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Abstract

Functionally Graded Materials (FGMs) have a gradual material variation from

one material character to another throughout the structure. Applications of these types

of materials have significant advantages in civil and mechanical systems including

thermal systems. Analyzing the FGMs at the microstructure level with the

conventional Finite Element Method (FEM) takes enormous pre-processing and

computational time due to the complex material characteristics at the microstructure

level. Essentially, the model contains too many degrees of freedom to be solved

economically.

The homogenization method has been successfully applied to solve periodic

microstructure problems. However, the development of analysis procedures for

structures with nonperiodic material or cell geometry, as occurs in graded materials,

has turned out to be a significant challenge.

A new method is developed which accurately models the nonperiodic

microstructure in FGMs. This method allows the efficient solution of nonperiodic

problems without requiring the simplification of the original models. The

performance of the developed theory is verified through the solution of appropriate

nonperiodic problems associated with graded materials. In the nonperiodic 1-D cases,

the global displacement U(x) was obtained and compared with the exact solution. At

the same time, the proposed data collection point method was investigated. In the

nonperiodic 2-D cases, the global displacement U(x) and the microstructural level
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displacements were computed. In the program, the Von-Mises Stress computation

process was included to evaluate the local stress values at the microstructure level and

the results were compared with very fine scale finite element calculations.

The performance of the developed nonperiodic homogenized (NPH) algorithm

indicates that it is a promising tool for estimating the FGMs characteristics in loaded

conditions. The method can be applied to estimate the global and local displacements

in nonperiodic geometries which contain continuously decreasing and/or increasing

microstructures.



1

Chapter 1

Introduction

Functionally Graded Materials (FGMs) are composite materials which have a

gradual variation of the volume fractions from one material to the other. The material

property changes are usually in one direction with two different materials being used.

The microstructure is organized in a nonperiodic manner. The concept of FGMs

originated in Japan during the space plane project in 1984. The Japanese scientists

were developing a thermal barrier material which could withstand a surface

temperature gradient of approximately 1000 K across a 10 mm cross section.

Traditional thermal barrier coatings (TBCs) have been applied with Ni-based alloys as

the oxidation resistant bond coat and a heat resistant ZrO2 ceramic top coating.

However, conventional plasma sprayed TBCs have a problem of low durability during

thermal cycling and poor bond strength. The uniqueness of the FGMs is the ability to

produce a new composite material with a gradual composition variation from heat

resistant ceramics to fracture resistant metals. Applications of these types of FGMs

have significant advantages in civil and mechanical systems including thermal systems

(e.g. rocket heat shields, heat exchanger tubes, thermoelectric generators, wear-

resistant linings, diesel and turbine engines, etc.).

Fiber-reinforced polymer (FRP) is another application of FGMs for reinforcing

concrete materials as shown in Figure 1.1. The FRP materials improve the corrosion

resistance of the steel and enhance the life cycle of the material strength.
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Figure 1.1 Fiber-Reinforced Polymer Bridge

Figure 1.2 Reinforcement types of Metal Matrix Composites (MMCs) or

Ceramics Matrix Composites (CMCs); a) Matrix with Fibers b)

whiskers c) particulates

Figure 1.3 Different types of the Functionally Graded Materials (FGMs):

a) Continuously Graded Microstructure; b) Discretely Graded

Microstructure with fiber and matrix configuration; c) Multi-phase

Graded Microstructures.

(a) (b) (c)

(a) (b) (c)
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FRP has been used in several bridge decks recently constructed in North America; The

Morristown Bridge, in Vermont, has an entire concrete deck slab constructed using

glass FRP (GFRP) bars. Also, there are laminate types of FRP which are contained in

an arrangement of unidirectional fibers or woven fiber fabrics embedded in a thin

layer of light polymer matrix materials - polyester, Epoxy or Nylon, etc.

Other major benefits of the FGMs are in the design and manufacturing of

Metal Matrix Composites (MMCs) and Ceramic Matrix Composites (CMCs). The

associated manufacturing processes provide the best material properties for

composites of metal and ceramics by, for examples, removing the brittleness of

ceramics and making a strong metal lighter and stiffer. The proportions of the matrix

alloy (the metal) and the reinforcement material (the ceramic), as well as shape and

location of reinforcement can be varied form place to place in the structure to achieve

particular desired properties. For example, ceramic reinforcements in the form of

fibers, whiskers or particulates can be introduced into the metal in a varying density

pattern as shown in Figure 1.2. However, the use of this type of material requires an

explicit understanding of the material behavior at each location and over all length of

scales.

Many more applications of the FGMs can be found in the conference papers

and technical journals including those related to solar energy conversion devices [20].

Most of the FGMs microstructures are fabricated in three major types: continuously

graded microstructure, discretely graded microstructure, and multi-phase graded

microstructure as pictured in Figure 1.3.
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Analyzing the FGMs at the microstructure level with conventional Finite Element

Method (FEM) takes enormous pre-process and computational time. Essentially, the

model contains too many degrees of freedom to solve economically. Therefore, many

researchers have tried to analyze the FGMs using various methods, which increase the

accuracy of numerical solution and enhance the prediction of local stress

concentrations.

One of the common methods is to divide the FGMs domain into multi-layers in

the direction of the material gradation and to apply the traditional homogenization

method within each layer [27, 31] as shown in Figure 1.4. These layer-wise averaged

models are based on the self-consistent method [15]. In order to minimize the errors

in the layer-wise homogeneous model, Vemaganti and Deshmukh [34] used the

adaptive approach to model the FGMs. Some of the researchers, such as Sandra and

Lambros [29] varied the material property matrix in the finite element with a simple

boundary condition. Kim and Paulino [19] used an exponential variation of material

elastic properties to model nonhomogeneous, isotropic and orthotropic, materials.

Figure 1.4 Replacement scheme used in the layer-wise Homogenization

model in Continuously Graded Microstructure



5

Higher order theory was proposed by Aboudi, et. al. [1, 25]. This theory

allows the thermo-inelastic analysis of materials with spatially varying microstructure

based on volumetric averaging of the various field quantities and satisfaction of the

field equations. The use of the finite-element discretization approach utilizing

rectangular cells was compared with the averaging estimation methods in linear,

modified rules of mixtures (average Young’s modulus) and the Wakashima-

Tsukamoto estimate presented by Cho and Ha [7]. Also, Berezovski A. et al. [4] used

the linear rule of mixtures to define the material properties in his study of wave

propagation in FGMs. On the other hand, a discrete micromechanics approach, using

planar hexagonal cells of equal size, was developed by Ghosh et al. [10].

At the case of the MMCs or CMCs, layers-wise process also applied to replace

the heterogeneous microstructure properties to an equivalent continuum with a set of

macroscopic properties as shown in Figure 1.5. However, in this case no coupling

exists between local and global responses and these properties are calculated without

taking into account of the influence of the adjacent variable micro structural details

explicitly.

Modeling of material with microstructure has been carried out using classical

asymptotic homogeneous methods. In the classic methods, the microstructure is

periodic and is associated with a microstructure cell. However, the material

distribution of the FGMs, because of the definition of micro structural properties, is

arbitrary. The micro structure is not periodic in the length scale of the macrostructure.
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Figure 1.5 Equivalent continuum with layers wise Homogenization in

Discretely Graded Microstructure with fiber and matrix configuration

(MMCs / CMCs types)

This leaves a major difficulty because very few analysis methods exist to solve a

structural problem which has a nonperiodic microstructure.

Therefore, in this proposal, a new theory of coupling the micro-macro

structural models is developed. The new method is capable of dealing with the

nonperiodic microstructure of the FGMs. A nonperiodic homogenization (NPH)

theory is created to analyze the FGMs models. This model will handle microstructure

with fiber/matrix combinations. The nonperiodic homogenization algorithm has been

developed to solve the problems with nonperiodic, arbitrarily spaced inclusions or

continuous fibers composite materials. The developed algorithm links the new

microstructural model with conventional Finite Element Method (FEM) discredited

technique.

Chapter 2 reviews the fundamental homogenization theory and defines the

homogenized elastic constant. Based on the microstructure cell solution and
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homogenized elastic constant, 2-D cases with microstructure were solved, and the

solution was compare to analytical solutions. These results will be used for creating

the HOMOG algorithm. The algorithm was verified with the results of two different

examples, which were demonstrated from M. P. Bendsoe and N. Kikuchi [3].

Chapter 3 presents the nonperiodic homogenization theory and mathematical

formulations which are transferred from the Cartesian coordinate system to the natural

coordinate system. The details of conversion processes are shown in Appendix B.1.

Based on the mathematical formulations, the finite element stiffness matrix has been

defined and used in the creation of the nonperiodic homogenization algorithm. Many

variations of generic microcell structure were shown to fix frequently used FGMs

geometries.

Chapter 4 presents the results of 1-D cases of the nonperiodic homogenization

program. Most of the verifications are conducted in 1-D cases in order to compare

with the available analytical solutions. The model problems and associated boundary

conditions are described. The verification cases are: Case 1 – Comparison between

the NPH and the Homogenization Solution, Case 2 – Descending Low Density

Microcell Structure, Case 3 – Descending High Density Microcell Structure, Case 4 –

Descending and Ascending Microcell Structure, Case 5 – Descending Microcell

Structure with a Sudden Jump and Case 6 – Rapidly Varying Descending, Ascending

and Descending Microcell Structures.

Chapter 5 presents the 2-D verification cases for FGMs. The verification cases

are Case 7 – Periodic Microstructure, Case 8 – Descending Horizontal Fiber Strips in
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One Direction, Case 9 – Descending and Ascending FGMs with Square Fibers, Case

10 – Descending and Symmetric Matrix Structure and Case 11 – Descending

Horizontal and Vertical Fiber Strips. Von-Mises stresses are presented for the Case 10

and Case 11. 

 Finally, Appendix A presents the nonperiodic homogenization coordinate

transformation from the Cartesian coordinate system to the natural coordinate system.
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Chapter 2

Problems Involving a Microstructure

2.1 Review of Homogenization Theory

The following analysis represents the homogenization theory for the

periodic microstructural case. This is the starting point for the analysis of the

nonperiodic microstructure.

Consider the 2-D case. A solid body is made of two different materials and

has a base cell geometry of order ε (very small positive number) in size as shown

in Figure 2.1. Suppose the material properties in the base cell vary rapidly from

point to point producing heterogeneity. Thus, it is reasonable to assume that all

quantities have two explicit dependences. One is on the macroscopic level

x coordinate, and the other one is on the microscopic level coordinate ε/x . If g is

a general function, g = g( x , ε/x ) and ε/x can be replaced with )/( εxy = . Due

to the periodic nature of the microstructure, the dependence of a function on the

micro-coordinate y is periodic. The quantity ε/1 can be thought of as a

magnification factor, which enlarges the dimensions of a base cell, ε/xy = . Let

Ω be an open subset of �
2

with a smooth, boundary Γ as described in Figure 2.2.

The Figure 2.2 depicts the associated macrostructure.
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Figure 2.1 Periodic Microstructure Figure 2.2 Associated Macrostructure

Figure 2.3 Base cell of the Composite Microstructure
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Let Y be a rectangular region in two dimensional spaces defined by

Y = ),0( 0

1y x ),0( 0

2y , (2.1)

Let ϑ be an open subset of Y with boundary

S=∂ρ (2.2)

and let

ρπ /Y= , (2.3)

where π is the solid part of the cell with a material property E1, ρ denotes the

closure of ρ and Y represents the base cell of the composite microstructure. The

base cell properties vary inside Y , and the set ρ represents a material property E2

inside Y . Define now,





∉

∈
=Θ

,ifE

,ifE
)(

2

1

π
π

y

y
y (2.4)

and extend Θ to �
2

by ε periodicity (i.e. it repeats the base cell in all two

direction). The superscript ε is the characteristic inhomogeneity dimension.

Find ε
Vu∈ , such that

∫ ∫ ∫ ∫
Ω Ω Γ Ω∂

+Γ+Ω=Ω
∂

∂

∂

∂

ε ε ε

εε
ε

ε

t

dSvpdvtdvfd
x

v

x

u
E iiiiii

j

i

l

k

ijkl

ε
Vv∈∀ (2.5) 
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Here, it is assumed that the stress-strain and strain-displacement relations are

εεεσ klijklij eE= , (2.6) 










∂
∂

+
∂

=
k

l

l

k
kl

x

u

dx

u
e

εε
ε

2

1
, (2.7) 

and that the elastic constants have the following properties:

εεεε
klijijlkjiklijkl EEEE === , (2.8) 

Since the body forces f , tractions p and the elastic constants very with the small

cells of the composite (i.e., they are functions of both ε/and xyx = ). The general

functional form in the two scale approximation is,

εε /),,()( xyyxx =Φ=Φ , (2.9) 

The displacement solution ε
u take this form; that is,

εε /),,()( xyyxxu == u , (2.10) 

Using a two scale asymptotic expansion,

εεεε /...,),(),(),()( 2210 xyyxuyxuyxuxu =+++= (2.11) 

where,

),( yxu j is defined in ),( ×Ω∈yx π,

),( yxuy j→ is Y- periodic.

Fact 1: The derivative of a periodic function is also periodic.

Fact 2: The integral of the derivative of a function over the period is zero.

Fact 3: If ),( yxΦ=Φ and y depends on x, then
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Equation (2.5) becomes,
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Now, rearrange for the terms in
2
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ε
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and ε then,
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Equation (2.14) becomes,
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The functions are smooth enough so that the limit when ε→0 of all integrals exist

then, equation (2.16) holds if the terms of the same power of ε are equal to zero.

Therefore,
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Fact 4: ( )∫ ∫ ∫
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ΩΨ→Ω
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v is an arbitrary function , thus we choose )(yv ν= then integrating by parts,

applying the divergence thermo to the integral in π. Equations (2.17) thru (2.19)

becomes,
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From the equation (2.21) becomes,

,y,0
0

π∈=








∂

∂

∂
∂

−
l

k

ijkl

i y

u
E

y
(2.22)
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ijkl on0
0

=
∂

∂
(2.23)

Thus, this indicates that the first term of the expansion equation is depends only on

x , which is the macroscopic scale.

)(),( 00 xuyxu = (2.24)

Now inset equation (2.24), ),(xuu 00 = into equation (2.18) and multiplying by ε

and using Fact (4). Since, )(yv ν= which means it’s derivative will be zero,
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From the equation (2.27),
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is linear with respect to 0
u and ip .

Thus, if 0=ip , then,
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(2. 28) 

or,
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Let
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q
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substitute to equation (2.29) then,
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Since, 1
)(0

=
∂

∂

l

k

x

u x
, the equation (2.31) becomes,

( ) ( )
∫∫ ∂

∂
=

∂

∂∂

π

ε

π

ε χ
dY

y

v
EdY

y

v

dy
E

j

i

ijkl

j

i

q

kl

p

ijkl

yyyx ),(
πVv∈∀ (2.32)

∫ 










∂

∂
−=

π

χ
dY

y
EE

Y
E

m

kl

p

ijpmijkl

H

ijkl

1
)(x (2.33)

H

ijklE defined by equation (2.33) represents the homogenized elastic constant.
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2.2 Analytical Solution of the Homogenization in 2-D  

For the 2-D problems, it would be sufficient to solve them for the cases;

Case A: k = l = 1

Case B: k = l = 2

Case C: k = 1, l = 2 (or k = 2, l = 1)

Case A: k = l = 1

Expand the equation (2.32) and remove terms with zero coefficients,
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(2.34)

After the simplify the equation (2.34),
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Define the cell solution as follows:

,11

ii Φ=χ i = 1, 2 (2.36)

Define the components of the material stiffness matrix as follows:

111111 ED = (2.37)

221111222112 EEDD === (2.38)

222222 ED = (2.39) 

212121121221121233 EEEED ==== (2.40)

Then, the material stiffness matrix is shown:
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The equation (2.35) can be written as below:
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Further more the arbitrary function v and cell solution Φ can be expressed with its

nodal shape function:
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Then, equation (2.43) can be formed as shown below:
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TT

1∫∫ =Φ
ππ

(2.48)

or

[ ]{ } [ ]fK =Φ for the cell solution (2.49) 

where

[ ] [ ] [ ][ ]BDBK
T

= ,

[ ] [ ] { }dYdBf
T

1∫=
π

After obtained the cell solution from the equation (2.49), the homogenized elastic

constant defines by using equation (2.33).
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(2.50)

where

01211 =
HE

02111 =
HE
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Then equation (2.50) HE1111 becomes as shown below:
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Then, equation (2.51) becomes:
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For the case of 2211E from equation (2.33) becomes:
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Therefore, from the equations (2.52) and (2.55),
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Equations (2.49), (2.56) and (2.57) will be used for developing the finite element

homogenization algorithm.
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Case B: k = l = 2

Expand the equation (2.32) and removing terms with zero coefficients,
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(2.58)

Define the cell solution as follows:

,22

ii Ψ=χ i = 1, 2 (2.59)

Then, equation (2.58) can be form as below:

[ ] [ ][ ]{ } [ ] { }dYdBdYBDB
TT

2∫∫ =Ψ
ππ

(2.60)

or

[ ]{ } [ ]fK =Ψ for the cell solution (2.61)

where

[ ] [ ] [ ][ ]BDBK
T

= ,

[ ] [ ] { }dYdBf
T

2∫=
π

After obtained the cell solution from the equation (2.61), the homogenized elastic

constant defines by using equation (2.33).
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where
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Apply same process as it shown from previous case. Then equations (2.62) and

(2.63) become:
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Equations (2.61), (2.64) and (2.65) will be used for developing the finite element

homogenization algorithm.
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Case C: k = 1, l = 2 (or k = 2, l = 1)
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Define the cell solutions as follows:

,12

ii Θ=χ i = 1, 2 (2.67)

Then, equation (2.66) can be form as below:

[ ] [ ][ ]{ } [ ] { }dYdBdYBDB
TT
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ππ

(2.68)

or

[ ]{ } [ ]fK =Θ for the cell solution (2.69)

where
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T
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After obtained the cell solution from the equation (2.69), the homogenized elastic

constant defines by using equation (2.33).
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022212212 == HH EE

From the results of equations (2.70) and (2.71), it shows that

HHHH EEEE 2121211212211212 === (2.72)

Then, equations (2.70) and (2.71) become,
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Equations (2.69) and (2.73) will be used for developing the finite element

homogenization algorithm.

Finally, the homogenized material stiffness matrix HD is defined and

shown below. It will use in conventional finite element analysis process:
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2.3 Macro Homogenized Solution

The conventional stiffness matrix for 2-D plane stress element is shown below:

[ ] [ ] [ ][ ]∫∫= tdxdyk
T

BEB (2.75)

where
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[ ]=E Material stiffness matrix

t = Material thickness

Convert the equation (2.75) from Cartesian coordinate system dxdy to

Isoparametric coordinate systems ηξdd . The sides of the element limitation are at

1±=ξ and at 1±=η .
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where J is called the Jacobian matrix which is defined as below:
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Finally, replace the stiffness matrix [E] with [D
H
]. Then the equation (2.76)

becomes:

[ ] [ ] [ ][ ] ηξddtk
HTH

JBDB

1

1

1

1

∫ ∫
− −

= (2.78)
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2.4 Variation of Cell Solution
kl

iχ in Microcell Geometries

2.4.1 A Typical Shape of Microcell Geometry

Based on the equations (2.32) and (2.33), homogenization program was

created and tested. Two cell geometries, as pictured in Figure 2.4 were defined.

The microcell structures have soft and hard materials, Esoft and Ehard. In the test

cases, it was assumed that Esoft = 10, Ehard = 1000 and Poisson ratio v = 0.3. The

shaded area represents Ehard which is a fiber and the brightened area represents Esoft

which is a matrix. The microcell models are pictured in Figure 2.4. The fiber

width hx1 and hy1 = 0.250 for both Model 1 and 2. The matrix lengths in Model 1

were hx2 = hy2 = 0.375 and Model 2 were hx2 = 0.125 and hy2 = 0.375. The cell

solution kl

iχ was computed for the two cell geometry cases.

Figure 2.4 Microcell Structure: Model 1 - Cell Size 1.0 x 1.0; Model 2 - Cell
size 0.5 x 1.0

Y1

Y2

hx2

hy2

hy1

hx1

ξ1

ξ2

Model 1

Y1

Y2

hx2

hy2

hy1

hx1

ξ1

ξ2

Model 2
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2.4.2 Computation of the Cell Solution (
kl

iχ ) in Soft and Hard Microcell

Structure Cases

Case A: k=l=1

Figure 2.5 and Figure 2.6 showed the results of the microcell solution for

Model 1 and Model 2 after the homogenization program was ran. Model 1 has the

cell size as 1.0 x 1.0 and Model 2 has 0.5 x 1.0.

Micro Cell Solution

(Case A: k = l = 1)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y1

Y
2

Model 1 - 1.0 x 1.0

Figure 2.5 Microcell Solution for Model 1 – Cell size 1.0 x 1.0
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Micro Cell Solution

(Case A: k = l = 1)
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1.00

0.00 0.25 0.50 0.75 1.00

Y1

Y
2

Model 2 - 0.5 x 1.0

Figure 2.6 Microcell Solution for Model 2 – Cell size 0.5 x 1.0

The pictures of Figure 2.5 and Figure 2.6 were superimposed in order to

demonstrate that the microcell solutions are different if the microstructural shapes

are different (see Figure 2.7).

Micro Cell Solution

(Case A: k = l = 1)
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Model 1 - 1.0 x 1.0

Model 2 - 0.5 x 1.0

Figure 2.7 Superimpose the Cell Solution Pictures of Figure 2.5 and Figure 2.6
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Case B: k = l =2

Figure 2.8 and Figure 2.9 showed the results of the microcell solution for

Model 1 and Model 2 after the homogenization program was ran.

Micro Cell Solution

(Case B: k = l = 2 )
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Figure 2.8 Microcell Solution for Model 1 – Cell size 1.0 x 1.0

Micro Cell Solution

(Case B: k = l = 2)
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Figure 2.9 Microcell Solution for Model 2 – Cell size 0.5 x 1.0
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Again, the pictures of Figure 2.8 and Figure 2.9 were superimposed in

order to demonstrate that the microcell solutions are different if the microstructural

shapes are different (see Figure 2.10)

Micro Cell Solution

(Case B: k = l = 2)
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0.00 0.25 0.50 0.75 1.00
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Y
2

Model 1 - 1.0 x 1.0

Model 2 - 0.5 x 1.0

Figure 2.10 Superimpose the Cell Solution Pictures of Figure 2.8 and Figure 2.9

Case C: k = 1, l = 2 (or k = 2, l = 1)

Figure 2.11 and Figure 2.12 showed the results of the microcell solution for

Model 1 and Model 2 after the homogenization program was ran.
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Micro Cell Solution

(Case C: k = 1, l = 2 or k = 2, l = 1 )
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Figure 2.11 Microcell Solution for Model 1 – Cell Size 1.0 x 1.0

Micro Cell Solution

(Case C: k = 1, l = 2 or k = 2, l = 1)
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Figure 2.12 Microcell Solution for Model 2 – Cell Size 0.5 x 1.0
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Finally, the pictures of Figure 2.11 and Figure 2.12 were superimposed in

order to demonstrate that the microcell solutions are different if the microstructural

shapes are different (see Figure 2.13).

Micro Cell Solution

Case C: k = 1, l = 2 or k = 2, l = 1)
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Model 2 - 0.5 x 1.0

Figure 2.13 Superimpose the Cell Solution Pictures of Figure 2.11 and Figure 2.12
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2.5 Verification of the Homogenized Elastic Constants

2.5.1 Soft and Hard Isotropic Composite Material with Variation

A finite element cell solution program HOMOG.f90, was created to obtain

approximate cell solutions. The homogenized elastic constant, H

ijklE , was

computed and compared with the results from Bendoe and Kikuchi [3]. For the

first case, the cell had the soft and hard material properties with isotropic and plane

stress. And the soft material’s Young’s modulus Esoft = 10 and Ehard = 1000 with

the same Poisson ratio 3.0=ν . The structure is pictured in Figure 2.14.

Figure 2.14 Material Properties in a Single Microcell Geometry:

(Esoft = 10 and Ehard = 1000)

Esoft Ehard Esoft

Ehard Esoft Ehard

Esoft Ehard Esoft
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Bendoe and Kikuchi [3] calculated the homogenized elastic constant with a

16x16 mesh of elements on the cell picture in Figure 2.15. They also used an

adaptive method to obtain refined the results.

HOMOG.f90 used an 8 x 8 mesh of elements of the cell geometry which is

shown in Figure 2.16 for calculating the homogenized elastic constant. A nine-

node Lagrange quadratic element and sixteen Gauss points were used to increase

accuracy. The comparison results are shown in Table 2.1.

Figure 2.15 A Single Microcell Geometry Model Defined by

Bendoe and Kikuchi [3]: 16 x 16 Uniform Square Four-node
Isoparametric Elements
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Figure 2.16 A Single Microcell Geometry Model Defined by

HOMOG.f90: 8 x 8 Uniform Square Nine-node Lagrange
Quadratic Elements

Table 2.1 Comparison of the Homogenized Elastic Constants: Soft and Hard

Material

Mesh or Nodes HE1111

HE1122

HE2222

HE1212

16 x 16 [3] 149.80 71.61 149.80 87.12

1st Adapt[3] 127.12 62.91 127.12 75.90

2nd Adapt[3] 125.79 62.62 125.79 75.28

HOMOG.f90

(9-node)
136.55 68.56 136.55 81.07
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2.5.2 A Rectangular Hole in the Material

For the second case verification, Bendoe and Kikuchi [3] used rectangular

microcell geometries with a rectangular hole in the middle. The structure is

pictured in Figure 2.17 and has material properties which are characterized by

1111E = 302222 =E and 1012121122 == EE . In this case, the hole was not

approximated by a very soft material. The material properties of the microcell

only consider the solid area.

Figure 2.17 Material Properties in a Single Microcell Geometry
with a Hole: (E1111 = E2222 = 30 and E1122 = E1212 = 10)

In Figure 2.18, a 20 x 20 mesh size was used for the cell geometry and

three different adaptation mesh methods were generated to obtain refined the

results of homogenized elastic constant.
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HOMOG.f90 used a 10 x 10 mesh of elements of the cell geometry which

is shown in Figure 2.19 for calculating the homogenized elastic constant. As same

as the first case, a nine-node Lagrange quadratic element and sixteen Gauss points

were used to increase accuracy. The comparison results are shown in Table 2.2.

Figure 2.18 A Single Microcell Geometry Model Defined by

Bendoe and Kikuchi [3]: 20 x 20 Uniform Square Four-node
Isoparametric Element

Figure 2.19 A Single Microcell Geometry Model Defined by
HOMOG.f90: 10 x 10 Uniform Square Nine-node Lagrange
Quadratic Elements
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Table 2.2 Elastic Tensors after Homogenization in Rectangular Hole

Mesh or Nodes HE1111

HE1122

HE2222

HE1212

16 x 16[3] 13.015 3.241 17.552 2.785

1st Adapt[3] 12.910 3.178 17.473 2.714

2nd Adapt[3] 12.865 3.146 17.437 2.683

3rd Adapt[3] 12.844 3.131 17.421 2.668

HOMOG.f90
(9-node)

12.924 3.198 17.487 2.708
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Chapter 3

Nonperiodic Homogenization (NPH) Method

3.1 Mathematical Theory of NPH

Assume that the microscopic and the macroscopic have a relationship

based on equations (2.24) and (2.30). Then an equation can be written as below:

)(
)(

),()(),( )( x
x

yxxyx i

l

H

kkl

iii C
X

u
uu

∂

∂
+= χ (3.1)

Macro Structure Micro Structure
Solution Solution

where, ),( yx
kl

iχ = Microcell solution (i = 1, 2)

)(xiC = Correction coefficient related to the micro structure

)(xH

ku = Homogenized displacement solution (k = 1, 2)

lX = Macro coordinate system (i = 1, 2)

Also, )(xiu can be expressed as function of the homogenized displacement with

correction coefficient )(xiC and )(xiC through the expression below:

)()()()( )( xxxx ii

H

ii CCuu += (3.2)

Then, insert in the equation (3.2) into equation (3.1) then can be rewritten as

below:



44

)(
)(

),()()()(),( )()( x
x

yxxxxyx i

l

H

kkl

iii

H

ii C
X

u
CCuu

∂

∂
++= χ (3.3)

Now, the nodeless form of the equation can be derived. Let at Nx be a nodal

position in the macro element. Let cy be a single location in the microcell.

Evaluating equation (3.3) at Nx and cy produces the follow equations:
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Therefore, displacement components iu at nod N can be formed as shown below:
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Then, correction coefficient component
N

iC , can be defined as a function of the

displacement associates with the cell solution as follows:
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Now introduce equation (3.6) into the equation (3.4) and rearrange the resulting

expression in terms of the correction coefficients )(xiC and )(xiC .
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where N

i

N

i CC )()( xx β=

N

i
N

i CC )()( xx β=

N

i

N

i uu )()( xx β= (3.8)

Figure 3.1 indicates the nodal degree-of-freedom for the 1-D element case. Each

nodal point has three degree-of-freedom iC , iC and iu .

Figure 3.1 Nodal Degree of Freedom in 1-D Element
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Finally, the displacement vector ),( yxiu can be formed as shown below:
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where, )(xNγ and )(xNα are nodeless shape functions:
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3.2 Evaluation of the NPH Strain Tensors

The two dimensional strains in Cartesian coordinates are defined as follows:
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Equation (3.11) through equation (3.13) can be rearranged into matrix format as

follows:
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Now, substitute equation (3.10) into equation (3.15). Some of the terms

will become zero after differentiation. For example,
1

)(1 )(

X

u N

H

∂

∂ x
is a constant

relative to variations in X1 and X2. Set value of cell solution at cy to zero (i.e.

0),( )(1 =cN

kl yxχ ). Rearrange the equation with respect to common coefficient

terms, then the equation (3.15) becomes as shown below:
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Then the equation (3.17) can be written as shown below:

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]87654321

12

22

11

xxxxxxxx BBBBBBBBA

e

e

e

=
















(3.18)

where

[ ]



































∂
∂
∂

∂
∂

∂
∂

∂

=

N
N

H

N
N

H

N
N

H

N
N

H

C
X

u

C
X

u

C
X

u

C
X

u

B

2

2

2

2

1

2

1

2

1

1

1

1

1

)(
)(

)(
)(

)(
)(

)(
)(

x
x

x
x

x
x

x
x

β

β

β

β

(3.19)

[ ]



































∂
∂
∂

∂
∂

∂
∂

∂

−=

N
N

N

H

N
N

N

H

N
N

N

H

N
N

N

H

C
X

u

C
X

u

C
X

u

C
X

u

B

2

2

)(2

2

1

)(2

1

2

)(1

1

1

)(1

2

)(
)(

)(
)(

)(
)(

)(
)(

x
x

x
x

x
x

x
x

β

β

β

β

(3.20)

[ ]



































∂

∂
∂

∂
∂

∂
∂

∂

=

NN

H

NN
H

NN

H

NN
H

C
X

u

C
X

u

C
X

u

C
X

u

B

2

2

2

2

1

2

1

2

1

1

1

1

3

)(
)(

)(
)(

)(
)(

)(
)(

x
x

x
x

x
x

x
x

β

β

β

β

(3.21) 



51

[ ]



































∂
∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

=

N
N

l

H

kkl

N
N

l

H

kkl

N
N

l

H

kkl

N
N

l

H

kkl

C
XX

u

C
XX

u

C
XX

u

C
XX

u

B

2

2

2

2

1

2

1

2

1

1

1

1

4

)()(
),(

)()(
),(

)()(
),(

)()(
),(

xx
yx

xx
yx

xx
yx

xx
yx

β
χ

β
χ

β
χ

β
χ

(3.22) 

[ ]



































∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂

=

NN

l

H

k

kl

NN

l

H

k

kl

NN

l

H

k

kl

NN

l

H

k

kl

C
X

u

X

C
X

u

X

C
X

u

X

C
X

u

X

B

2

2

2

2

1

2

1

2

1

1

1

1

5

)(
)(),(

)(
)(),(

)(
)(),(

)(
)(),(

x
xyx

x
xyx

x
xyx

x
xyx

β
χ

β
χ

β
χ

β
χ

(3.23) 

[ ]



































∂∂

∂
∂∂

∂
∂∂

∂
∂∂

∂

=

NN

l

H

kkl

NN

l

H

kkl

NN

l

H

kkl

NN

l

H

kkl

C
XX

u

C
XX

u

C
XX

u

C
XX

u

B

2

2

2

2

2

1

2

2

1

2

2

1

1

1

2

1

6

)(
)(

),(

)(
)(

),(

)(
)(

),(

)(
)(

),(

x
x

yx

x
x

yx

x
x

yx

x
x

yx

βχ

βχ

βχ

βχ

(3.24) 

[ ]



































∂
∂
∂

∂
∂

∂
∂

∂

=

N
N

N
N

N
N

N
N

u
X

u
X

u
X

u
X

B

2

2

2

1

1

2

1

1

7

)(

)(

)(

)(

x

x

x

x

β

β

β

β

(3.25) 



52

[ ]



































∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=

2

2
2

2

2

1

1
2

1

2

2

2
1

2

1

1

1
1

1

1

8

)(
)(),(

)(
)(),(

)(
)(),(

)(
)(),(

X

Y
C

X

u

Y

X

Y
C

X

u

Y

X

Y
C

X

u

Y

X

Y
C

X

u

Y

B

NN

l

H

k

kl

NN

l

H

k

kl

NN

l

H

k

kl

NN

l

H

k

kl

x
xyx

x
xyx

x
xyx

x
xyx

β
χ

β
χ

β
χ

β
χ

(3.26) 

 



53

3.3 Explicit Parameterization of the Cell Geometry over the Element

The equation (3.23) includes the term
l

H

k

i

kl

X

u

X ∂

∂

∂

∂ )(),(1 xyxχ
, which is related

to the rate change in the microcell solution with respect to jX . Changes in jX are

dependent on changes in the parameters, ),(2 yxhx and ),(2 yxhy , controlling the

cell size. Essentially ),(2 yxhx and ),(2 yxhy define an explicit parameterization of

the cell size in terms of macro element positions. The microcell

approximation ),( yxkl

iχ , is shown below:
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i χψχ = (3.27) 

Then evaluating equation (3.27) at all Gauss point ij, it can be seen that:
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See the Appendix B.1 (equations B.14 through B.31) for detail processing

in the equation (3.23). The rate of changes in the cell solution with respect to

)(

)(

2

1

ij

Nkl

hx x

x

∂

∂χ
and

)(

)(

2

1

ij

Nkl

hy x

x

∂
∂χ

can be approximated using finite differences. For

example, if k = l = 1,

2

)(

11

1)(

11

1

2

11

1 222
)()(

)(

)(

hxhx

hx

N

hxhx

NN

∆

−
=

∂

∂ ∆+ xx xx

x

x χχχ
(3.31)

2

)(

11

1)(

11

1

2

11

1 222
)()(

)(

)(

hyhy

hy

N

hyhy

NN

∆

−
=

∂

∂ ∆+ xx xx

x

x χχχ
(3.32)



55

3.4 Coordinate Transformation

The equation (3.19) through equation (3.26) will be converted from the

Cartesian coordinate system to the natural coordinate system (see Appendix B.1

for the detail presentation of the transformation process). Both the macro

coordinate x and the micro coordinate y must be transformed. Thus the typical

function )(xf in macro coordinate system and )(yg in micro coordinate system

are changed to )(ξf and )(ξg respectively where ξ is the natural coordinate for

the macro system and ξ is the natural coordinate for the micro system. After each

transformation has been completed, the following equations can be formed:

Transforming equation (3.19) - (3.26) gives,
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Introducing equation (3.33) - (3.40), the equation (3.18) can be evaluated.

Arranging the equation (3.18) in blocks corresponding to the correction

coefficients (C and C ) and displacement u, the following equation is obtain:
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(3.41)

where,
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3.5 NPH Element Stiffness Matrix

The potential energy in a linear elastic body is defined as follows:

{ } [ ]{ } { } [ ]{ } { } { }∫ 
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V S
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FdSdV UuFu (3.44)

where

{e}















=

12

22

11

e

e

e

is the strain field

[ ]D = Material property matrix

{ }0e and { }0σ = Initial strain and initial stress

{ }








=
2

1

u

u
u , Displacement field

{ }F = Body force

{ }Φ = surface traction

{ }U = Displacement vector at points where concentration forces are

applied

{ }F = Concentrated loads applied to particular degrees-of-freedom
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From the equation (3.44), the multi-scale variational model for the potential energy

in a linear elastic body can be obtained by an averaging process,

{ } [ ]{ } { } [ ]{ } { } { }∫ ∫ 
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where, A is the microscopic cell.
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1

is the “average over” the microstructure cell of the strain energy

density at the particular macro position in x. Substituting equation (3.41) into

equation (3.45) and assuming that there is no initial strain, initial stress, body force

or surface traction, the following equation can be obtained:
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Then, by using the Gauss Quadrature method, the equation (3.48) can be formed at

the particular ij in microcell structure. Thus, the element stiffness matrix is shown:
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where, WT = Gauss Quadrature weight factor

DetJac = Determinant of Jacobian matrix

thk = Cell solution thickness

t = Macro structure thickness

VpD = Variable material property in the micro cell
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Also, ij
Micro can be determined while the microcell structure changes

depending on the ( )ξ2hx and ( )ξ2hy values at the each Gauss point. Finally, the

NPH stiffness matrix can be formed as shown below:

[ ] { } ij
N

i

N

j

ij

ji

elemof

i

i DetJactMicroWTWTk
x y
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= == 1 1

 #
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3.6 NPH Element Stress Calculation

The stress and strain relationship in a linear elastic body with an initial

strain and a stress term is defined as follows:

00eeEσ σ+−= )( (3.54) 

where,

{ }0e = Initial strain

{ }0σ = Initial stress

Since there is no initial strain and stress are presented, the equation (3.54) can be

written in terms of the elastic constant and strain. The strain term was defined in

the equation (3.41) which is a product of the [P] and nodal displacement, {UC}.

Thus, the equation (3.54) can be written as below:

Eeσ = (3.55) 

{ } [ ] [ ] { }elemtxxx UCPE 5433313 =σ (3.56) 

where

[ ] [ ] [ ] [ ][ ]
543183183183543 ||

xXXXxP uCC=
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At the microcell structure level shown in Figure 3.2, the stresses were

computed based on the material properties at the location of the micro structural

with the matrix [Pi]. Therefore, the equation 3.56 can be written as shown below:

{ } [ ] [ ] { }elemtxxx
UCPE

54313311316of1 =σ (3.57)  

{ } [ ] [ ] { }elemtxxx
UCPE

54323321316of2 =σ (3.58) 

 

Figure 3.2 Nodal Displacement at the Mesh Element and

Microstructure: i.e.) E1= 10 and E2 = 1000
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3.7 Typical Allowable NPH Microcell Geometries

A genetic microcell structure in 2-D is shown in Figure 3.3. In the research

proposal, the fiber size hx1 and hy1 are constant values and matrix sizes hx2 and hy2

are variable sizes in the micro coordinate y (Y1, Y2). Therefore, overall microcell

structure will vary depending on the location of the integration points in the macro

mesh.

Figure 3.3 A Microcell Structure in 2-D (Shaded areas Represent

Fibers, hx1 and hy1)

Various microcell structures can be created in order to fit the best

characteristic structure of the Functionally Graded Materials. For example, in

Y1

Y2

hx2(ξ)

hy2(ξ)

hy1

hx1

ξ1

ξ2
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order to create the dot fiber micro structure as shown in Figure 3.4 (b), change the

vertical and horizontal fiber material properties from the genetic microcell

structure pictured in Figure 3.3 to the matrix material properties except the center

location. Various types of the microcell structure for the Functionally Graded

Materials can be generated as shown in Figure 3.4.

Figure 3.4 Variation of 2-D Microcell Structures with Fiber (shaded area): (a)
Vertical Direction; (b) Center; (c) Outer Edges; (d) Distributed in the Center and

Four Corners.

(a) (b) (c) (d) 
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3.8 Data Collection Points for hx2 and hy2 Matrix Values in the

Nonperiodic Microstructure

In order to characterize the nonperiodic microstructure pattern of the

Functionally Graded Materials, the data collection point method was used. The

meaning of the “data collection point” is to identify the variation of hx2 matrix

values in 1-D or the variation of hx2 and hy2 matrix values in 2-D cases throughout

the macro structure. The structure can have two or more data collection points per

finite element. Figure 3.5 shows an example of the three data collection points in

1-D finite element case. Then, these data collection points were interpolated at the

Gauss location. In order to increase the accuracy, a total of four integration points

per finite element were used. These data collection points could be obtained

manually or automatically and placed in the data input file for the NPH

computation.

Figure 3.5 A Total of Three hx2 Data Collection Points per One Finite

Element: Black Dots indicate Data Collection Points and Circles with Cross
indicate the Location of Gauss Points.

hx2
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Figure 3.6 shows the location of the data collection points of hx2 and hy2 in 2-D

case. A total of nine data collection sets were obtained at the near of the element

nodal points. As in the 1-D case, these data collection sets were interpolated at the

Gauss integration points.

Figure 3.6 A Total of Nine Data Collection Points per Finite Element: Black

Dots indicate Data Collection Points and Circles with Crosses indicate the
Location of Gauss Points.
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Chapter 4

Numerical Examples of NPH 1-D Cases

4.1 Introduction

The intent of this chapter is to test the performance of the nonperiodic

analysis procedure on one dimension problem for which as exact solution exists.

Six independent cases are considers including:

� Case 1 – Comparison between the NPH and the Homogenization Solution

� Case 2 – Descending Low Density Microcell Structures

� Case 3 – Descending High Density Microcell Structure

� Case 4 – Descending and Ascending Microcell Structure

� Case 5 – Descending Microcell Structure with a Sudden Jump

� Case 6 – Rapidly Varying Descending, Ascending and Descending

Microcell Structures.
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4.2 Case 1 – Comparison between the NPH and the Homogenization

Solutions

4.2.1 Geometry Modeling

A structure which contains periodic microcells was created in order to

compare the deformation results from the NPH and the homogenization methods.

The cell structure possesses typical matrix and fiber configurations. The test

configuration is pictured in Figure 4.1. In the case study, the length of the matrix

component hx2 and the length of the fiber component hx1 were defined as 0.375

and 0.25, respectively. The Young’s modulus of the matrix and fiber were

assumed to be Ematrix = 10 and Efiber = 1000. A concentrated force, F was applied

on the free end, and its value was F = 3.0. The total length of the structure was 2.0,

and the cross section area of the structure was also 2.0. In the NPH algorithm, a

single macro finite element was used for the numerical computations. Figure 4.2

showing the single macro element in the macro model for the NPH method and

Figure 4.3 showing detailed view of the microcell structure, cell 1, for exact

solutions.

Figure 4.1 A Periodic Structure with Microcells

hx2 hx2hx1 hx2 hx2hx1

F = 3

Cell 1 Cell 2
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Figure 4.2 A Single Macro Element for the NPH Method

Figure 4.3 Detailed View of the Cell 1 for the Exact

Solutions: hx2 = 0.375 and hx1 = 0.250

4.2.2 Local and Global Deformation Analysis

The deformation results were obtained at the three different locations: X =

0.0, X = 1.0 and X = 2.0 which are the node point locations for three nodes in the

macro-model. As is shown in Table 4.1, the homogenization and the NPH results

were identical. This is due to the fact that the nonperiodic terms in the NPH

algorithm are zero for this case. The result confirms that the NPH algorithm

produces the exact homogenization solution for periodic structures. Therefore, the

NPH method works correctly for the periodic cases.

X

Y

hx2 hx2hx1
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Table 4.1 Deformation Results of NPH and Homogenization Methods

Location in X Homogenization NPH

0.0 0.0000E+00 0.0000E+00

1.0 0.1129E+00 0.1129E+00

2.0 0.2258E+00 0.2258E+00
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4.3 Case 2 – Descending Low Density Microcell Structure

A Typical nonperiodic low density microcell structure was created to

investigate the accuracy of the NPH algorithm. Three different methods were used

as follows:

• Method 1 - mapping the geometry with a single finite element and using

two hx2 data collection points per finite element, picture in Figure 4.4(a).

• Method 2 - mapping the geometry with a single finite element mesh and

using three hx2 data collection points per finite element, picture in Figure

4.4(b).

• Method 3 - mapping with the geometry with four finite elements and

using three hx2 data collection points per finite element, picture in Figure

4.4(c).

Figure 4.4 Three Different hx2 Data Collection Methods; Black Dots indicate Data
Collection Points and Circles with Cross indicate the Location of Gauss Points.

hx2hx2

(a) Method 1- 2 Collection Pts.
with 1 Finite Element

(b) Method 2 – 3 Collection Pts.
with 1 Finite Element

(c) Method 3 – 3 Collection Pts.
with 4 Finite Elements

hx2
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4.3.1 Geometry Modeling

Consider the structure picture in Figure 4.5. The configuration of the

microcell 1 was the same as cell 1 in Figure 4.3. The length of the matrix hx2 is

0.375 and the length of the fiber hx1 is 0.25. Then, the microcell matrix hx2 values,

for cell 2 and 3, were decreased as compare to cell 1. The values of hx2 for cell 2

and for cell 3 are 0.225 and 0.025, respectively. The fiber length was not changed

and took the value as 0.25. All boundary conditions were as presented in section

4.2.1.

Figure 4.5 Nonperiodic Low Density Microcell Structure

4.3.2 Local and Global Deformation Analysis

The deformation results, comparing the solution using method 1, 2 and 3,

are displayed in Table 4.2. The results indicate that when more data collection

points were employed in the finite elements, the accuracy of the solution was

increased. However, adding more finite elements while collecting the using the

same number of data points did not significantly improve the results. This

F

Cell 1 Cell 2 Cell 3

hx2 hx2 hx2
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occurred because the density of the microcell structures in the geometry was too

coarse. Figure 4.6 shows that the NPH results reasonably follow the exact solution

when the number of the finite element is increased.

Table 4.2 Deformation Results for the Descending Low Density Microcell
Structure Case

Computational Methods X = 1.0 X = 2.0
Percent of

the Exact Solution

at x = 2.0

Exact Solution 0.11288 0.18613 -

Method 1 – 2 Collection

points w/ 1 Finite Element
0.10662 0.16960 91.1

Method 2 – 3 Collection

points w/ 1 Finite Element
0.11027 0.17505 94.1

Method 3 – 3 Collection
points w/ 4 Finite Elements

0.14588 0.17257 92.7

Descending Low Density Microcells with

Three Different Data Collection Methods
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Figure 4.6 Deformation Results for the Descending Low Density Microcell with
Three Different Data Collection Methods
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4.4 Case 3 – Descending High Density Microcell Structure

4.4.1 Geometry Modeling

From an application perspective the high density microstructure is very

important. Thus, a nonperiodic high density microcell structure was analyzed to

investigate the accuracy of the NPH algorithm for these problems. As it is shown

in the Figure 4.7, the numbers of microcells were added in the geometry. Three

different methods which were described in section 4.3 were tested: Method 1,

Method 2 and Method 3.

Figure 4.7 Descending Microcell Structure Case with 10 percent

Descending

The geometry contains a total of eighteen microcells. The configuration of

the microcell 1 was set as followed; the length of the matrix hx2 is 0.090 and the

length of the fiber hx1 is 0.0262. The length of the matrix value was reduced

continuously by 10 percent from cell to cell, starting from the cell 1. Thus, the

length of the matrix hx2 at the cell 18 is 0.015. The matrix size values for the

F

Cell 1 Cell 18
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eighteen cells are presented in Table 4.3. The fiber dimension was kept constant,

which was 0.0262. All boundary conditions were as presented in section 4.2.1.

Table 4.3 The Matrix Size Values for the Descending and Ascending Microcell
Structure: Fiber size hx1 = 0.0262

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

1 0.0900 7 0.0478 13 0.0254

2 0.0810 8 0.0430 14 0.0229

3 0.0729 9 0.0387 15 0.0206

4 0.0656 10 0.0349 16 0.0185

5 0.0590 11 0.0314 17 0.0167

6 0.0531 12 0.0282 18 0.0150

4.4.2 Local and Global Deformation Analysis

The calculated deformation values for method 1, 2 and 3 are presented in

Table 4.4. It can be seen that as compared to Case 2 in section 4.3, more

consistent convergence trends are evident, and this is due to the increase in the

number of microcells in the model. For example, the Method 3 used the most

refined model in terms of numbers of elements and data collection points and

produced the best accuracy. It is clear that collecting more matrix size values hx2,

in each finite element, helped to increase the accuracy. And adding more finite
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elements in the geometry also produces better results. In Figure 4.8 and 4.9, the

displacement patterns for the three methods are pictured.

Table 4.4 The Deformation Results of the High Density Microcell Structure with
10 percent Reduction

Computational Methods x = 1.0 x = 2.0
Percent of

The Exact Solution
at x = 2.0

Exact Solution 0.12675 0.23018 -

Method 1 – 2 Collection
points w/ 1 Finite Element

0.13675 0.22448 97.5

Method 2 – 3 Collection
points w/ 1 Finite Element

0.13695 0.22474 97.6

Method 3 – 3 Collection
points w/ 4 Finite Elements

0.12722 0.22766 98.9
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Descending Microcell Structure in High Density

Microcell
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Figure 4.8 Deformation Results of Descending Microcell Structure in High Density

Microcell with Three Different Data Collection Methods

Detail View of the Descending Microcell

Structure in High Density Microcell
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Figure 4.9 Detailed View of the Figure 4.5 (Red Box Region)
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4.5 Case 4 – Descending and Ascending Microcell Structure

4.5.1 Geometry Modeling

The NPH algorithm was tested for structure with continuously varying

microcells with the cell size both descending and ascending in terms of matrix size

hx2. A test case was created as pictured in Figure 4.10. In this case again the cell

size is slowly varying, while ascending and descending, in terms of the matrix size

hx2. The geometry contains a total of fifteen microcells. Four macro finite

elements were used with three hx2 data collection points per finite element.

The first microcell in the geometry was identical to Case 3; the length of

the matrix hx2 is 0.090 and the length of the fiber hx1 is 0.0262. Then, 10 percent

reduction was made from the first microcell matrix value hx2, until it reached

approximately 3/4 of the geometry. After that, the matrix value was increased by

116 percent continuously until it reached the end of the structure. Thus, the matrix

value hx2, at the end of the structure became 0.0578. The fiber dimension was kept

constant value which was 0.0262. The matrix size values for the fifteen cells are

presented in Table 4.5. All boundary conditions were as presented in section 4.2.1.

Figure 4.10 High Density Microcell Structure Case with 10 percent

Descending and 16 percent Ascending Matrix Sizes

F

Cell 1 Cell 15
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Table 4.5 The Matrix Size Values for the Descending and Ascending Microcell
Structure: Fiber size hx1 = 0.0262

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

1 0.0900 6 0.0531 11 0.0314

2 0.0810 7 0.0478 12 0.0366

3 0.0729 8 0.0430 13 0.0426

4 0.0656 9 0.0387 14 0.0496

5 0.0590 10 0.0349 15 0.0578

4.5.2 Local and Global Deformation Analysis

Table 4.6 compares the NPH deformation results at global coordinates X =

1.0 and X = 2.0 with exact solution and the homogenization solution. The

homogenization solution was added in the table in order to show the non-linearity

of the NPH solution. Even though only four macro finite elements were used in

the NPH model, the deformation results are extremely accurate. In Figure 4.11

and 4.12, the deformation results for NPH are compared to the exact solution.

Table 4.6 Global Deformation Values in High Density Microcell Structure Case

with 10 percent Descending and 16 percent Ascending Matrix Sizes

Computational Methods x = 1.0 x = 2.0
Percent of

The Exact Solution
at x = 2.0

Exact Solution 0.12675 0.24183 -

3 samples w/ 4 Finites 0.12726 0.23948 99.0

Homogenization Soln 0.13116 0.26233 108.5
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High Density Microstructure Case with 10% descending and

16% Ascending Matrix Sizes
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Figure 4.11 Deformation Results for High Density Descending and Ascending
Microcell Structure

Detail View of the High Density Microstructure Case with

10% descending and 16% Ascending Matrix Sizes
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Figure 4.12 Detailed View of the Figure 4.5 (Red Box Region)
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4.6 Case 5 – Descending Microcell Structure with a Sudden Jump

4.6.1 Geometry Modeling

One of the FGMs characteristics is that the geometry has a gradual

variation in space. However, in this case, a problem with a sudden jump of

microcell structure geometry was created and investigated. The microstructural

model is pictured in Figure 4.13. The geometry involved a total of fifteen

microcells, and the model incorporated four macro finite elements and used three

hx2 data collection points per finite element.

In the developed model, the microcell matrix size hx2 was decreased by 15

percent from cell to cell, starting from the left hand side and a sudden jump

(approximately 5 times more than its neighbor matrix size) was generated at the

middle of structure. After that, the matrix value hx2 was decreased again by 34

percent from cell to cell. The cell matrix size values are presented in Table 4.7.

All other boundary conditions were as same as Case 1 in section 4.2.1.

Figure 4.13 Descending Micro Structure with a Sudden Jump

F

Cell 1 Cell 15
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Table 4.7 The Matrix Size Values for the Descending Microcell Structure with a
Sudden Jump: Fiber size hx1 = 0.0194

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

1 0.0900 6 0.0399 11 0.0655

2 0.0765 7 0.0339 12 0.0433

3 0.0650 8 0.0289 13 0.0286

4 0.0553 9 0.1500 14 0.0189

5 0.0470 10 0.0992 15 0.0125

4.6.2 Local and Global Deformation Analysis

Table 4.8 presents the displacement results for the case of geometry with a

sudden jump. The comparisons, between the exact solution and the NPH solution

were made at four different locations: X = 0.5, 1.0, 1.5 and 2.0. In Figure 4.14, the

deformation patterns for the NPH method are compared to the exact solution. The

exact solution clearly showed that there are two connected but independent curves:

one from before the sudden jump and the other one after the sudden jump. Figure

4.14 shows that the NPH solution does not accurately follow the exact solution for

the case with sudden jumps. The reason is that the NPH algorithm uses the

homogenized displacement solution H

iu , for correcting its deformation values.

Thus, if there is a sudden jump at the micro structural level, the mathematical

correction cannot be accurately determined.
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Table 4.8 Deformation Results for the High Density Descending Microcell
Structure with a Sudden Jump

Computational Methods X = 0.5 X = 1.0 X = 1.5 X = 2.0

Exact Solution 0.06954 0.13118 0.21585 0.25681

NPH Solution

(3 samples w/ 4 Finites)
0.06895 0.11546 0.19124 0.23861

Descending Microcell Structure

with a Sudden Jump
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Figure 4.14 Deformation Results of the High Density Descending Micro Structure
with a Sudden Jump
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4.7 Case 6 – Rapidly Varying Descending, Ascending and

Descending Microcell Structures

4.7.1 Geometry Modeling

The tests in this section were designed to explore the ramification of the

sudden jump result. Consider a case in which the matrix size value hx2 is rapidly

varying, but does not have a sudden jump. Thus, the matrix value hx2 was

continuously decreased, increased and decreased in a smooth but rapidly varying

way. This generates a smooth transition among the microcells. The geometry

includes a total of fifteen microcells and is pictured in Figure 4.15. The model

incorporates four finite elements with three hx2 data collection points per finite

element.

The microcell was reduced by 30 percent continuously from the first

microcell until it reached the middle of the structure. After that it was increased

by 130 percent then decreased 25 percent until the end of the structure was reached.

The associated matrix size hx2 parameters are presented in Table 4.9. All

boundary conditions were as presented in section 4.2.1.

Figure 4.15 High Density Microcells with Rapidly Varying Descending,
Ascending and Descending Structure

F

Cell 1 Cell 15
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Table 4.9 The Matrix Size Values for the Rapidly Varying Descending, Ascending
and Descending Structure: Fiber size hx1 = 0.070

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

Cell
No.

Matrix Size
hx2

1 0.0900 6 0.0151 11 0.0187

2 0.0630 7 0.0197 12 0.0140

3 0.0441 8 0.0256 13 0.0105

4 0.0309 9 0.0332 14 0.0079

5 0.0216 10 0.0249 15 0.0059

4.7.2 Local and Global Deformation Analysis

Table 4.10 shows the deformation results at four different locations: X =

0.49, 0.95, 1.43 and 1.90. Figure 4.16 compares the NPH solution and the exact

solution. These results indicate that the NPH method can accurately follows the

exact solution for the case in which the microstructure is rapidly varying. Again,

the use of three data collection point method, in NPH algorithm, is validated.

Table 4.10 Deformation Results of the High Density Microcell with Rapidly
Varying Descending, Ascending and Descending Microcell Structure

Computational Methods x = 0.49 x = 0.95 x = 1.43 x = 1.90

Exact Solution 0.05273 0.08004 0.11148 0.12911

NPH Solution
(3 samples w/ 4 Finites)

0.04838 0.07785 0.10779 0.12733
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Microcell with Rapidly Varying

Descending, Ascending & Descending
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Figure 4.16 Deformation Results of the High Density Microcell with Rapidly

Varying Descending, Ascending and Descending Structure
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Chapter 5

Numerical Examples of NPH 2-D Cases

5.1 Introduction

After carefully tested the performance of the NPH algorithm in

nonperiodic 1-D cases, further studies were conducted in two dimensional

cases. In this chapter, not only the global and local deformation values were

determined, but also local Von-Mises stresses were computed. These results,

which were computed by the NPH method, were compared with the results of

commercially available Finite Element Analysis (FEA) software. Five

independent 2-D FGMs cases were considered and they are:

� Case 7 – Periodic Microstructure

� Case 8 – Descending Horizontal Fiber Strips in One Direction

� Case 9 – Descending and Ascending FGMs with Square Fibers

� Case 10 – Descending and Symmetric Matrix Structure

� Case 11 – Descending Horizontal and Vertical Fiber Strips

5.2 Case 7 – Periodic Microstructure

5.2.1 Geometry Modeling

In order to validate the performance of the NPH method in 2-D cases, a

structure with periodic microcells was created. The deformation results from the
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NPH method and the homogenization method were then compared. The

microstructural model is pictured in Figure 5.1. A total of sixteen macro elements

were used to mesh the entire geometry in the NPH method. Nine data collection

points were utilized per finite element.

The lengths of the matrix component, hx2 and hy2, are 0.085 and the lengths

of the fiber component hx1 and hy1 are 0.030 in both X1 and X2 directions. The

geometry includes a total of 100 periodic microcells. Thus, the size of the

geometry was 2.0 by 2.0 with the thickness 1.0. The Young’s modulus of the

matrix E1 and fiber E2 were assumed to be 10 and 1000, respectively. The Poisson

ratio for both the matrix and the fiber was assumed to be 0.3. The distribution

force F was applied at the free end of the structure in X1 direction and its value

was 3.0.

Figure 5.1 Periodic Microcell Geometry and Boundary Conditions

(a) Periodic Microcell (b) 16 Macro Elements in NPH

F

X1

X2

Fiber Strip
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5.2.2 Local and Global Deformation Analysis

As it is shown in Figure 5.2, the deformation results were obtained at the

three different locations: X1= 1.0, 1.5 and 2.0. The homogenization and the NPH

deformation values are presented in Table 5.1. The results indicate that there is no

difference between the NPH method and the Homogenized method at the nodal

points. Therefore, the NPH algorithm works correctly for the 2-D periodic case.

Deformation Results for the Periodic Microstructure

0.0
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1.0

1.5

2.0

2.5
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NPH at X1=2.0

Homog. at X1=2.0

NPH at X1=1.5

Homog. at X1=1.5

NPH at X1=1.0

Homog. at X1=1.0

Figure 5.2 Homogenization and NPH Deformation Results for the Periodic
Microstructure at X1 = 1.0, X1 = 1.5 and X1 = 2.0
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Table 5.1 Comparison of the Deformation between Homogenized Solution and NPH
Solution @ X1=1.0, 1.5 & 2.0

Deformation at X1 = 1.0

Location at X2 HOMOG NPH

2.00 8.917E-03 8.916E-03

1.75 8.906E-03 8.905E-03

1.50 8.899E-03 8.897E-03

1.25 8.897E-03 8.894E-03

1.00 8.896E-03 8.893E-03

0.75 8.897E-03 8.894E-03

0.50 8.899E-03 8.897E-03

0.25 8.906E-03 8.905E-03

0.00 8.917E-03 8.916E-03

Deformation at X1 = 1.5

Location at X2 HOMOG NPH

2.00 1.337E-02 1.337E-02

1.75 1.336E-02 1.336E-02

1.50 1.336E-02 1.335E-02

1.25 1.335E-02 1.335E-02

1.00 1.335E-02 1.335E-02

0.75 1.335E-02 1.335E-02

0.50 1.336E-02 1.335E-02

0.25 1.336E-02 1.336E-02

0.00 1.337E-02 1.337E-02

Deformation at X1 = 2.0

Location at X2 HOMOG NPH

2.00 1.782E-02 1.782E-02

1.75 1.782E-02 1.781E-02

1.50 1.781E-02 1.781E-02

1.25 1.781E-02 1.781E-02

1.00 1.781E-02 1.780E-02

0.75 1.781E-02 1.781E-02

0.50 1.781E-02 1.781E-02

0.25 1.782E-02 1.781E-02

0.00 1.782E-02 1.782E-02
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5.3 Case 8 – Descending Horizontal Fiber Strips in One Direction

5.3.1 Geometry Modeling

The high density microcell strip structure was created to evaluate the

performance of the NPH algorithm in 2-D. In the structure, a total of twenty

groups of cell strip were used. The matrix values were decreased in only X2

direction and the structure model is pictured in Figure 5.3. In the NPH method, a

total of sixteen macro elements were used to compute the global deformation

values.

As is shown in Figure 5.4, the matrix size hy2 value is 0.0850 at the cell

strip 1 and there are imaginary lines which separate the cell groups. The matrix

size was linearly reduced by 11 percent starting from the cell strip 1 to cell strip 20.

Thus, the last cell matrix value became 0.0093. The matrix size values for the 20

cells are presented in Table 5.2. The material properties and the boundary

conditions were as presented in section 5.2.1.

Figure 5.3 Descending Horizontal Fiber Strips Microcell Structure: (a) Descending

Horizontal Fiber Strips in X2 Direction, (b) 16 Macro Elements for NPH

hy2

X1

(a) Horizontal Fiber
S i

(b) 16 Macro Elements for NPH

X2

F
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Figure 5.4 Detailed View of the Microcell Strips: Fiber Value
hy1 = 0.030 (Constant)

Table 5.2 Matrix Size Values for the Descending Horizontal Fiber Strips

Cell No.
Matrix Size

hy2
Cell No.

Matrix Size
hy2

1 0.0850 11 0.0265

2 0.0757 12 0.0236

3 0.0673 13 0.0210

4 0.0599 14 0.0187

5 0.0533 15 0.0166

6 0.0475 16 0.0148

7 0.0422 17 0.0132

8 0.0376 18 0.0117

9 0.0335 19 0.0104

10 0.0298 20 0.0093

hy2 = 0.0850

hy2 = 0.0850
Cell

Strip 1

hy2 = 0.0757

hy2 = 0.0757

Imaginary Lines

Cell
Strip 2

Fiber strip
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5.3.2 Local and Global Deformation Analysis

Using the conventional FEA method, models for a high density structure

are required to have massive numbers of macro elements. Figure 5.5 illustrates the

characteristic of the macro mesh. Table 5.3 compares the model sizes associated

with the conventional FEA method and the NPH method.

Table 5.3 Summary of Model Sizes for Case 8

FEA (ABAQUS)
Method

NPH
Method

Total Macro Elements 17,956 16

No. of Integration Points

per Element
4 (2X2) 16 (4X4)

Element Type Four (4) node Lagrange Nine (9) node Lagrange

Nodal DOF/ Total DOF 2/18,225 6/486

Figure 5.5 Conventional FEA Mesh and Boundary Conditions
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The local and global deformation results for the FEA and the NPH

approaches were compared and pictured in Figure 5.6. In the matrix region, the

distributed force was directly acting on the edge of the matrix. It should be noted

that in Figure 5.6 the NPH displacement at the macro-nodes are presented. This is

because the nature of the materials involved a microstructural behavior is

associated cell solution which only varied in the X2 direction. This is a

characteristic of the homogenization method.

Descending Horizontal Fiber Strips Case

at X= 1.995
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X
2
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NPH Global Def. U(x)

Figure 5.6 Local Deformation Results: the NPH Solution and the FEA
Solution at X1 = 1.995
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5.4 Case 9 – Descending and Ascending FGMs with Square Fibers

5.4.1 Geometry Modeling

The NPH algorithm was tested for the descending and ascending matrix

case with square fibers. The test model is shown in Figure 5.7 (a). A total of the

225 microcell groups were presented in the model. The microcells were reduced

by 10 percent in both X1 and X2 directions until the cells reached approximately

3/4 of the length. Then the microcells were increased by 117 percent until they

reached the end of the structure.

To understand the details of the modeling, Figure 5.8 is included. In

Figure 5.8, it can be seen that there are imaginary lines which separate the cell

groups. The initial matrix dimension started with 0.090 for both hx2 and hy2 and

the last matrix element value was 0.0578. For example, cell 2 has the matrix

values hx2 = 0.081, hy2 = 0.090 and the fiber value hx1 = hy1 = 0.030. The matrix

values for the X1 and X2 direction are presented in Table 5.4. The material

properties and the boundary conditions were as presented in section 5.2.1.

Figure 5.7 Descending and Ascending Matrix with Square Fibers

(a) Square Fibers (b) 16 Macro Elements for NPH

Descending Ascending

X1

X2

Cell 1

Cell 225



97

Figure 5.8 Detailed View of the Square Fibers: Fiber Value hx1 &

hy1 = 0.030 (Constant)

Table 5.4 Matrix Sizes in Descending and Ascending Square Fibers

Cell No.
(X1- dir.)

Matrix Size
hx2 / hy2

Cell No.
(X2 - dir.)

Matrix Size
hx2 / hy2

1 0.0900 / 0.0900 1 0.0900 / 0.0900

2 0.0810/ 0.0900 16 0.0900 / 0.0810

3 0.0729/ 0.0900 31 0.0900 / 0.0729

4 0.0656/ 0.0900 46 0.0900 / 0.0656

5 0.0590/ 0.0900 61 0.0900 / 0.0590

6 0.0531/ 0.0900 76 0.0900 / 0.0531

7 0.0478/ 0.0900 91 0.0900 / 0.0478

8 0.0430/ 0.0900 106 0.0900 / 0.0430

9 0.0387/ 0.0900 121 0.0900 / 0.0387

10 0.0349/ 0.0900 136 0.0900 / 0.0349

11 0.0314/ 0.0900 151 0.0900 / 0.0314

12 0.0366/ 0.0900 166 0.0900 / 0.0366

13 0.0426/ 0.0900 181 0.0900 / 0.0426

14 0.0496/ 0.0900 196 0.0900 / 0.0496

15 0.0578/ 0.0900 211 0.0900 / 0.0578

hx2 =
0.090

hx2 =
0.090 Imaginary

Lines

hy2 = 0.090

hy2 = 0.090

Cell 1 Cell 2 Cell 3

Cell 16 Cell 17 Cell 18

hx2 =
0.081

hx2 =
0.081

X1

hy2 = 0.081

hy2 = 0.081
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5.4.2 Local and Global Deformation Analysis

In the conventional FEA program, the model required a total of 24,235

macro elements in order to obtain accurate results. In the same model, the NPH

method used 16 macro elements to compute the local and global deformation

values. Table 5.5 compares the model sizes for the FEA method and the NPH

method. Also, the FEA mesh configuration is shown in Figure 5.9 and Figure 5.10. 

The deformation results of the conventional FEA method are pictured in Figure

5.11.

Table 5.5 Summary of Model Sizes for Case 9

FEA (ABAQUS)

Method

NPH

Method

Total Macro Elements 24,235 16

No. of Integration Points
per Element

4 (2X2) 16 (4X4)

Element Type Four (4) node Lagrange Nine (9) node Lagrange

Nodal DOF/ Total DOF 2/49,084 6/486
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Figure 5.9 Conventional FEA Mesh Sizes and Boundary Conditions

Figure 5.10 Detailed View of the FEA Mesh Sizes and Boundary

Conditions (Red Box Region)

Figure 5.11 Deformation Results Using the Conventional FEA Method
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As shown in Figure 5.12, the deformation results for the conventional FEA

method and the NPH method are compared at X1 = 1.9427. The location is set

because the cell solutions in the microstructure were computed adjacent to the

square fiber in the NPH method. The NPH local and global deformation profiles

accurately matched the FEA results. Both the FEA method and the NPH method

produced less deformation in the area, which had more square fibers.

Descending and Ascending FGMs with Square Fibers

at X1 = 1.9427
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Figure 5.12 Deformation Results of the Conventional FEA Method and
the NPH Method at X1 = 1.9427
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5.5 Case 10 – Descending and Symmetric Matrix Structure

5.5.1 Geometry Modeling

The high density nonperiodic descending structure was created to evaluate

the NPH method. In this case, fiber strips were included in both in the X1

direction and the X2 direction. As is shown in Figure 5.13, the vertical strips were

gradually reduced until they reached the end of the structure. On the other hand,

the horizontal strips also were reduced, but the reduction started from the center of

the structure. Thus, the model has a symmetric condition about the horizontal

centerline of the model. The material properties and the boundary conditions were

as presented in section 5.2.1.

Figure 5.13 Descending Matrix Microstructures in X1 Direction and
Symmetric condition in X2 Direction with Descending Microstructures

(a) Symmetric FGMs (b) 16 Macro Elements for NPH

X1

X2

Decreasing

Decreasing
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The detailed view of the structure is pictured in Figure 5.14. The

microcells were constructed in the “Fiber-Matrix-Fiber” pattern in the X2 direction.

Using the imaginary lines between the vertical and the horizontal fibers, a total of

560 microcells were generated in the structure. Each microcell structure has a pair

of the matrix sizes hx2 and hy2: for example, the cell 3 has hx2 = 0.0673 and hy2 =

0.0093. The fiber size hx1 and hy1 were constant as 0.030. The matrix sizes hx2

and hy2 in the cells are presented in Table 5.6. The material properties and the

boundary conditions were as presented in section 5.2.1.

Figure 5.14 Detailed View of Figure 5.13 (Red Box Region)

hy2 =
2 x 0.0104

hx2 =
0.0850

hx2 =
0.0850

hx2 =
0.0757

hx2 =
0.0757

hx2 =
0.0673

hx2 =
0.0673

hy2 =
2 x 0.0093

hy2 =
2 x 0.0117

Cell 1 Cell 2 Cell 3

Cell 21

Cell 41

Imaginary Lines

X1

X2 Fibers
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Table 5.6 Matrix Sizes in Symmetric and Descending Case

Cell No.
(X1- dir.)

Matrix Size
hx2 / hy2

Cell No.
(X2- dir.)

Matrix Size
hx2 / hy2

1 0.0850 / 0.0093 1 0.0850 / 0.0093

2 0.0757 / 0.0093 21 0.0850 / 0.0104

3 0.0673 / 0.0093 41 0.0850 / 0.0117

4 0.0599 / 0.0093 61 0.0850 / 0.0132

5 0.0533 / 0.0093 81 0.0850 / 0.0148

6 0.0475 / 0.0093 101 0.0850 / 0.0166

7 0.0422 / 0.0093 121 0.0850 / 0.0187

8 0.0376 / 0.0093 141 0.0850 / 0.0210

9 0.0335 / 0.0093 161 0.0850 / 0.0236

10 0.0298 / 0.0093 181 0.0850 / 0.0265

11 0.0265 / 0.0093 201 0.0850 / 0.0298

12 0.0236 / 0.0093 221 0.0850 / 0.0335

13 0.0210 / 0.0093 241 0.0850 / 0.0376

14 0.0187 / 0.0093 261 0.0850 / 0.0422

15 0.0166 / 0.0093 281 0.0850 / 0.0422

16 0.0148 / 0.0093 301 0.0850 / 0.0376

17 0.0132 / 0.0093 321 0.0850 / 0.0376

18 0.0117 / 0.0093 341 0.0850 / 0.0298

19 0.0104 / 0.0093 361 0.0850 / 0.0265

20 0.0093 / 0.0093 381 0.0850 / 0.0236

21 n/a 401 0.0850 / 0.0210

22 n/a 421 0.0850 / 0.0187

23 n/a 441 0.0850 / 0.0166

24 n/a 461 0.0850 / 0.0148

25 n/a 481 0.0850 / 0.0132

26 n/a 501 0.0850 / 0.0117

27 n/a 521 0.0850 / 0.0104

28 n/a 541 0.0850 / 0.0093
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5.5.2 Local and Global Deformation Analysis

The comparison of the model sizes between the conventional FEA method

and the NPH method are shown in Table 5.7. The FEA method required an

element number approximately a thousand times more than the NPH method; the

FEA employed 18,900 elements versus 16 elements used in the NPH model.

Table 5.7 Summary of Model Sizes for Case 10

FEA (ABAQUS)

Method

NPH

Method

Total Macro Elements 18,900 16

No. of Integration Points
per Element

4 (2 x 2) 16 (4 x 4)

Element Type Four (4) node Lagrange Nine (9) node Lagrange

Nodal DOF/ Total DOF 2/19176 6/486

The local and the global deformation results of the NPH method and the

FEA method are in Figure 5.15 and Figure 5.16. The NPH deformations

accurately followed the FEA results, and the global deformation U(x) matched the

fiber regions of the FEA curve. The deformation results of the entire structure are

shown in Figure 5.17. The highest deformation occurred at the center of the

geometry due to the lower density of horizontal fibers there.
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Descending and Symmetric Matrix Case

at X1 = 1.995
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Figure 5.15 Symmetric and Descending Structure: Deformation Displacement
at X1 = 1.995

Detail View of the Descending and Symmetic Matrix Case
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Figure 5.16 Detailed View of Symmetric and Descending Structure (Red Box

Region)
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Figure 5.17 Deformation Results of the FEA Method (ABAQUS)

5.5.3 Local Stress Analysis

For this case study, the Von-Mises stress calculation algorithm was added

in the NPH procedure and the NPH stress results were compared with the results

of the commercially available FEA program such as ABAQUS. Figure 5.18

presents the FEA stress contours based on computed nodal point stresses. The

largest stresses occur in the horizontal fibers, not in the vertical fibers when the

force distribution is parallel to the horizontal fibers. The maximum stress was

located at the middle of the structure near the free edge and the Von-Mises stresses

value was 5.811. A detailed view of this high stress region is pictured in Figure

5.19.
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Figure 5.18 Von-Mises Stress Results from FEA (ABAQUS)

Figure 5.19 Detailed View of the High Stress Region (Red Box

Region): Max. Stress = 5.811
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NPH was used to compute the Von-Mises stress values in the same area

which was identified by the FEA as the maximum stress region. NPH computed

the stress values at the integration points rather than at the element nodal points.

Thus, the FEA stress values have been converted to the integration points. The

NPH algorithm used 16 integration points while the FEA used four integration

points per element. Figure 5.20 and Figure 5.21 show the stress results. The

summary of the Von-Mises stress results is shown in Table 5.8. It should be noted

that the FEA stress value at the nodal points were higher than at the integration

points.

Figure 5.20 Von-Mises Stress Results by NPH method (Red Box Region in
Figure 5.19): Max. Stress Value = 7.473
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Figure 5.21 Von-Mises Stress Results by Commercially Available FEA

(ABAQUS): Max. Stress Value = 5.777

Table 5.8 Von-Mises Stress in Descending and Symmetric Case

FEA
Max. Von-Mises Stress

at Nodal Point

FEA
Max. Von-Mises Stress

at Integration Point

NPH
Max. Von-Mises Stress

at Integration Point

5.811 5.777 7.473
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5.6 Case 11 – Descending Horizontal and Vertical Fiber Strips

5.6.1 Geometry Modeling

In this case, a high density nonperiodic structure was created to evaluate

the NPH method. The structure has vertical and horizontal fiber strips which are

linearly reduced in both X1 and X2 directions simultaneously. The model is

pictured in Figure 5.22. A total of sixteen macro elements were used to mesh the

entire geometry in the NPH method and nine matrix data collection points, per

finite element, were used. The material properties and the boundary conditions

were as presented in section 5.2.1.

Figure 5.22 Simultaneously Reducing Matrix Values in X1 & X2 Directions

(a) Linearly Descending Structure (b) 16 Macro Elements for NPH

F

X2

X1

Decreasing
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The detailed view of the microcell structure is pictured in Figure 5.23.

The structure contains twenty microcells in each direction and a total of 400

microcells were used. These microcells were constructed by using imaginary lines,

which separate the nonperiodic matrix values. The structure was constructed in

similar manner to that used in section 5.5.2. For example, Cell 21 has the matrix

values hx2 = 0.0850 and hy2 = 0.0757. The fiber values were kept at the constant

value of 0.030. However, because of the symmetric condition requirement in the

microcell solution, a half fiber value of 0.015 was used in X2 direction. The

matrix sizes hx2 and hy2 in the microcells are presented in Table 5.9.

Figure 5.23 Detailed View of the Microcell Structure
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hy2 =
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hy2 =
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hy2 =
0.0673
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0.0673

Cell 1 Cell 2 Cell 3

Cell 21

Cell 41
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Table 5.9 Matrix Sizes in Descending Horizontal and Vertical Strips Case

Cell No.
(X1- dir.)

Matrix Size
hx2 / hy2

Cell No.
(X2- dir.)

Matrix Size
hx2 / hy2

1 0.0850 / 0.0850 1 0.0850 / 0.0850

2 0.0757 / 0.0850 21 0.0850 / 0.0757

3 0.0673 / 0.0850 41 0.0850 / 0.0673

4 0.0599 / 0.0850 61 0.0850 / 0.0599

5 0.0533 / 0.0850 81 0.0850 / 0.0533

6 0.0475 / 0.0850 101 0.0850 / 0.0475

7 0.0422 / 0.0850 121 0.0850 / 0.0422

8 0.0376 / 0.0850 141 0.0850 / 0.0376

9 0.0335 / 0.0850 161 0.0850 / 0.0335

10 0.0298 / 0.0850 181 0.0850 / 0.0298

11 0.0265 / 0.0850 201 0.0850 / 0.0265

12 0.0236 / 0.0850 221 0.0850 / 0.0236

13 0.0210 / 0.0850 241 0.0850 / 0.0210

14 0.0187 / 0.0850 261 0.0850 / 0.0187

15 0.0166 / 0.0850 281 0.0850 / 0.0166

16 0.0148 / 0.0850 301 0.0850 / 0.0148

17 0.0132 / 0.0850 321 0.0850 / 0.0132

18 0.0117 / 0.0850 341 0.0850 / 0.0117

19 0.0104 / 0.0850 361 0.0850 / 0.0104

20 0.0093 / 0.0850 381 0.0850 / 0.0093
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5.6.2 Local and Global Deformation Analysis

The model size comparison between the conventional FEA method and the

NPH method are summarized in Table 5.10. The FEA employed a total of 18,900

elements for the structure and the NPH used a total of sixteen elements.

Table 5.10 Summary of Model Sizes for Case 11

FEA (ABAQUS)
Method

NPH
Method

Total Macro Elements 17,807 16

No. of Integration Points

per Element
4 (2 x 2) 16 (4 x 4)

Element Type Four (4) node Lagrange Nine (9) node Lagrange

Nodal DOF/ Total DOF 2/18224 6/486

The NPH and the FEA results for the local and the global deformation are

shown in Figure 5.24. The material was stiffer at the top than the bottom of the

geometry due to more stiff fibers present at the top. Thus, the gradual deformation

results occurred from the top edge to the bottom edge of the structure. The

deformation results of the NPH method were computed at X1 = 1.995 because the

microcell solutions were computed at Gauss integration points which were

adjacent to the vertical fiber in the microcell. The displacement results computed

by the FEA method are shown in Figure 5.25.
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Descending Horizontal and Vertical Strips Case

at X1 = 1.995
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Figure 5.24 Deformation Results of Descending Horizontal and Vertical Strips

Figure 5.25 FEA (ABAQUS) Deformation Result
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5.6.3 Local Stress Analysis

The Von-Mises Stresses were computed by the FEA and the NPH methods.

The overall stress contour is displayed in Figure 5.26. It can be seen that the

highest stress occurred at the right and the bottom of the geometry: Maximum

Stress = 11.35 at a nodal point. The detailed view of this particular location was

shown in Figure 5.27. The highest stresses occurred at the intersection of the

horizontal and vertical fibers when the force distribution was in action at the free

edge and parallel to the horizontal fibers.

Figure 5.26 Von-Mises Stress Results from FEA (ABAQUS)
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Figure 5.27 Detailed View of Figure 5.26 (Red Box Region):

Maximum Stress Value is 11.35

The Von-Mises stress was computed using the NPH method. The stress

values were computed at the integration points. Thus, as in section 5.5.2, FEA

stress values, which were computed at the nodal points, have been converted to

integration point values. In this model, the FEA method used a total of four

integration points and the NPH method used a total of sixteen integration points.

The comparison of the local stress values by the FEA and the NPH methods are

presented in Figure 5.28 and Figure 5.29. The summary of the results is shown in

Table 5.11.

Table 5.11 Von-Mises Stress in Horizontal and Vertical Strips

FEA (ABAQUS)

Max. Von-Mises Stress
at Nodal Point

FEA (ABAQUS)

Max. Von-Mises Stress
at Integration Point

NPH

Max. Von-Mises Stress
at Integration Point

11.35 12.11 13.86
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Figure 5.28 Von-Mises Stress Results by the NPH Method at
Integration Points: Maximum Stress = 13.86

Figure 5.29 Von-Mises Stress Results by FEA (ABAQUS) at

Integration Points: Maximum Stress = 12.11
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Chapter 6

Summary and Conclusions

6.1 Summary

Based on the new theory of coupling the micro-macro structure, a

nonperiodic homogenized (NPH) algorithm has been developed to solve complex

Functionally Graded Materials (FGMs) problems. In order to verify the

performance and the accuracy of the NPH algorithm, local deformation values,

global deformation values and the Von-Mises stresses were computed. The results

from the NPH method were compared with the exact solutions in 1-D cases and

compared with commercially available FEA software results in 2-D cases. A total

of eleven independent FGMs cases were investigated: 6 cases with 1-D problems

and 5 cases with 2-D problems. And they are as follows:

(A) 1-D cases for FGMs:

� Case 1 – Comparison between the NPH and the Homogenization Solution

� Case 2 – Descending Low Density Microcell Structures

� Case 3 – Descending High Density Microcell Structure

� Case 4 – Descending and Ascending Microcell Structure

� Case 5 – Descending Microcell Structure with a Sudden Jump
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� Case 6 – Rapidly Varying Descending, Ascending and Descending

Microcell Structures.

(B) 2-D cases for FGMs:

� Case 7 – Periodic Microstructure

� Case 8 – Descending Horizontal Fiber Strips in One Direction

� Case 9 – Descending and Ascending FGMs with Square Fibers

� Case 10 – Descending and Symmetric Matrix Structure

� Case 11 – Descending Horizontal and Vertical Fiber Strips

The results of the NPH in 1-D cases indicated that the displacement in Case

3, High Density of Microcell Structure, provided better estimation results than in

Case 2, Low Density of Microcell Structure. For example, the accuracy of the

global deformation with respect to the analytical solution was 98 percent and 95

percent, in Case 3 and in Case 2, respectively. For the Case 5, due to geometric

discontinuity, the NPH method did not accurately follow the exact solution – the

NPH results were 93 percent compared to the exact solution. However, when the

microcell elements were continuously increased and/or decreased in the structure

such as Cases 4 and 6, the accuracy of the displacement was presented 99 percent

and 98 percent respectively.

For the 2-D Cases, local and global deformation results for the NPH

method and the FEA method were compared. The complex FGMs structures are

required to have massive number of macro elements and degree-of-freedom (DOF).
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However, the NPH method used extremely low numbers of macro elements and

the NPH results accurately followed the results of the FEA displacement values.

In Case 2, the macro elements used 17,956 macro elements for the FEA and 16

elements for the NPH.

The local Von-Mises stresses at the integration points were computed in

Cases 10 and 11 based on the global displacement results. For the Case 10,

Descending and Symmetric Matrix Structure, the highest stresses occurred at the

middle of the structure in the horizontal fiber. The stress contour plots at the

microcell level were created to compare the NPH results with the FEA method.

The stress contour plots indicated that the NPH stress plots accurately compare

with the FEA results. The stress values of the NPH method indicated

approximately 29 percent more stress than the FEA estimation.

In Case 11, Descending Horizontal and Vertical Fiber Strips, the highest

stress occurred at the right and the bottom of the structure. The stress contours

were generated using the same method as Case 10. The results indicated that the

maximum stress value was 14 percent higher than the FEA estimation.
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6.2 Conclusions

A new theory for nonperiodic materials has been developed and verified

for basic test cases. In particular, the NPH theory was developed and verified for

various complex cases in 1-D and 2-D problems. The NPH local and global

deformation results correctly followed the FEA solutions and the Von-Mises stress

values were computed. Two major critical factors were discovered in the cases

studied. One is the ratio of scale value ε ( ε/and xyx = ). As was shown in the

cases studied, a small number ε (high density of microcell structure) provided

better estimation results than the large number (low density of the microcell

structure). In all cases studied, the coefficient value ε is not a constant value in

the nonperiodic geometry cases. Thus, the coefficient values were varied from

0.018 to 0.180 in the structure. And the changes of the cell size were

approximately 10 percent. The other critical factor is the effectiveness of the NPH

global displacement method. The accuracy of the local NPH displacement is

depended on the global NPH displacement, U(x). Thus, the estimation of the

global displacement values is a critical process.

Overall, the NPH program demonstrated that it is a very efficient tool for

estimating the local and global displacements as well as computing the microcell

the Von-Mises stress levels. The NPH method requires a significantly less model

size compare to the conventional FEA method and reduces the computational time.

Considering the characteristic of the FGMs materials, which usually have a high

density oscillation among the microcell structures and continuously changing
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volume, the NPH method is an ideal tool for modeling the complex nonperiodic

FGMs structures. Therefore, the NPH method is an attractive method for design

and estimation of the material behavior under various loading conditions.



123

Bibliography

[1] Aboudi, J., Pindera, M. J. and Arnold, S.M., “Higher-order theory for functionally

graded materials,” Composits Part B 30 (1999) 777-832

[2] Bathe, K. J., “Finite Element Procedures,” Prentice-Hall (1996)

[3] Bendsoe, M. P. and Kikuchi, N., “Generating Optimal Topologies in Structural

Design using a Homogenization Method,” Comp. Methods Appl. Mech. Engreg. 71

(1998) 197-224

[4] Berezovski, Engelbrecht, A., J. and Maugin, G., “ Numerical Simulation of Two-

dimensional Wave Propagation in Functionally Graded Materials,” European J.

Mechanics A/Solids 22 (2003) 257-265

[5] Budynas, R. G., “Advanced Strength and Applied Stress Analysis,” McGaw Hill

(1997)

[6] Chen, C. N. and Wellford, L. C. Jr., “Muti-Level Finite Element solution

Algorithms Based on Multiplicative and Additive Correction Procedures,” Int. J.

Numerical Engrg., 28 (1989) 27-41

[7] Cho, J.R. and Ha, D.Y., “Averaging and finite element discretization approaches in

the numerical analysis of functionally graded materials,” Mater. Sci. Engrg. A 302

(2001) 187-196

[8] Cook, R., Malkus, D. and Plesha M. E., “Concepts and Application of Finite

Element Analysis,” 3
rd

ed., John Wiley & Sons (1989)

[9] Fish, J., Shek, K., Pandheeradi, M., M. Shephard, S., “Computational Plasticity for

Composite Structures based on Methematrical Homogenization: Theory and practice,”

Comput. Methods Appl. Mech. Engrg., 148 (1997) 53 – 73

[10] Ghosh, S. and Mukhopadhyay, S.N., “A Material Based Finite Elemtent Analysis

of Heterogeneous Media involving Dirichlet Tessellations,” Comput. Methods Appl.

Mech. Eng. 104 (1993) 211-247

[11] Guedes, J. M. and Kikuchi, N., “Preprocessing and Postprocessing for Materials

Based on The Homogenization Method with Adaptive Finite Element Methods,

Comput. Methods Appl. Mech. Engrg. 83 (1990) 143-198



124

[12] Hassani, B., “A Direct Method to Derive the Boundary Conditions of the

Homogenization Equation for Symmetric Cells,” Comm. Int. Numer. Meth. Engrg., 12

(1996)185-196

[13] Hassani, B. and Hinton, E, “Homogenization and Structural Topology

Optimization”, Springer (1999)

[14] Heroux, M. A. and Thomas, J. W., “A Comparison of FAC and PCG Methods for

solving Composite Grid Problems,” Comm. Appl. Numerical Methods, 8 (1992) 573-

583

[15] Hill, R., “Elastic properties of reinforced properties: some theoretical principles,”

J. Mech. Phys. Solids 11 (1963) 357-372

[16] Kaminski, M., “Homogenized Properties of Periodic N-Component Composites,”

Int. J. Engrg. Sci. 38 (2000) 405-427

[17] Kaminski M., “Boundary Element Method Homogenization of the Periodic

Linear Elastic Fiber Composites,” Engng Analysis with Boundary Elements, 23

(1999) 815-823

[18] Kim, J. G. and Kim, Y. Y., “A New Higher-Order Hybrid-Mixed Curved Beam

Element,” Int. J. Numer. Meth. Engng 43 (1998) 925-940

[19] Kim, J. H. and Paulino, G. H., “Isoparametric Graded Finite Elements for

Nonhomogeneous Isotropic and Orthotropic Materials,” ASME J. Appl. Mech, 69

(2002) 502-514

[20] Lee, Y. D. and Erdogan, F., “Residual/Thermal Stresses in FGM and laminated

Thermal Barrier Coatings,” Int. J. Fract. 69 (1995) 145-165

[21] Markworth, A. J., Ramesh, K. S., and Parks, W.P. Jr., “Modeling Studies Applied

to Functionally Graded Materials,” J. Mater. Sci. 30 (1995) 2183-2193

[22] Maso, G. D. and Antonio, G.F. D., “Composite Media and Homogenization

Theory,” Progress in Nonliner Differential Equations and Their Applications (1991)

[23] Matache, A. M. and Schwab, Ch., “Homogenization via p-FEM for problems

with Microstructure,” Applied Numerical Mathematics 33 (2000) 43-59

[24] Oden, J. T. and Reddy, J.N., “Introduction to the Mathematical Theory of Finite

Elements,” John Wiley & Sons (1976)



125

[25] Pindera, M.J., Aboudi, J. and Arnold, S. M., “Thermomechanical Analysis of

functionally graded thermal barrier coating with different microstructural scales,” J.

Am. Ceram. Soc, 81 [6] (1998) 1525-36

[26] Raghavan, P., Moorthy, S., Ghosh, S., Pagano, N. J., “Revisiting the Composit

Laminate Problem with an Adaptive Muti-level Computational Model,” Composite

Science and Technology, 61 (2001) 1017-1040

[27] Reiter T., Dvorak G., Tvergaard, V., “Micromechanical models for graded

composite materials,” J. Mech. Phys. Solids 45 [8] (1997) 1282-1302

[28] Sadeghi, K. M., “Muti-level Adaptive Finite Element Analysis”, Ph.D.

Dissertation, University of Southern California, Aug. 1997

[29] Santare, M. H. and Lambros, J., “Use of Graded Finite Elements to Model the

Behavior of Nonhomogeneous Materials,” ASME J. Appl. Mech., 67 (2000) 819-822

[30] Shkoller, S., “An Approximate Homogenization Scheme for Nonperiodic

Materials,” Comput. Math. Applic. 33 [4] (1997) 15-34

[31] Sills, L., Eliasi, R. and Berlin, Y., “Modeling of functionally graded materials in

dynamic analyses,” Composites: Part B 33 (2002) 7-15

[32] Smit, R. J., Brekelmans, W. A. M. and Meijer, H. E. H., “Prediction of the

Mechanical Behavior of Nonliner Heterogeneous Systems by Multi-Level Finite

Element Modeling,” Comput. Methods Appl. Mech. Engrg. 155 (1998) 181-192

[33] Tabiei, A. and Ivanov I., “Computational micro-mechanical model of flexible

woven fabric for finite element impact simulation,” Int. J. Numer. Meth. Engng., 53

(2002) 1259-1276

[34] Vemaganti, K. and Deshmukh, P., “An Adaptive global-local approach to

modeling functionally graded materials,” Comput. Methods Appl. Mech. Engrg. 195

(2006) 4230-4243

[35] Wieckowski, Z., “Dual Finite Element Methods in Homogenization for Elastic-

Plastic Fibrous Composit Material,” Int. J. Plasticity 16 (2000) 199-221



126

Appendix A

Nonperiodic Homogenization (NPH) Cell Solution
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For the equation (3.19),
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For the equation (3.20),
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For the equation (3.21),
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For the equation (3.22),
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Note that, corresponding microcell approximation at the gauss point @ ij, ijxx = (for

natural coordinate system,
ij

ξ ), we have the following;

)(

)()(

)(),(

)(),(),(

y

xy

xyx

xyxyx

ij

ijij

kl

i

ijNkl

i

ijN

xx

Nkl

i
xx

N

Nkl

i

Nkl

i

χ

χψ

χψ

χψχ

=

=

=

=

==
(A.7)

[ ]





























=



















∂

∂
∂

∂

2

1

2

1

,2

,2

,1

,1

12

2

22

2

11

2

12

1

22

1

11

1

12

2

1

)(

)(

)(

)(

),(),(),(

),(),(),(

)(
),(

)(
),(

X

H

X

H

X

H

X

H

xl

H

kkl

l

H

kkl

u

u

u

u

A

X

u

X

u

x

x

x

x

yxyxyx

yxyxyx

x
yx

x
yx

χχχ
χχχ

χ

χ

(A.8)

[ ] { }
11812

2

22

2

11

2

12

1

22

1

11

1 )(
),(),(),(

),(),(),(
x

H

iuDJBXA 













= ξ

χχχ
χχχ

yxyxyx

yxyxyx
(A.9)



129

[ ][ ]{ }
11812

2

22

2

11

2

12

1

22

1

11

1 )(
)()()(

)()()(
x

H

iuDJBXAijijij

ijijij

ξ
χχχ
χχχ












=

yyy

yyy
(A.10)

But,

318

912

2

922

2

911

2

912

1

922

1

911

1

112

2

122

2

111

2

112

1

122

1

111

1

182

91

91

12

2

22

2

11

2

12

1

22

1

11

1

)()()(

)()()(

...

...

)()()(

)()()(

)(0..)(0

0)(..0)(

)()()(

)()()(

x

ijijij

ijijij

ijijij

ijijij

x

ijij

ijij

ijijij

ijijij



































=













xxx

xxx

xxx

xxx

yy

yy

yyy

yyy

χχχ

χχχ

χχχ
χχχ

ββ
ββ

χχχ
χχχ

(A.11)

[ ]
318

11

182)(
x

N

ix

ij





= χξβ (A.12)

[ ] [ ][ ]{ } [ ] { } 118184

44

118
318

11

182 ))()(( xiX

x

x

H

i
x

N

ix CDJBuDJBXA
ij











= ξχξβ (A.13)

For the equation (3.23),
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Have 4x2 matrix form to 4x1 from the equation (A.14), then,
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Also, note that,
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Thus, the equation (A.19) can be expressed as following,
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And further more,
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Therefore, the equation A.14 becomes:
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[ ]

[ ]

[ ] { }

{ } 118
182

336

1

2

2

N

1

364

336

1

2

2

N

1
364

318
184

1

2

2

1

318
184

1

2

2

1

)(x

)]([

)(

)(

)(
),(

)(

)(

)(
),(

)(
)(

)(

)(
)(

)(

x

N

i

x

N

H

i

X

ij

ij

ij
kl

X

ijN

X

ij

ij

ij
kl

X

ijN

X

ij
Nkl

i

X

ij

ij

ij

X

ij
Nkl

i

X

ij

ij

ij

C

uDJBXA

X

hy

hy

X

hx

hx

X

hy

hy

X

hx

hx

















































































































∂

∂

∂

∂
+















∂

∂

∂

∂
+























∂

∂

∂

∂
+























∂

∂

∂

∂

ξβ

ξ

ξ

ξ

ξχ
ηξψ

ξ

ξ

ξχ
ηξψ

ξχ
ξ

ξ

ψ

ξχ
ξ

ξ

ψ

(A.31)



141

For the equation (3.24),
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Assemble the matrix form,
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Also,
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In order to compute the
1X∂

∂
and

2X∂
∂

, we will get from the following equation:
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For the equation (3.25),
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For the equation (3.26), 
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From the equation A.50, rearrange the matrix from 4x2 to 4x1 format. Then,
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Reformat the equation A.51,
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