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Abstract 

Artificial Neural Network is a very powerful computational tool for modeling 

very complicated and highly nonlinear problems in various fields. In this study, it 

is first applied to estimate accumulated debris yield in 14 debris basins within Los 

Angeles County, California as a result of a series of storm events from 

watersheds partially or totally burned by wildfires from 1984 to 2003. ANN 

models achieve very satisfactory modeling results as compared to a statistical 

model.  

The ANN technique is then applied to forecast unit debris yield collected 

from 36 small debris basins within the county resulting from single significant 

storm events from 1938 to 1983. The same unit debris yield data is simulated by 

another two artificial intelligence models, Adaptive-Network-Based Fuzzy 

Inference System (ANFIS) and Generalized Dynamic Fuzzy Neural Network 

(GD-FNN) model. In addition to four basic input parameters: drainage area, 

watershed relief ratio, maximum one-hour rainfall intensity, and fire factor, six 

watershed morphological parameters such as elongation ratio, drainage density, 

hypsometric index, total stream length, mean bifurcation ratio, and transport 

efficiency factor are included as input parameters and their relative importance 

are determined through sensitivity analysis.  

ANN models are also developed for modeling unit debris yield at 80 small 

debris basins. They are classified into five groups based on the relief ratios of 

their upstream watersheds: mild slope, steep slope, steeper slope, extreme steep 
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slope, and the steepest slope. In addition to four aforementioned basic input 

parameters, three soil properties including soil erodibility factor, permeability rate, 

and liquid limit are considered as input parameter one by one to study their 

impact on the simulation.  

Unit debris yield collected from large watersheds with area between 10 

and 25 mi2, between 25 and 50 mi2, and between 50 and 200 mi2 are also 

simulated by neural network models. The modeling results indicate that the 

accuracy of unit debris yield estimated by ANN models is significantly higher than 

those obtained from ANFIS, GD-FNN model, and empirical equations developed 

by US Army Corps of Engineers. 
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Chapter 1: Introduction 

1.1 General 

Debris flow is always described as saturated slurries of mud, poorly sorted 

sediments such as silt, sand, clay, gravel, and boulders, and all kinds of debris 

that can be washed off and transported through stream channels, or any down-

hilled surfaces. It is one of the most dangerous natural hazards because of its 

abrupt occurrence without any warning or sign in advance and its catastrophic 

consequences for both structures and human lives. Although it is not easy to 

clarify the boundary between debris flow and mud flow, mud flow is distinguished 

by the relatively low percentage of sediment concentration from 45 to 60 percent 

in terms of volume and less variation in sediment sizes (Los Angeles County of 

Department of Public Works (LADPW), 1993). Entrained with water and air, both 

kinds of flows are multiphase and pick up poorly sorted sediments as they travel 

downstream (LADPW, 1993). Depending on the size of sediment, debris flow 

tends to move with a succession of surges with a steep front loaded with boulder-

sized fragments, but mud flow transports fine materials with a surge interval from 

a few seconds to tens of minutes (Mainali and Rajaratnam, 1991). They can be 

induced by a large storm event on an erosive upland watershed, or even a small 

storm event on a watershed burned by wildfire, and they might be the outcome of 

some slope failure such as landslide.  

 



 

 2

Debris flow and mud flow are very common and widespread phenomena 

in the western US, and it is a major concern at southern California area where is 

high erosion area due to very active tectonic activity (Scott and Williams, 1978). 

The consequence of debris flow and/or mud flow to this highly populated 

residential and business area is more disastrous. Heavy development on alluvial 

fans and floodplains, and the frequent occurrence of wildfire in the summer and 

occasional intense rainfalls during the winter season in this area worsen the 

situation. In order to reduce economical loss and to protect the lowland areas, 

debris basins (or sedimentation basins) are built to trap sediments brought by 

debris flows or mud flows as water is flushed to downstream channels. Just 

within Los Angeles County, 157 debris basins with a total maximum design 

capacity of 7,780,900 cubic yards are built until 2005 (Los Angeles Hydrologic 

Report).  

Solid materials such as sand, gravel, boulders, trees, etc., accumulated in 

a debris basin is called debris or sediment yield which can be roughly counted by 

cleanout trucks in the unit of volume. The estimation of debris yield is quite 

complicated and it depends on many factors such as watershed physiographic 

variables - watershed area and slope, watershed geology, soil condition, runoff, 

rainfall, vegetative coverage, and so on. However, some factor like runoff is not 

always available for small watershed (i.e. area less than 3 square miles), and 

spatial variance of vegetative coverage makes it difficult to be accounted for.  
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1.2 The Estimation of Debris Yield 

Since an early documentation of debris and mud flows in 1897 (McGee, 

1897), there is a growing interest among hydraulic engineers to study debris 

yield. Broadly speaking, the existing methods for estimating debris yield can be 

classified into three categories: empirical, conceptual, and physically-based 

models.  

Empirical models generally identify the relationship between long historical 

records of inputs (rainfall, runoff, etc.) and sediment yields by using regression 

techniques. One of the widely used empirical equations, the Universal Soil Loss 

Equation (USLE), was developed by Williams and Berndt (1972) for the 

estimation of soil erosion per unit area of a watershed. With the inclusion of 

empirical constants representing rainfall characteristics, soil properties, and land 

surface conditions, the USLE was considered to be only good for small-sized 

areas. Most methods of estimating debris yield for southern California 

watersheds belong to this category, for example, Tatum’s method (1963), debris 

yield method created by US Army Corps of Engineers, Los Angeles District 

(USACE) in 2000, and so on. Another recent achievement in this field is the 

Multi-Sequence Debris Prediction Model (MSDPM), (Pak, 2005; Pak and Lee, 

2008). Considering both wildfire and storm impact on watershed erosion, the 

MSDPM predicts sequent debris yield based on seven parameters: watershed 

area, relief ratio, dimensionless fire factor, maximum 1-hr rainfall intensity, total 

rainfall amount, and two newly introduced factors: threshold maximum 1-hr 
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rainfall intensity and total minimum rainfall amount. If the total rainfall amount for 

a single storm event is less than the total minimum rainfall amount or the 

maximum 1-hr rainfall intensity of that event is less than the threshold maximum 

1-hr rainfall intensity for that watershed, no debris will be deposited inside a 

debris basin from this event (Pak, 2005). These two new parameters were 

introduced to indicate sediment detachment and transport capacity by rainfall, or 

direct runoff. After calibrated with 17 years data from 1984 to 2000, the model 

was validated by the recent events after 2000 and showed good agreement with 

field collected debris yield.  

Conceptual models divide the whole watershed into elements and 

calculate the detachment of soil by rain drops, sediment eroded and transported 

by overland flow within each element, and then sediment yield is routed from one 

element to another until finally reaches the concentration point, or the debris 

basin. The Areal Non-Point-Source Watershed Environment Response 

Simulation (ANSWERS, Beasley et al. 1980), one of the most commonly 

referenced conceptual, distributed models, was developed for predicting both 

runoff and sediment yield by employing five models: a hydrologic model, a 

sediment detachment/transport model, and three routing components to model 

overland, subsurface and channel flow. The first part of physically-based models 

is the same as the conceptual models – the division of whole watershed into 

elements or grids, but they typically involve solutions of a system of partial 

differential equations of mass, momentum, and energy conservation within the 
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watershed. Finite Difference Method (FDM) (Kothyari et al. 1997) and Finite 

Element Method (FEM) were applied to solve these equations under simplified 

ground topography and simplified flow condition. Most of the time, due to the lack 

of field data, the results obtained from physically-based model have to be 

compared with experimental results and their validity are yet to be definitely 

confirmed. It is also noteworthy that with the aid of Geographic Information 

System (GIS) technique the modeling of debris yield has been advanced. For 

example, Gupta and Solomon’s (1977a, b) created distributed numerical model 

to estimate runoff and sediment discharge of ungaged rivers; Doten and his 

colleagues (2006) developed spatially distributed model for the dynamic 

prediction of sediment erosion and transport in mountainous forested 

watersheds, etc. 

Many researchers believe empirical models are too simple to represent 

such a complicated process. For both conceptual and physically-based models, 

the prerequisite of huge amount of data at each element is a difficulty. Even if the 

data are available, physically-based models might suffer numerical modeling 

problems (e.g. instability and convergence). Artificial intelligence methods such 

as Artificial Neural Network (ANN) might be a good alternative due to its 

successful modeling many complicated and highly nonlinear hydrologic problems 

(ASCE, 2000b; Tokar and Markus, 2006; Jain and Indurthy, 2003; Coppola et al., 

2003).  
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1.3 ANN Models to Estimate Debris Yield 

ANN was inspired by the functionality of our own brains and nerve cells. It 

consists of parallel processing structures that have large numbers of nodes, or 

neurons and many interconnections between them, which is the source of the 

power of ANN.  Since the introduction of the concept of artificial neuron by 

McCulloch and Pitts in 1943, it has been used to do the same job as our brains, 

such as recognizing a familiar face, learning to speak and understand a natural 

language, and identifying handwritten characters (Dayhoff, 1990). But ANN had 

not been fully developed until the backpropagation (BP) training algorithm for 

feed-forward ANN was developed by Rumelhart and McClelland in 1986. 

Although it cannot be as ‘smart’ as a biological neuron system, ANN has been 

well-acknowledged to be able to model highly nonlinear relationship between 

inputs (i.e. independent variables), and outputs (i.e. dependent variables) and 

simulate new data to generate satisfactory results.  

Without the consideration of explicit physical relations, ANN works well 

even when the training sets contain noise and measurement errors (ASCE, 

2000a). It has been applied in many areas such as physics, biomedical 

engineering, electrical engineering, computer science, acoustics, image 

processing, and others. It has also been explored to many hydrology-related 

problems, for example, rainfall-runoff modeling, streamflow forecasting, water 

quality simulation and groundwater modeling (ASCE, 2000b). However, the 

application of ANN technique in sediment yield modeling is one of the recent 



 

 7

applications. In 2006, Raghuwanshi et al. applied ANN method for simulating 

runoff and sediment yields for a small agriculture watershed in India. Five sets of 

ANN models were developed; three of them were for daily prediction of runoff 

and sediment yields with different number of input variables and another two sets 

were for weekly basis prediction. In all cases, ANN prediction was more accurate 

than linear regression models and ANN models trained with temperature and 

rainfall data can achieve better accuracy instead of only including rainfall as input 

parameter. Another similar study (Lee et al., 2006) calibrated and validated 

Hydrological Simulation Program FORTRAN (HSPF) first to simulate discharge 

and sediment yield for three typhoon events at Taiwan. The synthetic data 

including rainfall intensity at previous time steps and discharge generated by 

HSPF were applied to train ANN models using the gradient steepest descent 

algorithm, one kind of BP training algorithms. ANN model was “able to calculate 

the watershed sediment yield with good accuracy” (Lee et al., 2006) and it was 

faster and easy to use than the HSPF model. Both HSPF and ANN models are 

more accurate than an empirical rating-curve method.  

To explore the feasibility of ANN technique for debris yield prediction in 

this study, it is first applied to estimate sequent debris yield using the exactly 

same input data, same calibration and validation data as used in the MSDPM 

model (Pak, 2005). Next, it is applied to estimate unit debris yield collected from 

36 debris basins within Los Angeles County from 1938 to 1983 and more 

watershed geomorphologic parameters (i.e. elongation ratio, drainage density, 
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etc.) are included as input variables in addition to watershed area, watershed 

relief ratio, maximum one hour precipitation, and fire factor. Soil is a major factor 

in debris production. Therefore in this study three soil characteristics including 

soil erodibility factor, soil permeability, and liquid limit are analyzed for each 

watershed based on the soil data from State Soil Geographic (STATSGO) 

database developed by U.S. Department of Agriculture Natural Resources 

Conservation Service (USDA NRCS). In order to prepare three soil 

characteristics for each watershed, it is necessary to delineate watershed 

boundraies using Better Assessment Science Integrating Point & Nonpoint 

Sources (BASINS) software provided by US Environmental Protection Agency 

(EPA). If a watershed includes more than one soil map units, the soil properties 

are determined by the weighted average method, i.e. proportioning their values 

to the percentage of exposure of that soil type. The three soil characteristics are 

included one by one to study their effects on the estimation of unit debris yield 

collected from 80 small debris basins (i.e. upstream watershed area is less than 

3 square miles). They are divided into five groups based on the relief ratios of 

their upstream collection watersheds. For example, the first group of data is 

collected from mild watersheds, the second is from steep watersheds, the third is 

from watersheds with steeper slope, the fourth is from watersheds with extreme 

steep slope, and the last group is from watersheds with the steepest slope. 

Because all the watersheds with the steepest slope have the same value of three 

soil characteristics, they are not considered as input parameters for the last 
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group of data. ANN models are also developed for modeling unit debris yield 

documented at larger watersheds, areas is in range of 10-25 mi2, 25-50 mi2, and 

50-200 mi2.   

1.4 Neural Fuzzy System and Fuzzy Neural Network to Estimate Debris 

Yield 

To utilize the interpretable nature of fuzzy logic system to overcome the 

drawback of ANN – cannot be explained explicitly, there are two possible ways of 

combining ANN and fuzzy logic system: Neural Fuzzy System (NFS) and Fuzzy 

Neural Network (FNN). A NFS is a fuzzy logic system capable of using ANN 

training algorithm to learn and the system is interpretable by fuzzy if-then rules. 

On the other hand a FNN uses fuzzy method such as fuzzy inputs, fuzzy outputs 

or fuzzy connection weights, and so on to improve neural network performance. 

As one of the earliest NFS methods, Adaptive-Network-Based Fuzzy 

Inference System (ANFIS, Jang 1993) provides a fuzzy modeling procedure to 

learn from input/output data pairs through the adjustment and optimization of the 

membership function parameters by using either BP gradient descent method 

(BPGDM) or a hybrid learning algorithm - the combination of least squares 

method (LSM) and BPGDM. Jang (1993) demonstrated that this method can 

yield remarkable results for modeling nonlinear functions, identifying nonlinear 

component on-linely in a control system, and predicting a chaotic time series. In 

the last decade, this method has been applied in many fields including hydrologic 
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modeling, for example, Chau, Wu, and Li (2005) employed ANFIS for flood 

forecasting in a channel reach of Yangtze River in China. ANFIS is the second 

artificial intelligence method used in this study to estimate unit debris yield data 

collected at 36 small debris basins within Los Angeles County.     

Generalized Dynamic Fuzzy Neural Network (GD-FNN) algorithm was 

proposed by Wu and Er (2001) as an improvement on traditional FNNs in the 

following several aspects: hierarchical on-line learning, automatically recruiting or 

deleting neurons, and fast learning speed without iterative learning and 

initialization of structure and parameters.  In addition, GD-FNN is able to 

generate different number of membership function (i.e. Gaussian function) for 

each input variable, and other improvements such as the number of membership 

function are not necessarily the same as the number of fuzzy rule, less random 

parameters involved, and more reasonable methods of refining Gaussian 

function width. The authors reported satisfactory modeling results for simulating 

nonlinear dynamic system, time-varying drug delivery system, and multilink robot 

control. Due to its efficient learning and automatically extraction of fuzzy rules, 

GD-FNN method is chosen as the third artificial intelligence method for modeling 

unit debris yields measured at 36 small debris basins within Los Angeles County.  

1.5 Objectives of the Present Study 

1) To examine the efficacy of ANN models for predicting sequent and unit 

debris yield collected at debris basins from partially or totally burned 
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watersheds with an area range of 0.1-3 mi2, and 10-200 mi2, within Los 

Angeles County, California. 

2) To examine the feasibility of ANFIS method and GD-FNN method to 

estimate unit debris yield. 

3) To analyze the relative importance of input parameters including six 

watershed geomorphologic parameters such as elongation ratio, drainage 

density, hypsometric index, total stream length, mean bifurcation ratio, and 

transport efficiency factor, and three soil properties like soil erodibility 

factor, permeability rate, and liquid limit. 

4) To study the effect of ANN architecture on its performance.  
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Chapter 2: Review of Literature 

2.1 Background of Debris Yield Estimation 

Estimation of debris yield from watershed has long established itself as an 

important area of hydrological research due to a number of reasons (e.g. 

management and maintenance of debris basin, catastrophic consequence to 

downstream structure and human…).  Debris yield modeling is very complicated 

because the sediment erosion process depends upon many variables such as 

watershed area and slope, watershed morphologic parameters, rainfall amount, 

intensity, and duration, soil condition, vegetation and litter cover. The erosion 

process consists of two major components: detachment and transport of 

sediment by raindrops which are the major driving force over interrill areas at 

which the flow depth is shallow, and detachment and transport of sediment are 

induced by runoff over both interrill and rill areas (Kothyari et al. 1996). It is 

apparent that sediment yield collected in debris basin is commonly substantially 

less than the gross erosion within the watershed because most sediments are 

deposited on the lower lands or in the valley floors during the conveyance of 

sediment from its source to its lowland concentration point, or debris basin (US 

Army Corps of Engineers, Los Angeles District (USACE), 2000). The estimation 

of debris yield, or debris volumes deposited in debris basin, is the major focus in 

this study. The reason why debris yield is described with the unit of volumes or 

volumes per unit area is because the volume is ‘measured’ by cleanout trucks.    
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Most existing debris yield prediction methods can be classified into three 

main categories. The first category is empirical models generally achieved by 

applying regression techniques such as linear regression or multi-regression 

analysis. One of the well-known empirical models, Universal Soil Loss Equation 

was developed by Williams and Berndt (1972) for the computation of long term 

average annual soil loss at agricultural field, and it has the following form 

PCLSKRA ****=                                                                               (2.1)  

Where A is estimated average soil loss with the unit of tons per acre per year, R 

is rainfall-runoff erosivity factor, K is soil erodibility factor (source data is States 

Soils Geographic Database (STATSGO)), LS is topographic slope length, C is 

crop coverage factor, and P is erosion-control-practice factor. The factor R can 

be determined by the annual summation of rainfall energy in every storm relate to 

raindrop size multiplies its maximum 30-minute intensity. The factor K is a 

measure of the susceptibility of soil particles to be detached and transported by 

raindrop and overland flow. The factor LS is a lumped factor of slope and slope 

length for convenience purpose, and higher slope and longer slope length result 

in greater erosion potential. The factor C is defined as the ratio of the soil loss 

from land under a specific crop and management condition to the corresponding 

loss from continuously fallow and tilled land. It is actually a measure that 

quantifies the relative effectiveness of soil and crop management systems in 

terms of preventing soil loss. Finally, the erosion-control-practice factor (P) 

considers human activities (e.g. contouring, strip cropping, etc.) to reduce runoff 
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hence minimizing the erosion potential. All these parameters vary spatially 

except LS, and Williams and Berndt (1972) suggested their weighted average 

values should be used for the whole watershed. This equation is only applicable 

for erosion limited by detachment capacity in such fields with negligible curvature 

and no deposition, and it is applicable for small watershed. Although it was one 

of the most widely accepted soil loss equations for over 30 years, it cannot be 

applied to model debris yield resulting from a single storm event and it does not 

adequately account for the process for watersheds at southern California. In 

1963, Mr. Ferrel Tatum created an empirical equation to calculate debris storage 

requirement for debris basins based on regression and graphical techniques. The 

equation is  

2.67

0.721.67
csm

y
VI)(5

Rr35,600Q
S

+
=                                                                           (2.2) 

In which Sy is unit sediment yield in cubic yards per square mile, Qcsm is peak 

discharge with a unit of cubic foot per second per square mile, and Rr is relief 

ratio which is defined by the elevation difference between highest and lowest 

point divided by the horizontal distance parallel to the main channel between the 

concentration point and the watershed divide, and VI is called vegetation index 

and it is the weighted average of the index point of each type of vegetation 

multiplying  the  corresponding  percentage  of  area   covered   by   this   type  of 

vegetation within the whole watershed (Tatum, 1963). It was developed for 

watersheds within Los Angeles County and had been used for debris basin 
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planning, design, and construction for the subsequent 23 years (USACE, 2000). 

However, with the occurrence of more debris flow events, the update of the 

equation becomes demanding. Therefore, in 2000, the USACE reevaluated 

hydrologic variables and selected only those that are important to debris yield 

and provided five empirical equations with respect to different sizes of watershed 

area within Los Angeles County. Those five equations cover a range of drainage 

area from 0.1 to 200 square miles. To give an example, the equation developed 

for small watershed with an area between 0.1 and 3.0 square miles is: 

ylog D 0.65(log P) 0.62(log RR) 0.18(log A) 0.12(FF)= + + +                        (2.3) 

Where Dy is the same as Sy defined in equation 2.2, RR is the same as Rr in 

equation 2.2 but the unit is mileft , P is 100 times greater than the maximum one 

hour precipitation with the unit of inch, A is watershed area in acre, FF is non-

dimensional fire factor and it is a function of burn condition of a watershed by 

wildfire, watershed area, time after the recent wildfire, and it can be read from the 

curves provided by USACE. In addition to these empirical equations, a frequency 

relationship between unit debris yield and the total probability of wildfire and flood 

were proposed as well.  

One of the most recent approaches, Multi-Sequence Debris Prediction 

Model (MSDPM, Pak, 2005; Pak and Lee, 2008), was developed for predicting 

sequent debris yield resulting from wildfire and a series of storm events based on 

precipitation, drainage area, relief ratio, and a non-dimensional fire factor. Two 

new factors were introduced in the model - threshold maximum 1-hr rainfall 
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intensity (TMRI) and total minimum rainfall amount (TMRA). MSDPM has the 

following form.  
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Where Dy = debris yield with unit of m3, Im = maximum 1-hr rainfall intensity in 

unit of mm/hr, Ic = threshold maximum 1-hr rainfall intensity with the unit of 

mm/hr, P = total rainfall amount in millimeter per storm event, Pc = total minimum 

rainfall amount in millimeter, S (m/km) = relief ratio same as that defined earlier, 

A = size of drainage area in hectare, F = fire factor and it is defined in the 

following equation.   

   )
/200)(A0.29

yp
0.29

yp
pe(2))B(1)B(1B(B6.5F −×−×−+××= −−                      (2.5) 

In which, pB  is the percentage of burned area, yB  is the number of years after 

the recent wildfire with 10 years as the upper limit, pA  is the number of 

antecedent effective precipitation events. The key point of this model is that only 

and only if maximum 1-hr rainfall intensity and total rainfall amount are greater 

than TMRI, and TMRA, respectively, there will be some debris deposited in the 

downstream debris basin. The MSDPM was calibrated by field data collected 

from 12 debris basins from 1984 to 2000, and validated by the subsequent storm 

events after 2000. In summary, the MSDPM was developed with the 

consideration of three main physical processes: the critical condition to entrain 
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sediment through the inclusion of TMRI, the transport capacity to move sediment 

toward the concentration point indicated by TMRA, and the antecedent 

precipitation condition coupled with the subsequent rainfall events (Pak, 2005; 

Pak and Lee, 2008). The modeling results have been demonstrated to be in good 

agreement with field collected data. 

Empirical equations are criticized for their simplicity to describe such a 

complicated process, therefore, conceptual models were proposed as an 

improvement. With assumptions that the process is nonlinear, time-invariant and 

deterministic, conceptual models simulate the process by using simplified 

physical laws. The basic study unit is element or grid. Conceptual model 

considers the detachment of soil by rain drops, erosion and sediment transport 

by overland flow within each element, and routing of flow and sediment between 

the elements and finally go to a debris basin. The ANSWERS, one of the earliest 

and most commonly cited conceptual models, was created by Beasley et al. 

(1980) to predict both runoff and sediment yield for agricultural watersheds. This 

model consists of five components: a hydrologic model, a sediment 

detachment/transport model, and three routing components to model overland, 

subsurface and channel flow. The hydrologic model is designed to simulate the 

rainfall-runoff process considering infiltration into the ground, water retention and 

detention by surface, and subsurface drainage. The infiltration rate was 

computed by using Holtan’s (1961) equation (Equation 2.6).  

P

c

p

S-F
Infiltration rate f A( )

T
= +                                                                   (2.6) 
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Where fc = steady state infiltration rate, A = infiltration rate difference between 

maximum and steady state, S = storage capacity of a soil, F = total infiltrated 

water in terms of volume, Tp = total porosity, and P = dimensionless factor 

relating the rate of decrease in filtration to the increasing in soil moisture content. 

Potential surface retention was specified in Equation 2.7 (Huggins and Monke, 

1966).  

BAx
 VolumeRetention Possible Maximum The

 VolumeStorage Retention surface The
=                                  (2.7) 

In which A and B are empirical constants provided for different ground conditions, 

and x is the ratio of water depth above a datum to the height of the tallest 

roughness element. Subsurface drainage was evaluated by using Huggins and 

Monke’s (Equation 2.8, 1966) method. 

b
c )

  WateralGraviation  of    VolumeMax.

  VolumePore  dUnsaturate
(1fRate Drainage Subsurface −=         

(2.8) 

fc is the same as defined in Equation (2.6), and b is a drainage exponent 

constant. The impact of rainfall drop or overland flow on the detachment of soil 

particle was determined by equation 2.9 and 2.10, respectively. 

2

IDetachment Rate(kg/min) 0.027CKA I=                                                  (2.9) 

IDetachment Rate(kg/min) 0.018CKA S= q                                               (2.10) 

Where C = cropping and management factor, K = soil erodibility factor, AI = area 

increment, I = rainfall intensity in millimeter/minute, S = slope, and q = flow rate 
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per unit width. The transport capacity of overland flow, in kg/min-m, was 

determined by  

⎪⎩
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e

221
e                                                           (2.11) 

The symbol Se is the element slope. With the assumption that the flow is uniform, 

Manning’s equation was applied to model overland and channel flow. The routing 

process was modeled in such a way that runoff and subsurface drainage 

hydrograph were treated as inflow to the adjacent elements following the 

direction of steepest slope (Beasley et al., 1980). In 1993, Wu and his colleague 

estimated runoff and sediment yields for 30 runoff events at three watersheds 

near Coshocton, Ohio using ANSWERS and two other models, and they reported 

that the ANSWERS model provided the most consistent results for both 

variables.  

At the beginning of 1980s, many researchers realized that the use of 

lumped models limited the study of hydrological processes (Abbott et al., 1996a) 

and recommended that the empirical facts and theoretical knowledge should be 

combined at a more detailed scale through mathematical synthesis to achieve 

the correct hydrological scale. In essence it is the path of the development of 

physically-based models. After dividing whole drainage area into smaller 

elements or grids and assuming all significant parameters are uniform within 

each element, physically-based models are set up to solve a system of partial 

differential equations of  mass, momentum, and energy conservation to estimate 



 

 20

sediment yield. In general, the sediment yield process involves two phases, the 

upland phase and in-channel phase (Bennett, 1974). The complicated nature of 

the process makes it impossible to solve these equations except under 

significant simplification. Kothyari et al. (1997) simulated the surface runoff in 

upland area by using kinematic wave simplification of the Saint Venant equations 

of flow. With the assumption of one dimensional flow, the first governing equation 

of overland flow is non-dimensional continuity equation (Kothyari et al., 1997): 

β 1

e

Q hα β Q w i
x t

′−′ ′∂ ∂ ′′ ′ ′ ′+ = ×
′ ′∂ ∂

                                                                     (2.12) 

Where Q′  is non-dimensional inflow in x direction, α ′ and β ′  are non-

dimensional kinematic wave parameters, w′ is the dimensionless width of an 

elementary strip (the numerical grids used in this study is the watershed time-

area segments within which the concentration time is the same), h′  is the 

dimensionless flow depth, x and t are non-dimensionalized by dividing 

characteristic length and concentration time, and ′
ei  is dimensionless effective 

rainfall. With the initial and boundary conditions, ),( txQ ′′′  are solved at each 

point on the ),( tx ′′  grid by applying a fully implicit four point finite difference 

scheme. The continuity equation for sediment (Kothyari et al., 1997) is 

FI

ss DD
x

Vq

x

q
+=

∂
∂

+
∂
∂ )/(

                                                                       (2.13) 

In this equation, qs = sediment load (mass/width/second), x = distance along the 

slope, V = flow velocity, DI = interrill erosion rate (mass/area/second), DF = 
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sediment erosion rate from rill areas (mass/area/second). Sediments are mainly 

detached by rain drops or overland flow. The sediment detachment rate was 

modeled similar to Equation 2.9 and 2.10 except that the coefficients are 

determined through calibration process instead of pre-specified values. The 

sediment transported by overland flow was simulated by Equation 2.11 and the 

coefficients were optimized by calibration process as well. DI and DF are known 

within each element; the solution to Equation 2.13 was procured by using FDM 

within the same elements as defined in rainfall-runoff modeling. This physical 

model was applied to 12 small watersheds (area between 0.002km2 and 92.5km2) 

considering different climates. The authors concluded that the predicted results 

were realistic and the model worked better for total sediment yields resulting from 

more storm events.  

The advent of Geographic Information System (GIS) provides a cost-

effective means to create, capture, store, query, analyze, display, and output 

spatially and temporally distributed data at a variety of scales. The current status 

of sediment modeling has been advanced with the application of GIS. As early as 

1977, Gupta developed a distributed model for estimating runoff and sediment 

discharge for ungaged rivers using GIS. Coupling the meteorological, hydrologic, 

geophysical, and other related variables from a variety of sources including paper 

maps, aerial photographs, remote sensing, etc., Gupta’s model was claimed to 

be viable for any sized watershed to obtain runoff and sediment time-series at 

any point within the watershed. The modeling results at two stations in Canada 
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indicated an improvement over some simpler techniques such as statistical 

regression empirical equations. Considered three major sediment generation 

sources such as mass wasting, hill slope erosion, and road surface erosion, 

Doten et al. (2006) developed a Distributed Dynamic Hydrology-Soil-Vegetation 

Model (DHSVM) to estimate erosion and sediment transport in a temperate 

forested watershed. With the use of stochastically generated soil and vegetation 

parameters on a grid cell by grid cell basis, the model produced slope failure (i.e. 

the start of the mass movement) on the basis of a factor–of-safety analysis with 

an infinite slope model. The eroded sediments from hill slope and road surface 

were routed to lowland with a rule-based scheme that determines sediment 

delivery to channel network. Assuming sediment flows into the channel from both 

upstream and local area, the flow in channel was simulated using a linear 

reservoir routing scheme. Debris flows were modeled on volumetric basis then 

converted to mass with respect to different particle sizes and finally sediment 

yield collected in the basin was determined. Compared with published rates for 

similar catchments in the Pacific Northwest, the model provided plausible 

sediment yields and ratios of land sliding to surface erosion for a catchment in 

the north of Washington State.    

All distributed models including conceptual, physically-based and GIS 

involved models require huge amounts of watershed characteristic data within 

each element or grid. Most of the time, the availability of these data is a major 

concern. Even if the data are available, physically-based models tend to have 
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such problems like numerical instability and convergence. The widely reported 

successful application of ANN models to a number of hydrological problems 

inspires this study of applying artificial intelligence models for predicting debris 

yield.  

2.2 Use of ANN in Hydrologic Applications 

Most hydrologic processes such as rainfall-runoff process, sediment yield 

process, streamflow estimation, ground water, and water quality analysis are 

very complicated. ANN technique is well acknowledged for its high computational 

power and its ability to learn nonlinear relationship between inputs (i.e. 

independent variables) and outputs (i.e. dependent variables) for all kinds of 

problems. The start of the application of ANN in hydrologic areas can be traced 

back to 1991 (ASCE, 2000b), and more and more researchers claim that the 

technique is a promising alternative tool for modeling highly nonlinear problem.   

2.2.1 Use of ANN in Rainfall-Runoff Process 

One of the most important problems faced by hydrologists and engineers 

is  the  modeling  of rainfall-runoff  which  is  known to  be  highly  nonlinear,  

temporally and spatially distributed process. There are so many factors affecting 

runoff except rainfall intensity and duration, such as watershed size and slope, 

land use, evaporation, soil condition, vegetation cover, and so on. Most existing 

models for rainfall-runoff process are conceptual models which are reliable in 

forecasting the important features of the hydrograph, such as the beginning of 
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the rising limb, the time and the height of the peak, and volume of flow (Kitanidis 

and Bras, 1980a, b; Sorooshian et al., 1993); however, they were criticized for 

inclusion of huge amount of parameters and the complicated interaction between 

those parameters. With the development of ANN technique in modeling nonlinear 

relationships, many hydrologists conducted research to estimate runoff using 

ANN models based on rainfall information. A significant amount of applications of 

ANN technique in the rainfall-runoff modeling were published from 1990 to 2000 

(ASCE, 2000b). Most of the studies reported superior prediction accuracy by 

using ANN model as compared to either conceptual or statistical regression 

models.  

 A few recent advancements in the rainfall-runoff modeling by using ANN 

models are introduced as follows. Tokar and Markus (2006) applied ANN 

technique to model the monthly streamflow for Fraser River Watershed in 

Colorado related to streamflow, precipitation, and air temperature in the previous 

month, and snow water equivalents in the preceding two months. Compared to 

conceptual water balance model, ANN modeling results are more accurate. Daily 

runoff in the Racoon River, Iowa, and Little Patuxent River in Maryland was also 

modeled by using ANN models and the results were better than those obtained 

by both the Sacramento Soil Moisture Accounting (SAC-SMA) model and Simple 

Conceptual Rainfall Runoff (SCRR) model. The authors reported that ANN 

modles not only provides high accuracy but also requires shorter training time. 

Jain and Indurthy (2003) modeled storm event-based rainfall-runoff process for 
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Salado Creek at San Antonio by using ANN models and then compared to a 

deterministic model, and a statistical model. The authors reported that ANN 

models generally outperformed both the deterministic model and the statistical 

model particularly in terms of peak discharge and time to peak discharge.   

2.2.2 Use of ANN in Streamflow  

Following the same categorization in ASCE paper (2000b), streamflow 

forecasting without rainfall information as input parameter is a separate topic 

here. The focus of this review is the more recent studies of forecasting 

streamflow using ANN techniques. Jain and Chalisgaonkar (2000) modeled a 

stage-discharge relation by using three layer feed-forward ANNs trained by BP 

training algorithm. With input parameters like current and preceding stages and 

discharge, the performance of ANN models “is much superior as compared to the 

conventional curve-fitting approach”. The authors also indicated that ANN 

technique simulated a loop-rating curve (hysteresis effect) much better than a 

fitting curve. Özgür Kişi (2007) developed ANN models trained by four different 

training algorithms including BPGSD algorithm, conjugate gradient, cascade 

correlation, and Levenberg–Marquardt (LM) training algorithm to predict short 

term (i.e. daily) streamflow of the North Platte River in Colorado. Input 

parameters used to train ANN models were only preceding discharge with 

different leading time, for example, one day ahead. The author found that LM 

algorithm requires much less training time and the prediction accuracy is superior 
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as compared with the other three training algorithms. In addition, ANN models 

calibrated by either conjugate gradient or cascade correlation training algorithm 

outperformed ANN models trained by gradient steepest descent algorithm in 

terms of streamflow forecast accuracy.  

2.2.3 Use of ANN in Groundwater 

The modeling of groundwater is another important hydrologic topic around 

the world. Coppola and his colleagues (2003) examined the potential of ANN in 

modeling transient water levels at a multilayered ground water system under 

variable state, pumping, and climate conditions. A three-layered perceptron 

neural network was trained by BP algorithm for predicting transient water levels 

at 12 monitoring wells screened in different aquifers under different pumping and 

climate conditions. The seven physical inputs are temperature, precipitation, 

initial water levels at the monitoring wells, pumping extractions of the seven 

production wells, dew point, wind speed condition, and length of stress period. 

They reported ground water levels predicted by ANN models were more accurate 

than a calibrated numerical model, and ANN technology can achieve better 

dynamic water level simulation corresponding to changing pumping and climate 

conditions. Shigidi and Garcia (2003) estimated aquifer parameters such as 

transmissivity by using ANN feed-forward model and an inversion model. The 

authors calibrated and validated an ANN feed-forward model to predict 225 

hydraulic heads in 225 uniformly spaced grid in a hypothetical square confined 
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aquifer with 225 hydraulic conductivity values as inputs. 1,500 hydraulic 

conductivity fields were generated randomly and the corresponding hydraulic 

heads were determined by using Modular Three-Dimensional Finite-Difference 

Ground-Water Flow Model (MODFLOW). 1,000 of them were used for calibration 

ANN models and the remainder 500 data records for validation. Next, the 

calibrated network was inverted to estimate the missing parameters – 

transmissivity in some grids by updating those values until they converge and 

minimizing the difference between hydraulic head target values and ANN 

outputs. This paper initiates an interesting approach for using ANN technique to 

estimate aquifer parameters in groundwater hydrology. 

All these research leads to a fact that ANN technique is a suitable and 

powerful tool in modeling complicated rainfall-runoff process, streamflow 

forecasting, and groundwater problem. 

2.2.4 Use of ANN in Debris Yield 

The adoption of ANN technique for debris yield modeling adds a new 

dimension to the system theoretical modeling. In 2006, Raghuwanshi et al. 

applied ANN method for predicting daily and weekly runoff and sediment yield for 

a small agriculture watershed in India. ANN models were trained by data 

collected during monsoon seasons within five years and validated by the data 

collected from the following two years. ANN models with one or two hidden 

layers were developed to predict both runoff and sediment yield. For daily 
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prediction, three sets of ANN models were created using different inputs; first set 

of ANN models was trained only by present day rainfall, second set of ANN 

models was trained by present day rainfall and the preceding day, and the third 

set was trained by rainfall, minimum, and maximum temperature. Two sets of 

inputs were considered in predicting weekly runoff and sediment and first set 

includes only weekly rainfall, and the second set includes weekly rainfall with 

mean minimum and maximum temperature. In all these cases, ANN prediction 

was more accurate than linear regression based models and the inclusion of 

temperature as ANN models inputs improved the prediction accuracy. Another 

related study is the estimation of reservoir sedimentation from three typhoon 

events in Shihmen Reservoir watershed, Taiwan (Lee et al., 2006). The authors 

used Hydrological Simulation Program FORTRAN (HSPF), a numerical program 

developed by US Environmental Protection Agency (USEPA), to simulate 

discharge and sediment yield based on precipitation, discharge, concentration of 

suspended sediment, and relevant geometric and geologic data such as channel 

cross section. Among all these parameters, only those parameters that were 

most sensitive to the results were calibrated by using HSPF to a desired level of 

accuracy and then saved to model discharge and sediment yield. The correlation 

coefficients for calibration and validation between observed and simulated results 

were 0.86 and 0.85, respectively. Due to the lack of complete data sets of 

concentrations of suspended sediment, the inputs and target outputs for ANN 

models were synthetic data generated from the calibrated and verified HSPF 
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model. The optimal inputs for the modeling of sediment yield were found to 

to be rainfall intensity up to the previous four time steps and discharge at the 

same time step. Trained by GSD algorithm, ANN models with one hidden layer 

achieved accurate prediction since the correlation coefficients improved to 0.96, 

and 0.93 for training and testing data (Lee et al., 2006). Both HSPF and ANN 

approaches were more accurate than empirical rating-curve method.   

2.3 Use of Neural Fuzzy System and Fuzzy Neural Network in Hydrologic 

Modeling 

Although ANN technique has gained more and more popularity and 

exhibits promising capability for modeling nonlinear relationship, it was classified 

as one of empirical models or ‘black box’ due to the lack of physical concepts 

and explanation of relations between inputs and outputs. Another kind of artificial 

intelligence – fuzzy logic system, addresses the linguistic, uncertainty and 

imprecise knowledge by using fuzzy sets for gradual qualities, and represents if-

then rules by fuzzy antecedent and consequent parameters through which 

human knowledge can be directly implemented (Mitra and Hayashi, 2000). Since 

fuzzy logic system is not able to learn from examples, that is, the parameters 

within fuzzy logic system cannot be determined through learning or calibration; 

many researchers have been exploring the possibility of fusing ANN technique 

and fuzzy logic system, named Neural Fuzzy System (NFS) or Fuzzy Neural 

Network (FNN). The NFS is a combination of ANN and fuzzy logic in such a way 

 



 

 30

that neural network learning algorithms are applied to enhance fuzzy system 

characteristics in terms of its flexibility, speed, and adaptability (Mitra and  

Hayashi, 2000). On the other hand a FNN is still basically a neural network but 

the input signals and/or connection weights and/or the outputs are fuzzy subsets 

or a set of membership values of fuzzy sets.  

As a benchmark method of NFS, Adaptive-Network-based fuzzy inference 

system (ANFIS, Jang 1993) was employed for numerous problems. Chau et al. 

(2005) applied ANFIS to forecast downstream water levels of Yangtze River in 

China. For comparison purpose, an empirical linear regression model and 

genetic algorithm-based ANN (ANN-GA) model were tested as well based on the 

known water levels at upstream station, same inputs as for the ANFIS model. 

The authors reported that both ANFIS and ANN-GA model forecasted flooding 

levels between two stations on Yangtze River more accurate than the linear 

regression model, although both methods involved the determination of many 

parameters. ANFIS model was suggested to be a better suited tool for flood 

forecasting.  

Deka and Chandramouli (2005) introduced their approach to predict 

stream discharge at one gauge station using a FNN model based on discharge at 

other gauging stations on Brahmaputra River in India. They reported that the 

FNN model was superior to ANN model in terms of simulation accuracy for very 

low, low, and high flow regions. With other features such as flexibility, ease of 

building and interpreting, FNN approach was believed to be a potential tool for a 
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wide range of hydrological problems. One of the recent advancements in water 

resources area is the application of FNN model trained stochastically (SFNN) by 

a genetic algorithm (Chaves and Kojiri, 2007) for deriving the reservoir monthly 

operational strategies to improve water quality and maximize water usage. The 

SFNN method were developed based on seven input parameters (i.e. inflow, 

beginning-of-period storage, dissolved oxygen, biochemical oxygen demand, 

total nitrogen, total phosphorous, and chlorophyll-a) and the interested output 

variable was the end-of-period reservoir storage volume. The SFNN model was 

implemented to Barra Bonita reservoir in Brazil. Trained with water quality related 

objectives, the SFNN model successfully produced the reservoir operational 

strategies and meanwhile achieved the objectives of optimizing water quality and 

maximizing water utilization.   

 Tayfur et al. (2003) pioneered the application of fuzzy logic algorithm for 

estimating sediment load induced by runoff from bare soil surfaces. The inputs 

including rainfall intensity and slope data were fuzzified by using triangular 

membership functions, and the output fuzzy sets were defuzzified by using 

weighted average method. The relations between rainfall intensity, slope, and 

sediment transport can be interpreted by a set of fuzzy rules. The predicted 

results were in good agreement with the experimental sediment data. The 

comparison between the fuzzy logic approach, ANN model, and a physically-

based model reveals that “fuzzy model performed better under very high rainfall 

 



 

 32

intensities over different slopes and over very steep slopes under different rainfall 

intensities” (Tayfur et al., 2003).   

 Based on the review of many successful applications of ANN technique in 

a variety of highly nonlinear hydrologic problems, it is the first artificial intelligence 

model considered in this study for modeling debris yield. Another two artificial 

intelligence models - ANFIS and GD-FNN model are developed for modeling 

debris yield because of their initiative to fuse ANN and fuzzy logic system to 

combine the advantages of both models and overcome the disadvantages. The 

application of ANFIS in the hydrologic area has been reported, however, it is a 

creative approach to apply GD-FNN model for estimating debris yield.     
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Chapter 3: Methodology of Modeling 

3.1 Location of Studied Debris Basins and Data Sources 

Under the pressure of increasing population, more and more man-made 

structures are expanded on alluvial fans and floodplains in southern California. 

Fast-moving and occurring without warning, debris or mud flows are one of the 

major natural hazards in this area. Indicated by the historical rainfall records and 

occurrence time of debris flows for southern California area, debris flows can be 

triggered by intense rainfall or even less intense, briefer storms on wildfire 

burned areas. 

The reason why southern California area has such a high erosion rate is 

due to its geological condition, special vegetation and climate which can easily 

induce wildfire, and dramatic rainfall pattern through a year. Broadly speaking, 

Los Angeles County consists of 25 percent mountainous area, 14 percent coastal 

plain, and 61 percent hills, valleys, or deserts (Los Angeles Hydrologic Report). 

Four rivers including Los Angeles River, Rio Hondo, San Gabriel River and Santa 

Clara River run across the county. The slope is mild at coastal plain but the 

slopes of main river systems crossing the coastal plain are steep, ranging from 4 

to 14 feet per mile. Below the elevation of 5,000 feet, the topography of 

mountainous area is mainly consisted of deep, V-shaped canyons with 70 

percent or more side slopes and separated by sharp dividing ridges (Los Angeles 

Hydrologic Report). Two primary mountain ranges are the Santa Monica  
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Mountains and the San Gabriel Mountains where the gradient of principal 

canyons is from 150 to 850 feet per mile. Formed by highly fractured igneous 

rock with large areas of exposed granitic rock formation, the San Gabriel 

Mountains and Verdugo Hills have a shallow soil mantle that accelerates erosion 

of the fine material. Valley and desert soils “vary from coarse sand and gravel 

near canyon mouths to silty clay, clay and sand and gravel in lower valleys at the 

coastal plain” (Los Angeles Hydrologic Report). Chaparral is the principal 

vegetation on upper mountainous area and it is very flammable under dry, low-

humidity weather accompanied by high winds (Los Angeles Hydrologic Report). 

Wells (1981) studied the effects of brush fires on erosion processes in coastal 

southern California area and reported an event that the recorded debris yield 

from a burned small and steep watershed is 100 times greater than that from the 

watershed under its unburned condition. The main reason might be more rainfall 

is flooded on the ground as direct runoff resulting from the removal of vegetation 

cover and the formation of water-repellent soils.   

The Los Angeles County is in semi-arid area and seasonal normal rainfall 

varies from 27.50 inches in the San Gabriel Mountains to 7.83 inches in the 

desert (Los Angeles Hydrologic Report). In mountain areas, after the soil is 

wetted to the capacity, direct runoff will be formed very soon due to steep slope. 

The volume and rates of excess rainfall is much greater and with earlier arrival 

time to the peak from areas recently denuded by wildfire (Los Angeles Hydrologic 

Report). Hence, it is able to carry and pick up more sediment to the alluvial fan 
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areas. Urbanization at hilly and valley areas increases direct runoff in terms of 

volume and rates although less sediment is available. Debris yield rates from 

urbanized hill areas are smaller than undeveloped hill areas, and also smaller 

than those from recently burned areas, assuming the same-sized area.  

As an effective engineering solution, debris basin was built up to retain 

debris and to reduce risk of debris and mud flow, thus minimizing the loss of 

structures and human lives. Until 2005, within Los Angeles County, there were 

157 debris basins located at canyons mouths to collect the solid sediments and 

to release water to downstream flood control channels. The study of sequent 

debris yield resulted from a series of storm events during a specific time period 

and debris yield flushed by a single significant storm event per unit area is of 

prime importance for the design and maintenance of debris basins. A very 

powerful nonlinear relationship modeling tool - artificial neural network is applied 

to predict both sequent debris yield and unit debris yield collected from 

watersheds totally or partially burned by wildfire in this study.     

Los Angeles District of the USACE provides debris yield data collected 

from 14 small debris basins (Figure 1) with area less than 3 square miles from 

1984 to 2003. They are used for predicting sequent debris yield resulting from 

wildfire and a series of storm events. 200 pairs of data collected from 36 small 

debris basins (Figure 2) from 1938 to 1983 within Los Angeles County are used 

for the study of relative importance of watershed morphological parameters for 

simulating unit debris yield resulting from single storm event in this study. 349 
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pairs of data from 80 small debris basins (Figure 3) based on which the USACE 

developed an empirical regression equation (Equation 2.3) are separated into 

five groups based on watershed relief ratio. For example, first group includes 

data from watersheds with mild slope, or relief ratio is in a range of [58, 185] 

m/km, second group is from watersheds with steep slope (i.e. relief ratio ranges 

from 185 to 250 m/km), third group is from watersheds with steeper slope, or 

relief ratio is from 250 to 305 m/km, the fourth group is from watersheds with 

extreme steep slope, or relief ratio is from 305 to 375 m/km, and the fifth group is 

from watersheds with the steepest slope, or relief ratio is from 375 to 525 m/km. 

Each group of unit debris yield data was simulated and the impacts of three soil 

properties including soil erodibility factor, permeability rate, and liquid limit on the 

simulation were studied. Unit debris yield collected from watersheds with larger 

area (e.g. from 10 to 25 square miles, from 25 to 50 square miles, and from 50 to 

200 square miles) within Los Angeles County are simulated and compared to the 

three empirical regression equations formulated by the USACE in this study as 

well. The location of all the studied larger debris basins is shown in Figure 4. 
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Figure 1: Location of 14 small debris basins for sequent debris yield

San   Gabriel   Mountains 

Legend
●  Calibration  
●  Validation 
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Figure 2: Location of 36 small debris basins for unit debris yield 
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Figure 3: Location of 80 small debris basins for unit debris yield

San   Gabriel   Mountains 

Legend
●  Debris Basin with mild slope  
●  Debris Basin with steep slope 
●  Debris Basin with steeper slope 
●  Debris Basin with extreme steep slope 
●  Debris Basin with the steepest slope
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Figure 4: Location of 7 large debris basins for unit debris yield 
 

3.2 ANN Model 

ANN technique is chosen to estimate debris yield for its remarkable 

capability to identify nonlinear relationship between inputs and outputs for very 

complicated and highly nonlinear problems which are hard to describe by any 

explicit equations.  

3.2.1 Introduction of ANN Model 

It is the power of human brain and nerve system that made people think of 

the possibility of creating a model for a whole new game of calculation (Dayhoff, 

1990). In human brain, a signal is received from another neuron through 

dendrites, a group of branching fibers, and then the signal passes the cell body 

San   Gabriel   Mountains 

Legend
●  Watershed area  ([10, 25) mi2)  
●  Watershed area  ([25, 50) mi2) 
●  Watershed area  ([50, 200]  mi2) 
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of neuron and flows to the next neuron through the long, branching axon 

(Dayhoff, 1990). Quite similar to the biological neuron system, the basic 

processing unit in ANN is called neuron or node, and they are grouped into 

different layers such as input, hidden, and output layer which are sketched in 

Figure 5.  

 

Figure 5: Schematic diagram of a three layer feed-forward ANN 

 
 X1, X2, …, and Xr are r input parameters, or one input vector. The input 

vector is connected to each neuron on the hidden layer through connection 

weights 1

ij
w .  The superscript 1 indicates the first hidden layer, and the subscripts 

i and j indicate the connection between ith input variable (i = 1,2,…r) and jth 

hidden neuron (j = 1,2,…m). Similarly, 22

21

2

11 ,...,, mpwww  are connection weights 

Input layer Hidden layer Output layer 

X1 

X2 

X3 

Xr 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

1

1b  

 

1

2b  

 

2

1b  

 

2

p
b  

 

1

mb  

1

11
w  

1

12
w  

1

21
w  

1

22
w  

1

31
w  

1

32
w  

1

1rw  

1

2rw  

1

1m
w  

1

3m
w  

1

rmw  

1

2m
w  

2

11
w  

2

21
w  

2

12
w  

2

1 p
w  

2

2 p
w  

2

mp
w  2

mp
w  

1Y  

p
Y  



 

 42

between the first hidden layer and the output layer with p neurons. 11

2

1

1 ,...,, mbbb  

and 22

2

2

1 ,...,, pbbb  are called biases or threshold values. The values of output 

variables ( pYYY ,...,, 21 ) are calculated based on the following equation.  

1,2,...pk    ],bw*)bwX(f[f
m

1j

r

1i

2
k

2
jk

1
j

1
iji12 =++= ∑ ∑

= =
kY                                  (3.1) 

1f  and 2f are transfer functions, or activation functions. The functions can be 

same or different.  

Generally speaking, there are five aspects that have impact on ANN 

model performance and they are input and output variable selection, separation 

of calibration and validation data sets, data preprocessing, ANN architecture 

determination, and training algorithm selection (ASCE, 2000b). ANN architecture 

includes two parts: geometry of the network and internal parameters. The 

geometry of a network means the number of hidden layer and the number of 

neuron on each layer. Internal parameters include transfer function, the initial 

value of connection weights and biases, epoch size, training data error goal, and 

so on. 

3.2.2 Selection of Input and Output Variables  

Input variable selection is of prime importance to make the “mapping” from 

the inputs to the outputs efficient and effective (ASCE, 2000a). If the physics in a 

process is well understood, it is helpful for choosing proper input variables. 
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Otherwise, sensitivity analysis can be performed to study the relative importance 

of input parameters (Maier and Dandy, 1996; Ray and Klindworth, 1996).   

For the prediction of sequent debris yield, ANN models are trained by five 

input variables including logarithmic transformed drainage area and relief ratio of 

the watershed, maximum 1-hr rainfall intensity, total rainfall amount, and fire 

factor. ANN models are calibrated and validated by the same data applied in the 

MSDPM model (Pak, 2005). The output is log transformed debris yield resulting 

from each single storm event generated by the MSDPM model and it is scaled in 

such a way that the sum of debris yield is equal to the measured accumulated 

debris yield during that period. Drainage area means the contributing area where 

debris yield entrapped in debris basin are from, and previous studies reported 

that it is highly correlated to debris yield (Lustig, 1965). Relief ratio is calculated 

by the difference between highest and lowest elevation dividing by the maximum 

stream length. It has been proved to be a very significant variable in most 

regression equations for simulating debris yield (USACE, 2000).  

Other related studies suggest some morphologic parameters also play an 

important role in unit debris yield simulation, for example, elongation ratio (ER), 

drainage density (DDR), hypsometric index (HI), total stream length (TSL), mean 

bifurcation ratio (MBR), and transport efficiency factor (T1). ER is defined as the 

ratio of diameter of a circle with the area equal to that of the basin to the 

maximum basin length - from the debris collection site to the watershed boundary 

along the longest stream. Scott and William (1978) included it in the regression 
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equations for estimating sediment yield at Transverse Ranges, southern 

California. DDM is the ratio produced by the sum of all stream lengths divided by 

drainage area. The stream length is determined by using Morisawa’s method that 

counts not only the length of perennial or ephemeral flow on a standard USGS 

1:24,000 scale topographic map but also the extension line into a likely stream or 

gully indicated by a series of V-shaped contours (USACE, 2000). Strahler (1957) 

announced a coincidence between maximum drainage density and high debris 

yield within some watersheds. HI is the relative height, the ground surface area 

above and under which are the same. It was reported to be a significant factor in 

Tatum’s report (1963). MBR is the average ratio of the number of streams of a 

given order divided by the number of streams in the next higher order, and it is a 

measure of the degree of branching within a stream network. T1 is defined as the 

product of mean bifurcation ratio (MBR) and total stream length (TSL). Lustig 

(1965) suggested it should be included for sediment yield simulation at southern 

California. In addition to the four well-acknowledged input parameters in debris 

yield prediction: watershed area, relief ratio, maximum one-hour rainfall intensity, 

and fire factor, the aforementioned six watershed geomorphic parameters 

provided by USACE are also included step by step in this study.  

As a creative approach, three soil properties including soil erodibility factor 

(SEF), soil permeability rate (SP), and soil liquid limit (SLL) for each watershed 

are included as input parameters one by one for the modeling of unit debris yield 

in addition to the four basic input parameters. SEF is a key factor in the USLE 
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(Equation 2.1) and it is a measure of rock fragments susceptibility to be detached 

and moved by water. SP is defined as the average of the maximum (permh) and 

the minimum (perml) permeability rate (Equation 3.2) with the unit of inch per 

hour for the top soil layer. Another factor - SLL is the moisture content at which 

soil will transfer from plastic to liquid phase. Similarly, the SLL is the average of 

its maximum (llh) and minimum value (lll) of the top soil layer as defined in 

Equation (3.3).  

Permeability = 
2

permlpermh +
                                                               (3.2) 

Liquid Limit
2

lllllh +
=                                                                                (3.3) 

The procedure of the acquisition of these soil properties parameters 

summarized as follows. First, the upstream contributing area to each debris basin 

is delineated with the aid of Better Assessment Science Integrating Point & 

Nonpoint Sources (BASINS) software developed by US Environmental Protection 

Agency (USEPA). Based on Digital Elevation Model (DEM) in Economic and 

Social Research Institute (ESRI)’s grid format, BASINS software delineated 

upstream watershed collection area after the selection of a mask area and the 

location of debris basin or the outlet where the flow should contribute to. Both 

data can be manually added to the map or loaded from existing files. The 

delineation is further refined by using the known values of watersheds, for 

example, watershed area and relief ratio. The upstream collection area of Brand 

and Childs debris basin are shown in Figure 6 as an example. Soil data in the 
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format of ESRI shapefile is from State Soil Geographic (STATSGO) database 

developed by Natural Resources Conservation Service. The area with similar 

type of soil is classified into one map unit and one soil map unit includes up to 21 

components and every component has a maximum of 6 soil layers. There are 

two Soil Interpretations Record tables required to join with the STASGO shapefile 

attributes table based on the Map Unit Identification Symbol (MUID). One is 

called “layer” which contains the soil attributes in terms of each soil layer such as 

SEF, permh, perml, llh, and lll, within each component; another is called “comp” 

which provides soil attributes in each component and the percentage of exposed 

area of each component within every soil map unit. Although the average method 

is the simplest to determine three soil characteristics for a soil map unit, it is not 

as reasonable as weighted average method (WAM). The WAM means the more  

 

Figure 6: Upstream collection area for Brand and Childs debris basin 
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predominant of a soil component inside a soil map unit, the closer its values 

resemble the soil attributes values of the soil map unit. Most commonly a 

watershed includes more than one type of soil map unit, it is necessary to clip the 

soil attributes shapefile based on the watershed boundary and calculate the area 

of each soil map unit within the watershed. Finally, three soil factors for each 

watershed are determined by using WAM as well, i.e. proportioning their original 

values to the percentage of exposure of that soil map unit. The overlay of Brand 

and Childs Debris Basin watersheds and the soil layer is illustrated in Figure 7. 

 

Figure 7: Overlay of soil layer and Brand and Childs debris basin watershed 
 

3.2.2 Separation of Calibration and Validation Data 

In general the whole data is divided into two sets: one set is for calibration 

or training data set, and the other set is for validation or testing data set. First an 
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ANN model is trained with the calibration data set, and then validation data set is 

provided to test the capability of the network to simulate new data. It was 

emphasized that the performance of ANN deteriorates seriously when the 

validation data set is outside the range of calibration data set (Flood and Kartam, 

1994). Genetic Algorithm (GA) and Self-Organizing Map (SOM) were suggested 

by Bowden et al. (2002) as a solution to solve this problem. GA works in such a 

way that data is divided so as to minimize the statistical difference, i.e., mean 

and standard deviation, between calibration and validation data set. SOM 

clusters similar data records, or data records within a certain Euclidean distance, 

into one group. Thereafter, calibration and validation data sets are composed of 

data sampled from each cluster with similar statistical properties.  

 For the estimation of sequent debris yield, calibration and validation data 

are separated in the same way as in the MSDPM model (Pak, 2005), 300 data 

records for calibration and 30 for validation. For the unit debris yield simulation 

with watershed morphological parameters, approximately 15 percent of the whole 

data is randomly selected as validation data and the remainder 85% data is for 

calibration. Inspired by Bowden et al.’s (2002) study, subtractive clustering is 

used to separate calibration and validation data for unit  debris  yield  collected  

from 80  smaller  debris  basins  and 7  larger  debris basins. This method ‘find’ 

cluster centers in a set of data by an iterative process of assigning all data within 

a certain radius of the cluster centers. Assuming all data points are clusters at 

the beginning, subtractive clustering method calculates the likelihood of each 
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data point to be a cluster. The data point with the maximum likelihood will be 

chosen as the first cluster, next, all the data points in the vicinity of the first center 

are removed, and then determine next cluster, repeat the same process until all 

data points are within the radius of the clusters. The radius for each data set is 

determined through modeling all the data by using fuzzy inference system. Since 

this fuzzy inference system classifies all the data into groups based on 

subtractive clustering method and then generates one fuzzy rule for each group 

of data, the radius is determined in such a way that training data error is the 

smallest and the structure of this fuzzy inference system is the simplest, i.e. less 

fuzzy rules. Generally, the clusters and data points furthest from the centers are 

selected for calibration and the data points in between are selected for validation.  

3.2.3 Preprocessing of Data 

As suggested by Maier and Dandy (2000), calibration data for ANN should 

be standardized (i.e. a zero mean with unity standard deviation) to ensure all 

variables receive equal attention during training. It should also be scaled to a 

certain range to guarantee the outputs within the limit of the transfer function. For 

example, the range of logistic transfer function of the output layer is between 0 

and 1, so the data should be generally scaled in the range 0.1-0.9 or 0.2-0.8 and 

“should avoid the area of extreme limits where too small weight updates can lead 

to flat spots in training” (Maier and Dandy, 2000).   
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If the mean square error (MSE) function is used as the measure of 

performance efficiency of neural network training, or the optimization of 

connection weights and biases, Fortin et al. (1997) stated that data needed to be 

normalized in order to obtain optimal result. In this study, all inputs and target 

output for ANN models are not only normalized, but also orthogonalized and 

uncorrelated with each other by using principal component analysis. Using 

singular value decomposition, those input variables that contributed less than 2% 

of the total variation, the sum of the square of the singular value divided by the 

column number of the calibration data set minus one, are eliminated (Demuth 

and Beale, 1998).     

3.2.4 Determination of ANN Architecture 

ANN architecture is one of the most important and difficult tasks to be 

accomplished before start calibrating process. As introduced previously, it 

includes two parts: geometry of the network and internal parameters such as 

transfer function, the initial selection of connection weights and biases, epoch, 

error function, and so on.  

3.2.4.1 Geometry of A Neural Network 

The geometry of a neural network includes the selection of number of 

neuron on each layer and the number of hidden layer which are problem specific. 

Based on the review of some applications of ANN models with one hidden layer, 

the optimum number of neuron on hidden layer has been found to be less than 
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the number of inputs. Rogers and Dowla (1994) found the number of training 

samples has impact on network geometry. For example, the ratio of the number 

of training samples to the number of connection weights should be greater than 

1, 2 (Masters, 1993), or even 10 (Weigend et. al., 1990). Compared with ANNs 

with more than one hidden layer, a neural network with one hidden layer requires 

less storage space and has higher processing speed, but its error surface is 

more complicated with more local minimum (Bebis and Georgiopoulos, 1994). 

ANNs with two hidden layers can learn the relation between inputs and outputs 

quickly (Plaut and Hinton, 1987) and have a remarkable ability to avoid local 

minima in the error surface. ANN with more than two hidden layers is seldomly 

used due to their low processing speed during training and testing. Flood and 

Kartam (1994) recommended two hidden layers as a starting point and they 

believed more hidden layer can provide more flexibility and enable approximation 

of complex functions with fewer connection weights in many situations. Without 

too many widely accepted guidelines, the trial-and-error method appears to be 

the only choice for determining the geometry.  

As aforementioned, there are five input variables included to model 

sequent debris yield collected for 14 debris basins from 1984 to 2003. The 

number of input parameters varies from six to ten for forecasting unit debris yield 

for 36 debris basins from 1938 to 1983. There are four studied cases for this 

purpose. In the first case, six input parameters includes log transformed drainage 

area and relief ratio of the watershed, TSL, T1, logarithmic transformation of 
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rainfall intensity, and fire factor. In the second, third, and fourth case, DDM, ER 

and MBR, HI are included as input parameters step by step. 349 unit debris yield 

collected from 80 smaller debris basins are divided into five groups and each 

group of data is modeled with four basic input parameters such as log 

transformed drainage area and relief ratio, logarithmic values of maximum one 

hour precipitation, fire factor, and three soil attributes included one by one. For 

modeling seven larger debris basins, the four basic input parameters are 

maintained except the inclusion of peak discharge instead of maximum one hour 

precipitation. Peak discharge is believed to be more related to debris yield 

modeling but it is only available for larger watersheds. ANN models with a 

maximum of two hidden layers are calibrated to search for the best neural 

network geometry to estimate either sequent debris yield or unit debris yield. For 

the estimation of sequent debris yield, the number of hidden neuron varies from 6 

to 14 for three-layered ANN models. The number of hidden neuron is from 5 to 

21 when simulating unit debris yield with 10 inputs or less. After a neural network 

model is trained thousands of times, the best-fit connection weights and biases 

with the minimum calibration and validation error are saved for this neural 

network. The performance of all developed neural networks is compared to 

determine the best model for this studying case and meanwhile the effect of 

increasing hidden neurons on the network performance is analyzed. For both 

sequent debris yield and unit debris yield prediction, twenty-two four-layered 

ANN models are examined with different number of neurons on the first and the 
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second hidden layer, such as 3:1, 3:2, 3:3, 3:4, 4:1, 4:2, 4:3, 4:4, 4:5, 5:1, 5:2, 

5:3, 5:4, 5:5, 5:6, 6:1, 6:2, 6:3, 6:4, 6:5, 6:6, and 6:7 (the first and second number 

indicate the number of the neuron on the first and second hidden layer, 

respectively). Pak and his colleague (2009) recommended that ANN models with 

two hidden layers are superior to neural networks with only one hidden layer. 

Therefore only ANN models with two hidden layers are selected for simulating 

unit debris yield collected from 7 larger debris basins.  

3.2.4.2 Transfer Function 

Transfer function is applied to calculate the output of a neuron based on 

its incoming net input signal - the term inside the parentheses is a net input for 

neuron j on the hidden layer or the term inside the brackets is a net input for 

output neuron k in equation 3.1. The most commonly used transfer functions are 

sigmoid function, hyperbolic tangent function and linear function. The sigmoid 

function has the following form 

ne1

1
f(n) −+

=                                                                                           (3.4) 

Where n is the net input, f(n)  is the corresponding output of the neuron and it is 

in a range from 0 to 1. The hyperbolic tangent function is  

nn

nn

ee

ee
tanh(n)f(n) −

−

+
−

==                                                                         (3.5) 

The linear function is simple; the output of the neuron equals to its net input. 
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 Kaastra and Boyd (1995) demonstrated that a three-layered feed-forward 

neural network with sigmoid function for the hidden layer and linear for the output 

layer is capable of extrapolation beyond the range of calibration data. Kalman 

and Kwasny (1992) suggested that the hyperbolic tangent transfer function 

should be used for the hidden layer and linear function for the output layer that 

can approximate any function with a finite number of discontinuities. Referring to 

Maier and Dandy’s paper in 1998, modeling results obtained using networks with 

hyperbolic tangent transfer function is slightly better than the results using logistic 

transfer function. Therefore, in this study, hyperbolic tangent function is chosen 

as the only transfer function for the hidden layer(s) of neural networks; and linear 

function is used as the transfer function for the output layer. 

3.2.4.3 Initial Selection of Connection Weights and Biases 

A traditional neural network is fully connected, in other words, neurons are 

only connected to neurons on the adjoining layers. The connection weight shows 

the strength between each two neurons, and its initial value can be zeroes, or 

any random numbers within the range of [0 1] or [–1 1] and has a significant 

impact on the performance of neural networks. It can also be applied to biases. 

Starting with different initial connection weights and biases, neural network 

should be trained for many times to reach the global minimum instead of local 

minimum in the error function surface. In this study, each neural network model is 

trained hundreds of times to start with different initial values.  
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3.2.5 Training 

Training is an iterative process of adjustment and optimization of 

connection weights and biases to produce neural network outputs that best 

approximate the target outputs. The training method can be classified into two 

categories: supervised and unsupervised. The supervised algorithm modifies 

connection weights and biases by feedbacks based on the difference between 

neural network outputs and the corresponding target values. Unsupervised 

methods do not require feedbacks for training. For example, Hebb rule (Hagan, 

et. al., 1996) updates connection weights and biases only based on the old 

connection weights, the learning rate, the inputs, and outputs to the neurons. 

Training can also be categorized into incremental training or batch training. If 

connection weights and biases are changed after presenting each input data 

record (or a vector such as )x,...,x,(xX r21= ) to the network, it belongs to 

incremental training. If the connection weights and biases are adjusted after the 

whole training data set (

⎥
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, where n is the number of training data) 

are provided to the network, it is named batch training. Although batch training 

has lower processing speed and needs more storage space, it is the most 

commonly used training pattern because “it forces the search to move in the 

direction of the true gradient at each weight update” ( Maier and Dandy, 1998). 

Hence, only batch training is used in the study.  
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3.2.5.1 BP Training Algorithm  

BP is one of the most widely used supervised training algorithms. It is 

composed of two directions of information flow: feed-forward and backward. 

During feed-forward pass, input vectors enter from the input layer and then flow 

through hidden layer and finally reach the output layer where outputs are 

computed based on the connection weights and biases, transfer functions, and 

the geometry of the network (Hagan, et al., 1996). The sum of squared error 

(SSE) between targets and outputs from the neural network is calculated, and 

the negative of the gradient vector of the error is propagated backwards toward 

the input layer to modify the connection weights and biases (Hagan, et al., 1996) 

based on Equation (3.6) and (3.7) that is called backward pass. 

l
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−=+                                                                      (3.6)                     
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−=+                                                                            (3.7) 

Where the superscript )(l  indicates the number of the layer, the first subscript (j) 

describes jth neuron on the current layer and the second subscripts represents 

the neuron i on the previous layer, α  is learning rate, k and k+1 mean the kth and 

(k+1)th times that calibration data was presented to the network, and E is SSE. 

Although cubic and quadratic error functions are used sometimes, the SSE error 

function is the most commonly referenced because it is easy to calculate as well 

as its partial derivative with respect to connection weights and biases, penalizes 
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large errors, close to the heart of the normal distribution (Masters, 1993). SSE is 

formulated as follows. 

∑∑
= =

−=
q

1s

p

1t

2
stst )T(Y

2

1
SSE                                                                        (3.8)  

In which q is the number of data pairs provided to train the ANN model during 

each epoch, p is the number of output neuron, Y is the estimated output by ANN, 

and T is target output. 

3.2.5.2 Variations of BP Algorithm 

BP algorithm is criticized for its low training and convergence speed for 

some practical problems. As an improvement, the second order methods gain 

more and more popularity recently. For example, the classical Newton algorithm, 

one of the earlier developed second order methods, can be mathematically 

expressed as (Paris, et al., 1996): 

EHW(k)1)W(k
kW

1∇−=+ −                                                                      (3.9) 

where, the first two terms are the new and old connection weights matrix, H-1 is 

the inverse of the Hessian matrix (Equation 3.10), and the last term is the 

gradient of the error at the kth epoch.  
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Unfortunately, it is very complex and time-consuming to calculate the 

Hessian matrix for a feed-forward neural network. Therefore, a number of 

algorithms were proposed to approximate Hessian matrix in different ways. 

Levenberg-Marquardt (LM) algorithm (Hagan, et. al., 1996) is one of such 

improved algorithms, and connection weights and biases are updated following 

Equation 3.11. 

eJμI]J[JW(k)1)W(k T1T −+−=+                                                           (3.11) 

In which, J is Jocobian matrix which is the first derivatives of the network errors 

with respect to connection weights and biases, μ  is a scalar, I is identity matrix, 

and e is error matrix. Second-order methods have an order of two convergence 

speeds and require second order of the computational space. The latter is not a 

concern with the development of computer hardware. The LM algorithm is one of 

the fastest methods for training moderated-sized feed-forward neural networks 

and it is strongly recommended if there is no memory problem (Hagan, et. al., 
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1996). Another algorithm is Bayesian Regulation BP (BRBP) algorithm which 

optimizes the connection weights and biases the same as LM algorithm, 

however, the performance function is a linear combination of SSE and 

connection weights and biases to reduce the risk of overfitting, or overtrained. 

Overfitting is a very common training problem and it has such a symptom that the 

estimation error of calibration data is small but the error of validation data is 

large. For comparison purpose, both training algorithms are used in this study.  

Trained by either LM algorithm or BRBP algorithm, the generalization 

ability of neural networks also depends on some internal parameters such as 

epoch size, target goal, minimum gradient of training error, and maximum value 

of the scalar in Equation (3.11). The epoch size is the number of training samples 

for incremental training, and it is the number of times that calibration data is 

presented to train neural networks for batch training. Both algorithms belong to 

batch training. Epoch size is constant (i.e. 1000 or 10,000). Target goal is used to 

control the training process that means if a predefined target goal for calibration 

data is reached, the training is terminated and the architecture is saved for 

testing the validation data. Because the data are pre-processed between –1 and 

1, so a lower target goal is used, 6101 −× . The default values in Neural Network 

Toolbox of Matlab are used for minimum gradient of training error and maximum 

value of the scalar. To summarize, the training of a neural network will be 

stopped if any of the following goals is reached: (1) Epoch size, (2) Target goal, 

(3) Minimum gradient of training error, or (4) Maximum value of a scalar.  
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3.3 NFS and FNN Models  

ANNs have been criticized for not helping in explaining the physics of 

hydrological process, and the lack of a standardized way to choose the 

architecture. Fuzzy logic system, addresses the linguistic, uncertainty and 

imprecise knowledge by using fuzzy sets for gradual qualities, and represents if-

then rules by fuzzy antecedent and consequent parameters. Fuzzy logic system 

generally consists of five blocks as shown in Figure 8 (Jang, 1993), and it has 

been proved to be able to approximate any continuous function on a compact set 

to any accuracy (Buckley, 1993; Wang and Mendel, 1992).  

 
Figure 8: Basic configuration of fuzzy logic system  

 
Through a fuzzification interface, crisp inputs are converted into fuzzified inputs 

or fuzzy singleton by using membership functions (i.e. triangular, trapezoidal, or 

Gaussian function). Data base includes membership function for antecedent 

fuzzy sets and rule base containing all fuzzy if-then rules for a practical problem. 

Employing fuzzy if-then rules from rule base, fuzzy inference generates a fuzzy 

output by a fuzzy reasoning method, e.g. minimum, product, etc. Finally, fuzzy 

output is transformed to crisp output through defuzzification interface by applying 

weighted average, or weighted sum method (Jang, 1993).  
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Fuzzy logic was first explored by Mamdani and Assilian (1975) for steam-

engine control using fuzzy rules like ‘if x1 is F1, x2 is F2, … , xn is Fn, then y is Y’ in 

which F1, F2,…, and Fn are called premise parameters and Y is consequent 

parameter. As an improvement, Takagi and Sugeno (1985), and Kang (TSK, 

1988) introduced linear equations in the consequent part, for example, the fuzzy 

rule is ‘if x1 is F1, x2 is F2, … , xn is Fn, then y is 1 1 2 2 n nc+a x +a x +...+a x ’ where c, a1, 

a2, …., an are constants. Although TSK model was applied to many control and 

prediction problems, its lacking of learning methods for tuning the memberships 

to minimize output error limits its further application.  

To overcome ‘black box’ behavior of ANNs and lack of formal tuning 

method of fuzzy logic system, researchers proposed two combined approaches: 

NFS and FNN. As an inventive approach in modeling sediment yield, ANFIS, one 

of the widely used NFSs, and GD-FNN, an improvement on traditional FNNs, are 

applied to estimate unit debris yield collected from 36 small debris basins within 

Los Angeles County in this study.  

3.3.1 ANFIS Model 

ANFIS was developed by Jang in 1993 to generate “input-output mapping 

based on both human knowledge (fuzzy if-then rules) and stipulated input-output 

data pairs”. ANFIS employs either a combination of least-squares method and 

the BPGDM or only BPGDM to tune premise and consequent parameters. Figure 

9 shows a simple ANFIS structure with two input variables (x and y), one output, 
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and two fuzzy rules (Jang, 1993). Similar to ANN model, ANFIS composed of two 

passes, forward and backward. During forward pass, premise parameters are 

fixed, input data is entered from layer 1 and flows through layer 2, 3, and 4, and 

finally reach layer 5, defuzzification layer. ANFIS outputs are generated based on 

consequent parameters determined by using sequential least squares formulas 

(Equation 3.18) and outputs from the previous layer, and then the sum of 

squared errors between outputs and targets are calculated.  

 
Figure 9: An ANFIS Structure 

 

The working procedure of ANFIS model (Jang, 1993) is explained in 

details next. 

Step 1 (layer 1 in Figure 9) is to calculate the matching degree of each 

input to a pre-specified membership function usually within a range of [0, 1], for 

example, triangular-shaped function (Equation 3.12), trapezoidal-shaped function 

(Equation 3.13), Gaussian function (Equation 3.14), etc.  
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In Equation (3.12) three numbers b1, b2, and b3, inside triangular-shaped 

membership function are three corners of a triangle. Similarly, the number (a1, a2, 

a3, and a4) indicates the location of four corners of a trapezoid in x-axis starting 

from the left bottom corner and going clockwise direction. ( ic , iσ ) are the center 

and width of a Gaussian function. In fact, membership function can be any 

continuous function as long as it is piecewise differentiable (Jang, 1993). 

Step 2 (layer 2 in Figure 9) is to compute the firing strength of a rule (Jang 

1993), and it can be obtained by choosing products of outputs from the previous 

layer that can be expressed as  

1,2i    (y)μ(x)μw
ii BAi =×=                                                                    (3.15) 
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Step 3 (layer 3 in Figure 9) is to normalize the firing strength by the sum of 

all rules’ firing strength as follows (Jang, 1993).  

1,2i         
ww

w
w

21

i
i =

+
=                                                                      (3.16) 

Step 4 is to produce the output for each node in layer 4 by the product of 

normalized firing strength to fuzzy rule output implementing TSK model (i.e. 

yqxprf iiii ++=  where ri, pi, and qi are consequent parameters) and the output is  

1,2i         y)qxp(rwO iiiii =++=                                                           (3.17) 

The consequent parameters are determined by sequent least square formulas 

(Equation 3.18), a more efficient method for small numbers of linear parameters 

(Jang, 1993). 
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In the equation, X is consequent parameter matrix with zeroes as initial values, S 

is covariance matrix and the initial value is the product of a large positive number 

and identity matrix, ak+1 is (k+1)th row vector of input data matrix, bk+1 is the (k+1)th 

element of target matrix, and n is the number of training data.   

Step 5 is to calculate the overall output as a summation of all outputs from 

layer 4 (Jang, 1993).  
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During backward pass, the first derivative of error function with respect to 

nodal outputs propagates backward from layer 5 to layer 1 while the consequent 

parameters are fixed but premise parameters are modified based on the GDM 

algorithm. Both premise and consequent parameters are iteratively adjusted 

during forward and backward passes in order to minimize difference between 

ANFIS outputs and target values. ANFIS is proved to be an effective modeling 

tool for nonlinear relationship, chaotic time series, and a number of practical 

problems.  

ANFIS method demands some prior information such as input space 

partition and number of fuzzy rules and expert knowledge, and the trial-and-error 

method is necessary to find out the optimal structure if prior expert knowledge is 

not available. 

3.3.2 GD-FNN Model 

In 2001, Wu et al. developed a generalized dynamic FNN (GD-FNN) 

approach implementing TSK fuzzy system which is capable of generating and 

deleting fuzzy rules automatically. The learning is hierarchical, on-line or adaptive 

as introduced in ANN section, and self-organizing. The width of Gaussian 

membership function are selected  based on fuzzy −ε completeness  rather  than 

random values or simple methods, and the number of fuzzy rule is not 

necessarily equivalent to the number of membership function for each input 

variable. The architecture of the GD-FNN model is illustrated in Figure 10.  
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Figure 10: The architecture of the GD-FNN model 
 

Layer 1 is input layer, the same as that in the neural network. In layer 2, 

crisp inputs are fuzzified by using Gaussian membership function (Wu et al., 

2001) as follows. 
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Where r is the number of input variables, j is the number of fuzzy rules, ijc  and 

ijσ  are the center and width of Gaussian membership function for ith input and jth  
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fuzzy rule. Using T-norm (product) as the method to calculate firing strength of 

each rule and introducing a new term – regularized Mahalanobis distance (md) 

(Wu et al., 2001), the output for the third layer can be expressed as  

    ]md(j)exp[]
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2
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=

    (j=1, 2, …, u)                   (3.21) 

Based on TSK model, the output in the fourth layer is a weighted summation of 

outputs from the previous layer and results of fuzzy rules, and it is in the form of  
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The above equation can be rewritten as follows, 
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Using a computationally simple but efficient method - linear least squares 

(LLS) method, the consequent parameters are determined by T1T ΦΦ)T(ΦW −=  

where T is target matrix (Wu et al., 2001).  
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Two new parameters, desired accuracy ( ek ) and effective radius of the 

accommodation boundary ( dk ) are defined in equation (3.24) and (3.25), 

respectively. Both parameters gradually reduce as training continues because 

larger accommodation boundary and error index at the beginning promotes 

rough but global learning and fine learning begins when ek and dk  reaches mine  

and mind  (Wu et al., 2001).  

⎪
⎩

⎪
⎨

⎧

≤<
≤≤×

<<

=
 nk3n2                              ,e

32nk3n    ),e,βmax(e

3nk1                             , e

k

min

min
k

max

max

e                                            (3.24) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<=

≤≤×

<<=

=

 nk3n2               ,)ε1ln(d

32nk3n           ),d,γmax(d

3nk1              , )ε1ln(d

k

maxmin

min
k

max

minmax

d                                     (3.25) 

In the above two equations, maxe  = predefined maximum error, k = learning 

epoch, mine = desired accuracy, β  is convergence constant and defined as 

n
3

max

min )
e

e
(β = , maxd = largest length of input space, dmin = smallest length of 

interest, decay constant is n
3

max

min )
d

d
(γ = , maxε = maximum value of fuzzy 

sscompleteneε − , and minε = minimum value of fuzzy sscompleteneε − , usually 

0.5. Another big improvements in GD-FNN is the use of semiclosed fuzzy sets to 

satisfy sscompleteneε − fuzzy rules, that is, for any input (x) in the operating 

range ([a, b]), there is at least one fuzzy rule so that firing strength is no less than 
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ε  (Wu et al., 2001). For one fuzzy set, the width of Gaussian membership 

function should be selected as 
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σ              (3.26) 

c1 is center of Gaussian function, and kmf is a predefined small constant for 

measuring the similarity of neighboring membership function. If there is more 

than one fuzzy rule, the newly generated Gaussian function width should be (Wu 

et al., 2001) 

)c,(cany x for         , )
ε)1ln(

c-c
,

ε)1ln(

c-c
max(σ 1j1-j

1jjj1-j

j +
+

∈=                        (3.27) 

1jc −  and 1jc + are two neighboring membership function centers.  

During learning process, there are only four possible cases (Wu et al., 

2001). The first case is when ek ke >  and dmin kmd > : a new fuzzy rule will be 

generated but whether a new membership should be added to a neuron depends 

on E-distance (ed) which is  

imax
k
iiu

k
ii1

k
iimin

k
ii xx,c x..., ,c x,xxed −−−−=                                        (3.28) 

If mfi k)min(ed > , a new membership should be created while the 

corresponding new center should be k
i1)i(u xc =+  and equation (3.27) should be 

used for width. After a fuzzy rule is generated, its significance can be evaluated 

by Error Reduction Ratio (ERR) matrix which is derived as follows. 
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Rewrite equation (3.23) using T instead of Y, TEWΦT += where E is error 

matrix, and then transpose both sides of the equation (Wu et al., 2001), we have 

T T T

n 1 n (r 1)u (r 1)u 1 n 1T Φ W E D H θ E× × + + × ×= + ⇒ = +                                          (3.29) 

If the row number in matrix H is greater than its column number, it can be 

decomposed into one orthogonal matrix (P) with the same size as H and one 

upper triangular matrix (N) as  

1)u(r1)u(r1)u(rn1)u(rn NPH +×++×+× =                                                                     (3.30) 

Substitute Equation (3.30) into Equation (3.29),  

1n11)u(r1)u(rn1n11)u(r1)u(r1)u(r1)u(rn1n EGPEθNPD ××++×××++×++×× +=+=                    (3.31) 

The LLS solution of G is DPP)(PG T1T
11)u(r

−
×+ =  (Wu et al., 2001).  

The sum of squares or energy D (Wu et al., 2001) is  

EEppgDD T
1)u(r

1m
m

T
m

2
m

T += ∑
+

=

                                                                      (3.32) 

In equation (3.32), mg  is mth row vector of matrix G, and mp  is mth column vector 

of matrix P. The ERR matrix is given by (Wu et al., 2001) 

DDpp

D)(p
err

T
m

T
m

2T
m

m = ))1(,...,2,1( urm ∗+=                                                   (3.33) 

ERR matrix represents the similarity of mp and D. The matrix ERR is 

reorganized as )ρ  ...  ρ  (ρΔ u21u1)(r =×+ . The relative significance of mth neuron 

can be evaluated by 
1r

ρρη m
T
m

m +
= . The larger the mη  is, the more important is the  
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mth neuron or the fuzzy rule (Wu et al., 2001). If errm kη < , the mth neuron and 

corresponding fuzzy rule are delete where  errk  is a predefined small positive 

constant.    

If ek ke >  and dmin kmd ≤ , it indicates k
ix  can be covered by the adjacent 

fuzzy rule but performance is not satisfied. Therefore the width of the adjacent 

membership function should be updated (Wu et al., 2001) as 

⎪
⎪
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ij

ij
old
ij2

ijs
2

s

s

new
ij                    (3.34) 

ijB is a newly introduced parameter which represents the significance of ith input 

variable in the jth rule. Ks = 0.9 was used by Wu et al. (2001). The change of 

width requires the modification of the consequent parameters by using 

T1T ΦΦ)T(ΦW −=  as well.  

For the remaining two cases:  ek ke ≤  and dmin kmd ≤ , or ek ke ≤  and 

dmin kmd > , only consequent parameters are required to adjust, or for the former 

case, do nothing. The whole procedure is outlined as a flow chart in Figure 11 

(Wu et al., 2001). 
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Figure 11: The flowchart of GD-FNN algorithm 
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For the unit debris yield estimation in this study, from Case 4 to 7, 85 

percent data from the whole data set are presented to calibrate ANFIS, and 

calibrate GD-FNN model with one by one data record until running out of data. 

After training, the generated ANFIS and GD-FNN structure are saved and 

examined for its generalization capability for an independent set of validation 

data.  

3.4 Sensitivity Analysis 

   The study of the relative importance of input parameters on the 

generalization ability of an ANN model is referred to as sensitivity analysis. In this 

study, no more than two input parameters are included each step to examine 

their impacts on the performance of artificial intelligence models. Overall 

speaking, there are three studied cases for sequent debris yield estimation and 

twelve cases excluding those with soil characteristics as additional input 

parameters for modeling unit debris yield. ANN models are trained by different 

number of input parameters or different number of calibration data for all the 

fifteen studied cases and the detailed information is orgainzed in Table 1. ANFIS 

and GD-FNN models are only applied to estimate unit debris yield in Case 4, 5, 

6, and 7.  

The neural network toolbox and the fuzzy logic toolbox in Matlab are very 

helpful for developing ANN and ANFIS models. Trial and error method is used to 

find out the best architecture of ANN and ANFIS. The computer codes for GD- 
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FNN model are created in this study following the general approach outlined in 

Wu et al.’s paper (2001). To evaluate the performance of all artificial intelligence 

models developed in this study, the mean square error (MSE) (Equation 3.35) 

and a regression analysis between the models predicted outputs and the 

measured debris values are used for both the validation data and calibration 

data. 

∑∑
= =

−
×

=
q

1r

p

1k

2
rkrk )T(Y

pq

1
MSE                                                                 (3.35) 

The parameters in the above equation are the same as those in equation (3.8).   

The evaluation of network performance follows such a procedure: (1). 

compare the MSEs for both calibration and validation data sets; (2). compare the 

absolute difference between estimated and actual debris yield; (3). compare the 

correlation coefficients and the values of the slopes for the best linear regression 

lines. In general, the smaller the MSE is, the closer the correlation coefficient and 

the value of the slope are to unity, the more accurate is the model estimation.  
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Table 1: Summary of input parameters for each case 
             Output 

Case No.            
Sequent 

Debris Yield 
Unit Debris Yield 

Input 
Parameter 

1 2 3 4# 5# 6# 7# 8 9 10 11 12 13 14 15 

Watershed Area 
(A) 

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Relief Ratio (Rr) √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Max. 1-hr 
Rainfall Intensity 

(I) 
√ √ √ √ √ √ √ √ √ √ √ √    

Total Rainfall 
Amount (P) 

√ √ √             

Fire Factor (F) √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Percentage of 
Burned Area (Bp) 

  √             

Year after Last 
Wildfire Event 

(By) 
  √             

No. of 
Antecedent 

Effective Storm 
(Ap) 

  √             

Elongation Ratio 
(ER) 

     √ √         

Drainage Density 
(DDM) 

    √ √ √         

Hypsometric 
Index (HI) 

      √         

Total Stream 
Length (TSL) 

   √ √ √ √         

Mean Bifurcation 
Ratio (MBR) 

     √ √         

Transport 
Efficiency Factor 

(T1) 
   √ √ √ √         

Soil Erodibility 
Factor* (SEF) 

       √ √ √ √     

Soil Permeability* 

(SP) 
       √ √ √ √     

Soil Liquid Limit* 
(SLL) 

       √ √ √ √     

Peak Discharge 
(Qcsm) 

            √ √ √ 

Number of 
Calibration Data 

300 244 170 58 61 55 62 63 48 52 54 

Number of 
Validation Data 

30 30 10 11 12 9 8 8 12 12 

* Three soil properties are added as input parameter one by one.  

# Modeling methods include ANN, ANFIS, and GD-FNN. 
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Chapter 4: Presentation and Discussion of Results 

4.1 Estimation of Sequent Debris Yield 

Three sets of ANN models are developed to demonstrate their ability to 

estimate sequent sediment yield. The first set of ANN models is trained by 300 

data with five input parameters including drainage area, watershed relief ratio, 

maximum one-hour rainfall intensity, total rainfall amount, and fire factor. These 

are the same parameters as used in a statistical model - MSDPM (Pak, 2005) 

except the logarithmic values of the first two input parameters and measured 

sediment yield is utilized in ANN models as targets rather than their estimated 

values by the MSDPM (Pak et al., 2009). The second set of ANN models are 

calibrated by the same input parameters but less data records. Data obtained at 

two debris basins (56 data records) before 1986 is excluded to study their effect 

on the neural networks performance. These data are believed to be less reliable 

than the more recent collected data because they were collected during a 

transition period when the collection agency changed. The last set of ANN 

models are trained by the aforementioned five input parameters, and three more 

input parameters: the percentage of the area that is burned by wildfire within the 

watershed, time after the last wildfire event in terms of year, and the number of 

the antecedent effective rainfall events. The number of training data records is 

the same as in the second case.  
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The calibration and validation data sets are the same as those used to 

create the MSDPM for comparison. Before start training the ANN models, both 

the inputs and the output target values are normalized, and the input vectors are 

uncorrelated by applying principal component analysis. Using singular value 

decomposition, those input variables that contributed less than 2% of the total 

variation are eliminated (Demuth and Beale, 1998). 

4.1.1 Case 1  

Trained by five input parameters, the number of hidden neuron of three-

layer ANN models varies from 6 to 14. For four-layer ANN models, twenty-two 

groups of different geometries are examined and they are (3,1), (3,2), (3,3), (3,4), 

(4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), 

(6,3), (6,4), (6,5), (6,6), and (6,7) (the first number indicates the number of 

neuron in the first hidden layer, and the second number is the number of the 

neuron in the second hidden layer). The training algorithm is BRBP algorithm to 

avoid overfitting problem. The training process will be terminated when epoch 

size reaches 1000, or error goal reaches 6101 −× , or the minimum gradient of the 

error reaches 101 10−× , or the default values of the rest internal parameters 

specified in Matlab. Transfer function for hidden layer(s) is hyperbolic tangent 

function, and linear function is for the output layer. The modeling results achieved 

by all ANN models are listed in Table 2. 
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Table 2: Summary of the performance of ANN models for Case 1 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

5,6,1 (43) 0.900 0.952 0.33275 0.854 0.928 0.22255 0.27765 
5,7,1 (50) 0.912 0.963 0.25377 0.885 0.943 0.17712 0.21544 
5,8,1 (57) 1.070 0.995 0.23564 0.918 0.961 0.12287 0.17925 
5,9,1 (64) 0.808 0.964 0.29863 0.931 0.966 0.10587 0.20225 
5,10,1 (71) 0.786 0.957 0.38804 0.948 0.975 0.08004 0.23404 
5,11,1 (78) 0.828 0.934 0.47781 0.938 0.97 0.09487 0.28634 
5,12,1 (85) 0.938 0.946 0.38938 0.968 0.985 0.04860 0.21899 
5,13,1 (92) 0.829 0.981 0.21779 0.966 0.984 0.04929 0.13354 
5,14,1 (99) 0.786 0.948 0.39773 0.961 0.983 0.05509 0.22641 
5,3,1,1 (24) 0.865 0.996 0.11163 0.956 0.978 0.06992 0.09078 
5,3,2,1 (29) 0.830 0.992 0.17997 0.979 0.958 0.06622 0.12309 
5,3,3,1 (34) 0.923 0.996 0.04711 0.973 0.986 0.04368 0.04539 
5,3,4,1 (39) 0.924 0.996 0.05022 0.983 0.991 0.02751 0.03886 
5,4,1,1 (31) 0.881 0.998 0.08878 0.996 0.998 0.00585 0.04731 
5,4,2,1 (37) 0.910 0.997 0.05740 0.988 0.994 0.01963 0.03851 
5,4,3,1 (43) 0.872 0.995 0.10707 0.997 0.999 0.00407 0.05557 
5,4,4,1 (49) 1.020 0.998 0.01681 0.999 1.000 0.00112 0.00896 
5,4,5,1 (55) 0.994 0.993 0.04827 1.000 1.000 0.00050 0.02439 
5,5,1,1 (38) 0.964 1.000 0.00830 1.000 1.000 0.00037 0.00434 
5,5,2,1 (45) 0.947 0.997 0.03108 0.999 1.000 0.00131 0.01619 
5,5,3,1 (52) 0.927 0.995 0.05520 1.000 1.000 0.00014 0.02767 
5,5,4,1 (59) 0.999 0.998 0.01204 1.000 1.000 0.00000 0.00602 
5,5,5,1 (66) 0.968 0.995 0.03795 1.000 1.000 0.00003 0.01899 
5,5,6,1 (73) 0.944 0.998 0.02658 1.000 1.000 0.00016 0.01337 
5,6,1,1 (45) 0.923 0.999 0.03400 0.999 1.000 0.00139 0.01769 
5,6,2,1 (53) 0.972 0.996 0.02704 1.000 1.000 0.00020 0.01362 
5,6,3,1 (61) 0.971 0.995 0.03362 1.000 1.000 0.00007 0.01685 
5,6,4,1 (69) 0.941 0.996 0.04085 1.000 1.000 0.00000 0.02043 
5,6,5,1 (77) 0.915 0.988 0.10608 1.000 1.000 0.00002 0.05305 
5,6,6,1 (85) 0.973 0.997 0.02212 1.000 1.000 0.00000 0.01106 
5,6,7,1 (93) 0.992 0.996 0.02661 1.000 1.000 0.00000 0.01331 

  
The first column in the table is the geometry of each  neural network, for 

example, (5,6,1) is a network with five input neurons, six neurons on the hidden 

layer and one output neuron; and the number in the parenthesis after (5,6,1) (i.e. 

43) is the number of connection weights and biases, or effective parameter of 

this network. The bolded row indicates the best geometry of ANN model with 

either one or two hidden layers. For example, the three-layer ANN model with 13 
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hidden neurons performs best among all the three-layered ANN models, and the 

neural network (5,6,2,1) achieves the lowest average MSE, best correlation 

coefficients and smallest percentage differences between measured and 

estimated debris yield. It is also true that this ANN model predicts debris yield 

more accurate than the remaining four-layered networks and all three-layered 

neural networks for both calibration and validation data. 

The measured and estimated sediment yield by the best ANN model 

(5,6,2,1) and MSDPM are compared in Table 3. As seen from the table, the 

MSDPM predicts sediment yield within a range of a difference from -7.5% to 

32.8% for the calibration data set compared with the field data, and the error 

bond is [-4.7%, 10.0%] by using the ANN model (5,6,2,1). It is seen that the ANN 

model prediction has smaller error bond for the calibration data set.  

After calibration, both models are tested by the validation data set 

collected from the Brand debris basin and the Childs debris basin resulting from 

storm events between November 8, 2002 and April 2, 2003. For the Brand debris 

basin, the measured sediment yield is 81,358 m3, while the estimated sediment 

yield by the MSDPM is 75,935 m3 and it is 69,401 m3 by the ANN model. The 

difference between the estimated and measured values was 5,423 m3 (-6.7%) for 

the MSDPM, and 11,957 m3 (-14.7%) by the ANN model. It is obvious that this 

sediment yield is much larger than any of the sediment yield used for training. 

For the Childs debris basin, the measured sediment yield is 22,249 m3, while the 

estimated sediment yield is 20,355 m3 by the MSDPM which underestimated the 
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sediment yield with a magnitude of 1,894 m3 or -8.5%. ANN model prediction is 

21,251 m3 which is 998 m3 (-4.5%) lower than the measured value.  Both models 

underestimate sediment yield for the validation data and especially for the Brand 

debris basin by the ANN model. Figure 12 shows the linear regression results for 

both calibration and validation data sets. The solid line is the best linear 

regression line based on the data points whose x-value is the measured 

sediment yield, and the y-value is the predicted values by ANN model. The 

dashed 45 degree line is the perfect fit line.  

Table 3: Summary of calibration and validation results by two models for Case1 
 

Debris 
Basin 

Rr 
(m/km) 

Area 
(ha) 

Measured 
Dy (m

3
) 

MSDPM 
Estimated 

Dy (m
3
) 

Diffe
1
 

(%) 

ANN 
Estimated 

Dy (m
3
) 

Diffe
2
 

(%) 

Calibration 

Data 

Lannan 
Case 1 

405.00 63.94 13,577 13,480 -0.71 13,340 -1.74 

Lannan 
Case 2 

405.00 63.94 5,047 5,526 9.49 5,113 -1.30 

Kinneloa 
East 

444.03 51.80 23,627 22,005 -6.87 23,474 -0.65 

Kinneloa 
West 

475.84 52.21 33,261 30,751 -7.55 32,383 -2.64 

Rubio 280.06 329.2 17,001 17,830 4.88 17,038 0.22 

Bailey 337.07 153.8 22,948 23,501 2.41 22,965 0.07 

Sunny- 
side 

475.80 5.212 1,239 1,282 3.47 1,181 -4.67 

Carriage 
House 

433.99 7.689 1,710 2,007 17.4 1,824 6.69 

Auburn 521.71 41.28 8,364 8,942 6.91 8,604 2.87 

Fairoaks 60.013 54.63 1,847 1,748 -5.36 1,863 0.88 

West 
Ravine 

286.76 63.94 9,331 11,276 20.84 9,706 4.02 

Big Briar 509.87 5.261 552 733 32.79 588 6.58 

Hay 352.74 52.21 4,484 5,759 28.43 4,933 10.01 

Validation 
Data 

Brand 280 267 81,358 75,935 -6.67 69,401 -14.70 

Childs 314 81 22,249 20,355 -8.51 21,251 -4.49 

Diffe1- Difference between measured debris yield and the estimated values using MSDPM.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model 
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(a) Calibration Data

Linear Regression Line: y=1.000x

R = 1.000
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(b) Validation Data

Linear Regression Line: y=0.972x+0.006

R = 0.996

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 12: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 1 
 

4.1.2 Case 2  

For the second set of ANN models, the data from Big Briar debris basin 

and Hay debris basin is removed from the calibration data. Therefore ANN 

models are trained by 244 data records and 5 input parameters while the data 

from Brand and Childs debris basin is still used for validation purpose. Internal 

parameters, transfer functions, training algorithm and neural network geometries 

are the same as those in the first case. Table 4 shows MSE and linear regression 

analysis results for all developed ANN models. 

The ANN model with 13 neurons on the only hidden layer simulates debris 

yield with lowest average MSE among all three-layered networks. However, the 

optimal ANN model in this case has three and four neurons in the first and 

second hidden layer, respectively. It is able to predict debris yield with 0.00024 
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MSE for the calibration data and 0.00035 MSE for the validation data that 

outperformed the best neural network (5,6,2,1) in the first case. It suggests the 

removal of unreliable data does improve the modeling accuracy. 

Table 4: Summary of the performance of ANN models for Case 2 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope    R MSE Slope    R MSE 

5,6,1 (43) 0.802 0.956 0.35516 0.896 0.948 0.18034 0.26775 
5,7,1 (50) 0.847 0.985 0.24829 0.942 0.971 0.10075 0.17452 
5,8,1 (57) 0.860 0.968 0.24267 0.911 0.957 0.15200 0.19734 
5,9,1 (64) 0.955 0.961 0.28642 0.979 0.989 0.03745 0.16194 

5,10,1 (71) 0.867 0.944 0.37904 0.951 0.977 0.08145 0.23025 
5,11,1 (78) 0.986 0.964 0.26485 0.940 0.972 0.09743 0.18114 
5,12,1 (85) 0.899 0.961 0.27403 0.939 0.973 0.09505 0.18454 
5,13,1 (92) 0.877 0.990 0.15869 0.968 0.980 0.05188 0.10528 
5,14,1 (99) 0.809 0.960 0.32019 0.969 0.986 0.04892 0.18456 
5,3,1,1 (24) 0.884 0.996 0.08871 0.993 0.997 0.01210 0.05040 
5,3,2,1 (29) 0.936 0.999 0.02310 0.97 0.985 0.05291 0.03800 
5,3,3,1 (34) 0.992 1.000 0.00108 1.000 1.000 0.00013 0.00061 
5,3,4,1 (39) 1.004 1.000 0.00035 1.000 1.000 0.00024 0.00029 
5,4,1,1 (31) 0.886 0.996 0.08519 0.996 0.998 0.00638 0.04579 
5,4,2,1 (37) 0.947 0.997 0.03338 0.999 1.000 0.00177 0.01757 
5,4,3,1 (43) 0.986 1.000 0.00108 1.000 1.000 0.00003 0.00056 
5,4,4,1 (49) 0.984 1.000 0.00166 1.000 1.000 0.00007 0.00087 
5,4,5,1 (55) 0.984 1.000 0.00158 1.000 1.000 0.00003 0.00081 
5,5,1,1 (38) 0.96 0.998 0.02322 1.000 1.000 0.00047 0.01184 
5,5,2,1 (45) 0.988 1.000 0.00083 1.000 1.000 0.00010 0.00047 
5,5,3,1 (52) 0.979 1.000 0.00377 1.000 1.000 0.00005 0.00191 
5,5,4,1 (59) 0.997 0.999 0.00584 1.000 1.000 0.00000 0.00292 
5,5,5,1 (66) 0.961 1.000 0.00947 1.000 1.000 0.00000 0.00473 
5,5,6,1 (73) 0.964 0.998 0.02127 1.000 1.000 0.00000 0.01064 
5,6,1,1 (45) 0.944 0.999 0.03140 0.999 1.000 0.00119 0.01629 
5,6,2,1 (53) 0.967 1.000 0.00722 1.000 1.000 0.00001 0.00362 
5,6,3,1 (61) 0.944 0.993 0.05600 1.000 1.000 0.00000 0.02800 
5,6,4,1 (69) 0.952 0.999 0.01772 1.000 1.000 0.00000 0.00886 
5,6,5,1 (77) 0.957 0.999 0.01312 1.000 1.000 0.00000 0.00656 
5,6,6,1 (85) 0.995 0.997 0.01736 1.000 1.000 0.00000 0.00868 
5,6,7,1 (93) 0.954 0.999 0.01409 1.000 1.000 0.00000 0.00704 

 
Results of the best-performed ANN model (5,3,4,1), the field data, and the 

results using the MSDPM statistical model are presented in Table 5. The 

difference between the measured and the ANN predicted sediment yield for the 
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calibration data ranges from -4.22% to 15.96% while the minimum MSDPM 

prediction error is -7.55% and the maximum error is 20.84%. The ANN model 

performance for the validation data improves dramatically as compared with the 

first case. The predicted sediment yield for the Brand debris basin is 85,694 m3 

which is 5.33% greater than the measured value. The ANN model predicts 

sediment yield is 23,152 m3 for the Childs Debris Basin which is 4.06% greater 

than the measured value. 

Table 5: Summary of calibration and validation results by two models for Case 2 
 

Debris 
Basin 

Rr 
(m/km) 

Area 
(ha) 

Measured 
Dy (m

3
) 

MSDPM 
Estimated 

Dy (m
3
) 

Diffe
1
 

(%) 

ANN 
Estimated 

Dy (m
3
) 

Diffe
2
 

(%) 

Calibration 

Data 

Lannan 
Case 1 

405.00 63.94 13,577 13,480 -0.71 13,559 -0.13 

Lannan 
Case 2 

405.00 63.94 5,047 5,526 9.49 5,522 9.41 

Kinneloa 
East 

444.03 51.80 23,627 22,005 -6.87 22,668 -4.06 

Kinneloa 
West 

475.84 52.21 33,261 30,751 -7.55 31,858 -4.22 

Rubio 280.06 329.2 17,001 17,830 4.88 17,210 1.23 

Bailey 337.07 153.8 22,948 23,501 2.41 22,772 -0.77 

Sunny- 
side 

475.80 5.212 1,239 1,282 3.47 1,214 -2.00 

Carriage 
House 

433.99 7.689 1,710 2,007 17.4 1,839 7.6 

Auburn 521.71 41.28 8,364 8,942 6.91 8,524 1.92 

Fairoaks 60.013 54.63 1,847 1,748 -5.36 1,866 1.04 

West 
Ravine 

286.76 63.94 9,331 11,276 20.84 10,820 15.96 

Validation 
Data 

Brand 280 267 81,358 75,935 -6.67 85,694 5.33 

Childs 314 81 22,249 20,355 -8.51 23,152 4.06 

Diffe1- Difference between measured debris yield and the estimated values using MSDPM.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model. 

 

The correlation coefficients and the distribution of the estimated values as 

compared with measured debris yield are illustrated in Figure 13. As shown in 
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this figure, most data points are on the 45 degree line that indicates the 

estimated debris yield are very close to their measured values. 
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(a) Calibration Data

Linear Regression Line: y=1.000x

R = 1.000
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(b) Validation Data

Linear Regression Line: y=1.004x+0.0005

R = 1.000

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 13: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 2 
 

4.1.3 Case 3  

Three more input variables including the percentage of the area that was 

burned by wildfire within the watershed in the last 10 years, time after the last fire 

event in the terms of year, and the number of the antecedent effective rainfall 

event are included to research their impact on the performance of ANN models. 

As demonstrated in Equation 2.5, these three variables are key elements to 

compute the fire factor; in other words, fire factor already includes the effect of 

these variables. Trained by 244 calibration data and the same internal 

parameters as in the previous two cases, ANN modeling results are shown in 

Table 6.  
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Table 6: Summary of the performance of ANN models for Case 3 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

8,6,1 (61) 0.829 0.965 0.27775 0.893 0.948 0.18203 0.22989 
8,7,1 (71) 0.899 0.961 0.27695 0.898 0.951 0.17193 0.22444 
8,8,1 (81) 0.903 0.959 0.28582 0.899 0.953 0.16381 0.22482 
8,9,1 (91) 0.840 0.963 0.28402 0.936 0.970 0.10434 0.19418 

8,10,1 (101) 0.829 0.963 0.37076 0.981 0.991 0.03184 0.20130 
8,11,1 (111) 0.871 0.959 0.29522 0.942 0.974 0.09243 0.19383 
8,12,1 (121) 0.783 0.968 0.28745 0.941 0.975 0.13112 0.20929 
8,13,1 (131) 0.997 0.943 0.48064 0.939 0.974 0.09323 0.28694 
8,14,1 (141) 0.846 0.954 0.33568 0.987 0.995 0.01962 0.17765 
8,3,1,1 (33) 0.973 1.000 0.00450 1.000 1.000 0.00043 0.00246 
8,3,2,1 (38) 0.989 1.000 0.00074 1.000 1.000 0.00009 0.00083 
8,3,3,1 (43) 0.992 1.000 0.00107 1.000 1.000 0.00008 0.00115 
8,3,4,1 (48) 0.991 1.000 0.00092 1.000 1.000 0.00027 0.00119 
8,4,1,1 (43) 0.921 0.998 0.04489 0.999 0.999 0.00191 0.04681 
8,4,2,1 (49) 0.900 0.996 0.07325 0.997 0.998 0.00548 0.07874 
8,4,3,1 (55) 0.957 0.999 0.01333 1.000 1.000 0.00009 0.01342 
8,4,4,1 (61) 0.979 1.000 0.00465 1.000 1.000 0.00000 0.00465 
8,4,5,1 (67) 0.965 0.993 0.05155 1.000 1.000 0.00007 0.05162 
8,5,1,1 (53) 0.901 0.996 0.07055 0.997 0.999 0.00468 0.07523 
8,5,2,1 (60) 0.972 0.997 0.02318 1.000 1.000 0.00006 0.02324 
8,5,3,1 (67) 0.954 0.997 0.02952 1.000 1.000 0.00016 0.02968 
8,5,4,1 (74) 0.937 0.997 0.03924 1.000 1.000 0.00000 0.03925 
8,5,5,1 (81) 0.990 0.998 0.01337 1.000 1.000 0.00002 0.01339 
8,5,6,1 (88) 0.895 0.998 0.06938 1.000 1.000 0.00000 0.06938 
8,6,1,1 (63) 0.991 0.997 0.02170 1.000 1.000 0.00001 0.02171 
8,6,2,1 (71) 0.996 0.995 0.03419 1.000 1.000 0.00002 0.03421 
8,6,3,1 (79) 0.933 0.997 0.03905 1.000 1.000 0.00000 0.03905 
8,6,4,1 (87) 0.993 1.000 0.04678 1.000 1.000 0.00000 0.04678 
8,6,5,1 (95) 0.996 0.986 0.09924 1.000 1.000 0.00000 0.09924 
8,6,6,1 (103) 1.040 0.999 0.01538 1.000 1.000 0.00000 0.01538 
8,6,7,1 (111) 0.942 0.999 0.02526 1.000 1.000 0.00000 0.02526 

 
In this case, the neural network with 14 neurons achieves the best 

performance among all three-layered neural networks; however, the network with 

three and two neurons on the first and second hidden layer exhibits much better 

generalization ability. As seen from Table 6, the error bond of the calibration data 

is reduced but not as much as for the validation data. When overall considering 

results for the calibration and validation data, the modeling accuracy of ANN 
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model (8,3,2,1) is similarly as good as the best ANN model (5,3,4,1) in the 

second case. This is reasonable since three new input parameters have already 

been considered in the fire factor which is an input variable in all three cases.  

4.1.4 Discussion  

Overall speaking, the performance of ANN model (8,3,2,1) is equivalently 

superior as the second ANN model (5,3,4,1) and both models are better than the 

first ANN model (5,6,2,1) (Table 7). This can be explained by a statistical 

goodness-of-fit index introduced by Gupta and Sorooshian (1985). The index is 

the ratio of the standard error estimate (Se), shown in Equation (4.1), to the 

standard deviation (Sy) of the target values.  

∑∑
= =

−=
q

l

p

k

lklk TYSe
1 1

2)(
1

[
λ

                                                                       (4.1) 

where λ = degrees of freedom and is the difference between the number of 

calibration data and the number of connection weights and biases, and the 

remaining parameters are the same as defined in Equation (3.35). The smaller 

the ratio, the more accurate is the model prediction (Table 7). The ratio of the 

neural network (5,3,4,1) trained by 244 data is 0.01269 for the calibration data 

which is very close to the ratio for the ANN model (5,6,2,1) trained by 300 data, 

0.01216. However, the ratio for the validation data, 0.00376, is much smaller 

than the ratio, 0.03033 obtained in the first case.  
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It seems that the removal of data from the Big Briar and Hay debris basin 

results in a significant improvement of ANN performance in the validation data. 

However, the inclusion of more input variables in the third case does not lead to 

better overall neural network performance since these three inputs are already 

considered in fire factor.  

Table 7: Comparison of ANN models performance 
Network 

Geometry 
Validation Data set Calibration Data Set 

MSE         R         Slope     ye SS  MSE          R        Slope     ye SS  

1st ANN: 
(5,6,2,1) 0.02704 0.996 0.972 0.03033 0.00019 1.000 1.000 0.01216 

2nd ANN: 
(5,3,4,1) 0.00034 1.000 1.004 0.00376 0.00024 1.000 1.000 0.01269 

3rd ANN: 
(8,3,2,1) 0.00074 1.000 0.989 0.00550 0.00008 1.000 1.000 0.00749 

 
 
As seen from Table 2, 4 and 6, there appears to be an improvement on 

the modeling accuracy with an increase in the number of hidden neurons up to a 

certain point for three-layered ANN models. For example, the optimum 

performance is achieved when 13 neurons (5,13,1) are on the hidden layer for 

the first case and the second case, and 14 neurons (8,14,1) for the last case. 

The results indicate that the optimal number of neuron on the hidden layer is not 

only a function of the number of input parameters but also a function of the 

number of training samples.  

With fewer connection weights and biases, the ANN models with two 

hidden layers have better generalization ability than the neural networks with one 

hidden layer. Although there is some variation in the generalization ability of the 
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networks with two hidden layers, referring to Figure 14, there appears to be such 

a trend that increasing the number of the neuron on the hidden layers improves 

the performance for the calibration data. However, there is no such trend for the 

validation data. In addition, it can be seen that as continued training with more 

neurons on the hidden layers, the prediction accuracy of the validation data is 

worsened - a sign of overfitting.  

 

(a) 

 
(b) 

Figure 14: Calibration and validation mean square error for (a) Case 1 (b) Case 3 
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In the first case, the ratio of the number of the calibration data to the 

number of connection weights and biases is 5.66, as compared to 6.26 and 6.42, 

the ratios for the best-fit neural network models during the second and third test. 

It suggests that higher ratio of the number of calibration data to the number of 

connection weights and biases does not lead to a better simulation. As 

mentioned previously, ANN performance deteriorates when the validation data is 

out of the range of the calibration data. It is not the case in this study because the 

sediment yield collected from Brand debris basin are roughly 2.4 times greater 

than the maximum sediment yield used for training, the best prediction of debris 

yield achieved in the first set of ANN models are not accurate enough, but there 

is a ANN model within the second case provided desirable estimation. 

4.2 Estimation of Unit Debris Yield 

The modeling results of accumulated debris yield presented in the first 

three cases are promising that leads to further application of ANN technique to 

simulate debris yield per unit area resulting from a significant storm event in this 

study. ANN models are first developed to model unit debris yield collected 

between 1938 and 1983 from 36 small watersheds (i.e. area less than 3 square 

miles) within Los Angeles County. Another two artificial intelligence models – 

ANFIS and GD-FNN are also developed to estimate the unit debris yield using 

the same input variables and training samples for comparison purpose. Different 

numbers of input variables with a particular focus on six watershed morphological 
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parameters are selected to calibrate and validate these artificial intelligence 

models. One or two input parameters are added each step to find out their impact 

on the performance in order to determine the relative importance of the input 

parameters. A new input parameter is included in such a sequence - the least 

correlated to the output variable (unit debris yield) is the last one to be included.  

USACE created an empirical equation (Equation 2.3) to describe the 

relation between unit debris yield and drainage area, relief ratio, precipitation and 

fire factor based on 349 data records collected between 1938 and 1983 at 80 

small debris basins within Los Angeles County (USACE, 2000). The same data 

used by the USACE are modeled by using only ANN models trained by LM 

algorithm in this study. In order to reduce the modeling complexity, the data is 

split into five groups based on their upstream watersheds relief ratio. For 

example, data collected from watersheds with mild slope (i.e. from 58 m/km to 

185 m/km) is arranged in the first group, second group consists of data from 

watersheds with steep slope (i.e. from 185 m/km to 250 m/km), third group is 

data from watersheds with steeper slope (i.e. from 250 m/km to 305 m/km), 

fourth group is data from watersheds with extreme steep slope (i.e. from 305 

m/km to 375 m/km), and the fifth group is data from watershed with the steepest 

slope (i.e. from 375 m/km to 525 m/km). Three soil properties such as SEF, SP, 

and SLL are included as input variables one by one to the first four groups of unit 

debris yield data. They are not considered in the fifth group of data because all 

the watersheds in this group are within the same soil map unit.  
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The USACE also created three additional empirical equations to estimate 

unit debris yield collected from large watersheds with area from 10 to 25 square 

miles, or from larger watersheds with area between 25 and 50 square miles, or  

from much larger watersheds (i.e. area is within [50, 200] square miles). Three 

sets of ANN models are developed to simulate these unit debris yield data as 

well. To summarize, there are 12 studied cases (refer to Table 1) with different 

numbers of input variables and different numbers of training samples for 

estimating groups of unit debris yield classified either by relief ratio or area size 

of the upstream collection watershed.  

4.2.1 Case 4  

The process of transporting and collecting debris in a debris basin is very 

complicated and the relationship between unit debris yield and other parameters 

such as watershed area, relief ratio, watershed morphologic variables such as 

ER, DDM, HI, and MBR, rainfall information, and so on, is still under research. 

However, four parameters – drainage area (A), watershed relief ratio ( rR ), 

rainfall intensity (I), and fire factor (F), (usually the first three parameters are log 

transformed), have long been proven as four basic input parameters for 

estimating unit debris yield induced by a significant storm event from a burned 

watershed. In addition to these four basic input parameters, Case 4 includes two 

more watershed morphologic parameters: total stream length (TSL) and transport 
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efficiency factor (T1) which is the product of mean bifurcation ratio (MBR) and 

total stream length (TSL).  

Although there are 349 data records of unit debris yield available at small 

watersheds between 1938 and 1983 within Los Angeles County, only 200 data 

records are selected for modeling from Case 4 to 7 due to the lack of the 

required watershed morphologic parameters. 85 percent of the data, or 170 data 

records, are randomly chosen for calibrating three artificial intelligence models, 

with the remaining independent 15 percent of data (i.e. 30 data records) used for 

validation purpose. The data range for the first input parameter, logA  is [0.72, 

2.98] hectare, the minimum and maximum values of rlogR  are 2.72 and 1.94 

m/km, respectively, TSL is within the range of [2.43, 5.455], T1 is in a range of 

[1.51, 3.97], logI  ranges from 0.4 to 2.4 mm/hr, and F is from 3 to 6.5. There is 

only one output variable – unit debris yield whose logarithmic values are within a 

range of [2.37, 4.64] with the unit of cubic meter per square kilometer.  

4.2.1.1 ANN Model   

Before start the calibration process, input vectors are normalized first, 

uncorrelated with each other, and those input variables that contribute less than 

2% of the total variation are removed. In this case, 39 ANN models with a 

maximum of two hidden layers are created and different numbers of neurons on 

hidden layers is evaluated. For neural networks with one hidden layer, the 

number of hidden neuron is within a range of [5 21]. Lack of guidelines for 
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determining the structure of neural networks with two hidden layers, twenty-two 

ANN models with different number of hidden neurons such as (3,1), (3,2), (3,3), 

(3,4), (4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), 

(6,2), (6,3), (6,4), (6,5), (6,6), and (6,7) are calibrated and validated for modeling 

unit debris yield. During training process, internal parameters selected as follows. 

Epoch size is 1000, and the desired error goal for training data is set as 6101 −× .  

The transfer function is hyperbolic tangent for all hidden layers, and linear 

transfer function is applied for the output layer. Both BRBP and LM algorithm are 

employed to train ANN models, and the default values of the remaining internal 

parameters provided by Matlab are maintained.  

Table 8 summarizes modeling results of all ANN models trained by the 

BRBP algorithm. The upper part of the table shows results obtained by using 

three-layered ANN models, and the bottom part is for four-layered ANN models. 

Among sixteen three-layered ANN models, the network (6,6,1) performs a little 

bit better than the other models because the MSE of the calibration data is  

relatively low and the validation data MSE is one of the lowest. With very little 

difference, the network (6,5,5,1) is better-performed than the remaining four-

layered neural network models in terms of modeling accuracy. With lower errors 

and higher correlation coefficients for the calibration and the validation data, the 

neural network model (6,5,5,1) works better than the neural network with six 

neurons on the only hidden layer, and it also has better generalization ability than 

all the neural networks with one hidden layer in this case.  
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Table 8: Summary of the performances of ANN models trained by the BRBP algorithm 
for Case 4 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,5,1 (41) 0.275 0.425 0.12000 0.381 0.647 0.13760 0.12880 
6,6,1 (49) 0.315 0.479 0.11149 0.368 0.638 0.14049 0.12599 
6,7,1 (57) 0.283 0.377 0.13528 0.400 0.669 0.13126 0.13327 
6,8,1 (65) 0.298 0.479 0.10961 0.311 0.585 0.15549 0.13255 
6,9,1 (73) 0.299 0.478 0.10992 0.313 0.587 0.15494 0.13243 

6,10,1 (81) 0.312 0.474 0.11142 0.332 0.607 0.14955 0.13048 
6,11,1 (89) 0.296 0.452 0.11571 0.377 0.646 0.13807 0.12689 
6,12,1 (97) 0.315 0.477 0.11116 0.332 0.607 0.14954 0.13035 

6,13,1 (105) 0.296 0.452 0.11576 0.377 0.647 0.13796 0.12686 
6,14,1 (113) 0.296 0.452 0.11577 0.377 0.647 0.13792 0.12685 
6,15,1 (121) 0.296 0.452 0.11578 0.377 0.647 0.13789 0.12683 
6,16,1 (129) 0.257 0.372 0.13076 0.386 0.655 0.13551 0.13314 
6,17,1 (137) 0.297 0.452 0.11578 0.377 0.647 0.13784 0.12681 
6,18,1 (145) 0.297 0.452 0.11578 0.377 0.647 0.13782 0.12680 
6,19,1 (153) 0.297 0.452 0.11578 0.377 0.647 0.13781 0.12679 
6,20,1 (161) 0.297 0.452 0.11578 0.378 0.647 0.13779 0.12678 
6,21,1 (169) 0.297 0.452 0.11578 0.378 0.647 0.13778 0.12678 
6,3,1,1 (27) 0.313 0.513 0.10147 0.297 0.557 0.16251 0.13199 
6,3,2,1 (32) 0.317 0.515 0.10132 0.299 0.560 0.16186 0.13159 
6,3,3,1 (37) 0.317 0.515 0.10132 0.299 0.560 0.16183 0.13158 
6,3,4,1 (42) 0.302 0.479 0.10901 0.329 0.596 0.15235 0.13068 
6,4,1,1 (35) 0.302 0.436 0.12011 0.393 0.644 0.13802 0.12907 
6,4,2,1 (41) 0.296 0.422 0.12344 0.400 0.651 0.13612 0.12978 
6,4,3,1 (47) 0.364 0.512 0.10783 0.383 0.638 0.13998 0.12390 
6,4,4,1 (53) 0.365 0.513 0.10766 0.383 0.638 0.14001 0.12383 
6,4,5,1 (59) 0.348 0.510 0.10609 0.387 0.639 0.13947 0.12278 
6,5,1,1 (43) 0.329 0.463 0.12050 0.442 0.683 0.12579 0.12315 
6,5,2,1 (50) 0.420 0.516 0.11178 0.445 0.689 0.12419 0.11799 
6,5,3,1 (57) 0.419 0.517 0.11149 0.445 0.689 0.12424 0.11787 
6,5,4,1 (64) 0.419 0.517 0.11133 0.445 0.688 0.12427 0.11780 
6,5,5,1 (71) 0.427 0.554 0.10224 0.461 0.699 0.12090 0.11157 
6,5,6,1 (78) 0.427 0.553 0.10232 0.461 0.699 0.12086 0.11159 
6,6,1,1 (51) 0.467 0.528 0.11498 0.447 0.693 0.12287 0.11892 
6,6,2,1 (59) 0.459 0.530 0.11277 0.446 0.691 0.12360 0.11818 
6,6,3,1 (67) 0.368 0.527 0.10486 0.458 0.698 0.12124 0.11305 
6,6,4,1 (75) 0.368 0.525 0.10505 0.460 0.699 0.12072 0.11288 
6,6,5,1 (83) 0.368 0.524 0.10521 0.462 0.701 0.12032 0.11277 
6,6,6,1 (91) 0.368 0.523 0.10535 0.463 0.701 0.12003 0.11269 
6,6,7,1 (99) 0.368 0.523 0.10546 0.464 0.702 0.11981 0.11264 
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It seems that the performance of all the ANN models trained by the BRBP 

algorithm is very poor. The LM training algorithm is applied to calibrate some of 

the four-layered neural networks to compare. Fifteen neural networks with two 

hidden layers are trained by the LM algorithm in this case and they are (4,3,4,1), 

(4,3,5,1), (4,3,6,1), (4,3,7,1), (4,4,2,1), (4,4,3,1), (4,4,4,1), (4,4,5,1), (4,4,6,1), 

(4,5,2,1), (4,5,3,1), (4,5,4,1), (4,5,5,1), (4,5,6,1), and (4,5,7,1). All internal 

parameters are the same as aforementioned. The modeling results of these ANN 

models are provided in Table 9.  

Table 9: Summary of the performances of ANN models trained by the LM algorithm for 
Case 4 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,3,4,1 (42) 0.579 0.562 0.12944 0.579 0.761 0.09923 0.11434 
6,3,5,1 (47) 0.463 0.547 0.11155 0.588 0.767 0.09690 0.10423 
6,3,6,1 (52) 0.290 0.428 0.11925 0.582 0.763 0.09842 0.10884 
6,3,7,1 (57) 0.547 0.703 0.07325 0.586 0.766 0.09742 0.08534 
6,4,2,1 (41) 0.430 0.426 0.15811 0.579 0.761 0.09924 0.12868 
6,4,3,1 (47) 0.516 0.593 0.09834 0.598 0.773 0.09458 0.09646 
6,4,4,1 (53) 0.528 0.626 0.09988 0.589 0.767 0.09685 0.09836 
6,4,5,1 (59) 0.530 0.548 0.11856 0.643 0.802 0.08403 0.10130 
6,4,6,1 (65) 0.636 0.650 0.09526 0.590 0.768 0.09654 0.09590 
6,5,2,1 (50) 0.581 0.586 0.11260 0.587 0.766 0.09725 0.10492 
6,5,3,1 (57) 0.584 0.615 0.10121 0.627 0.792 0.08784 0.09453 
6,5,4,1 (64) 0.612 0.612 0.10677 0.656 0.810 0.08099 0.09388 
6,5,5,1 (71) 0.443 0.543 0.10588 0.642 0.801 0.08439 0.09513 
6,5,6,1 (78) 0.676 0.585 0.13455 0.701 0.837 0.07036 0.10245 
6,5,7,1 (85) 0.474 0.521 0.12094 0.744 0.863 0.06021 0.09057 

 
 

As seen from Table 9, the error for the calibration data is greatly reduced 

by using the LM training algorithm and it is also true for some validation data. 

The reason why all the networks trained by the BRBP algorithm provide poor 

modeling results particularly for the calibration data might be the training process 
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is terminated earlier to prevent overfitting. It is shown in Table 9 that the neural 

network (6,3,7,1) trained by the LM algorithm has a lower MSE for both the 

calibration data and the validation data than all the neural networks trained by the 

BRBP algorithm. To further evaluate the performance of these two neural 

networks, (6,5,5,1) trained by the BRBP algorithm and (6,3,7,1) trained by the LM 

algorithm, measured and estimated unit debris yield by two ANN models are 

plotted in Figure 15 and 16. The data points in Figure 16 especially in figure (b) 

distribute much closer to the 45 degree line than those in Figure 15. It also shows 

that the network (6,3,7,1) reduces the maximum difference between measured 

and estimated unit debris yield as compared to the network (6,5,5,1), particularly 

for the validation data. Therefore, neural networks trained by the LM training 

algorithm achieve much better modeling results than those trained by the BRBP 

algorithm in this case. 
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(a) Calibration Data

Linear Regression Line: y =0.461x+1.978

R = 0.699
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(b) Validation Data

Linear Regression Line: y =0.427x+2.129

R = 0.554

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 15: Linear regression analysis between measured and ANN model (BRBP) 
estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 4 
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(a) Calibration Data

Linear Regression Line: y =0.586x+1.518

R = 0.766

Data Points

Linear Regression Line

45 Degree Line

2 2.5 3 3.5 4 4.5 5 5.5
2

2.5

3

3.5

4

4.5

5

5.5

Measured Unit Debris Yield (log,m3/km2)

P
re

d
ic

te
d
 U

ni
t 

D
e
br

is
 Y

ie
ld

 b
y
 A

N
N

 (
6,

3,
7,

1)
 (

lo
g,

m
3
/k

m
2
)

 

 

(b) Validation Data

Linear Regression Line: y =0.547x+1.712

R = 0.703

Data Points

Linear Regression Line

45 Degree Line

 
Figure 16: Linear regression analysis between measured and ANN model (LM) 
estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 4 

 

4.2.1.2 ANFIS Model  

Fuzzy logic system can be interpreted by the use of fuzzy if-then rules that 

offers a possibility of the fusion of ANN technique and fuzzy logic system to 

overcome the ‘black box’ behavior of ANN models. Applying a combination of 

least-squares method and the BPGDM to adjust premise and consequent 

parameters, ANFIS (Jang, 1993) is one of the most commonly used NFS models. 

In this case, it is the second approach to predict unit debris yield.   

Before the start of training in ANFIS, it is required to determine the number 

and type of membership function for each input variable and the number of fuzzy 

rule. If prior expert knowledge of the problem is available, they are easy to 

define; otherwise, trial-and-error method is the only choice for the determination 

of optimal partition of input space and the type of membership function, and the 

number of fuzzy rule. With the assumption that every input has the same kind of 
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membership function, a couple of membership functions including Gaussian 

function, triangular membership function, trapezoidal membership function, 

generalized bell-shaped membership function are employed. The default values 

of training error goal (i.e. 0), initial step size (i.e. 0.01), step size decrease rate 

(i.e. 0.9), and step size increase rate (i.e. 1.1) are used. All the ANFIS models 

are trained for 90 epochs. After varying the number and type of membership for 

six input parameters, it is found that the ANFIS model with two Gaussian 

membership functions for the first, fourth and fifth inputs, i.e. logA , T1, and, logI  

is superior to other ANFIS models. The membership functions for these three 

inputs are sketched in Figure 17. The obtained eight fuzzy rules are summarized 

in Table 10.  

Table 10: Summary of fuzzy rules for Case 4 

No. of 
fuzzy 
rules 

Premise Parameters 
Consequent Parameters 

logA  T1 logI  

1 (0.889,1.076) (1.409,0.385) (0.423,0.963) 
t  =  -1.84-13.51logA-8.742logRr+ 
14.06TSL-4.785T1+1.809logI+1.043F 

2 (0.889,1.076) (1.409,0.385) (2.433,0.659) 
t = -22.19+21.66logA+28.43logRr-11.15TSL- 
2.738T1-18.32logI-0.3263F 

3 (0.889,1.076) (4.238,0.278) (0.423,0.963) 
t  =  71.57-21.99logA-6.945logRr+ 
1.497TSL-6.149T1-9.307logI+0.6584F 

4 (0.889,1.076) (4.238,0.278) (2.433,0.659) 
t  =  -72.89+14.77logA+22.12logRr+ 
1.02TSL+10.95T1-20.15loglogI+0.3679F 

5 (3.20,0.848) (1.409,0.385) (0.423,0.963) 
t = 105+66.77logA+22.22logRr-68.06TSL-
5.72T1+38.88logI-2.494F 

6 (3.20,0.848) (1.409,0.385) (2.433,0.659) 
t = -45.56-99.13logA-120.2logRr +59.58TSL 
+11.51T1+136.1logI+1.062F 

7 (3.20,0.848) (4.238,0.278) (0.423,0.963) 
t = 4.722-13.92logA+5.577logRr-0.9463TSL 
+8.574T1+7.51logI-0.2279F 

8 (3.20,0.848) (4.238,0.278) (2.433,0.659) 
t = 57.21+12.89logA-17.85logRr-5.202TSL-
14.9T1+13.35logI-0.3661F 
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Figure 17: Membership functions for logA , T1, and logI  (Case 4) 

 

This ANFIS model is able to estimate 170 calibration data with a MSE of 

0.1055 and 30 validation data with a MSE of 0.1125, and the correlation 

coefficients are 0.743 and 0.589 for those two data sets respectively. As graphed 

in Figure 18, many data points scatter far away from the 45 degree line, 

especially in figure (b). The ANFIS model performance for the calibration data is 

not satisfactory, and it is even worse for the validation data.  
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(a) Calibration Data

Linear Regression Line: y = 0.550x+1.652

R = 0.743
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(b) Validation Data

Linear Regression Line: y = 0.584x+1.563 

R = 0.589

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 18: Linear regression analysis between measured and ANFIS model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 4 
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Compared to two best-fitted ANN models developed in this case, one is 

trained by the BRBP algorithm, and the other is trained by the LM algorithm, the 

ANFIS model is better performed than the neural network (6,5,5,1) trained by the 

BRBP algorithm and it is worse than the ANN model (6,3,7,1) trained by the LM 

algorithm. 

4.2.1.3 GD-FNN Model  

FNN model is the combination of ANN and fuzzy logic system in such a 

way that fuzzy methods are implemented in a neural network model for faster 

learning speed or better performance. The most common combination is using 

fuzzy subsets or a set of membership values of fuzzy sets as input signals and/or 

connection weights and/or outputs for neural networks (Mitra and Hayashi, 

2000). The GD-FNN model is proposed by Wu et al. (2001) to implement TSK 

fuzzy system which is capable of recruiting and deleting fuzzy rules 

automatically. In addition, GD-FNN algorithm standardizes and improves the way 

to generate width for newly generated Gaussian membership function and to 

modify width for existing Gaussian functions as compared with previous FNN 

models, such as dynamic FNN models (Wu and Er, 2000).  

In this case, GD-FNN model is applied to simulate unit debris yields based 

on 6 input parameters: logA , rlogR , TSL, T1, logI , and F. The optimal values of 

predefined parameters are found as follows.  

0.002.k and  0.99,k0.65,k 0.002,e 5,e  0.8,ε  0.5,ε errsmfminmaxmaxmin =======  
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Two fuzzy rules are generated and they are in the form of: 

1st fuzzy rule: if logA  is (2.86, 4.78), rlogR  is (2, 1.58), TSL is (5.25, 

6.29), T1 is (3.83, 4.96), logI  is (1.15, 2.563), and F is (6.5, 7.206), then  

0.454F0.976logI3.330T13.614TSL2.396logRr0.194logA9.346t −−+−++=  

 2nd fuzzy rule: if logA  is (1.67, 2.38), rlogR  is (2.72, 1.41), TSL is (3.86, 

2.64), T1 is (2.84, 2.55), logI  is (1.15, 2.563), and F is (6.5, 7.06), then    

0.261F1.951logI3.267T12.235TSL1.268logRr0.685logA7.027t ++−++−−=  

The membership functions for six input variables are demonstrated in Figure 19. 

 

 
 (Memb. is the abbreviation of membership function). 

Figure 19: Membership functions for input variables (Case 4) 
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The MSE of the estimated unit debris yield by the GD-FNN model is 

0.1777 and 0.1057 for the calibration and the validation data, respectively. The 

correlation coefficient is only 0.501 for the calibration data, as illustrated in figure 

20(a). It can be found that the GD-FNN model fails to predict a few unit debris 

yield data, and the estimation error for a single event is as large as 1.6. The 

correlation coefficient is 0.521 for the validation data, and it appears that the GD-

FNN model estimates 10 data records to an acceptable level of accuracy and it 

either underestimates or overestimates the other 20 data points. The GD-FNN 

model has very poor generation ability for both the calibration and validation data 

in this case. It has a similar performance as the ANFIS model for the validation 

data, but its performance for the calibration data is not comparable to the ANFIS 

model.  
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               (a) Calibration Data
Linear Regression Line: y=0.289x+2.608
                      R = 0.501

               (b) Validation Data
Linear Regression Line: y=0.373x+2.325
                      R = 0.521

 
Figure 20: Linear regression analysis between measured and GD-FNN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 4  
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4.2.2 Case 5  

The correlation coefficient between DDM and the measured unit debris 

yield data indicates it is the most highly related variable to the targets comparing 

with the other three watershed morphological parameters (i.e. ER, MBR, and HI) 

considered in this study. Therefore, it is included as additional input parameter in 

the fifth case. The artificial intelligence models in this case are trained by seven 

input parameters - logA , rlogR , DDM, TSL, T1, logI , and F. As aforementioned, 

170 data records of unit debris yield are used for calibration and 30 data records 

are for validation.  

4.2.2.1 ANN Model  

The same preprocessing steps introduced previously are implemented 

first. Utilizing the same geometries and the same internal parameters as in Case 

4, seventeen three-layered ANN models and twenty-two four-layered ANN 

models are developed. Every neural network is trained hundreds of times to start 

from different initial values of connection weights and biases, and during each 

time, their values are adjusted 1,000 times (i.e. epoch size) to produce the neural 

network outputs best approximating the targets. The best performance obtained 

by all the neural network models trained by the BRBP algorithm is presented in 

Table 11. Almost all the neural networks developed in this case have better 

performance for the validation data than for the calibration data. It is a result of 

balancing performance between the calibration and the validation data. 
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Table 11: Summary of the performances of ANN models trained by the BRBP algorithm 
for Case 5 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope     R    MSE Slope     R MSE 

7,5,1 (46) 0.360 0.630 0.08668 0.314 0.597 0.15358 0.12013 
7,6,1 (55) 0.478 0.545 0.10768 0.398 0.677 0.13016 0.11892 
7,7,1 (64) 0.347 0.608 0.09204 0.319 0.601 0.15229 0.12216 
7,8,1 (73) 0.344 0.600 0.09385 0.323 0.605 0.15124 0.12255 
7,9,1 (82) 0.474 0.547 0.10680 0.395 0.676 0.13038 0.11859 

7,10,1 (91) 0.333 0.626 0.09174 0.299 0.581 0.15792 0.12483 
7,11,1 (100) 0.468 0.513 0.11809 0.439 0.708 0.11977 0.11893 
7,12,1 (109) 0.387 0.646 0.08100 0.254 0.534 0.16991 0.12545 
7,13,1 (118) 0.327 0.617 0.09342 0.302 0.583 0.15721 0.12531 
7,14,1 (127) 0.387 0.646 0.08102 0.254 0.534 0.16990 0.12546 
7,15,1 (136) 0.387 0.646 0.08103 0.254 0.535 0.16989 0.12546 
7,16,1 (145) 0.320 0.603 0.09583 0.306 0.587 0.15621 0.12602 
7,17,1 (154) 0.314 0.594 0.09677 0.306 0.586 0.15638 0.12658 
7,18,1 (163) 0.317 0.596 0.09735 0.309 0.590 0.15534 0.12635 
7,19,1 (172) 0.387 0.646 0.08106 0.254 0.535 0.16988 0.12547 
7,20,1 (181) 0.311 0.589 0.09755 0.307 0.588 0.15598 0.12676 
7,21,1 (190) 0.387 0.646 0.08107 0.254 0.535 0.16987 0.12547 
7,3,1,1 (30) 0.443 0.580 0.09430 0.371 0.631 0.14301 0.11866 
7,3,2,1 (35) 0.442 0.579 0.09414 0.373 0.631 0.14272 0.11843 
7,3,3,1 (40) 0.415 0.592 0.09119 0.370 0.627 0.14399 0.11759 
7,3,4,1 (45) 0.413 0.591 0.09130 0.370 0.627 0.14392 0.11761 
7,4,1,1 (39) 0.412 0.576 0.09228 0.380 0.642 0.13969 0.11598 
7,4,2,1 (45) 0.448 0.578 0.09349 0.386 0.644 0.13904 0.11627 
7,4,3,1 (51) 0.445 0.576 0.09380 0.387 0.645 0.13862 0.11621 
7,4,4,1 (57) 0.445 0.576 0.09391 0.388 0.646 0.13848 0.11619 
7,4,5,1 (63) 0.389 0.572 0.09243 0.385 0.644 0.13902 0.11572 
7,5,1,1 (48) 0.420 0.507 0.10981 0.406 0.668 0.13205 0.12093 
7,5,2,1 (55) 0.378 0.504 0.10706 0.410 0.668 0.13164 0.11935 
7,5,3,1 (62) 0.394 0.502 0.10523 0.487 0.722 0.11387 0.10955 
7,5,4,1 (69) 0.503 0.546 0.10549 0.409 0.666 0.13248 0.11899 
7,5,5,1 (76) 0.505 0.530 0.11058 0.454 0.699 0.12164 0.11611 
7,5,6,1 (83) 0.375 0.503 0.10682 0.413 0.669 0.13142 0.11912 
7,6,1,1 (57) 0.409 0.530 0.10093 0.407 0.672 0.13092 0.11592 
7,6,2,1 (65) 0.512 0.570 0.10692 0.419 0.679 0.12860 0.11776 
7,6,3,1 (73) 0.444 0.519 0.10857 0.424 0.682 0.12753 0.11805 
7,6,4,1 (81) 0.443 0.518 0.10877 0.425 0.682 0.12745 0.11811 
7,6,5,1 (89) 0.418 0.535 0.10059 0.415 0.674 0.12992 0.11526 
7,6,6,1 (97) 0.442 0.517 0.10898 0.426 0.682 0.12738 0.11818 
7,6,7,1 (105) 0.442 0.517 0.10904 0.426 0.682 0.12736 0.11820 
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The ANN model with nine neurons on the hidden layer is the best-

performed one among all three-layered neural networks; and the neural network 

(7,5,3,1) is the best one among all the four-layered neural network models. The 

neural network (7,9,1) is capable of estimating 170 unit debris yield with 0.13038 

MSE, one of the lowest errors achieved for the calibration data, 30 unit debris 

yield with 0.10680 MSE, one of the highest errors for the validation data. All the 

four-layered neural networks are calibrated more successfully with smaller errors 

than all the three-layered neural networks; however, the performance for the 

validation data is a little worse. The two neural networks, (7,9,1) and (7,5,3,1), 

have very similar performance for the calibration and the validation data; the 

latter network is selected as a better one with lower average MSE. The best 

linear regression line fits the data points with measured unit debris yield as 

abscissa and estimated unit debris yield as ordinate are shown in Figure 21. It 

appears that the neural network (7,5,3,1) seriously overestimates a dozen unit 

debris yield data records that results in a lower correlation coefficient for the 

calibration data, 0.722; and the performance of the validation data is even worse, 

the data points scatter far away from the 45 degree line and the correlation 

coefficient is only 0.502. 

In order to improve the simulation accuracy, twelve four-layered neural 

networks are calibrated by the LM algorithm. The architecture of the ANN models 

with their best modeling results are listed in Table 12. The error of the calibration 

data is reduced to less than 0.1, meanwhile the validation data error is lowered to 
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0.07073 by a neural network (7,5,3,1). This network is considered to be the best-

performed one with the lowest error for the validation data and a relatively lower 

error for the calibration data. All the neural networks trained by the LM algorithm 

provide more accurate modeling results for the calibration data and for most of 

the validation data than the ANN models trained by the BRBP algorithm. As seen 

from Figure 22(a), the performance for the calibration data improves with signs of 

lower error and higher correlation coefficient as compared with the same neural 

network trained by the BRBP (Figure 21(a)). This conclusion can also be applied 

for the validation data. In Figure 22(b), 30 validation data points are much closer 

to the 45 degree line than those in Figure 21(b), and a much higher correlation 

coefficient, 0.739, is achieved.  

Table 12: Summary of the performances of ANN models trained by the LM algorithm for 
Case 5 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

7,4,1,1 (39) 0.436 0.447 0.13553 0.583 0.764 0.09862 0.11708 
7,4,2,1 (45) 0.406 0.509 0.09808 0.587 0.766 0.09777 0.09792 
7,4,3,1 (51) 0.609 0.608 0.10806 0.625 0.791 0.08870 0.09838 
7,4,4,1 (57) 0.493 0.625 0.07431 0.687 0.829 0.07410 0.07421 
7,4,5,1 (63) 0.868 0.704 0.09339 0.664 0.815 0.07947 0.08643 
7,4,6,1 (69) 0.544 0.627 0.08481 0.713 0.844 0.06792 0.07637 
7,5,3,1 (62) 0.721 0.739 0.07073 0.659 0.812 0.08062 0.07568 
7,5,4,1 (69) 0.445 0.520 0.10498 0.715 0.846 0.06741 0.08619 
7,5,5,1 (76) 0.536 0.591 0.08736 0.706 0.840 0.06966 0.07851 
7,5,6,1 (83) 0.563 0.578 0.09997 0.669 0.818 0.07841 0.08919 
7,6,3,1 (73) 0.592 0.605 0.09183 0.719 0.848 0.06637 0.07910 
7,6,4,1 (81) 0.781 0.654 0.10638 0.666 0.816 0.07899 0.09269 
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(a) Calibration Data

Linear Regression Line: y =0.487x+1.870
R = 0.722

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y =0.394x+2.189

R = 0.502

Data Points

Linear Regression Line

45 Degree Line

 
Figure 21: Linear regression analysis between measured and ANN model (BRBP) 
estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 5 
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(a) Calibration Data

Linear Regression Line: y =0.659x+1.242

R = 0.812
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(b) Validation Data

Linear Regression Line: y =0.721x+0.943

R = 0.739

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 22: Linear regression analysis between measured and ANN model (LM) 
estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 5 

 

Compared with two best performed neural networks in Case 4, one trained 

by the BPBR algorithm and the other trained by the LM algorithm, the best neural 

networks (7,5,3,1) in this case trained either by the BPBR or the LM algorithm 

show some improvement on the modeling accuracy. It indicates that the DDM is 

an important input variable and should be included for the estimation. 
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4.2.2.2 ANFIS Model  

Following the same tuning procedure for the ANFIS model explained in 

Case 4, the best ANFIS model in this case creates eight fuzzy rules as listed in 

Table 13. There are two trapezoidal membership functions (Figure 23) for each 

of the first three inputs, i.e. logA , rlogR , and DDM, and  the  membership  values 

for the remaining parameters are equal to one as long as they are within their 

input ranges. The best ANFIS model is capable of estimating 170 data records of 

unit debris yield with a MSE of 0.1196 and 30 validation data records with a MSE 

of 0.1298.   

 

Table 13: Summarization of fuzzy rules for Case 5 

Premise Parameters 
Consequent Parameters 

logA  
rlogR  DDM 

1 (-0.862, 0.042, 
1.397, 2.255) 

(1.394,1.706,2.
175,2.444) 

(1.442,1.616, 
1.85, 2.031) 

f = -18.41+67.27logA+44.31logRr-36.21DDM+ 
58.57TSL-125.7T1-15.29logI+6.893F  

2 (-0.862,0.042, 
1.397,2.255) 

(1.394,1.706,2.
175,2.444) 

(1.871,2.024,2.
312 2.486) 

f = -8.98-46.22logA-9.528logRr+7.439DDM-
57.24TSL+148.3T1-12.29logI-14.98F 

3 (-0.862,0.042, 
1.397,2.255) 

(2.174,2.487 
2.954, 3.266) 

(1.442,1.616, 
1.85, 2.031) 

f = 19.37+21.2logA-19.11logRr+25.61DDM-
7.97TSL+4.908T1+0.443logI+0.2013F 

4 (-0.862,0.042, 
1.397,2.255) 

(2.174,2.487 
2.954, 3.266) 

(1.871,2.024, 
2.312, 2.486) 

f = 40.62+32.78logA+15.51logRr+3.757DDM-
2.286TSL-17.12T1+1.943logI+0.14F   

5 (1.364,2.301 
3.658,4.562) 

(1.394,1.706,2.
175,2.444) 

(1.442,1.616, 
1.85, 2.031) 

f = -91.33-55.6logA+51.17logRr-63.54DDM-
1.724TSL+71.17T1-0.1917logI-0.145F 

6 (1.364,2.301 
3.658,4.562) 

(1.394,1.706, 
2.175,2.444) 

(1.871,2.024, 
2.312 2.486) 

f = -41.63-11.52logA-37.85logRr-44.87DDM-
23.85TSL+69.89T1+24.99logI+9.497F  

7 (1.364,2.301 
3.658,4.562) 

(2.174,2.487 
2.954, 3.266) 

(1.442,1.616, 
1.85, 2.031) 

f = 11.38-17.59logA+23.65logRr-44.77DDM 
+14.66TSL-3.129T1+0.887logI+0.083F 

8 (1.364,2.301 
3.658,4.562) 

(2.174,2.487 
2.954, 3.266) 

(1.871,2.024, 
2.312 2.486) 

f = 207.2-64.57logA-25.61logRr+100.1DDM 
+30.91TSL+16.14T1-1.627logI+0.218F 

 

The best fit linear regression line for the data points with measured unit 

debris yield as x values and estimated values by the ANFIS model as y values 
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and their distribution are illustrated in Figure 24. It appears that the model is 

calibrated more successfully than the ANFIS model in Case 4; however, its 

performance for the validation data is still not acceptable (Figure 24(b)). 

Comparing to the two best ANN models in this case, the performance of the 

ANFIS model is very similar to the ANN model trained by the BRBP algorithm, 

but it is much worse than the ANN model trained by the LM algorithm. 

 
Figure 23: Membership functions for logA , rlogR  and DDM (Case 5) 
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(a) Calibration Data

Linear Regression Line: y = 0.491x+1.856

R = 0.703

2 2.5 3 3.5 4 4.5 5
2

2.5

3

3.5

4

4.5

5

Measured Unit Debris Yield (log,m3/km2)

P
re

d
ic

te
d
 U

ni
t 

D
e
br

is
 Y

ie
ld

 b
y
 A

N
F

IS
 (

lo
g,

m
3
/k

m
2
)

 

 

(b) Validation Data

Linear Regression Line: y = 0.528x+1.621 

R = 0.541

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 24: Linear regression analysis between measured and ANFIS model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 5 
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4.2.2.3 GD-FNN Model  

Using trial-and-error method, the values of predefined parameters are 

selected as  and  k  ,k  0.002,e      smfmin ,99.055.0,5,8.0,5.0 maxmaxmin ====== eεε  

002.0=errk . The best fit GD-FNN model generates three fuzzy rules: 

1st fuzzy rule: if logA  is (2.86, 4.78), rlogR is (2, 1.46), DDM is (1.75, 

0.81), TSL is (5.245, 5.664), T1 is (3.83, 4.91), logI  is (1.15, 2.63), and F is (6.5, 

7.25), then 

0.546T11.275TSL7.465DDM5.145logRr4.089logA10.807t ++−+−=  
0.398F1.377logI −+   

2nd fuzzy rule: if Alog  is (1.91, 1.771), rlogR is (2.72, 1.611), DDM is 

(1.75, 0.81), TSL is (3.974 2.041), T1 is (3.25, 3.03), Ilog  is (1.15, 2.47), and F 

is (4.26, 3.49), then   

3.141T11.876TSL18.339DDM5.822logRr10.760logA56.844t ++−−−=  
0.426F2.858logI −−  

 
3rd fuzzy rule: if logA  is (1.91, 1.771), rlogR is (2.72, 1.611), DDM is 

(2.18, 0.92), TSL is (3.974, 2.041), T1 is (2.65, 2.32), Ilog  is (1.15, 2.52), and F 

is (3, 7.03), then 

4.493T13.700TSL28.086DDM4.560logRr13.583logA68.031t −−+++−=  

     0.256F2.869logI ++  
 
This GD-FNN model consists of 7 neurons on the input layer, 3 neurons 

on the inference layer, and 1 neuron on the defuzzification layer. Each of logA , 

 



 

 111

rlogR , DDM, TSL, and logI  have two membership functions, and both T1 and F 

have three membership functions (Figure 25).   

 

 

 
Memb. is the abbreviation of membership function. 

Figure 25: Membership functions for each input variable (Case 5) 
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In this case, the best GD-FNN model is calibrated with a MSE of 0.1764 

and a correlation coefficient of 0.507, and the MSE for the validation data is 

0.1111 and the corresponding correlation coefficient is 0.569. It can be found that 

that the calibration of the GD-FNN model is unsuccessful with a high error and 

very low correlation coefficient. Although the GD-FNN model achieves lower 

estimation error and higher correlation coefficient for the validation data, it 

estimates roughly 15 events seriously below their measured values as shown in 

Figure 26(b). The comparison between the GD-FNN model and other artificial 

intelligence models in this case shows it is the model with the least simulation 

accuracy for both the calibration and the validation data. 
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               (a) Calibration Data
Linear Regression Line: y=0.279x+2.629
                      R = 0.507

               (b) Validation Data
Linear Regression Line: y=0.407x+2.062
                      R = 0.569

 
Figure 26: Linear regression analysis between measured and GD-FNN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 5 
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4.2.3 Case 6  

Two new watershed morphological parameters, ER and MBR, are 

included as input parameters in this case. The data ranges of those two new 

input parameters are [1.45 1.97] for ER, and [2 3.04] for MBR. Nine input 

parameters included in this case are logA , rlogR , ER, DDM, TSL, T1, MBR, 

logI , and F.  

4.2.3.1 ANN Model  

Thirty-nine ANN models with either one or two hidden layer(s) are trained 

by the BRBP algorithm to find the most suitable neural network geometry for 

estimating unit debris yield in this case. Fifteen four-layered neural networks are 

also trained by the LM algorithm which promotes the modeling accuracy in the 

previous two cases. During training, the same internal parameters used in the 

preceding two cases are maintained. Both the calibration and validation data are 

preprocessed following the same procedure applied in Case 4 and 5.  

The performance of all developed ANN models trained by the BRBP 

algorithm is given in Table 14. The neural network with 17 neurons on the only 

hidden layer is selected as the best one among all the three-layered neural 

networks with a relatively low MSE for both the calibration data and the validation 

data. This neural network provides equally performance for both the calibration 

and the validation data. The neural network with 4 neurons on both hidden layers 

is determined to be the best one among all the four-layered ANN models. 
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Table 14: Summary of the performances of ANN models trained by the BRBP algorithm 
for Case 6 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

9,5,1 (56) 0.265 0.383 0.17877 0.462 0.725 0.10921 0.14399 
9,6,1 (67) 0.207 0.352 0.17446 0.465 0.731 0.10750 0.14098 
9,7,1 (78) 0.197 0.329 0.18056 0.486 0.749 0.10182 0.14119 
9,8,1 (89) 0.276 0.378 0.18657 0.480 0.738 0.10494 0.14575 

9,9,1 (100) 0.275 0.389 0.17942 0.467 0.728 0.10812 0.14377 
9,10,1 (111) 0.277 0.390 0.17929 0.468 0.728 0.10799 0.14364 
9,11,1 (122) 0.278 0.392 0.17869 0.468 0.729 0.10798 0.14334 
9,12,1 (133) 0.357 0.503 0.14783 0.473 0.737 0.10553 0.12668 
9,13,1 (144) 0.357 0.503 0.14781 0.474 0.737 0.10546 0.12663 
9,14,1 (155) 0.356 0.503 0.14777 0.474 0.737 0.10542 0.12660 
9,15,1 (166) 0.356 0.503 0.14773 0.474 0.737 0.10542 0.12657 
9,16,1 (177) 0.356 0.503 0.14767 0.474 0.737 0.10542 0.12655 
9,17,1 (188) 0.355 0.503 0.14760 0.474 0.737 0.10543 0.12651 
9,18,1 (177) 0.355 0.495 0.15036 0.472 0.738 0.10545 0.12791 
9,19,1 (188) 0.354 0.505 0.14748 0.409 0.684 0.12226 0.13487 
9,20,1 (221) 0.354 0.505 0.14746 0.409 0.684 0.12225 0.13486 
9,21,1 (232) 0.354 0.505 0.14744 0.409 0.684 0.12224 0.13484 
9,3,1,1 (36) 0.394 0.528 0.14381 0.399 0.651 0.13075 0.13728 
9,3,2,1 (41) 0.401 0.535 0.14210 0.399 0.653 0.13042 0.13626 
9,3,3,1 (46) 0.402 0.537 0.14158 0.400 0.653 0.13028 0.13593 
9,3,4,1 (51) 0.403 0.538 0.14136 0.400 0.653 0.13022 0.13579 
9,4,1,1 (47) 0.321 0.490 0.14714 0.424 0.685 0.12118 0.13416 
9,4,2,1 (53) 0.441 0.527 0.15497 0.424 0.682 0.12204 0.13850 
9,4,3,1 (59) 0.450 0.529 0.15600 0.425 0.682 0.12180 0.13890 
9,4,4,1 (65) 0.326 0.508 0.14208 0.449 0.696 0.11747 0.12978 
9,4,5,1 (71) 0.316 0.478 0.15058 0.447 0.697 0.11718 0.13388 
9,5,1,1 (58) 0.325 0.462 0.15931 0.497 0.736 0.10476 0.13204 
9,5,2,1 (65) 0.299 0.379 0.19339 0.498 0.736 0.10465 0.14902 
9,5,3,1 (72) 0.341 0.405 0.19212 0.531 0.756 0.09765 0.14489 
9,5,4,1 (79) 0.237 0.359 0.18198 0.502 0.736 0.10453 0.14326 
9,5,5,1 (86) 0.238 0.361 0.18135 0.502 0.735 0.10461 0.14298 
9,5,6,1 (93) 0.346 0.477 0.15648 0.495 0.732 0.10579 0.13114 
9,6,1,1 (69) 0.301 0.370 0.19897 0.541 0.768 0.09385 0.14641 
9,6,2,1 (77) 0.260 0.345 0.19770 0.580 0.790 0.08581 0.14175 
9,6,3,1 (85) 0.260 0.345 0.19768 0.579 0.790 0.08582 0.14175 
9,6,4,1 (93) 0.382 0.464 0.17079 0.517 0.755 0.09861 0.13470 

 9,6,5,1 (101) 0.320 0.389 0.19440 0.546 0.769 0.09338 0.14389 
 9,6,6,1 (109) 0.321 0.389 0.19428 0.547 0.769 0.09337 0.14383 
 9,6,7,1 (117) 0.322 0.390 0.19420 0.547 0.769 0.09337 0.14378 
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As seen from Table 14, the neural networks with more than 72 effective 

parameters are capable of estimating 170 unit debris yield with smaller error (i.e. 

less than 0.10000), all these networks suffer from overfitting problem. The ANN 

model (9,17,1) estimates debris yield more accurately for the calibration data 

than the neural network model (9,4,4,1); however, the simulation is a little worse 

for the validation data. Considering the little difference in the average MSE of 

these two network models, it can be concluded that the (9,17,1) network is as 

good as the network (9,4,4,1). The unit debris yield simulated by the network 

(9,17,1) is plotted against their measured values in Figure 27 together with the 

best fit linear regression lines for those data points. Only six data points are very 

close to the 45 degree line in Figure 27(b) that explains why the correlation 

coefficient is only 0.503 for the validation data. Trained by the BRBP algorithm, 

even two ‘best-performed’ networks (9,17,1) and (9,4,4,1) are not able to 

simulate the calibration and validation data to a desirable level of accuracy. 

 Fifteen four-layered neural networks are also trained by the LM algorithm 

to compare the results. Table 15 shows the detailed network geometries and 

best modeling results for these fifteen neural network models. The network with 

five and four neurons on the first and the second hidden layer appears to be the 

best model with relatively better performance for the calibration and validation 

data thus achieving a best overall performance. The measured unit debris yield 

and the estimated values by this network are graphed in Figure 28. With much 

lower MSEs and higher correlation coefficients for the calibration and validation 
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data, this network is not only better performed than the network with the same 

geometry trained by the BRBP algorithm, but also better than the best network 

trained by the BRBP algorithm.  

Table 15: Summary of the performances of ANN models trained by the LM algorithm for 
Case 6 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

9,4,1,1 (47) 0.515 0.578 0.14382 0.579 0.761 0.09535 0.11958 
9,4,2,1 (53) 0.597 0.650 0.12209 0.575 0.759 0.09619 0.10914 
9,4,3,1 (59) 0.541 0.664 0.10914 0.599 0.774 0.09092 0.10003 
9,4,4,1 (65) 0.420 0.578 0.12865 0.711 0.843 0.06555 0.09710 
9,4,5,1 (71) 0.725 0.691 0.12328 0.684 0.827 0.07147 0.09737 
9,4,6,1 (77) 0.602 0.647 0.13386 0.722 0.850 0.06292 0.09839 
9,4,7,1 (83) 0.290 0.370 0.19464 0.625 0.791 0.08496 0.13980 
9,5,3,1 (72) 0.466 0.674 0.10358 0.645 0.803 0.08032 0.09195 
9,5,4,1 (79) 0.516 0.649 0.11484 0.717 0.847 0.06417 0.08950 
9,5,5,1 (86) 0.765 0.672 0.14576 0.702 0.838 0.06744 0.10660 
9,5,6,1 (93) 0.711 0.628 0.16161 0.810 0.900 0.04313 0.10237 

9,5,7,1 (100) 0.376 0.527 0.15426 0.759 0.871 0.05461 0.10444 
9,6,3,1 (85) 0.356 0.583 0.12638 0.601 0.775 0.09041 0.10840 
9,6,4,1 (93) 0.511 0.562 0.16629 0.798 0.893 0.04582 0.10606 

9,6,5,1 (101) 0.632 0.600 0.17172 0.849 0.922 0.03415 0.10294 
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(a) Calibration Data

Linear Regression Line: y =0.474x+1.927

R = 0.737

Data Points
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(b) Validation Data

Linear Regression Line: y =0.355x+2.381

R = 0.503

Data Points

Linear Regression Line

45 Degree Line

 

Figure 27: Linear regression analysis between measured and ANN model (BRBP) 
estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 6 
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(a) Calibration Data

Linear Regression Line: y =0.717x+1.038

R = 0.847
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(b) Validation Data

Linear Regression Line: y =0.516x+1.830

R = 0.649

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 

Figure 28: Linear regression analysis between measured and ANN model (LM) 
estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 6 

 
Compared with the two best-performed neural networks (7,5,3,1) in Case 

5, one is trained by the BRBP algorithm and another is trained by the LM 

algorithm, errors and correlation coefficients obtained by the two best-performed 

networks in this case - (9,17,1) trained by the BRBP algorithm and (9,5,4,1) 

trained by the LM algorithm are much worse. It suggests that the inclusion of 

unimportant input variables such as ER and MBR introduces more error and 

makes the simulation deviate from the right direction. 

4.2.3.2 ANFIS Model  

 For the simulation using ANFIS model in this case, the maximum number 

of membership functions for each input is four, and in order to create a same 

training environment as in Case 4 and 5, the same values for the remaining 

parameters such as epoch number, desired training data error goal, etc. are 
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maintained. To simplify the training process, same type of membership function 

is used for all input parameters. Among the four tested membership functions - 

Gaussian function, triangular membership function, trapezoidal membership 

function, generalized bell-shaped membership function, trapezoidal function is 

the best fit membership function for this case. Input spaces of logA  and ER are 

partitioned into two subspaces (Figure 29) and the membership values of the 

other input parameters are always equal to one.  
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Figure 29: Membership functions for logA  and ER (Case 6) 

 

Consequently, four fuzzy rules are generated. The first fuzzy rule is: if 

logA  is (-0.862 0.042 1.534 2.151), rlogR  is between 1.94 and 2.72, ER is 

(1.086 1.294 1.6 1.821), DDM is any value from 1.746 to 2.181, TSL can be any 

value within the range of [2.43 5.455], MBR is between 2 and 3.04, T1 is within 

the range of [1.51 3.97], logI  is within [0.4 2.4], and F ranges from 3 to 6.5, then 

85.56TSL91.18DDM2.72ER2.813logRr44.49logA31.83t −++++=  
     0.2827F1.096logI94.7T194.13MBR +−+−  
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 The 2nd fuzzy rule is: if logA   is (-0.862 0.042 1.534 2.151), ER is (1.68 

1.797 2.126 2.334), and rlogR , DDM, TSL, MBR, T1, logI , and F can be any 

value within their input ranges, then   

  139.4MBR91.49TSL17.52DDM1.967ER1.515logRr4.895logA249.6t ++−+−−−=          
0.1948F2.058logI141T1 ++−  

 
The 3rd fuzzy rule is: if logA   is (1.48 2.41 3.658 4.562), ER is (1.086 

1.294 1.6 1.821), and the remaining seven input parameters can be any values 

as long as they are between their ranges, then  

36.51MBR41.2TSL191DDM4.706ER5.683logRr109.1logA358.6t −+−−+−=          
0.0177F0.5869logI42.92T1 −++  

 
The 4th fuzzy rule is: if logA  is (1.48 2.41 3.658 4.562), ER is (1.68 1.797 

2.126 2.334), and the remaining inputs are within their ranges, then  

t 70.8 12.68logA 1.929logRr 0.4686ER 22.57DDM 36.12TSL= + − − + −   
50.39MBR 47.2T1 0.3272logI 0.1628F− + + +  

 
Figure 30 shows the measured unit debris yields and their simulated 

values by using the ANFIS model. The MSE for the calibration data is 0.1137 and 

the correlation coefficient is 0.706, and MSE for the validation data is 0.1579 and 

the correlation coefficient is 0.417. It performs much worse than the two best-

performed ANN models in this case, one trained by the BRBP algorithm and the 

other trained by the LM algorithm, and it is also worse than the artificial 

intelligence models in Case 5. It suggests these two input parameters - ER and 

MBR should not be included for simulation. 
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(a) Calibration Data

Linear Regression Line: y = 0.489x+1.872

R = 0.706
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(b) Validation Data

Linear Regression Line: y = 0.229x+2.815 

R = 0.417

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 30: Linear regression analysis between measured and ANFIS model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 6 
 

4.2.3.3 GD-FNN Model  

The optimal values of seven predefined parameters required in the GD-

FNN model are determined to be  

min max max min mf s errε 0.5,  ε 0.8, e 5,  e 0.002,  k 0.65,  k 0.99,  and k 0.002.= = = = = = =
  
Two fuzzy rules procured from the GD-FNN model are listed.  

1st fuzzy rule: if logA  is (2.86, 4.78), rlogR  is (2, 1.29), ER is (1.72, 0.81), 

DDM is (1.753, 0.873), TSL is (5.25, 5.23), MBR is (2.57, 2.18), T1 is (3.83, 

4.70), logI  is (1.18, 2.441), and F is (3.69, 5.79), then  

3.284TSL11.491DDM0.287ER2.072logRr2.888logA1.639t −++++=
0.070F1.654logI2.283T10.823MBR −−−+  

 
2nd fuzzy rule: if logA  is (1.91, 2.45), rlogR  is (2.72, 1.54), ER is (1.97, 

0.98), DDM is (1.753, 0.873), TSL is (3.97, 2.92), MBR is (2.57, 1.86), T1 is 

(3.12, 3.10), is logI  (1.18, 2.441), and F is (6.5, 7.33), then 
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7.944TSL9.577DDM3.028ER6.291logRr4.347logA10.690t −−++−=  
     1.382F2.809logI17.390T117.086MBR +++−  

The newly generated membership functions for 9 input parameters are 

plotted in Figure 31.   

 

 
*Memb. is the abbreviation of membership function. 

Figure 31: Membership functions for input variables (Case 6) 
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*Memb. is the abbreviation of membership function. 

Figure 31: (Continued) Membership functions for input variables (Case 6) 
 

This best fit GD-FNN model estimates the calibration data with a MSE of 

0.1716 and the validation data with a MSE of 0.1233; and the corresponding 

correlation coefficients are 0.522 and 0.625 (Figure 32). This GD-FNN model is 

superior to the ANFIS model for the validation data; however, its performance for 

the calibration data is notorious.   
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                (a) Calibration Data
Linear Regression Line: y=0.363x+2.328
                      R = 0.522

                (b) Validation Data
Linear Regression Line: y=0.514x+1.830
                      R = 0.625

 
Figure 32: Linear regression analysis between measured and GD-FNN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 6 
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4.2.4 Case 7 

Hypsometric Index (HI), the relative height which divides the ground 

surface area into two equal parts, is considered as input parameter in this case. It 

is dimensionless and within a range of [1.38 1.79]. Therefore in this case, 

artificial intelligence models are trained by ten input parameters - logA , rlogR , 

ER, DDM, TSL, T1, MBR, logI , F, and HI.  

4.2.4.1 ANN Model  

Trained by the BRBP algorithm and the same internal parameters 

introduced in the previous three cases, seventeen three-layered neural networks 

and twenty-two four-layered neural networks are listed in Table 16. Also included 

in this table are their modeling results evaluated in terms of MSE, correlation 

coefficients, and the slopes of the best fitted linear regression lines. For three-

layered ANN models, the errors of both the calibration and validation data vary 

within a very narrow range; the neural network with 17 neurons on the hidden 

layer has the best generalization ability with the relatively lower errors for both 

the calibration and the validation data. For four-layered neural networks, it is the 

network (10,5,5,1) that estimates the 30 validation data with the minimum error 

and its performance for the calibration data is acceptable. This network provides 

similar performance as the neural network (10,17,1) for the calibration data, 

however, the former one is more accurate for estimating the validation data. The 

debris yield estimated by the network (10,5,5,1) is compared with measured data 
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in Figure 33(a) and (b). In figure (a), quite a few data points are distributed far 

away from the 45 degree line that leads to a low correlation coefficient, 0.738, 

and the underestimation of a few validation data points worsens the performance 

of the neural network.  

Table 16: Summary of the performances of ANN models trained by the BRBP algorithm 
for Case 7 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope    R      MSE Slope    R    MSE 

10,5,1 (61) 0.460 0.563 0.10591 0.423 0.699 0.11426 0.11008 
10,6,1 (73) 0.507 0.530 0.12303 0.487 0.751 0.11414 0.11859 
10,7,1 (85) 0.542 0.532 0.12591 0.519 0.772 0.11147 0.11869 
10,8,1 (97) 0.501 0.518 0.12809 0.519 0.773 0.11224 0.12016 
10,9,1 (109) 0.456 0.506 0.12285 0.534 0.786 0.10746 0.11515 
10,10,1 (121) 0.573 0.554 0.12504 0.550 0.795 0.10647 0.11575 
10,11,1 (133) 0.568 0.550 0.12619 0.552 0.797 0.10675 0.11647 
10,12,1 (145) 0.568 0.550 0.12603 0.553 0.797 0.10655 0.11629 
10,13,1 (157) 0.568 0.551 0.12591 0.554 0.798 0.10640 0.11616 
10,14,1 (169) 0.576 0.552 0.12572 0.552 0.798 0.10629 0.11601 
10,15,1 (181) 0.567 0.550 0.12589 0.555 0.798 0.10625 0.11607 
10,16,1 (193) 0.567 0.550 0.12585 0.555 0.798 0.10620 0.11603 
10,17,1 (205) 0.566 0.550 0.12588 0.556 0.799 0.10615 0.11602 
10,18,1 (217) 0.531 0.548 0.12012 0.487 0.749 0.11296 0.11654 
10,19,1 (229) 0.532 0.548 0.12016 0.487 0.749 0.11292 0.11654 
10,20,1 (241) 0.540 0.512 0.13845 0.528 0.778 0.11600 0.12723 
10,21,1 (253) 0.482 0.486 0.13892 0.505 0.764 0.11912 0.12902 
10,3,1,1 (39) 0.506 0.607 0.11463 0.436 0.677 0.12836 0.12149 
10,3,2,1 (44) 0.460 0.456 0.14427 0.478 0.715 0.11599 0.13013 
10,3,3,1 (49) 0.409 0.526 0.10143 0.376 0.644 0.13916 0.12030 
10,3,4,1 (54) 0.468 0.462 0.14382 0.479 0.714 0.11617 0.12999 
10,4,1,1 (51) 0.495 0.602 0.09767 0.458 0.705 0.11957 0.10862 
10,4,2,1 (57) 0.473 0.568 0.10477 0.449 0.705 0.11998 0.11238 
10,4,3,1 (63) 0.505 0.577 0.10771 0.461 0.710 0.11796 0.11283 
10,4,4,1 (69) 0.615 0.602 0.12071 0.531 0.753 0.10296 0.11184 
10,4,5,1 (75) 0.616 0.602 0.12112 0.531 0.753 0.10298 0.11205 
10,5,1,1 (63) 0.522 0.594 0.10814 0.504 0.741 0.10738 0.10776 
10,5,2,1 (70) 0.612 0.604 0.14197 0.564 0.780 0.09343 0.11770 
10,5,3,1 (77) 0.568 0.538 0.13490 0.575 0.786 0.09093 0.11291 
10,5,4,1 (84) 0.526 0.557 0.13688 0.637 0.823 0.07695 0.10691 
10,5,5,1 (91) 0.512 0.615 0.09579 0.500 0.738 0.10842 0.10211 
10,5,6,1 (98) 0.516 0.570 0.11809 0.518 0.747 0.10525 0.11167 
10,6,1,1 (75) 0.512 0.555 0.11329 0.521 0.762 0.10062 0.10695 
10,6,2,1 (83) 0.642 0.550 0.14734 0.648 0.829 0.07451 0.11093 
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Table 16, Continued 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope    R      MSE Slope    R    MSE 

10,6,3,1 (91) 0.628 0.540 0.14907 0.648 0.828 0.07476 0.11192
10,6,4,1 (99) 0.627 0.539 0.14933 0.649 0.829 0.07454 0.11194

  10,6,5,1 (107) 0.627 0.538 0.14948 0.650 0.829 0.07439 0.11194
  10,6,6,1 (115) 0.494 0.536 0.13813 0.594 0.802 0.08518 0.11165
  10,6,7,1 (123) 0.627 0.537 0.14967 0.650 0.829 0.07421 0.11194
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(a) Calibration Data

Linear Regression Line: y =0.500x+1.827

R = 0.738

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y =0.512x+1.715

R = 0.615

Data Points

Linear Regression Line

45 Degree Line

 
Figure 33: Linear regression analysis between measured and ANN model (BRBP) 

estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 7 
 

Twenty-two four-layered networks are trained by the LM algorithm to 

examine the possibility of improvement. The modeling results are summarized in 

Table 17. It appears that almost all neural networks trained by the LM algorithm 

are calibrated more successfully than the networks trained by the BRBP 

algorithm and the validation data error is reduced as well for many neural 

networks. Although the ANN model (10,3,4,1) is not the one with the lowest error 

for the calibration data, it fits best for the validation data and its performance for 

the calibration data is acceptable. It outperforms the best-performed network (i.e. 

10,5,5,1) trained by the BRBP algorithm in this case.  
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Table 17: Summary of the performances of ANN models trained by the LM algorithm for 
Case 7 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

10,3,4,1 (54) 0.961 0.771 0.08031 0.661 0.813 0.08001 0.08016 
10,3,5,1 (59) 0.848 0.724 0.08558 0.608 0.780 0.09263 0.08910 
10,3,6,1 (64) 0.561 0.577 0.11682 0.708 0.842 0.06890 0.09286 
10,3,7,1 (69) 0.747 0.639 0.11212 0.632 0.796 0.08672 0.09942 
10,4,1,1 (51) 0.852 0.700 0.10551 0.647 0.804 0.08348 0.09450 
10,4,2,1 (57) 0.787 0.684 0.09440 0.629 0.793 0.08770 0.09105 
10,4,3,1 (63) 0.534 0.586 0.09660 0.680 0.824 0.07569 0.08615 
10,4,4,1 (69) 0.689 0.678 0.08585 0.667 0.817 0.07872 0.08229 
10,4,5,1 (75) 0.676 0.639 0.10586 0.723 0.850 0.06541 0.08564 
10,4,6,1 (81) 0.467 0.551 0.09889 0.716 0.846 0.06702 0.08295 
10,5,1,1 (63) 0.699 0.646 0.10047 0.588 0.767 0.09743 0.09895 
10,5,2,1 (70) 0.690 0.637 0.10062 0.656 0.810 0.08124 0.09093 
10,5,3,1 (77) 0.521 0.541 0.11658 0.757 0.870 0.05734 0.08696 
10,5,4,1 (84) 0.494 0.583 0.11510 0.748 0.865 0.05956 0.08733 
10,5,5,1 (91) 0.507 0.542 0.12732 0.626 0.791 0.08846 0.10789 
10,5,6,1 (98) 0.516 0.524 0.12304 0.591 0.769 0.09664 0.10984 
10,6,1,1 (75) 0.976 0.714 0.11631 0.738 0.859 0.06196 0.08914 
10,6,2,1 (83) 0.651 0.607 0.11117 0.707 0.841 0.06931 0.09024 
10,6,3,1 (91) 0.716 0.619 0.11449 0.825 0.908 0.04139 0.07794 
10,6,4,1 (99) 0.714 0.640 0.10585 0.856 0.925 0.03390 0.06988 
10,6,5,1 (107)  0.702 0.635 0.11660 0.855 0.925 0.03430 0.07545 
10,6,6,1 (115) 0.471 0.425 0.16220 0.803 0.896 0.04660 0.10440 

 

Figure 34 is a plot of the measured unit debris yield versus their estimated 

values by using the network (10,3,4,1). Comparison between Figure 33 and 34 

reveals a little improvement of performance in terms of the calibration data and 

significant improvement in the validation data by using the neural network 

(10,3,4,1) trained by the LM algorithm. 
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(a) Calibration Data

Linear Regression Line: y =0.661x+1.237
R = 0.813

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y =0.961x+0.169
R = 0.771

Data Points

Linear Regression Line

45 Degree Line

 
Figure 34: Linear regression analysis between measured and ANN model (LM) 
estimated debris yield (a) Calibration Data Set (b) Validation Data Set for Case 7 

 

4.2.4.2 ANFIS Model  

The number of membership function for each input variable of the ANFIS 

model varies from one to four but not equal to four at the same time due to the 

computation memory constraint. For example, if each input space is divided into 

two subspaces, the number of fuzzy rules will be 210. With the assumption that 

every input variable uses the same kind of membership function, Gaussian 

function, triangular membership function, trapezoidal membership function, and 

generalized bell-shaped membership function are applied one by one. The best 

performance is obtained by using Gaussian membership function and both 

logA and TSL have two Gaussian membership functions (Figure 35). For the 

remaining eight input parameters, their membership values are always equal to 

one.  
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Figure 35: Membership functions for logA and TSL (Case 7) 

 

The modeling results can be explained by four fuzzy if-then rules listed as 

follows. 

   1st fuzzy rule is: if logA  is (0.698, 0.87) (the first and second values are 

the center and the width of a Gaussian function, respectively), TSL is within the 

range of (2.28 0.72), and the range of rlogR  is [1.94 2.72], ER is in a range of 

[1.45, 1.97], DDM is from 1.746 to 2.181, HI is within [1.38 1.79], MBR ranges 

from 2 to 3.04, T1 is within [1.51 3.97], logI  is among the range [0.4 2.4], and F is 

between 3 and 6.5, then   

32.21TSL45.51HI23.48DDM44.42ER0.435logRr21.07logA78.21t +−−+−+=
                0.0464F2.098logI24.84T12.766MBR −++−  

2nd fuzzy rule is: if logA  is (0.698, 0.87), TSL is (5.66, 0.70), rlogR , ER, 

DDM, MBR, T1,  logI , and F can be any value within their input ranges, then   

47.65TSL1.056HI6.77DDM15.99ER18.16logRr45.24logA268.2t −+−+−−=      
0.5978F3.68logI77.73T178.35MBR +++−  
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3rd fuzzy rule is: if logA  is (3.03, 0.87), TSL is (2.28, 0.72) and as long as 

the rest eight inputs are within their input ranges, then   

59.77TSL65.62HI41.45DDM71.63ER16.38logRr85.03logA132.7t −++−−+=
  0.492F3.539logI44.43T187.1MBR +−+−  

 
 4th fuzzy rule is: if logA  is (3.03, 0.87), TSL is (5.66, 0.70), and the 

membership values for the remaining parameters are equal to one, then   

4.007TSL13.45HI41.55DDM2.375ER13.83logRr35.13logA169.8t +−++++−=
0.1162F0.4258logI39.72T147.49MBR −−−+  

The ANFIS model is capable of estimating the 170 calibration data with a 

MSE of 0.1247 and the 30 validation data with a MSE of 0.1007. The unit debris 

yield estimated by the ANFIS model is plotted versus their measured values in 

Figure 36(a) and (b). The comparison of the results between the ANFIS model 

and two best performed ANN models developed in this case indicates this ANFIS 

model is much worse in generalization ability. 
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(a) Calibration Data

Linear Regression Line: y = 0.468x+1.945

R = 0.687
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(b) Validation Data

Linear Regression Line: y = 0.463x+1.935 

R = 0.559

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 36: Linear regression analysis between measured and ANFIS estimated debris 

yield (a) Calibration Data Set (b) Validation Data Set for Case 7 
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4.2.4.3 GD-FNN Model  

The best performed GD-FNN model for this case uses the following values 

of seven parameters.  ε  0.5,ε 0.002,e  5,e  0.8,ε  0.5,ε maxminminmaxmaxmin ======  

0.002.k  0.99,k  0.5,k  0.002,e  5,e  0.8, errsmfminmax ===== The errors for the 

calibration and the validation data set are 0.1919, and 0.0891, respectively. The 

correlation coefficients between estimated and measured unit debris yield is 

0.493 for the calibration data and 0.641 for the validation data. 

There are two fuzzy rules acquired from the GD-FNN model. The first 

fuzzy rule is: if logA  is (2.86, 4.78), rlogR  is (2, 1.58), ER is (1.72, 1.07), DDM is 

(1.753, 0.904), HI is (1.52, 0.831), TSL is (5.245, 6.0), MBR is (2.57, 2.104), T1 is 

(3.83, 4.903), logI  is (1.15, 2.595), and F is (6.5, 7.211), then  

8.195HI6.682DDM6.054ER2.214logRr10.329logA203.467t +−−+−=       
 0.630F2.516logI90.880T194.239MBR49.979TSL −−+−−  

 
The second fuzzy rule is: if logA  is (1.67, 2.42), rlogR  is (2.72, 1.62), ER is 

(1.97, 1.07), DDM is (1.753, 0.904), HI is (1.52, 0.831), TSL is (3.862, 2.926), 

MBR is (2.57, 2.104), T1 is (2.84, 2.734), logI  is (1.15, 2.595), and F is (6.5, 

7.211), then  

5.365HI2.451DDM7.421ER1.800logRr2.976logA166.271t −−+++−=  
     0.438F3.737logI78.594T180.975MBR44.617TSL ++−++  

Each of the five input variables (i.e. logA , rlogR , ER, TSL, and T1) has 

two Gaussian membership functions; for the remaining five inputs, each only has 

one Gaussian membership function. They are plotted in Figure 37.  
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Figure 37: Membership functions for each input variable (Case 7) 
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The estimated unit debris yield by using the GD-FNN model is plotted 

versus their field collected values in Figure 38. Among all four artificial 

intelligence models created in this case, this GD-FNN model is more accurate for 

estimating 30 validation data records than the ANN model trained by the BRBP 

algorithm and the ANFIS model, however, its performance for the 170 calibration 

data is the worst. 
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                (a) Calibration Data
Linear Regression Line: y=0.354x+2.324
                      R =0.493

               (b) Validation Data
Linear Regression Line: y=0.609x+1.408
                      R =0.641

 

Figure 38: Linear regression analysis between measured and GD-FNN estimated debris 
yield (a) Calibration Data Set (b) Validation Data Set for Case 7 

 

4.2.5 Overall Discussion 

The best performance of four artificial intelligence models from Case 4 to 

7 is summarized in Table 18. There are two kinds of neural network models, the 

neural network on the top row is trained by the BRBP algorithm and the bottom 

network is trained by the LM algorithm, ANFIS, and GD-FNN model listed for 
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each case. From Case 4 to Case 7, equally considering the performance of 

artificial intelligence models for the calibration and the validation data, it is clear 

that ANN models trained by the LM algorithm estimate unit debris yields more 

accurately than ANN models trained by the BRBP algorithm, ANFIS models, and 

the GD-FNN models. The reason might be the LM training algorithm is more 

robust than the BRBP training algorithm, the combination of BPGDM and 

sequential least squares method employed by ANFIS model, and LLS method 

employed by the GD-FNN model. It is noteworthy that ANN models trained by the 

BRBP algorithm achieve similar performance as the ANFIS models and both 

models always work better than the GD-FNN models especially for the calibration 

data.  

Table 18: The summary of all model performance from Case 4 to Case 7 

Case 
No. 

Model 
Validation Data Set Calibration Data Set 

Slope R MSE Slope R MSE 

4 

ANN (6,5,5,1) 0.427 0.554 0.1022 0.461 0.699 0.1209 
ANN (6,3,7,1) 0.547 0.703 0.0732 0.586 0.766 0.0974 

ANFIS 0.584 0.589 0.1125 0.550 0.743 0.1055 
GD-FNN 0.373 0.521 0.1057 0.289 0.501 0.1777 

5 

ANN (7,5,3,1) 0.394 0.502 0.1052 0.487 0.722 0.1139 
ANN (7,5,3,1) 0.721 0.739 0.0707 0.659 0.812 0.0806 

ANFIS 0.528 0.541 0.1298 0.491 0.703 0.1196 
GD-FNN 0.407 0.569 0.1111 0.279 0.507 0.1764 

6 

ANN (9,17,1) 0.355 0.503 0.1476 0.474 0.737 0.1054 
ANN (9,5,4,1) 0.516 0.649 0.1148 0.717 0.847 0.0642 

ANFIS 0.229 0.417 0.1579 0.489 0.706 0.1137 
GD-FNN 0.514 0.625 0.1233 0.363 0.522 0.1716 

7 

ANN (10,5,5,1) 0.512 0.615 0.0958 0.500 0.738 0.1084 
ANN (10,3,4,1) 0.961 0.771 0.0803 0.661 0.813 0.0800 

ANFIS 0.463 0.559 0.1007 0.468 0.687 0.1247 
GD-FNN 0.609 0.641 0.0891 0.354 0.493 0.1919 
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It appears that ANN models trained by the LM algorithm estimate unit 

debris yield more accurately not only for the calibration but also for the validation 

data than those networks trained by the BRBP algorithm. The reason might be 

the BRBP training algorithm terminates the calibration process too early to 

prevent overfitting problem hence the best modeling results cannot be achieved. 

It can be further proved by another sign –the validation data error varies in a very 

narrow range no matter how the neural network geometry is changed. The 

modeling results obtained through Case 4 to Case 7 strengths another finding 

from Case 1 to 3 and it is ANN models with twp hidden layers have better 

generalization ability than those with one hidden layer.  

As seen from Table 18, the network performance improves in Case 5 as 

compared with Case 4, improves in Case 7 as compared with Case 6, and the 

performance deteriorates seriously in Case 6. The major difference between 

these cases is the number of input parameters; Case 5 includes DDM as an 

additional input parameter and the remaining input parameters are the same as 

those in the Case 4; Case 6 is trained with two new input parameter: ER and 

MBR, as compared to Case 5; Case 7 has one more watershed morphological 

parameter, HI as compared with Case 6. The decrease of modeling errors in the 

Case 5 indicates the inclusion of parameter DDM improves the simulation 

accuracy. The inclusion of ER and MBR in Case 6 seriously worsens the 

generalization ability of neural network models. In Case 7, neural network 

performance for the validation data is enhanced dramatically due to the addition 
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of HI as a new input parameter as compared with Case 6. To summarize, DDM 

and HI are important input parameters for estimation of unit debris yield but ER 

and MBR are not important and should be eliminated for analysis. 

4.2.5 Case 8  

In this case, ANN technique is applied to estimate unit debris yield 

documented at 20 small debris basins within Los Angeles County from 1938 to 

1983. The debris basins are Aliso, Big Dalton, Cassara, Emerald East, Fairoaks, 

Golf Course, Gould, Jasmine, La Tuna, LimeKiln, Lincoln, Linda Vista, Little 

Dalton, Ruby, Schwartz, Snowdrop, Sullivan, Turnbill, Wildwood, and Wilson and 

their location are graphically shown in Figure 3. They are classified into a same 

group because the relief ratio of their upstream collection watersheds ranges 

from 58 m/km to 185 m/km which is defined as mild slope in this study. 68 data 

records are available in this group; 58 of them are selected for calibration and 10 

data records for validation by using subtractive clustering method. The data 

preprocessing consists of three steps: first, all the input and target values are 

normalized, secondly, input vectors are transferred to be uncorrelated, and finally 

any input variable that contributes than 2% of the total variation is removed. Four 

basic input parameters implemented in the debris estimation equation provided 

by USACE are log transformed watershed area, logarithmic relief ratio, 

logarithmic value of maximum one hour precipitation times 100, and fire factor. 

They are the input parameters used in Case 8(a); soil erodibility factor (SEF) is 
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included as an additional input parameter in Case 8(b), soil permeability rate 

(SP) in Case 8(c), and soil liquid limit (SLL) in Case 8(d). 

4.2.5.1 Case 8(a) 

Based on the finding that the LM training algorithm provides better 

modeling results than the BRBP training algorithm, ANFIS model, and GD-FNN 

model through Case 4 to 7, LM training algorithm is the only training algorithm 

used for the following eight cases. Neural network models with no more than two 

hidden layers are employed in this case. For three-layered neural networks, only 

six different geometries are created and they are (4, 4, 1), (4, 5, 1), (4, 6, 1), (4, 

7, 1), (4, 8, 1), and (4, 9, 1). With a focus on neural network models with two 

hidden layers, twenty-five of them are generated for the estimation of unit debris 

yield and they are (4,2,3,1), (4,2,4,1), (4,2,5,1), (4,3,1,1), (4,3,2,1), (4,3,3,1), 

(4,3,4,1), (4,3,5,1), (4,3,6,1), (4,3,7,1), (4,4,1,1), (4,4,2,1), (4,4,3,1), (4,4,4,1), 

(4,4,5,1), (4,5,1,1), (4,5,2,1), (4,5,3,1), (4,6,1,1), (4,6,2,1), (4,6,3,1), (4,6,4,1), 

(4,6,5,1), (4,6,6,1), and (4,6,7,1). Hyperbolic tangent function is the only transfer 

function in use for hidden layers and linear function is for output layer. The 

training of the ANN models will be stopped when the epoch size reaches 10,000, 

or the calibration MSE reaches 6101 −× , or the performance gradient is less than 

10101 −× , or the scalar ( μ  in Equation 3.9) exceeds 10101 −× . After the training 

process is over, the values of connection weights and biases are saved for the 

testing of ‘unseen’ data - validation data; and only the modeling results provided 
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by those connection weights and biases with the best performance for both 

calibration and validation data are listed in Table 19. 

Table 19: Summary of the performances of ANN models for Case 8(a) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

4,4,1 (25) 0.830 0.635 0.16752 0.894 0.945 0.02247 0.09500 
4,5,1 (31) 0.579 0.612 0.11972 0.819 0.905 0.03821 0.07897 
4,6,1 (37) 0.528 0.717 0.09166 0.746 0.863 0.05386 0.07276 
4,7,1 (43) 0.691 0.733 0.09128 0.927 0.963 0.01549 0.05338 
4,8,1 (49) 0.968 0.725 0.23084 0.958 0.979 0.00893 0.11988 
4,9,1 (55) 0.717 0.589 0.19424 0.995 0.997 0.00116 0.09770 

4,2,3,1 (23) 0.374 0.626 0.09773 0.533 0.730 0.09893 0.09833 
4,2,4,1 (27) 0.400 0.754 0.08360 0.690 0.831 0.06555 0.07458 
4,2,5,1 (31) 0.405 0.528 0.12408 0.827 0.910 0.03652 0.08030 
4,3,1,1 (21) 0.465 0.686 0.08787 0.628 0.793 0.07870 0.08328 
4,3,2,1 (26) 0.495 0.731 0.07611 0.650 0.806 0.07406 0.07509 
4,3,3,1 (31) 0.523 0.663 0.09181 0.822 0.907 0.03768 0.06475 
4,3,4,1 (36) 0.618 0.753 0.07346 0.824 0.908 0.03718 0.05532 
4,3,5,1 (41) 0.499 0.597 0.11732 0.843 0.918 0.03324 0.07528 
4,3,6,1 (46) 0.745 0.754 0.07869 0.915 0.957 0.01797 0.04833 
4,3,7,1 (51) 0.429 0.598 0.10473 0.893 0.945 0.02276 0.06374 
4,4,1,1 (27) 0.567 0.571 0.14167 0.773 0.879 0.04794 0.09481 
4,4,2,1 (33) 0.549 0.591 0.12254 0.735 0.858 0.05599 0.08926 
4,4,3,1 (39) 0.299 0.346 0.18501 0.829 0.911 0.03618 0.11059 
4,4,4,1 (45) 0.315 0.275 0.28585 0.946 0.973 0.01134 0.14859 
4,4,5,1 (51) 0.894 0.614 0.21840 0.953 0.977 0.00971 0.11406 
4,5,1,1 (33) 0.515 0.641 0.10582 0.795 0.891 0.04345 0.07464 
4,5,2,1 (40) 0.754 0.592 0.17953 0.865 0.931 0.02836 0.10394 
4,5,3,1 (47) 0.596 0.590 0.13400 0.832 0.912 0.03547 0.08473 
4,6,1,1 (39) 0.498 0.493 0.16467 0.829 0.910 0.03623 0.10045 
4,6,2,1 (47) 0.302 0.396 0.19567 0.888 0.943 0.02358 0.10962 
4,6,3,1 (55) 0.747 0.591 0.19344 0.958 0.979 0.00888 0.10116 
4,6,4,1 (63) 0.937 0.493 0.48483 0.994 0.997 0.00135 0.24309 
4,6,5,1 (71) 1.006 0.759 0.13163 0.995 0.997 0.00112 0.06637 
4,6,6,1 (79) 0.437 0.251 0.51999 0.995 0.997 0.00112 0.26055 
4,6,7,1 (87) 0.386 0.356 0.23224 0.995 0.997 0.00112 0.11668 

 
The neural network with seven hidden neurons is superior to the 

remaining three-layered networks because it achieved the lowest estimation error 

for the validation data and the performance for the calibration data is acceptable. 
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With the second lowest  MSE  for  the  validation data  and  acceptable  error  for 

the  calibration  data, the network with three and six neurons on the first and 

second hidden layer outperformed the other twenty-four four-layered neural 

networks. The performance of the latter network is slightly better than the 

previous network due to a better performance for the validation data. Therefore, 

the network (4,3,6,1)  is chosen as the most suitable model for this case.  

The modeling results obtained by the network (4,3,6,1) are evaluated by 

linear regression analysis as illustrated in Figure 39. In the left figure, there are 

five data points which are far away from the 45 degree line that descends the 

correlation coefficient to 0.957.  In the right figure, none of the data points are on 

the 45 degree line, six are above the line and four are blow. Hence the 

correlation coefficient is as low as 0.754 which indicates a non-satisfactory 

performance. 

1.5 2 2.5 3 3.5 4 4.5 5
1.5

2

2.5

3

3.5

4

4.5

5

Measured Unit Debris Yield (log,m3/km2)

P
re

d
ic

te
d
 U

n
it
 D

e
b
ri
s
 Y

ie
ld

 b
y
 A

N
N

 (
5
,6

,6
,1

) 
(l
o
g
,m

3
/k

m
2

 

 
(a) Calibration Data

Linear Regression Line: y = 0.915x+0.288
R = 0.957
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(b) Validation Data

Linear Regression Line: y = 0.745x+0.879

R = 0.754

Data Points
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45 Degree Line

 
Figure 39: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 8(a) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

and Fire Factor) 
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4.2.5.2 Case 8 (b) 

As a key factor for the prediction of soil loss in Williams and Berndt’s 

empirical equation (1972), SEF is the first soil property included for modeling unit 

debris yield. With four basic input variables, there are totally five input variables 

in this case. The internal parameters such as transfer function, training algorithm, 

calibration stopping criteria, and so on, are the same as in the previous case for 

comparison purpose. However, only four-layered neural network are developed 

in this case due to their better performance than the three-layered networks most 

of the time. Table 20 lists the modeling results of twenty-one ANN models such 

as (4,3,1,1), (4,3,2,1), (4,3,3,1), (4,3,4,1), (4,3,5,1), (4,3,6,1), (4,3,7,1), (4,4,2,1), 

(4,4,3,1), (4,4,4,1), (4,4,5,1), (4,5,1,1), (4,5,2,1), (4,5,3,1), (4,5,4,1), (4,6,1,1), 

(4,6,2,1), (4,6,3,1), (4,6,4,1), (4,6,5,1), and (4,6,6,1).  

The network with six neurons on both hidden layers performs better than 

the other neural networks not only for the calibration data but also for the 

validation data. As seen from Figure 40(a), most data points stay on the 45 

degree line and the correlation coefficient is 0.997, both of which indicate this 

neural network has excellent performance for the calibration data. The simulation 

of the validation data is not as good as that for the calibration data; the 

correlation coefficient for the validation data is only 0.762 because this network 

overestimates three unit debris yield data and underestimates one unit debris 

yield.  However, the 10 data points are much closer to the 45 degree line than its 

distribution in Figure 39(b) using neural network (4,3,6,1) in the previous case. 
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Table 20: Summary of the performances of ANN models for Case 8(b) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

5,3,1,1 (24) 1.113 0.820 0.05008 0.675 0.822 0.06880 0.05944 
5,3,2,1 (29) 0.564 0.664 0.05263 0.716 0.846 0.06003 0.05633 
5,3,3,1 (34) 0.860 0.731 0.07241 0.820 0.906 0.03801 0.05521 
5,3,4,1 (39) 0.373 0.495 0.07846 0.827 0.909 0.03664 0.05755 
5,3,5,1 (44) 0.919 0.694 0.07376 0.951 0.975 0.01036 0.04206 
5,3,6,1 (49) 0.640 0.702 0.08447 0.847 0.921 0.03228 0.05837 
5,3,7,1 (54) 0.304 0.334 0.11784 0.970 0.985 0.00638 0.06211 
5,4,2,1 (37) 0.130 0.213 0.09035 0.915 0.957 0.01794 0.05414 
5,4,3,1 (43) 0.086 0.313 0.07731 0.862 0.929 0.02917 0.05324 
5,4,4,1 (49) 0.541 0.642 0.07129 1.000 0.835 0.06395 0.06762 
5,4,5,1 (55) 0.840 0.539 0.16118 0.898 0.948 0.02142 0.09130 
5,5,1,1 (38) 0.741 0.715 0.06978 0.806 0.898 0.04107 0.05543 
5,5,2,1 (45) 0.647 0.530 0.10233 0.771 0.878 0.04841 0.07537 
5,5,3,1 (52) 0.459 0.605 0.05666 0.711 0.843 0.06123 0.05895 
5,5,4,1 (59) 0.496 0.651 0.07168 0.839 0.916 0.03398 0.05283 
5,6,1,1 (45) 0.215 0.166 0.19205 0.575 0.758 0.08990 0.14098 
5,6,2,1 (53) 0.334 0.354 0.10059 0.815 0.903 0.03911 0.06985 
5,6,3,1 (61) 0.604 0.482 0.11509 0.992 0.996 0.00179 0.05844 
5,6,4,1 (69) 0.195 0.239 0.10365 0.696 0.834 0.06434 0.08400 
5,6,5,1 (77) 0.663 0.465 0.14134 0.995 0.997 0.00112 0.07123 
5,6,6,1 (85) 0.798 0.762 0.04765 0.995 0.997 0.00112 0.02438 
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(a) Calibration Data

Linear Regression Line: y = 0.995x+0.018
R = 0.997

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.798x+0.736

R = 0.762

Data Points

Linear Regression Line

45 Degree Line

 
Figure 40: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 8(b) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, and Soil Erodibility Factor) 
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4.2.5.3 Case 8 (c) 

With one more soil property - permeability rate (SP), this case includes six 

input parameters. Twenty-three ANN models with two hidden layers as shown in 

Table 21 are created for the simulation. Although four neural networks such as 

(6,3,7,1), (6,4,5,1), (6,6,5,1), (6,6,6,1) are calibrated more successfully than the 

network (6,4,3,1), their performance for the validation data is at least two times 

worse than that of the network (6,4,3,1). Overall considering the simulation 

accuracy for the calibration and validation data, the network (6,4,3,1) has the 

best generalization ability and the least number of effective parameters among 

the top five best-performed networks. The network estimates 58 unit debris yield 

data records with a very low error, 0.00508, and the 10 validated data with a 

MSE of 0.04651.  

Table 21: Summary of the performances of ANN models for Case 8(c) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,3,1,1 (27) 0.861 0.853 0.06580 0.695 0.833 0.06462 0.06521 
6,3,2,1 (32) 0.922 0.839 0.05141 0.775 0.880 0.04770 0.04955 
6,3,3,1 (37) 1.054 0.797 0.05897 0.832 0.912 0.03562 0.04729 
6,3,4,1 (42) 0.489 0.586 0.06765 0.816 0.903 0.03888 0.05327 
6,3,5,1 (47) 0.409 0.662 0.04556 0.859 0.927 0.02985 0.03771 
6,3,6,1 (52) 0.856 0.604 0.10786 0.957 0.979 0.00899 0.05843 
6,3,7,1 (57) 0.854 0.663 0.13762 0.984 0.992 0.00330 0.07046 
6,4,1,1 (35) 0.709 0.681 0.07014 0.789 0.888 0.04470 0.05742 
6,4,2,1 (41) 0.536 0.636 0.06774 0.906 0.952 0.01995 0.04384 
6,4,3,1 (47) 0.756 0.772 0.04651 0.976 0.988 0.00508 0.02579 
6,4,4,1 (53) 0.417 0.432 0.09868 0.824 0.908 0.03725 0.06796 
6,4,5,1 (59) 0.511 0.473 0.09668 0.993 0.996 0.00151 0.04909 
6,5,1,1 (43) 1.047 0.692 0.10794 0.872 0.934 0.02699 0.06747 
6,5,2,1 (50) 0.407 0.413 0.09349 0.920 0.959 0.01684 0.05517 
6,5,3,1 (57) 0.695 0.662 0.05837 0.679 0.824 0.06791 0.06314 
6,5,4,1 (64) 0.495 0.402 0.14407 0.907 0.952 0.01968 0.08188 
6,5,5,1 (71) 0.850 0.697 0.09652 0.675 0.821 0.06888 0.08270 
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Table 21. (Continued)  

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,6,1,1 (51) 0.261 0.525 0.05962 0.608 0.780 0.08303 0.07133 
6,6,2,1 (59) 0.625 0.587 0.07635 0.582 0.763 0.08840 0.08238 
6,6,3,1 (67) 0.381 0.441 0.09794 0.918 0.958 0.01733 0.05764 
6,6,4,1 (75) 0.618 0.727 0.06130 0.810 0.900 0.04022 0.05076 
6,6,5,1 (83) 0.514 0.507 0.09177 0.995 0.997 0.00112 0.04644 
6,6,6,1 (91) 0.849 0.707 0.09413 0.995 0.997 0.00112 0.04762 

 
In Figure 41(a), all the data points are very close to the 45 degree line and 

a high correlation coefficient 0.998 is obtained. In Figure 41(b), most estimated 

unit debris yield are very close to their measured values except one data point 

where the measured unit debris yield is 3.45 cubic meter per square kilometer 

but the estimated value is 3.08 cubic meter per square kilometer. The correlation 

coefficient for the validation data is 0.772. Even with a higher correlation 

coefficient for the validation data, this network does not considered to be a better 

one than the best neural network model (5,6,6,1) in Case 8(b) not only because 

of worse performance for the calibration data but also a much higher error for a 

single event. 
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(a) Calibration Data

Linear Regression Line: y = 0.976x+0.081
R = 0.988

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.756x+0.887

R = 0.772

Data Points

Linear Regression Line

45 Degree Line

 
Figure 41: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 8(c) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, and Soil Permeability Rate)  
 

4.2.5.4 Case 8 (d) 

The last soil property considered in this study – soil liquid limit (SLL) is 

included as the seventh input parameter in Case 8(d). The other six input 

parameters are logA, logRr, log(I), F, SEF, and SP. Twenty-four four-layered 

ANNs are trained by 58 data records first using the exactly same internal 

parameters as in the previous three cases and then tested by 10 data points. 

With the lowest average MSE and acceptable performance for the calibration and 

the validation data, the network (7,3,5,1) is the best-performed network in this 

case (Table 22).  

Table 22: Summary of the performances of ANN models for Case 8(d) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope    R MSE Slope    R MSE 

7,3,1,1 (30) 0.965 0.819 0.05614 0.697 0.835 0.06423 0.06018 
7,3,2,1 (35) 0.754 0.746 0.04580 0.820 0.906 0.03808 0.04194 
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Table 22. Continued  

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope    R MSE Slope    R MSE 

7,3,3,1 (40) 0.318 0.545 0.05750 0.859 0.927 0.02980 0.04365 
7,3,4,1 (45) 0.548 0.846 0.06377 0.817 0.903 0.03919 0.05148 
7,3,5,1 (50) 0.465 0.734 0.04721 0.904 0.951 0.02039 0.03380 
7,3,6,1 (55) 0.367 0.466 0.08755 0.958 0.979 0.00891 0.04823 
7,3,7,1 (60) 0.720 0.647 0.08083 0.783 0.885 0.04586 0.06334 
7,4,1,1 (39) 1.154 0.845 0.07985 0.722 0.850 0.05873 0.06929 
7,4,2,1 (45) 0.725 0.715 0.05654 0.701 0.837 0.06334 0.05994 
7,4,3,1 (51) 0.575 0.556 0.09185 0.914 0.956 0.01823 0.05504 
7,4,4,1 (57) 0.598 0.763 0.03683 0.708 0.842 0.06168 0.04925 
7,4,5,1 (63) 0.832 0.588 0.12463 0.994 0.997 0.00123 0.06293 
7,5,1,1 (48) 0.764 0.591 0.09532 0.689 0.830 0.06579 0.08056 
7,5,2,1 (55) 0.726 0.754 0.07518 0.783 0.885 0.04587 0.06053 
7,5,3,1 (62) 0.407 0.464 0.07734 0.982 0.992 0.00347 0.04040 
7,5,4,1 (69) 0.425 0.630 0.06178 0.972 0.986 0.00582 0.03380 
7,5,5,1 (76) 0.863 0.616 0.09969 0.872 0.934 0.02709 0.06339 
7,6,1,1 (57) 0.427 0.850 0.03412 0.559 0.748 0.09337 0.06374 
7,6,2,1 (65) 0.903 0.677 0.09648 0.940 0.969 0.01274 0.05461 
7,6,3,1 (73) 0.731 0.591 0.09414 0.992 0.996 0.00170 0.04792 
7,6,4,1 (81) 0.594 0.562 0.07588 0.738 0.859 0.05552 0.06570 
7,6,5,1 (89)  0.654 0.652 0.05921 0.995 0.997 0.00112 0.03017 
7,6,6,1 (97) 0.767 0.614 0.09514 0.995 0.997 0.00112 0.04813 
7,6,7,1 (105) 0.626 0.581 0.08082 0.995 0.997 0.00112 0.04097 

 
As seen from Figure 42, two data points within the calibration data set are 

deviated significantly from the 45 degree line resulting in a lower correlation 

coefficient - 0.951, and the three data points worsen the simulation accuracy of 

the validation data although the remaining seven data points fit in closely to the 

45 degree line. 
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(a) Calibration Data

Linear Regression Line: y = 0.904x+0.326

R = 0.951

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.465x+1.819

R = 0.734

Data Points

Linear Regression Line

45 Degree Line

 
Figure 42: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 8(d) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, Soil Permeability Rate, and Soil Liquid Limit) 
 
In Table 23, the best-performed ANN models for case 8(a), (b), (c), and 

(d) are presented and compared. The modeling results are compared to the 

USACE method (the last row in the table) as well. It is noticeable that the second 

ANN model (5,6,6,1) achieves the best modeling results for the calibration data. 

The second (5,6,6,1), third (6,4,3,1) and the fourth (7,3,5,1) neural network 

model have very similar performance for the validation data. However, both the 

second and the third neural network model achieve much lower MSE than the 

fourth neural network model. It can be concluded that the second and the third 

neural network model are superior to the first (4,3,6,1) and the fourth (7,3,5,1) 

neural network model. Since the only difference between these four cases is the 

number of input variables, the impact of three soil properties on ANN model 

performance can be summarized as follows: the addition of the SEF improves 
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the simulation accuracy but the SP and SLL do not contribute as much. 

Therefore, SEF is an important factor and should be included as an independent 

input variable in the future for estimating unit debris yield collected from small 

watershed with mild slope. 

Table 23: Comparison of ANN models performance for Case 8 

 
The comparison also reveals that all these four neural networks are more 

accurate than the USACE (2000) empirical equation. To further clarify the 

modeling results between the second neural network (5,6,6,1) and the USACE 

method, the measured and estimated values by both methods are graphed in 

Figure 43 and the estimated values are compared one by one in Table 24. It is 

clear that the USACE data points (i.e. blue marks) scatter around the 45 degree 

line but ANN estimated data points (i.e. red circles) fit in closely to the line for 

both calibration and validation data sets. As seen from Table 24, for majority of 

the calibration data, this ANN model can estimate unit debris yield exactly as the 

measured values and it has a very small error range, [-0.18 0.18], but the errors 

between USACE estimated and measured values ranges from -1.01 and 1.14. 

For the validation data, the error range achieved by the ANN model is [-0.37 

Case 
No. 

Network 
Geometry 

Validation Data Set Calibration Data set Average 
MSE Slope          R            MSE Slope        R          MSE    

8(a) (4,3,6,1) 0.745 0.754 0.07869 0.915 0.957 0.01797 0.04833 

8(b) (5,6,6,1) 0.798 0.762 0.04765 0.995 0.997 0.00112 0.02438 

8(c) (6,4,3,1) 0.756 0.772 0.04651 0.976 0.988 0.00508 0.02579 

8(d) (7,3,5,1) 0.465 0.734 0.04721 0.904 0.951 0.02039 0.03380 

USACE 0.243 0.378 0.13790 0.139 0.258 0.22078 0.17934 
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0.35] and it is [-0.52 0.70] by using USACE method. All the information leads to a 

conclusion that neural network technique is superior to the USACE method for 

estimating unit debris yield in Case 8. 

Table 24: Measured, the USACE method, and ANN model (5,6,6,1) estimated unit 
debris yield for Case 8 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

 

 

 

Calibration 

Data 

Aliso 2.86 2 3.46 3.27 -0.19 3.46 0.00 

Big 
Dalton 

2.83 2.08 2.84 3.38 0.54 2.84 0.00 

2.83 2.08 4.41 3.49 -0.92 4.41 0.00 

2.83 2.08 3.43 3.51 0.08 3.43 0.00 

Cassara 
1.74 2.21 3.61 3.37 -0.24 3.61 0.00 

1.74 2.21 4.16 3.53 -0.63 4.16 0.00 

Emerald 
East 

1.62 1.77 3.12 3.00 -0.12 3.12 0.00 

1.62 1.77 3.35 3.20 -0.15 3.35 0.00 

1.62 1.77 3.17 2.92 -0.25 3.17 0.00 

1.62 1.77 3.18 2.84 -0.34 3.18 0.00 

Fairoaks 

1.74 1.78 2.66 2.72 0.06 2.66 0.00 

1.74 1.78 3.67 3.01 -0.66 3.67 0.00 

1.74 1.78 4.1 3.09 -1.01 4.10 0.00 
Golf 

Course 
1.92 2.06 2.88 3.01 0.13 2.88 0.00 

Gould 

2.09 2.16 3.73 3.43 -0.30 3.73 0.00 

2.09 2.16 3.49 3.48 -0.01 3.49 0.00 

2.09 2.16 3.84 3.27 -0.57 3.84 0.00 
2.09 2.16 3.92 3.31 -0.61 3.92 0.00 

Jasmine 
1.42 2.1 3.49 2.87 -0.62 3.49 0.00 

1.42 2.1 3.5 3.03 -0.47 3.50 0.00 

La Tuna 

3.14 1.94 3.17 3.24 0.07 3.17 0.00 

3.14 1.94 3.33 3.22 -0.11 3.15 -0.18 

3.14 1.94 2.97 3.22 0.25 3.15 0.18 

3.14 1.94 3.55 3.61 0.06 3.55 0.00 

LimeKiln 

2.98 1.94 3.23 3.24 0.01 3.23 0.00 

2.98 1.94 2.99 3.58 0.59 2.99 0.00 

2.98 1.94 3.28 3.32 0.04 3.28 0.00 

2.98 1.94 3.53 3.63 0.10 3.53 0.00 

Lincoln 

2.04 2.16 3.56 3.30 -0.26 3.56 0.00 

2.04 2.16 3.37 3.56 0.19 3.37 0.00 

2.04 2.16 4.03 3.44 -0.59 4.03 0.00 
2.04 2.16 2.95 3.21 0.26 2.95 0.00 
2.04 2.16 3.22 3.01 -0.21 3.22 0.00 
2.04 2.16 2.84 3.35 0.51 2.84 0.00 
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Table 24, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

 

Linda 
Vista 

1.98 2.21 3.12 3.27 0.15 3.12 0.00 
1.98 2.21 1.97 3.11 1.14 1.97 0.00 

Little 
Dalton 

2.94 2.04 3.05 3.34 0.29 3.05 0.00 
2.94 2.04 4.35 3.45 -0.90 4.35 0.00 
2.94 2.04 4.22 3.63 -0.59 4.22 0.00 

Ruby 
1.86 2.22 3.54 3.47 -0.07 3.54 0.00 
1.86 2.22 3.8 2.97 -0.83 3.80 0.00 

Schw-
artz 

1.84 2.15 3.93 3.39 -0.54 3.93 0.00 

1.84 2.15 3.83 3.66 -0.17 3.83 0.00 

Snow-
drop 

1.56 1.99 3.09 2.97 -0.12 3.09 0.00 

Sullivan 2.79 1.8 3.32 3.45 0.13 3.32 0.00 

Turnbill 

2.41 2.03 2.42 3.00 0.58 2.42 0.00 

2.41 2.03 2.98 3.27 0.29 2.98 0.00 

2.41 2.03 3.46 3.58 0.12 3.46 0.00 

2.41 2.03 3.45 3.49 0.04 3.45 0.00 

2.41 2.03 2.92 3.99 1.07 2.92 0.00 

2.41 2.03 3.28 3.20 -0.08 3.28 0.00 

Wild-
wood 

2.23 1.95 3.54 3.27 -0.27 3.54 0.00 

2.23 1.95 3.37 3.26 -0.11 3.37 0.00 

2.23 1.95 3.83 3.23 -0.60 3.83 0.00 

Wilson 

2.83 2.26 3.72 3.26 -0.46 3.72 0.00 

2.83 2.26 2.78 3.56 0.78 2.78 0.00 

2.83 2.26 3.25 3.63 0.38 3.25 0.00 

2.83 2.26 3.24 3.72 0.48 3.24 0.00 
 

 

Validation 

Data 

Aliso 2.86 2 2.96 3.66 0.70 2.99 0.03 

Fairoaks 2.86 2 3.47 3.41 -0.06 3.82 0.35 

Golf 
Course 

1.74 1.78 2.98 3.06 0.08 3.02 0.04 

LimeKiln 1.92 2.06 2.91 3.13 0.22 3.15 0.24 
Little 

Dalton 
2.98 1.94 3.08 3.24 0.16 3.22 0.14 
2.94 2.04 2.83 3.37 0.54 3.15 0.32 

Ruby 2.94 2.04 3.63 3.49 -0.14 3.75 0.12 
Snow-
drop 

1.86 2.22 3.45 3.23 -0.22 3.08 -0.37 

Wild-
wood 

1.56 1.99 3.34 2.82 -0.52 3.21 -0.13 

Diffe1- Difference between measured debris yield and the estimated values using the USACE method.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model. 
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(1).Calibration Data
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(2).Validation Data

ANN Model (5,6,6,1)

USACE Method

45 Degree Line

ANN Model (5,6,6,1)

USACE Method

45 Degree Line

 
Figure 43: Comparison between measured USACE and the best ANN model (5,6,6,1) 

estimated unit debris yield for Case 8 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, Soil Permeability Rate, and Soil Liquid Limit)  
 

4.2.6 Case 9 

Unit debris yield data studied in this case is collected from 20 debris 

basins including Beatty, Blanchard, Bluegum, Bradbury, Chamberlain, Cooks, 

Deer, Fieldbrook, Gordon, Haines, Halls, Laurel Ridge, May #2, Mull, Pickens, 

Santa Anita, Sawpit, Schoolhouse, Sierra Madre Dam, and Stetson debris basin 

(Figure 3). All these debris basins were built to collect debris yield from small 

watersheds with steep slope, from 185 m/km to 250 m/km. 71 unit debris yield 

data records collected between 1938 and 1983 are available for analysis. The 

calibration and validation data set are separated by using subtractive clustering 

method. 61 data records are applied for calibration and 11 data records for 

validation. The same preprocessing procedure aforementioned is implemented to 
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all the data. Similarly, there are four studied cases with Case 9. The first case is 

trained by four basic input variables – log transformed watershed area, 

logarithmic relief ratio, logarithmic value of maximum one hour precipitation times 

100, and fire factor which are the exactly same as USACE (2000) included in 

their empirical equation (Equation 2.3). Three soil properties, SEF, SP, and SLL, 

are included as input variable step by step in the second, third, and fourth case to 

study their impact on the simulation.  

4.2.6.1 Case 9(a)  

For all ANN models with either one or two hidden layers developed in this 

case, there are four neurons in the input layer and only one neuron in the output 

layer representing unit debris yield. The number of hidden neurons varies from 4 

to 10 for three-layered networks. For four-layered networks, twenty-two groups of 

different ANN geometries are evaluated and they are (3,1), (3,2), (3,3), (3,4), 

(3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (6,1), 

(6,2), (6,3), (6,4), (6,5), and (6,6). All the networks are trained by the LM 

algorithm and the default values of most internal parameters are used except 

epoch size and the error goal for the calibration process. Transfer function is 

hyperbolic tangent function for all hidden layers and linear function for the output 

layer. Table 25 summarizes the performance of twenty-six neural networks 

created in this case. 

There appears to be such a trend for three-layered neural networks that 

estimation error of the calibration data decreases and the error of the validation 
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Table 25: Summary of the performances of ANN models for Case 9(a) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

4,4,1 (25) 0.945 0.765 0.07587 0.691 0.831 0.09283 0.08435 
4,5,1 (31) 0.774 0.777 0.05304 0.784 0.885 0.06506 0.05905 
4,6,1 (37) 0.641 0.817 0.06539 0.828 0.910 0.05177 0.05858 
4,7,1 (43) 0.727 0.743 0.07479 0.904 0.951 0.02871 0.05175 
4,8,1 (49) 1.063 0.795 0.07853 0.908 0.953 0.02778 0.05316 
4,9,1 (55) 0.798 0.643 0.11540 0.940 0.970 0.01793 0.06667 

4,10,1 (61) 1.035 0.592 0.26597 0.997 0.998 0.00096 0.13346 
4,3,1,1 (21) 0.533 0.540 0.12196 0.676 0.822 0.09752 0.10974 
4,3,2,1 (26) 0.506 0.805 0.07181 0.763 0.874 0.07125 0.07153 
4,3,3,1 (31) 0.734 0.757 0.05971 0.780 0.884 0.06579 0.06275 
4,3,4,1 (36) 0.673 0.736 0.08227 0.794 0.891 0.06182 0.07204 
4,3,5,1 (41) 0.653 0.736 0.07720 0.853 0.924 0.04370 0.06045 
4,3,6,1 (46) 0.641 0.731 0.05808 0.688 0.830 0.09367 0.07587 
4,4,1,1 (27) 0.873 0.759 0.09847 0.748 0.865 0.07579 0.08713 
4,4,2,1 (33) 0.736 0.721 0.07297 0.797 0.893 0.06113 0.06705 
4,4,3,1 (39) 0.938 0.757 0.08313 0.819 0.905 0.05441 0.06877 
4,4,4,1 (45) 0.628 0.717 0.06901 0.876 0.936 0.03718 0.05310 
4,4,5,1 (51) 0.283 0.418 0.11087 0.913 0.956 0.02604 0.06846 
4,5,1,1 (33) 1.001 0.832 0.06574 0.836 0.914 0.04935 0.05755 
4,5,2,1 (40) 1.030 0.801 0.07463 0.880 0.938 0.03599 0.05531 
4,5,3,1 (47) 0.926 0.887 0.07556 0.914 0.956 0.02576 0.05066 
4,5,4,1 (54) 0.512 0.711 0.05895 0.827 0.909 0.05198 0.05547 
4,5,5,1 (61) 0.233 0.171 0.29139 0.977 0.988 0.00689 0.14914 
4,6,1,1 (39) 0.844 0.721 0.09687 0.844 0.919 0.04697 0.07192 
4,6,2,1 (47) 0.609 0.730 0.11011 0.852 0.923 0.04459 0.07735 
4,6,3,1 (55) 0.420 0.625 0.07951 0.748 0.865 0.07568 0.07759 
4,6,4,1 (63) 0.782 0.857 0.03204 0.703 0.839 0.08920 0.06062 
4,6,5,1 (71) 0.622 0.485 0.16870 0.910 0.954 0.02699 0.09785 
4,6,6,1 (79) 0.860 0.488 0.29830 1.000 1.000 0.00000 0.14915 

 
data first decreases and then increases as more hidden neuron are included. 

The network (4,6,1) provides reasonable performance for both the calibration 

data and the validation data among all three-layered neural networks. For the 

same reason, the network with five and one neuron on the first and second 

hidden layer is determined to be the most suitable network among the top four 

best-performed networks - (4,4,1,1), (4,5,1,1), (4,5,2,1) and (4,5,3,1). The two 
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neural network models - (4,6,1) and (4,5,1,1) achieve very similar performance.   

The latter one is selected to plot the estimated unit debris yield versus their 

actual values in Figure 44. It appears half a dozen data points scatter away from 

the 45 degree line in figure (a), and three data points in figure (b) do not fit in 

closely to the 45 degree line. The distribution of the data points suggests the 

simulation results obtained by the network (4,5,1,1) are acceptable for the 

validation data but not very desirable for the calibration data.  
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(a) Calibration Data

Linear Regression Line: y=0.836x+0.594

R = 0.914

Data Points

Linear Regression Line

45 Degree Line

2 2.5 3 3.5 4 4.5 5
2

2.5

3

3.5

4

4.5

5

Measured Unit Debris Yield (log,m3/km2)

P
re

di
ct

e
d 

U
n
it 

D
eb

ris
 Y

ie
ld

 b
y 

A
N

N
 (

4,
5,

1
,1

) 
(l
o
g,

m
3
/k

m
2
)

 

 

(b) Validation Data

Linear Regression Line: y=1.000x+0.108 

R = 0.832

Data Points

Linear Regression Line

45 Degree Line

 
Figure 44: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 9(a) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensit, and 

Fire Factor) 
 

4.2.6.2 Case 9(b)  

As shown in Figure 44, the best-performed neural network trained by four 

basic input variables cannot provide satisfactory results for the calibration data; 

therefore, SEF is included in the second case as an additional input variable to 

study the difference. Using the exactly same training algorithm and internal 
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parameters, twenty-three four-layered neural networks are calibrated by 61 data 

records with five input variables, and then the network with saved architecture is 

validated by 11 new data records. Table 26 lists the modeling results achieved by 

all the neural networks developed in this case.  

Table 26: Summary of the performances of ANN models for Case 9(b) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

5,3,1,1 (24) 0.609 0.705 0.08518 0.682 0.826 0.09550 0.09034 
5,3,2,1 (29) 0.518 0.718 0.05888 0.764 0.874 0.07083 0.06486 
5,3,3,1 (34) 0.707 0.826 0.06230 0.795 0.892 0.06145 0.06188 
5,3,4,1 (39) 0.395 0.702 0.08810 0.832 0.912 0.05059 0.06935 
5,3,5,1 (44) 0.741 0.731 0.08655 0.911 0.954 0.02685 0.05670 
5,3,6,1 (49) 0.809 0.810 0.07775 0.837 0.915 0.04905 0.06340 
5,4,1,1 (31) 0.683 0.689 0.08909 0.836 0.914 0.04942 0.06925 
5,4,2,1 (37) 0.797 0.785 0.06208 0.761 0.873 0.07173 0.06691 
5,4,3,1 (43) 0.747 0.780 0.06458 0.825 0.908 0.05270 0.05864 
5,4,4,1 (49) 0.759 0.629 0.11757 0.903 0.950 0.02913 0.07335 
5,4,5,1 (55) 1.000 0.770 0.08973 0.794 0.891 0.06199 0.07586 
5,4,5,1 (61) 1.047 0.865 0.11406 0.872 0.934 0.03853 0.07629 
5,5,1,1 (38) 0.811 0.780 0.09908 0.873 0.934 0.03832 0.06870 
5,5,2,1 (45) 0.625 0.742 0.05628 0.686 0.829 0.09414 0.07521 
5,5,3,1 (52) 0.872 0.785 0.06183 0.796 0.892 0.06118 0.06150 
5,5,4,1 (59) 1.107 0.826 0.08371 0.850 0.922 0.04518 0.06444 
5,5,5,1 (66) 0.645 0.532 0.17606 0.919 0.959 0.02418 0.10012 
5,6,1,1 (45) 0.686 0.633 0.09738 0.792 0.890 0.06251 0.07994 
5,6,2,1 (53) 0.524 0.586 0.09306 0.798 0.893 0.06086 0.07696 
5,6,3,1 (61) 0.665 0.784 0.11617 0.915 0.956 0.02559 0.07088 
5,6,4,1 (69) 0.491 0.532 0.11190 0.674 0.821 0.09796 0.10493 
5,6,5,1 (77) 0.404 0.445 0.14014 1.000 1.000 0.00000 0.07007 
5,6,6,1 (85) 0.558 0.625 0.08117 0.730 0.855 0.08109 0.08113 

 
As seen from table 26, it is as expected that the performance of most 

networks is better for the calibration data than for the validation data. The neural 

network (5,4,3,1) is the network with one of the lowest errors for the validation 

data and reasonable error for the calibration data. Although quite a few neural 

networks such as (5,3,5,1), (5,4,4,1), (5,5,5,1), and (5,6,5,1) are calibrated more 
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successfully than this network (5,4,3,1) but they are suffering from overfitting 

problem. In an effort to further clarify the modeling results, the linear regression 

results are plotted in Figure 45. In Figure 45(a), roughly ten data points scatter 

far away from the 45 degree line which leads to a relatively low correlation 

coefficient, 0.908. In Figure 45(b), only three unit debris yield are estimated 

accurately that explains why the correlation coefficient for the validation data is 

only 0.780. This network has similar performance for the calibration data as the 

best network (4,5,1,1) in the case (a), however, its performance for the validation 

data is worse. It suggests the inclusion of SEF as input parameter is not 

appropriate for the simulation of unit debris yield collected from small watersheds 

with steep slope.  
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(a) Calibration Data

Linear Regression Line: y=0.825x+0.635

R = 0.908

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y =0.747x+1.014

R = 0.780

Data Points

Linear Regression Line

45 Degree Line

 
Figure 45: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 9(b) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, and Soil Erodibility Factor) 
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4.2.6.3 Case 9(c)  

Soil permeability rate (SP) is the new input parameter included in this 

case. All the four-layered neural networks have six neurons on the input layer, 

one neuron on the output layer, and twenty-two combinations of different 

numbers of hidden neurons; for example, if there are three neurons on the first 

hidden layer, then the number of the neuron on the second hidden layer varies 

from one to six; if there are either four, five or six neurons on the first hidden 

layer, the number of neuron on the second hidden layer is less than six. Table 27 

lists the best modeling results for the twenty-two neural networks developed in 

this case.     

Table 27:  Summary of the performances of ANN models for Case 9(c) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,3,1,1 (27) 0.620 0.672 0.08833 0.770 0.878 0.06905 0.07869 
6,3,2,1 (32) 0.536 0.794 0.07317 0.727 0.853 0.08202 0.07759 
6,3,3,1 (37) 1.094 0.794 0.08466 0.837 0.915 0.04903 0.06684 
6,3,4,1 (42) 0.756 0.840 0.09782 0.874 0.935 0.03775 0.06779 
6,3,5,1 (47) 0.561 0.631 0.08223 0.779 0.883 0.06642 0.07433 
6,3,6,1 (52) 0.837 0.816 0.07798 0.873 0.934 0.03819 0.05809 
6,4,1,1 (35) 0.669 0.866 0.08958 0.855 0.925 0.04357 0.06658 
6,4,2,1 (41) 0.529 0.605 0.09297 0.824 0.908 0.05300 0.07299 
6,4,3,1 (47) 0.720 0.700 0.07690 0.699 0.836 0.09047 0.08368 
6,4,4,1 (53) 0.963 0.890 0.07379 0.974 0.987 0.00801 0.04090 
6,4,5,1 (59) 0.413 0.511 0.13018 0.897 0.947 0.03075 0.08046 
6,5,1,1 (43) 0.513 0.596 0.11294 0.849 0.922 0.04532 0.07913 
6,5,2,1 (50) 0.492 0.678 0.06721 0.748 0.865 0.07580 0.07150 
6,5,3,1 (57) 1.045 0.764 0.09793 0.892 0.945 0.03233 0.06513 
6,5,4,1 (64) 1.005 0.838 0.06544 0.883 0.940 0.03504 0.05024 
6,5,5,1 (71) 1.098 0.760 0.11639 0.680 0.825 0.09620 0.10629 
6,6,1,1 (51) 0.976 0.703 0.13975 0.749 0.865 0.07547 0.10761 
6,6,2,1 (59) 0.749 0.584 0.13763 0.986 0.993 0.00429 0.07096 
6,6,3,1 (67) 0.756 0.691 0.08235 0.807 0.899 0.05790 0.07012 
6,6,4,1 (75) 0.339 0.287 0.20649 0.865 0.930 0.04068 0.12359 
6,6,5,1 (83) 0.461 0.362 0.20292 1.000 1.000 0.00000 0.10146 
6,6,6,1 (91) 0.377 0.316 0.21392 1.000 1.000 0.00000 0.10696 
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Although the neural network with four neurons on both hidden layers are 

calibrated more successfully than another neural network with five and four 

neurons on the first and second hidden layer, the latter network does not have 

overfitting problem because the MSE of the validation data MSE is on the same 

magnitude as the MSE of the calibration data.  Another reason why the network 

(6,5,4,1) is chosen as the best-performed model is the validation data error is the 

least while the calibration data error is acceptable. The measured unit debris 

yield and their estimated values by the network (6,5,4,1) with the linear 

regression lines fitted for these data points are sketched in Figure 46. For the 

calibration data, the estimation of seven data records is out of line; for the 

validation data, the simulation of three data records is under expectation. The 

correlation coefficients are 0.940 and 0.838 for the calibration and validation  
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(a) Calibration Data

Linear Regression Line: y=0.884x+0.422

R = 0.940

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y=1.005x+0.103 

R = 0.838

Data Points

Linear Regression Line

45 Degree Line

 
Figure 46: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 9(c) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, and Soil Permeability Rate )  
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data, respectively. Although the MSE for the validation data is very similar to that 

obtained by the network (5,4,3,1) in the preceding case, this neural network 

(6,5,4,1) is able to estimate 59 calibration data with a lower error and a higher 

correlation coefficient. It indicates the inclusion of SP enhances the simulation 

accuracy, in other words, SP is an important input variable in this case. 

4.2.6.4 Case 9(d)  

SLL is considered as the seventh input variable in this case. The variation 

of the number of neuron on hidden layers for the twenty-two ANN models with 

two hidden layers, the calibration and the validation data, training algorithm, and 

internal parameter are the same as those used in the Case 9(a), (b), and (c). The 

best performance obtained by each neural network is presented in Table 28. It 

appears two networks - (7,4,5,1) and (7,5,2,1) are calibrated very successfully 

especially the former one with the MSE as low as 0.01434, the validation results 

are very similar by using either neural network. The latter model (7,5,2,1) 

appears to more accurate with a lower error and a higher correlation coefficient.  

Table 28: Summary of the performances of ANN models for Case 9(d) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

7,3,1,1 (30) 0.551 0.584 0.09413 0.708 0.841 0.08789 0.09101 
7,3,2,1 (35) 0.770 0.686 0.08776 0.674 0.821 0.09814 0.09295 
7,3,3,1 (40) 0.675 0.687 0.07355 0.810 0.900 0.05725 0.06540 
7,3,4,1 (45) 0.814 0.781 0.09995 0.739 0.860 0.07843 0.08919 
7,3,5,1 (50) 0.437 0.705 0.07446 0.870 0.933 0.03902 0.05674 
7,3,6,1 (55) 0.245 0.419 0.11917 0.840 0.917 0.04767 0.08342 
7,4,1,1 (39) 0.585 0.684 0.08821 0.852 0.923 0.04457 0.06639 
7,4,2,1 (45) 0.501 0.575 0.09106 0.734 0.857 0.07986 0.08546 
7,4,3,1 (51) 0.757 0.825 0.08011 0.791 0.889 0.06280 0.07146 
7,4,4,1 (57) 0.628 0.576 0.12108 0.782 0.885 0.06541 0.09325 
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Table 28. Continued  

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

7,4,5,1 (63) 0.737 0.792 0.06293 0.952 0.976 0.01434 0.03863 
7,5,1,1 (48) 0.756 0.644 0.11408 0.802 0.895 0.05960 0.08684 
7,5,2,1 (55) 0.544 0.812 0.05903 0.898 0.948 0.03055 0.04479 
7,5,3,1 (62) 0.856 0.803 0.06906 0.738 0.859 0.07876 0.07391 
7,5,4,1 (69) 0.887 0.705 0.10282 0.757 0.870 0.07291 0.08787 
7,5,5,1 (76) 0.455 0.347 0.21687 1.000 1.000 0.00000 0.10844 
7,6,1,1 (57) 0.914 0.676 0.11956 0.933 0.966 0.02011 0.06984 
7,6,2,1 (65) 0.866 0.760 0.10254 0.765 0.875 0.07071 0.08663 
7,6,3,1 (73) 0.328 0.490 0.12624 0.738 0.859 0.07863 0.10243 
7,6,4,1 (81) 0.492 0.471 0.14012 0.851 0.923 0.04475 0.09244 
7,6,5,1 (89) 0.419 0.396 0.22456 1.000 1.000 0.00000 0.11228 
7,6,6,1 (97) 0.426 0.544 0.15778 0.684 0.827 0.09504 0.12641 

 
The measured values of 61 unit debris yield against their estimated values 

by the neural network (7,5,2,1) are plotted in Figure 47(a) and (b) is for 11 

validation data. The distribution of the data points in Figure 47(a) indicates the 

network overestimates five unit debris yield data records and underestimates four 

unit debris yield data records. As a result, the correlation coefficient for the 

calibration data is 0.948. In Figure 47(b), 11 validation data points scatter around 

the 45 degree line, some are close to the line and some are a bit far; the 

correlation coefficient is 0.812. The performance for both the calibration and 

validation provided by this network is better than it of the network (6,5,4,1) in the 

case (c). It leads to such a conclusion that SLL is an important input variable for 

modeling unit debris yield at small watershed with steep slope. 
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(a) Calibration Data

Linear Regression Line: y=0.898x+0.368
R = 0.948

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y=0.544x+1.742

R = 0.812

Data Points

Linear Regression Line

45 Degree Line

 
Figure 47: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 9(d) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, Soil Permeability Rate, and Soil Liquid Limit)  
 
Table 29 itemizes all the best-performed neural network models from 

Case 9(a) to 9(d), and they are compared to the USACE method as well. It 

seems that there is no significant difference in the performance among all the 

neural network models, especially for the validation data. The first two ANN 

models have very similar performance, and the third and fourth neural networks 

are better-performed than the first two models. With the lowest errors for both 

data sets, the network (7,5,2,1) is chosen as the most suitable neural network 

model for Case 9. Since the major difference between each case is different 

number of input variable, the performance comparison among all cases leads to 

such a conclusion that SP and SLL are more important than SEF for the 

estimation of unit debris yield collected from small watersheds with steep slope.  
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Table 29: Comparison of ANN models performance for Case 9 
Case 

Number 
Network 

Geometry 

Validation Data Set Calibration Data set Average 
MSE Slope       R         MSE Slope        R           MSE 

9(a) (4,5,1,1) 1.001 0.832 0.06574 0.836 0.914 0.04935 0.05755 

9(b) (5,4,3,1) 0.747 0.780 0.06458 0.825 0.908 0.05270 0.05864 

9(c) (6,5,4,1) 1.005 0.838 0.06544 0.883 0.940 0.03504 0.05024 

9(d) (7,5,2,1) 0.544 0.812 0.05903 0.898 0.948 0.03055 0.04479 

USACE 0.404 0.677 0.06543 0.132 0.300 0.28514 0.17528 

 
The first three neural networks and the USACE method achieve very 

similar performance for the validation data, however, the error for the calibration 

data is much less by using the neural network models. The fourth network 

(7,5,2,1) is more accurate than the USACE method not only for modeling the 

calibration data but also for modeling the validation data. The measured values 

of unit debris yield are presented together with their estimated values by the 

neural network (7,5,2,1) and the USACE method in Table 30. As seen from the 

table, the USACE method is able to estimate 61 unit debris yield within such an 

error range, [-0.94, 1.67] for the calibration data, and [-0.44, 0.49] for the 

validation data. The neural network (7,5,2,1) reduces the error range to [-0.70, 

0.54] for the calibration data and  [-0.23, 0.47] for the validation data. The results 

are plotted in Figure 48; red circles represent ANN model results and blue marks 

are for the USACE method estimations. In the left figure, the red circles gather 

very close to the 45 degree line while the blue marks scatter in the upper part of 

the figure. Those two methods are not at all comparable in terms of modeling 

accuracy for the calibration data. In the right figure, some neural network results 
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are better than the USACE method and some are worse; as aforementioned, the 

neural network (7,5,2,1) estimates 11 unit debris yield data records with a smaller 

error range.  

Table 30: Measured, the USACE method, and the best ANN model (7,5,2,1) estimated 
unit debris yield for Case 9 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Beatty 1.85 2.34 3.92 2.97 -0.95 3.92 0.00 

Blanchard 

2.12 2.38 3.76 3.46 -0.30 3.72 -0.04 

2.12 2.38 4.02 3.93 -0.09 3.95 -0.07 

2.12 2.38 3.28 3.45 0.17 3.28 0.00 

Bluegum 

1.69 2.37 4.23 3.86 -0.37 4.23 0.00 

1.69 2.37 3.22 3.39 0.17 3.31 0.09 

1.69 2.37 3.55 3.37 -0.18 3.42 -0.13 

1.69 2.37 4.1 3.69 -0.41 4.10 0.00 

1.69 2.37 3.88 4.06 0.18 3.95 0.07 

Bradbury 

2.25 2.39 3.48 3.52 0.04 3.42 -0.06 

2.25 2.39 3.45 3.60 0.15 3.53 0.08 

2.25 2.39 3.87 3.65 -0.22 4.05 0.18 

2.25 2.39 4.23 3.64 -0.59 3.88 -0.35 

2.25 2.39 4.13 3.52 -0.61 3.71 -0.42 

Cham-
berlain 

1.02 2.32 3.36 3.13 -0.23 3.36 0.00 

Cooks 
 

2.18 2.38 3.64 3.52 -0.12 3.74 0.10 

2.18 2.38 3.51 3.58 0.07 3.74 0.23 

2.18 2.38 3.06 3.37 0.31 3.60 0.54 

2.18 2.38 3.9 3.71 -0.19 3.95 0.05 

2.18 2.38 3.91 3.76 -0.15 3.95 0.04 

 
Deer 

 

2.19 2.39 4.05 3.42 -0.63 4.05 0.00 

2.19 2.39 4.18 3.60 -0.58 4.18 0.00 

2.19 2.39 3.82 3.65 -0.17 3.82 0.00 

2.19 2.39 3.52 4.20 0.68 3.52 0.00 

Fieldbrook 
1.96 2.31 2.62 3.36 0.74 2.62 0.00 

1.96 2.31 2.58 3.30 0.72 2.58 0.00 

Gordon 
1.67 2.34 3.02 3.51 0.49 3.02 0.00 

1.67 2.34 1.66 3.33 1.67 1.66 0.00 

Halls 

2.31 2.35 3.58 3.32 -0.26 3.55 -0.03 

2.31 2.35 3.28 3.43 0.15 3.52 0.24 

2.31 2.35 3.06 3.38 0.32 3.54 0.48 

2.31 2.35 4.04 3.67 -0.37 3.95 -0.09 
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Table 30, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Halls 

2.31 2.35 3.89 3.59 -0.30 3.93 0.04 

2.31 2.35 4.28 3.42 -0.86 3.58 -0.70 

2.31 2.35 4.59 3.68 -0.91 4.59 0.00 

Laurel 
Ridge 

0.89 2.3 3.76 3.29 -0.47 3.76 0.00 

May #2 

1.37 2.32 3.44 3.35 -0.09 3.45 0.01 

1.37 2.32 3.79 3.40 -0.39 3.78 -0.01 

1.37 2.32 3.97 3.50 -0.47 3.97 0.00 

1.37 2.32 4.05 3.11 -0.94 4.05 0.00 

Mull 1.59 2.38 3.32 3.52 0.20 3.32 0.00 

Pickens 
 

2.6 2.29 3.84 3.58 -0.26 3.84 0.00 

2.6 2.29 2.93 3.36 0.43 2.95 0.02 

2.6 2.29 4.38 3.72 -0.66 4.38 0.00 

2.6 2.29 3.94 3.53 -0.41 3.94 0.00 

Sawpit 

2.86 2.36 3.55 3.73 0.18 3.55 0.00 

2.86 2.36 4.32 3.73 -0.59 4.30 -0.02 

2.86 2.36 3.01 3.76 0.75 3.04 0.03 

School-
house 

1.86 2.36 3.59 3.74 0.15 3.59 0.00 

1.86 2.36 3.23 3.35 0.12 3.15 -0.08 

1.86 2.36 4.36 3.68 -0.68 4.36 0.00 

Santa 
Anita 

2.65 2.28 3.56 3.69 0.13 3.56 0.00 

2.65 2.28 4.33 3.56 -0.77 4.33 0.00 

2.65 2.28 3.7 3.24 -0.46 3.70 0.00 

2.65 2.28 3.76 4.24 0.48 3.76 0.00 

Sierra 
Madre 
Dam 

 

2.79 2.35 3.4 3.64 0.24 3.70 0.30 

2.79 2.35 2.33 3.25 0.92 2.33 0.00 

2.79 2.35 4.04 3.48 -0.56 3.55 -0.49 

2.79 2.35 2.61 3.84 1.23 2.61 0.00 

2.79 2.35 3.85 3.95 0.10 3.86 0.01 

Stetson 1.88 2.35 3.19 3.23 0.04 3.18 -0.01 

Validation 

Data 

Bradbury 
2.25 2.39 3.55 3.56 0.01 3.73 0.18 

2.25 2.39 3.64 3.82 0.18 3.94 0.30 

Cooks 2.18 2.38 4.11 3.98 -0.13 3.95 -0.16 

Deer 2.19 2.39 3.84 3.40 -0.44 3.95 0.11 

Haines 2.6 2.32 3.78 3.51 -0.27 3.55 -0.23 

Halls 
2.31 2.35 3.14 3.42 0.28 3.61 0.47 

2.31 2.35 3.91 3.64 -0.27 3.94 0.03 

May #2 1.37 2.32 3.26 3.33 0.07 3.44 0.18 

Pickens 2.6 2.29 2.95 3.44 0.49 3.29 0.34 
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Table 30, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

Validation 
Data 

Sawpit 2.86 2.36 3.58 3.53 -0.05 3.51 -0.07 

School-
house 

1.86 2.36 3.22 3.24 0.02 3.48 0.26 

Diffe1- Difference between measured debris yield and the estimated values using the USACE method.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model. 
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(1).Calibration Data

ANN Model (7,5,2,1)

USACE Method

45 Degree Line
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(2).Validation Data

ANN Model (7,5,2,1)

USACE Method

45 Degree Line

 
Figure 48: Comparison between measured, USACE, and the best ANN model (7,5,2,1) 

estimated unit debris yield for Case 9 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, Soil Permeability Rate, and Soil Liquid Limit)  
 

4.2.7 Case 10 

Unit debris yield studied in this case was collected from fourteen debris 

basins including Brace, Brand, Dunsmuir, Engelwild, Fern, May #1, Morgan, 

Mullally, Rubio, Sierra Madre Villa, Snover, West Ravine, Winery, and Zachau 

debris basin (Figure 3). The upstream watershed area of these debris basins are 

less than 3 square miles and the watersheds slope is steeper (between 250 

m/km and 305 m/km). Separated by subtractive clustering method, 55 unit debris 
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yield data records resulting from large storm events from 1938 and 1983 are 

used to calibrate the neural networks and the other 12 data records for validation. 

The first case is trained by four basic input variables - logA, logRr, log(I), and F all 

of which are the exactly same as the USACE (2000) used in their empirical 

equation. Three newly developed soil properties such as SER, SP, and SLL, are 

considered as additional input variable in case (b), (c), and (d), respectively. 

4.2.7.1 Case 10(a)  

Trained by four input variables, six three-layered neural networks with four 

to nine neurons on the hidden layer are trained. Twenty-one four-layered 

networks are generated and their geometries are summarized as follows, if there 

are two neurons on the first hidden layer, the number of neuron on the second 

hidden layer might be from one to six; if the number of neuron on the first hidden 

layer is three, four, or five, the possible numbers of neuron on the second hidden 

layer are from one to five. All these networks are trained by the LM algorithm with 

hyperbolic tangent function as the transfer function for the hidden layers and 

linear function for the output layer.  

Most three-layered neural networks suffer from overfitting problem (Table 

31); for example, the validation data error of the last four three-layered networks 

is at least eight times greater than that of the calibration data. With a lower 

average MSE and relatively reasonable performance for the calibration and 

validation data, the network with five neurons on the hidden layer is superior to 

the remaining three-layered networks. However, the error of the validation data 
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achieved by this network (4,5,1) is considerable and it suggests this network is 

also overtrained. The performance of most of the four-layered neural networks is 

very similar to those of the three-layered neural networks except four of them - 

(4,3,3,1), (4,3,4,1), (4,3,5,1), (4,4,4,1). The ANN model (4,3,3,1) is selected to be 

the best-fit model since it has the lowest error for the validation data and 

acceptable error for the calibration data.  

Table 31: Summary of the performances of ANN models for Case 10(a) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

4,4,1 (25) 0.523 0.598 0.18138 0.788 0.887 0.05258 0.11698 
4,5,1 (31) 0.673 0.659 0.17712 0.817 0.904 0.04531 0.11121 
4,6,1 (37) 0.412 0.527 0.19857 0.906 0.952 0.02321 0.11089 
4,7,1 (43) 0.729 0.611 0.25526 0.878 0.937 0.03032 0.14279 
4,8,1 (49) 0.743 0.601 0.26693 0.961 0.980 0.00972 0.13832 
4,9,1 (55) 0.658 0.476 0.41372 0.990 0.995 0.00236 0.20804 

4,2,1,1 (15) 0.371 0.6465 0.15724 0.386 0.622 0.15190 0.15457 
4,2,2,1 (19) 0.564 0.808 0.09057 0.379 0.615 0.15384 0.12220 
4,2,3,1 (23) 0.327 0.777 0.15641 0.520 0.721 0.11884 0.13762 
4,2,4,1 (27) 0.641 0.686 0.15214 0.624 0.790 0.09314 0.12264 
4,2,5,1 (31) 0.701 0.732 0.13155 0.632 0.795 0.09114 0.11134 
4,2,6,1 (35) 0.791 0.727 0.17388 0.707 0.841 0.07264 0.12326 
4,3,1,1 (21) 0.502 0.781 0.10627 0.433 0.658 0.14038 0.12332 
4,3,2,1 (26) 0.621 0.743 0.11600 0.645 0.803 0.08797 0.10198 
4,3,3,1 (31) 0.663 0.831 0.08199 0.698 0.836 0.07474 0.07836 
4,3,4,1 (36) 0.653 0.738 0.12238 0.789 0.888 0.05226 0.08732 
4,3,5,1 (41) 0.706 0.769 0.13598 0.924 0.961 0.01883 0.07740 
4,4,1,1 (27) 0.594 0.763 0.13422 0.776 0.881 0.05546 0.09484 
4,4,2,1 (33) 0.715 0.740 0.13450 0.666 0.816 0.08253 0.10851 
4,4,3,1 (39) 0.784 0.737 0.14371 0.695 0.834 0.07542 0.10956 
4,4,4,1 (45) 0.978 0.855 0.12662 0.879 0.938 0.02989 0.07826 
4,4,5,1 (51) 0.729 0.558 0.33616 0.946 0.973 0.01333 0.17475 
4,5,1,1 (33) 0.715 0.782 0.11506 0.617 0.786 0.09478 0.10492 
4,5,2,1 40) 0.585 0.629 0.17713 0.892 0.944 0.02683 0.10198 
4,5,3,1 (47) 0.476 0.538 0.26901 0.984 0.992 0.00399 0.13650 
4,5,4,1 (54) 0.229 0.320 0.27620 0.913 0.956 0.02154 0.14887 
4,5,5,1 (61) 0.516 0.524 0.24792 0.908 0.953 0.02282 0.13537 
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The measured unit debris yield versus their estimated values by the neural 

network (4,3,3,1) is plotted in Figure 49. As illustrated in Figure 49(a), this ANN 

model appears to fail to predict some unit debris yield data that results in a very 

low correlation coefficient, 0.836, and a relatively high MSE, 0.07474. In figure 

(b), it can be found that this neural network estimates three validation data 

records very poorly although the remaining unit debris yield data is simulated 

well. It seems that this network provides the same level of performance for the 

calibration and the validation data sets with similar correlation coefficients and 

similar MSE. The reason why there are only eleven points shown in the figure (b) 

is because two points with the same measured and estimated values are 

overlapped. Overall speaking the performance of the network (4,3,3,1) is not 

satisfactory.   
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(a) Calibration Data

Linear Regression Line: y = 0.698x+1.119
R = 0.836

2 2.5 3 3.5 4 4.5 5
2

2.5

3

3.5

4

4.5

5

Measured Unit Debris Yield (log,m3/km2)

P
re

d
ic

te
d
 U

n
it
 D

e
b
ri
s
 Y

ie
ld

 A
N

N
 (

4
,3

,3
,1

) 
(l
o
g
,m

3
/k

m
2
)

 

 

(b) Validation Data

Linear Regression Line: y = 0.663x+1.192

R = 0.831

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 49: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 10(a) 
              (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

and Fire Factor) 
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4.2.7.2 Case 10(b)  

In addition to the four basic input variables, this case includes one more 

input variable - SEF. Twenty-two four-layered neural networks are trained to 

estimate the unit debris yield and their geometries and best modeling results are 

provided in Table 32. The neural network (5,4,1,1) achieves the lowest error (i.e. 

0.06540) for the validation data, and it also provides good performance in terms 

of the calibration data (with a MSE of 0.03862). Although another neural network 

(5,5,2,1) appears to have a similar performance as then neural network (5,4,1,1), 

it is considered to be worse due to a slightly greater error for the validation data 

and a lower correlation coefficient.  

Table 32: Summary of the performances of ANN models for Case 10(b) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

5,3,1,1 (24) 0.584 0.806 0.09736 0.598 0.773 0.09944 0.09204 
5,3,2,1 (29) 0.597 0.880 0.07032 0.623 0.789 0.09341 0.08187 
5,3,3,1 (34) 0.595 0.829 0.08638 0.621 0.788 0.09375 0.09006 
5,3,4,1 (39) 0.909 0.789 0.12862 0.694 0.833 0.07573 0.10217 
5,3,5,1 (44) 0.964 0.833 0.10898 0.832 0.912 0.04154 0.07526 
5,3,6,1 (49) 0.687 0.725 0.13500 0.924 0.961 0.01876 0.07688 
5,4,1,1 (31) 0.891 0.893 0.06540 0.844 0.919 0.03862 0.05201 
5,4,2,1 (37) 0.841 0.809 0.10827 0.770 0.878 0.05689 0.08258 
5,4,3,1 (43) 1.143 0.900 0.08795 0.862 0.928 0.03420 0.06108 
5,4,4,1 (49) 0.572 0.779 0.11067 0.899 0.948 0.02496 0.06782 
5,4,5,1 (55) 0.548 0.698 0.13137 0.602 0.776 0.09856 0.11496 
5,5,1,1 (38) 0.772 0.858 0.09519 0.783 0.885 0.05379 0.07449 
5,5,2,1 (45) 0.979 0.869 0.08035 0.902 0.950 0.02421 0.05228 
5,5,3,1 (52) 0.517 0.673 0.14449 0.704 0.839 0.07320 0.10885 
5,5,4,1 (59) 0.604 0.772 0.10914 0.613 0.783 0.09574 0.10244 
5,5,5,1 (66) 0.511 0.517 0.24391 1.000 1.000 0.00000 0.12196 
5,6,1,1 (45) 0.978 0.873 0.08785 0.835 0.914 0.04082 0.10244 
5,6,2,1 (53) 0.642 0.784 0.10116 0.617 0.786 0.09470 0.09793 
5,6,3,1 (61) 0.650 0.859 0.06975 0.772 0.879 0.05637 0.06306 
5,6,4,1 (69) 1.019 0.873 0.09334 1.000 1.000 1.6E-09 0.04667 
5,6,5,1 (77) 0.594 0.597 0.21362 1.000 1.000 2.3E-07 0.10681 
5,6,6,1 (85) 0.697 0.784 0.10064 1.000 1.000 2.5E-07 0.05032 
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In Figure 50(a) for the calibration data, it shows the network (5,4,1,1) is 

able to predict most unit debris yield accurately but fail for a few data points 

which leads to a fair correlation coefficient – 0.919. However, with a relatively 

high correlation coefficient and the smallest error, this network is the best for 

modeling the validation data compared with the other neural networks. The error 

of the calibration data achieved by the network (5,4,1,1) is almost half of that 

obtained by the network (4,3,3,1) in the previous case and the error of the 

validation data error is also smaller than that of the network (4,3,3,1). The 

comparison between Table 31 and Table 32 shows that most neural networks 

trained in this case perform much better than the neural networks in case (a). All 

these signs indicate an improvement in the modeling accuracy due to the 

inclusion of SEF as an input parameter.   
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(a) Calibration Data

Linear Regression Line: y = 0.844x+0.578
R = 0.919

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.891x+0.515

R = 0.893

Data Points

Linear Regression Line

45 Degree Line

 

Figure 50: Linear regression analysis between measured and ANN model estimated  
debris yield (a) Calibration Data Set (b) Validation Data Set for Case 10(b) 

             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 
Fire Factor, and Soil Erodibility Factor) 
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4.2.7.3 Case 10(c)  

Twenty-two neural networks with no more than two hidden layers are 

trained in this case to estimate 67 unit debris yield based on six input parameters 

among which only the SP is the new parameter as compared with the previous 

case. As shown in Table 33, all these neural networks are calibrated very 

successfully with MSE less than 0.1 and some are even less than 610− . Although 

the network (6,3,2,1) is not the one with the least MSE of the calibration data, it is 

the best-performed model when considering the performance for the validation 

data as well, in other words, it is the only ANN model without overfitting problem.  

Table 33: Summary of the performances of ANN models for Case 10(c) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,3,1,1 (27) 0.773 0.837 0.08659 0.665 0.815 0.08300 0.08479 
6,3,2,1 (32) 0.743 0.857 0.06688 0.736 0.858 0.06525 0.06607 
6,3,3,1 (37) 0.795 0.826 0.09180 0.785 0.886 0.05317 0.07248 
6,3,4,1 (42) 0.593 0.774 0.10151 0.739 0.860 0.06457 0.08304 
6,3,5,1 (47) 0.814 0.837 0.08113 0.957 0.978 0.01075 0.04594 
6,3,6,1 (52) 0.747 0.715 0.15584 0.942 0.971 0.01439 0.08511 
6,4,1,1 (35) 0.747 0.812 0.09763 0.755 0.869 0.06068 0.07915 
6,4,2,1 (41) 0.703 0.806 0.08922 0.674 0.821 0.08058 0.08490 
6,4,3,1 (47) 0.897 0.847 0.09932 0.928 0.964 0.01771 0.05852 
6,4,4,1 (53) 0.642 0.768 0.13466 0.905 0.951 0.02350 0.07908 
6,4,5,1 (59) 0.741 0.656 0.22076 0.921 0.960 0.01939 0.12007 
6,5,1,1 (43) 0.911 0.831 0.10470 0.916 0.957 0.02079 0.06275 
6,5,2,1 (50) 0.760 0.808 0.09373 0.794 0.891 0.05103 0.07238 
6,5,3,1 (57) 0.740 0.821 0.09751 0.900 0.949 0.02468 0.06110 
6,5,4,1 (64) 0.378 0.455 0.23589 0.887 0.942 0.02792 0.13190 
6,5,5,1 (71) 0.819 0.801 0.11580 1.000 1.000 2.5E-07 0.05790 
6,6,1,1 (51) 1.230 0.895 0.10834 0.919 0.959 0.02006 0.06420 
6,6,2,1 (59) 0.878 0.796 0.11585 0.794 0.891 0.05095 0.08340 
6,6,3,1 (67) 0.865 0.896 0.07082 0.797 0.893 0.05033 0.06058 
6,6,4,1 (75) 0.662 0.770 0.10486 0.951 0.975 0.01206 0.05846 
6,6,5,1 (83) 0.260 0.252 0.48762 0.822 0.907 0.04407 0.26585 
6,6,6,1 (91) 0.723 0.814 0.13402 1.000 1.000 1.1E-08 0.06701 
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The measured debris yield and the estimated values by the neural 

network (6,3,2,1) are plotted in Figure 51. As seen from Figure (a), four data 

records are seriously overestimated and six are underestimated by this neural 

network model (6,3,2,1) that results in a relatively high error – 0.06525 and a 

lower correlation coefficient – 0.858. All of signs indicate the neural network 

performance is not satisfactory for the calibration data. However, this neural 

network (6,3,2,1) is capable of estimating 12 unit debris yield never “seen” as 

well as the 55 unit debris yield for calibration. As shown in Figure 51(b), most of 

data points scatter closely to the 45 degree line and three data points stay on the 

line, and the correlation coefficient is 0.857. Overall considering its performance 

for the calibration and the validation data, this network is hardly a satisfactory 

model to estimate the unit debris yield collected from small watershed with 

steeper slope. 
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(a) Calibration Data

Linear Regression Line: y = 0.736x+0.977
R = 0.858

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.743x+0.962

R = 0.857

Data Points

Linear Regression Line

45 Degree Line

 

Figure 51: Linear regression analysis between measured and ANN model estimated 
debris yield (a) Calibration Data Set (b) Validation Data Set for Case 10(c) 

             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 
Fire Factor, Soil Erodibility Factor, and Soil Permeability Rate)  
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4.2.7.4 Case 10(d)  

With one more input variable, SLL, the ANN models in this case are 

trained by seven input parameters. The number of neurons on the hidden layers 

is the same as in the previous case, in other words, twenty-two ANN models with 

two hidden layers are trained and tested for estimating unit debris yield collected 

from small watersheds with steeper slope. As shown in Table 34, the neural 

network (7,5,3,1) acquires the lowest MSE for the validation data (i.e. 0.05385) 

and relatively small error for the calibration data (i.e. 0.03045). Most neural 

networks with more effective parameters than the network (7,5,3,1) have much 

smaller error for the calibration data but the error for the validation data is 

enormous. It suggests 62 connection weights and biases, or effective parameters 

included in the network (7,5,3,1) are enough for the simulation.  

Table 34: Summary of the performances of ANN models for Case 10(d) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

7,3,1,1 (30) 0.551 0.768 0.11571 0.656 0.810 0.08503 0.10037 
7,3,2,1 (35) 0.745 0.805 0.09432 0.680 0.825 0.07914 0.08673 
7,3,3,1 (40) 0.901 0.846 0.08825 0.759 0.871 0.05968 0.07396 
7,3,4,1 (45) 0.818 0.797 0.11880 0.817 0.904 0.04527 0.08203 
7,3,5,1 (50) 0.601 0.769 0.12962 0.823 0.908 0.04362 0.08662 
7,3,6,1 (55) 0.802 0.843 0.07584 0.900 0.949 0.02467 0.05026 
7,4,1,1 (39) 0.696 0.763 0.11992 0.609 0.781 0.09669 0.10831 
7,4,2,1 (45) 1.070 0.931 0.06537 0.618 0.786 0.09448 0.07993 
7,4,3,1 (51) 0.754 0.842 0.07485 0.837 0.915 0.04029 0.05757 
7,4,4,1 (57) 0.695 0.748 0.12684 0.720 0.849 0.06924 0.09804 
7,4,5,1 (63) 1.243 0.905 0.10434 0.906 0.952 0.02319 0.06376 
7,5,1,1 (48) 0.757 0.877 0.06741 0.645 0.803 0.08790 0.07765 
7,5,2,1 (55) 0.668 0.749 0.11656 0.788 0.888 0.05249 0.08453 
7,5,3,1 (62) 0.816 0.887 0.05385 0.876 0.936 0.03045 0.04215 
7,5,4,1 (69) 0.714 0.731 0.13624 0.735 0.857 0.06558 0.10091 
7,5,5,1 (76) 1.085 0.846 0.14330 1.000 1.000 8.5E-08 0.07165 
7,6,1,1 (57) 0.910 0.843 0.08991 0.740 0.860 0.06437 0.07714 
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Table 34 Continued 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

7,6,2,1 (65) 0.875 0.858 0.07953 0.722 0.849 0.06892 0.07423 
7,6,3,1 (73) 0.844 0.819 0.09636 0.970 0.985 0.00751 0.05194 
7,6,4,1 (81) 1.003 0.851 0.11958 0.650 0.806 0.08674 0.10316 
7,6,5,1 (89) 0.675 0.704 0.17685 1.000 1.000 0.00064 0.08843 
7,6,6,1 (97) 0.802 0.839 0.08857 0.997 0.999 0.00064 0.04460 

 
The estimated and measured unit debris yield are plotted in Figure 52(a) 

and (b). It appears roughly six data records among the 55 calibration data are not 

simulated well, and there are two significant estimation errors within 12 validation 

data. The correlation coefficient for the calibration data is 0.936 which indicates a 

successful training and it is 0.887 for the validation data which is desirable for the 

validation data.  
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(a) Calibration Data

Linear Regression Line: y = 0.876x+0.458

R = 0.936

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.816x+0.677

R = 0.887

Data Points

Linear Regression Line

45 Degree Line

 
Figure 52: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 10(d) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, Soil Permeability Rate, and Soil Liquid Limit)  
 

The best fitted neural networks for case 10(a), (b), (c), and (d) are 

organized in Table 35 with their modeling results evaluated in terms of MSEs, 
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correlation coefficients, and slopes of the linear regression lines. As 

aforementioned, all the internal parameters, training algorithm, and 

preprocessing procedures are the same during the training of neural network 

models developed for all the cases. The network (7,5,3,1) achieves the lowest 

errors for both the calibration and validation data, therefore, it is the most  

suitable neural network model for the estimation of unit debris yield for case 10. 

With lower error for both the calibration and the validation data, the second 

neural network (5,4,1,1) performs better than the first one (4,3,3,1) and the third 

one (6,3,2,1). Since the major difference between each case is the inclusion of 

different soil properties (i.e. SEF, SP, and SLL), the difference in the modeling 

results can be explained by SEF and SLL improve the estimation accuracy, but 

the inclusion of SP worsens the performance. In other words, both SEF and SLL 

are very important input parameters, especially SLL; but the SP does not appear 

to play an important role in the estimation of unit debris yield in Case 10.  

Table 35: Comparison of ANN models performance for Case 10 
Case 

Number 
Network 

Geometry 

Validation Data Set Calibration Data set Average 
MSE Slope       R          MSE Slope       R           MSE 

10(a) (4,3,3,1) 0.663 0.831 0.08199 0.698 0.836 0.07474 0.07836 

10(b) (5,4,1,1) 0.891 0.893 0.06540 0.844 0.919 0.03862 0.05201 

10(c) (6,3,2,1) 0.743 0.857 0.06688 0.736 0.858 0.06525 0.06607 

10(d) (7,5,3,1) 0.816 0.887 0.05385 0.876 0.936 0.03045 0.04215 

USACE 0.328 0.642 0.15896 0.134 0.302 0.24098 0.19997 

 
The last row in Table 35 is the modeling results obtained by using the 

USACE method (2000). With much lower errors and higher correlation 
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coefficients for the calibration and the validation data, all four neural networks are 

superior to the USACE method (2000) for the estimation of 67 unit debris yield in 

this case. The 67 measured and estimated unit debris yield data by the best-

performed neural network (7,5,3,1) and the USACE method are presented in 

Table 36. As seen from the table, for the calibration data, the maximum 

difference between measured unit debris yield and the USACE estimated values 

is 0.98, an event occurred at Morgan debris basin, and the minimum difference is 

-1.28 collected at Fern debris basin. The maximum and minimum difference 

between measured and the neural network estimation are almost half of that of 

the USACE method and they are 0.47 and -0.69, two data records documented 

at May #1 debris basin. The USACE method simulates 12 unit debris yield data 

records for validation within [-0.68, 0.80] error range and the ANN model is 

capable of simulating all the validation data within a small error range, [-0.42, 

0.40].  

Table 36: Measured, the USACE method, and the best ANN model (7,5,3,1) estimated 
unit debris yield for Case 10 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, m
3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy (log 
m

3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Brand 

2.43 2.45 3.5 3.62 0.12 3.87 0.37 

2.43 2.45 3.81 3.63 -0.18 3.87 0.06 

2.43 2.45 3.56 3.49 -0.07 3.56 0.00 

2.43 2.45 3.89 3.69 -0.20 3.87 -0.02 

2.43 2.45 3.71 3.77 0.06 3.71 0.00 

2.43 2.45 2.81 3.70 0.89 3.04 0.23 

Duns-
muir 

2.34 2.45 4.14 3.88 -0.26 4.13 -0.01 

2.34 2.45 4.44 3.81 -0.63 4.44 0.00 

Engle-
wild 

2.02 2.42 2.92 3.40 0.48 2.92 0.00 

2.02 2.42 4.52 4.00 -0.52 4.51 -0.01 

2.02 2.42 4.05 3.88 -0.17 4.05 0.00 
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Table 36, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, m
3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy (log 
m

3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Fern 

1.91 2.41 3.63 3.54 -0.09 3.63 0.00 

1.91 2.41 3.4 3.48 0.08 3.36 -0.04 

1.91 2.41 3.32 3.15 -0.17 3.28 -0.04 

1.91 2.41 2.66 3.28 0.62 2.70 0.04 

1.91 2.41 3.82 3.62 -0.20 3.89 0.07 

1.91 2.41 4.16 2.88 -1.28 4.16 0.00 

May #1 

2.27 2.48 3.5 3.61 0.11 3.46 -0.04 

2.27 2.48 3.66 3.66 0.00 3.51 -0.15 

2.27 2.48 3.05 3.40 0.35 3.29 0.24 

2.27 2.48 2.98 3.59 0.61 3.45 0.47 

2.27 2.48 3.93 3.37 -0.56 3.24 -0.69 

2.27 2.48 4.35 3.87 -0.48 4.36 0.01 

2.27 2.48 3.35 4.14 0.79 3.32 -0.03 

2.27 2.48 3.35 3.66 0.31 3.35 0.00 

Morgan 

2.19 2.44 3.32 3.55 0.23 3.40 0.08 

2.19 2.44 3.2 3.60 0.40 3.40 0.20 

2.19 2.44 3.68 3.58 -0.10 3.40 -0.28 

2.19 2.44 2.87 3.85 0.98 2.87 0.00 

Mullally 

1.95 2.45 3.84 3.67 -0.17 3.89 0.05 

1.95 2.45 3.44 3.66 0.22 3.44 0.00 

1.95 2.45 3.84 3.67 -0.17 3.89 0.05 

1.95 2.45 3.44 3.66 0.22 3.44 0.00 

Rubio 

2.52 2.45 3.2 3.67 0.47 3.60 0.40 

2.52 2.45 3.24 3.27 0.03 3.25 0.01 

2.52 2.45 4.05 3.64 -0.41 3.62 -0.43 

2.52 2.45 4.19 3.70 -0.49 4.19 0.00 

2.52 2.45 3.56 3.83 0.27 3.56 0.00 

Sierra 
Madre 
Villa 

2.58 2.43 4.38 3.59 -0.79 4.35 -0.03 

2.58 2.43 4.31 3.55 -0.76 3.87 -0.44 

Snover 

1.74 2.4 3.52 3.39 -0.13 3.52 0.00 

1.74 2.4 4.04 3.47 -0.57 4.03 -0.01 

1.74 2.4 4.33 3.61 -0.72 4.33 0.00 

1.74 2.4 4.43 3.59 -0.84 4.43 0.00 

West 
Ravine 

1.81 2.46 4.05 3.49 -0.56 4.06 0.01 

1.81 2.46 4.3 3.49 -0.81 4.25 -0.05 

1.81 2.46 3.23 3.40 0.17 3.23 0.00 

1.81 2.46 4.64 4.05 -0.59 4.65 0.01 

Winery 

1.67 2.44 3.52 3.53 0.01 3.42 -0.10 

1.67 2.44 3.91 3.61 -0.30 3.91 0.00 

1.67 2.44 4.13 3.48 -0.65 4.13 0.00 
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Table 36, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, m
3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy (log 
m

3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Winery 
1.67 2.44 3.35 3.58 0.23 3.44 0.09 

1.67 2.44 3.44 3.34 -0.10 3.44 0.00 

Zachau 
1.96 2.45 3.99 3.47 -0.52 3.98 -0.01 

1.96 2.45 4.38 3.99 -0.39 4.40 0.02 

Validation 

Data 

Brace 1.88 2.44 3.55 3.80 0.25 3.57 0.02 

Brand 2.43 2.45 4.18 3.50 -0.68 3.87 -0.31 

Duns-
muir 

2.34 2.45 4.19 4.05 -0.14 3.97 -0.22 

Engle-
wild 

2.02 2.42 3.96 3.63 -0.33 3.54 -0.42 

Fern 
1.91 2.41 4.02 3.53 -0.49 3.88 -0.14 

1.91 2.41 2.59 3.39 0.80 2.79 0.20 

May #1 2.27 2.48 3.29 3.29 0.00 3.17 -0.12 

Rubio 2.52 2.45 3.42 3.59 0.17 3.67 0.25 

Snover 1.74 2.4 3.72 3.53 -0.19 4.12 0.40 

 

West 
Ravine 

1.81 2.46 3.2 3.40 0.20 3.23 0.03 

Zachau 
1.96 2.45 4.33 3.81 -0.52 4.36 0.03 

1.96 2.45 4.19 4.16 -0.03 4.37 0.18 

Diffe1- Difference between measured debris yield and the estimated values using the USACE method.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model. 

The measured unit debris yield and their estimated values by the network 

model (7,5,3,1) and the USACE method are illustrated in Figure 53. As shown in 

Figure (a), most red circles, ANN model estimation, are on the 45 degree line; 

while the blue marks, the USACE method estimation, scatter far away from the 

line. In Figure 53(b), the red circles are much closer to the 45 degree line than 

the blue marks. The comparison between the error ranges and the plot clearly 

shows the application of neural network technique for the estimation of unit 

debris yield is more advantageous. 
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(1).Calibration Data
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(2).Validation Data

ANN Model (7,5,3,1)

USACE Method

45 Degree Line

ANN Model (7,5,3,1)

USACE Method

45 Degree Line

 
Figure 53: Comparison between measured, USACE, and the best ANN model (7,5,3,1) 

estimated unit debris yield for Case 10 
             (Input Parameters: Watershed Are, Relief Ratio, Max. 1-hr Rainfall Intensity, Fire 

Factor, Soil Erodibility Factor, Soil Permeability Rate, and Soil Liquid Limit)  

4.2.8 Case 11 

71 cleanup data records of unit debris yield from thirteen small debris 

basins collected during 46 years starting from 1938 are of particular interest in 

this case. These thirteen small debris basins are Bailey, Childs, Cloudcraft, 

Elmwood, Harrow, Hay, Hillcrest, Hook West, Las Flores, Maddock, Sturtevant, 

Sunset, and Ward debris basin. The reason why these thirteen debris basins are 

grouped together is because their upstream collection watersheds have an 

extreme steep slope - their relief ratios are between 305 m/km and 375 m/km. 9 

data records are selected by subtractive clustering method and saved for 

validation and the remaining 62 data records are used for calibration. Altogether 

there are four studied cases trained by different number of input variables in 

Case 11: 4 basic input variables are considered in case (a), 4 basic input 
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variables and one soil property, SEF, are used in case (b), 4 basic input variables 

and two soil properties, SEF and SP, are in case (c), and 4 basic input variables 

and three soil properties, SEF, SP, and SLL, are in case (d).  

4.2.8.1 Case 11(a)  

The first case within case 11 is trained by four primary variables, similar to 

the cases 8, 9, and 10, - log transformed watershed area and relief ratio, 

logarithmic value of maximum one hour precipitation times 100, and fire factor. 

Seven three-layered neural networks and twenty-two four-layered neural 

networks are trained to estimate unit debris yield. For three-layered neural 

network, the number of neurons on the hidden layer is from four to ten. It is more 

complicated for neural networks with two hidden layers. If there are two, three or 

five neurons on the first hidden layer, the number of neuron on the second 

hidden layer varies from one to six; if there are four neurons on the first hidden 

layer, the number of neuron on the second hidden layer is no more than five. The 

training algorithm is the LM algorithm. Hyperbolic tangent function is the transfer 

function for all hidden layers and linear function is used for output layer. The 

values of other internal parameters are the same as what are used in the cases 

8, 9, and 10.  

Table 37 shows the modeling results evaluated in terms of MSE and linear 

regression analysis for twenty-nine neural networks developed in this case. 

Among seven three-layered neural networks, the one with eight hidden neurons 

appears to be the best one with a lowest average MSE and it does not have 
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overfitting problem. When compared with four-layered neural networks, it is 

worse than the best-performed neural network with two hidden layers. With 

relatively low error for both the calibration and the validation data set, the ANN 

model (4,5,5,1) is the best model for this case.  

Table 37: Summary of the performances of ANN models for Case 11(a) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

4,4,1 (25) 0.752 0.637 0.07973 0.682 0.826 0.08423 0.08198 
4,5,1 (31) 0.676 0.576 0.10120 0.787 0.887 0.05637 0.07878 
4,6,1 (37) 0.755 0.555 0.11993 0.827 0.910 0.04567 0.08280 
4,7,1 (43) 0.963 0.553 0.18271 0.919 0.959 0.02139 0.10205 
4,8,1 (49) 0.776 0.641 0.08052 0.947 0.973 0.01412 0.04732 
4,9,1 (55) 1.012 0.589 0.19152 0.959 0.979 0.01089 0.10120 

4,10,1 (61) 1.109 0.678 0.14680 0.997 0.999 0.00073 0.07377 
4,2,2,1 (19) 0.411 0.512 0.07176 0.591 0.769 0.10833 0.09005 
4,2,3,1 (23) 0.768 0.676 0.06703 0.661 0.813 0.08954 0.07829 
4,2,4,1 (27) 0.317 0.511 0.07730 0.646 0.803 0.09380 0.08555 
4,2,5,1 (31) 0.342 0.408 0.08759 0.832 0.912 0.04453 0.06606 
4,2,6,1 (35) 0.739 0.603 0.09680 0.690 0.831 0.08198 0.08939 
4,3,1,1 (21) 0.724 0.601 0.08576 0.574 0.757 0.11283 0.09929 
4,3,2,1 (26) 0.352 0.688 0.04910 0.537 0.733 0.12260 0.08585 
4,3,3,1 (31) 0.931 0.771 0.05331 0.589 0.767 0.10877 0.08104 
4,3,4,1 (36) 0.486 0.409 0.12308 0.871 0.933 0.03425 0.07867 
4,3,5,1 (41) 0.890 0.813 0.03766 0.750 0.866 0.06622 0.05194 
4,3,6,1 (46) 0.718 0.706 0.05179 0.818 0.905 0.04788 0.04983 
4,4,1,1 (27) 0.759 0.619 0.09320 0.627 0.792 0.09859 0.09590 
4,4,2,1 (33) 0.732 0.516 0.13328 0.702 0.838 0.07885 0.10607 
4,4,3,1 (39) 0.314 0.457 0.10761 0.599 0.774 0.10609 0.10685 
4,4,4,1 (45) 0.599 0.453 0.13527 0.907 0.953 0.02454 0.07991 
4,4,5,1 (51) 0.593 0.552 0.08700 0.921 0.960 0.02099 0.05400 
4,5,1,1 (33) 0.938 0.670 0.09525 0.711 0.844 0.07627 0.08576 
4,5,2,1 40) 0.766 0.505 0.17136 0.765 0.875 0.06211 0.11674 
4,5,3,1 (47) 0.799 0.764 0.05472 0.744 0.862 0.06786 0.06129 
4,5,4,1 (54) 0.579 0.632 0.05980 0.771 0.878 0.06047 0.06014 
4,5,5,1 (61) 0.695 0.665 0.06174 0.949 0.974 0.01339 0.03756 
4,5,6,1 (68) 1.182 0.549 0.29111 0.999 0.999 0.00032 0.14572 

 
The 62 calibration data points are graphed in Figure 54(a) with measured 

unit debris yield as their abscissa and the simulated values by the neural network 
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(4,5,5,1) as their ordinates. For the validation data in figure (b), only three data 

points are very close to the 45 degree line, one data point is very far away from 

the line, and the remaining five data points are in between. The correlation 

coefficient is as high as 0.974 for the calibration data and it is only 0.665 for the 

validation data. With such a poor performance for the validation data, the neural 

network (4,5,5,1) trained by four input variables is not an efficient network to 

simulate the unit debris yield collected from small watersheds with extreme steep 

slope. 
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(a) Calibration Data

Linear Regression Line: y = 0.949x+0.179

R = 0.974

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.695x+1.157

R = 0.665

Data Points

Linear Regression Line

45 Degree Line

 

Figure 54: Linear regression analysis between measured and ANN model estimated 
debris yield (a) Calibration Data Set (b) Validation Data Set for Case 11(a) 

              (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 
and Fire Factor) 

 

4.2.8.2 Case 11(b)   

In addition to the four primary input variables, SEF is included as the fifth 

input variable in this case. Only four-layered neural networks are trained for the 

simulation of unit debris yield. The geometries of the neural network are very 
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similar to those used in the preceding cases and they are listed as follows, 

(5,3,1,1), (5,3,2,1), (5,3,3,1), (5,3,4,1), (5,3,5,1), (5,3,6,1), (5,4,1,1), (5,4,2,1), 

(5,4,3,1), (5,4,4,1), (5,4,5,1), (5,5,1,1), (5,5,2,1), (5,5,3,1), (5,5,4,1), (5,5,5,1), 

(5,6,1,1), (5,6,2,1), (5,6,3,1), (5,6,4,1), (5,6,5,1), and (5,6,6,1). Each of the 

twenty-two neural networks are trained hundreds of times to start from different 

initial connection weights and biases to avoid local minimum, the best modeling 

results obtained by all the neural networks are included in Table 38. It seems all 

the networks are calibrated and validated very successfully, with errors less than 

0.1 except one network (5,5,5,1).  It is a dramatic improvement compared with 

the previous case. Among  all the neural network models, the network with four 

neurons on both hidden layers has the lowest error for the validation data, 

0.02363, the lowest average error as well, 0.02542, and high correlation 

coefficients, 0.947 for the calibration data and 0.870 for the validation data. It is 

the best-performed neural network model for this case. 

Table 38: Summary of the performances of ANN models for Case 11(b) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

5,3,1,1 (24) 0.636 0.641 0.06136 0.654 0.809 0.09154 0.07645 
5,3,2,1 (29) 0.410 0.584 0.07339 0.699 0.836 0.07977 0.07658 
5,3,3,1 (34) 0.921 0.772 0.06511 0.787 0.887 0.05646 0.06078 
5,3,4,1 (39) 0.199 0.355 0.08845 0.767 0.876 0.06170 0.07507 
5,3,5,1 (44) 0.430 0.581 0.05932 0.934 0.966 0.01752 0.03842 
5,3,6,1 (49) 0.598 0.600 0.07828 0.856 0.925 0.03822 0.05825 
5,4,1,1 (31) 0.565 0.571 0.08307 0.742 0.861 0.06823 0.07565 
5,4,2,1 (37) 0.412 0.539 0.06573 0.794 0.891 0.05464 0.06018 
5,4,3,1 (43) 0.610 0.562 0.08312 0.906 0.952 0.02472 0.05392 
5,4,4,1 (49) 0.894 0.870 0.02363 0.897 0.947 0.02720 0.02542 
5,4,5,1 (55) 0.371 0.627 0.05546 0.642 0.801 0.09477 0.07512 
5,5,1,1 (38) 0.750 0.716 0.05446 0.732 0.855 0.07104 0.06275 
5,5,2,1 (45) 0.761 0.786 0.06578 0.876 0.936 0.03294 0.04936 
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Table 38, Continued 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

5,5,3,1 (52) 0.794 0.727 0.05350 0.895 0.946 0.02772 0.04061 
5,5,4,1 (59) 0.942 0.727 0.06787 0.985 0.992 0.00397 0.03592 
5,5,5,1 (66) 0.528 0.478 0.10354 0.979 0.990 0.00545 0.05449 
5,6,1,1 (45) 0.700 0.679 0.07426 0.795 0.892 0.05425 0.06426 
5,6,2,1 (53) 0.843 0.770 0.06049 0.891 0.944 0.02881 0.04465 
5,6,3,1 (61) 0.758 0.930 0.01696 0.856 0.925 0.03823 0.02760 
5,6,4,1 (69) 0.517 0.543 0.07590 0.999 0.999 0.00032 0.03811 
5,6,5,1 (77) 0.663 0.681 0.05923 0.999 0.999 0.00032 0.02978 
5,6,6,1 (85) 0.749 0.678 0.06417 0.999 0.999 0.00032 0.03225 

 
62 measured unit debris yield data records used for calibration are plotted 

against their estimated values by the network (5,4,4,1) in Figure 55(a), and 9 

validation data records for validation are in figure (b). Among 62 calibration data, 

roughly six data points distribute far away from the 45 degree line. Compared 

with the neural network (4,5,5,1) in the case (a), this neural network (5,4,4,1) is 

trained less efficiently for the calibration data. However, it has much better 

generalization ability for the validation data as seen from the Figure 55(b), almost 

all the data points are very close to the 45 degree line. The MSE of the validation 

data achieved by the network (5,4,4,1) is roughly one third of the error obtained 

by the neural network (4,5,5,1) in case (a), but the MSE for the calibration data in 

this case is almost two times greater than that of the MSE in the previous case. 

Overall speaking, this network (5,4,4,1) is better performed than the previous one 

(4,5,5,1). 
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(a) Calibration Data

Linear Regression Line: y = 0.897x+0.364
R = 0.947
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(b) Validation Data

Linear Regression Line: y = 0.894x+0.359
R = 0.870

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 55: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 11(b) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, and Soil Erodibility Factor) 
 

4.2.8.3 Case 11(c)  

The geometries of the twenty-two neural network models are the same as 

those used in the previous case except the number of neurons on the input layer 

is six in this case. The modeling results of all the twenty-two neural networks are 

listed in Table 39. As seen from the table, the neural network (6,6,1,1) achieves 

the lowest error for the validation data, i.e. 0.01243, and a very high correlation 

coefficient, 0.942; meanwhile, its performance for the calibration data is 

acceptable with a low MSE of 0.01287 and a correlation coefficient of 0.975. 

Obviously it is the best neural network for this case.  

Table 39: Summary of the performances of ANN models for Case 11(c) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,3,1,1 (27) 0.542 0.526 0.09878 0.661 0.813 0.08981 0.09429 
6,3,2,1 (32) 0.431 0.548 0.06463 0.691 0.831 0.08187 0.07325 
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Table 39, Continued 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

6,3,3,1 (37) 0.770 0.709 0.05448 0.796 0.892 0.05397 0.05422 
6,3,4,1 (42) 1.151 0.880 0.03633 0.776 0.881 0.05931 0.04782 
6,3,5,1 (47) 0.532 0.640 0.05467 0.832 0.912 0.04432 0.04950 
6,3,6,1 (52) 0.515 0.532 0.07767 0.956 0.978 0.01171 0.04469 
6,4,1,1 (35) 0.454 0.433 0.11242 0.865 0.930 0.03563 0.07402 
6,4,2,1 (41) 1.591 0.890 0.09027 0.872 0.934 0.03382 0.06205 
6,4,3,1 (47) 0.874 0.652 0.09163 0.918 0.958 0.02170 0.05667 
6,4,4,1 (53) 0.904 0.863 0.02781 0.881 0.938 0.03159 0.02970 
6,4,5,1 (59) 0.537 0.487 0.10306 0.871 0.933 0.03421 0.06864 
6,5,1,1 (43) 0.932 0.718 0.07231 0.698 0.835 0.07994 0.07613 
6,5,2,1 (50) 0.478 0.610 0.09459 1.000 0.971 0.01535 0.05497 
6,5,3,1 (57) 0.853 0.832 0.03893 0.865 0.930 0.03576 0.03735 
6,5,4,1 (64) 0.518 0.476 0.09790 0.970 0.985 0.00798 0.05294 
6,5,5,1 (71) 0.576 0.572 0.07459 0.999 0.999 0.00032 0.03746 
6,6,1,1 (51) 1.016 0.942 0.01243 0.951 0.975 0.01287 0.01265 
6,6,2,1 (59) 0.728 0.781 0.03707 0.778 0.882 0.05877 0.04792 
6,6,3,1 (67) 0.600 0.580 0.07225 1.000 0.999 0.00032 0.03628 
6,6,4,1 (75) 0.532 0.495 0.09638 0.999 0.999 0.00032 0.04835 
6,6,5,1 (83) 0.574 0.671 0.04975 0.959 0.979 0.01089 0.03032 
6,6,6,1 (91) 1.176 0.879 0.03893 0.999 0.999 0.00032 0.01963 

 
The estimated unit debris yield by the network (6,6,1,1) are graphically 

compared with their measured values in Figure 56. As seen from Figure 56(a), 

three unit debris yield data are overestimated and two unit debris yield data are 

underestimated but not to a great extent. In Figure 56(b), the unit debris yield 

data estimated by the neural network (6,6,1,1) are very close to their actual 

values. The neural network (6,6,1,1) has a remarkable performance for the 

calibration data and the validation data. The errors achieved by the network 

(6,6,1,1) in this case are about one half of the errors obtained by the network 

(5,4,4,1) in the previous case, therefore, this network (6,6,1,1) is more accurate 

than the previous neural network (5,4,4,1) for the simulation. The only 
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explanation is that the inclusion of SP as an additional input variable advances 

the network performance dramatically.  
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(a) Calibration Data

Linear Regression Line: y = 0.951x+0.172

R = 0.975
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(b) Validation Data

Linear Regression Line: y = 1.016x-0.092

R = 0.942

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 56: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 11(c) 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, and Soil Permeability Rate)  
 

4.2.8.4 Case 11(d)  

It is the SLL that is included as the additional variable in the case (d). The 

neural network architectures and all the internal parameters are the same as 

what are utilized in the previous two cases. Table 40 presents all the neural 

networks with their best modeling results. The network with five neurons on the 

first hidden layer and three neurons on the second hidden layer is capable of 

simulating the nine validation data with the lowest MSE, 0.04953, meanwhile the 

MSE of the calibration data is one of the lowest, 0.00273. This neural network 

has a much better performance for the calibration data than for the validation 

data. The correlation coefficient of the calibration data is 0.995 which is very 
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desirable, and as shown in Figure 57(a), the simulation of the 62 unit debris yield 

data by the neural network (7,5,3,1) is very accurate. However, in Figure 57(b), 

three data points are on the 45 degree line, two data points are above the line 

and four data points are below the line. In contrast with the calibration data, the 

validation data has a much bigger error and a much lower correlation coefficient, 

0.726; all of which indicates the network (7,5,3,1) is poorly-performed for the 

validation data.  

Table 40: Summary of the performances of ANN models for Case 11(d) 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

7,3,1,1 (30) 0.735 0.611 0.10014 0.700 0.837 0.07943 0.08978 
7,3,2,1 (35) 0.554 0.616 0.06231 0.850 0.922 0.03979 0.05105 
7,3,3,1 (40) 0.533 0.544 0.07893 0.850 0.922 0.03965 0.05929 
7,3,4,1 (45) 0.781 0.746 0.07438 0.804 0.897 0.05187 0.06313 
7,3,5,1 (50) 0.578 0.617 0.06958 0.878 0.937 0.03237 0.05098 
7,3,6,1 (55) 0.721 0.605 0.08371 0.917 0.958 0.02196 0.05283 
7,4,1,1 (39) 0.799 0.637 0.08306 0.756 0.870 0.06444 0.07375 
7,4,2,1 (45) 0.854 0.704 0.06641 0.811 0.901 0.05001 0.05821 
7,4,3,1 (51) 0.751 0.586 0.09740 0.968 0.984 0.00840 0.05290 
7,4,4,1 (57) 0.453 0.605 0.09198 0.981 0.991 0.00494 0.04846 
7,4,5,1 (63) 0.531 0.504 0.09073 0.913 0.955 0.02308 0.05691 
7,5,1,1 (48) 0.518 0.530 0.09442 0.710 0.843 0.07679 0.08561 
7,5,2,1 (55) 0.857 0.659 0.08323 0.915 0.957 0.02252 0.05287 
7,5,3,1 (62) 0.636 0.726 0.04953 0.990 0.995 0.00273 0.02613 
7,5,4,1 (69) 0.742 0.682 0.06489 0.997 0.999 0.00074 0.03281 
7,5,5,1 (76) 0.476 0.473 0.09510 0.999 0.999 0.00032 0.04771 
7,6,1,1 (57) 0.581 0.620 0.08967 0.656 0.810 0.09093 0.09030 
7,6,2,1 (65) 0.503 0.513 0.09374 0.741 0.862 0.06815 0.08094 
7,6,3,1 (73) 1.185 0.830 0.06200 0.998 0.999 0.00043 0.03122 
7,6,4,1 (81) 0.571 0.612 0.06728 0.871 0.933 0.03425 0.05076 
7,6,5,1 (89) 0.717 0.636 0.07144 0.999 0.999 0.00032 0.03588 
7,6,6,1 (97) 1.021 0.724 0.08469 0.999 0.999 0.00032 0.04251 

 
Compared with the best-performed neural network (6,6,1,1) in the 

previous case, although the error for the calibration data is much lower obtained 
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by using the network (7,5,3,1) in this case, the error for the validation data is four 

times greater than that of the previous neural network. It leads to such a 

conclusion that the performance deteriorates with the inclusion of SLL as the 

seventh input variable for the unit debris yield simulation collected from small 

watersheds with extreme steep slope. 
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(a) Calibration Data

Linear Regression Line: y = 0.990x+0.036

R = 0.995
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(b) Validation Data

Linear Regression Line: y = 0.636x+1.242

R = 0.726

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 57: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 11(d) 
             (Input Parameters: Watershed Are, Relief Ratio, Max. 1-hr Rainfall Intensity, Fire 

Factor, Soil Erodibility Factor, Soil Permeability Rate , and Soil Liquid Limit)  
 

The best-performed neural networks for four cases are summarized in 

Table 41. With the lowest errors for the calibration and validation data, the neural 

network (6,6,1,1) developed in case (c) superior to the other three neural network 

models. The second neural network model (5,4,4,1) shows some improvement 

on the first neural network model (4,5,5,1), and so does the third neural network 

(6,6,1,1). Although the last network (7,5,3,1) seems to be the best model for the 

calibration data, it provides a very poor performance for the validation data. The 
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first neural network trained with the least input variables is the worst model when 

overall considering the performance of the calibration and the validation data. 

Table 41: Comparison of ANN models performance for Case 11 
Case 

Number 
Network 

Geometry 

Validation Data Set Calibration Data set Average 
MSE Slope      R          MSE Slope      R          MSE 

11(a) (4,5,5,1) 0.695 0.665 0.06174 0.949 0.974 0.01339 0.03756 

11(b) (5,4,4,1) 0.894 0.870 0.02363 0.897 0.947 0.02720 0.02542 

11(c) (6,6,1,1) 1.016 0.942 0.01243 0.951 0.975 0.01287 0.01265 

11(d) (7,5,3,1) 0.636 0.726 0.04953 0.990 0.995 0.00273 0.02613 

USACE 0.164 0.069 0.08904 0.369 0.135 0.24542 0.16723 

 
 The major difference between each case is the number of input variables 

and neural network architecture and the internal parameters are the same 

through all the training process. The different modeling results can be explained 

by the roles that the three soil properties play. For example, SP is the most 

important soil property, the SEF is not as important as SP, but SLL is the one 

that has a worse impact on the simulation. Therefore, these six input variables, 

drainage area, relief ratio, maximum one hour precipitation, fire factor, SEF, and 

SP, should all be included for the estimation of unit debris yield collected at 

debris basins from small watersheds with extreme steep slope. 

The 71 measured unit debris yield and their estimated values by the 

USACE method and the neural network model (6,6,1,1) are given in Table 42. 

Among all the calibration data, the biggest error between the measured unit 

debris yield and the USACE estimation is 1.36, an event recorded at Maddock 

debris basin. There is a data record at Las Flores debris basin which is seriously 
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underestimated by the USACE method with an error of 0.71. Most unit debris 

yield data records estimated by the ANN model are very accurate except two 

events; one is at Ward debris basin, ANN overestimates the unit debris yield with 

an error of 0.34; another is at Hillcrest debris basin, the unit debris yield is 

underestimated with an error of 0.55. For the validation data, the estimated unit 

debris yield by the USACE method are within such an error range [-0.34, 0.56], 

but the neural network technique reduces the range to [-0.17, 0.10].  

Table 42: Measured, the USACE method, and the best ANN model (6,6,1,1) estimated 
unit debris yield for Case 11 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Bailey 

2.19 2.53 3.18 3.77 0.59 3.27 0.09 

2.19 2.53 3.05 3.69 0.64 3.06 0.01 

2.19 2.53 3.38 3.77 0.39 3.27 -0.11 

2.19 2.53 3.16 3.29 0.13 3.18 0.02 

2.19 2.53 3.7 3.67 -0.03 3.69 -0.01 

2.19 2.53 3.84 3.83 -0.01 3.88 0.04 

2.19 2.53 4.58 4.14 -0.44 4.39 -0.19 

2.19 2.53 4.13 3.76 -0.37 4.14 0.01 

2.19 2.53 4.04 3.52 -0.52 4.00 -0.04 

Childs 

1.91 2.5 3.61 3.45 -0.16 3.61 0.00 

1.91 2.5 3.36 3.57 0.21 3.36 0.00 

1.91 2.5 3.55 3.63 0.08 3.57 0.02 

1.91 2.5 3.23 3.43 0.20 3.23 0.00 

1.91 2.5 3.33 3.83 0.50 3.32 -0.01 

1.91 2.5 3.89 3.84 -0.05 3.89 0.00 

Cloud-
craft 

1.74 2.49 3.41 3.80 0.39 3.40 -0.01 

1.74 2.49 2.96 3.60 0.64 3.25 0.29 

1.74 2.49 3.51 3.66 0.15 3.23 -0.28 

Elm-
wood 

1.91 2.55 3.7 3.60 -0.10 3.70 0.00 

1.91 2.55 3.54 3.47 -0.07 3.54 0.00 

1.91 2.55 4.06 3.90 -0.16 4.06 0.00 

Harrow 

2.05 2.52 3.35 3.69 0.34 3.35 0.00 

2.05 2.52 3.18 3.46 0.28 3.20 0.02 

2.05 2.52 3.87 3.84 -0.03 3.87 0.00 

2.05 2.52 4.56 4.10 -0.46 4.40 -0.16 
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Table 42, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

 

Hay 

1.72 2.55 3.81 3.69 -0.12 3.81 0.00 

1.72 2.55 3.85 3.56 -0.29 3.86 0.01 

1.72 2.55 3.35 3.69 0.34 3.34 -0.01 

1.72 2.55 3.36 3.61 0.25 3.36 0.00 

1.72 2.55 3.3 3.65 0.35 3.29 -0.01 

1.72 2.55 3.11 3.38 0.27 3.10 -0.01 

1.72 2.55 3.51 3.55 0.04 3.52 0.01 

1.72 2.55 4.43 3.73 -0.70 4.40 -0.03 

Hill-
crest 

1.96 2.52 3.27 3.73 0.46 3.27 0.00 

1.96 2.52 3.83 3.65 -0.18 3.83 0.00 

1.96 2.52 2.25 3.56 1.31 2.50 0.25 

1.96 2.52 3.05 3.59 0.54 2.50 -0.55 

Hook 
West 

1.65 2.51 3.8 3.62 -0.18 3.78 -0.02 

Calibration 

Data 

Las 
Flores 

2.07 2.52 3.7 3.58 -0.12 3.71 0.01 

2.07 2.52 3.86 3.71 -0.15 3.91 0.05 

2.07 2.52 4.21 3.83 -0.38 4.27 0.06 

2.07 2.52 4.02 3.68 -0.34 4.02 0.00 

2.07 2.52 3.95 3.24 -0.71 3.87 -0.08 

Mad-
dock 

1.85 2.56 3.81 3.68 -0.13 3.81 0.00 

1.85 2.56 2.7 3.59 0.89 2.69 -0.01 

1.85 2.56 2.5 3.86 1.36 2.50 0.00 

Sturte-
vant 

0.89 2.56 3.11 3.42 0.31 3.11 0.00 

0.89 2.56 3.41 3.56 0.15 3.42 0.01 

0.89 2.56 3.14 3.64 0.50 3.13 -0.01 

0.89 2.56 2.32 3.49 1.17 2.50 0.18 

Sunset 

2.06 2.49 3.38 3.62 0.24 3.38 0.00 

2.06 2.49 3.47 3.73 0.26 3.47 0.00 

2.06 2.49 3.95 3.59 -0.36 3.96 0.01 

2.06 2.49 3.58 4.21 0.63 3.60 0.02 

2.06 2.49 2.37 3.53 1.16 2.50 0.13 

Ward 

1.5 2.51 4.06 3.71 -0.35 4.40 0.34 

1.5 2.51 3.49 3.43 -0.06 3.47 -0.02 

1.5 2.51 3.22 3.55 0.33 3.25 0.03 

1.5 2.51 4.29 3.94 -0.35 4.29 0.00 

1.5 2.51 4.38 3.76 -0.62 4.40 0.02 

1.5 2.51 4.16 3.67 -0.49 4.14 -0.02 

1.5 2.51 3.19 4.11 0.92 3.18 -0.01 

2.19 2.53 3.5 3.63 0.13 3.33 -0.17 

2.19 2.53 3.51 3.80 0.29 3.60 0.09 
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Table 42, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

Validation 

Data 

Bailey 

2.19 2.53 3.13 3.69 0.56 3.06 -0.07 

2.19 2.53 3.5 3.63 0.13 3.33 -0.17 

2.19 2.53 3.51 3.80 0.29 3.60 0.09 

Childs 1.91 2.5 3.98 3.73 -0.25 4.07 0.09 

Mad-
dock 

1.85 2.56 3.57 3.55 -0.02 3.40 -0.17 

1.85 2.56 3.97 3.67 -0.30 3.98 0.01 

Elm-
wood 

1.91 2.55 3.39 3.66 0.27 3.49 0.10 

1.91 2.55 4.05 3.85 -0.20 3.91 -0.14 

Ward 1.5 2.51 3.75 3.41 -0.34 3.71 -0.04 

Diffe1- Difference between measured debris yield and the estimated values using the USACE method.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model. 
 

Figure 58 on the next page is provided as a more direct means to 

compare the results achieved by these two methods. In both figures, the red 

circles – ANN estimation follow to the 45 degree line while the blue marks 

representing the USACE estimation spread out in the area. All these findings 

lead to a conclusion that the neural network is more accurate for the estimation 

of unit debris yield than the USACE method in Case 11.   

4.2.9 Case 12 

The studied unit debris yield in this case was collected from thirteen small 

debris basins including Auburn, Big Briar, Carriage House, Carter, Cloud Creek, 

Hook East, Kinneloa East, Kinneloa West, Lannan, Pinelawn, Shields, Startfall, 

and Sunnyside debris basin (Figure 3). The upstream collection watersheds of 

these debris basins all have the steepest slope, or the relief ratios are between 

375 m/km and 525 m/km. 71 data records of unit debris yield collected from 1938 

and 1983 are available. They are separated by subtractive clustering method into 
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(2).Validation Data

ANN Model (6,6,1,1)

USACE Method

45 Degree Line

ANN Model (6,6,1,1)

USACE Method

45 Degree Line

 
Figure 58: Comparison between measured, USACE, and the best ANN model (6,6,1,1) 

estimated unit debris yield for Case 11 
             (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

Fire Factor, Soil Erodibility Factor, and Soil Permeability Rate)  
 
calibration (i.e. 63 data records) and validation data (i.e. 8 data records). The 

initiative is to study the impact of three soil properties including SEF, SP, and 

SLL on the unit debris yield estimation similar to Case 8, 9, 10, and 11. However, 

all the debris basins within this case are located within the same soil unit; in other 

words, the values of these soil properties are the same for all the debris basins. 

Therefore, only four basic input variables - log transformed watershed area, 

logarithmic relief ratio, logarithmic value of maximum one hour precipitation times 

100, and fire factor are used to train neural network models to estimate unit 

debris yield.   

Eight neural networks with one hidden layer are calibrated by 63 unit 

debris yield data and then 8 validation data are applied to check their capability 

for modeling new data. As shown in Table 43, the neural network with six  
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neurons on the hidden layer achieves the best performance with the lowest 

average MSE and comparable performance for the calibration and the validation 

data. Twenty-four four-layered neural networks are created and the most suitable 

neural network model appears to be the network (4,6,3,1). This neural network 

(4,6,3,1) appears to be more successfully trained than the network (4,6,1) with a 

much lower error for the calibration data and the performance for the validation 

data is improved as well. The MSE for the calibration data is as low as 0.00493 

which is about 34 times less than the MSE obtained by using the USACE method 

(Table 43); the MSE of the validation data simulated by the same network is 

roughly one third of the error using the USACE method. It is true that all the four-

layered neural networks developed in this case are superior to the USACE 

method for estimating the 71 unit debris yield.   

Table 43: Summary of the performances of ANN models for Case 12 

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

4,4,1 (25) 0.871 0.915 0.02916 0.667 0.817 0.07987 0.05452 
4,5,1 (31) 0.914 0.941 0.03543 0.833 0.913 0.04003 0.03773 
4,6,1 (37) 0.982 0.916 0.03405 0.860 0.927 0.03359 0.03382 
4,7,1 (43) 1.161 0.907 0.05757 0.907 0.953 0.02223 0.03990 
4,8,1 (49) 1.017 0.870 0.06032 0.914 0.956 0.02055 0.04043 
4,9,1 (55) 0.806 0.725 0.11361 0.980 0.990 0.00477 0.05919 

4,10,1 (61) 0.915 0.833 0.08043 1.000 1.000 0.00008 0.04025 
4,11,1 (67) 0.573 0.574 0.18988 1.000 1.000 0.00012 0.09500 
4,3,1,1 (21) 0.673 0.753 0.08189 0.767 0.876 0.05594 0.06891 
4,3,2,1 (26) 0.594 0.769 0.07983 0.846 0.920 0.03696 0.05839 
4,3,3,1 (31) 0.675 0.882 0.04854 0.832 0.912 0.04032 0.04443 
4,3,4,1 (36) 0.814 0.860 0.04859 0.907 0.952 0.02234 0.03547 
4,3,5,1 (41) 0.810 0.827 0.06186 0.923 0.962 0.01806 0.03996 
4,3,6,1 (46) 1.222 0.924 0.06087 0.944 0.971 0.01354 0.03721 
4,4,1,1 (27) 0.976 0.871 0.05500 0.791 0.890 0.05009 0.05255 
4,4,2,1 (33) 0.958 0.923 0.04362 0.841 0.917 0.03820 0.04091 
4,4,3,1 (39) 1.025 0.890 0.04933 0.858 0.926 0.03401 0.04167 
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Table 43, Continued  

ANN 
Geometry 

Validation Data Set Calibration Data Set Average 
MSE Slope R MSE Slope R MSE 

4,4,4,1 (45) 0.689 0.773 0.07393 0.891 0.944 0.02621 0.05007 
4,4,5,1 (51) 0.927 0.884 0.04372 0.974 0.987 0.00630 0.02501 
4,4,6,1 (57) 0.922 0.902 0.03634 0.966 0.983 0.00804 0.02219 
4,5,1,1 (33) 0.986 0.913 0.03786 0.751 0.867 0.05970 0.04878 
4,5,2,1 (40) 1.009 0.927 0.03458 0.886 0.941 0.02741 0.03099 
4,5,3,1 (47) 0.866 0.939 0.02457 0.928 0.963 0.01720 0.02089 
4,5,4,1 (54) 0.810 0.919 0.02794 0.943 0.971 0.01365 0.02080 
4,5,5,1 (61) 1.019 0.925 0.03119 0.985 0.992 0.00368 0.01744 
4,5,6,1 (68) 0.762 0.866 0.05540 0.975 0.988 0.00579 0.03060 
4,6,1,1 (39) 1.182 0.966 0.03368 0.870 0.933 0.03111 0.03240 
4,6,2,1 (47) 0.741 0.938 0.02660 0.949 0.974 0.01215 0.01937 
4,6,3,1 (55) 1.021 0.938 0.02635 0.979 0.990 0.00493 0.02668 
4,6,4,1 (63) 0.901 0.866 0.05791 0.952 0.976 0.01155 0.03473 
4,6,5,1 (71) 1.360 0.946 0.06217 1.000 1.000 2.6E-08 0.03109 
4,6,6,1 (79) 0.774 0.919 0.02927 1.000 1.000 3.8E-08 0.01464 

USACE 0.866 0.439 0.07304 0.571 0.229 0.16939 0.12122 
 
The 63 unit debris yield estimated by the network (4,6,3,1) are plotted in 

Figure 59(a) against their measured values. All the data points stay very close to 

the 45 degree line that results in a desirable correlation coefficient, 0.990. The 8 

validation data points are plotted in Figure 59(b) which shows that all of them 

are very close to the 45 degree line except one data point, and the correlation 

coefficient is as high as 0.938. It is evident that not only the calibration of the 

neural network (4,6,3,1) but also the validation are very successful.  

The estimated unit debris yield by the USACE method and the neural 

network (4,6,3,1) are listed and compared in Table 44. The first 63 data records 

are the calibration data and 8 validation data are in succession. The maximum 

difference between the USACE estimation and the measured unit debris yield is 

[-0.84, 1.08] for the calibration data and [-0.22, 0.60] for the validation data; the 
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(a) Calibration Data

Linear Regression Line: y=0.980x+0.076
R = 0.990

2 2.5 3 3.5 4 4.5 5
2

2.5

3

3.5

4

4.5

5

Measured Unit Debris Yield (log,m3/km2)

P
re

d
ic

te
d
 U

n
it
 D

e
b
ri
s
 Y

ie
ld

 b
y
 A

N
N

 (
4
,6

,3
,1

) 
(l
o
g
,m

3
/k

m
2
)

 

 

(b) Validation Data

Linear Regression Line: y=1.021x-0.049

R = 0.938

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 59: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 12 
              (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

and Fire Factor) 
 
maximum difference between the measured and the ANN model (4,6,3,1) 

estimation is [-0.18, 0.28] for the calibration data and it is [-0.30, 0.28] for the 

validation data.  

Table 44: Measured, the USACE method and the best ANN model (4,6,3,1) estimated 
unit debris yield for Case 12 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Auburn 

1.62 2.72 3.78 3.78 0.00 3.73 -0.05 

1.62 2.72 3.9 3.85 -0.05 4.05 0.15 

1.62 2.72 3.57 3.71 0.14 3.56 -0.01 

1.62 2.72 3.62 3.84 0.22 3.62 0.00 

1.62 2.72 3.24 3.67 0.43 3.15 -0.09 

1.62 2.72 4.38 4.15 -0.23 4.39 0.01 

1.62 2.72 3.7 3.61 -0.09 3.76 0.06 

1.62 2.72 4.38 3.85 -0.53 4.36 -0.02 

1.62 2.72 3.18 3.65 0.47 3.32 0.14 

Big Briar 
0.72 2.71 3.33 3.53 0.20 3.43 0.10 

0.72 2.71 3.57 3.57 0.00 3.42 -0.15 

Carriage 
House 

0.89 2.64 4.42 3.97 -0.45 4.31 -0.11 

0.89 2.64 3.9 3.72 -0.18 3.97 0.07 

Carter 
1.5 2.69 3.95 3.74 -0.21 3.95 0.00 

1.5 2.69 3.13 3.51 0.38 3.13 0.00 
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Table 44, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
(log, 

m/km) 

Measured  
Unit Dy 

(log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
m

3
/km

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

m
3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Carter 

1.5 2.69 3.73 3.81 0.08 3.75 0.02 

1.5 2.69 3.53 3.52 -0.01 3.53 0.00 

1.5 2.69 3.22 3.80 0.58 3.21 -0.01 

1.5 2.69 2.81 3.67 0.86 2.81 0.00 

1.5 2.69 3.2 3.74 0.54 3.20 0.00 

1.5 2.69 4.27 3.90 -0.37 4.10 -0.17 

1.5 2.69 3.71 3.78 0.07 3.70 -0.01 

Cloud 
Creek 

0.72 2.72 3.82 3.66 -0.16 3.82 0.00 

0.72 2.72 4.14 3.93 -0.21 4.11 -0.03 

0.72 2.72 4.12 3.75 -0.37 4.12 0.00 

0.72 2.72 3.5 3.70 0.20 3.49 -0.01 

0.72 2.72 2.63 3.61 0.98 2.65 0.02 

Hook 
East 

1.67 2.6 3.55 3.44 -0.11 3.55 0.00 

1.67 2.6 3.59 3.68 0.09 3.59 0.00 

1.67 2.6 4.39 3.82 -0.57 4.38 -0.01 

1.67 2.6 4.62 4.08 -0.54 4.63 0.01 

Kinneloa 
East 

1.72 2.65 4.3 4.08 -0.22 4.29 -0.01 

1.72 2.65 3.29 3.49 0.20 3.28 -0.01 

Kinneloa 
West 

1.72 2.68 3.95 3.97 0.02 3.95 0.00 

1.72 2.68 3.54 3.65 0.11 3.42 -0.12 

1.72 2.68 3.7 3.77 0.07 3.70 0.00 

1.72 2.68 3.83 3.67 -0.16 3.81 -0.02 

1.72 2.68 4.41 4.10 -0.31 4.39 -0.02 

1.72 2.68 3.32 3.50 0.18 3.32 0.00 

1.72 2.68 3.99 3.52 -0.47 4.01 0.02 

Lannan 

1.81 2.61 3.6 3.62 0.02 3.60 0.00 

1.81 2.61 3.23 3.82 0.59 3.23 0.00 

1.81 2.61 4.03 3.78 -0.25 4.03 0.00 

1.81 2.61 3.08 3.66 0.58 3.14 0.06 

 
Pine-

lawn 

0.72 2.65 3.85 3.61 -0.24 3.94 0.09 

0.72 2.65 4.14 3.66 -0.48 3.99 -0.15 

0.72 2.65 4.2 4.06 -0.14 4.31 0.11 

0.72 2.65 4.25 3.59 -0.66 4.26 0.01 

0.72 2.65 3.36 3.28 -0.08 3.36 0.00 

Shields 

0.89 2.7 3.29 3.50 0.21 3.35 0.06 

0.89 2.7 4.29 3.95 -0.34 4.11 -0.18 

0.89 2.7 3.85 3.62 -0.23 3.85 0.00 

0.89 2.7 3.83 4.12 0.29 4.11 0.28 

0.89 2.7 3.5 3.65 0.15 3.51 0.01 

0.89 2.7 4.56 3.72 -0.84 4.55 -0.01 

0.89 2.7 2.77 3.40 0.63 2.76 -0.01 

Startfall 
1.53 2.61 3.6 3.40 -0.20 3.60 0.00 

1.53 2.61 4.3 4.01 -0.29 4.31 0.01 
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Table 44, Continued 

Data 
Debris 
Basin 

Area 
(log, 
ha) 

Rr 
 (log, 
m/km) 

Measured  
Unit Dy 
 (log, 
m

3
/km

2
) 

USACE
Estimated 
Unit  Dy 
(log, 
m

3
/km

2
) 

Diffe
1
  

ANN 
Estimated 
Unit Dy 
(log, 
m

3
/km

2
) 

Diffe
2
 

Calibration 

Data 

Startfall 

1.53 2.61 3.35 3.74 0.39 3.35 0.00 

1.53 2.61 2.63 3.71 1.08 2.63 0.00 

1.53 2.61 3.77 4.18 0.41 3.77 0.00 

1.53 2.61 4.09 3.78 -0.31 4.06 -0.03 
Sunny-

side 
0.72 2.68 2.69 3.66 0.97 2.67 -0.02 

Validation 

Data 

Auburn 
1.62 2.72 3.64 3.78 0.14 3.73 0.09 

1.62 2.72 4.02 3.81 -0.21 3.72 -0.30 

Carter 
1.5 2.69 4.33 4.11 -0.22 4.39 0.06 

1.5 2.69 3.01 3.61 0.60 3.05 0.04 
Cloud 0.72 2.72 3.99 4.10 0.11 4.11 0.12 

Kinneloa 
East 

1.72 2.65 3.52 3.62 0.10 3.41 -0.11 

Pine-
lawn 

0.72 2.65 4.03 3.87 -0.16 4.31 0.28 

Shields 0.89 2.7 3.23 3.47 0.24 3.29 0.06 

Diffe1- Difference between measured debris yield and the estimated values using the USACE method.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model 

Figure 60 offers a more direct means to compare those results. For both 

the calibration and the validation data, red circles, ANN estimations, scatter much 

closer to the 45 degree line than the blue marks, the USACE predictions. All the 

comparison indicates that ANN is more accurate than the USACE method for the 

estimation of the unit debris yield collected from small watershed with the 

steepest slope in this case.  
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(1).Calibration Data
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(2).Validation Data

ANN Model (4,6,3,1)

USACE Method

45 Degree Line

ANN Model (4,6,3,1)

USACE Method

45 Degree Line

 
Figure 60: Comparison between measured, USACE, and the best ANN model (4,6,3,1) 

estimated unit debris yield for Case 12 
              (Input Parameters: Watershed Area, Relief Ratio, Max. 1-hr Rainfall Intensity, 

and Fire Factor) 
 

4.2.10 Case 13 

The USACE (2000) developed an empirical equation (Equation 4.1) for 

estimating unit debris yield from watershed with area between 10 and 25 miles.  

)(20.0)(log06.0)(log48.0)(log88.0log FFARRQDy +++=                       (4.1) 

In this equation, Dy is unit debris yield in cubic yards per square mile, RR 

is relief ratio with unit of ft mile , Q is unit peak discharge with the unit of 

23ft s mi , A is watershed area in acre, and FF is non-dimensional fire factor. The 

equation was developed based on 57 data records collected from Santa Anita 

Dam and San Dimas Gate Dam debris basin (Figure 4) from 1938 to 1983. To 

provide a comparison with the ANN modeling result, the same data is applied to 

train neural network models for the estimation of unit debris yield. Before start 
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training ANN models, 48 data records are selected for calibration and the 

remaining 9 data for validation using subtractive clustering method. Before 

presenting these data to ANN models, both the input and target values are 

normalized, the input vectors are transformed to be uncorrelated, and those input 

variables that contributed less than 2% of the total variation are eliminated. The 

LM training algorithm is the only training algorithm used and the default values of 

most internal parameters are used except epoch size and the calibration data 

error goal. 10,000 is chosen as the epoch size and the calibration process will be 

stopped when the error reaches 610− . The hyperbolic tangent function is the only 

transfer function for the hidden layers and linear function is for the output layer.  

Randomly started with a neural network with four and three neurons on 

the first and the second hidden layer, the results are very remarkable. The MSE 

for the calibration data is 0.00607 and it is 0.00761 for the validation data. The 

correlation coefficients are 0.994 for the calibration data and 0.991 for the 

validation data. Not only are the correlation coefficients close to one but also the 

slopes of the linear regression lines.  As seen from Figure 61, all the data points 

are very close to the 45 degree line and the linear regression lines are almost 

coincide with the 45 degree line. All these signs indicate this neural network is 

perfect for modeling unit debris yield collected from larger watersheds. Therefore, 

it is not necessary to train other neural networks.  
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(a) Calibration Data

Linear Regression Line: y = 0.983x+0.060
R = 0.994
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(b) Validation Data

Linear Regression Line: y = 0.986x+0.110
R = 0.991

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 61: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 13 

 
Among 48 calibration data, 28 of them were collected from Santa Anita 

Dam debris basin and the remaining 20 data records were from San Dimas Gate 

Dam debris basin. For the calibration data, the USACE method estimates those 

data within the following error range: [-0.06, 0.83], (Table 45), and the MSE is 

0.11417; the error range achieved by the neural network (4,4,3,1) is [-0.22, 0.44], 

and the MSE is much smaller, 0.00607. Although the lower limit of the error 

bound of the neural network is worse than that of the USACE method, as seen 

from Figure 62(a), the USACE overestimates almost all data and some of them 

are overestimated to a large extent. The validation data consist of 3 data records 

from Santa Anita debris basin and 6 data records from San Dimas Gate Dam 

debris basin. The estimated and measured values of the 9 validation data are 

plotted in Figure 62(b). It appears that the USACE method also overestimates 

most of the validation data with a MSE of 0.12664. As seen from figure (b), ANN 

model data points are clustered around the 45 degree line but almost all of the 
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USACE data points are above the line. For the validation data, the lower limit of 

the error bound for both the USACE method and the neural network is -0.09, 

however, the upper limit of the error bound for the USACE method is 0.65, and it 

is only 0.12 for the neural network. With much lowers errors and smaller error 

ranges, the ANN model (4,4,3,1) is superior to the USACE method. 

Table 45: Measured, the USACE method, and the best ANN model (4,4,3,1) estimated 
unit debris yield for Case 13 

Data 
Debris 
Basin 

Area 
(mi

2
) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd

3
/mi

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
yd

3
/mi

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd
3
/mi

2
) 

Diffe
2
 

Calibration 

Data 

Santa 
Anita 
Dam 

10.8 871.0 2.87 3.28 0.41 3.01 0.14 

10.8 871.0 2.87 3.38 0.51 3.05 0.18 

10.8 871.0 2.87 3.15 0.28 2.85 -0.02 

10.8 871.0 2.87 3.24 0.37 2.88 0.01 

10.8 871.0 3.02 3.51 0.49 3.14 0.12 

10.8 871.0 2.65 3.11 0.46 2.66 0.01 

10.8 871.0 3.65 4.05 0.40 3.76 0.11 

10.8 871.0 3.69 3.90 0.21 3.59 -0.10 

10.8 871.0 3.62 3.90 0.28 3.58 -0.04 

10.8 871.0 3.8 4.15 0.35 3.86 0.06 

10.8 871.0 3.85 4.22 0.37 3.98 0.13 

10.8 871.0 4.04 4.26 0.22 3.96 -0.08 

10.8 871.0 4.64 4.60 -0.04 4.62 -0.02 

10.8 871.0 4.61 4.68 0.07 4.60 -0.01 

10.8 871.0 3.38 3.87 0.49 3.44 0.06 

10.8 871.0 3.29 3.42 0.13 3.11 -0.18 

10.8 871.0 3.43 3.53 0.10 3.21 -0.22 

10.8 871.0 3.52 4.09 0.57 3.48 -0.04 

10.8 871.0 3.22 4.05 0.83 3.41 0.19 

10.8 871.0 3.61 4.27 0.66 3.59 -0.02 

10.8 871.0 2.35 2.88 0.53 2.35 0.00 

10.8 871.0 3.78 4.15 0.37 3.72 -0.06 

10.8 871.0 4.13 4.16 0.03 4.14 0.01 

10.8 871.0 3.8 3.83 0.03 3.80 0.00 

10.8 871.0 3.32 3.71 0.39 3.14 -0.18 

10.8 871.0 2.78 3.51 0.73 2.78 0.00 

10.8 871.0 4.3 4.41 0.11 4.29 -0.01 

10.8 871.0 4.31 4.65 0.34 4.31 0.00 
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Table 45, Continued 

Data Debris 
Basin 

Area 
(mi2) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd3/mi2) 

USACE 
Estimated 
Unit  Dy 

(log, 
yd3/mi2) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd3/mi2) 

Diffe
2
 

Calibration 

Data 

San 
Dimas 
Gate 
Dam 

16.2 501.2 3.87 3.91 0.04 4.31 0.44 

16.2 501.2 3 3.08 0.08 2.98 -0.02 

16.2 501.2 3.08 3.24 0.16 3.16 0.08 

16.2 501.2 2.78 3.02 0.24 2.78 0.00 

16.2 501.2 4.03 4.02 -0.01 4.01 -0.02 

16.2 501.2 4.1 4.15 0.05 4.11 0.01 

16.2 501.2 3 3.04 0.04 3.00 0.00 

16.2 501.2 3.04 3.06 0.02 3.04 0.00 

16.2 501.2 3.38 3.60 0.22 3.38 0.00 

16.2 501.2 3.32 3.32 0.00 3.25 -0.07 

16.2 501.2 3.98 4.20 0.22 3.98 0.00 

16.2 501.2 4.45 4.39 -0.06 4.45 0.00 

16.2 501.2 2.48 2.85 0.37 2.48 0.00 

16.2 501.2 3.66 3.80 0.14 3.66 0.00 

16.2 501.2 3.2 3.61 0.41 3.20 0.00 

16.2 501.2 3.38 3.47 0.09 3.38 0.00 

16.2 501.2 2.3 2.68 0.38 2.30 0.00 

16.2 501.2 3.7 3.96 0.26 3.70 0.00 

16.2 501.2 4.29 4.59 0.30 4.30 0.01 

16.2 501.2 4.3 4.32 0.02 4.30 0.00 

Validation 

Data 

Santa 
Anita 
Dam 

10.8 871.0 2.95 3.25 0.30 2.99 0.04 

10.8 871.0 3.67 4.12 0.45 3.78 0.11 

10.8 871.0 2.48 3.13 0.65 2.59 0.11 

San 
Dimas 
Gate 
Dam 

16.2 501.2 2.84 3.07 0.23 2.96 0.12 

16.2 501.2 4.02 4.19 0.17 4.10 0.08 

16.2 501.2 3.63 3.61 -0.02 3.54 -0.09 

16.2 501.2 4.17 4.08 -0.09 4.24 0.07 

16.2 501.2 3.76 4.07 0.31 3.85 0.09 

16.2 501.2 2.9 3.39 0.49 2.93 0.03 

Diffe1- Difference between measured debris yield and the estimated values using the USACE method.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model. 
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(a) Calibration Data

ANN Model (4,4,3,1)

LAACE Method

45 Degree Line
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(b) Validation Data

ANN Model (4,4,3,1)

LAACE Method

45 Degree Line

 
Figure 62: Comparison between measured, USACE, and the best ANN model (4,4,3,1) 

estimated unit debris yield for Case 13 
 

4.2.11 Case 14 

There is another empirical equation (Equation 4.2) formulated by the 

USACE (2000) for estimating unit debris yield collected from watershed with area 

between 25 and 50 square miles.  

)(17.0)(log14.0)(log32.0)(log94.0log FFARRQDy +++=                       (4.2) 

Every parameter within the equation is the same as in Equation 4.1 and 

the only difference between those two equations is the coefficients. This equation 

is developed based on 22 data records documented at Pacoima Dam debris 

basin, 20 records at Devil’s Gate Dam debris basin, and 22 records at Cogswell 

Dam debris basin (Figure 4). These 64 data records are separated into two data 

sets, one for calibration and the other for validation by using subtractive 

clustering method. The calibration data consists of 19 data records from Pacoima 
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Dam debris basin, 16 data records from Devil’s Gate Dam debris basin, and 17 

data records from Cogswell Dam debris basin. The remaining 12 data records 

are saved for validation purpose.  

Before training the ANN models, the same procedure to preprocess the 

data such as normalization, removal of the correlation between input vectors if 

there is any, and reduction of input dimensions are implemented. The LM training 

algorithm is the only training algorithm used. The internal parameters such as 

epoch size, calibration data error goal, transfer function, and so on are identical 

to those in Case 13. Only a few neural networks are calibrated and an excellent 

performance is achieved before long by a neural network with four and five 

neurons on the first and second hidden layer. The network is capable of 

estimating 52 calibration data with 0.00200 MSE and 12 validation data with 

0.00998 MSE, and the correlation coefficient is 0.996 for the calibration data 

(Figure 63(a)) and 0.987 for the validation data (Figure 63(b)). The correlation 

coefficients and the slopes of the linear regression lines are very close to one 

that indicates this neural network is a perfect model for estimating unit debris 

yield collected from watersheds area ranging from 25 and 50 square miles. 

The 64 measured and estimated unit debris yield by the USACE method 

and the neural network (4,5,5,1) are listed in Table 46 and they are compared 

graphically in Figure 64. For the calibration data, the USACE can estimate the 52 

unit debris yield with a small MSE, 0.07786, and a small error range, [-0.70, 

0.55], however the neural network (4,4,5,1) reduces the error to 0.00200 and 
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(a) Calibration Data

Linear Regression Line: y = 0.993x+0.026
R = 0.996
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(b) Validation Data

Linear Regression Line: y = 1.036x-0.136
R = 0.987

Data Points

Linear Regression Line

45 Degree Line

Data Points

Linear Regression Line

45 Degree Line

 
Figure 63: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 14 
 

shortens the error range to [-0.22, 0.18]. It is also true for the validation data; the 

error range of the estimation by the USACE method is [-0.38, 0.49], and the MSE 

is 0.072161; the neural network model (4,4,5,1) lowers the error range to [-0.12, 

0.20], and the MSE is only 0.00998. It appears that this neural network model 

(4,4,5,1) is much better-performed than the USACE method.  It can be further 

demonstrated in Figure 64; the blue marks envelop the red circles in both figure 

(a) and (b) with the dashed 45 degree line. As a final conclusion, neural network 

model is more suitable than the USACE method for the estimation of unit debris 

yield from larger watershed with area between 25 and 50 square miles. 

Table 46: Measured, the USACE method, and the best ANN model (4,4,5,1) estimated 
unit debris yield for Case 14 

Data 
Debris 
Basin 

Area 
(mi

2
) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd

3
/mi

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
yd

3
/mi

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd
3
/mi

2
) 

Diffe
2
 

Calibration 
Data 

Pacoima 
Dam 

28.2 223.9 3.70 3.47 -0.23 3.70 0.00 

28.2 223.9 3.71 3.31 -0.40 3.76 0.05 

28.2 223.9 3.87 3.63 -0.24 3.87 0.00 
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Table 46, Continued 

Data 
Debris 
Basin 

Area 
(mi

2
) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd

3
/mi

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
yd

3
/mi

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd
3
/mi

2
) 

Diffe
2
 

Calibration 

Data 

Pacoima 
Dam 

28.2 223.9 3.92 3.54 -0.38 3.90 -0.02 

28.2 223.9 3.65 3.25 -0.40 3.61 -0.04 

28.2 223.9 3.84 3.28 -0.56 3.84 0.00 

28.2 223.9 3.79 3.72 -0.07 3.80 0.01 

28.2 223.9 3.43 3.42 -0.01 3.43 0.00 

28.2 223.9 3.01 3.03 0.02 3.01 0.00 

28.2 223.9 2.96 2.77 -0.19 2.96 0.00 

28.2 223.9 2.76 2.78 0.02 2.76 0.00 

28.2 223.9 3.28 3.07 -0.21 3.28 0.00 

28.2 223.9 4.24 3.99 -0.25 4.25 0.01 

28.2 223.9 4.12 3.42 -0.70 4.12 0.00 

28.2 223.9 3.01 3.04 0.03 3.01 0.00 

28.2 223.9 4.14 4.17 0.03 4.14 0.00 

28.2 223.9 3.76 3.72 -0.04 3.76 0.00 

28.2 223.9 3.29 2.61 -0.68 3.29 0.00 

28.2 223.9 2.84 2.97 0.13 2.84 0.00 

Devil’s 
Gate 
Dam 

31.9 331.1 3.50 3.39 -0.11 3.51 0.01 

31.9 331.1 3.54 3.40 -0.14 3.56 0.02 

31.9 331.1 3.42 3.56 0.14 3.60 0.18 

31.9 331.1 3.82 3.56 -0.26 3.60 -0.22 

31.9 331.1 3.22 3.15 -0.07 3.20 -0.02 

31.9 331.1 3.40 3.32 -0.08 3.42 0.02 

31.9 331.1 3.33 3.15 -0.18 3.34 0.01 

31.9 331.1 4.28 4.34 0.06 4.23 -0.05 

31.9 331.1 4.07 4.14 0.07 4.11 0.04 

31.9 331.1 4.65 4.42 -0.23 4.66 0.01 

31.9 331.1 3.87 3.64 -0.23 3.86 -0.01 

31.9 331.1 4.03 3.66 -0.37 4.03 0.00 

31.9 331.1 4.13 3.75 -0.38 4.13 0.00 

31.9 331.1 3.85 3.62 -0.23 3.84 -0.01 

31.9 331.1 3.63 3.79 0.16 3.65 0.02 

31.9 331.1 4.33 4.03 -0.30 4.32 -0.01 

Cogs-
well 
Dam 

39.2 426.6 3.97 4.22 0.25 3.95 -0.02 

39.2 426.6 3.86 4.13 0.27 3.85 -0.01 

39.2 426.6 3.77 4.03 0.26 3.78 0.01 

39.2 426.6 4.20 4.42 0.22 4.28 0.08 

39.2 426.6 4.23 4.39 0.16 4.19 -0.04 

39.2 426.6 2.87 3.21 0.34 2.87 0.00 

39.2 426.6 3.01 3.33 0.32 3.01 0.00 

39.2 426.6 3.01 2.99 -0.02 3.01 0.00 

39.2 426.6 2.89 2.90 0.01 2.89 0.00 
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Table 46, Continued 

Data 
Debris 
Basin 

Area 
(mi

2
) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd

3
/mi

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
yd

3
/mi

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd
3
/mi

2
) 

Diffe
2
 

Calibration 

Data 

Cogs-
well 
Dam 

39.2 426.6 3.15 3.10 -0.05 3.15 0.00 

39.2 426.6 2.39 2.94 0.55 2.38 -0.01 

39.2 426.6 2.46 2.85 0.39 2.47 0.01 

39.2 426.6 3.54 3.90 0.36 3.56 0.02 

39.2 426.6 3.35 3.71 0.36 3.33 -0.02 

39.2 426.6 3.67 3.93 0.26 3.69 0.02 

39.2 426.6 3.56 3.63 0.07 3.55 -0.01 

39.2 426.6 4.75 4.60 -0.15 4.72 -0.03 

Validation 

Data 

Pacoima 
Dam 

28.2 223.9 3.62 3.56 -0.06 3.68 0.06 

28.2 223.9 3.08 3.08 0.00 3.18 0.10 

28.2 223.9 4.49 4.20 -0.29 4.49 0.00 

Cogs-
well 
Dam 

39.2 426.6 3.98 4.28 0.30 4.01 0.03 

39.2 426.6 2.87 3.24 0.37 2.99 0.12 

39.2 426.6 2.46 2.95 0.49 2.38 -0.08 

39.2 426.6 3.26 3.58 0.32 3.20 -0.06 

39.2 426.6 3.45 3.40 -0.05 3.25 -0.20 

Devil’s 
Gate 
Dam 

31.9 331.1 3.59 3.46 -0.13 3.57 -0.02 

31.9 331.1 3.24 3.02 -0.22 3.07 -0.17 

31.9 331.1 4.19 4.23 0.04 4.29 0.10 

31.9 331.1 4.19 3.81 -0.38 4.20 0.01 
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(a) Calibration Data
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(b) Validation Data

ANN Model (4,4,5,1)

USACE Method

45 Degree Line

ANN Model (4,4,5,1)

USACE Method

45 Degree Line

 
Figure 64: Comparison between measured, USACE, and the best ANN model (4,4,5,1) 

estimated unit debris yield for Case 14 
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4.2.12 Case 15 

The last empirical equation (Equation 4.3) developed by the USACE 

(2000) is for predicting the unit debris yield at watershed with area ranging from 

50 to 200 square miles.    

logDy=1.02(logQ)+0.23(logRR)+0.16(logA)+0.13(FF)                               (4.3) 

Every term in this equation is the same as introduced in Equation 4.1 and 

4.2. The equation was formulated based on 66 unit debris yield data records; 36 

data records were documented at Big Tujunga Dam debris basin and the rest 30 

is from San Gabriel Dam debris basin (Figure 4).  

The subtractive clustering method is applied to divide the whole data into 

two groups; one is for calibration and the other is for validation. There are 54 

data records within the calibration data set and 12 data records within the 

validation data set. The data is preprocessed to be normalized and uncorrelated 

before presenting to neural network for training. A neural network with four and 

five neurons on the first and second hidden layer is trained by the LM training 

algorithm while all the internal parameters are the same as in Case 13 and 14. 

This network is capable of simulating the 54 calibration data with 0.00324 MSE 

and the 12 validation data with 0.00765 MSE. The data points with measured unit 

debris yield as x value and estimated unit debris yield as y value are plotted in 

Figure 65 along with their linear regression line. In Figure 65(a), the correlation 

coefficient of the calibration data is 0.996 and the slope of the linear regression 

line is 0.993; both of which are very close to one. As plotted in Figure 65(b), the 
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validation data has a high correlation coefficient – 0.987, and a high slope of the 

linear regression line – 0.974. Because two data points overlap in figure (b), thus, 

only 11 data points are shown in the figure. Further considering the distribution of 

the data points in these figures, the neural network (4,4,5,1) is a very well-trained 

model for estimating the unit debris yield collected from larger watersheds with 

area between 50 square miles and 200 square miles.    
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(a) Calibration Data

Linear Regression Line: y = 0.993x+0.024
R = 0.996

Data Points

Linear Regression Line

45 Degree Line
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(b) Validation Data

Linear Regression Line: y = 0.974x+0.064
R = 0.987

Data Points

Linear Regression Line

45 Degree Line

 
Figure 65: Linear regression analysis between measured and ANN model estimated 

debris yield (a) Calibration Data Set (b) Validation Data Set for Case 15 
 

The 66 unit debris yield data records with their collection basin name, 

area, relief ratio, measured, and estimated values by the USACE method and the 

neural network (4,4,5,1) are presented in Table 47. For the calibration data, the 

error range between measured and the estimated unit debris yield by the USACE 

method is [-0.36, 0.51], and the MSE is 0.03245; the MSE achieved by the neural 

network is ten times smaller, 0.00324, and the error range is [-0.22, 0.23]. 

Regarding the validation data, the MSEs are 0.01296 and 0.00764 accomplished 
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by the USACE method and the neural network, respectively; the error range is [-

0.14, 0.29] by using the USACE empirical equation, and it is [-0.21, 0.12] by 

using the network. Figure 66 is provided as a more direct means to compare the 

results obtained by using these two methods. In figure (a), the red circles scatter 

much closer to the 45 degree line than the blue marks; in figure (b), all symbols 

stay very close to the 45 degree line except one blue mark that seriously 

deteriorates the USACE method performance. All the comparisons lead to 

conclusion that ANN technique is more accurate than the USACE method for 

estimating unit debris yield from larger watersheds with area between 50 and 200 

square miles.    

Table 47: Measured, the USACE method, and the best ANN model (4,4,5,1) estimated 
unit debris yield for Case 15 

Data 
Debris 
Basin 

Area 
(mi

2
) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd

3
/mi

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
yd

3
/mi

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd
3
/mi

2
) 

Diffe
2
 

Calibration 

Data 

Big 
Tujunga 

Dam 

82.0 288.4 2.55 2.52 -0.03 2.52 -0.03 

82.0 288.4 2.57 2.54 -0.03 2.58 0.01 

82.0 288.4 2.50 2.58 0.08 2.53 0.03 

82.0 288.4 2.44 2.51 0.07 2.43 -0.01 

82.0 288.4 2.65 2.63 -0.02 2.66 0.01 

82.0 288.4 2.71 2.68 -0.03 2.71 0.00 

82.0 288.4 2.33 2.31 -0.02 2.34 0.01 

82.0 288.4 2.52 2.54 0.02 2.53 0.01 

82.0 288.4 2.52 2.50 -0.02 2.52 0.00 

82.0 288.4 2.41 2.41 0.00 2.42 0.01 

82.0 288.4 2.67 2.72 0.05 2.63 -0.04 

82.0 288.4 2.89 3.20 0.31 2.89 0.00 

82.0 288.4 2.80 3.10 0.30 2.80 0.00 

82.0 288.4 2.76 3.06 0.30 2.78 0.02 

82.0 288.4 3.19 3.28 0.09 3.19 0.00 

82.0 288.4 3.52 3.52 0.00 3.51 -0.01 

82.0 288.4 3.42 3.56 0.14 3.56 0.14 

82.0 288.4 3.72 3.65 -0.07 3.60 -0.12 

82.0 288.4 3.09 3.10 0.01 3.11 0.02 
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Table 47, Continued 

Data 
Debris 
Basin 

Area 
(mi

2
) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd

3
/mi

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
yd

3
/mi

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd
3
/mi

2
) 

Diffe
2
 

Calibration 

Data 

Big 
Tujunga 

Dam 

82.0 288.4 2.92 2.92 0.00 2.90 -0.02 

82.0 288.4 3.24 3.22 -0.02 3.16 -0.08 

82.0 288.4 4.11 4.17 0.06 4.10 -0.01 

82.0 288.4 3.87 4.11 0.24 4.10 0.23 

82.0 288.4 4.32 4.00 -0.32 4.10 -0.22 

82.0 288.4 4.37 4.40 0.03 4.37 0.00 
82.0 288.4 3.12 3.04 -0.08 3.14 0.02 
82.0 288.4 2.82 2.83 0.01 2.86 0.04 

82.0 288.4 2.52 2.39 -0.13 2.52 0.00 

82.0 288.4 3.68 3.92 0.24 3.69 0.01 

 
 

161.6 436.5 3.50 3.38 -0.12 3.59 0.09 

161.6 436.5 3.40 3.40 0.00 3.40 0.00 

161.6 436.5 3.67 3.38 -0.29 3.59 -0.08 

161.6 436.5 3.44 3.15 -0.29 3.44 0.00 

 
San 

Gabriel 
Dam 

161.6 436.5 4.19 4.07 -0.12 4.19 0.00 

161.6 436.5 4.00 4.09 0.09 4.00 0.00 

161.6 436.5 4.30 4.34 0.04 4.30 0.00 

161.6 436.5 4.13 3.77 -0.36 4.13 0.00 

161.6 436.5 4.03 3.80 -0.23 4.03 0.00 

161.6 436.5 4.41 4.34 -0.07 4.41 0.00 

161.6 436.5 2.81 2.72 -0.09 2.74 -0.07 

161.6 436.5 2.73 2.77 0.04 2.77 0.04 

161.6 436.5 2.97 2.87 -0.10 3.01 0.04 

161.6 436.5 2.51 2.62 0.11 2.54 0.03 

161.6 436.5 2.54 2.96 0.42 2.54 0.00 

161.6 436.5 2.65 3.06 0.41 2.65 0.00 

161.6 436.5 3.03 3.54 0.51 3.03 0.00 

161.6 436.5 3.31 3.17 -0.14 3.31 0.00 

161.6 436.5 4.71 4.60 -0.11 4.71 0.00 

161.6 436.5 3.11 2.89 -0.22 3.10 -0.01 

161.6 436.5 3.12 2.90 -0.22 3.12 0.00 

161.6 436.5 2.62 2.52 -0.10 2.60 -0.02 

161.6 436.5 2.34 2.33 -0.01 2.34 0.00 

161.6 436.5 3.85 3.86 0.01 3.85 0.00 

161.6 436.5 4.30 4.30 0.00 4.30 0.00 

Validation 

Data 

 
Big 

Tujunga 
Dam 

82.0 288.4 2.52 2.57 0.05 2.57 0.05 

82.0 288.4 2.52 2.54 0.02 2.52 0.00 

82.0 288.4 2.84 3.13 0.29 2.82 -0.02 

82.0 288.4 3.52 3.45 -0.07 3.48 -0.04 

82.0 288.4 3.23 3.28 0.05 3.35 0.12 

82.0 288.4 4.18 4.16 -0.02 4.11 -0.07 
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Table 47, Continued 

Data 
Debris 
Basin 

Area 
(mi

2
) 

Rr 
(ft/mi) 

Measured 
Dy (log, 
yd

3
/mi

2
) 

USACE
Estimated 
Unit  Dy 

(log, 
yd

3
/mi

2
) 

Diffe
1
 

ANN 
Estimated 

Unit Dy 
(log, 

yd
3
/mi

2
) 

Diffe
2
 

Validation 

Data 

San 
Gabriel 
Dam 

161.6 436.5 3.55 3.43 -0.12 3.34 -0.21 

161.6 436.5 4.24 4.13 -0.11 4.28 0.04 

161.6 436.5 2.84 2.70 -0.14 2.74 -0.10 

161.6 436.5 3.20 3.08 -0.12 3.28 0.08 

161.6 436.5 3.10 3.08 -0.02 3.03 -0.07 
Diffe1- Difference between measured debris yield and the estimated values using the USACE method.   
Diffe2- Difference between measured debris yield and the estimated values using ANN model. 
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(a) Calibration Data

ANN Model (4,4,5,1)

LAACE Method

45 Degree Line
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(b) Validation Data

ANN Model (4,4,5,1)

LAACE Method

45 Degree Line

 
Figure 66: Comparison between measured, USACE, and the best ANN model (4,4,5,1) 

estimated unit debris yield for Case 15 
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Chapter 5: Summary and Conclusion 

5.1 Summary and Conclusion 

The feasibility of applying Artificial Neural Network (ANN) models for 

accurately estimating accumulated debris yields resulting from wildfire and a 

series of storm events for 14 debris basins from 1984 to 2003 within Los Angeles 

County are examined in this study. The first set of ANN models are trained by 

300 training samples with five input parameters such as drainage area, 

watershed relief ratio, maximum one-hour rainfall intensity, total rainfall amount, 

and fire factor. The second set of ANN models are trained by the same number 

of input parameter but with less training samples, i.e. 244, after the removal of 

some questionable data records. The third set has the same number of training 

samples as the second one but more input parameters such as the percentage of 

the area that was burned by wildfire within the watershed in the last 10 years, 

time after the last fire event, and the number of the antecedent effective rainfall 

event. The comparison of the estimate error of sequent debris yield among the 

first three best-performed ANN models indicates the performance of the third 

ANN model (8,3,2,1) is equivalently good as the second ANN model (5,3,4,1). 

Both models are superior to the first ANN model (5,6,2,1). With errors as little as 

4105.8 −× and correlation coefficients as high as 1.000, all these three ANN 

models achieve the desired level of accuracy. The first best-performed ANN 

model (5,6,2,1) is capable of estimating 12 data records of accumulated debris 
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yield more accurate than the MSDPM (Pak, 2005) statistical model and worse in 

3 data records. The best-fit ANN model (5,3,4,1) among all the second set of 

ANN models is capable of predicting sediment yields with higher accuracy than 

the MSDPM statistical model. The inclusion of three additional input variables in 

the third ANN model does not lead to a better overall performance. In addition, 

the results reinforce the theory that the smaller the ratio between the standard 

error estimate (Se) and the standard deviation (Sy) of the target values, the better 

is the modeling accuracy. 

Four artificial intelligence models including one set of ANN models trained 

by the Bayesian Regulation Backpropagation (BRBP) algorithm, one set of ANN 

models trained by the Levenberg-Marquardt (LM) algorithm, Adaptive-Network-

Based Fuzzy Inference System (ANFIS) model, and Generalized Dynamic Fuzzy 

Neural Network (GD-FNN) model are applied to simulate unit debris yield 

collected from 36 small debris basins with upstream drainage area less than 3 

square miles from 1938 to 1983 within Los Angeles County. The relative 

importance of four watershed morphological parameters such as elongation ratio, 

drainage density, hypsometric index, and mean bifurcation ratio are analyzed. 

The comparison of modeling accuracy among four sets of models trained by 

different numbers of input parameters reveals that both the drainage density and 

the hypsometric index are important input parameters but the elongation ratio 

and the mean bifurcation ratio are not important and should be eliminated for 

modeling unit debris yield. 
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349 unit debris yield data records documented at 80 small debris basins 

from 1938 to 1983 within Los Angeles County are classified into five groups 

based on the relief ratios of their watersheds, and each group of data is modeled 

by only ANN models trained by the LM algorithm based on four input parameters 

(i.e. log transformed watershed area, logarithmic relief ratio, logarithmic value of 

maximum one hour precipitation times 100, and fire factor).  

Three soil properties like soil erodibility factor, permeability rate, and liquid 

limit are included as input parameter one by one to study their impact on the 

simulation. The only exception is the fifth group of data because all the 

watersheds are within the same soil map unit; in other words, the values of three 

soil properties are identical for all the watersheds. This study demonstrates that 

ANN models achieve satisfactory modeling results and their performance is 

improved by the inclusion of some soil properties compared with the original 

models trained by only four basic input parameters. For example, the inclusion of 

soil erodibility factor enhances the ANN models performance on the estimation of 

unit debris yield collected from small watersheds with mild slope (i.e. relief ratio is 

between 58 m/km and 185 m/km); but the permeability rate and liquid limit do not 

contribute as much. However, the modeling of unit debris yield collected from 

small watershed with steep slope (i.e. relief ratio is between 185 m/km and 250 

m/km) appears to be more successful when soil permeability rate and liquid limit 

are included as input parameters. The modeling results achieved by ANN models 

trained with additionally two soil properties - soil erodibility factor and liquid limit 
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especially with the latter parameter are more accurate for estimating unit debris 

yield collected from small watersheds with steeper slope, (i.e. relief ratio is 

between 250 m/km and 305 m/km). Soil permeability rate is the most important 

soil property for simulating unit debris yield from small watersheds with extreme 

steep slope (i.e. relief ratio is between 305 m/km and 375 m/km), soil erodibility 

factor is fair, but liquid limit is the one that has a worse impact on the simulation. 

An ANN model is capable of estimating unit debris yield data from small 

watershed with the steepest slope (i.e. relief ratio is between 375 m/km and 525 

m/km) with higher accuracy even without soil properties as input parameters. The 

comparison between all the best-fit ANN models and the modeling results 

obtained by using the empirical equation developed by the USACE (2000) 

indicates that the training and testing accuracy of the ANN models is 

comparatively higher than that of the USACE method.  

ANN technique is further applied to estimate unit debris yield collected 

from large watersheds with area between 10 and 25 square miles based on four 

input parameters, relief ratio, unit peak discharge, watershed area, and fire 

factor; the same data used by the USACE to create their regression equation. A 

randomly selected four-layered ANN model is able to reproduce most unit debris 

yield very close to their measured values and the simulation accuracy for the 

validation data is as good as that of the calibration data. The USACE also 

developed another two empirical equations; one is for debris basins with larger 

watersheds (i.e. area is in the range of 25-50 square miles), and the other is for 
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debris basins from much larger watersheds with area ranging from 50 to 200 

square miles. A few randomly selected ANN models are trained by the same 

data and excellent modeling results are achieved even without the need of 

searching among a number of ANN models. The accuracy of unit debris yield 

predicted by the ANN models is significantly higher than that of the USACE 

regression equations.   

Through the training of thousands of neural network models in this study, 

a number of major findings regarding the neural network geometry can be drawn 

as follows.  

1. There appears to be an improvement on the modeling accuracy with 

an increase in the number of hidden neurons up to a certain point for 

three-layered ANN models. Although there is some variation in the 

generalization ability of the networks with two hidden layers, there 

appears to be such a trend that increasing the number of the neuron in 

the hidden layers improves the performance meanwhile it increases 

the risk of overfitting. The best ANN model is the one with balanced 

performance between the calibration and validation data.  

2. The ANN models with two hidden layers have better generalization 

ability than the neural networks with one hidden layer most of the time. 

This finding strongly recommends using ANN models with two hidden 

layers as a start for modeling any practical problems. 
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3. The simulation results indicate that the optimal number of neuron in the 

hidden layer is not only a function of the number of input parameters 

but also a function of the number of training samples. 

4. Based on the results from Case 4 to Case 7, the neural networks 

trained by the LM algorithm always achieve smaller errors and higher 

correlation coefficients than the ANN models trained by the BRBP 

algorithm. The reason might be the early termination of the calibration 

process to prevent overfitting by the BRBP algorithm. The modeling 

results also show ANN models trained by the LM algorithm are more 

accurate than both the ANFIS and the GD-FNN model because the LM 

training algorithm is more robust than the combination of back- 

propagation gradient descent method and sequential least squares 

method employed by ANFIS model and Linear Least Squares method 

employed by the GD-FNN model. It is noteworthy that ANN models 

trained by the BRBP algorithm achieve similar performance as the 

ANFIS models and both models always work better than the GD-FNN 

models especially for the calibration data.  

5. Another important finding is more training samples do not necessarily 

improve neural network modeling efficiency. Higher ratio of the number 

of calibration data to the number of connection weights and biases 

does not lead to a better simulation. This study also demonstrates that 

the addition of more input parameters does not necessarily enhance 

the neural network performance.    



 

 219

6. The selection calibration and validation data plays a very important role 

in the neural network modeling success. As a novel approach, the 

clustering subtractive method used for the separation of calibration and 

validation in eight studied cases appears to be a better alternative than 

the random separation. Some studies reported that ANN performance 

deteriorates when the validation data is out of the range used for the 

calibration data. It is not the case in this study because the sediment 

yield collected from Brand Debris basin in the first three cases are 

roughly 2.4 times greater than the maximum sediment yield used for 

training, the best prediction of sediment yield achieved by an ANN 

model in the first case are not accurate enough, but there is an ANN 

model within the second case provided more desirable estimations. 

7. ANN models are viable tools for estimating sediment yield resulting 

from a series of storm event or from a significant storm event. This 

study shows that ANN models provide higher accuracy than the 

MSDPM statistical model for the accumulated debris yield and they are 

also superior to four regression equations prepared by the USACE for 

estimating unit debris yield for watersheds with area ranging from 0.1 

mi2 to 3 mi2, and from 10 mi2 to 200 mi2. The capability of ANN models 

to accurately predict sequent and unit debris yield worth its time-

consuming training process and its easy application for future event is 

another advantage.  
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5.2 Recommendation for Future Study 

The modeling of unit debris yield collected from large watersheds (i.e. 

area is from 10 square miles to 200 square miles) is more successful than the 

modeling of unit debris yield from small watersheds (i.e. area is less than 3 

square miles), the reason is the inclusion of unit peak discharge as input 

parameter for large watersheds. As we all know, peak discharge is highly related 

to debris yield but it is only collected at large watershed. For small watersheds, a 

well-acknowledged runoff simulation tool, Hydrologic Engineering Center – 

Hydrologic Modeling System (HEC-HMS) can be applied to estimate peak 

discharge. It might be a good approach to further improve estimation accuracy of 

unit debris yield collected from small watersheds.  
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