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ABSTRACT

Numerous statistical models have been developed to study fluid flow in fractured
media. However, the randomness assumption in these models is difficult to
rationalize. In fact, experimentally and theoretically, it has been shown that rock
fractures have predetermined paths of growth. Rock fracturing is a self-similar
process in which properties of new fractures are controlled by the existing fractures.
Unlike engineering materials, rock fracturing cannot be described by simple

mathematical equations, neither by statistical models.

This research aims to develop a fractal model that overcomes limitations of the
current statistical models. TIterated function systems (IFS) can create fractal objects.
An arbitrary fracture set can be created by four “background” transformations and
one “condensation set”. The challenge remains to identify the correct IFS whose
attractor is “close” to limited field observations. An inverse fractal algorithm and
associated graphical program provide the answer to this question. Subsequently, the
fractal nature of fractures defines their hydraulic properties. Permeability tensors of
all cells in a grid are calculated using “representative fractures”. The flow problem
is then solved using a finite difference program (FLAC®®). Limitations of the finite
difference technique are discussed, as applied to fractured media. For a highly
heterogeneous fracture network, it is recommended to use a discrete network model,

as opposed to an equivalent continuum model.

Xvi
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In a physical experiment based on a Hele-Shaw model, good agreement was
observed between the experiment and the fractal model. 30% difference in discharge
was predicted due to the considerably smaller number of fractures in the experiment
and the observations confirmed this prediction. As a practical example, some initial
work on Yucca Mountain Project (YMP) showed that fracture patterns at this site
have a fractal nature. The “shadow theorem of fractals” was used to simulate a

fracture set with a fractal pattern.

This work opens new opportunities for fractal theory to be used in characterization of
fractured media. The proposed model is a simple and easy to use technique that

proved to be effective and accurate.

Xvii
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CHAPTER 1 - INTRODUCTION

I.1 - RESEARCH NEED

Groundwater flow in rock media has been the subject of interest to geothechnical
engineers, hydrologists, petroleum engineers, and chemical engineers for decades.
Would the earth be composed of pure intact rocks free from any fissures or flaws,
rock media could be simply a porous media with relatively low pordsity. In reality,
however, rocks are usually fractured due to stréss heterogeneities in the earth crust.
These fractures have an api)arently irregular pattern in most cases. This makes it
extremely difficult to use strictly theoretical solid mechanics and fluid mechanics to

approach rock problems.

Due to the uncertainties involved in identification of rock discontinuities (fractures
and primary surfaces), statistical and probabilistic approaches are usually used to
characterize fracture patterns and to predict fluid flow behavior in these fractures.
Each and every fracture network parameter (length, spacing, aperture, etc.) is defined
by searching for the statistical density functions that fit best to the field data (e.g.
Normal, Lognormal, Exponential, and Gamma distributions). Similarly,
probabilistic approaches to flow modeling include statistical distribution of

conductivity, percolation theory, and random walk.
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Statistical simulation of fracture networks has several limitations. These limitations
are summarized here and explained in more details in Chapter 3, after reviewing the

related literature:

e Extensive data collection is necessary in order to develop a reliable statistical
model and intensive computations are required.

e Statistical methods are associated with scale dependence. Identification of an
apprdpriate scale is very difficult and, sometimes, impractical.

e Statistical model do not provide stable results. Various simulations of the
exact same problem with the exact same assumptions and parameters may
result in totally different outcomes.

e Fractures appear to have predefined paths to grow and they appear in clusters
that are denser in some location. Fractures are not developed in a random
manner.

e Fracture parameters interactions cannot be accounted for using the current

statistical techniques.

As an alternative to statistical modeling, inverse hydraulic inversion technique has
been developed and used by a number of scholars, as summarized in Chapter 3.
Since this method makes no use of fracture aata and the fractured pattern is back
calculated from flow observations, detailed information is not available when the

fracture pattern is heterogeneous and/or amisotropic.  In addition, there is no
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guarantee that simulation of some well test data would result in real filed-scale flow

predictions.

1.2- STUDY PURPOSE

The objective of this study is to address limitations of the current fracture network
models and to propose an alternative approach that overcomes these limitations by
using fractal theory. It has been proven, both conceptually and by field
investigations, that fractured rock, like many other natural processes, has a fractal
behavior. This study will show that fractal algorithm generates much more realistic

fracture networks, compared to stochastic approaches. The ultimate goal of this

study is to use fractal theory in order to characterize fractured media and develop a

realistic fracture network that requires minimum fracture data collection effort.

531

Subsequently, a flow model is developed that makes use of the “discrete” nature of

the proposed network model to develop the equivalent permeability tensor. Because

of its discrete structure, with some modifications to the flow model, the proposed
technique can be also applied to porous media or to a fractured media with

considerable background porosity.

First, using essential fractal theorems, we develop a graphical technique that makes

use of borehole observations to develop “Iterated Function System” (IFS) that

' The word “Discrete” refers to collection of numerous discrete dots to simulate a continuous
fracture. This shall not be mistaken with discrete fracture network model.
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generates the corresponding fracture pattern. Appropriateness of this iterated
function system is evaluated by proximity of the simulated fracture network to the
original field observations, measured by Hausdorff metric and/or fractal dimension.
In the second stage of the study, this fractal network of fractures is translated into an
equivalent porous media. Basic flow equations combined with a new regression
technique are used to develop the permeability tensors based on fractal nature of the
generated network. The proposed model is then verified by solving the flow
problem in a finite difference program (FLAC?®) and comparing with the outcomes

of a physical model.

1.3 - DISSERTATION OVERVIEW

In order to understand nature and genesis of fractures, a summary of rock geology
and sources of discontinuities is provided in Chapter 2. Chapter 2 provides an

overview of rock geology, its properties, and rock fracturing process.

Chapter 3 reviews hydraulic properties of fractured media and current modeling
approaches. Various parameters that contribute to fluid flow are studied and current
modeling approaches are summarized, from simulation of individual fracture
parameters to development of a complete flow model in fractured media. Some
innovative frglcfure and flow modeling techniques are also discussed and the
discussion of “self-similar / self-affined” property of fracture networks, that follow

in the future Chapters, is initiated.
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Chapter 4 provides an overview of field investigation methods for hydraulic
characterization of fractured media. In the first part of Chapter 4, fracture detection
techniques that provide information on fractures parameters are reviewed. In the
second part of Chapter 4, hydraulic testing techniques are discussed. These tests use

field discharge observations to predict flow behavior in fractured media.

Due to the importance and substantial value of fracture initiation and propagation
process in this study, Chapter 5 provides an overview of fracture mechanics, as
applied» to rock media. Applicability and limitations of classical fracture mechanics
to study rock fracturing are discussed. Chapter 5 reviews recent observations and
investigations that justify self-similar nature of rock fractures initiation and
propagation process. Influences of pre-existing fractures on a new neighboriﬂg crack
are explained and the basis for application of fractal theory in rock fracture médeling

is developed (Chapter 6).

In Chapter 6 fractal theory is explained. The most important fractal theorems that
form the foundation for development of the proposed rock characterization model are
discussed. Current applications of fractal theory to study fluid flow in fractured

media are also reviewed.
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In Chapter 7 a fracture network model is developed based on the fractal theory
concepts that are explained in Chapter 6. Fractal theorems and mathematics are used
to develop an inverse’ algorithm that predicts fracture pattern using limited filed
observations (borehole readings). The concept was used to develop the computer
program “Interactive Fractal Program” (IFP)’ that graphically seeks the most

appropriate iterated function system for a given (partial) image.

The second part of Chapter 7 explains development of a numerical model that
translates fractal pixels density (representing fractures) into rock permeability tensor.
We will also take a look at a percolation algorithm that may be used for discrete

network model to eliminate fractures that do not contribute to the flow network.

In the third part of Chapter 7, FLAC?" (a finite difference program) is used to study
flow behavior of the proposed model. To develop a good understanding of this
program and its limitations, a brief summary of its backbone numerical model is

provided and then simulation of the proposed model is explained.

Chapter 8 uses a physical model to verify results of the numerical model. Design
and construction of the physical model and the experiment process are explained.

The results of the experiment are then compared and contrasted with the proposed

2 The word “inverse” refers to development of fractal codes for a (partially) given image. This

should not be mistaken with current hydrologic inversion techniques.

3 1FP is a Visual Basic program that was developed for the purpose of this study, only.
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numerical model in order to validate the numerical model. In the second part of

chapter 8, various sensitivity analyses verify stability of the proposed model.

In order to emphasize on practical applications of the proposed fractured rock
characterization and flow model, Yucca Mountain project was initially selected as a
field data source. Extensive site investigations and studies have been conducted at
this site and a complete flow model is already developed that can be compared with
the fractal model proposed in this study. - However, due to sensitivity of Yucca
Mountain Project, US Department of Energy removed all project data from public
access, in the midst of this study, and it became impossible to collect any additional
data. Various Projects have been investigated as alternatives, but none was found
that would have as complete information as Yucca Mountain Project. The
preliminary investigations and findings from the Yucca Mountain Project and the

first steps to develop a fractal model for this project are summarized in Chapter 9.

Chapter 10 provides the conclusion of this dissertation and discusses applications,
limitations, and future expansion of this work. Chapter 10 summarizes the most
important findings of this study, provides recommendations for practical applications
of this technique, explains expected improvements compared to current methods, and

discusses areas of related studies in future.
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CHAPTER 2 - ROCK, A DISCONTINUOUM

2.1- ROCK GEOLOGY

This chapter aims to provide a brief summary of rock geology and the formation of
rock discontinuities. This information is provided as an overview of the concepts
that help us understand formation of rocks and then development of discontinuities

in rocks.

1. Minerals

Oxygen, silica, aluminum, calcium, sodium, magnesium, and potassium, are the most
common elements of nature. Elements or composite elements that have similar
physical and chemical properties are categorizes as one group of minerals. A
mineral is crystalline and inorganic. Among more than 2000 minerals in nature, the

followings are the most common that form rocks (Figure 2.1):

e Feldspars are the most common minerals in rocks. They are plagioclases
(aluminum calcium / aluminum sodium silicates) or orthoclases
(Potassium). Feldspars have light color (white, pink, light green) with a
hardness of 6. They have two perpendicular cleavages, glassy luster and no

streak plate marks.
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e Quartz is composed of silica and oxygen (Si0;). In pure form, it is
colorless or white and has glassy luster. It has no cleavage with a hardness
of 7 and hexagonal crystalline form.

e Pyroxenes have a complex composition. Augite, for example, is composed
of Ca,NaMg,Fe(Il),Fe(l1I). Pyroxenes have dark colors with 6 — 7
hardness. Their two cleavages are almost perpendicular. They have glassy
luster and no streak marks.

e Mica has a well-bedded cleavage and it can be broken at parallel cleavage
surfaces. It exists in two colors, depending on its composition. Biotite
[K(Mg,Fe);(AlSi3010)(OH),] is black mica and  muscovite
[KAIly(AISi3010)(OH),] is white mica. It has large minerals and has several
industn'.al applications. Mica’s harness is between 2 and 4.

e Clay Minerals are hydrated aluminum silicates. They could contain K, Na,
Fe, Mg. These minerals have light color, dull luster, and no streak marks.
Their hardness is usually low.

e Amphiboles have very complex compositions. Hornblende, for example, is
formulated as: Ca;Na(Mg,Fe)(AlFe,Ti)(ALSi)sO02(0,0H),. They are dark
gray or dark green and have a hardness of 5 — 6. They two cleavages and
can be distinguished from augites by their non-perpendicular cleavages.

e Olivine is (Mg,Fe)SiOy4. It has yellowish green (olive) color with almost

glassy luster. It has no cleavage and a hardness of 6.5 or lower.
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II. Rocks Formation

“Rock” forms the earth crust and it is a composite of various minerals. It could be
ultimately crushed and decomposed to the form that we call “soil”. Rocks, based on

their formation process, are categorized into three groups:

e About 56% of the earth crust is composed of Igneous Rocks that are formed
as a result of liquid “Magmas” flowing from depth to the crust of the earth
and cooling down.

o Intrusive Igneous rock is formed as a result of sedimen£ation of the lava
flow as it moves upwards and cools down, slowly. Gabbro, granite,
diorite, and syenite are some intrusive igneous rocks. Gabbro is
composed of feldspar calcites and some dark minerals, mostly aluminum
and magnesium. In case of olivine presence it is called olivine gabbro.
Granite has a visibly crystalline texture. It contains quartz, feldspar, and
some mica. It is very course grained as a result of exceptionally slow
cooling rate. Diorite is also course grained due to slow cooling. It
contains feldspar (Plagioclase) with Calcium, Sodium, Iron, and
Magnesium. Some dark kinds of diorite also contain pyroxenes (e.g.
augites) and biotite. Syenite is formed like granite but it has less silica
and very little quartz. Syenite has feldspar (plagioclases and orthoclase)

and amphibole (hornblende).

11
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o Extrusive igneous rock is formed by cooling of magmas that come to the
earth surface as a result of volcanic activities.  Basalt, felsite, and
andesite are extrusive igneous rocks. Basalt is equivalent extrusive of
gabbro, felsite is equivalent of granite, and andesite is equivalent of

diorite.

e Sedimentary rocks are formed by sedimentation, decomposition, and
fossilization of other rocks and beings, under natural forces (wind, rain,
glacial ice, heat, etc). Despite their low quantity in the earth crust (8%),
sedimentary rocks cover about 75% of the earth surface. Due to their
formation process, layers of sedimentary rocks appear-deposited on top of
each other. These stratifications (beddings) range between a few centimeters
to hundreds of meters. Based on their formation process and their
composition (minerals contained in the original rock), Vsedimentary rocks are
categorized in 3 groups. it has less silica and very little quartz. Syenite has
feldspar (plagioclases and orthoclase) and amphibole (hornblende).

o Clastic (fragmental) sedimentary rocks are resulted from physical

breakdown and consolidation of various rocks and organisms, cemented
to each other by natural forces. Their properties are driven by their
source (composition of the original rock), and sedimentation process

(traveling length and slope, temperature, forces, and environment).

12
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Conglomerate, Breccia, sandstone, silt and shale are sedimentary clastic
rocks.

o Chemical/biochemical sedimentary rocks are formed by chemical

decomposition of other rocks and organisms (fossils) and their
sedimentation under environmental forces. Travertine, limestone,
dolomite, and chalk are some sedimentary rocks in this category.

o Evaporitic rocks are formed by sedimentation of water solvents, after its

evaporation. Halite (salt), Gypsum, and andride are evaporite rocks.

e Minerals in a rock may become subject to intense heat and/or pressure and
change their crystalline formation. The deformed rock has completely
different properties and it is called a metamorphic rock. For example, under
high pressure/temperature, small particles of quartz in clay become parallel to
the stress direction. This results in new crystalline formation and the new
metamorphic rock is called schist. Metamorphic rocks are categorized in two

groups. In foliated (Schistose) rocks minerals establish parallel planes and

have smooth surfaces. Slate, schist, gneiss, and phyllite are examples of

foliated metamorphic rocks. Metamorphism in non-foliated (massive) rocks

is the result of long exposure to cooling magmas. As a result, their re-
crystallization is less significant than foliated rocks and not much foliation is

identified. Marble and quartz are the common massive metamorphic rocks.

13
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II1. Rock Evolution Cycle

Rock is continuously interchanging from one form to another (Figure 2.2). As a
result of environmental forces, liquid moves from the earth mantle to the surface and
creates intrusive or extrusive igneous rocks, depending on the cooling process. The
igneous rock may come to the earth surface through erosion or explosion, it may go
through sedimentation and create sedimentary rocks, may be exposed to intense heat
and pressure and turn into metamorphic rock, or may melt back into magma.
Similarly, sedimentary rock that usually appears at the earth surface, may go through
a metamorphism process or may simply melt into magma. Metamorphic rocks also

have the possibility of appearing on the earth surface or melting into magma.

Weathering, erosion,
and depozition

‘, - ’ . Lithification
Uplift . ' / - (sediments
! ‘ k. ' . are compacted
and cernented}

igneous w5 Heat and ! L
g 2, pressure o, Uphift i Uplift

_Sedimentary
rocks

Meting

Heat and
pressuré

Heat and

Crystallization pressure

2 Micrs noration, AllRights B

Figure 2.2 — Rock Evolution Life Cycle

(From Encrata Encyclopedia)
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2.2 - ROCK DISCONTINUITIES

1. Types and Geometries of Discontinuities

Basics of rock geology (above) provide us with one important lesson: Rock is not a
homogeneous medium and it is almost impossible to find a large piece of rock free
from discontinuities. These discontinuities are major contributors to hydraulic
properties of rock. At a minimum, closed discontinuities contribute to rock
heterogeneity. Open discontinuities work as conduits for water to flow quickly and
they enhance rock permeability, significantly. Discontinuities that are filled with
other materials could enhance or reduce overall permeability, depending on the
filling material properties. Discontinuity is formed either during formation of rock

(primary surfaces), or afterwards as a result of filed stresses (Fractures).

e Depending on the rock type (igneous, sedimentary, or metamorphié), various
types of Primary surfaces develop during rock formation:

o Minerals, by themselves, are not homogenous. Due to their composition
and crystallization, they have a tendency to be broken along specific
planes defined by their crystal structure. These planes are called
cleavage.

o Sedimentary rocks are composed of layers of rock that are deposited on
top of each other through time. As a result, each layer is separated from

the others by bedding planes.

15
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o Foliation is result of the metamorphism process. Because of rotation of
mineral particles into one direction, in a metamorphic rock, foliation
planes could be developed. In a foliated rock, mineral particles
crystallize in parallel planes. This distinguishes foliation from bedding.
When foliations planes are well-identifiable and the rock can be easily
broken into thin layers along the foliation planes, These planes are also
called schistosity.

e Earth crust is always subject to vaﬁous kinds of stresses, from thermal forces
to tectonic activities. These heterogeneous stresses occur at large range of
scales. In order to release these stresses, rock may develop three types of
fractures:

o Dilating fractures/joints (Figure 2.3) are formed as a result of normal

stresses and, therefore, displacement is perpendicular to fracture plane.
This is categorized as mode 1 (opening) fracture, in fracture mechanics
(Figure 2.6). There is no relative movement in the direction of fracture
planes. Joints usually intersect primary surfaces and have a plumose
texture surface. In nature, joints appear in groups of semi-parallel
fractures, called a joint set. These joints have the same origin and age
and they are defined by spacing, length, and orientation. Presence of one
joint set alters field stresses and, as a result zones of clustered joints are

formed. Also, it is common to see joint sets intersecting each other

16
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(almost) perpendicularly. Through time, hydrostatic state of stress results

in interaction of nearby joints and development of network of joints.

R

Jointed Zone

Joint Surface
Figure 2.3 — Rock Joints Formation and Geometry

o Shearing fractures/faults (Figure 2.4) are formed as a result of shear

stresses — stresses that develop in the plane of the fracture surfaces.
These fractures are mode II or III in fracture mechanics (Figure 2.6).
During the faulting process, the two surfaces of fracture make significant
movements relative to each other. As a result, their surfaces are polished
in the direction of movement and they are usually thicker than joints.
Similar to joints, faults usually appear in semi-parallel sets, based on their
age and origin. Length and spacing of the faults in one set may be related
to magnitude and frequency of slip across the fault. Faulted zones appear
in relatively irregular shapes and all kinds of fractures (mode L II, and III)
may be observed in a faulted zone. Secondary mode I fractures (joints)
may develop in a fault zone, as a result of faults interaction and linkage.
These joints that are parallel to the intermediate principal stress could act
as significant fluid conductors. Because of high degree of heterogeneity
in their pattern and composition, fault zones have very heterogeneous

hydraulic properties.

17
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Figure 2.4 — Rock Faults Formation and Geometry

o Closing fractures/pressure solutions or stylolites (Figure 2.5) are the

fractures in sedimentary rocks that are welded together by solution of

grains at the fracture surface. These “anti-cracks™ are developed as a

result of water-assisted diffusion of large grains at unexpectedly low

temperatures. Some pressures solutions (incongruent) result in formation

of a metamorphic banding in rocks.

Since these cracks act as barriers to flow (instead of conduits), they are called anti-cracks (Hudson

et al. 1993).

18
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Figure 2.5 — Pressure Solutions Formation and Geometry

(from Hudson et al, 1993 - P.83)

Rock deformation by water-assisted diffusive mass transfer (pressure solution):

(@) Microstructural features of the flow of a naturally deformed crinoidal limestone (external
zone of the Western Alps). The compression direction is vertical, and the material has been
diffused away from the relatively siressed boundaries of the large angle crystal calcite
fragments, leaving accumulation of nondiffusible residue (organic and intergranular clay
minerals) as black stylolites. Diffused calcite is reprecipitated as a clear, impurity free
overgrowth on each of the less stressed boundaries. Structural contiguity of the overgrowths
is indicated by the prolongation of this twin lamellae between host and overgrowth. The
same process has been operated on every grain of the finer matrix calcite , but is not evident
at this magnification except for the pervasive development of stylolitic cleavage planes.

(b) Truncation of a foraminiferid by pressure solution, with diffused calcite forming fibrous
Overgrowth on the relatively extended faces . The preservation of clear, undeformed

calcite within the chambers of the fossil indicates that pressure solution takes place at stress
levels too low to activate intracrystalline plasticity in calcite (photo J. G. Rumsay).
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I. Genesis of Discontinuitics

Considering a piece of intact rock with no discontinuities, would have field stresses
remained constant, we would not expect too many fractures to develop. In reality,

however, various environmental factors can alter filed stresses.

e Cooling of igneous rocks during and after formation generates thermal
stresses. Polygonal fractures observed in extrusive igneous rocks are formed
by thermal stresses. The well-known polygonal joint network in drying mud
is a thermal fracturing process.

e Various earth forces result in stress heterogeneity and development of joints
and faults in the earth crust:

o Tectonic actions and seismic loads develop tremendous stresses that
result in faulting and jointing of rocks.

o Folding of earth crust and formation of synclines and anticlines as a
result of continents movements, generate both shear and normal
stresses and result in development of faults and joints.

o Lithostatic forces such as uplift and erosion also cause stress
heterogeneity

e Hydraulic forces such as flow of groundwater (or oil) in rock matrix and
preexisting cracks develops pore pressure that could result in development of
new cracks to release the pressure and develop a pathway for the fluid to

flow. Hydro-fracturing, a technique with various applications such as stress
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measurement and conductivity enhancement of production wells, is based on
this phenomenon.
e Numerous other environmental forces such as Extraterrestrials impact and

salt intrusion can cause development of fractures in rocks.

Appearance and characteristics of a fracture network can provide guidelines to
hypothesize the causative geological process. A geo-mechanical analysis of the
hypothesized stress heterogeneity sources can help us to establish a relationship
between the observed fracture system and the proposed fracturing process. This
would verify the hypothesized process, help us to understand the visible part of the
fracture network, and predict the hidden fracture network pattern. The followings
are some examples of predicting causative geological process by looking at the

fracture pattern (outcrop):

e Polygonal fractures, perpendicular to cooling surface in extrusive volcanic
rocks, indicate thermal stresses.

o Parallel fractures in intrusive igneous rocks (granite) are results of cooling
down while subject to ’lithostatic and/or tectonic forces. Fracture system first
starts by localized vertical micro-cracks and then interactions between them.

Each micro-crack can influence the location of the next micro-crack.

e Buckling or banding stresses in synclines and anticlines originate radial

joints.
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e In porous sandstone, stress concentration at grains contact points controls

fracturing process.

e In crystalline rocks structural defects (flaws) and grains mismatches initiate

fractures.

e Based on the fracture surface patterns, fracturing of siltstone/sandstone beds
may be described by a natural hydraulic fracturing mechanism.

o In sedimentary rocks, fault zones are generally created along the bedding
planes.

o In igneous rocks, preexisting cooling joints and weakness plains (such as
foliations and cleavages) are templates for fracture zones.

e Orthogonal joint sets are probably in the direction of principal stresses and
have same age and properties.

e Non-orthogonal fracture sets indicate different stress fields for the two sets.
The longer set is older and deflected when crossing. Lack of deflection may
be result of high compressive stress on the older set.

e Joint orientation changes as stress regime changes in time.

e Fractures have a coalesce pattern in Marble, when under compression.
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2.3 - DISCONTINUITIES CONDUCTIVITY

For the purpose of this study, we are only interested in the hydraulic properties of
fractures. Depending on the geometry of individual fractures and the pattern of
fracture network, hydraulic conductivity of fractured rocks could vary. A highly
conductive single fracture that does not belong to a “connected” fracture network
cannot contribute to fluid flow. Similarly, a well-connected fracture network that
contains fractures that are filled by non-conductive minerals, may be blocked and not

provide a continuous path for fluid to flow.

In order to predict fracture pattern and develop a realistic model that is true
representative of hydraulic behavior of a fractured media, one should have a clear
understanding of fractures properties and their connectedness. This would require
good knowledge of tock composition and the causative geological process that

resulted in development of the fracture pattern.

A lérge piece of intact rock with only a few large fractures (faults) would clearly
need separate models for matrix permeability and fracture permeability. Open
fractures work as long conduits for fluid and their contribution to flow is
significantly larger than rock porosity. The flow model should consider these
fractures as individual entities and then superimpose their effect on the globai model

(dual-porosity model).
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A highly jointed piece of rock that shows similar patterns of fractures at various
scales (self-similar) may be considered equivalent to a porous media with
permeability values defined based on fractures density, superimposed on matrix
permeability. In this case, it would be extremely difficult and impractical to study
individual joints separately and fractures should be considered as inherent properties

of the rock (single-porosity model).

It is noteworthy that it is possible to have non-conductive fractures in a fracture
network. Various minerals with different porosities may fill the spacing of fractures
(aperture). Detailed site investigations could predict percentage and distribution of
open fractures and this knowledge will help in development of a more realistic

model.
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CHAPTER 3 - REVIEW OF CURRENT MODELING APPROACHES

3.1 - FRACTURE PROPERTIES

Numerous parameters contribute to the behavior of a fluid, flowing through a
fractured rock. These include properties of individual fracture as well as the entire

rock mass. Fracture properties are explained here and depicted in Figure 3.4

I. Single Fracture:

e It is generally assumed that fractures have a planar surface geometry. Both
“circular disks” (Beacher et al. — 1977) and “parallelograms” (Dershowitz
and Einstain — 1988) have been used. In reality, however, fracture surfaces
can be distorted. This may or may not be observed from fracture traces at the
outcrop such as interactioﬁs and linkages. No study was found to take planes
distortion into consideration.’

e Size is defined by fracture diameter. It is equivalent to twice the radii for

circular geometry and JArea(ah)/n for parallelogram geometry.

e Persistence is the lateral extent of a discontinuity plane and is described by
“Trace Length” — the length of the fracture plane intersection with the

observation surface.

5 The proposed fractal model is 2D and assumes planar fracture surface. This model, if developed
in 3D, is capable of accounting for planes distortion.
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® Roughness is characterized by Joint Roughness Characteristic (JRC) index, a
relative measure of jaggedness and deviation from perfect planarity. A
standardized system of JRC has been developed that provides different values
of JRC for different fracture surface geometries. Figure 3.1 shows a

summary of various JRC values associated with various surface geometries.

. Stepped JRCy JRCipy  Undulating IR IRCo
S - : W . Rough 14 9
r Rough 20 11

Wﬂh v Smooth 11 8
i Smooth 4 9 e
B mati W e, SRR
m " Slickensided 11 s VI Slickensidea 7 5
Plannar JRCs JRCip
Vil Rough - 23 23
211 Smooth L3 0.9
IX Slickensided 0.5 0.4

Figure 3.1 - Joint Roughness Characterization Standards

Mechanical Aperture is the physical gap between discontinuity walls.
Hydraulic Aperture is the portion of the aperture that really contributes to
hydraulic conductivity. Hydraulic Aperture () is always less than or equal to

Mechanical Aperture (E) because of fracture surface roughness (Figure 3.2).

_JRC*

(E/e)’

Barton et al. (1985)

€y<=E,

Figure 3.2 — Mechanical Aperture (Ey) and Hydraulic Aperture (eg)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e Equivalent to aperture, widrh is the distance between walls of a filled
discontinuity

e Fracture Orientation is defined by dip and azimuth of the individual fracture.
Dip is the angle between the fracture surface and horizontal plane. Azimuth
or Dip direction is the angle between normal to the fracture surface and

geographic north.

I1. Fractured Rock Mass:

Measured (Apparent) Spacing (S App‘): The apparent distance between

adjacent fractures, observed on scan-line that has an angle of 8 with the face

of the sample.

e True Spacing (S): Perpendicular distance between adjacent discontinuities.
S=S, ®Sind

App.
e Average Spacing (S Ang): Mean of all spacing values for one fracture set.
e Frequency (I ) : Number of fractures per unit length: /=L/S,, ; L=Sample

size.

o Volume Density of Fractures (v): Number of fractures per unit volume.
® Rock Quality Designation (ROD): Percentage of the scan-line consisting of

spacing values greater than or equal to a threshold (4 inches):
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e Fracture Sets Orientation can be identified using pole plots (Figure 3.3).

a — Pole Plot of all Fractures

N(180)

OO)w

b — Identified Fracture Sets

N(180)
g

R 1 B
T h“'&,

Foliation
65/245
r
+ E(270)
9 Set A
5 28/080
N
q{‘ 5 :}? Contonr plot
E -~ Lower-hemisphere
\ka& . ;;WE%’Q"’ Equal-area projection
S(0) (99) dip direction of

poles to planes

Figure 3.3 — Fracture Sets Orientation Prediction
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3.2- CLASSIC ROCK CHARACTERIZATION TECHNIQUES

Numerous literatures have been published that look into characteristics of fractured
rock and develop fracture network models based on observed behavior of individual
fractures and rock mass. In general, individual fracture/rock mass properties are
modeled based on limited observations that are generalized using statistical
distribution of the field data as a guideline. The “Fanay-Augeres Mine” model
[Billaux et al. (1989)] is a comprehensive example of 3D geostatistical modeling of a
fracture network. In that study, fracture centers were modeled using a Poisson
process that was modified as a Parent-Daughter Point process in order to account for
fractures interactions and fractures clustering. In this technique, locations of the
“parent” points are defined using a Poisson distribution and every new “daughter”
point is defined randomly around every parent. Other similar techniques include
Regionalized Poisson process, Regionalized Parent-Daughter process, Levy-Lee
model, Nearest-Neighbor, and War Zone [Rock Fractures and Fluid Flow (1996) —
P.363]. All of these models are statistical distributions based on statistical properties
of limited observations. They are modified in one way or another to account for

clustering nature of fractures.

Numerous studies have shown that specific statistical distributions are, in general,

more applicable for specific rock parameters. Mathab et al. (1995) reviewed

application of five statistical distributions (normal, lognormal, exponential, weibull,
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gamma) in modeling of fractures spacing and extent (trace length). This study

concluded that:

e The dominant best fit is provided by lognormal distribution.

e Normal and exponential distributions did not fit any of the clusters in their
study.

e Weibull and gamma distributions provide the best fit in a limited number of
cases.

e In 4 of the 12 cases, none of the five distributions provided an acceptable fit.

Wyllie (1999) referred to Priest and Hudson’s (1981) work and concluded that, in
general, for Trace Length distribution “While the Lognormal curve has the highest
correlation coefficient, the exponential curve has a better fit at the longer

discontinuity lengths”.

Billaux et al. (1989) provided a good discussion on selection of point processes by

looking at semi-variogram results.

A summary of the most common statistical distributions for fractures spacing and
length within a rock mass was provided by Mathab et al. (1995) [Rock Fractures and
Fluid Flow — P. 199]. Table 3.5 expands Mathab et al.’s work to account for

statistical models used for other fracture parameters, as well as spacing and length.
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Despite all the effort put into finding appropriate statistical distributions for various
rock fractures parameters, there is little scientific evidence to validate these
stochastic approaches. According to Hudson et al. (1993), “Only the Negative
Exponential distribution has any conceptual basis in that a random spatial

distribution of lines means that spacings must follow a Poisson process”.
Later on we will see that numerous hypothetical fracture patterns could result in the
same statistical distributions for fracture network parameters. But they could have

totally different flow properties. Therefore, there is little confidence that statistical

models predict behavior of actual fracture flow problems, accurately.
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The following assumptions build the backbone of all these stochastic techniques:

e Fracture properties are stationary random variables throughout the media.

e Fach individual fracture/rock mass pararheter can be isolated from the whole
system and modeled individually, independent from the others.

e Representative Elementary Volume (REV), a volume above which hydraulic
characteristics of the media remains constant, exists, can be determined, and

has a reasonably small size.

Classical rock characterization methods, due to their statistical nature, have some
limitations. In general, the following limitations are associated with current

statistical techniques:

e Statistical simulation of individual parameters necessitates extensive data
collection efforts. On the other hand, the sample size has to be large enough
to have a statistically significant population (Hall 1991). It s, sofnetimes,
very difficult and expensive to collect enough data to be able to generate a
statistically representative distribution of parameters.

e Statistical techniques are computationally intensive and require numerous
iterations and statistical calculations of every individual fracture network
parameters. This issue becomes specifically critical when dealing with filed

scale models for large projects such as Yucca Mountain repository Project.
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e The scale at which site investigations are performed may not be an
appropriate modeling scale. Studies and investigations have shown that
different flow properties are achieved at different scales. However, flow
properties become less sensitive to scale changes, as scale increases. Above
a specific scale, called Representative Elementary Volume (REV), flow

~ becomes almost insensitive to scale changes (Hudson et al. 1993). Usually,

REV is very difficult to identify or too large to be practical:

Indeed, quantification of the scale dependence of hydraulic
parameters presents one of the strong challenges to fracture
hydrologists

Hudson et al (1993)

e The assumption of parameters randomness is not quite justifiable. In fact,
fractures appear to have predefined paths to grow and they appear in clusters
that are denser in some locations. While point processes have taken this
effect into account, there is no conceptual justification for using these
techniques. Fracture orientation, for example, is mainly controlled by history
of field principal stresses and clearly is not a random variable. Rouleau and
Raven (1995) recommended seeking a “non-random spatial distribution of

fractures” to create a “more accurate fracture model”.

Cracks seem to know where they want to go, and they do this in a
systematic way
Lajtai et al. (1990) — P.64
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e Fracture parameters, indeed, interact with each other and influence one
another. Obviously presence, location, and orientation of fractures in
proximity of a propagating fracture influence its behavior. This phenomenon
is explained in detail in Chapter 5. Current Statistical techniques study
fracture parameters in isolation from each other. Using statistical models, it is
difficult, if not impossible, to truly account for interactions among various
parameters. Current point processes, such as parent-daughter model, attempt
to account for clustering nature of fractures spatial distribution, due to their
interactions (coalescence). As explained above, there is no theoretical
evidence that these processes truly simulate the actual fracture locations,

consistent with fractures genesis.

Limitations of stochastic modeling of fracture networks are the main incentive for
this work and its continuation — a deterministic approach to this problem and many

other natural problems, based on fractal theory.

3.3- CLASSIC FLOW MODELS FOR FRACTURED ROCK

In order to study behavior of fluid flow in a fractured media, numerous models have
been developed. In general, all flow models can be categorized in 3 categories. All
these models make the same assumptions about the fractured rock properties and

they only “differ in their representation of the heterogeneity of fractured media™’. A

7 Rock Fractures and Fluid Flow (1996)
37
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good summary of various models is provided in Rock Fractures and Fluid Flow
(1996) and presented in Table 3.7. Here we provide a brief description of each
model, in order to pave the road for introduction of a new model that is developed

based on fractal theory.

I Equivalent Continuum Model (ECM)

This technique assumes that the flow region is a continuum (porous media). Rock
porosity may constitute “background” permeability or “matrix” permeability and
presence of fissures, cracks, and faults, enhances permeability, variably. Due to their
clustering nature (explained in chapter 5), rock discontinuities result is heterogeneity
and anisotropy of overall permeability. ECM takes heterogeneity into account by
regionalizing the entire media into numerous “cells”, each assumed to be a
homogenous porous medium. Rock anisotropy is approached by “permeability
tensor” with different values in various directions. Permeability tensor for each cell
is developed either through deterministic techniques (direct field measurements on
every cell) or stochastic methods (statistical simulation model of hydraulic properties
throughout the region). Sometimes geostatistical techniques are added to the
stochastic method to define flow parameters (Issaaks and Srivastava 1989, Jones et
al. 1985) and/or to improve stochastic flow theories (Gelhar and Axness 1983,
Dagan 1987).

The important Consideration in this type of model is that the sample size should

belarge enough in order to be “statistically representative” of the medium. Also, the
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sample size should not be smaller than Representative Elementary Volume (REV)
below which flow behavior is inconsistent and unpredictable. In addition, in order
for the continuum assumption to be relevant, sample size should be considerably
larger than fracture sizes. High fracture density is also desirable. Figures 3.6 shows
an example of a fractured medium that can be well represented by a continuum

model.

Meters

Figure 3.6 — Equivalent Continuum Model Application
(Fracture network from Rock Fractures and Fluid Flow (1996) — P.320)
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Figure 3.7 — Fracture Flow Models (from Rock Fractures and Fluid Flow 1996)

Representation of Key Parameters that

Recent Examples
Heterogeneity Distinguish Models ‘

Equivalent Continuum Models

Single porosity

Effective permeability tensor

Carrera et al. (1990)

Effective porosity

Davison (1985)
Hsieh et S1. (1985)

Multiple continuum
{double porosity, dual
permeability, and
multiple interacting

Network permeability and
porosity

Reeves et al. (1991)

Matrix permeability and porosity
Matrix block geometry

Pruess and Narasimhan
(1988)

continuum) Nonequilibrium matrix/fracture
interaction
Stochastic continuum | Geostatistical parameters for log | Neuman and Depner (1988)

permeability: mean, variance,
spatial correlation scale

Discrete Network Models

Network models with
simple structures

Network geometry statistics
Fracture conductance
distribution

Herbert et al. (1991)

Network models with
significant matrix
porosity

Network geometry statistics
Fracture conductance
distribution

Matrix porosity and permeability

Sudicky and McLaren (199x)

Network models
incorporating spatial
relationships between
fractures

Parameters controlling clustering
of fractures, fracture growth, or
fractal properties of networks

Dershowitz et al. (1991a)
Lung and Billaux (1987)

Equivalent Equivalent conductors on a Long et al. (1992b)
discontinoum lattice

Hybrid Models ‘ ,
Continuum Network geometry statistics Cacas et al. (1990)

approximations based
on discrete network
analysis

Fracture transmissivity
distribution

Oda et al. (1987)

Statistical contmuum
transport

Network geometry statistics
Fracture transmissivity

Smith et at. (1990)

distribution
Fractal Models , N
Equivalent Fractal generator parameters Long et al. (1992)
discontinuum Chang and Yortsos (1990)
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II.  Discrete Network Models (DNM)

Discrete networks account for each and every individual fracture as a conduit for
water to flow. The important aspect of this technique is identification and simulation
of individual fractures. The stochastic processes that were summarized in section 3.2
and Figure 3.5 are used to simulate individual fractures, based on limited field
observations.  Basic flow/transport equations are then solved to calculate

flow/transport in individual fractures and in the overall system.

Obviously, DNM requires extensive data collection and intensive computations.
Accuracy of the results depends on selection of the right statistical distributions for
all fracture parameters (Figure 3.4). The flow part of the model is considerably
accurate, since it uses proven laws of hydraulic and fluid transport. DNM is more

appropriate for media with countable number of large fractures (Figure 3.8).

5 A

o
T

S

s B
+ e ,?‘ e ‘?L..u,;., ;_M"";‘ e mek.wim,.‘

Figure 3.8 — Discrete Network Model Application
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1. Hybrid Technigues

Hybrid techniques are developed to combine simplicity of ECM and accuracy of
DNM to simulate permeability of large media. After regionalizing a medium, DNM
is used to estimate permeability tensor of each cell which, by itself, contains
numerous fractures. Analogous to Finite Element models, permeability tensors are
assembled to solve the ECM for the overall system. Snow (1965) was one of the
first studies that developed a relation between hydraulic conductivity and fractures
properties in each cell and aggregation of them to estimate global permeability. Oda
(1985) used simple flow equations Ato develop an analytical hybrid model. This
model is widely applied to numerous practical problems in order to predict flow
behavior. This technique, with some modification, was the basis of the flow model

that is developed in this work and is explained in details in chapter 7.

3.4- INNOVATIVE DEVELOPMENTS IN FRACTURE AND FLOW
MODELING

Scholars have developed and implemented non-statistical techniques to overcome the

limitations of stochastic models. “Hydrologic Inversion” technique has been

developed and used by many. In this technique, a trial-error inversion algorithm

searches for an arbitrary fracture pattern that produces the observed well test results

[Rock Fractures and Fluid Flow — P. 373].
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An innovative idea in this approach is the application of fractal theory to generate
hypothetical fracture networks. Barker (1988), Chang and Yortsos (1990), and
Acuna and Yortsos (1991) [Fractures and Fluid Flow — P. 371] introduced and
constructed the backbone of an inverse algorithm to predict the fracture pattern using

“mathematical relations between fractal dimension and flow observations.

Hudson (1993) explained applications of “Iterated Function Systems (IFS)” to
generate arbitrary fracture networks for hydrologic inversion study. Similarly,
Acuna (1993) used IFS codes to generate fracture patterns that result in expected
flow at well locations and studied the relation between flow properties and fractal
dimension. This technique, in its current form, is a good tool to guess fracture
patterns without conducting any fracture detection investigations. The predicted
fracture pattern, however, Ihay be far from the actual pattern. Therefore, while the
flow estimates at large scaie may be close to the actual values, internal behavior of
fluid flow, at small scale, cannot be studied. Due to its close relation to this work,

“Hydrologic Inversion” will be discussed in more details in chapter 6.
Percolation theory is another fractal/statistical-based concept that is widely used,
especially in the petroleum industry. A brief review of percolation theory and its

application to our study is also provided in chapter 6. Some practical applications of

percolation theory include:
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e Torelli and Scheidegger (1971) and Terolli (1972) were the first studies that
looked into percolation process to develop “random maze” models of
fractured/porous media.

e Sahimi (1994) provides a good discussion of percolation theory and its
application in prediction of a fracture network connectedness and study of
fluid flow behavior in porous and fractured media.

e Silliman and ‘Wn'ght (1988) used percolation theory combined with Monte
Carlo simulation to investigate presence and pattern of a high conductivity
flow path within a low conductivity media.

e Lenormand (1986) summarized various fluid displacement mechanisms and
showed application of invasion percolation in drainage mechanism.

e Percolation theory was also used by Degregoria (1985) to simulate two-
phased flow in porous media. |

e Chelidze (1982) suggests a percolation model fracturing process which
allows quantitative evaluation of the clustering phenomenon.

e Robinson (1983) & (1984) used a numerical model to predict percolation
threshold as a function of fractures density and percolation probability.

e Robinson (1983) and Charlaix et al. (1987) studied the relation between
correlation length (a percolation parameter) and REV.

e Gueguen et al. (1986) and Gueguen and Dienes (1989) looked into hydraulic
properties of fractured media, using a mixture of percolation theory, statistics,

and the permeability tensor definition by Dienes (1982).
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e Hestir and Long (1990) used percolation theory and showed quantitatively

that permeability decreases as shorter fractures are removed.

3.5- FRACTAL BEHAVIOR OF FRACTURED MEDIA

Fractal theory is based on self-similarity behavior of natural phenomena. A detailed
discussion of fractal theory and its applications to simulation of natural phenomena
is provided in chapter 6. Validity and applications of fractal theory has been

observed and studied extensively:

e Merely based on rock mechanics concepts, many studies [e.g. Lajtai et al.
(1990), King and Sammis (1992)] showed that fracture initiation and
propagation process in rock media is self-similar and has a fractal nature.
More detailed discussion on this topic is provided in chapter 5.

e Ehlen (2000) showed that fracture patterns in granite have stable fractal
dimensions, generally.

e Marrett et al. (1999) showed that fracture network at various sites have fractal
pattern. Samples included Limestone and Sandstone (from Texas) and Tuff
(From Yucca Mountain, Nevada).

e Barton and Hsieh (1989) showed that at Yucca Mountain, for fractures
ranging from 20 cm to 20 m, D=1.6 — 1.7 and 1s stable.

e La Pointe (1988) calculated Fractal Dimension for simulated and natural

fracture networks and studied sensitivity of Fractal Dimension with respect to
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number of lines, mean line length, number of blocks, and block size. He
concluded that fracture density, fracture pattern, and block density are all

self-similar fractals.

Based on the wealth of available documentation, this study we does not attempt to
prove fractal nature of fracture patterns, since it has been acknowledged
unanimously. Instead, a new technique is developed that overcomes limitations of
current models and searches for the fractal codes that would generate a fracture

798

pattern with physical characteristics “close to™ field observations.

§  Closeness is measured using fractal parameters and it can be improved by monitoring these

parameters.
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CHAPTER 4 - FIELD INVESTIGATIONS FOR ROCK MEDIA

HYDRAULIC CHARACTERIZATION

4.1 - ROCK FRACTURE DETECTION TECHNIQUES
Field investigations assist geotechnical engineers to develop an understanding of

characteristics of fractured and/or porous media. In fractured media, filed data can
provide good approximation of fractures properties, number and interactions of
fracture sets, and the overall fracture network pattern. Hereafter, we provide a

summary of various fracture detection techniques:

1. Surface Observation Methods

e Geological observations at the rock surface (outcrop) provide a basic
understanding of fractures genesis. The overall pattern of the subsurface
fractures may be predicted from the outcrop observations. This method
provides a basis for designing borehole locations for further investigations
and better understanding of fracture patterns. La Pointe and Hudson (1985)
provided a good example of using outcrop investigation to predict fracture
pattern in Niagara dolomites. The topsoil was already removed at an
abandoned query and this provided a good opportunity to observe fracture
patterns from the rock surface (Figure 4.1). These observations, combined
with various statistical models for different parameters, allowed the authors

to interpreted and simulated the overall fracture network.
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e Seismic Reflection is a widely used technique that predicts fractures location
with a good level of accuracy. Fractures are sources of sudden heterogeneity
in rocks. When energy waves, such as seismic and sound, are passed through
the ground, they change their direction when hit a fracture. These anomalies,
when return to the surface, can be detected and recorded to predict location,
orientation, shape, and thickness of fractures. This kind of investigation may
be conducted as 2D or 3D, depending on how the sources and receivers are

set up.

Figure 4.1 — Geological Observations in the Niagara Dolomites, London, Wisconsin

(From La pointe and Hudson 1985)

o FElectrical/electromagnetic/Radar methods follow the same principals as
seismic reflection techniques. They are specifically appropriate for detecting

48
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water-filled fractures, since water has high electrical conductivity, usually
much more than intact rock.

e Tiltmeters are devices that measure volumetric strains in rocks. Fractured
rock presents variations in volumetric strain as a result of water flowing
through fractures. This concept is used to detect fractures properties in a rock
mass. The region is subjected to hydraulic pressure and Tiltmeters measure
volumetric strains at various locations. The results are used to predict
fracture pattern, and sometimes to correct observations from borehole data
(due to changes in principal stresses as a result of borehole excavation,

fractures orientation may be altered from the original position).

1I. Borehole Methods

The results of surface methods may be biased due to presence of overburden with
properties completely different from the subsurface rock. In such cases we need to
practically access the subsurface rock. For this purpose, boreholes are driven in the
site, the rock samples are extracted, and the observed discontinuities on the borehole
samples will guide us through prediction of the overall fracture pattern (core
inspection). Sometimes images of the borehole walls may provide better description
of the fracture pattern (Borehole imaging logs), specially when samples are
extensively damaged during extraction. Alternatively, surface techniques may be

used inside boreholes for more accurate data collection, although at a higher cost.
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It is clear that core sampling is most effective for hard crystalline rocks (igneous
rocks). Applying this technique to soft sedimentary rocks that easily damage during
excavation requires special care and attention. Borehole imaging or wave emission

techniques are more appropriate in this case.

In this study, we seek a technique to effectively predict fracture pattern, using limited
fractured data from direct core inspection (Figure 4.2.a) or borehole imaging logs
(Figure 4.2.b). While there are limitations to these technique, “measurements made
in the immediate vicinity of bore holes are very useful in characterizing fractures
and fluid flow through fractures in a number of important applications”.

(Rock Fractures and Fluid Flow — P. 200)
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(b)

Figure 4.2 — (a) Core Inspection, (b) Borehole Imaging
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42 - HYDRAULIC TESTING METHODS

Hydraulic and tracer tests are used to diagnose behavior of fluid flow at various
location in fractured media and, based on that, develop a flow model that truly
represents hydraulic properties of the overall rock mass. Hydraulic tests measure
water flow by direct observation and tracer tests monitor concentration of a solute

(tracer) at various locations, in order to collect flow information.

1. Hvdraulic Tests

Hydraulic tests are based on observation of fluid flow through boreholes. To get
faster and more economic results, single borehole tests may be adequate. To collect
more information and develop more accurate flow models, one might conduct

multiple boreholes experiments.

e In a single borehole test, when we are interested to calculate transmissivity of
an entire aquifer, an open borehole would be sufficient. Open-single
boreholé test is the easiest and the least expensive hydraulic test. However,
in the presence of numerous fractures and/or formations, we are interested in
hydraulic properties of individual discontinuities and a packer test is more -
appropriate. In this case, two packers isolate the discontinuity under study,
water is injected into or withdrawn from the isolated section, flow and
hydraulic head are measured, and fracture transmissivity is calculated (Figure

4.3). In general, single borehole is used when the rock mass can be assumed
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to be isotropic and homogeneous. In most cases that these assumptions do

not hold, multi-borehole tests are performed.

Compressed Air

Water Tank

Downhole
Valve

Figure 4.3 — Single Borehole Test (From Rock Fractures and Fluid Flow — 1996)

e  Multi-borehole test works similar to single borehole test. In this case, water
is injected into one borehole and monitored from another borehole. The
boreholes can be open or isolated by packers, similar to single borehole. In
multi-borehole tests, samples are usually much larger and the results are
much more accurate, compared to single boreholes. In addition, Contribution
of Individual fractures can be studied and the “isotropy” assumption in single
borehole test can be removed. As an example, in the well-fractured rock
mass of Figure (4.4.a), water is pumped into packer A at a constant rate and
flow is observed at packers B and C. The readings from packers B represent
transmissivity of the large fracture (e.g. fault) and the reading from packer C
indicated transmissivity of the joints network that could be approximated by a

continuous porous medium. As another example, the experiment that is set
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up in Figure (4.4.b) provides permeability values and direction at various
packers B. This test could provide a permeability tensor for the well-
connected network of fractures (joints), for equivalent continuum medium

model.

mommmen  Highly transmissive fracture

(a) A:pumped interval
B: ohservation interval straddling pumped fracture
% chasreation interval straddiing fractured rock

Figure 4.4 — Examples of Multi-borehole tests
(From Rock Fractures and Fluid Flow — 1996)

II. Tracer Tests

Tracer tests evaluate connectedness of fracture networks and solute transport
properties of fractures. A water solute liquid (tracer) is injected from a series of
injection wells and tracer concentration is monitored at another series of wells
(monitoring wells) to understand flow behavior (Figure 4.5). This test is conducted

in various forms: Natural gradient tracer test, Divergent flow tracer test, convergent
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flow tracer test, two-well tracer test, and borehole dilution test. They vary in the way
that injection wells and monitoring wells are networked to each other. They all

follow the same principals of solute transport processes (advection and dispersion,

channelized transport, diffusion, and adsorption).

s
¢} o
s
@ o o
wesmemsdie.
O 3]
o o 9 L D
®  Lracer iﬂ;ﬂﬁt;mn well @ tiracerinjection well
(@) ©  tracer monitoring well ()  tracer monitoring well
weeg  divection of groundwater flow e Fiveetion of groundwater flow
: tracer plume € tracer plume

Figure 4.5 — Tracer Tests: (a) Natural Gradient, (b) Divergent Flow
(From Rock Fractures and Fluid Flow — 1996)

It is important to understand clearly applications of these tests. Flow observations at
field are not intended to be considered as the “output”. They are rather “input”
parameters for flow models. A flow model that is supposed to predict overall flow at
a region is evaluated by calculating local flow at test locations and comparing with
test results. Would there exist a site investigation to provide overall flow properties

of a region we would not need a flow mode.
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CHAPTER 5 - FRACTURE MECHANICS IN ROCK MEDIA

5.1- CLASSICAL THEORY OF FRACTURE MECHANICS

Fracture initiation and propagation study is the subject of fracture mechanics. The
mathematical model is developed based on basic solid mechanics concepts and
fundamentals of elasticity theory. Stress distribution and its concentration around a
circular or elliptical hole is simulated. A crack is, ultimétely, assumed to be an
elliptical hole with a very high aspect ration (zero width). Stress intensity factor (K)
is calculated that shows intensity of stress adjacent to the crack, compared to the

overall field stresses.

Based on Linear Elastic Fracture Mechanics (LEFM), three modes of crack-tip

deformation are identified in fracture mechanics:

I. Mode I Crack-Tip Deformation (Opening Mode)

Crack surfaces move directly apart from each other. This is a result of tension

stresses perpendicular to the fracture surface (Figure 5.1). Stress intensity factor for
mode I Fracturing is calculated as: K, =0, V7 -a where, 0, is the overall field

stress and a is half the size of the crack. Yielding theories of failure are then applied

to investigate possibility and amount of fracture propagation.
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Figure 5.1 — Mode I Fracture

II. Mode II Crack-Tip Deformation (Sliding Mode)

Crack surfaces move in the plane of the fracture surface, as a result of shear stresses.
This is also called in-plane shear mode. The direction of the crack surfaces

movement is perpendicular to the leading edge of the crack (figure 5.2). Mode 11

stress intensity factor is calculated as: K, =Lir(;)1 7, (r,0 =0W2mr where,
F— -

Lim 7, (r,8 =0) is the shear stress in the xy plane, perpendicular to crack surface,

r—0

at the crack tip and r is the distance from crack tip.

Figure 5.2 — Mode IT Fracture

TiI. Mode ITI Crack-Tip Deformation (Tearing Mode)

This is also called anti-plane shear mode. Similar to the sliding mode, crack surfaces
move in the plane of the fracture surface, as a result of shear stresses. However, the

direction of the crack surfaces movement is parallel to the leading edge of the crack

(figure5.3).
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Figure 5.3 — Mode III Fracture

Sometimes a combination of failure modes may be observed in a material. For
example, secondary joints in a fault zone are formed as result of a combination of

failure modes I, 11, and sometimes III.

IV. Yielding Theories of Failure

There are 5 yielding mechanisms that are commonly used in solid mechanics to

predict failure of materials based on field stresses:

e Maximum Principal Stress Theory (Rankine): A material fails by yielding
when the maximum principal stress exceeds the tensile yield strength, or

when the minimum principal stress exceeds the compressive yield strength.
O-IZGyp , O; >0, > 03

e Maximum Shear Stress Theory (Tresca): Yielding will start when the
maximum shear stress in the material equals the maximum shear stress at

yielding in a simple tension test.
o) — 03/ > Oy , O; > 0; > 03
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e  Maximum Principal Strain Theory: A material fails by yielding when the
maximum principal strain exceeds the tensile yield strain (¢',p) or when the

minimum principal strain exceeds the compressive yield strain (' 'yp).

[or-v (0, +03)/>0,

[os—v(0o;+0:)[>0",

e Maximum Distortion Energy Theory (Von Mises): Failure occurs when, at
any point in the body, the distortion energy per unit volume in a state of
combined stress becomes equal to that associated with yielding in a simple

tension test,
2 2 2
(0;—0y)° + (0, —03)° +(0,—03)° > Zozyp

e The Octahedral Shear Stress Theory: It predicts failure by yielding when the

octahedral shearing stress at a point achieves a particular value.

V2,

Tou 27570,

V. Crack initiation and propagation

Based on fracture mechanics theories, fractures propagate as a result of stress
concentration at their tips. Therefore, initiation of a fracture is nothing but
extension of preexisting fissures in a solid. Material heterogeneity results in
tiny cracks (fissures) at microscopic scale. Stress concentration at the tips of

these fissures may result in their failure. As a result microscopic fissure grow to
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macroscopic cracks. At some point, stress intensity may go below yielding
stress and crack length may remain stable until next alteration of field stresses

(figure 5.4).

In order to model this process, after identification of the fracture mode, stress at
the initial crack (or fissure) tip is calculated using Kj, Ky, Ky, or a combination
of them. One or more of the yielding mechanisms are analyzed and, if failure is
predicted, plastic zone depth (2r,) and the associated crack propagation (J) are

calculated. For example, for Mode I:

KZ
K,=0,Nm ¢ YIELD? & 6=—-"—
E : O-Yield
Stress \ " ELASTIC STRESSS DISTRIBUTION
A
Yield Stress ELASTIC-PLASTIC
STRESSS DISTRIBUTION

Diagonal Crack

h

)|

1

l
w ¥

Notional Crack

PLASTIC ZONE
DEPTH, 2r,

Figure 5.4 — Local Stresses and Crack Tip Propagation
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VI. Improvements to classical Fracture Mechanics Models

Classical fracture mechanics that is based on application of stress intensity
factors to finite element models, suffers some limitations. Particularly,
mathematical derivation usually requires definition of complex functions and
complicated calculations. The work by Nishioka and Atluri (1983) is a good
example of a complicated fracture model for mixed-mode fracturing, using
complex functions. In order to simulate fracture propagation, finite element
model needs to be recalculated at every stage of fracture propagation. This

requires intensive computations and long processing time.

Alternative approaches have been developed to overcome the above
limitations. Swenson (1986) developed a numerical model for mixed mode
stress. This model avoided complex functions by rotating coordinate system.
The model predicted crack tip propagation displacement (w), its velocity (c),

and stresses at crack tip.

Ghorbanpoor and Zhang (1990) discussed advantages of boundary element
method (BEM) compared to finite element method (FEM) for fracture
propagation modeling. In this model, crack growth direction was predicted
using classical maximum principal stress model (see part IV above), but instead
of stress intensity factors, crack surface relative displacement (CSRD) method

was used to calculate displacement. The main advantage of BEM to FEM is its
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speed and accuracy, since at each phase of crack propagation, re-meshing

occurs only at the crack extension.

Guo et al. (1990) used classical Griffith-Irwin energy criterion to extend the
classical crack propagation model to cracks with any arbitrary configuration
and loading conditions. Displacement discontinuity model was used in this
model and BEM approach was taken. Advantages of BEM to FEM were re-

emphasized in this work.

Numerous other works searched for more appropriate and/or simplified fracture
propagation models. While some of these models were great improvements to
fracturing of engineering solids, they all present common limitations for rock
media. The next séction provides a brief discussion of applications and

limitations of classical fracture mechanics to geotechnical fracturing process.
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5.2- APPLICATIONS AND LIMITATION OF CLASSICAL FRACTURE
MECHANICS IN ROCK MEDIA

Fracture mechanics have been used to predict behavior of rock media in response to
field stresses and understand development of fracture networks. Sammis and Ashby
(1986) considered the initial flaws as penny-shaped objects with radius a and
calculated fracture propagation length / at each stage, using classical stress intensity

model for mode I fracturing (Ky). Direct effects of stress anisotropy (o, /0, ) on
fracture propagation were studied and it was shown that as long as o,/0, >1/3,
there are little tensile stresses on the crack and therefore, the crack does not
propagate. Relationships between normalized stresso, / (\/7;5 / K ,C) and normalized

crack length //a were developed and graphical presentations (such as figure 5.5)

were proposed for prediction of crack propagation behavior. A physical experiment
on a piece of glass showed good agreement between the model and the practical

results.
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Figure 5.5 - Fracture Propagation Model from Sammis and Ashby (1986)
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Sammis and Ashby (1986) continued with studying a group of such penny-shaped
flaws and took into account interactions among these flaws during cracks
propagation. These interactions were modeled using “beam” elements between
neighboring cracks and studying failure criteria for these beams that are subject to

rotation and shearing, knowing density of the flaws and remote stresses.

In another study, Ashby and Sammis (1990) used basic solid mechanics concepts to
develop a damage model for a piece of material (e.g. rock) with numerous cracks

interacting with each other. The study developed relations and charts for stress
intensity factor (K;) and normalized principal stresses (0',/ («/n-a /K ,C),/l, where

A=0,/0,).

In a similar work, Eberhardt et al. (1998) studied interactions among neighboring
cracks using classical fracture mechanics. This study was motivated by lack of work
on “how stresses surrounding coalescing cracks interact in terms of promoting or
inhibiting crack propagation”. A modified linear elastic fracture mechanics (LEFM)
was used for the purpose of this study and elliptical cracks were assumed. Effects of
neighboring cracks on stresses around a crack were simulated by “stress shadow”
and it was concluded that stress shadows have significant effect on cracks extension;
they either suppress or promote crack propagation. It was shown haw crack tips
stresses interact and develop stress shadow, when two crack tips are close enough to

each other. Several sensitivity analyses were performed to study effects of confining
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stress, crack separation distance, and crack length on crack initiation stress. At the
completion of their work, Eberhardt et al. (1998) acknowledged extreme complexity
of crack propagation process when it belongs to a group of cracks, compared to when
it is isolated. The classical fracture models “appear quite limited in simulating crack

propagation in rock”.

Yuan et al. (1993) assumed initial flaws to be parallel to prin;:ipal compressive stress
and have elliptical shape with finite width and‘ a finite-width elliptical crack
(FIWEC) model was developed. The classical zero-width fracture mechanics model
was considered inappropriate for compressive mode (rock), since “sensitivity of the
mathematical crack model to normal stress that is coaxial with the major axis of the
crack is sacrificed”. Based on the above assumption, classical solid mechanics

concepts were used to calculate crack extension (a) as a function of fracture width

(b}, compressive pressure (P), and stress intensity factor at failure (K,).

Lajtai et al. (1990) argued that classical fracture mechanics, which is based on stress
intensity factor calculation, neglects the normal stress parallel with the propagation
direction. Therefore, these models become handicapped when applied to rock media
in which fracturing occurs as a result of compressive stresses. Experience has shown
that the dominant mode of fracturing in rocks is neither of the modes 1, 1I, or IlI, but

a compression mode.
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According to Lajtai et al. (1990), Rock fractures usually develop parallel to principal
stresses. This explains appearance of fractures in semi-parallel sets; “over 70 percent
of cracks propagate within 10 degrees of the direction of far-field principal
compressive stress”, unless they are disrupted by pre-existing discontinuities such as
beddings and cleavages. Clustering of fractures can be explained by the “shadowing
effect”. Two cracks that grow very closely influence local stresses and form a region
(shadow) of intense stresses. This is a region in which we see “crack bunching”. It
is also observed that, around underground cavities, a “mother-daughter” relationship
results in development of new fractures in the rock bridge between the two cracks.
These new cracks have features similar to the “mother” and “daughter”, the same
process could be repeated over and over, and a self-similar pattern is observed.

Lajtai et al. (1990) also showed that réck fractures are not developed randomly, they
“know were they want to go and they do this in the most systematic way”. Lateral
far-field stress has a very important role in the amount and rate of fractures
extension. If this confining stress is high, it could prevent fractures propagation.
Therefore, the crack propagation model should be based on both minimum and
maximum principal stresses. A similar work by Carter et al. (1989) gave similar

relations between principal stresses and crack growth and its direction.

5.3 - “SELF-SIMILARITY” OF THE ROCK FRACTURING PROCESS

Fracture initiation and propagation in rocks is very well explained as a self-similar
(fractal) process. King and Sammis (1992) started with preexisting tiny flaws, which

were assumed to have fractal distribution. They modeled fracturing process as a
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series of rotations and bendings of hypothetical “beams” that are developed at each

stage due to stress concentrations between fractures (flaws) of the previous stage.

The amount of beam rotation is controlled by the direction of principal stresses and
by proximity and size of the cracks (beams) from the previous stage. As shown in
figure 5.6, this model can very well explain the clustering nature of fractures, from
fracture mechanics point of view. In fact, it was shown that the assumption of fractal
distribution of the original flaws is not necessary, since after several stages of
fracturing, a fractal geometry will appear, disregarding the original distribution of

flaws (see also chapter 6 — fractal pattern is independent from the originator).

As the length of a beam extends, its aspect ratio increases and, as a result, it fails at
some point. This is the time when the second generation of smaller beams is
developed at the location of beams rupture. The new beams collapse again to fill the
void space. This process repeats over and over and a self-similar fracture set is
developed. This explains both irregularity and clustering that is observed in

fractured rocks.
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Figure 5.6 — Self-Similarity of Rock Fracturing Process (from King and Sammis - 1992)

A schematic evaluation that can lead from a few defects a multifractured material like fault gouge.
Initially four defects are shown shedding tensile fractures (a). Displacement boundary conditions
applied at a distance are shown by opposing arrows above and below each figure. As the tensile
Jractures create beams, motion close to the beams has an outward component. This is shown by
angled arrows within the figures (a—d). When the beams start to fail similar arrows show inward
motion (c, f). Further deformation involves repeated episodes of such expansion and contraction
associated with dilation and collapse of the region being fragmented. Except for (a) where the initial
stress conditions are shown, vector diagrams to the right of each figure indicate the cumulative
displacement distant from the zone (horizontal arrows) and the corresponding displacements close to
the zone (angled arrows). The zone cycles through episodes of expansion as voids are created and
contractions as they are filled.
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CHAPTER 6 - FRACTAL THEORY AND ITS APPLICATIONS

6.1 - FUNDAMENTAL CONCEPT, ESSENTIAL THEOREMS, AND
MATHEMATICS

I. Fractal Concept:

Fractal is defined as a geometric shape that is complex and detailed in structure
almost at any level of magnification. Benoit B. Mandelbrot (1982) was the first who
intrgduced Fractals to describe geometric properties of apparently irregular (chaotic)
fragments. This chaos is actually self-similar. That is, at any magnification scale,
the image is a (sheared) replica of the overall object. Broccoli is a good example of
a fractal. Each piece is similar to the whole object, rotated and/or stretched, but at a

smaller scale.

Figure 6.1.a — Broccoli is a fractal. Each piece is a rotated, stretched copy of the object
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Fractal theory defines the geometry of nature. Despite classical geometry that
defines every object in Euclidian space, fractal geometry uses partitions of the
Euclidian space and fractal objects live in “fractal space”. In the classical Euclidean
space, an abject is one dimensional (line), 2 dimensional (plane), or 3 dimensional

(space). In fractal space, objects can have fractional dimensions between 0 and 3:

Geometric Space Fractal Space

0<D<1 Cantor Sets: apparently segmented lines

1 Dimensional (Line)

Koch: Non-differentiable curve
1<D<2

Sierpinski Triangle: Partially filled plane
2 Dimensional (Plane)

2<D<3 Sierpinski Pyramid: Partially filled space

3 Dimensional (Space)

The famous “Koch Curve” with a fractal dimension (D) of 1.262 is not a line (D=1)
and is not a filled plane (D=2), it is somewhere in between. It is a continuous line

with infinite length, apparently curvilinear but has no curvatures (non-

differentiable)!
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Some examples of natural fractals are shown in Figure 6.1.b. We will see later how

ts fractal dimension
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an image can be evaluated for fractal behavior, by analyz
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Figure 6..1.b — Some Natural Fractals
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M. Fractal Definitions and Mathematics

The following are some essential definitions of fractal mathematics (Barnsley -

1993):

o A transformation w:R*> — R* of the form:
(6-1) w(x,y)={a-x+b-y+e s cox+d-y+f}
where a,b,c,d,e, f are real numbers, is called a (two-dimensional) affine
transformation. In this text, wherever we talk about a transformation, it refers
to an affine transformation.

e [terated Function System:
A fractal image comes to life as a result of applying a series of
transformations of the form (6-1) to an initial object over and over.
Transformations may consist of rotation, transition, scaling, and/or shearing.
This group of transformations is called iterated function system (IFS). In a
2D space, rotation, scaling, and shearing are presented by a 2x2 matrix and

transition is presented by a 2x1 vector:

X o a b X e
= ® +
Y New ¢ d Y f

where:

a b p,Cos8,  —p,Sinb,

c d| |pSinG p,Cosb,
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p,, P, are the scaling factors of x and y and 6,,0, are counter-clockwise

rotations with respectto x and y. { € } is the transition vector. Obviously,

P, £, should be less than 1.0, in order for the sequence of transformations to

converge (contractive transformation).

IFS codes are usually shown in a

tabular format. For example, consider the following 3 IFS codes:

Fal a e L a e F
" | 0.500.00]0.00]0.50]|0.00|0.00}]050]0.00]0.50]0.00

0.50 | 0.00 | 0.00 | 0.50 | 0.00 [0.50 | 0.50 | 0.00 | 0.50 | 0.00

3 |050]000[000|050]|050|000}]050]0.00]050]0.00

When they are applied to a square box 1x1 (Figure 6.2.a), we get 3 ( V2x 7))

squares as shown in Figure 6.2.b. Applying the same IFS codes to each of

the three squares breaks each into 3 new squares, half its size (1/4 original

box). After large number of repetitions (27 in this case), the resulting object

is a triangular shape fractal, called “Sierpinski” triangle (Figure 6.2.¢). It is

interesting to note that the shape of the fractal object is independent from the

original object. Would we have used a triangle, a circle, or even a small

point, the result would have been the same. This original object is called the

initiator.
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:} a) Original Object b) lter.#1
] ¢) lter.#2 d) Iter.#3

Figure 6.2 — Sierpinski Triangle Development Using Iterated Function System
(Deterministic Algorithm)

In practice, in order to generate realistic fractal images, a small dot is used as

the initiator. As long as this dot is small enough to identify object
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boundaries, its size and position does not impact the final image. What is
important is to apply all transformations equally, at every iteration. This is
the basis of the random iteration algorithm that is explained later.
Alternatively, by changing probabilities of various transformations, different
fractal images can be generated from the same set of IFS codes. Figures 6.3.2
and 6.3.b have the same IFS codes, but in Figure 6.3.b one of the Iterations is
only applied 3.3% of time and the other two each has 48.3% probability

(looks like a fracture set!).

o Byt
ey il

Figure 6.3 — Fractal Images: (a) and (b) have same IFS codes
but different probabilities

e A transformation in which an object maintains its shape (but shrinks) at every
iteration is called a similitude (self-similar). In a similitude we have: p; = p2
and 0, = 0,. In Figure 6.4, transformation (2) is a similitude (square) and
transformations (1) and (3) are self-affine (not similitude) transformations
(parallelograms). Notion of similitude transformations in an attractor is very

helpful to solve the reverse problem.
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Figure 6.4 —Self-Affine (1 & 3) and Self-Similar (2) Transformations

e Fixed point of a transformation (Xy) is the point whose transformation is
itself: W(Xp=X;. For a two dimensional transformation, X; (Xpys) 1S

calculated as:

_ bf—eld-1)
5 = 1b-1)=be
ec— fla-1)

YT =10 -1)-be

In general, considering a transformation of the form W(X) = A. X+ B, it can

be shown that: w™" (X) = A" (X-Xy) + X¢. In other words to estimate location

of the n™ transformation of a point X, one could use the following equations:
A"X) =A" and B”"X)=({I-A".X

The fifth transformation of the primary fracture at (0,0) in Figure 6.5, subject

, [0.75 o.oo} l {0.25
to transformation:

is calculated as follows:
0.00 0.75 0.00
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0.75x . +0.00y, =x x,=1.00 1.00
Fixed Point: { 4 4 4 :5{ 4 X { }

= 7 =
0.00x, +0.75y, =y, |y, =0.00 0.00

o .o . 075 000 [0.237 0.000
at 57 iteration: A" =4 = = and
0.00 0.75 0.000 0.237

o5 s 1.00 0.00 0.75 0.00] 1.00 0.763|
BS=(1-4°)-X, = - ® =
' 0.00 1.00 0.00 0.75 0.00 0.000
This means that at the fifth iteration, the object is shrunk by 0.237 units and is

0.763

moved to the coordinates
0.000

} . From fractal concept, we know that this

simple transformation shrinks the object (75%)" and moves it on x-axis
according to: 1-0.75", (n = iteration number). Therefore, after 5 iterations,

the object is shrunk (75%)° = 23.7% and it is moved to x = 1-0.75° = 0.763

and y=0.
12 4
1.4 Seiging Gblet
fror A1

a.e
2 By, #3
2 e
* jhes 3

)
2.4 Bey i - K HJ87
nﬂixﬁu‘mm
3
i a2 554 a5 De 1 12
X Al

Figure 6.5 — Fixed Point of a Transformation and its Application
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e Fixed point of a complete iterated function system W(B)= Uw,(B) is also

called its attractor. If By is the attractor of an IFS, we have W”'(By) = By.
The attractor of sierpinski is the equivalent triangle; the fractal image. The
attractor of the cantor set: IFS={R; 1/3x, 1/3x+2/3} is the closed interval
[0,1] on the x-axis.

e Each transformation in an iterated function system (each IFS Code) is also
called a Contraction Mapping. The Contractivity Factor (Scale Factor) of a
contraction map is the ratio of each iteration to the next one:
d(X’1,X°7)<s.d(X;,X3), where X’ 1=W(X;) and X’;=W(X;). This factor
should be positive and smaller than 1 in order for the iterations to converge.
For the Sierpinski triangle, for example, the contractivity factor is 0.5 for all
transformations, since dimensions (X, y) of every iteration are half the
dimensions of the previous one. If contractivity factors in x and y (and z) are
different, system’s contractivity factor is equal to the largest one
(exceptionally for a condensation set, this rule does not apply: s=0). Also,
contractivity factor of an iterated function system is equal to the largest

contractivity factors of its transformations.

e Condensation Set is a contraction mapping with zero contractivity factor. In
other words: wo(A)=A. The fixed point of a condensation set is itself.  The
collage of an iterated function system {X;w;,wy,...,wn} with contractivity
factor s and a condensation transformation wy, is called an IFS with
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condensation, with contractivity factor of s: {X;W, wo}. In the example of
Figure 6.5 above, the object Aq could be simulated by condensation set:
{p1=€ (width=>0), p=1 (height), 6,=0, 8,=0 (no rotation/shearing)} with

contractivity factor of e>0.

In the example of Figure 6.6 (which is the basis for development of fractal
network of fractures in the next chapter), the first 4 transformations are the
IFS codes that define spatial distribution of copies of the primary fracture and
the last IFS code is a condensation set, which is actually the image of the
primary fracture. This fracture is the largest fracture of this set in the

complete fractal image of the fracture set.

%
|
%
|

.
: 7
|
%
%5
|
g
2
|
|

Figure 6.6 — Condensation Set and Fracture Set
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e If two or more of transformations of an iterated function system are
overlapping, their fractal images will be also overlapping. This system is
called an overlapping IFS (Figure 6.7.a). Alternatively, an IFS may be just-
touching (Figure 6.7.b) or disconnected (Figure 6.7.c). Overlapping IFS’s are
more difficult to analyze mathematically. Specifically, due to duplication of
points at the same coordinates, their fractal dimension cannot be estimated

very accurately.

Figure 6.7 — (a) Overlapping, (b) Just-Touching, (c) Disconnected Fractals
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o Fractal dimension is a measure of fractal behavior of an object compared to
other fractals. Due to its importance in this study, fractal dimension is

explained in details in part V of this section.

I11. Fractal Theorems

The following theorems of fractal are particularly important in this study:

e Contraction Mapping Theorem: The union of transformations of an iterated
function system (Uw;) in a metric space is a transformation in fractal space
(W), by itself. The contractivity factor of W is the contractivity factor of the
set of IFS transformations [that is, max(s;,sy,..,sn)]. The fixed point of the

fractal space has the property: A=W(A)= Uw;(A). This theorem is the basis

of the classical deterministic algorithm that will be explained later.

e Shadow Theorem: If transformations of an iterated function system are
invertible, the IFS can be projected on another system of coordinates to get a
new fractal. An overlapping fractal can change to a disconnected fractal and
visa versa. A 3D fractal can be projected on 2D and, subsequently, on 1D.
In Figure 6.8 the two 1D cantor sets along x and y axes are projections of the
2D fractal object. Collage theorem can find IFS codes for the two 1D cantor.

sets easily and combine them to get the IFS codes the 2D fractal object.
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Figure 6.8 — Shadow Theorem

Shadow theorem is not used in this work, exclusively. However, it has a
great potential to help us define IFS codes of a fracture network based on
limited field observations of borehole- date (y axis) and scan-line data (x
axis). A small example of possible application of shadow theorem is shown

in chapter 9, which simulates a fracture set at Yucca Mountain.

o Collage Theorem: In order to find an IFS whose attractor is similar to a given
set, we need to find a set of transformations whose union (collage) is similar
to the given set. Proximity of the IFS to the attractor is measured by
Hausdorff metric [and/or fractal dimension]. In the following example, the
three solid-border squares of Figure 6.9 represent the three transformations

listed below:
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Fs#| a [ b | c|dfe | flp |0 |p|6 s
1 |0500.00|000|050(0.00|0.00}040| 0 [040]| 0 %

2.:/050]0.00|000{050|0.75|1.00)050| 180 050|180 %
0.501000}0.001050/050{0008050| 0 0501 0 Y

The fractal object is shown is red with a fractal dimension of 1.585 (box
counting). The attractor of the IFS is shown in blue and its fractal dimension
is 1.445 (Analytical). The above three transformations that encompass the
attractor are shown as solid black squares, with a © sign showing their
orientations. In this case, it is clear that a little increase in p; and p, of
transformation 1 would result in an attractor “closer” to the fractal object. In
fact p; = p2 = Y21n transformation 1, would result an attractor identical to the

fractal image (the dashed-line gray square).

Figure 6.9 - Application of Collage Theorem
In practice, it is usually very difficult to identify the right IFS codes using the
above technique. This study modifies collage algorithm and develops a more

practical method to find the right IFS codes, specifically for fractal network
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of fractures. Details of this technique and the associated computer program

are explained in the next chapter.

There are two other important theorems that relate to fractal dimension and are

explained in part V of this section.

IV. Fractal Aleorithms

There are two classical “forward” fractal algorithms that are explained here:
o Deterministic Algorithm: Based on contraction mapping theorem, in every

iteration, the fixed point remains unchanged: W(Ag=A; = Uwi(Ap = Ar

Also, A, = Lim W°"(4), for any A. Therefore, if we start with an arbitrary

n—>00
object (lets say a 1x1 box), apply all transformations and unionize them into
one object, we have done our first iteration. This process can repeat until a

constant image is generated:

Define original Object A: Rectangle (100x100)
v

Apply Transformation W = Uw; to Object A

&

———-}i Plot Object A

+

Replace Object A by W(A)
v

< NumOflters .
Iteration # ?

=Predefined Large Number (NumOflters)

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deterministic algorithm is a quick way of understanding what happens at
each stage of developing a fractal object using IFS codes. As we saw in
Figure 6.2, after only 27 iterations, the image becomes stables and “looks
like” the fractal attractor. However, in this form, this algorithm is not very
efficient for the purpose of this study. In addition to othef limitations,
presence of transformations with condensation (primary fractures) results in
ambiguity between the boundaries of A™ and the images of the initial
fracture. For specific purpose of this study, this algorithm was modified as

will be explained in Chapter 7.

®  Random Iteration Algorithm
This algorithm is based on the notion that fractals (and in fact all natural
phenomena) are collections of small particles. Images that are generated by
this algorithm look much more realistic than the deterministic algorithm
(Figure 6.6). Practically, this is the most appropriate algorithm to simulate

rock permeability values at small regions of a finite difference model.

The idea behind random iteration algorithm is to apply one of the
transformations to a single point, randomly, at each iteration. All
transformations have equal probabilities of being selected. Therefore, after
very large number of iterations, they are all used equally. If desired, this

criterion can be modified for fractals that used different probabilities for
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different transformations (Figure 6.3.b). The algorithm is very simple and is

summarized here:

Initialize X(x1,Xp,X3) at Origin (0,0,0)

-

Input Contraction Mappings as “IFS Codes”

-

__’[ Select one IFS code, Randomly (W)
i

Calculate: NewX =wjo X
Replace: X=NewX and Store

+

Plot all points X(x1,X2,X3)

<NumOflters

Iteration #?

=Predefined Large Number (NumOflters)

It would be more interesting to go the other way around. If we have an image that is

known to have a fractal nature (e.g. based on fractal dimension stability) what is its

iterated function system? A true mathematical answer to this question, in fact, could

open a whole new world of applications in image processing and compression:

If. in the forward direction, fractal mathematics is good for generating
natural looking images, then, in the reverse direction, could it not serve to
compress images? Going from a given image to an lterated Function System
that can generate the original (or at least closely resemble it), is known as

the inverse problem. This problem remains unsolved.

Kominek (1977-1993)
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The goal of this study is very similar to the above, and even broader than that. If we

have limited field data on fracture network (borehole observations) that gives us a

“partial” image of the network, would it be possible to find the correct iterated

function system? For the purpose of this study, a “reverse” fractal algorithm was

developed and implemented in a computer program. This reverse algorithm will be -
explained in details is chapter 7. The proposed reverse fractal algorithm is still based
on trial-error approach. However, it is much more practical and effective compared

to collage algorithm, specifically for borehole data imaging.

V. Fractal Dimension

Self-similarity of an image is evaluated by studying stability of its fractal dimension.
Fractal dimension (D) is a number associated with a fractal image (a measure) that
shows how well the fractal object fills the space and how it compares to other fractal
objects. Great Britain coastline is a Koch curve with a fractal vd}ivmension of 1.2.
Another shoreline with a fractal dimension of 1.1 should have a smoother, less
jagged pattern and would be easier to travel, may be ?

Mathematically, fractal dimension, if exists, is defined as:

{Ln[N (A,s)]}

b=Lim\™ L)

£=0

where, N (A, £ ) is the smallest number of closed balls of radius £ >0, needed to

cover fractal object “A”.
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For a totally-disconnected or just-touching similitude fractal, fractal dimension is

mathematically calculated based on scale factors of its IFS codes as explained in the

following theorem:

e Fractal dimension of a similitude IFS, which is disconnected or just-touching

is equal to the fractal dimension of its attractor and can be calculated as:

ZlSn!D =1 D=D(4)=? ; S,=Scale factor of n™ transformation

For a similitude overlapping IFS, fractal dimension of the object (D),

calculated from the above equation, is larger than fractal dimension of the

attractor [D(A)].

Two example applications of this theorem are explained hereafter:
» Fractal Dimension of Sierpinski Triangle — Mathematical Derivation:

Consider the right angle Sierpinski triangle with the following IFS Codes and

Scale factors:

: pz 021 8
0.00| 050 | 0.00 | 0.00 || 0.50 | 0.00 |0.50}{0.00] %

2 1050/0.00/0.00] 050 | 0.00 | 0.50 | 0.50 | 0.00 {0.50{0.00] %
3 1050{0.00|0.00| 050|050/ 0.00} 050 |0.00{050|0.00|

IFs#| a ,b%c‘d e | | p | o
1.10.50]0.00

The fractal Dimension of this attractor is calculated as:

SIS, ” =1, D20 D> SP+S7+8)=1
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>4 %D-;.%D-;_%D:l w=p 3x(%D)=1 wsp D:%’z%/%):.l,58496
2

> Single Fracture Set: For the disconnected and similitude fracture set of Figure

6.10 with the following IFS Codes and Scale factors:

,b,,‘c,,_[__‘Lke~ f o | 0| po 0, s
0.00 | 0.00 | 0.45 | 0.05 | 0.00 | 0.46 | 5.00 | 0.46 | 500 046
0.00|0.0310.35 | 904 |0.52 | 044 | 5.00 | 0.44 | 500 044
0.00 1 0.04 | 048 | 0,52 | 0.00 || 0.47 | 5.00 | 0.47 | 500 047

0.00 |-0.01| 042 | 950 {055 042 | 6.00 | 0.42 | 6.00 042
0.00 | 0.07| 0.00 | 0.50 | 0.51 | 0.45 | -8.00 | 0.00 | 30.00 0.00

Fractal Dimension is calculated as:

Yis) =1, D20 > SP+SP+SP+5) =1

> 0.46°+0.44° + 0.47° + 0.42° + 0.00° = 1 Trial —Error oy _ 1 7954

Figure 6.10 — Disconnected Fracture Set, Example
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Another theorem approximates balls of radius € by square boxes of edge €:

e Box Counting Theorem: To evaluate whether an object is the attractor (A) of

an IFS code, overlap the object by a (2" x 2") grid, count the number of cells

that intersect the object [N(A)]. Repeat this process with various n’s and

plot Ln(N) — Ln(2") curve. If the slope of the curve remains constant and a

good correlation exists, the selected object is the attractor of an iterated
function system. This theorem is used to calculate fractal dimension of an
object and its stability. Its application to fracture networks is explained and

used in section 6.2,

This experimental theorem can be used to estimate fractal dimension of a totally-
disconnected and/or just-touching object. The procedure of the box counting

technique is very simple:

1. Cover image “A” by a rectangular mesh 2" x 2* (e=12).
2. Count the number and proportion of filled boxes [N(A,&)].

Ln(N )

Lni2"

3. Calculate D =

4. Change n and repeat the procedure for various n’s.
5. If D remains relatively constant, the image is fractal and its fractal

dimension is D.
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The two examples of mathematical fractal dimension calculation are also analyzed

by the box counting technique:

» Sierpinski Triangle: As shown in Figure 6.11, at n=1 (2 X 2 grid), 3 of the 4.
boxes are filled. At n=2 (4x4 grid), 9 of the 16 boxes are filled, and at n=k

(2 x 2¢ grid), 3* cells are filled. Therefore the fractal dimension is always

k
calculated as: D = Ln(3 ) =1.584962 . Fractal dimension is usually shown as
Ln(2¥)

the slope of the Ln(N) — Ln(2") curve. If this slope remains relatively

constant, the object is a fractal with a fractal dimension equal to the slope of

this curve (Figure 6.13).

Usually, fractal objects are not as simplé as Sierpinski triangle. Sometime it
is difficult to identify Which< boxes are filled and which ones are empty. To
overcome this difficulty, this study proposes to count the number of “points”
in each box. The cell with maximum number of points takes number 1.0 and

all other boxes are calculated as proportions of 1.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



' ;.b’ 7 ¥ T
P rg By, n g

P

g g
el
5
wrlin,
[
g;f:ﬁ”ﬂ% il e
2 . =
S, s
", B, o v

G s

5w ws oW e ®

5
2 6

ok
5 1% 7

i
1
{

k.

ek AW ey e siey

PR

Mesh Size # of filled boxes Ln(2") Ln(N) Slope of
(n=de=1 (N) Ln(N) - Ln(2")

1 3 0.69315 1.09861 1.58496

2 9 1.38629 2.19722 1.58496

3 27 2.07%44 3.29584 1.58496

4 81 2.77259 4.39445 1.58496

5 243 3.46574 5.49306 1.58496

Fractal Dimension = Average of Slope of Ln(N) — Ln(2") curve: 1.58496

Variations of Fractal Dimension = Standard Deviation / Average: 0.00000

Figure 6.11 — Box Counting Method
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When a computer processes an image, graphical deviations result in
accounting for some points incorrectly. For example, for the graphical image
of Sierpinski triangle, a Visual Basic program counted the number of points
for a 2x2 (n=1) mesh (Figure 6.12.a). The 5 points in the upper right box of
Figure 6.12.a are miscalculated. Some points close to the center of the box
( ¥, '2) may appear to belong to the upper right box, when analyzed by an
image processor. This program identified 5 such points. The difference
among the number of points in the other 3 boxes is rationalized similarly. In
this case, the numbers are proportioned to the maximum number (3553) and

rounded to the closest (1/2"), as shown in figure 6.12.b:

5 %ﬁ@‘@o > 1 0.0014 > 0
i,

i
-

T
Fe

g
?a‘

Figure 6.12 — Modified Box-Counting Technique: (a) Number of points from computer
image processing, (b} Associated numbers for Box-Counting method

This results in the correct fractal dimension, with 100% accuracy. This

accuracy, however, is not achieved regularly. There are usually some

variations in the slope of the Ln(IN) — Ln(2") curve. The following example
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shows a more practical application of the proposed modified box counting

technique.

» Similitude Fracture Set’ — Box Counting Method: An image of the

disconnected fracture set of Figure 6.10 was analyzed by a box counting

Visual Basic program that resulted in the following values:

Mesh Size
(n=>e=1

# of filled boxes
(N)

Ln(2")

Ln(N)

Slope of
La(N) - Ln(2"

5931 3 | 20000 |

12 1/4 1.3863 2.5055 1.8074

8 41 3/8 2.0794 3.7227 1.7902

16 120 1/16 2.7726 4.7880 1.7269

32 372 1/16 3.4657 5.9190 1.7079

64 993 3/4 3.4657 6.9015 1.6595
Fractal Dimension = Average of Slope of Ln(N) — Ln(2") curve: 1.7384
Variations of Fractal Dimension = Standard Deviation / Average: 0.0349

Compared to the analytical method (1.7254) the value of D is about 0.7%

maore.

As Ln(N) — Ln(2") curve in Figure 6.13 shows, a very good

correlation exists (R*= 0.9925). This, in addition to small variation (~3.5%),

confirms stability of the fractal dimension. It is noteworthy that the value of

the fractal dimension may be also estimated as the slope of the trend line. In

this example, the estimated value from regression analysis (D=1.7045) is

1.2% less than the analytical estimate (D=1.7254).

9

compare the results with the analytical method.

Other experiments

Box counting can be also applied to a non-similitude fractal. This example is used merely to
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showed similar results. It could be concluded that average of the above two
approximations (average of D’s and the slope of regression curve) provides a

more accurate estimate:

Dioxcounting= (1.7383+1.7025)/2=1.7205 =~ D analytical (Exacty = 1.7254

Fractal Dimension Analysls for
Bimilitude Fracture Set Nodel

7 - y = LT3 *
R*=0.8935 -

Lo# of Filled Boxes { N]
¥

Sot lrteroapizo

0 : : . .. \
5 1 2 3 4 5

LnlGrid Size (2]

Figure 6.13 — Sample Ln(N) — Ln(2") Curve

In chapter 7 we will see the application of the above technique in an inverse
algorithm to: 1) estimate fractal dimension using partial image of a fractal and 2)
quantify proximity of an IFS attractor to a fractal image. One last word of caution in
using box counting technique is that for overlapping IFS’s, this method
underestimates fractal dimension. In this case, fractal dimension of the attractor is
smaller than fractal dimension of the object, since graphical techniques may consider

two overlapping points as one point.
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6.2- CURRENT APPLICATIONS OF FRACTAL THEORY IN FRACTURED

ROCK MODELING

1. Fractal Nature of Fracture Networks

It has been common to evaluate fractal nature of fracture networks using (modified)
box counting. In this method, a grid of size (n) covers the image of the fracture

network (outcrop). Number of fractures in each cell is considered as the level of cell
occupancy and, based on that, Ln(N) — Ln(n) {or Log;o(N) — Log;, (n)} curve is
developed by changing the value of n and counting N. If the slope of this curve is

relatively constant, it is concluded that the fracture network is a fractal with fractal

dimension: D = Ln(N) / Ln(n). La Pointe (1988) provided a good example. The

number of fractures in the 3x3 mesh of the fracture network in Figure 6.14.a is
provided in the 3D histogram of Figure 6.14.b. The normalized histogram, that
represents the number of filled boxes is shown in Figure 6.14.c. In this case, fractal

dimension is calculated as:

N=15,n=3 = D=Log(N)/Logi (n)=Logie (15)/Log;o (3) =2.465
This process was repeated for various values of (n) and the Log;o(N) — Log;y (n)

curve was developed as shown in Figure 6.14.d. The relatively constant slope of this

curve confirmed fractal nature of the fracture pattern (D=2.48).
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Figure 6.14 — Box Counting for Fracture Network

A big question here is why are we getting a fractal dimension larger than 2? As
discussed before, D=1 represents a continuous line (—), D=2 represents a filled
square (), and D=3 represents a filled cube (7). Therefore, a 2D fracture pattern
such as Figure 6.14.a should have a fractal dimension between 1 and 2. It is not
intended to overrule the above technique, but to improve it. For this purpose, the
fracture network of Figure 6.14.a was scanned into computer and the modified box
counting technique was applied to the “number of dots” that would cover the
fractures. A preliminary test was conducted to confirm accuracy of the program. In
this test, colors of the fractures (black to gray) were-identified and they were filled

by green dots (shown in lighter color). As Figure 6.15.a shows, the computer

program identified almost all fractures. It is expected that the estimated D be just a
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little less, since a few gray points are not identified and some points are deleted

during elimination of the 3x3 grid, but this difference shouldn’t be more than a few
percentages. Ln(N) / Ln(n) curve for 79 grids (n=2, n=3, ....., n=80) is shown in
Figure 6.15.b. The results confirm fractal behavior (D= 1.4118 and R? = 0.9864 ~

1.000) for this fracture network. The conclusion by La Pointe (1981) was indeed

correct. The value of D, however, was considerably overestimated.

Fractal Dhvensionior Sangie

Fracture Network jLa Polite - 1388)
? -
3 =418 4
.51 Blmoamd 0
g 4 /
g 3 P g —
2 A - Cserved Values |
11 7 L UmatRegesson
0 2 4 6
Lain)

identified by image processing (Green/light Dots), (b) Box counting results

It is noteworthy that it may be more appropriate to analyze each fracture set
individually. Intuitively, fracture sets that have different geological origins could be
members of different fractal families (have different IFS Codes). If we analyze them
all together, we may not be able to consider them as fractals, while they could be
fractals, individually. If the fracture network of Figure 6.15.a did not have a stable
fractal dimension, still it would be possible for each of the fracture sets to be fractals,

with different fractal dimensions.
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1I. Fracture Parameters Estimation

Various fracture parameters are evaluated and shown to have fractal behavior.
Burrough (1981) showed that fractal dimension of a fracture pattern can be
calculated from its variogram. Variogram (or semi-variogram) is a geostatistical
technique that relates the average squared difference in orientation to the separation

distance (Hudson et al. 1993).

With information on a few points of a fracture surface profile, fractal interpolation
can be used to simulate fracture surface and Joint Roughness Characteristic (JRC)
can be estimated based on fractal dimension. There are still limitations associated

with this technique as explained by Hudson et al. (1993):

1. JRC reference curves (figure 3.1) are Euclidian lines and non-fractal. Fractal
dimension of such a curve and the associated fractal interpolation should be
1.0.

2. The resolution of fracture surface image on paper is much coarser than the
finest jaggedness of the actual joint. Fractal dimension cannot be estimated
accurately.

3. In general, as we saw in the box counting examples, fractal dimension cannot
be estimated at the high level of accuracy that is needed for fracture surface

profile.
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Cantor sets have been used to simulate spacing values for a fracture set. For
example, IFS ={§K,w (x)=%x, wz(x)z ¥, x+ %} results in the joint set of Figure
6.16.a, in one run. It is noteworthy that another run may result in another
configuration such as 6.16.b. These two joint sets have different statistical (and

therefore hydraulic) properties. This is due to the very small number of iterations

(100).

Figure 6.16 — Two alternative joints spacing distribution from one fractal model
with small number of iteration (100).

One important lessoﬁ can be learned from fractals. At very large number of
iterations, when an attractor becomes stable, there is always an iterated function
system that could produce a given statistical distribution that remains relatively
stable at various runs. Figure 6.17 shows a good examples. The attractor of:

IFS= {9?, w (x) = 0.6x, wy(x) = 0.5x+0.3, w(x) = 0.4x+0.22, w, (x) = 0.4x +0.14, w; (x)=05x+0.1 9}
was arbitrarily found to have a Normal distribution. Kolmogorov-Smirnov test

accepts the hypothesis that the data distribution is Normal (K-S value = 0.0099 < K-
S(a=0.01y = 0.011), for 20,000 iterations and average of 1000 runs. It was also found
that various simulations result on very similar (Normal) distributions, 95% of which

being accepted by K-S test (the 5% rejections were marginal).
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Sample Fractal Model Histogram
Versus Normal Distribution

20%
18%
16%
14%
12%
10%
8%
6%
4%
2%
0%
0.00 0.20 0.40 0.60 0.80 1.00

Observations

Frequency

——— Fractal Model (Histogram) ——— Normal (Histogramy)
.-.....Fractal Model (Cumulative) - = - -Normat (Cumulative)

Figure 6.17 — A Normally Distributed Fractal Model

This example concludes that we can find an iterated funcﬁon system that always
produces a pattern with desired statistical distribution. The purpose of this
discussion is to emphasize on the fact that statistical distributions are better not to be
used as the “start point” in the process of rock characterization, but as a “verification

tool” for fractal models.
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II1. Hydrologic Inversion

Let’s forget about fractures characteristics for a minute. Would it be possible to
identify flow characteristics of a rock medium using limited well-test data? This is a
question that has been answered by “hydrological inversion”. A trial-error inversion
algorithm looks for an arbitrary fracture network that would produce the observed
well-test values (Rock Fractures and Fluid Flow (1996) — P. 373), without going

through any significant fracture network characterization.

An emerging concept in this field is the application of fractal theory to develop
hypothetical fracture networks. An inverse algorithm looks for an iterated function
system that produces a fracture pattern whose hydraulic properties agree with well
test data. Self-similarity nature of this model can be used to extrapolate hydraulic

properties of small test scale to large filed scale.

Acuna (1993) provided a good discussion on hydrological inversion and its
algorithm. A brief overview of that work is provided here, in order to be compared

with the current work and understand their similarities and differences:

Iterated function system (IFS) can be used to simulate the fragmentation process that
is observed is fractured media. This work was motivated by the notion that:

“The necessary geometric and transport propertiés of a network of fractures to
produce a particular well response remains a poorly understood topic. Is in this area

where fractal geometry offers a theoretical frame to relate a large variety of pressure
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transient responses to the geometric and dynamical properties of network of

fractures™.

Acuna included XY term in the IFS transformations to facilitate generating
curvilinear fracture networks and applied these IFS codes to an “initial fracture”.
Figure 6.18 is an example fractal network of fractures. The number of largest
fragments would equal to

the number of transformation and the study
considered models with two transformations, only.

A statistical distribution function for number of

fragments was derived and, based on that, fractal

. . ) Figure 6.18 -Sample Fracture
dimension was calculated as a function of number of pattern from Acuna (1993)

fragments and possibility of fracturing.

Since each generation of fractures provides information on the next generation,
Properties of the fracture network (number, size, and connectivity) are known, after a
given number of iterations: “A network made with 2 transformations and n
generations has 2"'-1 fractures, including the original fracture”.  Acuna also
proposed to systematically eliminate a proportion of fractures at some iterations, in
order to control intact regions of the media, at a desired level. In the Sierpinski

triangle of Figure 6.19, 25% of the fractures are eliminated, at the last two iterations.
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Figure 6.19 — (@) Modified Sierpinski Triangle (11 generation). (b) Box Counting (dot), Fracture
Length (solid line), and Fragment Size (dashed line) Distributions. [From Acuna (1993)]

The above model was then linked to the conventional unsteady state transient flow
model and a relation was developed between porosity at radius (r) from a well center
and fractal dimension (D), size of the smallest fracture (1), and radius (r): ¢(r)=
do(t/10)™ , where ¢p = Constant. A similar relation was derived for permeability
(K). Sierpinski triangle was used as the hypothetical fractured medium. Pressure
transient response was simulated and various parameters (number of iterations, cut-
off limit, Location of the well) were altered to conduct sensitivity analyses. Figure

6.20 shows one of these analyses as an example. It was observed that:

1. “More generations of fractures allows longer and clearer fractal pressure
transient response” and “the boundary effects are felt sooner in the network
with less geﬁerations”.

2. “From the study of the cut-off sizes effects, it became clear that what actually

controls the fractal behavior of a system is the separation between the upper

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and lower cut-off sizes”. Also “equally important is the presence of non-
fractal features in the network that affect the pressure transient response”.

3. Pressure response 1s also subject to properties of the fractures that are directly
connected to the well. It was shown that changing location of the well
influences pressure response of the system. “In deed, at early times, the
higher value of the slope of pressure response [for the well not on the center]

shows the fact that only a few long fractures are reaching the well”.
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Figure 6,20 — (a) Modified Sierpinski Gasket (9 generations) with well position shown by small
square. (b) Pressure transient response as pressure (solid) and pressure derivative (dashed). (c)
Slope of curves.

[From Acuna (1993)]
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The above results were used to interpret actual well test data. It is assumed that, in
naturally fractured reservoirs, wells are connected to large networks of fractures that
are dominant flow pathways. Based on well test observations, fractal dimension is
back-calculated and a fractal network of fractures is hypothesized that would result
in similar pressure transient response. Figure 6.21.b is an arbitrary fracture network
that could produce the pressure response matching the well test result of Figure

6.21.a. The selected fracture network is only “one of infinite many possibilities”,

one of which may be even better than this one. There is no evidence that this model

is similar to the actual geometry of the real network of fractures.

t2)
303
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= 1o A, s . —
b 7 308 w05 10

Figure 6.21 — (a) Well Drawdown for Pressure Transient test. (b) An Arbitrary Fractal
Network of Fractures that Could Produce Pressure Response such as (a). [From Acuna
(1993)}

Acuna concluded that, based on his fractal model, the classical transient flow model
is, in general, acceptable. Also, large fracture networks are modeled better than
small networks, using the proposed fractal concept. Fractal model, of the above
form, offers a good alternative to other hydrological inversion methods, for naturally

fractured rocks.
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“The most important feature that distinguishes this study from conventional random
methods is its ability to create geometrically complex networks in two and three

dimensions by manipulating only a few parameters [fractal parameters].”

The fractal model proposed by Acuna (1993) and, in general, hydrologic inversion
technique, provide good estimate of flow properties, based on limited well test
results. These methods, however, have some limitations that could be overcome

using an alternative fractal model, such as the one proposed in this study:

e An artificial fracture network developed by the above model is not
necessarily the actual network. We may be able to get a fractal network to
have the same pressure response as the observed values in specific well
locations, there is no guarantee that overall hydraulic properties of the site are
modeled accurately.

e Acuna’s model is based on the assumption that rocks are well-fragmented.
All fractures are connected to each other and contribute to flow. In reality
there are many dead-end fractures that do not contribute to flow and
fragments are not as organized as we see in Accuna’s examples.

e According to the author, “Observation wells data are too site dependent to
allow an unambiguous determination of fractal parameters”.

e Since the initiator is a line (as apposed to a point), fracture roughness cannot

be simulated in this technique.
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e Since the model is developed based on “probability of fracturing”, it is
ultimately a statistical model and possesses statistical models limitations.

e As we discussed in section 6.2 — part I, two intersecting fracture sets may
appear not to be fractal, but each could belong to a separate fractal family.
Fracture sets cannot be analyzed separately, using Acuna’s model.

e~ The model was not successful in simulating small scale fracture network. It
was shown that it is more appropriate for large scale problems.

o Most of the well-test examples were based on Sierpinski triangle, or well-
fragmented networks. It was acknowledged that additional arbitration of the
networks (more realistic networks) result in “some additional problems

- regarding finite size effect”.

This study attempts to develop a model in which the above limitations are addressed
and eliminated. Fractal concepts and mathematics that are used in hydrologic
inversion models, such as Acuna (1993), have a great potential to be combined with
- the proposed model in chapter 7 for improvement. For example, the modiﬁed
iterated function system by Acuna (1993) could be used to simulate curvilinear
fractures. Once the model is completely developed (as explained in chapter 7), any

fracture pattern such as the ones by Acuna (1993) can be analyzed.
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IV. Percolation Theory

Percolation theory is a statistical/fractal technique that provides a universal law that
determines geometrical and physical properties of a system. Percolation is the
process of fluid flow ina random medium and it is a measure of system connectivity.
It was originally intended for porous media and later it was applied to fractured

rocks, as well.

Percolation theory consists of numerous definitions such as percolation threshold,
correlation length, cluster size and number of clusters, percolating cluster, accessible
fraction and backbone fractures, and many more. Going through all these definitions
and the complicated mathematics behind percolation theory is outside the scope of
this work and does not serve any purpose for this study. We intend to proved a short

description of percolation concept and study its possible applications in this work.

Percolation threshold is the fundamental concept of fractal theory. It is defined as
the “largest fraction of occupied bonds below which there is no sample-spanning
cluster of occupied bonds” [Sahimi (1994) — page 11]. In other words, in terms of
number of clogged segments, it is the minimum number below which there is no
fluid transmission (percolation). Percolation threshold has been estimated for
various configurations. For example, it has been shown that for square networks
(Figure 6.22), percolation threshold is 0.5927 for site percolation and 0.50 for bond

percolation. That means, at least 50% of the bonds in Figure 6.22 must be open to
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flow in order for fluid to be transmitted from left to right. In Figure 6.22.a 52.44%
of the sites are open. and fluid can flow from left to right through one or more
percolation clusters (blue/dark is one of them). In Figure 6.22.b only 44.44% of the

segments are open and fluid cannot percolate from left to right.

(b)

Figure 6.22 — Percolation Threshold: (a) Above Threshold (P=52.44% > P.=50%), percolation
occurs through percolation cluster (blue). (b) Below percolation threshold (P=44.44% < P=50%),
no percolation occurs.

In percolation theory, all system parameters follow scaling laws and are of the form:
flp)=(p-p,)" where f (p)is a system parameter and o is a constant which is

universal (at least at some range). Universality means that these constants are
independent from the system configuration. For example, Balberg (1987) used

number of unclogged segments (N) instead of probability (P) and showed that
volumetric water flow can be calculated as: Qo (N —N, )<, where x is independent

from system configuration and complexity. Further, Berkowitz and Balberg (1993)
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showed that system permeability can be modeled by: K < (N /N ~1)*. It was

found that o=1.3 for 2D and 0~=2.0 for 3D.

At scales smaller than correlation length, a percolating system is heterogeneous and
the sample-spanning (infinite) cluster is a fractal — it looks the same at all scales
smaller than correlation length. Fractal dimension of the infinite cluster can be used
to estimate various percolation constants. For example, Berkowitz and Balberg
(1993) calculated a fractal dimension of 0.834 for a model of semi-rectangular
boxes, separated at correlation length. Permeability of each box was modeled by: Kg
= Ko(P-P.)°, where { was estimated as {=D.v and for 2D: v = 4/3 and D=0.834

(above) therefore {=1.11.

Percolation theory is widely used in petroleum industry and is proven to be a good
tool to predict fluids flow and transport behavior at macroscopic scale. This
technique is ultimately a statistical approach and, once again, does not provide any
information on the fracture system and microscopic flow behavior. In fact, due to
universality of percolation theory, system configuration does not come into

calculations.

While the concept of percolation, in general, is not much applicable to this study, a

good use of “percolating cluster” was identified that will be explained in chapter 7.
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6.3 - INTRODUCTION TO A NEW APPROACH FOR FRACTURE NETWORK

CHARACTERIZATION

From what we learned about fractals, and fractal nature of fracture networks, it is
quite possible to simulate a fracture network that realistically represents site
characteristics, using fractal theory. All we need to do is to find the correct iterated
function system. One that takes limited observations from site investigations and
extrapolates them to develop the entire fracture network. If this goal is achieved, the
next task would be to characterize flow behavior of such a fractal network of

fractures.

The next chapter introduces a model with the above characteristics. Basic concepts
and theorems of fractal are used to develop models and algorithms to simulate a
fracture network, based on field observations. This network is not a hilpothetical
network, like the ones used in hydrologic inversion or in percolation models and it is
not a random network. The proposed fracture network is aimed to be the most
accurate one, the one that really exists in the field. The level of accuracy depends on
the amount of available information and presence of a fractal nature in the system of

fractures.

Noting that rock permeability is ultimately resulted from pores configuration, it can

be assumed that fractures could be modeled as “collections of tiny pores” that are
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configured in an apparently clustered pattern such as Figure 6.23. At the location of
fractures, these pores get so close to each other that they form continuous lines. At
microscopic scale, these lines are not straight lines, but corrugated lines whose
grooves are defined by fracture roughness (JRC). These features can be simulated
using fractal dots. In addition, matrix permeability could be accounted for, if the
right IFS codes are selected. These simulated dotes are the backbone of the rock
permeability tensor, at small scale. A finite difference program (such as FLAC™®)

can be used to model the complete system.

Figure 6.23 — Fractures are collections of tiny pores that are configures in a certain way.
This perspective can help to account for fracture surface roughness.
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CHAPTER 7- A NEW APPROACH TO FRACTURE NETWORK AND

FLOW MODELING USING FRACTAL THEORY

7.1 - FRACTAL BASED FRACTURE MODEL

I. Construction of Fractal Network of Fractures

Assuming that a fracture set has fractal behavior, iterated function system (IFS) with
condensation can be used to simulate that fracture set. In this study we formalize

this system in the following format (Figure 7.1):

a B T

v

S

o B v
?"W

St R et e e

Sl s

T TN TS BRSO

Figure 7.1 - Condensation Set and a “Perfect” Fracture Set
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The first 4 transformations build the background and define properties of the fracture
set, as a group. We call these “background sets”. The last transformation is a
condensation set that is defined based on the properties of the initial (primary)
fracture. Initial fracture is the largest fracture in the system and copies on the map of

the “condensation set”.

The 4 background sets can be altered to generate alternative fracture networks, all
based on the same initial fracture. If they are perfect squares (0.5x0.5) with no
rotation and/or overlapping, the fracture set is a perfect set whose fractures are
exactly parallel. At every iteration, 4 new fractures half the size of each previous
fracture are copied at the center of the previous square. This doesn’t do any good for
us! Fracture sets are not so perfect in real world. They look more like Figure 7.2 in
which the background sets are altered from (0.5x0.5) squares to arbitrary
parallelograms. The properties of the fracture set obey the parameters of the first 4

transformations, as well as the condensation set.

There are many other ways to simulate fractured media using iterated function
systems. One alternative is manipulating transformations probabilities (Figure 6.3).
Figure 7.3 shows another alternative that could be used to simulate a single fault, for
example. In this study, for simplicity, we only apply the above model (Figures 7.1
and 7.2). This simplification, however, does not limit applicability of the other

models.
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Figure 7.2 — A “Realistic” Fracture Set

&
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It is important to note the relations between fracture network parameters. Despite
conventional statistical models, a fractal model of the above form takes into account
dependence of one parameter to the others. Fractures spatial distribution, length,
orientation, aperture, and surface roughness, all depend on one set of parameters: the

IFS codes. As a simple example, lets generalize the example discussed in Figure 6.5.

o 0
A transformation of the form [ 0 ]
o

{ B } 1s applied to a vertical fracture at
4

origin. It can be shown mathematically that at iteration i, the fracture is ¢ smaller

i «{ﬁ} In other words, there is a
- {y

than the oﬁginal fracture and it is moved to:

direct  relationship  between  fractures  size and  their  spacing:

Spacing = f(Size, o, B, 7’)

II. Forward Algorithm

Chapter 6 introduced two classical algorithms to create fractal images; deterministic
algorithm and random iteration algorithm. In the forward simulation (i.e. generation
of a fractal image from a given set of IFS codes), random iteration algorithm is

appropriate, without any modification.
A deterministic algorithm is also needed to validate the outcome of the flow model
(Chapter 8). The classical deterministic algorithm was found not to be quite

sufficient and it was modified as follows:
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Input the four corners of the parallelogram representing the initial fracture

———* Apply the four background transformations to the initial fracture

Il

Consider each new fracture as the initial fracture

+

< NumOflters

Iteration # ?

=Predefined Large Number (NumOflters)

Figure 7.4.b shows the result of applying this algorithm to the fracture set of Figure
7.4.a. This model is developed only to study statistical distribution of parameters
and evaluate flow simulation results compared to the classical equivalent continuum

flow model. It does not provide any additional information.

A A A A

(b)
Figure 7.4 — (a) A Sample Fracture set using Random Iteration Algorithm.

(@)

(b) Same Fracture Set, using Deterministic Algorithm.
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[11. Reverse Algorithm

In order to find an iterated function system whose attractor is close to a given
(partial) image, a reverse algorithm is needed. It has been a practical challenge to
find appropriate IFS codes for an image and still there is no numerical model that
could achieve this goal. Based on the collage theorem, however, it is possible to
analyze an image and identify its IFS codes, approximately. Some Images that can
be modeled using disconnected and/or just-touching IFS are easy to analyze. Figure
6.3.a in Chapter 6 was a good example. But this is more an exception than a rule.
We need an algorithm that could be applied to a wider range of fractal images,

specifically (partial) fractal network of fractures.

To develop such an algorithm, we need to look at the process of creating a fractal
mmage. We start wifh the deterministic algorithm, which provides a good
understanding of this process. Assume we have =n transformations
(w,,w,,w,,...,w ). At the first iteration, n copies of the original image (A) are

created {w,(4),w,(4),w,(4)....,w,(4)}. Based on the collage theorem, the union of

these n images equals the original image. Therefore, if the image boundaries are

approximated by a polygon F, with m comers, the n copies of F, should also

approximate the fractal image segments boundaries, in the same manner. If the

number of transformations (n) is correct, the union of images of F, should also

cover the boundaries of the overall image (i.e. F).
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Let’s name the n copies of P, at iteration @ as B>, P>, P7,... ,P®. The relation

n

between P° and P, is clear: P° =w, (P).

H

For each (background) transformation, w, has 6 unknowns (a,,b,,c,,d, e, [,),orin
polar coordinates: (p,;,8,;,0,,0,,€;, .). Therefore we need 6 equations to

identify these parameters. P, and P° can be described as:

Po:{C;(xx’y1)a(xzaJ’2)a(x35Y3)a-'-a(xmaym)} > Pz'® { (xh=J’1z)’(x2w}’2:)’(x3z’y3z) ( Si’yr?i)}
where, (x,i?, y,f,?)= node k of polygon i in Cartesian plane xy

The relation between Py and P(”i can be organized as the following matrix relation:

- , ®
T' |;x1 i 0 0 1 0 X 0]
0 0 x, Y, 0o 1 - Y
ai o
X 5 Y2 0 0 1 0 b X o5
0 0 X, Y, 0 1 i vy
X, Y3 0 0 1 0 | ‘i | = Al
0 0 X3 Vs 0 1 le Ty§>,
: : : e.
!
. . . . . - Lfi .
xm ym 0 0 1 0 N xf?i
1 0 0 ‘xm ym 0 ] | xri)i

(7.1) T x IFS.=X7

Therefore, IFS, can be calculated using 6 of the above equations. In other words, If
we have coordinates of three corners of polygon P, and the corresponding three

corners of the polygon P®, we can derive IFS;:
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(7.2) IFS, = [T,(D ];6 X{X,@ }6x1

Equation 7.2 is the basis of the inverse algorithm that is developed for this study and

explained below:

1. Consider an image that is expected to have fractal behavior (Figure 7.5.a)
2. Draw a polygon that defines a specific characteristic of the image (for

example its boundary or an outstanding feature of the image) (£, in Figure

7.5.b)
3. Try to find three corners of a copy of this polygon (copy i) scaled down,

rotated, and/or sheared (e.g. i =1 = P, in Figure 7.3.b).
4. Use equation (7.2) to find IFS, based on the first three corners of P, and B
5. Apply IFS, to equation (7.1) to find coordinates of othe? corners of B
6. If B appears to be close to the boundaries of a portion of F,, alter

coordinates of its corners and go back to 4 to optimize F, or go to 7 if the

proximity is acceptable, otherwise go back to 3 for the same i.
7. Increment i and go back to 3. Repeat until the entire image is covered by the

transformations (1,2,3,. Lol = n) .
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Figure 7.5 — Application of Fractal Inverse Algorithm (b) to a Fractal Image (a)

Using the above inverse algorithm in a computer program, the appropriate IFS codes
can be found after just a few trials. The implementation of this algorithm in a

graphical computer program will be explained in part V of this section.

In the case that a complete image of the fractal object is not available, the
outstanding features of the image can be used, instead of its boundary. This becomes
particularly important when we try to complete a fracture network based on limited
borehole data from site investigations. An example of this case is also provided in

part V of this section.
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IV. Validation of Iterated Function System for a (Partial) Fractal Image

An iterated function system that is developed by the above inverse algorithm can be
as accurate as eyes can see. In order to quantify proximity of an IFS attractor to a
given image and improve it, a measure of comparison is needed, a single value that

describes fractal properties of the two images and compares them.

Figure 7.6.a shows a fractal image in red/light color (it is a fractal image, for fact).
The proposed inverse algorithm was implemented and the attractor of an
“approximate” iterated function system is shown in blue/dark color (with some
intentional error).  Figure 7.6.b shows the same image overlapped by the attractor
of another IFS, which is also “close” to the original image. But which one is a better

model? How “close” are they to the image and which one is “closer’™?

Figure 7.6 — Two Erroneous Attractors (blue/dark) for a Fractal Image (red/light).
Which one is better?
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Barnsley (1993) used collage algorithm and quantified this “proximity” by Harsdorff
metric, a value that shows the average distance between an image and its attractor.
Though, determination of this value is very difficult and requires a lengthy process to
measure the distance of every point on the attractor from every point on the image.
Noting that some fractal images have hundreds of thousands of points, this would be

a tedious process and would require extensive computations.

In Chapter 6 we introduced a simpler measure for fractals; fractal dimension. A real
number between 0 and 3 that indicates how well a fractal image covers the Euclidian
space. Fractal dimension is a simple tool that can be used to compare two fractal
images, although it is not as accurate as Harsdorff metric. Two images that are
totally different may have the same fractal dimensions (Figure 7.7). This limitation,
however, is not a major factor in this work. It is almost impossible to find an iterated
function system that has an attractor close to a given image and has the correct

fractal dimension, but is a wrong one.

Figure 7.7 — Two Different Fractal Objects with the Same Fractal Dimensions (D=1. 5849)
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Fractal dimension of images that are created using random iteration algorithm can be
estimated using the modified box counting technique, introduced in Chapter 6. The
notion that these images are collections of numerous dots, allows us process them
using a simple algorithm that counts the number of dots in each box. Fractal
dimension stability can be estimated by repeating this process for various grid sizes

(which could be different from 2"). Despite the classical box counting that relies on

visual inspection and can provide limited number of points on the Ln(N) ~ Ln(n)

curve, the new algorithm can generate numerous points on this curve and provide a
more confident answer about fractal dimension stability and its value. In Chapter 6,
we saw an example with 79 points on the Ln(N) — Ln(n) curve (figure 6.15). Figure
7.8.a is the image of a fracture pattern found on the columns at the top of Doine
tower in Florence. This image was analyzed using the proposed box counting
algorithm and it became clear that it is not a fractal image. A rational for non-fractal
behavior of these fractures is the fact that the column has been under (non-
geological) structural loads for years and the pattern cannot be described by the self-

similarity identified in rock fracture mechanics (Chapter 5).
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(b)

Fractal Dimension for Dome Tower Sample
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Figure 7.8 — (a) Fracture Pattern form Dome Tower Column, Florence, Italy.
(b) Identified Fractures by Box Counting Algorithm (green/light).
(¢) Ln(N) — Ln(n) Curve: It is not a fractal!

V. Interactive Fractal Program (IFP V1.5 — SEP 2002)10

A visual basic program was developed for the purpose of this study. Both forward
algorithm and reverse algorithm are incorporated in this program which interactively
develops fractal images from given IFS codes and finds appropriate IFS codes for a

given fractal image. The user interface is very simple, as shown in Figure 7.9.

% IFP was developed for the purpose of this study, only. It is not a commercial program and it is not
used for any other purposes.
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Figure 7.9 — Interactive Fractal Program — User Interface

IFS codes are defined in the left window. They can be entered either directly into the
“Define IFS Codes” spreadsheet, or could be drawn as parallelograms on the left
window, graphically. Transformations can be also sheared, rotated, and/or resized in
the graphical window. After definition of all IFS codes, a random iteration algorithm

can be applied to draw the attractor of the IFS, on the right window (Figure 7.10)
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7.10 — Development of a Fractal Image (right)
from an Iterated Function System (left)

Figure

The reverse algorithm is incorporated as follows, with a simple example in Figure

7.11:

1.

2.

3.

4.

An image file (JPEG, GIF,BMP, etc.) is downloaded into the right window

A polygon that defines the boundaries (or outstanding features) of the image
is drawn, by visual inspection ( F, ).

A transformation is added (P, ®). This is a (¥2x Y} copy of the boundary
polygon, located on the center of the right window.

P, is moved, rotated, sheared, and/or resized to cover a portion of 5.
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5. Three arbitrary adjacent corners of P,® (called X, X,,X,) are moved to

better cover a portion of F.

6. As soon as each corner is relocated, a subroutine is called to recalculate IF'S,
based on the first three corners of P, and P, ®, using equation (7.2).

7. Consequently, the other corners of 7, ® are calculated by equation (7.1).
1

8. If a corner is not matching right, that corner and two of its adjacent corners

are selected as X, X,, X, and we go back to step 5.

9. An option is available to apply the same algorithm to A ® and its image B®
in order to assure self-affinement. P,® can also be altered to optimize
coverage of a portion of Py by P ® and, subsequently, a portion of P ® by
R®.

10. Add a new transformation (step 3 — P,®) and repeat the process until the
entire image P, is bounded by B°, B,® B°®...B° (n = number of

transformations).
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Figure 7.11 — Implementation of Reverse Agorithm in IFP. The three copies of Py (i.e. P,% P,°
P_yw) each cover a portion of Py Subsequently, P,Q, PZQ, and PgQ (copies of PI‘D, P;,@, and P; @)
cover a portion of each, in the same manner.
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Transformations IFS,, IFS,, IFS,,...IFS, are recorded/adjusted in the right hand

side spreadsheet, as soon as they are created and/or modified. These transformations
can be sent back to the forward algorithm in order to develop their attractor. This
attractor can be overlapped on the original image for comparison (Figure 7.12).
Such a comparison could show areas of improvement. For example, Figure 7.12

shows that some rotation and/or movement of transformation  could improve the

attractor. Comparison of their fractal dimensions shows that the fractal dimension of
the attractor is about 2.3% less the fractal dimension of the image (Dattractor = 1.610,

Dimage = 1.648).

Figure 7.12 — Comparison of a fractal image (blue) with an attractor from inverse algorithm (red)

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The proposed reverse algorithm is very effective for disconnected and just-touching
fractals. With some practice, iterated function systems for any such fractals can be
found quickly and accurately.” More accuracy can be achieved by adjusting IFS
codes, interactively, on the left window of figure 7.9 and redrawing the attractor to
overlap the fractal image on the right window. It takes more practice to analyze

overlapping fractals. In the above example, IFS, was more difficult to find due to
overlapping of its important corners with [FS,. Sometimes overlapping makes a

fractal image so complicated that it becomes impossible to find a reasonable iterated
function system. Fortunately, fractal network of fractures, in the form proposed

here, have very limited overlapping.

VI. IFP and Fractured Rock Characterization

It is important to note that a rough approximation of fractal image boundaries can be

sufficiently used as the initial polygon (F,) in the inverse algorithm. For example

the fractal of Figure 7.11 can be also analyzed by triangles (Figure 7.13.a), since the
“outstanding features” of this image are the three corners shown in Figure 7.13.a by
red circles. Identification of such features makes it much easier and faster to find an
iterated function system for a given image. The triangular approach for the above
example provided the IFS codes in less than 5 minutes (Figure 7.13.b). The fractal
dimension of this model is 2.1% more than the fractal image (more accurate than

figure 7.101).
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Outstanding
Features

Figure 7.13 — (a) Triangular simulation of IFS codes. (b) Comparison of the fractal image
(blue) with the attractor from triangular boundary (red).

The above observation is the basis of a technique that is proposed to find iterated
function system for a fractal network of fractures for which only limited information
is available. Consider a fracture set for which we have borehole data of Figure 7.14.
Let’s assume this is a fractal image (it will be proved, if we are wrong). The most
outstanding feature of this fractal image is the initial fracttire (the largest fracture).
Figure 7.14 shows a few hypothetical fractures that can be spotted from the
boreholes observations (blue dashed lines). We hypothesize the initial fracture as the
large one on the center top, due to its largest thickness. Now we define the
outstanding feature to be a quadrilateral based on the initial fracture and one of the
other fractures (it doesn’t matter which one, as long as its copies can be realizable at

various scales). Here, we define the quadrilateral shown in Figure 7.14 as F.
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Figure 7.14 — Hypothesizing initial Fracture and Polygon P,
based on borehole data of a fracture set.

The remaining of the work is straightforward. The reverse algorithm is used to
identify altered copies of F, that cover various parts of F,. Once copies of F, cover
itself entirely, the iterated function system is identified (without condensation set),
approximately. The condensation set is defined based on initial fracture properties

(length, orientation, and thickness). We develop the attractor of this IFS with

condensation and investigate whether it covers all borehole images. If we do not
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succeed, the transformations need to be altered (or the initial fracture hypothesis
must be changed), until the desired attractor is explored. Figure 7.15.a shows this

process and Figure 7.15.b shows the best attractor that was found compared to the

boreholes image. Perhaps IFS, needs some modifications.

se.

Figure 7.15 - (a) Development of IFS codes. (b) IFS attractor (blue) and boreholes image (red)

To evaluate proximity of the attractor to the original image, we need to “predict”
fractal dimension of fracture set. But we have only parts of this image (borehole
date). If there are n boreholes of thickness t, spread (approximately) uniformly in a

region of with w, the available portion of the image would be: a=n- t/w. We can

therefore predict fractal dimension of the fracture set as follows:

Fractal dimension is D=Ln(/N)/Ln(n), where N is calculated based on the number of

dots divided by maximum number of dots, counted by an image processing program.
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Lets define a fictitious fractal dimension for the boreholes image, even though it is

not a fractal: Dy=Ln(Ng)/Ln(n). Box counting program can easily process the

boreholes image and calculate D,. We have:

N = > [# of Dots in All Cells (Attractor)]
Max [# of Dots (Attractor)]

N = 3 [# of Dots in All Cells (Borehloes Image)] _axy [# of Dots in All Cells (Attractor)]

* Max [# of Dots (Borehloes Image)] o X Max [# of Dots (Attractor)]
(7.3) p,=tNG) _IN)
In(n)  In(n)

At every grid nxn, Dg is calculated and D can be approximated by Dy, based on
equation (7.3). This relation can be used to evaluate stability of the fractal
dimension and confirm fractal nature of the partially known fracture set. It can be
also used to compare the attractor found by the reverse algorithm with the actual

fracture pattern and evaluate their proximity.

The above method is effective when the boreholes are spread uniformly in the
region. In the above example where boreholes distribution is not uniform, we may
not be able to predict fractal dimension very well. In the example of Figure 7.16.a,
however, we have a good distribution of boreholes and fractal dimension can be
predicted from boreholes images. A fractal image was developed using IFP (Figure

7.16.b — This is in fact the exact fractal that created boreholes image of Figure
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7.16.a) and its fractal dimension (Figure 7.16.d) shows relatively good agreement

with the fictitious fractal dimension of the boreholes image (Figure 7.16.c):

D-D,| 21.6496-1.6279
= =1.32%.
D+D,  1.6496+1.6279

Deviation =

A word of caution in this technique is to make sure that the mesh size should not
exceed some threshold smaller or equal to the number of boreholes. In the example

of Figure 7.16, there are 13 boreholes and mesh size larger than 8x8 should not be

used, due to anomalies observed on the regression curve (Figure 7.16.c).

(@

Fictitious Fractal Dimension for Boreholes Image Fractal Dimension for IFS Attractor
59 7 4
Do not use
4.5 4
o 6
4
3.5 51
y = 1.6279x y: 1.6496x
3 = = 0.
R’=0.993 4 Ri=09945
z N=8 s N=49
2 z ,
728 z >
2 3
1.5 2
14
14
0.5
0 +——nr - - : - ! : : : e —
(c) g 0.5 1 1.5 2 2.5 3 3.5 (a)o 1 2 3 4 5
tn{n} Ln{n)
g

Figure 7.16 — (@) Image of Boreholes. (b) IFS Attractor for boreholes image (a). (c) Fictitious

Sfractal dimension of the boreholes image (a). (d) Fractal dimension of the attracior (b).
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7.2 - DEVELOPMENT OF THE PERMEABILITY TENSOR (FLOW MODEL)

1. Classical Equivalent Continuum Model

The foundation of the flow model that is developed in this study is based on the
classical Equivalent Continuum Model (ECM) that was introduced by Oda (1985)

for homogeneous and anisotropic fractured rock masses. In this case, steady state

flow can be modeled using Darcy’s law:

=4 w=k s ke,

Where: k; =Element i of permeability tensor (ft/sec.)"’
d¢/dx, = Gradient of total Hydraulic head ¢ (ft) in direction i

The model was developed based on the basic assumption that each fracture can be
modeled by two parallel plates that are spaced very closely (fracture aperture). The
well-known equation for this model is:

(7-5) W =5 ot
12-v

Where: u® = Average flow velocity in crack (c)
t = Crack thickness (aperture)
g = Gravitational acceleration = 32.2 ft/sec.’
v = Fluid kinematic viscosity (ft*/sec.)

"' Note that, in the general form, there is a g/v multiplier in eq.7-4. Here, this multiplier is embedded
in k; for simplicity.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Oda (1985), fractures were assumed as circular disks of radius », thickness ¢
(hydraulic aperture), and orientation # (comonly used assumptions is this line of
research). The probability density function of fractures properties distribution was

defined as E(#,r,t). Elements of the permeability tensor were calculated by

integration over the volume of region as follows:

(7-06) Kij =%2(Pkk5ij_Pij)
Where: =P j j J rie oy E(fi, r, t)dQdrdt (Crack Tensor)

p= Volume density of cracks [m™M/V] (b/ft)
€2 = The region under study
P, = Trace of matrix P (P;1+Py+P33)

0,=0, Else If i=j=90,=1
Permeability tensor ( K ) and crack tensor ( P ) are symmetric matrices. In fact, K is
similar to elasticity tensor (K,) and the relation between permeability tensor (X ),
velocity (U J)is analogous. to the relation between elasticity tensor

(), stress vector (0 ), and strain vector (

Therefore, it is quite rational to discretize a heterogeneous region of fracture
network, calculate permeability tensor for each small region (assuming it is
and size of its fractures (Figure 7.17), and use a

finite element or finite difference program to calculate global permeability of the
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The above concept is the basis of a simplified equivalent continuum model that was
developed and applied to fractal networks of fractures, as described in section 7.1.

This model is explained next.

E e x>

%,
i

i

K24 = F(C4,Ca2,..., C7)

Koverat = F(K11, Kq2.., K77)

FE AN AR S

- {Q‘bﬁ%lin
£ . P ;,? %
o 2
<t ¥

H
i'ﬂ!ﬁﬁl'ﬁlllﬂllil%.iill

Figure 7.17 — Discretization of a heterogeneous fracture network for flow modeling
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I1. Simplified Equivalent Continuum Model (SECM)

In a non-statistical model, fractures properties are available and there is no need for

the function £ (ﬁ,r,t). Therefore, values of P, ’s in equation 7-6 can be calculated

as summations, instead of integrations. In addition, at this time, the model is

developed in 2D'? and directional vector of a crack (7 ) can be written in terms of 7,
and 7i, (directional vectors of x and y). The other simplifying assumption is using

parallelograms of length ! and width b for fracture geometry. Some scholars have
used parallelograms or polygons instead of circular disks for fracture surface (e.g.

Dershowitz and Einstein — 1988).

Consider a square region of side L with n fractures of length / ), orientation 7 (©)
(h'(c) =Cosat), o' is the angle with x axis), thickness t(c), width b, where ¢ is
the fracture number (Figure 7.18). Flow equation for this medium is driven as

follows:

2" The model can be expanded to 3D space. The concept is straightforward, while the calculations
and the reverse fractal algorithm become very complicated. Development of a 3D model is one of
the recommendations of this study (see Chapter 10)
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Figure 7.18 - Fractures (cracks) properties

n{#ofCracks) » ©
w,xV= 3 u VO V=LxLxb ; VO=19%19%xb; (15 =y,

il
c=l1

=, *(LxLxb)= %i(tm)z w J % (19 %19 xb)
c=1

= :E{%glm*(t@f*’]" 5 SO =(5ij—ni-nj)*Jj ; 1y =Sinat ; i, =Cosax

J© =i component of gradient of crack ¢

J, = j component of field gradient J

=i = 1~2-.—1%_?211(“)>z<(t“>)3>f=(6!.,—n,.-nj) sJ, i =k, xJ,

Therefore:

(7-7.a) k, =-g—2~iz<@ £(tO) (8, —n, -n,)
12-v- L 5

Or in matrix format:
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2_(¢) . (0 (c)
. g © o (@) Cos ot - Sin'” - Cosa
T=76) Ky =—2— [l *\ ]*

( ) Koy 12-v- I Z ) - Sinat® - Cosa® Sin’o®

1. Application of SECM to fractal Network of Fractures

If properties of all fractures in a medium are available, equation (7-7) can be used to
calculate the permeability tensor of the equivalent porous medium. For a fractal
network of fractures, these properties must be defined based on the pattern of the
fractal dots. For each fracture set, assume the region is broken down by an nXn
grid (Figure 7.19.a). If n is large enough, it can be assumed that hydraulic
properties of each cell can be estimated by a single representative fracture. It
remains to find properties of this fracture and apply equation (7-7) to calculate the

permeability tensor of that cell.

#. Fractal Points

s gl FEGression

v = 1.4800 + 0.154
{Representative Cracig)

Figure 7.19 — (a) A fractal set of fractures, discretized by n X n mesh.
(b) Linear Regression for cell ij
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To identify the representative fracture, the following three techniques were
investigated. They are sorted in the order of their éccuracy:
o Regression Analysis: Consider the blown-up cell ij in Figure 7.19.b. If we
could find a line that is closest to all fractal points, that line would define the
representative fracture. Regression analysis is a technique that finds such a

line by minimizing the squared “y” distance of all points with respect to an

imaginaryline d:y=a+b-x:

n(#Points) 2 n

Mim’mize{f(a,b)= Z(yi'"j’i) zzbi—(a+b'xi)]2}

i=] i=1

Y@h)_, |a= (Sy-b T)=5-b3
da n
(7.8) < = <

F@h) _, DRSSO RIDN
. ob n2x2—-( x)2 |

L

The regression line is shown for the particular cell ij in Figure 7.19.b.
Although, Regression line, is not always the best trend-line. The concept of
regression is based on the assumption that “ y” is the “dependent” variable

and “x” is the “independent” variable. In cases such as Figure 7.20, this
assumption results is erroneous values of @ and b. The regression line in
Figure 7.20 (pink) is not a good representative of the representative fracture.

To be accurate, the minimum distance between the points and the
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representative line should be minimized (Figure 7.22). We introduce an

approximate method, and then the exact equation.

yog
e * L ® 29
® @ L3
® * r ?
'3 # Y
o.. L4 »
] 'R
L]
d :
L
. ‘.’ . '.
° 3 » [} L3
* '$ * @ [ ¢
L]
#° * B ®
i: L4
¢ ? ® @
M . #
L] . ) ¢ °
® L] ® 3 N
L] ® * ®
) J
'3 L]
° 8
‘ L
s [ata
P 2
—Minimized .0
——Transtormed Regression
=== inear Regression
- ®
| ]

Figure 7.20 — Comparison of three methods to estimate representative crack

o Approximate Optimization — Transformed Regression: The notion that
fractures in a set are approximately parallel, provides a tool to modify the
above regression model. The idea is simple: rotate coordinate system by -8

(6=Orientation of the initial fracture), calculate regression line in the new
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system, and then rotate the regression line by 6 and put it in the original

system (Figure 7.21). The regression line is calculated as follows.

Cosot’

(7-9)  b=Tan(e)=Tan(® +c’) ; a=b'x
Cosa

I4 4 . . . N
a’, b’ are calculated using regular regression in the transformed coordinate

system, d:y =a’+b"-x'.

e o FESARH WA
s FEATARUE VoIS
e T PANSHGTNE BROTESHON

Figure 7.21 — Transformed Regression

o Accurate Optimization — Minimized 26 > Regression: In order to find a

fracture that best represents trend of the fractal points in a cell, the shortest
distance from all points to this fracture (8) should be minimized, as shown in
Figure 7.22. In other words, we need to solve the following optimization

problem for ¢ and b:
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n n —_ 2 3 A 2
Minimize{f((x,b) = de = Z(Z’——J—;’-) = ZM} Appendix A

P =\ Cosa bed 4 b?

provides solution to this optimization problem and it concludes that:

of (a,b) _
T—O azi(Xy—b'Ex):ji—b-)_c
(7-10) 3 = 4
df (a,b) _ _ >
Tob =0 |b=xvU*+1-U
(202 -(E0)? |- 22 -55°
Where: U:[ ] /{ )

ATxYy—n-Txy)

It is important to note that there are always two values for b, in equation 7-
10 and selection of the right value is crucial. In cases that the initial fracture
is very close to horizontal (0=0°), the error is negligible. In other cases,
however, the right value must be selected. This is done by looking at the

orientation of the initial fracture (sign of 0) and using it as correction factor:
b =9/ |9|><VU > +1~U, keeping in mind that  can only take values (0° to

90°] or [-90° to 0°).
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% Data points
e Minimized 38 7
4 ——Regular Regression
3
2 -
1
0 1 2 3

Figure 7.22 — Comparison of Minimized Z 87 and linear regression

In this study Minimized 25 ? Regression was applied to the fractal model. For a

highly fractured region, approximate optimization may be used for faster results.

Regular regression is not recommended, due to the problems discussed above.

Propertied of the representative fracture are now easy to define:

e Orientation o is defined by Tan™'b. b is calculated by equation (7-9) or (7-

10).
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o Length / is calculated based on the assumption that the fracture meets both
boundaries. This assumption is rationalized by the fact that the cells are very
small. A conditional statement in a computer program can calculate / for

each of the cases of Figure 7.23.

Figure 7.23 — Defining crack length: Alternative crack truncation schemes

e Fracture thickness is assumed to be the 85% confidence interval. This width

is defined by u * o, assuming normal distribution of errors (j/, -y, ). This

is a widely accepted assumption for regression analysis. Higher confidence
interval was considered to be too wide due to the féct that hydraulic aperture
is always less that physical aperture. For an actual problem, one could find a
confidence interval that is appropriate for a given roughness (JRC). A
surface with JRC=0 requires 95% confidence interval, while a surface with
JRC=20 may use a confidence interval as low as 60%. Normal distribution
tables can be used to gain a desired confidence interval by defining x in

Htk-O.

A visual basic program was used to calculate properties of the representative fracture

and permeability tensor of all cells, for each fracture set. The fracture network of
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Figure 7.24 was used for the purpose of this study. Permeability tensor values for
each fracture in each cell were calculated by taking the average of 20 simulation
runs. Permeability tensors for all fractures in each cell were superimposed to get the
global permeability tensor for that cell. The flow problem was then modeled by
FLAC?, a finite difference program. A brief summary of FLAC? and simulation of

the proposed problem (Figure 7.24) are discussed in the next section.

Inflow
R R

Outflow

Figure 7.24 — Proposed fracture network flow problem
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7.3 - FLOW MODELING USING FLAC?" FINITE DIFFERENCE PROGRAM

1. Introduction

Fast Lagrangian Algorithm for Continua (FLAC) is a finite difference model that
creates real time simulation of mechanical and hydro-mechanical behavior of earth
structures. FLAC can be used to predict response of an earth structure to external
factors step by step, including loads, temperature, and hydraulic forces. With an
appropriate model, one could simulate a sliding block in a slope stability problem

and monitor the block deformation (failure) at different times (Figure 7.25).

-

Figure 7.25 - FLA C?? sliding block simulation for slope stability analysis,
from initial stage (a) through failure (e
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As applied to this study, FLAC can simulate groundwater flow in heterogeneous and
anisotropic porous media. Various boundary conditions can be applied to simulate
various real life situations. Steady state and transient flow can be both modeled.
Fluid saturation can be initialized, fixed, and/or calculated at the end of simulation.
More complicated problems (such as hydro-mechanical coupling) can be simulated
using FLAC programming language FISH, which can define new parameters and

conduct desired calculations.

The objective of this study is to simulate fluid flow in a fractal network of fractures.
A very simple problem is selected for this purpose. A 14x14 piece of rock
containing fracture network of Figure 7.24 is subject to horizontal flow from left to
right (no gravitational forces). Flow is assumed to be saturated and steady, with no
hydro-mechanical coupling. A 50x50 grid discretizes the region, permeability tensor

is calculated at each cell, and FLAC uses the following formulation to simulate flow.

II. Numerical Formulation of Flow in FLAC?®

In FLAC, each cell of the grid that is introduced by the user is subdivided by two

overlaying triangular elements, as shown in Figure 7.26.
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o

Figure 7.26 — Each element is subdivided by two overlaying
triangular elements with given properties

Darcy’s law is used for general formulation of flow in direction I: %, =kl.j OBP/ axj .

Therefore, using Gauss’ divergence theorem, flow equation for each triangle in

. k,
direction Ican be approximated by u, z—’EPO n; ®s, where the summation is over
A

the three sides of a triangle and A is the area of the triangle. Thus, components of

velocity are:

-~

u, -—::147[1(”2}’011] osﬂ—lcu}:POn2 Os]
(7-11) 3

u, =—§1-[k1212}’0n1 OS+k222P0n2 ‘S]

Discharge (Q) into each edge of an element is calculated as:

(7-12) O=u,e4, =u,en, esel.0

Combining equations (7-11) and (7-12), the numerical model can be re-written in

matrix format as:
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(7-13)  {0}=[M]®{P}, with gravity: {0}=[M]®{P~(x,~x")e g, o p,}

At each iteration, after calculating Q% at all nodes (i) using equation 7-13, pore

pressure at all nodes (i) is decremented by:

K, o3 (07 ea)

(7-14) p@ — p _
nel
. . K, eAte ® , _
If At=Cte.=P" =p% " ZQ =P" -1 Q¥
nel
Where: K, = Fluid bulk modulus of elasticity

At =Time step
n =Medium porosity
V® =Volume associated with the node i
Equations (7-13) and (7-14) are the foundation of flow simulation of FLAC?®. They

are applied through several iterations until the change in pore pressure (defined by

equation 7-14) becomes insignificant.

It is noteworthy that the values of K, At, and ndo not impact the final result.

They are, however, very important in taking us to the final results. If these

parameters are selected suitably, after small number of iterations, convergence will

occur (changes of pore pressure become insignificant). Inappropriate values of X,

At , and » result in very long simulation time.
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1. Simplified Formulation, as applied to the proposed problem

In order to understand the way FLAC models a simple problem such as the one
proposed in Figure 7.24, FLAC flow algorithm was modified for such simple
problems and reprogrammed in Microsoft Excel. This provided a tool to review
system behavior step by step and understand finite difference applications and
limitations to fracture networks, in general. In this specific case, elements of Figure

7.26 are changed to square elements of side €, as shown in Figure 7.27.

a e d a d
< |

€
c b c b

Figure 7.27 — Grid geometry for the simplified problem

Using equation (7-11) velocity vectors at an edge ij of a triangle are calculated.

Discharge at node i is calculated by equation (7-12). These calculations were
performed for all four triangles and superimposed to calculate the overall discharge
into one node. Details of these calculations are provided in Appendix B. Flow

equations are derived as follows:
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Q(“)=—1-(kl —k, +ky,)o PO +k, o PP —k, 0 PO —k, o PO
S Vo T H T 1 22 !

1 a <
ZQ(b) =§[k12 o P! : +(ku _k12 +k22)°P(b) "kn o P "kzz 'P(d)]
(7-15) ]

ZQ(C) =‘;‘["ku o P +kyy o PO +(kyy +Ky +ky, )0 P~k 'P(d)]

ZQ(d) z}i[‘kzz o P —kyy o P —ky, o P +(k11 +ky, +k22)’P(d)]

IV. Simplified Flow Algorithm

Now that the simplified model (equation 7-15) is available, the flow algorithm for
horizontal, saturated, and steady-state flow in a square mesh nXn (e=1/ n), is as

follows:

1. Apply nxn mesh

2. Apply Boundary Conditions at each boundary node: Prea=given, Prign=given

3. Assign permeability values (k) to all cells

4. Calculate total flow at each node using equations (7-15).

5. Apply equation (7-14) to update pore pressure (P ) at all nodes. A can be
selected as an arbitrary small number. But it should be selected
appropriately.

6. Repeat steps 4 and 5 until the change in pore pressure becomes insignificant.
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The above algorithm was incorporated in Microsoft Excel in two ways:
e Recursive Algorithm: As shown in Figure 7.28, permeability values are
entered and matrix M is calculated. The special case of &, =k and k, =0

for all cells (isotropic and homogencous) is shown here. At step 1, pore
pressure in every cell is calculated using boundary values. At each step,
discharge values are calculated as a function of pore pressures and
permeability values (equation 7-15) and then pore pressures are modified by
the new discharge values (equation 7-14). The sheet is calculated for several
times (F9 key) until there is no observable change in the values of all cells.

This indicates convergence and final values are obtained.

e Stepwise Algorithm: Recursive algorithm is only useful to compare the final
results with FLAC and confirm accuracy of equations (7-14) and (7-15). Itis
desired to review FLAC outputs at every step and look for any anomalies to

investigate FLAC limitations (Figure 7.29).
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Figure 7.28 — Recursive Algorithm in MS-Excel
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Figure 7.29 — Stepwise comparison of FLAC with MS Excel output
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V. Considerations and Limitations of FLAC

A simple rectangular region (57 x 57) was discretized by a 5x5 grid and
permeability values were applied at each cell. To impose variations in ks, ki, took
a non-zero value (for simplicity it was set to ky;=k,;). Pore pressure of 5 x 10° psi
was applied to the top boundary and zero pore pressure was applied to the bottom
boundary. FLAC model was developed, pore pressures at all nodes were recorded in
every step, and the results were exported into Microsoft Excel. The same problem
was simulated using the simplified algorithm in Microsoft Excel. The same value of
A was used in both models to assure the same convergence speed. Figure 7.29 shows

the results for P; values and compares them with each other. It is concluded that:
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e FLAC tends to generate a numerical error as a result of rounding every P,

value. In the case of this example (Figure 7.29), accumulation of these errors
resulted in small deviations of final results. It was observed that more

heterogeneous and/or anisotropic media (more variable k,’s) would enhance

this error and it is concluded that simulation of highly heterogeneous media

by FLAC is not recommended.

e It 1s observed that heterogeneity and/or anisotropy result in negative pore
pressure. By default, FLAC truncates pore pressure and does not allow
negative values. Changing the value of FLAC parameter ftense to a large
negative number can modify this criterion. However, negative pore pressure
could result in cavitations, which is not accounted fér. Again, impact of
negative pore pressure was not significant in this particular example. It was
observed that more heterogeneous media present more difficulty to converge
as a result of higher values and number of negative pore pressures. In fact,

when the variations in k;’s became very significant, the finite difference
equations did not converge and F; values moved to infinity in both MS

Excel model and FLAC model. Ir conclusion, finite difference modeling may
not be appropriate for highly heterogeneous media. In cases where
fracturing is not well developed throughout a region, one should seek

alternative flow modeling such as discrete network models.
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e This kind of convergence problem was also experienced in the Yucca
Mountain Project. The 3D flow model did not converge due to “distinctly
heterogeneous ™" nature of the problem. To overcome this problem in YMP,
all fractures permeability values were enhanced 10,000 timed and matrix
permeability remained unchanged. It was argued that in a true steady-state

condition, the final results should not be impacted.

V1. Simulation of The Proposed Problem

The proposed model of Figure 7.24 was simulated in FLAC?®. The following

parameters and boundary conditions were applied:

Grid: 50 x 50 (Largest acceptable mesh in the available version of
FLAC)
Size: 14 in x 14 in (largest constructible size, in the physical model)

Saturation: Fixed at 100%
Water density () = 0.03611 1b/in’
H;,=46in e 4 Pin =7+ Hin =46 x 0.03611 = 1.661 psi

How=21in => Pin =7 Hin =21 x 0.03611 = 0.783 psi

1 Unsaturated Model and Submodels, YMP Report — page 53.
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k,’s calculated by the proposed SECM model (section 7.2.1II). For

FLAC, values of k,’s needed to be divided by Water density (Yw).

In the original simulation, numerical convergence did not occur. It was concluded

that a lower-bound threshold of &, =5><10’4ki,.(Mm) could cause an acceptable

convergence (see Chapter 8). This threshold was applied, the problem was simulated
and the results were compared with a physical model and the model was validated

using a sensitivity analysis, as will be discussed in the next Chapter.

7.4 - A GLANCE AT DISCRETE NETWORK MODEL AND APPLICATION

OF PERCOLATION THEORY

Earlier we discussed the need for a discrete network model in cases that equivalent
continuum model is not practical. A discrete network model (e.g. for Figure 7.24)
needs the “backbone” network only. The backbone network is the only network of
fractures that contributes to flow. Identification of the backbone can simplify DNM

significantly.

Classical percolation theory has developed an algorithm that identified the
percolating clusters and consequently the backbone network. This algorithm, with
some modifications, can be applied to a fractal network of fractures to identify the
backbone network. The classical algorithm looks at all the sites (bonds) to see
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whether they are “open” or “close” and then looks at the neighbors of an open site
(bond). In a fractal model, sites can be considered as cells of a large mesh. In this
case openness is defined by the number of dots within each site (cell) and it is not
binary (0, 1). A site may be “partially open”. In this case, sites that have less
occupancy than a percentage of maximum number of dots (e.g. 4% in Figure 7.30)
are considered close. The portion of the sites that is open to flow can be translated to
fracture aperture. Therefore the backbone network will consist of fractures with
variable apertures throughout the region. These variations in apertures influence

flow behavior in the medium.

Percolation clustering algorithm was applied to the fracture network of figure 7.24
and the result is shown in figure 7.30. All clusters that do not contribute to flow can
be safely eliminated and we will be left with one backbone fracture network
(Blue/dark gray cluster). Fracture apertures throughout the network can be estimated
by the number of dots in each cell (site) and they are variable. This information can

be used as the input to a discrete network model.
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Figure 7.30 — Percolation Cluster Counting Algorithm and Fractal Network of Fractures
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CHAPTER 8 - EXPERIMENTAL AND STATISTICAL VERIFICATION

OF THE FRACTAL BASED FLOW MODEL

8.1 - EXPERIMENTAL MODEL

1. Physical Model Basis: Hele-Shaw Model

In order to verify the results of the proposed flow model (Figure 7.24), a physical
model was developed and used. The basis of this model is the Parallel-Plate Hele-

Shaw Apparatus™

. Hele-Shaw model is a simple equipment that consists of two
parallel plates that are separated by a small gap, flow intake, constant-head tank,
flow outlet, reservoir, and a series of piezometers to record hydraulic head variations
throughout the system (Figure 8.1). Since Hele-Shaw experiment is based on Darcy’s
law and its generalized form, Navier-Stokes equations, it is important to have a
laminar flow through the region. Therefore a Reynolds number of more that 2,000 is
not appropriate. It is proposed that the plates spacing should be less than or equal to
1 millimeter for water and a few millimeters for heavy oil. In any event, flow at the
vicinity of boundaries may become turbulent and unreliable. Therefore the larger the
model, the better the results.

Figure 8.1 — Hele-Shaw

Experiment, could be as simple

as (a) or as complex as (b).

(b)

" Handbook of Ground Water Development (1990) — Appendix K
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For the purpose of study, the Hele-Shaw model was modified as follows. Instead of
using two parallel Plexiglas plates with a gap, an aluminum plate with the fractal
pattern of fractures encrypted in it was covered by a Plexiglas plate, to facilitate flow

monitoring.

II. Physical Model Design and Construction:

Figure 8.2.a shows the design of the lower (aluminum) plate. The fracture pattern
was carved into the aluminum plate by a CNC machine. The fractal network of
fractures of Figure 7.24 was developed u;sing IFP computer program. Due to CNC
machine limitations, a computer algorithm eliminated all fractal points that would
not form significant fractures, since these points would not contribute to flow. Then,
the coordinates of all fractal dots were translated into the CNC machine language

and fractures depth was identified as 2 millimeters (see below).

Due to CNC machine movement limitations, a size of 14” x 14” was the largest
practical size for the physical model. Fractures depth (aperture) in this model is
equivalent to the parallel plates spacing in the Hele-Shaw model. From practical
point of view and due to the small size of the model, 2 millimeters fractures depth
was used. This is a little more than the “1 millimeter” that is recommended for

water. Therefore possibility of turbulence flow for water was initially predicted.
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Based on measure theory of fractals, as long as a considerably large number of very
small dots are generated, flow properties are independent from the number and size
of the dots (see Test #1 of section 8.3). This is, however, a réstriction for the
physical model. The physical model is using only 20,000 data points (5,000 per set).
Therefore, the size of the dots should be proportional to their size in the printout of
the computer model. This consideration dictated a mill size of 0.1 for the CNC
machine. The resulting fracture pattern (Figure 8.3.b) was compared to the computer

model (Figure 8.3.a) to assure that they have identical flow pathways.

Plan View Plan View
: 27 6%” ; V2" Plexiglass Plate
s Fractures Depth
. 0.078” [2.0mm]
2 6% :
(a) Section A-A (b) Section A-A

Figure 8.2 - (a) Aluminum plate with fracture pattern.
(b) Plexiglas Plate to monitor flow
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(b)

Figure 8.3 — (a) Fractal Model, eliminated isolated fractal points after 20,000 iterations.
(b) Equivalent fracture network, encrypted on an aluminum plate, using CNC machine.

III. Physical Experiment

The preliminary experiment with pure water indicated possibility of turbulence flow,
as predicted. The experiment results are summarized in Figure 8.4. To verify

turbulence possibility, Reynolds Number (Re) was calculated as follows:

uelpD
v

R =

e

R, <2,000 = Laminar
Where: R, = Reynolds Number : 12,000 <R, < 3,000 = Transitional
3,000 <R, = Turbulence
u = Fluid Velocity (in/min)

D= Diameter = Diameter of the equivalent pipe. For a
rectangular duct (axb), D=4R, = 4-—‘1—;-1—)— 19
2(a +b)
v=  Kinematic  Viscosity of fluid - for water:

v=0.09150 in®/min

> Roberson and Crowe (1993) — Page 449
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For the particular case of Figure 8.4, lets consider the large intake pipe that passes
through piezometers 9R and 4L. This is a duct with width 0.14™ and thickness
0.078™ (2™ fractures depth). The amount of flow through this fracture is 62.5% of
the total inflow, since the other intake fracture’s width is 60% of this fracture (itis a
copy of the initial fracture With p1=p,=0.6). Therefore, Reynolds number is

calculated as:

=1,430 in/min

Measured Discharge Q=25x0.625=15625 in’/min Q15625 in® [min
N . ="
Cross Section: A=0.14"x0.078" =0.01092 ir’ A4 001092 in®

. 2
D=d4R, =280 _p QOW92 " _ 400 4y 009150 in?/min
a+b  (0.14+0.078)"

water

ueD 1430x0.100

Therefore: R, =
% 0.09150

=1563 <« 2,000=Close to Transitional

Flow

This calculation shows that if pure water is used, flow will be close to the transitional
regime. In transitional zone, flow interchanges between laminar and turbulence.
Therefore, laminar flow model (Darcy’s law) in not applicable. This justifies the
large deviation between experiment and the numerical model results (section 8.2),

for pure water.
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@nYmin) |

1L 36 1/4 46 1/4
(1)xB0x(1/2.54%) 2L 36 1/4 46 1/4
G 3L 313/4 413/4
4L 29 1/8 39 1/8
24.898 5L 27 314 37 3/4
2 60 | 0.422 7.033 25.752 S 87
7L 22318 323/8
3 90 0.624 6.933 25.386 8L 21 31
oL 18 1/2 2812
4 60 0.408 6.800 24.898 10L 11 21
1R 11 21
5 90 0.602 6.689 24.491 2R 13172 23 1/2
3R 1 21
6 90 0.606 6.733 24.654 4R 16 %
A 5R 17 718 27 7/8
Average (i) 6.831 25.013 6R 24518 4 5/8
Standard Deviation (o) 0.129 0.472 R 26 1/4 36 1/4
8R 30 1/8 40 1/8
Relative Deviation (o/p) 1.9% 1.9% OK. 9R 31172 41172
10R  [361/4 461/4

Figure 8.4 — Pure water flow physical model and experiment results

Based on the above observation, it was necessary to repeat the experiment with less
viscous fluids. An additive called Hydroxypropyl methylcellulose (HPMC) was
added to water at various proportions. Stewart et al. (1998) showed that solving
various proportions of HMPC in water changes waters viscosity. They developed
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Figure 8.5 that could be used to achieve a desired viscosity by mixing the right

proportions of HPMC powder. This relation was modeled by Voo =692 c*™,

where V.o is viscosity at 20 "“and C is HPMC concentration (%). Stewart et al.’s

finding was used and the experiment was repeated for the 0.5%, 1.0%, 2.0% and 3%
concentrations of HPMC. The results were used for verification of the numerical

model and sensitivity as follows.

e %
2 fomk m
E; | T amuikiie §
& ' ;.
?ﬁ 10 £ p’/»rj’
f P
g ’/”
5
% R i
g -
E &
1
¢ 1 ¥ 3 4 &
PR commantration 1)

HPMC% v (ft %s)
0.0 1.059E-05
0.5 3.230E-05
1.0 7.530E-05
20 4.300E-04
30 1.070E-03

Figure 8.5 — Water viscosity as a function of HPMC concentration
(from Stewart et al. -1998)
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8.2 - NUMERICAL MODEL VERIFICATION

I. Comparison with Physical Experiment

The physical model was used to verify the numerical model results. Various
mixtures of water-HPMC were experimented and values of viscosity, discharge, and
boundaries hydraulic heads were recorded. Viscosity and hydraulic head values
were used as input parameters for the FLAC?® model, permeability tensors for
FLAC?® were calculated from the proposed SECM flow model (section 7.2). To
climinate biases due to algorithm randomness, average of 20 runs, each with 300,000
iterations, was used. The problem was also analyzed using deterministic fractal
algorithm and the classical equivalent continuum model (modified Oda — 1985).
Alternatively, an equivalent pipe-network model was developed and analyzed.

Development of the pipe network model is explained in appendix C.

Figure 8.6 summarizes the outcomes of the three models (Classical ECM, Proposed
fractal model, and pipe-network), in comparison with the physical model.

Comparison of the results provide the following conclusions:
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= # = Observed Discharge
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-------

0.0%

0.5%
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HPMC Percentage

3.0%

3.5%

Figure 8.6 — Comparison of results between classical flow model,
proposed fractal model, pipe-network model, and physical experiment.
In best case (1% HPMC), observation is 32% less than estimation.

The first observation in this graph is the proximity of the fractal model to the

classical equivalent continnum model. This outcome was predictable, since

both models have the same foundation and use the same laminar flow

assumptions. In general (with the exception of 0% HPMC'®), classical ECM

provides a little higher discharge. While this difference is insignificant, it

co_uld relate to smoothness of fractures surfaces in the classical ECM. In the

fractal model, fractures roughness is accounted for using confidence interval

around the trend-line.

The hydraulic aperture is therefore less than the

16 The results of 0% HPMC are not reliable, since we are close to laminar/turbulence transitional
flow zone.
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mechanical aperture and smaller discharge is calculated. Selection of the
right confidence interval could result in more realistic flow calculations. In
addition to accounting for joints roughness, the other advantage of the
proposed model compared to classical ECM is its ability of study internal
behavior of the system and flow pattern, whereas classical ECM only
provides macroscopic information (total flow amount throughout the system).
e Due to the large Reynolds number for the 0% HPMC experiment, the flow is
not always laminar in this case. As a result, the observed discharge is
considerably less that the calculated discharge by the proposed model, due to
the significant head losses. As the viscosity increases (higher HPMC
concentration), Reynolds number decreases and we move into laminar flow.
This explains the proximity of the results at 1% HPMC. However, more
concentration of HPMC results in too much viscosity, high shear stress and
friction at fractures surfaces, and deviation from laminar flow regime. Note
that the deflection point may be somewhere between 1% HPMC and 2%
HPMC. Additional experiments could find the deflection point more
accurately. For the purpose of this study 1% HPMC as the deflection point is
accurate enough. Above 2% HPMC, viscosity becomes so high that
discharge becomes almost independent from change in viscosity. This could
be attributed to the increased discharge measurement errors as a result of high

viscosity, as well as extreme friction at fractures walls.
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e The pipe network model has very good agreement with the other two models
and, again, its prediction is closest to the observation at 1% HPMC. In
general, predictions of the pipe network model are above the observations,
but below the other two models. Pipes network assumes that the dead-end
portions of the pipes can contribute to flow. Therefore it over-estimates total
discharge. However, the results are smaller than ECM, due to the fact that
ECM assumes that all fractures contribute to flow. It is expected to have
more agreeable results between the two models (ECM and pipe network), if
the region is well fractured and the pipe network is considerably larger.

e In the best-case scenario (1% HPMC), calculated discharge from the
proposed model is 29% more than the observed value (1-10/14.1). In the
next part we will see that smaller number of iterations and elimination of

fractal points in the physical model was responsible for this deviation.

Based on the above observations, 1% HPMC was used as the comparison

benchmark. In the numerical model head distribution was calculated using
FLAC/FISH program. In the physical model, hydraulic head was recorded at all
piezometers. Figure 8.7 shows modeled head distribution compared to experiment
observations. With the exception of 3 deviations shown by (€), results are in
agreement. Contribution of the localized error resulted in an overall error of 9.51%,
which is considered acceptable (<10%). Also a correlation analysis between

observed head and estimated head, showed good agreement: The regression line is
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very close to (y=x) and the correlation coefficient is very close to 1.0:

R?=0.9026 = p =+ R? =+/0.9026 = 0.95.

YL.ocalized Error

9R 43.86 44.00

£ 4000

b~

$ 38001

@

2 36.00 -
3400 -

3200 + ; 7 " . T ™
3200 00 3600 3800 4000 4200 4400

Estimated Head

Relative Error (¢, / Range) =

Figure 8.7 — Comparison of results error analysis for 1% HPMC
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II. Sensitivity Analyses

In order to confirm fractal model stability and accuracy of the above results, a

number of sensitivity tests were performed a explained below:

o TEST #1 — Hydraulic Properties Stability. Based on measure theorem of
fractals, the shape of a fractal image remains constant in various simulation
runs, after a large number of iterations. It is expected that hydraulic
properties of a fractal network of fractures should remain constant, as well.
Sensitivity tests were needed to validate this hypothesis and to identify the
number of iterations above which hydraulic properties remain unchanged. In
order for this, two tests were performed. In the first test, trend-line
parameters (a and o) of an arbitrary cell in a fracture network were
monitored for various iterations. It was observed that for number of
iterations larger than 200,000, variations of @ and o become insignificant
(Figure 8.8). To confirm that the same kind of stability exists in the overail
system, a second test was performed: the proposed flow problem was solved
for different numbers of iterations and total discharge was calculated for each
simulation. As Figure 8.9 shows, it was found that if the number of iterations
per fracture set is larger than 200,000, variations of calculated discharge
become insignificant (less than 1.2%). This confirms stability of hydraulic
properties for a fractal network of fractures, as long as number of iterations

remains very large (>200,000 per fracture set in this case). It is also
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interesting to note that changes in finite difference equations convergence

becomes insignificant, for iterations larger than 200,000.

| Variation of a and o for cell (19,42) with
Number of lterations*
8.183E03
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Figure 8.8 — Stability of Trend-line in an arbitrary celi
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Figure 8.9 — Overall Flow Stability, independent form (large) number of iterations
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e TEST #2 — Limitation of Physical Model: Based on the above finding,
300,000 iterations per fracture set was used as the basis of simulating the
proposed model. The physical model, however, was simulated using 5,000
itérations per set, only, due to practical limitations. Since this number is less
than the stability threshold (200,000), its impact should be taken into account.
From Figure 8.9 it is readily concluded that the observed discharge would be
at least 20% less that the actual value [(14-11)/14]. To get a more accurate
prediction lets go back to the deterministic algorithm and apply classical
equivalent continuum model (Figure 8.10). Properties of all fractures are
available and overall permeability tensor is calculated using equation 7-7.
Average velocity is calculated by multiplying the overall permeability tensor
by the overall flow gradient (AH/AL). Discharge is calculated by multiplying
velocity by the equivalent cross section (Figure 8.4): (2™ x11™). This |

calculation was performed for two models:

1. Complete network of fractures (Figure 8.10.2) & Qacwa = 14.50 in*/min
2. Partial network, physical model (Figure 8.10.b) ® Qpnys. Mode = 10.0

in*/min
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Figure 8.10 — Proposed Problem Fracture Network (deterministic fractal algorithm)
(@) Network with 250 fractures (50 per set). (b) Equivalent to physical model

It concludes that the physical model provides 69% of the discharge that is
predicted by the proposed model (10/14.5). This finding provides the rational
for the ~30% difference that we observed between physical model and the

numerical model (refer to Figure 8.6 and related discussion.)

o TEST #3 — Permeability Lower-Bound impact: In order to make finite
difference equations converge, it was necessary to use a lower-bound value
for permeability. An appropriate value for this lower-bound should be
identified. A very low value would not improve convergence and a very high

value would impact the outcomes. As Figure 8.11 shows, lower-bound larger

than 5x107 XK __ provide reasonable convergence threshold (less than 0.1).
Therefore, small permeability values are truncated by: 5x107™ xK, ... Note

that the technique we propose here is different from the one used for Yucca
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Mountain Project. This technique has less impact on the final result, since

the change in small K, ’s is insignificant.

Convergence Threshold

1. 0E+00 %

= “ S “T"

6.0E-01 -
5.0E-01
4.0E-01 -

3.0E-01

Convergence Threshold

20E00 .,

T0E01

0.0+ D0

O0E+00 1E-04 2E-04 3E-04 4E-04 S5E-04 6E-04 7E-04 8E-04 OE-04 1E-03 1E-03
Lower-Bound (Kiin/Kmax)

Figure 8.11 — Selection of Permeability Lower Bound

e Test #4 — Scale effect: Due to self-similar nature of the proposed problem, it

was hypothesized that flow properties are controlled by sample size. Based

on the relations: u, o (Zl-f)/ I’and Q, < u,, and from self-similarity we
have: ] o Land ¢ o< L, therefore it is hypothesized that: O =ce [>. This

hypothesis was tested and a perfect correlation was found between Qand *.

Figure 8.12 shows the result of the regression analysis, and proves that this
hypothesis is correct. This finding proves that the scale problem that we
experience in classical ECM modeling, for sizes smaller than representative

elementary volume (REV), does not exist in a fractal model of fracture
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networks. If the region has a true fractal nature, and if the fractal model is
accurately representative of the field conditions, results of a lab scale model

can be confidently extrapolated to obtain field scale predictions.

Variations of Discharge with Sample Size
(Fluid = 1% HPMC Mixture)

T

N
.

QQ R S

b b
N OO ON

Discharge (in3lmin)

Sample Size (inches)

Figure 8.12 — Scale effects for a self-similar fracture network
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- CHAPTER 9 - POTENTIAL FOR PRACTICAL APPLICATIONS

9.1 - OVERVIEW OF YUCCA MOUNTAIN PROJECT

U.S. Department Of Energy (DOE) identified Yucca Mountain as a potential site to
construct, operate, and close a repository for the disposal of spent nuclear fuel and
high-level radioactive waste. The proposed site is located at Yucca Mountain, Nye
County, Southern Nevada (100 Miles Northwest of Las Vegas). Project location and

layout are presented in Figure 9.1.

Among numerous studies, it was necessary to verify hydraulic conductivity and
transport properties of the region in order to predict possible contamination of
groundwater through nuclear waste transport. Therefore, it became vital to develop
complete flow and transport models. To estimate and calibrate models parameters,
numerous site investigations were conducted. These investigations were conducted
in three stages. In stage 1, flow was monitored through a large number of pre-
existing boreholes (Figure 9.2). Results of this investigation provided a global
estimate of flow behavior in the region. At stage 2, an exploratory tunnel was
constructed that basically encircled the proposed repository site. The exploratory
Study Facilities (EFS) was used to collect information on fractures patterns and
conduct hydraulic tests. To better characterize the media and validates outcomes of
stage 2, a new exploratory tunnel was constructed in stage 3. This tunnel would

cross the repository block and it was named “enhanced characterization of repository
183
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block™ (ECRB) or “Cross-drift”. Rock stratification and fractures properties were
identified through these tunnels and hydraulic tests were conducted through various
“niches” in both EFS and ECRB. All information were compiled into databases and

were available on Yucca Mountain Project website (www.ymp.gov). Numerous

flow and transport models were developed and the results of these models were also

available on the project website.
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Figure 9.1 — Yucca Mountain Project Layout and Location
(Yucca Mountain Science and Engineering Report — 2001)
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Figure 9.2 — Pre-existing Boreholes, used to conduct stage 1 investigations
(Yucca Mountain Science and Engineering Report — 2001)

9.2- GEOLOGY

1. Regional Geology

Regional geology has been investigated through numerous boreholes and some 6
miles of tunnels, since 1950°s. Yucca Mountain is believed to be formed as a result
of faults moving on sides of the western United States basin (Great Basin), over the

past 15 million years.
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In general, in the area surrounding Yucca Mountain, rocks are sedimentary or
metamorphic and they are not very permeable. Gneiss and Schist are the most
common and oldest rocks, dating some 1.7 billion years ago. The upper layers are
less metamorphosed rocks composed of quartzite, siltstone, shale, and carbonates.
Carbonate layer is the only aquifer layer and the rest are aquitards and rock fractures

are the primary conductors of groundwater flow. Most of the aquifer carbonates

(dolomite and limestone) are identified in Spring Mountain, between Yucca
Mountain and Las Vegas. These aquifers are the sources of underground water for
Yucca Mountain and flow direction in the region can be predicted from status of

these aquifers.

I. Local Geology

Most of the rocks at Yucca Mountain are tuffs which are resulted from large volcanic
activities between 14 and 7.5 million years ago. These rocks are known as
paintbrush group and cover the area that will embed the proposed repository. Site
Stratigraphy is shown in Figure 9.3. Paintbrush group consists of three tuff layers;
Tiva Canyon welded tuff, Topapah Spring welded tuff, and non-welded tuffs (below

repository). Topapah Spring will be the host rock for the proposed repository.
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II. Hydrogeologic Units

The repository region, which is the basis of the unsaturated flow model, is divided
into 5 major hydrogeologic units (Figure 9.3). Fracturing of these tocks is highly
controlled by their degree of welding. These fractures are, in general, thermal
fractures resulting from cooling down of the magmas. If the cooling down process
was slow, the material becomes very well welded, more brittle, and highly fractured
with very low matrix permeability. Quick cooling down of magmas results is non-
welded and less fractures rocks with relatively more matrix permeability. A brief
description of hydrologic properties of various units of the unsaturated zone (UZ) is

provided here:

e Tiva Canyon welded (TCw) is the topmost unit that is observed at the ground
surface. It is highly fractured with almost zero matrix permeability. The
high density of fractures provides very well connected network of connected
pathways for groundwater to flow, without seeping into rock porosities, due
to low matrix permeability. Water can flow quickly and pass through this
layer into the next one (PTn).

®  Paintbrush non-welded (PTn) is predictably more porous and less fractured.
During transition from TCw to PTn, groundwater flow changes from rapid
fracture flow to slow matrix flow and in PTn layer flow is mainly through
rock porosity and there are very few connected fractures to accelerate flow.
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Due to its high storage capacity and slow discharge from this unit, flow of

water in units underneath PTn are considered to be steady. Steady-state flow

in the repository region is an important assumption that simplifies the flow

model, significantly.

® Topapa Spring welded (TSw) is, again, well fractured and has low matrix
permeability. Due to this rapid increase in permeability, the area above TSw
(bottom of PTn) may be assumed to be saturated. This stored water above
TSw could initiate fracture flow through TSw. Different sub-layers of TSw
vary in degree of welding and abundance of lithophysae. In general, flow is
dominated by fractures ahd matrix flow is very limited in this layer.

e Calico Hills non-welded (CHn) has low fracture intensity and relatively
higher matrix permeability. In the lower half part of this layer, fractures
become more significant and matrix permeability becomes less, due to higher
degree of welding.

® Crater Flat undifferentiated (CFu) is non-welded to densely welded and
shows significantly different flow properties at different locations. The non-
welded portion of this unit has been altered from tuff to zeolite. This zeolitic
portion has very low matrix permeability and slightly grater fracture
permeability. This is an aquitard with very small room for water to flow

(mainly through limited fractures).
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It is interesting to see how groundwater flow changes from slow matrix flow to
rapid fracture flow and back. These changes result in storage of water at various
elevations and possibility of considering some parts of the flow as saturated

and/or steady state to simplify the flow model.

9.3 - VARIOUS MODELS AND FLOW MODEL

I. Saturated and Unsaturated Zone Models

Numerous models were developed to verify appropriateness of the Yucca mountain
site to host a nuclear repository. The study was conducted at two scales (Figure 9.4).
An unsaturated zone was defined and an unsaturated zone (UZ) model was
developed to investigate flow of rainfall water through the repository and transport
of nuclear waste into the underground water. The saturated zone (SZ) that covers a
larger region would look into possibility of transporting the nuclear waste out of the

region, after (and if) it reached the underground water.
Figure 9.5 provides a summary of various models for unsaturated zone to study
climate, rainfall infiltration rate, flow, transport, and seepage through the potential

repository site, and many other factors. In line with the objective of this study, a

brief summary of the UZ flow model is provided next.
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(Yucca Mountain Science and Engineering Report — 2001)
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II. Unsaturated Zone Flow Model and Outcomes

The essential assumptions of the UZ flow model were based on geological and
hydrogeological findings:

¢ Steady-State Flow due to permeability barriers

¢ Fixed Saturation and pressure at bottom boundary

¢ No-Flow Lateral Boundaries (Media bounded by impermeable faults)

The input parameters consisted of fracture data, collected from Data Line Scanning
(DLS) at exploratory tunnels (ESF and ECRB), Flow data and initial saturation data,
collected at various niches inside the exploratory tunnels. Some examples of

available fracture data are shown in Figures 9.6 and 9.7.

od s

Figure 9.6 — Fracture Orientation Data: Tptpul Contour Plot for Clusters 1 through 3
(Yucca Mountain Science and Engineering Report — 2001)
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Figure 9.7 — Fracture aperture data: DLS investigations at Cross-Drift tunnel
(Yucca Mountain Science and Engineering Report — 2001)

A 3 dimensional equivalent continuum model (ECM) was used to simulate the
problem. A dual-porosity model was used for this purpose. The region was
discretized as shown in Figure 9.8 (plan), permeability tensors were calculated for
each mesh, and a finite difference program (TOUGH?2) was used to estimate flow
and equivalent permeability of each layer of the unsaturated zone. Seven scenarios

were applied to account for effects of perched water (lack, bypassing, or flow-
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through) and account for various infiltration scenarios (present day lower-bound,
mean and upper-bound). The simulation results showed good agreements with

hydrologic investigations.

Percolation Flux
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Figure 9.8 — Repository region discretization and sample output
(Yucca Mountain Science and Engineering Report — 2001)
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The numerical model of Yucca Mountain Project was more complicated than just
Darcy’s law. Richards’ equation was used to account for partial saturation and van
Genuchten model provided capillary functions. Detailed discussion of the simulation
process and results verification is provided in “Unsaturated Model and Submodels”

report of Yucca Mountain Project, which can be requested from www.ymp.gov.

9.4 - APPLICATION TO THIS STUDY

It has been shown that fracture patterns at Yucca Mountain have a self-similar
nature. Upon data availability, it would be interesting to develop a fractal model for
the above problem and compare the results with the previous models and field
observations. One limitation of the model proposed in this study is non-applicability
to unsaturated flow problems. It would be necessary to modify the model to account

for partial saturation.

An initial step was taken in this study and a fractal model for one fracture set was

developed. Data on one fracture set at the cross drift (ECRB) tunnel that went

through Tptpul layer (see Figure 9.3) was downloaded from the project web site.

The pattern of this fracture set is presented in Figure 9.9.
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DLS Data for Fracture Set #3 Through
TPTPUL Layer of Cross-Drift Tunnel
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Figure 9.9 — Sample fractures image from Cross-Drift tunnel
(Yucca Mountain Science and Engineering Report — 2001)

Considering the largest fracture (shown in black) as the initial object, we seek the
IFS Code that generates a pattern that looks like Figure 9.9. p; and e can be
predicted using shadow theorem of fractals, based on the observed clustering of
fractures. Distribution of fractures centers on x-axis is shown in Figure 9.10. Based
on the observed clustering, the cantor set on the x-axis must result in the following

transformation:

[0.00 1.00—*2{ [0.00 0.1 ,[0.14 024 ,[0.38 045] ,[0.50 0.79 ,[0.82 0.9§ }

Therefore, IFS codes in x direction can be easily defined:

w,=ax+b = [0.00 1.001—22[p a+b]
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w, :[0.00 1.00]—*2[0.00 0.11]= a=0.11 , »=0.00 [w, = 0.11x+0.00
,:10.00 1.00]—25[0.14 0.24]= a=0.10 , b=0.14 Iw2 = 0.10x+0.14
:[0.00 1.00]—22,[0.38 0.45]= a=0.07 , b=038=. {w, = 0.07x+0.38
, 11000 1.00]—225[0.50 0.79]= a=029 , b=0.50 {w4 =0.29x+0.50
w, :[0.00 1.00)—22_,[0.82 0.98)= a=0.16 , b=082  |ws=0.16x+082

3 =

=
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Figure 9.10 — Application of Shadow Theorem to identify IFS Codes in x direction

The cantor set from the above IFS code is shown as blue (dark) dots in figure 9.10.
IFS codes in y direction are identified in a similar manner. Although, The accuracy
in y direction is much less, since fractures centers are too close in y direction and

their overlapping results in some difficulties (Figure 9.11).
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Figure 9.11 — Application of Shadow Theorem to
0.002 -
identify IFS Codes in y direction. Accuracy is much
less than x direction, due to overlapping between

v=0.004 and v=0.008.
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The other IFS parameters were identified arbitrarily, by a dynamic link with
statistical distribution of fractures length, spacing, and orientation. Kolmogorov-
Smirnov (K-S) parameter gets updated instantly at each alteration of IFS codes and
shows whether statistical distributions are acceptable. After some trials, the IFS
codes were identified that would produce a fracture set similar to Figure 9.9 with
acceptable statistical properties (K-S value, mean, and standard deviation), as shown

i Figure 9.12.
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The above example shows the potential of the proposed fractal model to simulate
real world problems. It is noteworthy that it is almost impossible to create a fractal
pattern that would look exactly like the given fracture set (see Figure 9.12a closely).
It is, however, reasonable to assume that flow properties of the model are similar to
the ones of the real problem, since the largest factures (the major contributors to
flow) are in relatively good agreement. In any event, this model is much more
realistic than a pure statistical model: Numerous fracture sets could be generated
with the same statistical properties as Figure 9.12.b, but with patterns totally

different from Figure 9.12.a.

It would be interesting to develop a complete fractal fracture network model,
continue with the flow model, and compare the results with the previous models and
field data. This goal was not achieved due to restrictions on the information of
Yucca Mountain Project. This could be a good contribution to this work in future

(see Chapter 10).
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CHAPTER 10 - CONCLUSIONS AND RECOMMENDATIONS

10.1 - REPORT SUMMARY

Several researchers have acknowledged limitations of the classical models to
characterize fractured media and study fluids flow in a network of fractures. Among
various limitations of the classical statistical models, this report identified the

following as the most important ones:

e Extensive data collection is necessary in order to develop a reliable statistical

model and intensive computations are required.

e Statistical methods are associated with scale dependence. Identification of an

appropriate scale (REV) is very difficult and, sometimes, impractical.

e Statistical model do not provide stable results. Various simulations of the
same problem with the exact same assumptions and parameters may result in

totally different flow outcomes.

e Fractures appear to have predefined paths to grow and they appear in clusters
that are denser on some areas. Fractures are not developed in a random

manner.
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e Fracture parameters interactions cannot be accounted for effectively, using

the current statistical techniques.

The above limitations of current models were the primary motivation for this work.
Modern techniques such as hydrologic inversion and percolation theory were
reviewed and their contributions and limitations were discussed. Need for a more
practical model was identified — a model that provides a realistic image of the
fracture network and provides reliable flow predictions, based on limited filed

observations.

Both fracture mechanics and field investigations confirm the fact that there is a good
chance for fracture networks to be either self-similar or self-affined. Therefore it is
quite rational to seek a fractal model that characterizes fractured media
appropriately. Such a deterministic model can overcome all the above limitations

and will provide a much more realistic image of the fracture network.

This study was intended to find an alternative tool to characterize fractured rocks that
appear to have self-similar nature. Self-similarity of a fracture network can be
identified by the limited information available from field investigations. This study
showed that, with some modifications to box counting theorem of fractals, the image

of a uniform series of boreholes can be analyzed for possible self-similarity.
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With very limited information about a fracture network (which is proven to be
fractal), we could develop the complete network, using iterated function systems
(IFS). All we need is the 6 parameters of each transformation in the iterated function
system that can be derived using 6 equations form polygonized image boundaries (or

outstanding features).

Based on essential fractal theorems, an inverse algorithm was proposed and a
graphical program was developed that takes the image of boreholes in a fractured
region and searches for the most appropriate iterated function system, an IFS whose
attractor is closest to the original image. Proximity of the two images can be
evaluated by fractal dimension and by Haudorff metric. Hausdorff metric, may not
be very practical, since it requires lengthy computations. Fractal dimension is a
quick and easy alternative for this purpose. It was acknowledged that fractal
dimension is not as accurate as Haudorff metric and it may occasionally provide

incorrect evaluations, mainly because of two reasons:

1. Box counting is a visual inspection technique and it is approximate

2. Different fractal images can have the same fractal dimension

The first limitation was overcome, to some extend, using computer image processing

in place of visual inspection. It was shown that this approach provides a good
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estimation of fractal dimension for complicated images. The second limitation is not
preventable. It was however argued that non-identical fractal images that have the
same fractal dimension are usually very different; they are very “far” from each
other. In the proposed inverse algorithm, the attractor of the IFS is “close” to the
fractal image, at least visually. Therefore, there is little room for it to be mistaken

with another fractal image.

In the second phase of this study, an effort was made to develop a flow model that
uses information on a fractal network of fractures. The classical equivalent
continuum model was used as the basis. The flow region was discretized by large
number of small cells and the equivalent porous medium was calculated for each
cell, assuming a single fracture per fracture set, in each cell. Properties of this single
fracture were estimated usiﬁg a new regression model and the permeability tensor
was developed for each cell, for each fracture set. All permeability tensors were
superimposed and the entire problem was translated into an anisotropic and

heterogeneous porous medium.

In order to analyze flow behavior in the equivalent porous medium, a finite
difference program, FLAC?, was used. It was shown that for highly heterogeneous
media, finite difference equations do not converge. This is to some degree related to
the program limitations but it is also associated with the heterogeneous nature of

such media, as acknowledged in the Yucca Mountain Project. It was observed that
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permeability values had a big range of variations throughout the region. A lower-
bound truncation was applied to cause convergence to occur, without significant

impact on the outcomes.

A physical model was developed using very small number of fractal dots (due to
practical limitations) and calculations showed that this model should provide 70% of
the complete model. The experiment was repeated for various fluids and the one that
provides a laminar flow was identified (water with 1% HPMC). Flow was calculated
and head distribution was measured in this model and the results had very good

agreements with predictions.

To prepare for future work, Yucca Mountain Project (YMP) was selected as one that
has a very good potential to be analyzed using the proposed flow model. As an
example, One fracture set from Cross-Drift tunnel explorations was used and, with
the help of shadow theorem of fractals, IFS codes were identified that produced
fractures similar to the observations, both visually and statistically. Numerous
investigations for both fracture and flow characterization of Yucca Mountain have
provided lots of information. This information could be used to develop a fractal
network of fractures, study flow behavior, and compare the results with numerous
previous models and with field observations. All YMP data and reports were

originally available at www.ymp.com. However, in the midst of this study the site
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was restricted and it became impractical to collect necessary information, for the

purpose of this work.

To confirm model accuracy and stability, various sensitivity analyses verified the

hypotheses that were applied to the proposed model:

1. Despite the randomness of the implemented fractal algorithm, deterministic
nature of a fractal network of fractures was emphasized based on fractal
concepts and was proven by demonstrating flow properties stability.

2. While the physical model was far from the numerical model for fracture
network, their differences were captured and it was shown that the observed

differences agreed with the predicted differences.

3. The solution to the convergence problem with finite difference modeling of

fractures networks was analyzed and the most appropriate lower-bound

truncation was estimated.

4. Tt was shown that self-similarity results in a predictable flow behavior at

various scales and properties of the filed scale problem can be extrapolated

from the lab scale model, confidently.
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10.2- STUDY CONCLUSIONS

Fractal modeling of fracture networks has a great potential for application. While
the above work is at a conceptual stage, it shows that limited data could be used to
simulate a fractured region, realistically. The proposed flow model is very simple
and easy to use and the results showed very good agreement with the physical

experiment. The followings are the main conclusions of this work:

< It is quite possible for a fractured rock to have a fractal nature. Box counting
theorem of fractals can be used to verify this fractal nature. It is possible that
different fracture sets belong to different fractal families (specially when they
have different geological origins). In such cases, self-similarity may not be
readily observable and it is recommended to analyses each fracture set

separately.

< Borehole data from field investigations on a fracture set can be used to
predict fractal nature of the complete set, based on the portion of the image of

fractures that is provided by the boreholes.

.
()

An inverse fractal algorithm can be applied to the partial image of a fractal

*,

object and predict the complete image. This partial image could be an image
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of some borehole data. Proximity of the model to the image can be estimated

using fractal dimension or, more accurately but tediously, Hausdorff metric.

@,
6‘0

Discretized nature of fractal network of fractures can be used to develop a
simple flow model, calculate permeability tensors, and analyze the flow

problem using a finite difference program such as FLAC™.

% There is a great potential for the proposed model to be applied to real
projects. A preliminary analysis on Yucca Mountain Project showed that an
observed network of fractures can be modeled using shadow theorem of

fractals.

10.3- RECOMMENDATIONS FOR FUTURE APPLICATIONS AND

FURTHER STUDY

This work is considered as initiation of a new technique for hydraulic
characterization of fractured media — a model that overcomes limitations of the
classical models. It is necessary for each fracture set of a region to have a self-
similar or self-affined nature, in order for this fractal model to be applicable. Field
observations and rock fracture mechanics have both proven that this requirement is
usually satisfied. This study opens various avenues of research to improve

applications of fractal theory to hydraulic characterization of fractured media. The
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following improvements to the proposed mode]l are some interesting areas of

research:

< This two dimensional model can be escalated to three dimensions. The
process is very straightforward. The algorithms however may be more
complicated and computationally more intense. The most challenging part of
a 3D model is development of a 3D graphical program to apply the inverse
algorithm. It may be appropriate to apply the algorithm to each plane
separately, while observing changes in the other planes (something like the 3-

pane view in AutoCAD).

< As we showed in chapter 9, Shadow algorithm has good potential to be
integrated into the inverse algorithm and improve the model. Selecting x and
y axes appropriately, one could project the 2D image of borehole data on the
two axes, apply collage theorem to each 1D image, and aggregated the 1D

IFS’s to get the complete IFS. Similar approach may be used for a 3D model.

< It was shown that the inherent relationship between rock mass parameters can

be captured by selection of the right IFS transformations (Figure 6.5 and the

related discussion in Page 7-3). It would be interesting to develop generic

numerical models in an inverse direction. That is, having the relation
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between rock mass parameters, what should be the relation between IFS

parameters and how to define those transformations.

< In the same line of thought, it would be interesting to find a systematic
approach to arrive at a desired statistical distribution for a fracture parameter
by selecting the right IFS codes. The example provided in Figure 6.17 was
created arbitrarily. IFS parameters were altered by trial-error and instant
changes in statistical distribution were observed. This process was repeated
until a good match was found. Additional work may find numerical models

to replace trial error.

X3

€5

For simplicity and consistency with the physical model, the flow model was
developed assuming fracture surfaces have a parallelogram shape. Using
disk shape fractures, however, provides a more realistic model. The flow
model can be easily modified to get more realistic outputs for more realistic

problems.

< Tt was shown that fractal dimension could be used to verify proximity of the

model to a given boreholes image. It is more accurate to use Hausdorff

metric for this purpose. Calculation of Hausdorff metric based on the

distance between millions of pairs of points is quite time consuming and
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impractical. A new algorithm can help us to make Hausdorff metric more

useful.

% Tt is crucial to apply the proposed model to a practical problem. While this
model was verified by laboratory experiment, evaluation of a real project
such as YMP provides good insight for future applications and
improvements. Specifically, the scale effect hypothesis that was validated

using a sensitivity analysis, is interesting to be evaluated on the field.

% We observed a major limitation of equivalent continuum model: Highly
heterogeneous fracture networks whose permeability tensors vary
significantly throughout a region, are not appropriately modeled by ECM.
Alternative discrete network models (DNM) should be developed for such
systems. Similar to ECM, properties of each cell can be estimated using
information on fractal dots. It was shown that a cluster counting algorithm of
percolation theory could be used to identify the backbone of this fracture
network. This would significantly simplify development of a discrete
network model. More work is necessary to study applications of DNM to the

proposed fractal network of fractures.

@,
@

% It is also useful to study a less heterogeneous fracture network to eliminate

convergence problem in the finite difference model. Therefore, a more
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accurate sensitivity analysis can be conducted to study lower-bound effects

on flow properties.

< Automation of the inverse algorithm would be a great improvement to this
work. After defining the boundary (or outstanding features) polygon (Pg) of a
fractal image, an image processing algorithm may analyze the fractal object,
and find polygons similar to Py but shrunk, rotated, and/or sheared, that
define boundaries of portions of the object. The algorithm may become very

complicated but it is worth investigating.

9,
L X4

Self-similarity of fracture initiation and propagation process has been widely
acknowledged and many numerical models are available, as discussed in this
chapter 5. It is interesting to seek a relationship between the history of filed
stresses and the iterated function system that would result in the observed
fracture pattern. Specifically the “beam”™ approach is very similar to IFS
model: a series of beams are rotated and sheared to cause new cracks. These
rotations and shears may be considered as IFS parameters. Ideally, a real
time simulation could be developed to look at the entire fracturing process,

through the history of the rock fracturing.
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2
APPENDIX A - MINIMIZED Z o TREND-LINE CALCULATIONS

The objective is to minimize the perpendicular distances of all points from the trend-

line. As shown in Figure A.1 this distance can be calculated as:

5__)’,‘")31'_ Y — ¥

“" Cosal uw/1+b2 y

Vi

°?]
L]
°®
L]

Figure A.1- 6, as a function of y,,,,x

Therefore, the Objective function has the following form:

e, (-3 ly-(a+b-x)f
Minimi ,b — 5.2 — Yi Vi = Yi i
inimize f(a,b) ; i 1+52 1+b?

To minimize this function, we should take its derivatives with respectto a and b

and make them zero:

3{:}%2(y-a—bx)=0:>Zy—na—b2x=0:>a:l(2y~b2x)

n

Bf:O

1) a
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2 —~0:> S| xli+67 Xy —a—bx)-b(y—a=bxf]=0

= Z[ (1+b2Xy—a—bx)]+ bZ(y2 +a’ +b’x’ —2bxy—2ay—2abx)
= b22xy—b32x2 —ab22x+2xy—b2x2 —a2x+...

b Y DY X +na’b 20 xy—2aby y+2ab’) xy =0

Multiply by n and replace na by (Z y- bz x) from (1):

= any~anx2 —-(Zy-—be)Zx+any2 +bk y)2 +(be)2 —ZbeZ yJ+...
...——nbzzxy——Zbe(Zy~b2x)+b22x(2y*b2x)=0

:any—anxz—Zny—a(Zx +any +bkz +b —2beZyJ
...—nbzzxy—~2b2y(2y~—a2x)+b ny( y-— a )-—O

Dany—anxz——Zny—b( x)2+any2+b( y)2+b3(2x)2~2b22x2y+...
...-nb22xy—2b( y)2+2b22x2y+b22x2y—b3(2x)2=0

Which can be reorganized as: Aeb” + Beb+C =0 where:

A= XY y—n) %y
B=(Lxf -y -nEx-3")
C:any—Znyz——A
' 2 2
Therefore: b= 5% f;—4AC -=B, B:AA;A = U+JU +1

B_nyx -3y )~ -(Es)
20353 y—nY %)

.. This concludes the proof.

where: U = —
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APPENDIX B — SIMPLIFIED FLAC?*® ALGORITHM

In general, Fluid Flow velocity through an edge ab of a triangular cell Vabe g
calculated as:

i =“2‘1;4‘[— Ku(Pb +PaXx§_xg)"'Klz(Pb'*'PaXxlb”xla)]
(B-1)
1

U, zﬂ[_Kzl(Pb"'Paxxlzj_xg)'i' Kzz(Pb'*'PaXxlb”'xla)]

and contribution of A4DC o discharge at node @ is estimated by:

(B-2) Ol = (e — x5+, (xr - x)}/2

Consider square elements of the Figure B.1. In triangle Aabc | for example, equation

B-1is:
ulab :ﬂgi‘/‘ij[’Kn(Pb +P“X—~g)+K12(Pb+P“Xg)]=—2—([(“+K12)(Pb +Pa)
1
ugb :282/2 [_Kzl(Pb +Paxﬁg)+K22(Pb +P“X8)]=%(Kzl +K22)(Pb +Pa)
a € d a d
< <
€
c b c b

Figure B.1 - Square Elements for the Simplified FLAC Algorithm

and equation B-2 becomes: Qe =1 0)+us(e)l=£-u,
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Aabc,Aadb, Aadc,Adbc -

The calculations for each of the triangles is simplified as

follows:

Aabc -

ulab :%(Ku +K12)(Pa +Pb) u/ =%(—K11)(PC+PH)

”;b :%(sz"‘Kzz)(Pa +Pb) u;’ 2%(_K21)(PC+PG)

ulbc 3%(_K12)(Pb+Pc)

Uy’ z’if("Kzz)(Pb +PC)
Therefore total velocity into Vabc ig calculated as:

ZuAabc = [K12Pa +K,,P" +(-K, ~ K, )P° ]
(B-3.a)
Z“Mm = [Kzzpa + K, PP+ (- Ky, _Kzz)Pc]

and contribution of A4bC (o discharge at the three nodes % bc i

(B-3b)  Q°=u,&/2 ; Q" =ue/2 ; O =(~u—u,)e/2

Aadb:

ulad ‘—‘%(Km)(Pa"'Pd) ”ldb:%(Ku)(Pd'*"Pb)

”;d 2":_‘(K22)(Pa+Pd) ugbzi'(Kzl)(Pd“*'Pb)

“fa z‘i‘_(”Kn _Klz)(Pa +Pb)

“ga :i‘(’“sz _Kzz)(Pa +Pb)
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Therefore total velocity into Aadb i calculated as:

Z”Aadb [ K, P’ - K12Pb (K11+K12)Pd]
(B—4.a)
3 ube = [ K, P ~K,P"+(K, +K,)P']

and contribution of A2db 1o discharge at the three nodes a,d.b is:

(B-4b) Q" =-u g2 ; Q" =-u,e/2 ; Q" =(u +u,)e/2

Aadc :

ulad =—2—(K12)(P“ +Pd) ul I(Ku Klz)(P PC)
ut = (K P+ Pt) = (K - K P+ )

]
u =:1_—(-—K11)(PC +Pa)

ca 1 [ a
i, :;(_ sz)(P +P )
Therefore total velocity into Aadc 5 calculated as:

Zu [K12 Ku)Pa —-K,,P* +K11Pd]
(B—-5.a)
ZMAMC = [Kzz K, )P* — K, P* +K21Pd]

and contribution of A4dc 1o discharge at the three nodes a,c,d is:

(B=3b) Q' =(-u+u,)ef2 ; O =—u,/2 ; O =u /2

Adbc :
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=K PPl =S R P)

”Sb:‘"l_(Kzl)(Pd‘*'Pb) ”;)C:;l;("Kzz)(Pb'l"Pc)

w1 ¢
u1d=—g(—-K“+K12)(P +Pd)

Ci 1 [
uzd :;(_ K, +K22)(P +Pd)

Therefore total velocity into Adbc s calculated as:

3 e = [K ~K,)P' ~K, P +K,P"]
(B—-6.a)
ZuMbC = [Kn Kzz)Pb"'Kzlpc +K22Pd]

and contribution of AdbC o discharge at the three nodes b,c.d 18

(B-6b) Q' =(u—-u,)ef2 ; O =-u g2 ; O =u, €2

Replacing *1°%2in equations B-3.b, B-4.b, B-5.b, B-6.b with their values from
equations B-3.a, B-4.a, B-5.a, B-6.a and summing discharges at the 4 nodes, we

conclude:
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rZ:Qa 2[(K“—K12+K22)P“ +K12Pb —K22PC-K“P‘11/2

AllA

ZQb = [Kupa +(K11 —Kl?, +K22)Pb ’"KuPC _Kzzpd]/2

AllA

ZQC =['" KuPa _Kzzpb +(K11 +K12 +K22)PC —Klzpd ]/2

AlIA

ZQd _—:[_KZZP"_K“Pb_[(upc+([{“+K12+K22)Pd]/2

AlIA

Or in Matrix Form:

Q° Ky _Ku +Ky K, -Ky -k Pt
Qb . K, Kn_Ku"'Kzz - Ky, -Ky % P
Q° —Kll -Ky K11+K12+K22 ~-K, P¢
o ~Ky -K -Kyp K +K,+K, P?

Discharge at these four nodes is also calculated by the neighboring cells. The total
discharge at a node is the summation of the contributions of all cells surrounding that

node.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C — PIPE NETWORK MODEL FOR FRACTURE FLOW
PROBLEM

Consider the fracture network of the proposed problem (Figure C.1). In the physical
experiment, dyeing material was used to identify the backbone fracture network
(Figure C.2.a) and the corresponding pipe network model was developed using the

deterministic algorithm as shown in figure C.2.b and selecting the backbone fractures

(red/light) only.
—» | —»
—» —»
Inﬂow:: ] : :: Outflow
—» | —p>
— | —
> g
— | B
—b >

(2) ‘ L)) A
Figure C.2 - (a) Identification of the Backbone fracture network in the lab.

(b) Simulation of the Backbone (Pink) fractures using Deterministic Algorithm
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To solve the network problem, we consider one of the flow paths in the pipe network
of figure C.2.b and write Bernoulli equations. Figure C.3 identifies one of these

paths in black color and its fractures properties.

Start Coordinates  EndCoordinates  Length  Width  Thickness

0 T .k A b
25 7.0 4.89 0.14 0.08
4.8 7.8 2.44 0.14 0.08
6.4 5.8 2.56 0.14 0.08
11.8 8.8 6.18 0.28 0.08
11.9 9.0 0.22 0.14 0.08

14.0 9.8 2.25 0.20 0.08

Figure C.3 — (a) One flow path (Black). (b) Properties of the fractures of flow path AH

Bernoulli equilibrium between A and H results:

2 2
_‘.Pi‘.“__l_ﬁ_i.:fi"i__kﬁ_i_ Z KL uAvg +iL_XuAVg
All Pipes 2g D 2g
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P, = Pore Pressure at Entrance (A)

u, = Velocity at entrance (A): (Discharge Q) /(Pipe AC cross section)

P, = Pore Pressure at Exit (H)

u, = Velocity at Exit (H): (Discharge Q) /(Pipe GH cross section)

K, = Loss coefficients at pipes intersections (=1.1 for 90° intersection)
= Pipe friction coefficient. For Laminar flow: f = 64/Re=64v/(u-D)
= Pipe Length from figure C.3.b
=  Pipe Hydraulic Diameter = (a-b)/(a+ b), where a is 85% of the

value from figure C.3.b (to account for roughness) and b is 0.08™ (plates

spacing).

Total head loss between A and H can be calculated using the above Bernoulli

equation:
2
Ah,, Py Py g | e )3 (KL+£L"] 5
Ve Ve 28 28 s Pipes D 2g

Therefore, knowing Ah,, from the lab experiment, discharge Q can be back-

calculated (using Excel “Tools/Goal Seek” feature) . This model was applied

to all 5 experiments and the results follow in the next pages.

It is noteworthy that the results of the pipe network for the 0% HMPC may be
incorrect, since the above model is based on laminar flow assumption, while
we observe Reynolds numbers very close to 2,000 in this case (refer to page 8-
9). This may be responsible for the discrepancy we observe for pure water, as

discussed in chapter 8.

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



