFunc(K4)->getVector();

Vector<double> P4Vec = DiscreteFunction::discFunc(P4)->getVector();
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int nNodes1 = mesh.numCells(0); /*number of nodes in mesh */

int nElems = mesh.numCells(1); /* number of elements */

int vecSize = nElems + nNodes1;

/* crossectional Area */

double As = 1.0;

/* initial guess for the scatter of the unknown medium properties */

double x1, x2, x3, x4;

int seed = 1000;

for(int MC=0; MC<vecSize; MC++)

{

seed += 1;

StochasticLib1 sto(seed);

if ((MC%1) == 0)

{

x1 = sto.Normal(0,10);

x2 = sto.Normal(0,0.01);

x3 = sto.Normal(0,5);

x4 = sto.Normal(0,0.005);

K1Vec.setElement(MC, (x1));

P1Vec.setElement(MC, (x2));

K4Vec.setElement(MC, (x3));

P4Vec.setElement(MC, (x4));

}

}

DiscreteFunction::discFunc(K1)->setVector(K1Vec);

DiscreteFunction::discFunc(P1)->setVector(P1Vec);

DiscreteFunction::discFunc(K4)->setVector(K4Vec);

DiscreteFunction::discFunc(P4)->setVector(P4Vec);

Expr P = new SpectralExpr(sbasis, List(P0, P1, P2, P3, P4));

Expr K = new SpectralExpr(sbasis, List(K0, K1, K2, K3, K4));

double MuO = 1.735e06; /* Oil Viscosity */

double MuW = 1.735e05; /* Water Viscosity */

double Pe = 10000.0;

double INJ = 0.0323; /* Water Injection rate */

/* Setup the time stepping with timestep = 0.1 */

double deltaT = 0.10;

double Sm = 0.35; /*residual saturation */

/* The coefficients of the different powers of the chaos coefficients */

Expr Squad = pow(Se,4);

Expr Scube = pow(Se,3);

Expr Ssquare = pow(Se,2);
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/* Computing the relative pemeabilities and capillary pressure */

Expr Krw = 0.864*Squad + 0.201*Scube - 0.065*Ssquare ;

Krw.setcoeff(3, 0.05*Krw.getcoeff[1]); /* modeling error */

Expr Kro = 1.595*Squad - 4.784*Scube + 5.994*Ssquare - 3.805*Se + 1.0;

Kro.setcoeff(3, 0.05*Kro.getcoeff[1]); /* modeling error */

Expr Pc = Pe*(-4.286*Scube + 8.974*Ssquare - 6.993*Se + 3.152);

Pc.setcoeff(3, 0.05*Pc.getcoeff[1]); /* modeling error */

/* Weak Form of coupled PDE */

Expr Weqn = Integral(interior, Ns*(As*(1.0-Sm)*(P*(Se - Se0))), quad)

+ Integral(interior, (dx*Ns)*(As/MuW*(Krw*K*(dx*Pw))*deltaT), quad)

- Integral(Source, Ns*INJ*deltaT,quad);

Expr Oeqn = Integral(interior,-Nn*(As*(1.0-Sm)*(P*(Se - Se0))), quad)

+ Integral(interior, (dx*Nn)*(As/MuO*(Kro*K*(dx*(Pw + Pc)))*deltaT), quad);

Expr eqn = Weqn + Oeqn;

/* Boundary Conditions */

Expr bc = EssentialBC(leftPoint, Nn*(Pw-10000),quad);

/*setting up the nonlinear problem */

NonlinearOperator<double> F =

new NonlinearProblem(mesh, eqn, bc,List(Ns,Nn), List(Se,Pw), u0, vecType);

ParameterXMLFileReader reader("nox.xml");

ParameterList noxParams = reader.getParameters();

NOXSolver solver(noxParams, F);

int Nn = nNodes1;

/* array of the global ID’s of the measurement locations */

int GID[22] = {1, 4, 5, 8, 11, 12, 14, 15, 18,

19, 22, 25, 27, 30, 31, 32, 34, 37, 40, 41, 42, 47};

int LID[Nn];

// get local ID of node given GID

const RefCountPtr<DOFMapBase>& dofMap = DiscreteFunction::discFunc(Se00)->map();

for (int i=0; i< Nn; i++)

{

int ID = mesh.mapGIDToLID(0, i);

Array<int> dofIndices;

dofMap -> getDOFsForCell(0,ID,0, dofIndices);

LID[i] = dofIndices[0];

}

/* Open the data file */

FILE * mFile;

mFile = fopen("../true/SMeasurement.dat", "r");
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int nSteps = 20001;

for(int ns=0; ns < nSteps; ns++)

{

solver.solve();

/* Reading the solution into vectors so that it could be transfered

to the Newmat Library for the assimilation step */

Expr Pww0 = new DiscreteFunction(d1, 0.0, "Pww0");

Expr Pww1 = new DiscreteFunction(d1, 0.0, "Pww1");

Expr Pww2 = new DiscreteFunction(d1, 0.0, "Pww2");

Expr Pww3 = new DiscreteFunction(d1, 0.0, "Pww3");

Expr Pww4 = new DiscreteFunction(d1, 0.0, "Pww4");

Vector<double> SolnVec = DiscreteFunction::discFunc(u0)->getVector();

Vector<double> Se00V = DiscreteFunction::discFunc(Se00)->getVector();

Vector<double> Se01V = DiscreteFunction::discFunc(Se01)->getVector();

Vector<double> Se02V = DiscreteFunction::discFunc(Se02)->getVector();

Vector<double> Se03V = DiscreteFunction::discFunc(Se03)->getVector();

Vector<double> Se04V = DiscreteFunction::discFunc(Se04)->getVector();

Vector<double> Pww0V = DiscreteFunction::discFunc(Pww0)->getVector();

Vector<double> Pww1V = DiscreteFunction::discFunc(Pww1)->getVector();

Vector<double> Pww2V = DiscreteFunction::discFunc(Pww2)->getVector();

Vector<double> Pww3V = DiscreteFunction::discFunc(Pww3)->getVector();

Vector<double> Pww4V = DiscreteFunction::discFunc(Pww4)->getVector();

Vector<double> K0V = DiscreteFunction::discFunc(K0)->getVector();

Vector<double> K1V = DiscreteFunction::discFunc(K1)->getVector();

Vector<double> K2V = DiscreteFunction::discFunc(K2)->getVector();

Vector<double> K3V = DiscreteFunction::discFunc(K3)->getVector();

Vector<double> K4V = DiscreteFunction::discFunc(K4)->getVector();

Vector<double> P0V = DiscreteFunction::discFunc(P0)->getVector();

Vector<double> P1V = DiscreteFunction::discFunc(P1)->getVector();

Vector<double> P2V = DiscreteFunction::discFunc(P2)->getVector();

Vector<double> P3V = DiscreteFunction::discFunc(P3)->getVector();

Vector<double> P4V = DiscreteFunction::discFunc(P4)->getVector();

for (int n=0; n<vecSize; n++)

{

Se00V.setElement(n, SolnVec.getElement(10*n));

Se01V.setElement(n, SolnVec.getElement(10*n+1));

Se02V.setElement(n, SolnVec.getElement(10*n+2));

Se03V.setElement(n, SolnVec.getElement(10*n+3));

Se04V.setElement(n, SolnVec.getElement(10*n+4));

Pww0V.setElement(n, SolnVec.getElement(10*n+5));

Pww1V.setElement(n, SolnVec.getElement(10*n+6));

Pww2V.setElement(n, SolnVec.getElement(10*n+7));

Pww3V.setElement(n, SolnVec.getElement(10*n+8));

Pww4V.setElement(n, SolnVec.getElement(10*n+9));

}
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/* Measurements exist every 10 timesteps */

if ( ((ns% 10) == 0) && (ns > 0))

{

/* the coefficients of the state vector containing the dynamic states

, Se and Pw, and the model parameters, K and P. */

ColumnVector A0(4*Nn);

ColumnVector A1(4*Nn);

ColumnVector A2(4*Nn);

ColumnVector A3(4*Nn);

ColumnVector A4(4*Nn);

/* populating the state vectors with the Sundance solution */

for(int i=1; i<=4*Nn; i++)

{

if(i<=Nn)

{

A0(i) = 0.64*Se00V.getElement(LID[i-1]) + 0.16;

A1(i) = 0.64*Se01V.getElement(LID[i-1]);

A2 (i) = 0.64*Se02V.getElement(LID[i-1]);

A3(i) = 0.64*Se03V.getElement(LID[i-1]);

A4(i) = 0.64*Se04V.getElement(LID[i-1]);

}

else if ((i > Nn) && (i<=2*Nn))

{

A0(i) = Pww0V.getElement(LID[i-(Nn+1)]);

A1(i) = Pww1V.getElement(LID[i-(Nn+1)]);

A2(i) = Pww2V.getElement(LID[i-(Nn+1)]);

A3(i) = Pww3V.getElement(LID[i-(Nn+1)]);

A4(i) = Pww4V.getElement(LID[i-(Nn+1)]);

}

else if ((i > 2*Nn) && (i<=3*Nn))

{

A0(i) = K0V.getElement(LID[i-(2*Nn+1)]);

A1(i) = K1V.getElement(LID[i-(2*Nn+1)]);

A2(i) = K2V.getElement(LID[i-(2*Nn+1)]);

A3(i) = K3V.getElement(LID[i-(2*Nn+1)]);

A4(i) = K4V.getElement(LID[i-(2*Nn+1)]);

}

else if ( (i > 3*Nn) && (i <= 4*Nn))

{

A0(i) = P0V.getElement(LID[i-(3*Nn+1)]);

A1(i) = P1V.getElement(LID[i-(3*Nn+1)]);

A2(i) = P2V.getElement(LID[i-(3*Nn+1)]);

A3(i) = P3V.getElement(LID[i-(3*Nn+1)]);

A4(i) = P4V.getElement(LID[i-(3*Nn+1)]);

}

}

// State Error Covariance Matrix

Matrix P1m(4*Nn,4*Nn);

P1m = 0;
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P1m = A1*A1.t()*Exp.expectation(0,1,1) + A2*A2.t()*Exp.expectation(0,2,2) +

A3*A3.t()*Exp.expectation(0,3,3) + A4*A4.t()*Exp.expectation(0,4,4);

// Measurement Matrix

const int mp = 22;

Matrix Z(mp,nterm);

Z = 0.0;

ColumnVector mt(mp);

for(int i=1; i<=mp; i++)

{

fscanf(mFile, "%le", &mt(i));

}

Z.column(1) << mt;

ColumnVector er1(mp);

/* Measurement Error */

for(int i=1; i<=mp; i++)

{

if (mt(i) > 0.20)

{

er1(i) = 0.001*(mt(i)-0.20);

}

else

{

er1(i) = 0.0;

}

}

Z.column(3) << er1;

// Measurement Error Covariance Matrix

Matrix Pzz(mp,mp);

Pzz = 0;

Pzz = er1*er1.t();

/* Defining the observation matrix */

Matrix H(mp,4*Nn);

H = 0;

int bct = 1;

for(int i=0; i<mp; i++)

{

H(bct,GID[i]) = 1.0;

bct ++;

}
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//Gain Matrix

Matrix KG(4*Nn,mp);

Matrix KG1 = H*P1m*H.t();

Matrix KG2 = Pzz + KG1;

Matrix KG3 = KG2.i();

KG = (P1m*H.t())*KG3;

//Update

A0 = A0 + KG*(Z.column(1) - H*A0);

A1 = A1 - KG*H*A1;

A2 = KG*Z.column(3);

A3 = A3 - KG*H*A3;

A4 = A4 - KG*H*A4;

// Give back to Sundance

for (int i=1; i<=Nn; i++)

{

Se00V.setElement(LID[i-1], (A0(i)-0.20)/0.65);

Se01V.setElement(LID[i-1], A1(i)/0.65);

Se02V.setElement(LID[i-1], A2(i)/0.65);

Se03V.setElement(LID[i-1], A3(i)/0.65);

Se04V.setElement(LID[i-1], A4(i)/0.65);

Pww0V.setElement(LID[i-1], A0(i+Nn));

Pww1V.setElement(LID[i-1], A1(i+Nn));

Pww2V.setElement(LID[i-1], A2(i+Nn));

Pww3V.setElement(LID[i-1], A3(i+Nn));

Pww4V.setElement(LID[i-1], A4(i+Nn));

K0V.setElement(LID[i-1], A0(i+2*Nn));

K1V.setElement(LID[i-1], A1(i+2*Nn));

K2V.setElement(LID[i-1], A2(i+2*Nn));

K3V.setElement(LID[i-1], A3(i+2*Nn));

K4V.setElement(LID[i-1], A4(i+2*Nn));

P0V.setElement(LID[i-1], A0(i+3*Nn));

P1V.setElement(LID[i-1], A1(i+3*Nn));

P2V.setElement(LID[i-1], A2(i+3*Nn));

P3V.setElement(LID[i-1], A3(i+3*Nn));

P4V.setElement(LID[i-1], A4(i+3*Nn));

}

DiscreteFunction::discFunc(Se00)->setVector(Se00V);

DiscreteFunction::discFunc(Se01)->setVector(Se01V);

DiscreteFunction::discFunc(Se02)->setVector(Se02V);

DiscreteFunction::discFunc(Se03)->setVector(Se03V);

DiscreteFunction::discFunc(Se04)->setVector(Se04V);

DiscreteFunction::discFunc(Pww0)->setVector(Pww0V);

DiscreteFunction::discFunc(Pww1)->setVector(Pww1V);
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DiscreteFunction::discFunc(Pww2)->setVector(Pww2V);

DiscreteFunction::discFunc(Pww3)->setVector(Pww3V);

DiscreteFunction::discFunc(Pww4)->setVector(Pww4V);

DiscreteFunction::discFunc(K0)->setVector(K0V);

DiscreteFunction::discFunc(K1)->setVector(K1V);

DiscreteFunction::discFunc(K2)->setVector(K2V);

DiscreteFunction::discFunc(K3)->setVector(K3V);

DiscreteFunction::discFunc(K4)->setVector(K4V);

DiscreteFunction::discFunc(P0)->setVector(P0V);

DiscreteFunction::discFunc(P1)->setVector(P1V);

DiscreteFunction::discFunc(P2)->setVector(P2V);

DiscreteFunction::discFunc(P3)->setVector(P3V);

DiscreteFunction::discFunc(P4)->setVector(P4V);

Expr Se0 = new SpectralExpr(sbasis, List(Se00, Se01, Se02, Se03, Se04));

Expr P = new SpectralExpr(sbasis, List(P0, P1, P2, P3, P4));

Expr K = new SpectralExpr(sbasis, List(K0, K1, K2, K3, K4));

/* Write out the updated state to VTK files */

FieldWriter wr3 = new VTKWriter("K" + Teuchos::toString(ns/10));

wr3.addMesh(mesh);

wr3.addField("K0", new ExprFieldWrapper(K0));

wr3.addField("K1", new ExprFieldWrapper(K1));

wr3.addField("K2", new ExprFieldWrapper(K2));

wr3.addField("K3", new ExprFieldWrapper(K3));

wr3.addField("K4", new ExprFieldWrapper(K4));

wr3.write();

FieldWriter wr4 = new VTKWriter("P" + Teuchos::toString(ns/10));

wr4.addMesh(mesh);

wr4.addField("P0", new ExprFieldWrapper(P0));

wr4.addField("P1", new ExprFieldWrapper(P1));

wr4.addField("P2", new ExprFieldWrapper(P2));

wr4.addField("P3", new ExprFieldWrapper(P3));

wr4.addField("P4", new ExprFieldWrapper(P4));

wr4.write();

}

else

{

DiscreteFunction::discFunc(Se00)->setVector(Se00V);

DiscreteFunction::discFunc(Se01)->setVector(Se01V);

DiscreteFunction::discFunc(Se02)->setVector(Se02V);

DiscreteFunction::discFunc(Se03)->setVector(Se03V);

DiscreteFunction::discFunc(Se04)->setVector(Se04V);

Expr Se0 = new SpectralExpr(sbasis, List(Se00, Se01, Se02, Se03, Se04));

}
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fclose(mFile);

}

catch(exception& e)

{

Sundance::handleException(e);

}

Sundance::finalize();

}

A.2 Two-Dimensional Flow Control Problem

In this example, the unknown medium properties are modeled as an exponential function

of a Polynomial Chaos expansion. Therefore the standard spectral library implemented

in Sundance can not be used to solve the problem. In what follows a work around for

the problem is presented, it entails expanding the equations for each coefficient in the

chaos expansion independently and then assemble and solve a larger system. This also

gives an insight on the implementation details of the spectral library within Sundance.

#include "Sundance.hpp"

/*Function to create a list of unknown functions of arbitrary size */

Expr makeBigUnknownFunctionList(int numFuncs, const BasisFamily& basis) {

Array<Expr> big(numFuncs);

for (unsigned int i=0; i<big.size(); i++)

{

big[i] = new UnknownFunction(basis);

}

return new ListExpr(big);

}

/* Function to create a list of test functions of arbitrary size */

Expr makeBigTestFunctionList(int numFuncs, const BasisFamily& basis) {

Array<Expr> big(numFuncs);

for (unsigned int i=0; i<big.size(); i++)

{

big[i] = new TestFunction(basis);

}

return new ListExpr(big);

}
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/* Function to create a discrete space with an arbitrary number of functions */

DiscreteSpace makeBigDiscreteSpace(const Mesh& mesh,

int numFuncs,

const BasisFamily& basis,

const VectorType<double>& vecType) {

BasisArray big(numFuncs);

for (unsigned int i=0; i<big.size(); i++)

{

big[i] = basis;

}

return DiscreteSpace(mesh, big, vecType); }

/* Function to evaluate the average of three Hermite Polynomials of Known

dimension and order where one is expressed as an exponential function.

The function takes as input DiscreteFunction Expr and returns Expr as well */

Expr CijkList(Expr alpha1, Expr alpha2, Expr alpha3, DiscreteSpace d1,

int VecSize, cijk Exp, int i, int j,int k)

{

Vector<double> alpha1V = DiscreteFunction::discFunc(alpha1)->getVector();

Vector<double> alpha2V = DiscreteFunction::discFunc(alpha2)->getVector();

Vector<double> alpha3V = DiscreteFunction::discFunc(alpha3)->getVector();

Expr rtn = new DiscreteFunction(d1, 0.0, "rtn");

Vector<double> rtnV = DiscreteFunction::discFunc(rtn)->getVector();

VectorSpace<double> sS = alpha1V.space();

int lowc = sS.lowestLocallyOwnedIndex();

int highc = lowc +sS.numLocalElements();

for (int ix=lowc; ix<highc; ix++)

{

rtnV.setElement(ix,Exp.sumexpectation3(alpha1V.getElement(ix),

alpha2V.getElement(ix), alpha3V.getElement(ix), i, j, k));

}

DiscreteFunction::discFunc(rtn)->setVector(rtnV);

return rtn;

}

int main(int argc, char** argv)

{

try

{

Sundance::init(&argc, &argv);

/* We will do our linear algebra using Epetra */

VectorType<double> vecType = new EpetraVectorType();

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new ExodusNetCDFMeshReader("doubleloop1.ncdf", meshType);
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Mesh mesh = mesher.getMesh();

/* Create a cell filter that will identify the maximal cells

* in the interior of the domain */

CellFilter interior = new MaximalCellFilter();

CellFilter edges = new DimensionalCellFilter(1);

CellFilter Source1 = edges.labeledSubset(1);

CellFilter Source2 = edges.labeledSubset(2);

CellFilter Sink = edges.labeledSubset(3);

const int nf = 10 /*Number of unknown functions */;

/* Create unknown and test functions, discretized using first-order

* Lagrange interpolants */

BasisFamily basis = new Lagrange(2);

Expr Unk = makeBigUnknownFunctionList(nf, basis);

Expr Se0 = Unk[0]; Expr Se1 = Unk[1]; Expr Se2 = Unk[2];

Expr Se3 = Unk[3]; Expr Se4 = Unk[4];

Expr Pw0 = Unk[5]; Expr Pw1 = Unk[6]; Expr Pw2 = Unk[7];

Expr Pw3 = Unk[8]; Expr Pw4 = Unk[9];

Expr Test = makeBigTestFunctionList(nf, basis);

Expr Ns0 = Test[0]; Expr Ns1 = Test[1]; Expr Ns2 = Test[2];

Expr Ns3 = Test[3]; Expr Ns4 = Test[4];

Expr Nn0 = Test[5]; Expr Nn1 = Test[6]; Expr Nn2 = Test[7];

Expr Nn3 = Test[8]; Expr Nn4 = Test[9];

/* Create differential operator and coordinate functions */

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

/* We need a quadrature rule for doing the integrations */

QuadratureFamily quad2 = new GaussianQuadrature(4);

DiscreteSpace d1(mesh, basis, vecType);

DiscreteSpace discSpace = makeBigDiscreteSpace(mesh, nf, basis, vecType);

/* Initial Guess */

Expr u0 = new DiscreteFunction(discSpace, 0.0, "u0");

/*Initial Condition */

Expr Seo0 = new DiscreteFunction(d1, 0.0, "Seo0");

Expr Seo1 = new DiscreteFunction(d1, 0.0, "Seo1");

Expr Seo2 = new DiscreteFunction(d1, 0.0, "Seo2");
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Expr Seo3 = new DiscreteFunction(d1, 0.0, "Seo3");

Expr Seo4 = new DiscreteFunction(d1, 0.0, "Seo4");

/* Cross-sectional Area */

double As = 10000;

/* The intrinsic permeability of the medium K, and its porosity P*/

int nNodes1 = mesh.numCells(0);

int nElems = mesh.numCells(1);

int vecSize = nElems + nNodes1;

/* representation of alpha = K/P */

Expr alpha0 = new DiscreteFunction(d1, 0.0, "alpha0");

Expr alpha1 = new DiscreteFunction(d1, 0.0, "alpha1");

Expr alpha2 = new DiscreteFunction(d1, 0.0, "alpha1");

Expr alpha3 = new DiscreteFunction(d1, 0.0, "alpha1");

/*Dimensions and order of spectral basis */

int ndim = 3;

int order = 2;

const int nterm = 5;

/*Randomly Generated Initial Guess for alpha */

Vector<double> alpha0V = DiscreteFunction::discFunc(alpha0)->getVector();

Vector<double> alpha1V = DiscreteFunction::discFunc(alpha1)->getVector();

Vector<double> alpha2V = DiscreteFunction::discFunc(alpha2)->getVector();

Vector<double> alpha3V = DiscreteFunction::discFunc(alpha3)->getVector();

int32 seed = 19850; // random seed

StochasticLib1 sto(seed);

for (int i=0; i<vecSize; i++)

{

alpha0V.setElement(i, 2.93 + 0.1*sto.Normal(0,1));

seed++;

alpha1V.setElement(i, 0.005*sto.Normal(0,1));

seed++;

alpha2V.setElement(i, 0.005*sto.Normal(0,1));

seed++;

alpha3V.setElement(i, 0.005*sto.Normal(0,1));

}

DiscreteFunction::discFunc(alpha1)->setVector(alpha1V);

DiscreteFunction::discFunc(alpha2)->setVector(alpha2V);

DiscreteFunction::discFunc(alpha3)->setVector(alpha3V);

double MuO = 1.735; /*Oil Viscosity */

double MuW = 1.735; /*Water Viscosity */

double Pe = 10000.0;

/*Initial Guess for the Water Injection Rate to be Controlled */

/*Source 1*/

double Qa0 = 300.00;
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double Qa1 = 10.00;

double Qa2 = 0.0;

double Qa3 = 0.0;

double Qa4 = 5.50;

/*Source 2 */

double Qb0 = 300.00;

double Qb1 = 10.00;

double Qb2 = 0.0;

double Qb3 = 0.0;

double Qb4 = 5.50;

/* Setup the time stepping with timestep = 0.005 */

double deltaT = 0.005;

double Sm = 0.35;

cijk Exp(ndim, order);

/* Evaluating the coefficients of the various orders of the unknown saturation */

Expr Squad0 = (1*1*Se0*Se0*Se0*Se0 + 6*1*Se0*Se0*Se1*Se1 + 6*1*Se0*Se0*Se2*Se2 +

6*1*Se0*Se0*Se3*Se3 + 6*2*Se0*Se0*Se4*Se4 + 12*2*Se0*Se1*Se1*Se4 +

4*8*Se0*Se4*Se4*Se4 + 1*3*Se1*Se1*Se1*Se1 + 6*1*Se1*Se1*Se2*Se2 +

6*1*Se1*Se1*Se3*Se3 + 6*10*Se1*Se1*Se4*Se4 + 1*3*Se2*Se2*Se2*Se2 +

6*1*Se2*Se2*Se3*Se3 + 6*2*Se2*Se2*Se4*Se4 + 1*3*Se3*Se3*Se3*Se3

+ 6*2*Se3*Se3*Se4*Se4 + 1*60*Se4*Se4*Se4*Se4 )/ 1;

Expr Squad1 = (4*1*Se0*Se0*Se0*Se1 + 12*2*Se0*Se0*Se1*Se4 + 4*3*Se0*Se1*Se1*Se1 +

12*1*Se0*Se1*Se2*Se2 + 12*1*Se0*Se1*Se3*Se3 + 12*10*Se0*Se1*Se4*Se4

+ 4*12*Se1*Se1*Se1*Se4 + 12*2*Se1*Se2*Se2*Se4 + 12*2*Se1*Se3*Se3*Se4

+ 4*68*Se1*Se4*Se4*Se4 )/ 1;

Expr Squad2 = (4*1*Se0*Se0*Se0*Se2 + 12*1*Se0*Se1*Se1*Se2 + 4*3*Se0*Se2*Se2*Se2 +

12*1*Se0*Se2*Se3*Se3 + 12*2*Se0*Se2*Se4*Se4 + 12*2*Se1*Se1*Se2*Se4

+ 4*8*Se2*Se4*Se4*Se4 )/ 1;

Expr Squad3 = (4*1*Se0*Se0*Se0*Se3 + 12*1*Se0*Se1*Se1*Se3 + 12*1*Se0*Se2*Se2*Se3 +

4*3*Se0*Se3*Se3*Se3 + 12*2*Se0*Se3*Se4*Se4 + 12*2*Se1*Se1*Se3*Se4 +

4*8*Se3*Se4*Se4*Se4 )/ 1;

Expr Squad4 = (4*2*Se0*Se0*Se0*Se4 + 6*2*Se0*Se0*Se1*Se1 + 6*8*Se0*Se0*Se4*Se4 +

12*10*Se0*Se1*Se1*Se4 + 12*2*Se0*Se2*Se2*Se4 + 12*2*Se0*Se3*Se3*Se4

+ 4*60*Se0*Se4*Se4*Se4 + 1*12*Se1*Se1*Se1*Se1 + 6*2*Se1*Se1*Se2*Se2

+ 6*2*Se1*Se1*Se3*Se3 + 6*68*Se1*Se1*Se4*Se4 + 6*8*Se2*Se2*Se4*Se4

+ 6*8*Se3*Se3*Se4*Se4 + 1*544*Se4*Se4*Se4*Se4 )/ 2;

Expr Scube0 = (1*1*Se0*Se0*Se0 + 3*1*Se0*Se1*Se1 + 3*1*Se0*Se2*Se2 + 3*1*Se0*Se3*Se3

+ 3*2*Se0*Se4*Se4 + 3*2*Se1*Se1*Se4 + 1*8*Se4*Se4*Se4 )/ 1;

Expr Scube1 = (3*1*Se0*Se0*Se1 + 6*2*Se0*Se1*Se4 + 1*3*Se1*Se1*Se1 + 3*1*Se1*Se2*Se2

+ 3*1*Se1*Se3*Se3 + 3*10*Se1*Se4*Se4 )/ 1;

Expr Scube2 = (3*1*Se0*Se0*Se2 + 3*1*Se1*Se1*Se2 + 1*3*Se2*Se2*Se2 + 3*1*Se2*Se3*Se3

+ 3*2*Se2*Se4*Se4 )/ 1;

Expr Scube3 = (3*1*Se0*Se0*Se3 + 3*1*Se1*Se1*Se3 + 3*1*Se2*Se2*Se3 + 1*3*Se3*Se3*Se3

+ 3*2*Se3*Se4*Se4 )/ 1;

Expr Scube4 = (3*2*Se0*Se0*Se4 + 3*2*Se0*Se1*Se1 + 3*8*Se0*Se4*Se4 + 3*10*Se1*Se1*Se4

+ 3*2*Se2*Se2*Se4 + 3*2*Se3*Se3*Se4 + 1*60*Se4*Se4*Se4 )/ 2;

Expr Ssquare0 = (1*1*Se0*Se0 + 1*1*Se1*Se1 + 1*1*Se2*Se2 + 1*1*Se3*Se3 + 1*2*Se4*Se4)/ 1;

Expr Ssquare1 = (2*1*Se0*Se1 + 2*2*Se1*Se4 )/ 1;
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Expr Ssquare2 = (2*1*Se0*Se2 )/ 1;

Expr Ssquare3 = (2*1*Se0*Se3 )/ 1;

Expr Ssquare4 = (2*2*Se0*Se4 + 1*2*Se1*Se1 + 1*8*Se4*Se4 )/ 2;

/*Coefficients of water relative permeability */

Expr Krw0 = 0.8723*Squad0 + 0.1632*Scube0 - 0.0392*Ssquare0 + 0.0037*Se0;

Expr Krw1 = 0.8723*Squad1 + 0.1632*Scube1 - 0.0392*Ssquare1 + 0.0037*Se1;

Expr Krw2 = 0.8723*Squad2 + 0.1632*Scube2 - 0.0392*Ssquare2 + 0.0037*Se2 + 0.1*Krw0;

Expr Krw3 = 0.8723*Squad3 + 0.1632*Scube3 - 0.0392*Ssquare3 + 0.0037*Se3;

Expr Krw4 = 0.8723*Squad4 + 0.1632*Scube4 - 0.0392*Ssquare4 + 0.0037*Se4;

/*Coefficients of oil relative permeability */

Expr Kro0 = -2.7777*Squad0 + 4.9888*Scube0 - 1.3543*Ssquare0 - 1.8568*Se0 + 1.0;

Expr Kro1 = -2.7777*Squad1 + 4.9888*Scube1 - 1.3543*Ssquare1 - 1.8568*Se1;

Expr Kro2 = -2.7777*Squad2 + 4.9888*Scube2 - 1.3543*Ssquare2 - 1.8568*Se2 + 0.1*Kro0;

Expr Kro3 = -2.7777*Squad3 + 4.9888*Scube3 - 1.3543*Ssquare3 - 1.8568*Se3;

Expr Kro4 = -2.7777*Squad4 + 4.9888*Scube4 - 1.3543*Ssquare4 - 1.8568*Se4;

/* Coefficients for the capillary pressure */

Expr Pc0 = Pe*(3.9051*Squad0 - 12.0155*Scube0 + 14.2754*Ssquare0 - 8.4337*Se0 + 3.2688);

Expr Pc1 = Pe*(3.9051*Squad1 - 12.0155*Scube1 + 14.2754*Ssquare1 - 8.4337*Se1);

Expr Pc2 = Pe*(3.9051*Squad2 - 12.0155*Scube2 + 14.2754*Ssquare2 - 8.4337*Se2) + 0.1*Pc0;

Expr Pc3 = Pe*(3.9051*Squad3 - 12.0155*Scube3 + 14.2754*Ssquare3 - 8.4337*Se3);

Expr Pc4 = Pe*(3.9051*Squad4 - 12.0155*Scube4 + 14.2754*Ssquare4 - 8.4337*Se4);

/* Weak forms of the PDE’s corresponding to the different terms in the chaos expansion */

Expr Weqn0 = Integral(interior, Ns0*As*(1.0-Sm)*(Se0 - Seo0), quad2) + Integral(interior,(grad*Ns0)

*As/MuW*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1

,alpha2,alpha3, d1, vecSize, Exp, 0, 0, 0)*Krw0*(grad*Pw0) + CijkList(alpha1,alpha2,alpha3, d1,

vecSize, Exp, 1, 1, 0)*Krw1*(grad*Pw1) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 2, 2, 0)

*Krw2*(grad*Pw2) + CijkList(alpha1,alpha2,alpha3, d1,vecSize, Exp, 3, 3, 0)*Krw3*(grad*Pw3) +

CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4,4, 0)*Krw4*(grad*Pw4) )*deltaT, quad2)

- Integral(Source1, Ns0*Qa0*deltaT, quad2) - Integral(Source2, Ns0*Qb0*deltaT, quad2);

Expr Weqn1 = Integral(interior, Ns1*As*(1.0-Sm)*(Se1 - Seo1), quad2) + Integral(interior, (grad*Ns1)

*As/MuW*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 1, 1)*Krw0*(grad*Pw1) + CijkList(alpha1,alpha2,alpha3, d1,

vecSize, Exp, 1, 0, 1)*Krw1*(grad*Pw0) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 1, 4, 1)

*Krw1*(grad*Pw4) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4, 1, 1)*Krw4*(grad*Pw1) )

*deltaT, quad2)- Integral(Source1, Ns1*Qa1*deltaT,quad2) - Integral(Source2, Ns1*Qb1*deltaT,quad2);

Expr Weqn2 = Integral(interior, Ns2*As*(1.0-Sm)*(Se2 - Seo2), quad2) + Integral(interior, (grad*Ns2)

*As/MuW*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 2, 2)*Krw0*(grad*Pw2) + CijkList(alpha1,alpha2,alpha3, d1,

vecSize, Exp, 2, 0, 2)*Krw2*(grad*Pw0) )*deltaT, quad2) - Integral(Source1, Ns2*Qa2*deltaT,quad2)

- Integral(Source2, Ns2*Qb2*deltaT,quad2);

Expr Weqn3 = Integral(interior, Ns3*As*(1.0-Sm)*(Se3 - Seo3), quad2) + Integral(interior, (grad*Ns3)

*As/MuW*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 3, 3)*Krw0*(grad*Pw3) + CijkList(alpha1,alpha2,alpha3, d1,

vecSize, Exp, 3, 0, 3)*Krw3*(grad*Pw0) )*deltaT, quad2) - Integral(Source1, Ns3*Qa3*deltaT,quad2)

- Integral(Source2, Ns3*Qb3*deltaT,quad2);
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Expr Weqn4 = Integral(interior, Ns4*As*(1.0-Sm)*2*(Se4 - Seo4), quad2) + Integral(interior, (grad*Ns4)

*As/MuW*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 4, 4)*Krw0*(grad*Pw4) + CijkList(alpha1,alpha2,alpha3, d1,

vecSize, Exp, 1, 1, 4)*Krw1*(grad*Pw1) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4, 0, 4)

*Krw4*(grad*Pw0) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4, 4, 4)*Krw4*(grad*Pw4) )*

deltaT, quad2)- Integral(Source1, Ns4*Qa4*deltaT,quad2) - Integral(Source2, Ns4*Qb4*deltaT,quad2);

Expr Oeqn0 = Integral(interior, -Nn0*As*(1.0-Sm)*(Se0 - Seo0), quad2) + Integral(interior, (grad*Nn0)

*As/MuO*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 0, 0)*Kro0*(grad*(Pw0+Pc0)) + CijkList(alpha1,alpha2,alpha3,

d1, vecSize, Exp, 1, 1, 0)*Kro1*(grad*(Pw1+Pc1)) + CijkList(alpha1,alpha2,alpha3, d1, vecSize,

Exp, 2, 2, 0)*Kro2*(grad*(Pw2+Pc2)) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 3, 3, 0)*

Kro3*(grad*(Pw3+Pc3)) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4, 4, 0)*Kro4*

(grad*(Pw4+Pc4)) )*deltaT, quad2) + Integral(Sink, Nn0*0.4*(Qa0+Qb0)*deltaT,quad2);

Expr Oeqn1 = Integral(interior, -Nn1*As*(1.0-Sm)*(Se1 - Seo1), quad2) + Integral(interior, (grad*Nn1)

*As/MuO*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 1, 1)*Kro0*(grad*(Pw1+Pc1)) + CijkList(alpha1,alpha2,alpha3,

d1, vecSize, Exp, 1, 0, 1)*Kro1*(grad*(Pw0+Pc0)) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp,

1, 4, 1)*Kro1*(grad*(Pw4+Pc4)) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4, 1, 1)*Kro4*

(grad*(Pw1+Pc1)) )*deltaT, quad2) + Integral(Sink, Nn1*0.4*(Qa1+Qb1)*deltaT,quad2);

Expr Oeqn2 = Integral(interior, -Nn2*As*(1.0-Sm)*(Se2 - Seo2), quad2) + Integral(interior, (grad*Nn2)

*As/MuO*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 2, 2)*Kro0*(grad*(Pw2+Pc2)) + CijkList(alpha1,alpha2,alpha3,

d1, vecSize, Exp, 2, 0, 2)*Kro2*(grad*(Pw0+Pc0)) )*deltaT, quad2)

+ Integral(Sink, Nn2*0.4*(Qa2+Qb2)*deltaT,quad2);

Expr Oeqn3 = Integral(interior, -Nn3*As*(1.0-Sm)*(Se3 - Seo3), quad2) + Integral(interior, (grad*Nn3)

*As/MuO*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1

,alpha2,alpha3, d1, vecSize, Exp, 0, 3, 3)*Kro0*(grad*(Pw3+Pc3)) + CijkList(alpha1,alpha2,alpha3,

d1, vecSize, Exp, 3, 0, 3)*Kro3*(grad*(Pw0+Pc0)) )*deltaT, quad2)

+ Integral(Sink, Nn3*0.4*(Qa3+Qb3)*deltaT,quad2);

Expr Oeqn4 = Integral(interior, -Nn4*As*(1.0-Sm)*(2*(Se4 - Seo4)), quad2) + Integral(interior, (grad*Nn4)

*As/MuO*exp(alpha0 + 0.5*alpha1*alpha1 + 0.5*alpha2*alpha2 + 0.5*alpha3*alpha3)*(CijkList(alpha1,

alpha2,alpha3, d1, vecSize, Exp, 0, 4, 4)*Kro0*(grad*(Pw4+Pc4)) + CijkList(alpha1,alpha2,alpha3, d1,

vecSize, Exp, 1, 1, 4)*Kro1*(grad*(Pw1+Pc1)) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4, 0,

4)*Kro4*(grad*(Pw0+Pc0)) + CijkList(alpha1,alpha2,alpha3, d1, vecSize, Exp, 4, 4, 4)*Kro4*(grad*

(Pw4+Pc4)))*deltaT, quad2) + Integral(Sink, Nn4*0.4*(Qa4+Qb4)*deltaT,quad2);

/* The above set of equations is automatically generated using a C++ algorithm that takes the number of

dimensions and order as input */

Expr eqn = Weqn0 + Oeqn0 + Weqn1 + Oeqn1 + Weqn2 + Oeqn2 + Weqn3 + Oeqn3 + Weqn4 + Oeqn4;

Expr bc = EssentialBC(Sink, Nn0*(Pw0-10000.0),quad2)+ EssentialBC(Sink, Nn1*(Pw1-0.0),quad2)

+ EssentialBC(Sink, Nn2*(Pw2-0.0),quad2) + EssentialBC(Sink, Nn3*(Pw3-0.0),quad2)

+ EssentialBC(Sink,Nn4*(Pw4- 0.0),quad2);

NonlinearOperator<double> F = new NonlinearProblem(mesh, eqn, bc,Test,Unk, u0, vecType);
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ParameterXMLFileReader reader("nox.xml");

ParameterList noxParams = reader.getParameters();

NOXSolver solver(noxParams, F);

printf("Solving System \n");

const int Nn = nNodes1;

/*Measurement Locations */

int GID1[13] = {5, 11, 19, 23, 33, 61, 69, 86, 87, 111, 117, 126, 131};

int GID[Nn]; /* Target function is treated as a dicretized function on the mesh

and thus considered as measurements available at all nodal locations */

int LID[Nn];

for (int i=1; i<=Nn; i++)

{

GID[i-1] = i;

}

// get local ID of node given GID

const RefCountPtr<DOFMapBase>& dofMap = DiscreteFunction::discFunc(Seo0)->map();

for (int i=0; i< Nn; i++)

{

int ID = mesh.mapGIDToLID(0, i);

Array<int> dofIndices;

dofMap -> getDOFsForCell(0,ID,0, dofIndices);

LID[i] = dofIndices[0];

}

FILE * o1File; /*Output file to record the updated flow at Source 1 */

o1File = fopen("Inflow1.dat","w");

FILE * o2File; /*Output file to record the updated flow at Source 2 */

o2File = fopen("Inflow2.dat","w");

FILE * mFile; /* File Containing the Discretized Target Function */

mFile = fopen("../truemodel/STarget.dat", "r");

FILE * m1File; /*File Containing the observation Data */

m1File = fopen("../truemodel/SMM.dat","r");

int nSteps = 2001;

for(int ns=0; ns < nSteps; ns++)

{

solver.solve();

Expr Pww0 = new DiscreteFunction(d1, 0.0, "Pww0");
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Expr Pww1 = new DiscreteFunction(d1, 0.0, "Pww1");

Expr Pww2 = new DiscreteFunction(d1, 0.0, "Pww2");

Expr Pww3 = new DiscreteFunction(d1, 0.0, "Pww3");

Expr Pww4 = new DiscreteFunction(d1, 0.0, "Pww4");

Vector<double> SolnVec = DiscreteFunction::discFunc(u0)->getVector();

Vector<double> Seo0V = DiscreteFunction::discFunc(Seo0)->getVector();

Vector<double> Seo1V = DiscreteFunction::discFunc(Seo1)->getVector();

Vector<double> Seo2V = DiscreteFunction::discFunc(Seo2)->getVector();

Vector<double> Seo3V = DiscreteFunction::discFunc(Seo3)->getVector();

Vector<double> Seo4V = DiscreteFunction::discFunc(Seo4)->getVector();

Vector<double> Pww0V = DiscreteFunction::discFunc(Pww0)->getVector();

Vector<double> Pww1V = DiscreteFunction::discFunc(Pww1)->getVector();

Vector<double> Pww2V = DiscreteFunction::discFunc(Pww2)->getVector();

Vector<double> Pww3V = DiscreteFunction::discFunc(Pww3)->getVector();

Vector<double> Pww4V = DiscreteFunction::discFunc(Pww4)->getVector();

for (int n=0; n<vecSize; n++)

{

Seo0V.setElement(n, SolnVec.getElement(10*n));

Seo1V.setElement(n, SolnVec.getElement(10*n+1));

Seo2V.setElement(n, SolnVec.getElement(10*n+2));

Seo3V.setElement(n, SolnVec.getElement(10*n+3));

Seo4V.setElement(n, SolnVec.getElement(10*n+4));

Pww0V.setElement(n, SolnVec.getElement(10*n+5));

Pww1V.setElement(n, SolnVec.getElement(10*n+6));

Pww2V.setElement(n, SolnVec.getElement(10*n+7));

Pww3V.setElement(n, SolnVec.getElement(10*n+8));

Pww4V.setElement(n, SolnVec.getElement(10*n+9));

}

/* Updating the System parameters and states whenever a measurement is available */

if ( ((ns% 100) == 0) && (ns > 0))

{

ColumnVector A0(3*Nn);

ColumnVector A1(3*Nn);

ColumnVector A2(3*Nn);

ColumnVector A3(3*Nn);

ColumnVector A4(3*Nn);

for(int i=1; i<=3*Nn; i++)

{

if(i<=Nn)

{

A0(i) = 0.65*Seo0V.getElement(LID[i-1]) + 0.20;

A1(i) = 0.65*Seo1V.getElement(LID[i-1]);

A2(i) = 0.65*Seo2V.getElement(LID[i-1]);

A3(i) = 0.65*Seo3V.getElement(LID[i-1]);

A4(i) = 0.65*Seo4V.getElement(LID[i-1]);

}
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else if ((i > Nn) && (i<=2*Nn))

{

A0(i) = Pww0V.getElement(LID[i-(Nn+1)]);

A1(i) = Pww1V.getElement(LID[i-(Nn+1)]);

A2(i) = Pww2V.getElement(LID[i-(Nn+1)]);

A3(i) = Pww3V.getElement(LID[i-(Nn+1)]);

A4(i) = Pww4V.getElement(LID[i-(Nn+1)]);

}

else if ((i > 2*Nn) && (i<=3*Nn))

{

A0(i) = alpha0V.getElement(LID[i-(2*Nn+1)]);

A1(i) = alpha1V.getElement(LID[i-(2*Nn+1)]);

A2(i) = alpha2V.getElement(LID[i-(2*Nn+1)]);

A3(i) = alpha3V.getElement(LID[i-(2*Nn+1)]);

A4(i) = 0.0;

}

}

// State Error Covariance Matrix

Matrix P1m(3*Nn,3*Nn);

P1m = 0;

P1m = A1*A1.t()*Exp.expectation(0,1,1) + A2*A2.t()*Exp.expectation(0,2,2) +

A3*A3.t()*Exp.expectation(0,3,3) + A4*A4.t()*Exp.expectation(0,4,4);

// Measurement Matrix

const int mp = 13;

Matrix Z(mp,nterm);

Z = 0.0;

ColumnVector mt(mp);

for(int i=1; i<=mp; i++)

{

fscanf(m1File, "%le", &mt(i));

}

Z.column(1) << mt;

ColumnVector er1(mp);

for(int i=1; i<=mp; i++)

{

if (mt(i) > 0.20)

{

er1(i) = 0.001*mt(i);

}

else

{

er1(i) = 0.0;

}
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}

Z.column(4) << er1;

// Measurement Error Covariance Matrix

Matrix Pzz(mp,mp);

Pzz = 0;

Pzz = er1*er1.t();

/* Defining the observation matrix */

Matrix H(mp,3*Nn);

H = 0;

int bct = 1;

for(int i=0; i<mp; i++)

{

H(bct,GID1[i]) = 1.0;

bct ++;

}

cout << "computing the gain" <<endl;

//Gain Matrix

Matrix KG(3*Nn,mp);

Matrix KG1 = H*P1m*H.t();

Matrix KG2 = Pzz + KG1;

Matrix KG3 = KG2.i();

KG = (P1m*H.t())*KG3;

A0 = A0 + KG*(Z.column(1) - H*A0);

A1 = A1 - KG*H*A1;

A2 = A2 - KG*H*A2;

A3 = KG*Z.column(4);

A4 = A4 - KG*H*A4;

// Give back to Sundance

for (int i=1; i<=Nn; i++)

{

Seo0V.setElement(LID[i-1], (A0(i)-0.20)/0.65);

Seo1V.setElement(LID[i-1], A1(i)/0.65);

Seo2V.setElement(LID[i-1], A2(i)/0.65);

Seo3V.setElement(LID[i-1], A3(i)/0.65);

Seo4V.setElement(LID[i-1], A4(i)/0.65);

Pww0V.setElement(LID[i-1], A0(i+Nn));
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Pww1V.setElement(LID[i-1], A1(i+Nn));

Pww2V.setElement(LID[i-1], A2(i+Nn));

Pww3V.setElement(LID[i-1], A3(i+Nn));

Pww4V.setElement(LID[i-1], A4(i+Nn));

alpha0V.setElement(LID[i-1], A0(i+2*Nn));

alpha1V.setElement(LID[i-1], A1(i+2*Nn));

alpha2V.setElement(LID[i-1], A2(i+2*Nn));

alpha3V.setElement(LID[i-1], A3(i+2*Nn));

}

DiscreteFunction::discFunc(Seo0)->setVector(Seo0V);

DiscreteFunction::discFunc(Seo1)->setVector(Seo1V);

DiscreteFunction::discFunc(Seo2)->setVector(Seo2V);

DiscreteFunction::discFunc(Seo3)->setVector(Seo3V);

DiscreteFunction::discFunc(Seo4)->setVector(Seo4V);

DiscreteFunction::discFunc(Pww0)->setVector(Pww0V);

DiscreteFunction::discFunc(Pww1)->setVector(Pww1V);

DiscreteFunction::discFunc(Pww2)->setVector(Pww2V);

DiscreteFunction::discFunc(Pww3)->setVector(Pww3V);

DiscreteFunction::discFunc(Pww4)->setVector(Pww4V);

DiscreteFunction::discFunc(alpha0)->setVector(alpha0V);

DiscreteFunction::discFunc(alpha1)->setVector(alpha1V);

DiscreteFunction::discFunc(alpha2)->setVector(alpha2V);

DiscreteFunction::discFunc(alpha3)->setVector(alpha3V);

FieldWriter wr2 = new VTKWriter("alpha" + Teuchos::toString(ns/100));

wr2.addMesh(mesh);

wr2.addField("alpha0", new ExprFieldWrapper(alpha0));

wr2.addField("alpha1", new ExprFieldWrapper(alpha1));

wr2.addField("alpha2", new ExprFieldWrapper(alpha2));

wr2.addField("alpha3", new ExprFieldWrapper(alpha3));

wr2.write();

}

/*Update the system states and control every other timestep to minimize the mismatch

between the predicted state and the target function */

else if ( ((ns% 2) == 0) && (ns >= 0))

{

ColumnVector AC0(2*Nn + 2);

ColumnVector AC1(2*Nn + 2);

ColumnVector AC2(2*Nn + 2);

ColumnVector AC3(2*Nn + 2);

ColumnVector AC4(2*Nn + 2);

for(int i=1; i<=2*Nn; i++)

{
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if(i<=Nn)

{

AC0(i) = 0.65*Seo0V.getElement(LID[i-1]) + 0.20;

AC1(i) = 0.65*Seo1V.getElement(LID[i-1]);

AC2(i) = 0.65*Seo2V.getElement(LID[i-1]);

AC3(i) = 0.65*Seo3V.getElement(LID[i-1]);

AC4(i) = 0.65*Seo4V.getElement(LID[i-1]);

}

else if ((i > Nn) && (i<=2*Nn))

{

AC0(i) = Pww0V.getElement(LID[i-(Nn+1)]);

AC1(i) = Pww1V.getElement(LID[i-(Nn+1)]);

AC2(i) = Pww2V.getElement(LID[i-(Nn+1)]);

AC3(i) = Pww3V.getElement(LID[i-(Nn+1)]);

AC4(i) = Pww4V.getElement(LID[i-(Nn+1)]);

}

}

AC0(2*Nn+1) = Qa0;

AC1(2*Nn+1) = Qa1;

AC2(2*Nn+1) = Qa2;

AC3(2*Nn+1) = Qa3;

AC4(2*Nn+1) = Qa4;

AC0(2*Nn+2) = Qb0;

AC1(2*Nn+2) = Qb1;

AC2(2*Nn+2) = Qb2;

AC3(2*Nn+2) = Qb3;

AC4(2*Nn+2) = Qb4;

// State Error Covariance Matrix

Matrix PC1m((2*Nn+2),(2*Nn+2));

PC1m = 0;

PC1m = AC1*AC1.t()*Exp.expectation(0,1,1) + AC2*AC2.t()*Exp.expectation(0,2,2) +

AC3*AC3.t()*Exp.expectation(0,3,3) + AC4*AC4.t()*Exp.expectation(0,4,4);

// Measurement Matrix

const int Cmp = 160;

Matrix ZC(Cmp,nterm);

ZC = 0.0;

ColumnVector mtC(Cmp);

for(int i=1; i<=Cmp; i++)

{

fscanf(mFile, "%le", &mtC(i));

}

ZC.column(1) << mtC;

ColumnVector Cer1(Cmp);
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for(int i=1; i<=Cmp; i++)

{

if (mtC(i) > 0.20)

{

Cer1(i) = 0.001*mtC(i);

}

else

{

Cer1(i) = 0.0;

}

}

ZC.column(4) << Cer1;

// Measurement Error Covariance Matrix

Matrix PCzz(Cmp,Cmp);

PCzz = 0;

PCzz = Cer1*Cer1.t();

/* Defining the observation matrix */

Matrix HC(Cmp,2*Nn+2);

HC = 0;

int bct = 1;

for(int i=0; i<Cmp; i++)

{

HC(bct,GID[i]) = 1.0;

bct ++;

}

cout << "computing the gain" <<endl;

//Gain Matrix

Matrix KGC(2*Nn+2,Cmp);

Matrix KG1C = HC*PC1m*HC.t();

Matrix KG2C = PCzz + KG1C;

Matrix KG3C = KG2C.i();

KGC = (PC1m*HC.t())*KG3C;

//Update

AC0 = AC0 + KGC*(ZC.column(1) - HC*AC0);

AC1 = AC1 - KGC*HC*AC1;

AC2 = AC2 - KGC*HC*AC2;

AC3 = KGC*ZC.column(4);

AC4 = AC4 - KGC*HC*AC4;
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// Give back to Sundance

for (int i=1; i<=Nn; i++)

{

Seo0V.setElement(LID[i-1], (AC0(i)-0.20)/0.65);

Seo1V.setElement(LID[i-1], AC1(i)/0.65);

Seo2V.setElement(LID[i-1], AC2(i)/0.65);

Seo3V.setElement(LID[i-1], AC3(i)/0.65);

Seo4V.setElement(LID[i-1], AC4(i)/0.65);

Pww0V.setElement(LID[i-1], AC0(i+Nn));

Pww1V.setElement(LID[i-1], AC1(i+Nn));

Pww2V.setElement(LID[i-1], AC2(i+Nn));

Pww3V.setElement(LID[i-1], AC3(i+Nn));

Pww4V.setElement(LID[i-1], AC4(i+Nn));

}

Qa0 = AC0(2*Nn+1);

Qa1 = AC1(2*Nn+1);

Qa2 = AC2(2*Nn+1);

Qa3 = AC3(2*Nn+1);

Qa4 = AC4(2*Nn+1);

Qb0 = AC0(2*Nn+2);

Qb1 = AC1(2*Nn+2);

Qb2 = AC2(2*Nn+2);

Qb3 = AC3(2*Nn+2);

Qb4 = AC4(2*Nn+2);

DiscreteFunction::discFunc(Seo0)->setVector(Seo0V);

DiscreteFunction::discFunc(Seo1)->setVector(Seo1V);

DiscreteFunction::discFunc(Seo2)->setVector(Seo2V);

DiscreteFunction::discFunc(Seo3)->setVector(Seo3V);

DiscreteFunction::discFunc(Seo4)->setVector(Seo4V);

DiscreteFunction::discFunc(Pww0)->setVector(Pww0V);

DiscreteFunction::discFunc(Pww1)->setVector(Pww1V);

DiscreteFunction::discFunc(Pww2)->setVector(Pww2V);

DiscreteFunction::discFunc(Pww3)->setVector(Pww3V);

DiscreteFunction::discFunc(Pww4)->setVector(Pww4V);

fprintf(o1File, "%d %le %le %le %le %le\n", ns, Qa0, Qa1, Qa2, Qa3, Qa4);

fprintf(o2File, "%d %le %le %le %le %le\n", ns, Qb0, Qb1, Qb2, Qb3, Qb4);

fflush(o1File);

fflush(o2File);

}

else

{

DiscreteFunction::discFunc(Seo0)->setVector(Seo0V);
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DiscreteFunction::discFunc(Seo1)->setVector(Seo1V);

DiscreteFunction::discFunc(Seo2)->setVector(Seo2V);

DiscreteFunction::discFunc(Seo3)->setVector(Seo3V);

DiscreteFunction::discFunc(Seo4)->setVector(Seo4V);

}

if ( ((ns % 1) == 0) && (ns >= 0) )

{

FieldWriter wr1 = new VTKWriter("S" + Teuchos::toString(ns/1));

wr1.addMesh(mesh);

wr1.addField("S0", new ExprFieldWrapper(Seo0));

wr1.addField("S1", new ExprFieldWrapper(Seo1));

wr1.addField("S2", new ExprFieldWrapper(Seo2));

wr1.addField("S3", new ExprFieldWrapper(Seo3));

wr1.addField("S4", new ExprFieldWrapper(Seo4));

wr1.write();

}

}

fclose(mFile);

fclose(o1File);

fclose(o2File);

}

catch(exception& e)

{

Sundance::handleException(e);

}

Sundance::finalize();

}
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