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Abstract

A simple pile-soil-pile interaction model is presented to analyze the nonlinear
response of the grouped piles to lateral movements. The model considers the nonlinear
behavior of soil and gap formation at the soil-pile interface. The grouped pile effects are
developed via friction force of the soil blocks located between piles. The proposed
model is analyzed by solving differential equations using a fourth-order Runge-Kutta
algorithm. Examples of the proposed model with different parameters are presented, and
the energy flow and distribution during the response of the system are examined.
Proportions of dissipated energy by nonlinear behavior of the soil near the piles and by
the friction of soil blocks are presented for various conditions of the pile group and the
input wave. The maximum displacement and bending moment of piles and gaps are
computed for vertically propagating waves with different frequencies and velocities. In
addition, the foundations with rigid mass that represent the building are analyzed to
investigate the energy transferred into the super-structure for different geometries of the
pile group, the number of piles, and the pile spacing ratio. It is shown that different
responses of piles and amounts of transferred energy are generated in the system even

though the same input energies transmitted into a foundation with same dimensions.
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1. Introduction

1.1 General

The analysis of a laterally loaded single pile and pile groups has been the
subject of considerable interest and research in foundation design for bridges, offshore
structures, and machine foundations (Penzien et al.,, 1964; Matlock, 1970; O’Rourke
and Dorby, 1979; Poulos and Davis, 1980; Kagawa and Kraft, 1980; Wolf and von Arx,
1982; Mylonakis et al., 1997; Ruesta and Townsend, 1997). When a pile foundation is
subjected to ground excitation, it interacts with the surrounding soil. In addition, if piles
in the grouped pile system are closely spaced, interactions between piles are generated
because piles are connected via the soil and thus the movement of one pile contributes
to the deflection of the others in group. Thése interactions (pile-soil-pile interactions)
may change the motion of the ground and the response of the total foundation system.
This study presents a simple model of pile-soil-pile interaction for lateral response. The
model includes the nonlinear behavior of the soil adjacent to the pile and creation of the
gaps at the soil-pile interface. The p-multiplier has been commonly used in the analysis
of pile groups. This method is based on the concept that the stiffness of the single pile is
reduced in grouped pile foundations by modifying the single-pile p-y curve with a p-
multiplier (f,,< 1) (Brown et al., 1988). However in this study, the grouped pile effects
are directly developed via the interaction force of the soil blocks located between piles.
The proposed model is analyzed by solving partial differential equations for the
dynamic equilibrium equation of a grouped pile system, including the nonlinearity of

the soil and pile group effects at the same time. The energy flow and its distribution
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Flow and Distribution of Seismic Energy

Potential energy in
the rocks at the source Energy losses :
prior to an earthquake -Heat
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[ Response of a soil- —_———— == — ==
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Relative response of
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Fig. 1.1 An outline of principal stages in the flow of earthquake wave energy.
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during the response of the foundation system are also analyzed using a vertically
propagating wave.

Figure 1.1 outlines the principal stages in the flow of earthquake wave energy,
from the earthquake source to a structure (Trifunac et al., 2001). This study focuses on
the fifth stage, the energy ’ﬂow and dissipation by the response of a soil-foundation-
structure system. The pile-soil-pile system begins to respond when the incident
earthquake waves propagate into the foundation. The transmitted incident wave energy
is reduced by the nonlinear response of soil in the soil-pile interface (Luco et al., 1985;
Todorovska and Trifunac, 1991; Trifunac et al., 1999, 2001) and by the interaction
among piles. Figure 1.2 shows the problem under consideration. A pile foundation with
a rigid pile cap is excited by a vertically incident wave. The wave propagates into the

foundation system and induces the pile-soil-pile interaction.

Pile Cap
]

4 v

Pile

Seismic
Wave

Fig. 1.2 Sketch of pile group in soil medium excited by a vertically incident wave.
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1.2 Literature review

A number of numerical methods that can be used to analyze pile-soil-pile
interaction have been developed in two ways: (1) approximate analysis based on the
superposition of interaction factors where the interaction between piles is considered
separately in forming the flexibility matrix of the entire group, and (2) direct analysis
using techniques such as finite elements where all piles of the group are considered to
interact at the same time.

Novak (1974) and Novak and Nogami (1977a, 1977b) considered a continuous
model based on the Winkler assumption for the soil. They used a linear elastic model in
which only horizontally propagating waves were considered in plane strain analysis.
This work was extended by Novak and Aboul-Ella (1978a, 1978b) to the case of a
layered medium. Novak and Sheta (1980) proposed including a cylindrical annulus of
softer sdil and inner weakened zone around the foundation in their plane strain analysis.
Nonlinearity of soil, as well as the weakened bond and slippage, were presumed to be
accounted for by a reduced shear modulus and increased material damping of the inner
layer. This approach yields closed-form formulae for all vibration modes and is suitable
for higher frequencies. However, the stiffness can be underestimated in the low
frequency range because the soil stiffness approaches zero as the frequency tends
toward zero. In this model, separation is not allowed between pile cylinder and soil
medium.

Wolf and von Arx (1978, 1982) used numerical analysis to study the response
of a large pile group for vertically and horizontally incident shear waves and Rayleigh

waves. The soil was modeled with finite elements, and a transmitting boundary was
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used to simulate the effects of the far field. This work was followed by Wass and
Hartmann (1984).

The analytical methods used a linear soil model and showed that the response
of the groups was frequency dependent. El Sharnouby and Novak (1985) described the
static and low-frequency responses of a pile group. The method presented was to view
the whole pile group with the soil as one composite continuum with conditions of
equilibrium that were specified for a number of discrete points. Nogami (1985, 1988)
presented a simple approach to analyzing the flexural vibration of a pile group in the
frequency and time domains. In this approach, a pile group is replaced by a single pile
for the evaluation of the pile-head flexibility matrix.

Han and Novak (1988) calculated the response of piles using the DYNA2 and
PILAY2 computer codes and employed the theory of nonlinear vibration. They
compared their results with dynamic experiments on large-scale models with horizontal
and vertical vibrations. Novak and Han (1990) presented another approach using the
program DYNA3, with a somewhat arbitrary reduction in shear modulus to account for
nonlinear response. Their calculation of single pile stiffness and damping wasis based
on the approach given in Novak and Aboul-Ella (1978). The interaction between two
piles was used to formulate the group complex flexibility matrix from which the group
stiffness and damping were deduced. An approximate account of nonlinearity can be
taken by means of the weakened zone around the footing or pile by adjusting the values
of soil shear modulus and internal damping according to the level of stress. The
impedances of soil computed at ap = 0.3 were used over the entire frequency range from

ap= 0to ap = 0.3 due to the invalid value in the low frequency range. The dimensionless
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frequency, ay, was calculated by ay = wd/V,, where w, d, and V; are excitation frequency,
diameter of pile, and phase velocity, respectively.

Nogami (1992) accounted for the soil nonlinearity by introducing a multi-linear
element for the inner field and a gap element to account for plastic deformation and gap
opening at the pile-soil interface. He also accounted for the group effect and the wave
propagation away from the pile by introducing a far field element. In aforementioned
studies, integral formulation was solved as a boundary value problem involving Bessel
functions with complex arguments.

Makris and Gazetas (1992, 1993) presented an approximate method based on a
dynamic Winkler foundation method and a simplified wave interference analysis to
account for pile-soil-pile interaction. They outlined a detailed multi-step procedure for a
complete seismic soil-pile-foﬁndation-structure interaction analysis. Makris (1994)
presented a solution based on a dynamic Winker foundation model to compute the
response of a solitary pile during the passage of a seismic Rayleigh wave and an oblique
SH-wave. The impedance of soil was modeled with linear spring and dashpot.

El Naggar and Novak (1995, 1996) proposed a model of a pile for lateral
response allowing for nonlinear soil behavior and discontinuity conditions at the pile-
soil interface. They used the interaction coefficients to perform the group analysis using
the superposition approach based on the model proposed by Gazetas and Dobry (1984a,
1984b, 1988). However, their model still led the complicated solution and
underestimation of soil stiffness at low frequencies, in the range of practical interest.

Pender and Pranjoto (1996) considered a simple numerical model to monitor

gap formation by pile head displacement and rotation. Wu and Finn (1997a, 1997b)
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presented a quasi-three dimensional finite element method for nonlinear dynamic
analysis of single piles and pile groups. This analysis was performed in the time domain
and frequency domain using the computer program PILE-3D. To show the pile group
effects, dynamic impedance of the pile group was normalized to the static stiffness of
the pile group expressed as the stiffness of a single pile times the number of piles in the
group. Mori and Hasegawa (2000) analyzed a pile-supported building using a hysteretic
model that was able to consider the material nonlinearity of the soil, but the pile group
was modeled as a single pile.

Ashour et al. analyzed the nonlinear behavior of an isolated pile (1998, 2002)
and grouped piles (2004) based on the concept and assumptions of the strain wedge
model for static lateral loading. By using the strain wedge model, the response
parameters of a one-dimensional beam on an elastic foundation can be characterized in
terms of three-dimensional soil-pile interaction behavior.

O’Neill and his colleague conducted a series of full-scale dynamic field tests as
a point of reference with which to compare the results of numerical analyses
(Dunnavant, 1986). Blaney and O’Neill (1983, 1986a, 1986b) used an instrumented
steel pipe pile to compare measurements with a hysteretic subgrade reaction model.
Brown, Reese, and O’Neill (1987, 1988) subjected a group of steel piles to cyclic lateral
loading. They studied the nonlinear nature of the pile-soil-pile interaction by
comparison with a test of an isolated single pile. Dunnavant and O’Neill (1989) used
full-scale, cyclic, lateral load tests to investigate the effects of scale, including pile
diameters, relative pile-soil stiffness, and the number of loading cycles on the p-y

relationships.
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Han and Vaziri (1992) also conducted dynamic experiments on a full-scale pile
group subjected to lateral loading. They showed a reduction in stiffness and an increase
in damping with increasing frequency. McVey et al. (1998) conducted centrifuge tests of
a group of piles in sand. They presented p-y multipliers for laterally loaded pile groups
based on experimental results. Curras et al. (2001) evaluated the BNWF(beam on a
nonlinear Winkler foundation) analysis method against the recorded response of
centrifuge experiments of pile-group-supported structures.

Trifunac et al. (2001) presented an alternative to the method of response
spectrum in earthquake resistant design. They examined the flow of seismic energy
from the earthquake source, along the propagation path, and the relative response of the
structure. The method was verified by comparison with a model of buildings on rigid

foundations that can experience nonlinear response.
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1.3 Organization of this thesis

Chapter 2 deals with the presentation of the alternative pile-soil-pile interaction
model. The proposed model is verified by comparison with dynamic compliance
functions in previous studies. Examples of using the proposed model with different
parameters are presented in Chapters 3 through 5. Chapter 3 presents properties of the
soil and the pile and the characteristics of the propagating waves used in the examples.
The transmitted energy by incident wave and the balance of all the energies associated
with the response of the pile-soil-pile system are considered in Chapter 4. Proportions of
dissipated energy by nonlinear behavior of the soil near the piles and by the friction of
soil blocks located between piles for different pile-spacing ratios are presented. Chapter
5 describes the movements of piles when a vertically incident wave propagates into the
system. The gaps caused by nonlinear behavior of the soil in soil-pile interface are
computed for 6 x 6, 4 x 4, and 2 x 2 pile group systems. The maximum bending moment
and total displacement of piles are also considered in this chapter. Finally, the grouped
pile effects are investigated by analyzing the responses of different pile groups with the

same dimensions. Chapter 6 presents a summary and conclusions of this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Dynamic pile-soil-pile interaction model

This chapter presents the dynamic pile-soil-pile interaction model and the
derivation of energy equations. To model the behavior of piles embedded in a nonlinear
layer of soil, the soil and pile are divided into segments. The soil around the pile shaft is
divided into two different parts - the near-field element and the soil block. The near-
field elemeﬁt, surrounding the pile shaft, models the nonlinear soil-pile interaction. Two
components, spring and dashpot, are included in the element. The soil block models the
grouped pile effect by the behavior of the soil that is located between piles. It accounts
for the behavior of the soil outside the near-field element, which is the region of strong
nonlinear behavior. Figure 2.1 shows the ith layer of the pile-soil-pile interaction model,
which has three piles in the grouped pile system. Figure 2.2 shows the complete model,

and the deformed shape from a vertically incident wave is illustrated in Figure 2.3.

Ug(i) uifi) (i) us(i) us(i) us(i) Us(i)
ki) I ks(i) k() ks@) ka(y)
o) e o e o) e
pile " soil block pile soil block pile
| I J | l 1 ] | — 11 ]
near field  near field near field  near field near field  near field

Fig. 2.1 Pile-soil-pile interaction model of ith layer.
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Fig. 2.2 Total system of proposed model.
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Fig. 2.3 Deformed shape of system from incident wave.
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2.1 Pile
Piles are modeled as elastic Bernoulli-Euler beams and attached to soil medium.
Vertical displacements are neglected, and pile-soil contact is assumed to be frictionless.

The differential equation for the problem of the laterally loaded pile is governed by

4

o'u .
Eplpa—z—;+mpu+P=0, 2.1)

where

E,I,= bending stiffness of the pile

u = lateral displacement of the pile
ii= lateral acceleration of the pile
m, = mass of the pile per unit length

P = soil-pile interaction force

z = distance along the pile (measured from the pile tip).

Equation (2.1) is solved numerically by discretizing the pile and the layered soil. The
pile is subdivided into a number of elements, and every element is assumed to have a
constant cross section (El Naggar and Novak, 1995). The spatial part of the nonlinear
partial-differenfial equations is reduced to a set of ordinary-differential equations in time
and then integrated in time using a fourth-order Runge-Kutta algorithm. The

corresponding derivatives of u are represented by

13
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4
0 it| _ Uy — AUy +6u‘,‘——41,ti_l +u,_, ’ 2.2)
0Oz | Az

I

where u, is a displacement of the pile at point ; and Az is an interval between two

consecutive points, i, along the pile. Figure 2.4 shows the arrangement of the

discretization points. The values w,, u,, u,,;,and u,, ., arethe auxiliary values.

r T // ] i
R I
A
i - ; é ;, :; ; ------- n;( nxl+1 nxl+2 nxl+3 nx'+4

Ui : m uz us u4 us e Unx Unx+1 Unx+2 Unx+3 Unx+4

Fig. 2.4 Discretization of the pile element.

It is assumed that the pile is simply supported at the tip (z =—L,) and fixed at the pile

cap (z=0). Piles are moving simultaneously with the movements of the incident wave

at the tip and of the rigid pile cap at the top.
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2.2 Soil model

The soil model is divided into two parts. The first part of the soil is the “near-
field element”, which accounts for the nonlinearity of the soil adjacent to the pile. Two
separate components, spring and dashpot, model the behavior of soil in the near field of
the system. The second part of soil is the “soil block™ that accounts for the effects of soil
movement within a group of piles. The frictional force is generated as the soil blocks
move each other, and this force resists the motion induced by the spring force and the

damping force of the soil in the near field.

2.2.1 Near-field element

The soil adjacent to a pile is modeled by springs, &, and dashpots, c. Vesic
(1961) investigated the problem of infinite beam on an elastic foundation by comparing
the results from numerical and approximate analyses with those obtained by means of
subgrade reaction theory (Appendix A). Equation (2.3) presents the relationship
between the stiffness of the soil and the soil characteristics, the flexural rigidity, and the

diameter of the pile:

2
Kiitiar = [0.65)'12 Ed { Z 2} 2.3)
d, V E I, \1-v,

k

initial

where

= initial stiffness of the soil
E = Young’s modulus of the soil

E,= Young’s modulus of the pile

15
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d, = pile diameter

I, = moment of inertia of pile section

v. = Poisson’s ratio of the soil.

§

The dashpots model the energy loss due to hysteretic dissipation. The damping

coefficient of the soil used in this model is shown in equation (2.4). The material

damping of the soil is modeled in terms of the stiffness (%,,,,,) and the damping factor

ratio of the soil (8, ):

= ﬂs ’ kinitial H (24)
where
c¢= damping coefficients of the soil

k

initial

= fnitial stiffness of the soil

B, = damping factor of the soil.

Under heavy cyclic loading, a pile embedded in cohesive soil can be separated
from the surrounding soil, which may lead to a reduction in the lateral stiffness of the
pile. Trifunac et al. (2001) suggested that a hysteretic slip model can simulate nonlinear
behavior of the soil based on full-scale tests of a structure by Ivanovi¢ et al. (2000) and
Trifunac et al. (2001a, b, c). This model leads to a separation, which is caused by soil
compression. The gap between the pile shaft and the soil is modeled using an

elastoplastic load-deflection curve (p-y curve), as shown in Figure 2.5. It is assumed

16
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that the soil does not support tension. P, is the ultimate resistance of the soil

calculated using the standard relations given by the American Petroleum Institute (1991).

The equations for the ultimate resistance of the soil are presented in Appendix A.

P A
Py

k initial

1
loading
Un
P
Py
/
ﬂ/
/
/
/
/
/
/
/
/
/
gap

Fig. 2.5 Determination of gap using nonlinear p-y curve.
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2.2.2 Soil block

The soil behavior between piles is modeled using sliding soil blocks. The
“sliding block™ concept was first proposed by Newmark (1965) to estimate the
permanent displacement of slopes in earth structures under seismic loading. It was
applied to embankments, dams, and retaining walls (Chopra et al., 1992; Gazetas et al.,
1994; Cai et al., 1996; Rathje et al., 2000; Zeng et al., 2000). The presence of Coulomb
friction at the interface of soil blocks yields a nonlinear response of the system to the
forcing functions (Pratt and Williams, 1981). In the sliding block theory, soil is assumed
to be rigid-plastic and sliding along a prescribed planer failure surface. If the forces
transmitted into the soil block exceed the Coulomb friction, the soil block will start to
move (Hundal, 1979; Westermo et al., 1983; Shaw, 1986). This representation is

adopted in this model to account for the shear resistance of the soil between piles.

Faopitl)
—W— (+D) WW—

Fa sottom(i+1)

e Ae— F d_lop( l)

—MW— ) —W\—
Fa sotom(i)

Fd;top(i-]) ——

— MW (-]

F d_bottom(i-1) ————w=

Fig. 2.6 Sliding soil blocks.
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Figure 2.6 shows the sliding soil blocks in the (i-1)th, ith, and (i+1)th layer with
friction force at the top surface and the bottom surface. The friction forces at the top and
bottom surfaces of ith soil block are shown in equations (2.5) and (2.6), and the total
friction force is calculated as the sum of the forces at both surfaces, as shown in

equation (2.7):

Fy o) =p- Ny (D), u@)>u(i+1) 2.5)

Fy op()==p-N,, (), u(i) <u(i+1)

Ey_ponom () = 1+ Nygion (@) » u() >u(i-1) (2.6)

Fd_bottom(i) =—H- Nbon‘om(i) > u(l) < d(i - 1)

Fy(@) = Fy_1op @D+ Fy_pouom () 2.7

where

F,(i)= total friction force of the ith soil block

F, ,,(i)= friction force at the top surface of the ith soil block

F; bonom(i)=friction force at the bottom surface of the ith soil block
u(i)= velocity of the ith soil block
u(i—1)= velocity of the (i-1)th soil block
u(i+1)= velocity of the (i +1)th soil block

19
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u = friction coefficient of the soil

N,,, = normal force on the top contact surface
N,.... = normal force on the bottom contact surface.

N, (i) is determined as the sum of the total normal forces of soil blocks above the ith

soil block. N

boitom

(7) is calculated as the sum of N, (i) and the normal force of the

op
ith soil block. Figure 2.7 shows the plan view of the friction area of soil blocks, which is

emphasized by shading. The angle « is determined by « =¢/2, where is ¢ the

friction angle of the soil.

Direction of motion

Frcition area Pile

Fig. 2.7 Friction area of soil blocks.
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2.3 Equations of motion

Next, we derive the equations of motion of the pile-soil-pile system for
horizontal excitation. The scope of this study is limited to the consideration of only
vertically incident waves. The general excitation and response of a foundation subjected

to a non-vertically incident wave are also presented briefly.

2.3.1 Horizontal excitation and response

Figure 2.8 shows the free-body diagram of a typical element of the deformed
model for » , and w, ;,,, which are relative displacements of a pile and a soil block.
The derivation of dynamic equilibrium equations uses the forces shown in Figure 2.8.

Equation (2.8) shows the equilibrium equation of the horizontal motion for typical

elements of a pile (7, j) and a soil block (i, j+1).

Uij Uij+1

- i

—_— m:i;tvi‘iﬂ

ki [ui.j-l-ui,/‘] kim [uz,j-uml] ki [ui,/-ui,j+1] ki [Ui,j+l-uiJ+2]
B Eamm S
B — -

Cij [ftu-l-ili,j] Cij+t [l.liJ-T:liJﬂ] Cij+l [ilij-iluﬂ] Cij+2 [ilun-itmz]

F
EI ( 64111'.;/62 4) d ij+1
Pile Soil Block

Fig. 2.8 Free-body diagram of the deformed model.
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4

U,
i,j -
EpIp 624 +mput ij + [ lj I] 1 C‘ +cl ]+1)u1 7 ci,j+1ui,j+1]

[+ Chyy + h o, — K it ] = O

LI At B B i,

M, ;0 + l €y jaitly j (€, juy + €1 jua Vi —ci,j+21’.ti,j+2J
+ [ kz]+1u11 (k S ‘,j+2)ui,j+l —ki,j+2ui,j+2] + Fd_i,j+1 =0
(2.8)
where
u, =t
u, ,,= absolute displacement
u;, = relative displacement
u, .= ground displacement

E, I,= flexural rigidity of pile
m, = mass of pile
m, = mass of soil

§

k,, = stiffness of soil in the near field

¢, ;= damping coefficient of soil in the near field

F, ;= friction force of soil block located between piles.

Equation (2.9) shows the dynamic equilibrium equation of motion in the horizontal

direction for the pile-soil-pile system in matrix form.
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m, 0
0 m 0
0 0 m
o : :p
0O 0 0
0 0 0
—ci,l +¢, Cia
—Cin CiyFCis
0 —C5
+ .
0
i 0 0
—ki,l + ki,?. - ki,2
- ki,Z ki,2 + ki,3
0 - ki,3
+ .
0
0 0
i o*u,, /02" ]
0
o*u,,/ 0z
+ EI ” +
0
_64u,.,m /oz* |

0 of U i
0 0 4,,
0 0 U 3
s O iit__i,m—l
0 m,| i ;,
0 e 0 0 T
—C3 0
cr 3 + ci,4 O
0 Ci,m—l + Ci,m - ci,m
- ci,m ci,N + ci,m+1_ L
0 0 0 ]
k., 0 0
ki;+k , 0 0
0 e ki,m—l + ki,m - ki,m
- ki,m ki,m + ki,m+1
o 1 [o]
Fy s
0 3 0
Fd_i,m—l 0
0 | 1 0]

2.9)
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2.3.2. General excitation and response

When the vertically incident waves excite a flat foundation on the ground

surface, the foundation input motion f{u,}, corresponds to the free-field motion.

However, in the case of an embedded foundation subjected to a non-vertically incident
wave, the horizontal, vertical, and rotational motions are all present in the foundation
motion. This motion is different from the free-field motion because the presence of the
foundation modifies the free-field ground motion through diffracted and scattered waves.
The differences between the above two cases are larger for short incident waves and for
more deeply embedded foundations (Luco et al., 1975; Avilés et al., 2002).

Figure 2.9 shows the deformed shape of a pile foundation system considering
horizontal, vertical, and rocking motions. The pile foundation is supposed to be located
inside the “rigid massless box”. The box is moving in the horizontal and vertical
directions and rotating without deformation because the length of the input wave is

assumed to be long (low-frequency wave). This figure shows the resultant forces inside

the “box” {Fb}, acting at the point O and the absolute displacements of the

foundation {u, }, which can be described as

EY=[r, B2, M) (2.10)
fu b=y }+ o} @.11)
ut=b.. u, 81" 2.12)
=0 w, 8] 2.13)
o=l w0 B1" 2.14)
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where

{uc}= absolute displacement of the foundation
{ub}= relative displacement of the foundation due to {F} }

{u,}= input motion of the foundation.

The resulting input motion, {uo}, consists of the horizontal and vertical displacements

u, and v, atthe center of the base, respectively, and the rocking motion ¢, about the

transverse axis relative to the radial direction of the earthquake. The relative

displacement vector of the foundation is given by
fu}=[c@]-{F}, (2.15)

where

Cp (@) Cry(@) Cp(®@) \
[C@)]=|Cpp (@) Ciy(@) Cpy(®) (2.16)
CMV(a)) CMH(a’) CMM(a))

is the compliance matrix of the foundation.

Figure 2.10 (a), (b), and (c) show the deformed shape of the pile foundation and
the displacement of a typical element (i, j). The positions of the element are denoted as
(1), (2), and (3) in this figure. The element moves from (1) to (2) due to the rigid body

motion of the box (Figure 2.10 b and c). It is then deformed to (3) from (2) by the force
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Fig. 2.9 Deformed shape of a pile foundation system.
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Fig. 2.10 (a) Deformed shape of the pile foundation and a typical element (i, j).
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Fig. 2.10 (b) Deformed shape of the pile foundation and a typical element (3, /).
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Fig. 2.10 (c) Deformed shape of the pile foundation and a typical element (3, j).
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{F } acting on the element. The displacements of the element shown in the figure

b_i,j

are follows:

V., =v.+v,,+v, 2.17)
U,=u+u, +u, (2.18)
v, =4 ,-sing, (2.19)
U, =u cosg, (2.20)
V., =V.+¥,,+V, (2.21)
U, =i, +ii, , +i, (2.22)

‘.).i,j = ii;,j ' Sin ¢c + u;,j ’ (2¢c Cos¢c) + u:,j : (¢.c COS¢C - ¢c‘2 Sin ¢c) (223)

iii,j = iii,,j ’ cos¢c - il;,j : (2¢c Sin ¢c) - ut(,j ' (¢c Sin ¢c + ¢c2 cos¢c) > (224)

where

V. = total displacement of the element (4, j) in z direction

1,]

U, , = total displacement of the element (i, j) in x direction

u; , = relative displacements with respect to the box in x' direction

1’

due to forces {Fi, j} acting on the element (7, /)

<
It

z component of the relative displacement u;

S
il

x component of the relative displacement ; ,
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v, , ;= displacement in z direction due to rotation of the box (¢, )

a_i,j
u, ,; = displacement in x direction due to rotation of the box (4, ).
The displacements in the horizontal direction (x direction) and in the vertical direction

(z direction) due to rotation of the box (g, ) are

u, ,;=h -sing —d,  -(1-cosg,) (2.25)

Vo ij = hi,j -(1-cosg,) +di,j -sing, (2.26)

a_

i, ,=h, (¢c cosg, — @’ sin ¢c)— d- (¢c sing, + ¢} cos¢c) (2.27)

V, . =h,- (¢c sing, + @7 cos¢c)+ d,- (¢c cosd, — @’ sin ¢C), (2.28)

where d,,, h_, are the distances from the reference point O to the original position of

ij> Ty
the element in the horizontal and vertical directions, respectively.

The equations of motion for the foundation then are derived for the typical
elements of a pile (4, j) and a soil block (i, j+1). Figure 2.11 shows the free-body
diagrams of the deformed pile and the soil block elements. The figure includes all
horizontal (x-direction) and vertical ( z -direction) forces and all of the moments. The
axial-deformations of the pile and of the soil block are assumed to be small and will not

be considered.
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Fig. 2.11 Free-body diagram of the deformed model of the typical elements.
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F, , ., is the friction force of the soil block in the i-th layer. Figure 2.12 shows the

d_i,j+

friction forces of sliding soil blocks. F, ., ., and F, , . are the compression forces

at the top and bottom surfaces of the i-th soil block. Those are defined as

Fy g =Fe sy =& =V ) (2:29)

Fyyn=Fo sy (87, ), (2.30)
where

m, = mass of a soil block

v, total acceleration of the i-th soil block in z direction

i

g = acceleration of gravity (z direction).

F c_i+2j+1
top
F d i+1j+1
aw
Vi+1,j+1 l (j+ I
F bottom
divlj+1
F ¢ i+1j+1 L

F c itlj+l -

F dij+l
-
Vi,j+1 (j)
Fbonom
d ij+1
F ¢ ij+l l
F c_ij+l @
F d_i-1j+1
.
Vi-l,/u (i— D)
b
F dil:;n,jﬂ

Feiaj L

Fig. 2.12 Friction forces of sliding soil blocks.
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The friction forces at the top and bottom surfaces of the soil blocks are

defi,jﬂ =+u- F'c__i+l,j+l’ u;,jﬂ > 1"[;+1,j+1 (2.31)

th(ﬁ,jﬂ =—H Fc_i+1,j+1 ) u;,j+1 < 7;’;+1,j+1 (2.32)

Ffa =+ B s 0 > U (2.33)

deitil,ojﬁl =—H Fc_i,j+1 > u;,j+l < u;—l,jﬂ > (2.34)
where

F* ., = friction force at the top surface of the i-th soil block

Fjoin, = friction force at the bottom surface of the i-th soil block

u = friction coefficient of the soil.

The total friction force acting on the soil block is the sum of the friction forces at both

surfaces.

F — Ftop + Fbottom (2.35)

d_i,j+l d_i,j+1 d_i,j+1?

where F, , ., is the total friction force of the i-th soil block.

The equations of motion are derived based on the displacements shown in
Figure 2.10 and in terms of the forces shown in Figure 2.11. The dynamic equilibrium

equation of a typical element of the pile (i, j) in the horizontal direction (x direction) is
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4 1
oy gt U
5 cosg, +m,U, ,

14

4
+[l, e~ ) 0056, + K, 0, ~1, ) cos ] 236)
+ [ci,j (u:/ - u;,j—l)cos 4.+ ci,j+1(u;,j - dx(,j+l)cos¢c] =0.

The equation of motion for a typical element of the soil block (i, j+1) in the horizontal

direction is

Fd_i,j+l cosg, + msUi,j+1
[kl o =] )cos .+, .oy~ ,.3)c058,] 2.37)

+ [ci,j+1(u:,j+1 - d;,j)cos¢c + Cijv2 (i’;,j+1 - 1’.’;,]+2)COS ¢c] =0.

The dynamic equilibrium equations of typical elements of a pile (i, j) and of a soil block

(i, j+1) in the vertical direction (z direction) are shown in equations (2.38) and (2.39):

o', i .
EI P sing, +m,(g-V, )
+k, @, —ul,)sing, + G, —u,)sing,] (2.38)

+ [ci,j(u;,j - u;,j—l)Sin g+ ci,j+1(1’21{,j - z’.li,,j+1)Sin ¢c] =0

F,  jasing +m(g— Vz j+1)
+ [ki,j+l (W 1 =1, )SING, + K 15 (U g =1 5.5 ST0 ¢C] 39

+ [ci,j+l(u;,j+1 - u;,j)Sin g+ Ci,j+2 (7’.‘;,;+1 - z"’x‘,,]a»z)s'in ¢c] =0.

The moments of inertia of the pile and soil block elements about the reference point O
are
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I, i =150 ++ hi',zj + di',zj (2.40)

I

s =do+ h,.'jﬂ + di’,zj+1 , (2.41)
where
I, ,,= moment of inertia of the typical pile element (4, j) about
the reference point O
I,, = moment of inertia of a pile element (i, j) about the center of mass
of the element
I, , ;.= moment of inertia of the typical soil block element (i, j+1) about
the reference point O

I, = moment of inertia of a soil block element (7, j+1I) about the center

of mass of the element

H ;= distance from the point O to the deformed position of the element (i, /)

in the vertical direction

S
I

; ;= distance from the point O to the deformed position of the element (i, /)

in the horizontal direction

The displacement of an element is assumed to be much smaller than the distance from

the reference point O to the undeformed position of the element (4, ,d, ;). Thus, the

e
distances and the moment of inertia of the pile element and the soil block can be defined

approximately as
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d ~d (2.42)

’ ~
hx',j ~hi,j’ ij = Y

1, 4= 1 +\/hi2,j +di?j (2.43)

(2.44)

_ 2 2
Is_z‘,j+1 - Iso + hi,j+1 +di,j+1 .

The equilibrium equation of the moments acting with respect to the point O is shown in

equations (2.45) and (2.46). The equations for a typical element of the pile (4, j) and a

typical element of the soil block (i, j+1) are

Ip_i,j¢c +
4 1
[ EIa % cosg, +m U
6214 [4 P
+k, j(ui',j _u:,j—l)cos¢c + ki,j+1 (uz’] - u;,j+1)cos¢c

+ ci,j(a;,j - d;,j-x)cos¢c + Ci,j+1(7'.‘;,j - d;,jﬂ)cos #. ]X hi,j +
o'
[ EI 82’:] sing, +m,(g -V, )

+k (u, —u  )sing, +k, . (w —u ., )sing,

+; (@ = )sing, +¢; (1, i ;,,)sing, ]X d,;=0
(2.45)

Is_i,j+1¢c +
[ Fy cosd, + mU, .

+ ki,j+1 (u;,j+l - ui,,j)cos¢c + ki,j+2 (u:,j-kl - u;,j+2)cos¢c

+ ci,j+l(u;,j+l - d;,j)cos¢c + Ci j+2 (ai,,jﬂ - d:,j+2)cos¢c ]X hi,j+1 +
[ qui,j+1 sin ¢c + ms(g - I/i,j+1)

+ ki,j+1 (u;,j+1 - u;,j)Sin ¢c + ki,j+2 (u;,j+1 - u;,j+2)Sin ¢c

+ ci,j+1(u;,j+l - i‘;,j)Sin g, + Cijv2 (u;,j+1 - d;,j+2)Sin é. ]>< di,j+l =0.

(2.46)
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The dynamic equilibrium equation for the i-th layer is expressed in matrix form as

follows:

.y .t
M, M, M, | M1 D, D, Dj |t
et .y
M, M, M, - u, | + Dy Dy Dy | 4
ot .y
My My, My - |li;, v Dy Dy Dy i
i
K, K, K; U 1 4 K
!
+ K, K, K, - u, |+ 4, |=| F,
!
K; K; Ky Ui jn 4 F,
I : e _:_’
(2.47)

where the components of the matrices are

M=m -(h  cosd +d,;_sin 4.)

M,=0
M13=0
M, =0

My, =m,-(h ;cosg, +d, sing,)

M, =0
M, =0
M, =0
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My =m- (hi,j+l cosg, — di,j+1 sing,)

D, =(c,,,+c, ) (h ,cosg,+d, _sing)—2¢m,-(h _sing, +d,,_ cosd,)
Dy, =-c¢, - (h _ cos g.+d, , sing,)
D;=0
Dy =~c, ;- (h cosd,. +d, sing,)
D,,=(c,,+c, 1) (h cosg, +d, sing)—24m,-(h sing, +d,  cosg,)
Dyy=—¢, ;- (b ;cosd, +d, sing,)
D; =0
Dy, =—¢; ;- (B, c088,+d, ,,,sing,)
Dy =(¢, 11+ 6 jua) (B, c088, +d, , sing,) - 2¢,m - (h ;.. sing, +d, ;. cosg,)
K=tk ;) (h, cosg +d  sing)
—m, (4 sing, + g cosg) b, + (@ cosg, - Fsing) - d, |
K, =k ;e (h, ;-1€0S é.+d; - sing,)
K,;=0
K, =-k - (hi’j cosg, + di,]. sing,)

Ky, =(k;+k ) (h cosg +d sing,)

H

- mp : [(&c Sin¢c + ¢52” cos¢c) ' hi,j + (&c cos¢c - ¢25 Sin¢(:) : di,j]
Ky = _ki,j+1 '(hi,j cosg, + di,j sing,)

K5 =0
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Ky ==k ju (B 0088, +d, |, sing,)

Ky =(k, otk ) (B, co88,+d ,, sing,)
- mp ' [(¢c Sin ¢c + ¢20 COS¢0) ) hi,j+1 + (¢.c cos¢c - ¢20 Sin ¢c) ) di,j+1]

4 = le_i,j—l C05¢cJ' hi,j—l + I_Fd_i,j-l sin ¢0J di,j—l

oM’ o'’
A2 =[EI_5%LCOS¢C}'hP] +{EI aul,] Sin¢”:l.di’j

Zr4

A3 = le_i,j+1 COS¢CJ- hi,j+1 + le__i,j-H sin ¢cJ di,j+1

k= _[s_i,j—l : &c
—m; [ﬁc + hi,j—l ' (¢c COS¢c - ¢c2 sin ¢c)_ di,j—l ' (¢c sin ¢c + ¢c2 COS¢c )] hi,j—l
—m; [g -V, - hi,j—l : (¢c sing, + ¢02 COS¢C)-— di,j——l ’ (¢c cosg, — ¢c2 sing, )] di,j—l

F,=- p_ij @,
_mp[iic +hi,j (¢c COS¢C _¢c2 Sin¢c)—di,j (¢c Sin¢c +¢02 COS¢0) : hi,j
—m g, —h,-(f.sing, +F cosg,)-d, - (¢ cosg, g sing, )|- d,

F=-1 i j+ ¢c
—m i, + b, (f.cosg, — F sing,)-d, ., (.sing, + 42 cosg )| 4, .,
—m [g -V, - hi,j+1 : (¢c sing, + ¢c2 COS¢C)-— di,j+1 : (¢c cosgd, — ¢02 sin ¢c) ) di,j+1 .

In the above equations, terms involving @ have been neglected because the rotation is

assumed to be relatively small. Then, the vector {F}, can be expressed as
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K B,
F,|=|N, N, Ny|i,|+|B, (2.48)
Ny, N, B,

2

where

s i
Ny, =-m, 'hi,j-l
Ny=-1, ,,,—m, [hfj_l -cosg, —2h, ,_d, ., sing, —d;,_,-cos ¢C]
N21 =m,- di,j
Ny=-m,-h,
Ny =—1I, ,,—m[i,-cosp, —2h, d,,-sing, —d?,-cosg,|
Ny =m, 'di,j+1
Ny, =-m,- hi,j+1
Ny==I_;;n—m, [hi?jﬂ -cosg, —2h, ;,d, ., -sing, — dfj+1 : cos¢c]

BZ——mp-g-di,j
B, =-m, 'g'di,j+1'

The forces inside the “box”, and their resultant {Fb} acting at the point O’ are shown

in Figure 2.13.
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=

'resultant forces acting
inside the box'

zl
F c_lm-1 kl.m+1 - u'l
\m+g
F clm +C'1,,,,.,. 7 ur]
£ 1?2:",’,,”: y T
‘ — =
/ £7y (o u’ m/az') 7 _
J=m-; /
J=m 'rigid massless

box'

Fig. 2.13 Resultant forces acting on the “box”.
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The forces are defined in terms of the forces and displacements shown in Figures 2.9,

2.10, 2.11, and 2.13.

=[R2, M), (2.49)

where

(m+1)/2 4 1 (m+1)/2-1

U oitom
F'= Y EI 8;2j —2sing, + Y F;’\5sing, +ZFC L

J=1 J=1

, . .
+ Z[ i1 ul  t S uz 1t ki,m+l U a1 + Cimet " ui,m+1:|SHl ¢c

(m+1)/2 84 ' (m+1)/2-1
F'= > EI LRt o054, + > Fy cosg,
j=1 Jj=1

. ‘
! .f ] !
+ z[ki,l Uy Uy Ky U g FC '”i,m+1]cos¢c
i=1

M.=F-d, +F -h,.
The equilibrium equation of the “massless foundation” is
{E1={r}, (2.:50)

where {Fs} is the resultant force with which the half space acts on the foundation. This
equation does not have an inertial force term because the foundation is assumed to be a

massless box. The resultant force {F},}, shown in equation (2.49) is next transformed

into matrix form as,
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SRR -
L U,
. !
Uy, Uy
5 :
F; ul ul
* ,1 * ,1
F'l=| D T I ol I e
Mb ul,m ul,m
o 3x2 i 3x2 ! 3x1
x2n uz,m x2n u2,m
.y '
U
_u"’m_anl L7 120x1
2.51)
where
cl,l Sin ¢c cl,l Sil’l ¢c cn,l Sil'l ¢c cl,m+l Sin ¢c c2,m+l Sil'l ¢c cn,m+1 Sin ¢c
[Dt cl,l cos ¢c c2,l cos ¢c cn,l €os ¢c cl,m+l cos ¢c c2,m+l cos ¢c Cn,m+1 cos ¢c
¢ (dy sing, ¢, (dy, sing, Coa(d,sing,  ¢,,(d,, SiNG.  Cp,(dy, SING, Comar (dy SING,
_+ hl,l cos ¢c) + hZ,l cos ¢L‘) + hn,l COoS ¢c) + hl,m cos ¢c ) + hl,m Cos ¢c) hn,m COos ¢c )
kl,l Sin ¢c kZ,l Sin ¢c kn,l Sin ¢c kl,m+1 Sin ¢c kZ,m+l Sin ¢c T kn,mﬂ Sin ¢c
[K" _ kl,l cos¢c kz,x cos¢c kn,l €os ¢c kl,m+l cos ¢c k2,m+l €08 ¢(: e kn,m+l cos¢c
kl,l (dl,l sin ¢c k2,1 (dl,l Sin ¢c kn,l (dn,l sin ¢c kl,m+l (dl,m sin ¢c k2,m+1 (dZJn sin ¢c kn,m+1 (dZ,l sin ¢c
_+ hl,l COS¢0) + h?.,l €os ¢c) + hn,l COS¢C) +hl,m cos ¢c) + h’l,m COS¢D) hn,m COS¢C)
[ o', o'u o'u),, . |
EI Lsing, + EI—=> - 4 2sing, +---+ El sing,
ozt Oz ozt
+ F;'_Jllt,';.m sing, + F, bmmm W sing, +---+ F;a;m;:xn-l sing, +F, |+ F, ,++F,
64 u/ 64 r 4 ur
EI—Lcosg, + EI—2cosg, +---+ E[—2"cos
{G}= a /4 ¢ az ¢ 6214 ¢C
+F17 CoSg, + Fyo17 cosg, +---+ F; 1o cOS P,
64 ul 64 ur 4 ! )
EI s —Ld, sing, + EI—2 par 2 d, ysing, +---+ EI—d, , sing,
|+ F;"_”l”“z"'dl,2 sing, + F,°\0d,  sing, +---+ o d,, sing, +F, dy, +F, ,d ,+—+F, ,d,
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From equations (2.11) and (2.15), the absolute displacements of the foundation {uc},

and its second derivative with respect to the time {ii, }, become

v.| [w] [Cwl(@) Cu@ Cul@)] F
U, |=| 4y |+| Cip (@) Cpy(@) Cpp(@) || FY (2.52)
¢ %, Cur (@) Cpyy(@) Cppy(@) | M

\Z Vy CVV (w) CVH (w) CI/IM (w) E
i | =\ |+| C(@) Cyg(@) Cpy(@) E (2.53)
6] ] |Cw@ Cu@ Cpu@)]| M

The second derivative of the resultant force {F},} is developed from equation (2.51) as

follows:

F;b 8 thyy i
Brol=lg] ¢ |+[1+k) ; + R0+ 1k
o, /or
o] s |+l
ou,,,,/or

(2.54)

The matrices in the above equation are obtained from the first and second derivatives of

the matrices defined in equation (2.51):
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cl,l¢c COS ¢,
- cl,1¢c Sin ¢c

Cl,l¢c (d1,1 cosg,

| —hy,sing,)

[ kl,l&c Cos ¢c
- kl,l%c sin g,

kl,lé‘c (dl,l Cos ¢c

|~ hsing,)

01,1¢c cosg,
- cl,l¢c Sil’l ¢c

¢, 8. (d,; cosg,

—hy, sing,)

| kl,l¢c COS¢C
- kl,l¢c sing,

kl,l¢;c (dy, cosg,

_— hl,l Sin ¢c)

cn,m+l¢c €Os ¢c
- cn,m+l¢c Sin ¢c

cn,m+1¢.c (dn,m Cos ¢c
- hn,m Sin ¢c )

kn,m+1¢c cOs ¢c
- kn,m+1¢c Sin ¢c

kn,m+l¢'0 (dn,m Cos ¢c
—h,,sing,)

cn,m+l¢c cos ¢a
- cn,m+l¢c Sin ¢c

cn,m+1¢c (dn,m cos ¢c
- hn,m Sin ¢c)

kn,m+l¢c Cos ¢c
- kn,m+1¢c Sin ¢c

kn,m+1¢c (dn,m Cos ¢c
- hn,m Sin ¢c )

13x2n

A32n

13x2n

13x2n

(2.55)

(2.56)

(2.57)

(2.58)
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62 a4u’ 64 '
B 2512
61‘2(52 ] ng. 28 [ ]¢ 059,

4 I

J'u
+EI
oz

¢ cosg, +-
+F ;i’;’”z”’ sing, +2F, ”"”""’yﬁ cosg, +F, b"”"’”¢ cosg, -

+F_1,1+"'+Fc Lm

c

62 a4u/ a a4ul .
El— —2E]—
aﬂ( o ] .28, ( Pz ]¢° sing.

{G} = 0 4”; 1

—El— éfcsin¢c+---

+ F PO cos g, — 2F;"’§";’”¢ sing, - F, ”"”"’"¢ sing, --

az a4ur ) a 64 r
EIEZ—(BZ%}ZU sing, +2EIa [ p. R “¢ cos g,

84 ’
l 1 7
6’4 11¢CCOS¢C+...
bottom bottom bottom
+Fd 12d1251n¢c+2F 12¢ cosg, +Fd°,2a’12¢ cosg,

L+ F _1,1d1,1 +"'+F l,mdl,m

c c_

+ E] —+

(2.59)

The absolute rotation of the foundation is calculated from equation (2.52):

¢, =@y + Copp (@) sz +Chpy (@) - Fxb +Cyps (@) M: . (2.60)

This equation is expanded by equation (2.51):
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$. =, +Cpp (@) - [01,1 sing, - d{,l toeee k1,1 sing, - u{,l toeee

+ EI(0*u},/82'*)sing, +---+ F"[y sing, +---+ F, |, +-- ]
+ oy (@) Jer,co8g, -t ++- 4k, cOSG, 1+ + EI(0*], /82 )cosg, +--]
+ Cypy (@) - [cl,l(dl,l sing, + h, cosd,)- 1’.‘1’,1 +eo 4k (d) sing, + hy cosg,) - u1',1 +

ot EI0*,/82*)d, sing, +--+ FL0d, sing, +--+F, i, +--].

c

(2.61)
For the small rotation of the foundation, the sine and cosine terms can be approximated as
sing, ~¢,, cosg, =1 . (2.62)

Then, equatibn (2.61) can be simplified as

b+ Co(@)-[F, -]
+ Cog (@) fer il + -+ e il 4+ EI@", 1 02*) +- ]
+ Cype (@) - [01,1h1,1uf,1 ey By et F, .4+ ]
1= Cpp (@) ety ++-+ el +-++ EI3*, 182 + -+ FL 4.
= Cyps (@) [cl,ldl,lil{,l teeet kl,ldl,lul’,l +e

+ EI@U,/02")d,, ++-+ FId,, +-- ]

¢. =

(2.63)

The terms of absolute displacement of the foundation (v,, u,, 4,) in the dynamic

equilibrium equation (2.47) are eliminated by using equations (2.54) and (2.63).

Equation (2.47) becomes
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** Kk % .y ok % ok .t
M, M, M; - U; iy o Dy Dy Dy ooee Ui
*k Aok ok .ot *% *¥ *k .t
M, M, My |4, |+ Dy D, Dy - U; ;
Kk *% *k vef Ak ok *k .y
M; M, My, - U w1 -+ Dy D5, Dy Ui

[ : T 7077787
K7 Ky K | 47| | B
e KKy KD | |64 (=B
KK K || |47] B

(2.64)

where the vector {F **} is

E'| |Ny Ny Ny l||[%] [Cr@ Cu@) Cpl@)] F
by |+| Cpp(@) Cyy(@) Cpy (@) Fxb +
F;* N. ; I N. ;; N. 32 N Cu (@) Cp(w) Cp (@)l M :

R

(2.65)

The matrices ([M **], [D” , [K“], and [N “]), and the vectors ({A**} and {F},}) are

functions of &%, ;/or, i ,, 4, and u . Therefore, if the compliance matrix for

the foundation is known, the whole problem can be solved by using equations (2.64)
and (2.65). These equations can be solved by a numerical method rather than by
classical methods because they are highly nonlinear equations.
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In this study, only vertically incident waves will be considered for analysis. The
input wave is assumed to be the same as the free-field motion, and the diffracted and
scattered waves will be ignored. The deformations will be assumed to be small, and
therefore the geometric nonlinearity will not be considered. The vertical and rocking
motions of the system will be the subjects of future studies. With those restrictions,

equation (2.65) becomes

s i,j—
E = =m, b, |, +Cpy(@)- ¥}, (2.66)
" - ms ' hi,j+1

sz[kl,v ks K

x 1,m+1°

oo,k

n,m+1

[ &%), /or
&ul, 18
oul 10

+[cl,1’ t Cus Crmyrs T cn,m+l]

_63u,’,’m Jor ]
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2 (% 2 (8% 2 (5%
oy g T I A A N PO Ll A
+ o\ oz o\ oz ot*\ o7
+ B BT e
(2.67)

By using equation (2.66) and neglecting the rotational and vertical displacement,

equation (2.64) can be simplified as

v
mg-h 1 0 0 K
oy
0 m,-h 0 el
t
0 0 mg - hl,j+1 ui,j+1
-
(ci,j—l + ci,j) ) hi,j-—l —C ;" hi,j—l 0 A
.
o _ci,j'hi,j (ci,j+ci,j+1)'hi,j "ci,j+1'hi,j A
-f
G’ hi,j+1 (ci,j-H + ci,j+2) . hi,j+1 | K
- i § -
’
(ki,j-l + ki,j) ' hi,j—l - ki,j ) hi,j-l 0 | Y
!
+|- —ki,j'hi,j (ki,j+ki,j+1)'hi,j _ki,j+1'hi,j ) Ui
’
0 - ki,j+1 ’ hi,j+1 (ki,j+1 + ki,j+2) : hi,j+1 I |
Fd_i,j-—l 'hi,,-—l m 'hi,j—1 —m 'hi,j-l Uy
4 1 14 A .
+|EI@', 102 b, |+| m, B, {(Co(@)- B2 }=| —m, -, il
Fy iin 'hi,j+1 m - hi,j+l —m 'hi,j+1 Uy
(2.68)
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The vertical distance of the above equation /4

, ;> can be canceled out, and by using

equation (2.67) the equilibrium equation (2.68) becomes

vy
m, 0 O i;
-
0 m, 0 i; ;
o
0 0 m U; i1
.
(¢ te; ) -¢; 0 S
)
e =G (ci,j+ci,j+1) —Cijn T
.t
0 =€ (ci,j+1 + Ci,j+2) o Ui g
1
(ki,j—l + ki,j) _ki,j 0 | Ui g Fd_i,j‘l
! 4. 1 14
+.- —ki,j (k,.’j+k,-,j+1) _ki,j+l ol |t EI(0 ui,j/az )
!
0 _ki,j+l (ki,j+1 +ki,j+2) | Ui ja Fd_i,j+1
r .y vy ey vey 3
- ky iy, ootk gt Ky il ootk il
631/!1' 1 asu; 1 a3u1’ m a3u,’1 m
my +¢, 3 +etC,, at3’ + +cl,m+l 63’ +- nm+l 6t3’
+Cop(@)-|m >
HH( ) §/ az 647"1,1 az a4u1/m
m, ||+ El— m +---+EI—2 ”
k o\ oz ot | oz
L r~bottom rrbottom
\+ Fd_1,2 +ooot Fd_l,m—l )
= —mp .uo
- ms : iiO
L J
(2.69)
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If the soil in the half space is assumed to be infinitely stiff, the terms of compliance
matrix are zero - i.e., the soil-structure interaction of the box is ignored. Then equation
(2.69) becomes (2.70), which is same as equation (2.9) and which will be used in all

computations in this dissertation.

- T =
mo 0 0 |l
0 m, O i ;
0 0 m, T
- : : | E -
g T:7
(ci,j—l + ci,j) - ci,]: 0 u;,j—l
R —C; (ci,j +ci,j+1) —C ul’_]
0 —Cin (Cjn*C ) 7’.’;,;+1
L . AL : J
(ki,j—l + ki,j) - ki,j 0 tt u;,j—l
A _ki,j (ki,j +ki,j+1) _ki,j+1 u;,j
0 - ki,j+l (ki,j+1 + ki,j+2) h u;,j+1
Fd._i,j-l —m, i,
+| EI(0*u; 102"y |=| - m, - i,
Fd_i,j+1 —m, i,

(2.70)
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2.4 Dynamic compliance of proposed model to horizontal excitation
The properties of the proposed model are studied by comparison with

compliance functions presented by Luco et al. (1971, 1972) for horizontal oscillation of

a rigid disc placed on an elastic half space. When the horizontal force F,-e'® acts on
the footing, the response is given as
u(t) = F,-Cppy (i) - = F, -|Cpp(i@)|- 0, (2.71)
where |CHH (z'a))] = \/ [R(:(CHH)]2 + [Im(CHH)]2 and (2.72)
S = tan‘l[M} , (2.73)
Re(Cpy)

where

Re(C,;;) = real part of horizontal compliance function
Im(Cy, ) = imaginary part of horizontal compliance function
F, = amplitude of input force

w = circular frequency of input force

u = displacement.

Figure 2.14 is a plot of the normalized compliance function for the horizontal

translation for different amplitudes of input force (F, =10kN, 20kN, 30kN, 40kN,
50kN, and 60kN ) and for different damping factors in the soil ( £, =0.02, 0.03, 0.04,

and 0.06). The compliance function by Luco et al. is shown by a thick gray line.
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Fig. 2.14 Dynamic compliance function of proposed model for different amplitudes of input force.
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Fig. 2.14 Dynamic compliance function of proposed model for different amplitudes of input force.
(continued)
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Computed compliance functions for A, =0.02, 0.03, 0.04, and 0.06 are plotted by black
lines (real part) and gray lines (imaginary line) with rhombus, triangle, circle, and star,
respectively. The x axis shows the dimensionless frequency a, =w-B/V,, where @ is
the circular frequency of the input force, B is the length of foundation, and V, is the
velocity of the shear waves. The y axis represents the compliance function that is
normalized to its static case (at a,=0).

When the amplitude of horizontal force is small (F, =10kN), the computed

compliance function is very close to the results of Luco et al. (1971, 1972). The total
system behaves in the linear elastic range because the input force is not large enough to
generate a nonlinear response in the foundation. However, if large amplitudes of force
are applied to the system (F, =30kN ~60 kN ), the real part of the compliance function
can increase significantly. Sudden increases in the imaginary part of the compliance
function are also found to the near peak in the real part of compliance.

Duffing presented the response curve for the system with a nonlinear restoring-
force function (Jacobsen and Ayre, 1958; Meirovitch, 1986). Equation (2.74) shows the

Duffing equation for an undamped system with a nonlinear restoring-force function:

mi + k(x + K2x3)= Fcosat , (2.74)

where (x + K2x3) is the nonlinear restoring force and x* is a nonlinear factor. If the

sign of the restoring force is plus, the system has a hardening spring, while a minus sign

means that the system is restored by a softening spring (Jacobsen and Ayre, 1958).
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Figure 2.15 shows the response curve for the Duffing equation model with damping and
a softening spring. For a softening-spring system, the vertical resonance axis (plotted by

gray line) bends toward from @, to a value of low frequency, where , is the

frequency of the system. In contrast, the parabola of the response curve bends to the
right in the hardening-spring system. The x axis represents the frequency of force, and
the y axis shows the absolute amplitude of response. The curve has a sudden increase in
amplitude, which is similar to the results of this study. As the frequency of force
increases from a small value, the amplitude increases until it reaches point 2 and jumps
to point 3, from which it decreases with an increase in the frequency. On the other hand,
if the frequency decreases form a large value, the amplitude increases until point 4 and
experiences a sudden jump to point 1 on the response curve, from which it decreases

with a decrease in the frequency.

Amplitude

Wo Frequency

Fig. 2.15 Response curve for Duffing equation model with damping and softening spring.
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2.5 Wave excitation

A single pulse is used as the input wave in this study, and the incident wave is
assumed to propagate vertically toward the ground surface. When the disturbance
strikes the ground surface, the wave is reflected and propagates back (downward). It is
assumed that the incident wave is completely reflected, and so the maximum amplitude
of the incident wave is doubled at the ground surface. The wave motion can be
represented by a pulse as shown in equation (2.75). The velocity of the shear wave
depends upon the properties of the soil. Equation (2.76) shows the velocity of the

incident wave, and Figure 2.16 illustrates the wave motion in time.

u (z,0)=U -em(t V) OSI—%S% , 2.75)
where

U,, = amplitude of the wave

@ = circular frequency

V. = velocity of shear wave , and

V.= G, , (2.76)

P

where

G. = shear modulus of soil

s

p = mass density of soil.
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Fig. 2.16 Ground motion caused by vertically propagating wave.
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2.6 Derivation of energy equations

As the incident waves propagate into the system, a portion of the incident wave
energy is lost by scattering, while the rest is transmitted into the system. To derive the
equations of energy balance, the dynamic equilibrium equation of the system (equation
(2.9)) is integrated with respect to » from the time that the ground motion starts.

Integrating the inertial force term in equation (2.9) gives

[m, i, \du,+ [m,-ii,_yduy +--+ [m-ii,_,du,

= [m, i, (du, | ~du )+ [m, i, ,(du, ,—duy )+t [m, i

=[ [m, -%duu - jmp -a,_ldug}r[jms : di’;t—z du, ,~ [m, -ii,_zdug} +
...+[ij | "h;_m

= B m, i, ' = [m,- ii,_ldug} + B m, i, ;" — [m, -ii,_zdug:] -

1 .2 "
“+[5m”.u’*m - J‘mp-u,_mdug}

(du,_m —dug)

t_m

du, ,, - jmp . ii,_mdug}

_ o2 1 .2 1 .2
= —2-mp-u,_1 +—2~ms-u,_2 +---+5mp-u,~m
—Ump ‘U, du, + ."ms U, du, et J-mp -ii,_mdug].

.77)

The first term in the above equation is the absolute kinetic energy E, , while the second

term is the energy that gets into the system, E,. This gives

1 . . .
EK _ E[mp . utz__l + ms . ut2_2 Foeee mp . utz_m] (2.78)
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E, = J-[m u,1+m utz+ +m, u ]du (2.79)

where
u, =u;tu,
u, ;= absolute displacement
u; = relative displacement
u, = ground displacement

m, = mass of pile

m_ = mass of soil.

8

The elastic strain energy of the pile E,”* can be evaluated by integrating with respect

to the time the first term in equation (2.9):

4

jEpIpaauld +.[ 43du3+ +I 2 du,,
=[5, T [0, DB [, D g,
(2.80)
ES" = [E,I, a 4 gt + [E,I, o u3 digdt 4+ (BT a;;”’ i, dt,
(2.81)
where u, = relative displacement
u; = relative velocity

E I = flexural rigidity of pile

pp
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soil soil

The damping energy dissipated by the dashpots E,*", and the strain energy E; of

the soil in the near field are derived from integrating the third and fourth terms in

equation (2.9) as

e - Gt + fe, - Gy =)y = ) + -+ + [0~ (=, )(~lu,)

[ d . [du, d . d
= _[cl (”1)(’;;%)“" ¢, - (1, _ul)(%“%j-'_ e J‘cm+1 '(_um)(_ au,;n

)

(2.82)
Ey" = [e- @) a)de + fey -y =)ty = i)t + -+ [0+ (=t Y=tk Yol
(2.83)

where u,= relative velocity

¢, = damping coefficient of soil in the near field.

[y Gu )y + [k, -ty = 1)ty = ) +-++ [k - (—10,)(—dlt,)

= J-kl ) (ul)(fg?) + J‘kz : (uz - ul)(% _d77’;1j deee km+1 . (_um)[_ d:’;;n )

(2.84)

Essoil — Ikl . (ul)(l'll)dt + .[kZ . (u2 — ul)(l.lz - ul)dt et J.km+1 . (—um)(—um)dt s

(2.85)
where u, = relative displacement
u,; = relative velocity
k, = stiffness of soil in the near field.
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The energy dissipated by the friction of soil blocks E Fwﬂ is derived as

[Fy sdu,+ [Fy_yduy+--+ [F, . du,

2.86)
_ du2 du4 dum—l (

= Fd_2?df+ J-Fd_47dt+...+ .[Fd_m—l dt dt

EFsoiI _ J-Fd_2 -l'lzdl‘ + J.Fd_4 -l'l4dt et J.Fd_m—l . um_ldt R (287)

where

u; = relative velocity

F, ;= friction force of soil blocks.

Thus, the energy balance equation with all components included can be written as

E )+ EM O+ E,™ () + B )+ E. (6) = E, (1), (2.88)

where

E, (t) = system kinetic energy

E""(f) = strain energy of the piles

ES” (f)= strain energy of the soil in the near field

E D“’" (t) = energy dissipated by dashpots of the soil in the near field

E.”"(t)= energy dissipated by friction of the soil block

E,(r) = energy that gets into the system.
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3. Application of proposed pile-soil-pile interaction model

The proposed model will be used to analyze the nonlinear dynamic response of
a pile-soil-pile system considering the nonlinearity of the soil and the interaction
between piles. The steel piles are used in computation. The soil is modeled by
distributed nonlinear springs and viscous dashpots along the pile length to resist the
lateral motion. Piles and soil are divided into segments with the same number and
length, and a vertically propagating pulse is used as input wave. The shape of the pulse
depends upon velocity, frequency, and amplitude of the wave. The characteristics of the

input wave are presented in section 3.2.

3.1 Properties of the piles and soil

The piles are assumed to be steel pipes with a circular cross section that behave
in a linear elastic range. The properties of the piles are shown in Table 3.1. Piles in the
grouped pile foundation are connected with a massless rigid pile cap, which is allowed
to translate only in the horizontal direction and is not in contact with the soil layer. The
arrangement of piles in 2 x 2, 4 x 4, and 6 x 6 pile group systems is shown in figure 3.1.
Piles are named as 1st pile to 6th pile by their position. The space between piles(s) is

determined by the pile-spacing ratio (s/d), which will be variable from 1.5 to 10.5.
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Fig. 3.1 Arrangement of piles in 2 x 2, 4 x 4, and 6 x 6 grouped pile systems.
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Table 3.1 Properties of the piles*

‘Lym) 10.0
dyfm) 0.254
b)) 0.00556
E, (kN/m’) 2.00E+08
L) 3.35E-05
A, (') 4.40E-03

L, = total length (m),

P

d, = outside diameter (m),

t, = wall thickness (m),

’ 2
E, = Young’s modulus (kN/m"),

I, = moment of inertia (m*),

A, = cross-section area (m?).

The grouped pile system is assumed to be placed in 3 types of soil - stiff,
medium, and soft. Table 3.2 shows the properties of each soil. Poisson’s ratio of the soil

isassumedtobe v=04.
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Table 3.2 Properties of the soil*

' o . E,Y : Gx : . VS
soil type .y 5 o
: : (kN/m) | (kN/m') (m/s)
stiff 402789 143853 280.0
mediam .| 100697 35963 140.0
soft - 25174 8991 70.0

E, = Young’s modulus of soil (kN/m?),

G, = shear modulus of soil (kN/m?),

s

V. = velocity of shear wave (m/s) = G, ,
V Yo,

p = mass density of soil.
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3.2 Input wave

The characteristics of the input wave are summarized in Table 3.3. The
velocities of incident waves that depend upon Young’s modulus of soil are 280.0 m/s in
stiff soil, 140.0 m/s in medium soil, and 70.0 m/s in soft soil. The amplitude of the wave

is assumed to be 0.5 m (U,, =0.5 m), and three kinds of periods (7, =0.2s, 0.4s, and

0.8s) are used in the computation.

Table 3.3. Characteristics of the input wave*

A | (adls) |

31.42 5.00

280.00 0.4 15.71 2.50

0.8 7.85 1.25

0.2 31.42 5.00

140.00 0.4 15.71 2.50

0.8 7.85 1.25

0.2 31.42 5.00

70.00 0.4 15.71 2.50

0.8 7.85 1.25

T, = period (s),

@ = circular frequency (rad/s),

f = frequency (Hz),

V. = velocity of wave (m/s) = G, .
\J P
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Figure 3.2 illustrates the movements of a vertically incident wave by plotting
the motion for 8 time points. The y axis shows the depth below the ground surface to the
position of the pile tip. Figure 3.2 (a) shows the movements for a short pulse

(T, =0.2s) that propagates in soft soil (¥, =70.0m/s). The movement of the incident

wave is plotted at ¢ = 0.0325 s, 0.085 s, 0.1375's, 0.19 s, 0.2425 s, 0.295 s, 0.3475 s,
and 0.4 s. At the beginning of motion (at ¢t = 0.0325 s, 0.085 s), the upper part of the
foundation does not move. The ground surface begins to move around ¢ = 0.1375 s, and
the motion of the reflected wave is seen at t = 0.19 s. The total amplitude of wave is
doubled at the ground level due to reflection of the wave (at ¢ = 0.2425 s). The incident
wave is assumed to reflect totally, without energy loss. The reflected wave moving
down form the ground surface is shown in plots at = 0.295 s, 0.3475 s, and 0.4 s. The
relative motion by wave passage is clearly seen in this case of a high-frequency wave
with low velocity.

In Figure 3.2 (b), the movement of the incident wave is plotted at # = 0.0625 s,
0.175 s, 0.2875 s, 0.4 s, 0.5125 s, 0.625 s, 0.7375 s, and 0.85 s. Because this incident

wave is a long pulse with high velocity (7, =0.8s, V,=280.0m/s), the relative

motion between the top and bottom parts of the foundation is not big compared with
Figure 3.2 (a). The total amplitude of wave motion is again doubled by reflection near ¢

=0.4s.

The movements during vertically incident waves for 9 cases (V, =280.0 m/s,

140.0m/s, 70.0m/s,and 7,=0.2s, 0.4s, 0.8s) are summarized in Appendix B.
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Fig. 3.2 Movements of a vertically incident wave.
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Fig. 3.2 Movements of a vertically incident wave. (continued)
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4. Energy flow in the system

The pile-soil-pile system starts to move when the incident wave propagates into
the system. The incident wave energy is dissipated by nonlinear deformation of the soil
during pile-soil-pile interaction (Trifunac, 2001).

The total energy transmitted into the system by the incident wave and the sum
of all energies associated with the response of the pile-soil-pile system is illustrated in
this chapter. The proportions of energy dissipated by nonlinear behavior of the soil near
the piles and by the friction of soil blocks located between the piles are described for
different pile-spacing ratios. Figure 4.1 shows the schematic illustration for motion of

the total system caused by a vertically propagating wave.

Ground surface

Incident
wave

Incident
wave

Fig. 4.1 Schematic illustration of motion of a grouped pile system caused by a vertically incident

wave.
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4.1 Transmitted energy and system energies

Figures 4.2 (a), (b), and (c) show the plot of the total system energies fora 6 x 6
grouped pile system placed in stiff (¥, =280.0 m/s), medium (¥, =140.0 m/s), and soft
soil (¥, =70.0m/s). The grouped pile systelm is shaken by short input pulse (7, =0.2s)
and the pile spacing ratio is assumed to be 5.0 (s/d = 5.0).

The x axis shows the time in seconds, and y axis shows the energy in kKN-m.
The first solid line next to the x axis represents the kinetic energy of the system ( E, (¢) ).
The second solid gray line shows the sum of kinetic energy and strain energy of the
piles (E, () + E;™ (¢)). The third solid line represents the sum of kinetic energy, strain
energy of the pile, and energy dissipated by the nonlinear behavior of springs in the near
field (E, () +E" () + E;" (t)). The fourth gray line from the bottom illustrates the
sum of kinetic energy, strain energy of the pile, and the energy dissipated by springs and
dashpots of the soil in the near field (E.(r)+E"()+ES" () + E,*" (). The fifth
solid line from the x axis represents the total system energy, including energy dissipated
by friction of the soil blocks located between the piles in the grouped pile system
(E () +EL™ )+ ES™" () + E,"" (1) + E,*"(¢)). Finally, the thick gray line shows the
total energy that gets into the system from the vertically incident wave (E,(f)). This

total system energy coincides with the energy dissipated by the system. Properties of the
dissipated energy by components in the system (springs, dashpots, and soil blocks) are
presented in section 4.2 for various types of grouped pile systems, pile-spacing ratios,

and input waves.
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The hysteretic energy is dissipated by nonlinear behavior of soil in the near
field and by the friction forces of the soil blocks located between the piles. The strain
energy of the pile does not participate in dissipating transmitted energy because the pile
is assumed to behave in a linear elastic range. The oscillation is damped out quickly
(around ¢ = 0.25 s) in stiff soil, although it continues to # = 1.25 s in soft soil. Total
system energy in stiff soil is about 234kN-m, which is much smaller than the energy

in soft soil (12091kN-m). The relative motion by wave passage is large in soft soil
due to the low velocity of the incident wave (¥, =70.0 m/s ). This motion generates

large energy and causes extensive deformation of the components in the system.
However, because the relative motion between the top and bottom parts is not great
compared with the system in soft soil, little energy can get into the system in stiff soil.
This is a reason for the forming of the peak in total system energy as seen in Figure 4.2
(a). The lesser relative energy does not generate much nonlinear response in the system.
Also, only a small amount of energy is dissipated by the springs because of high
stiffness of soil in the near field.

Plots of total system energies for a 4 x 4 pile group foundation are presented in
Appendix B. A similar tendency is seen in the results for the 4 x 4 pile group, but the
amplitude of energy is small compared with the 6 x 6 pile group because of the different

magnitude of total system.
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Fig 4.2 Total system energies for a 6 x 6 group pile cause by a short incident pulse (T, = 0.2 s)
when the pile-spacing raio is 5.0 (s/d = 5.0).
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Fig 4.2 Total system energies for a 6 x 6 group pile cause by a short incident pulse (T, = 0.2 s)
when the pile-spacing raio is 5.0 (s/d =5.0). (continued)
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Fig 4.2 Total system energies for a 6 x 6 group pile cause by a short incident pulse (T, = 0.2 s)
when the pile-spacing raio is 5.0 (s/d = 5.0). (continued)
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4.2 Dissipated energy in the system

When a incident wave propagates into a group of piles, the energy is dissipated
by the nonlinear behavior of the components in the system. Figures 4.3, 4.6, and 4.7
show the percentages of dissipated energy by springs and dashpots in the near field
and by the friction of soil blocks located between the piles of the grouped pile system.
The x axis shows the pile-spacing ratio (s/d = 1.5 ~ 10.5), and the y axis shows the
percentage of dissipated energy by each component in the system. Solid line with full
triangle represents the percentage of energy dissipated by the nonlinear behavior of

soil

springs in the near field (£;*"). The gray line with open circles shows the percentage
of the sum of dissipated energy by springs and dashpots of the soil in the near field

(E" + E,*"). The rest shows the energy dissipated by the friction of the soil blocks

inside the foundation ( E,*").

When the short input pulse (7,=0.2 s) propagates into the system, only a small
portion of the energy is dissipated by the friction of the soil blocks located between
the piles. Figure 4.3 (a) shows the percentages of dissipated energy by each of the
components of the system for a 6 x 6 pile group system in medium soil (V= 140.0

m/s) when a short pulse (7, = 0.2 s) shakes the system. The friction coefficient (),
friction angle (¢), and damping factor (/) of the soil are assumed to be 0.5, 50°,

and 0.02, respectively. The energy is dissipated mostly by the nonlinear behavior of
the soil at the outer parts of the system.
Figure 4.4 shows the nonlinear hysteretic curve of springs at the ground level in

a 6 x 6 pile group system, when a short input pulse propagates into the system. Part (a)
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shows the hysteretic curve of the soil at the left side of the 1st pile and part (f) shows it
at the right side of the 6th pile. The x axis represents the deformations of the soil
adjacent to the piles, which are normalized to the maximum displacement of the input
pulse (1.0 m). The y axis represents the reactive force in the springs. The area enclosed
by a hysteretic curve represents the energy dissipated by the nonlinear behavior of
springs in the near field. A large amount of energy is dissipated by the nonlinear springs
when a short input pulse is transmitted into the system. Especially at the far right side of
the system (part (f) in Figure 4.6), a considerable amount of energy is dissipated by
large nonlinear motion of the soil.

Figure 4.3 (b) shows the percentage of dissipated energy by three components
(springs, dashpots, and soil blocks) in the system when the input energy caused by a long
pulse (Tg = 0.8 s) is transmitted into the grouped pile system. When the energy (generated
by a long input pulse, 7, = 0.8 s) gets into the system, a large portion of this energy is
dissipated by the friction of soil blocks. In this case, the behavior of springs in the near
field remains in the linear range, because the deformation of soil is not great enough to
exceed the yield deformation. Figure 4.5 shows the nonlinear hysteretic curve of springs
when a long input pulse propagates into the system. The configuration of this figure is the
same as in Figure 4.4. The nonlinear behavior of springs is found only at the right side of
the 6th pile in the system, and the soil deformations adjacent to the 1st ~ 5th piles do not
exceed the yield deformation. Therefore, the transmitted energy is dissipated only by the
soil near the 6th pile. However, when the input energy is relatively large (short pulse, 7, =
0.2 s) and the pile-spacing ratio (s/d) is small, a large proportion of the input energy is

dissipated by the springs and dashpots in the near field, as illustrated in Figure 4.4.
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Fig. 4.3 Percentages of dissipated energy by springs, dashpots and soil blocks when a wave
propagates into a 6 x 6 pile group in medium soil (V; = 140 m/s).
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Fig. 4.4 Nonlinear hysteretic curve of springs in the 6 x 6 pile group at the ground level in medium
soil (V; = 140 m/s) caused by a short pulse (T, = 0.2 s).
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Fig. 4.4 Nonlinear hysteretic curve of springs in the 6 x 6 pile group at the ground level in medium
soil (V' = 140 m/s) caused by a short pulse (T, = 0.2 s). (continued)
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Fig. 4.5 Nonlinear hysteretic curve of springs in the 6 x 6 pile group at the ground level in medium
soil (V; = 140 m/s) caused by a long pulse (T, = 0.8 s).
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Fig. 4.5 Nonlinear hysteretic curve of springs in the 6 x 6 pile group at the ground level in medium
soil (V' = 140 m/s) caused by a long pulse (T, = 0.8 s). (continued)
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Figure 4.6 (a) shows the percentage of energy dissipated for excitation by a short
pulse (Tg = 0.2 s) and for a 6 x 6 pile group foundation in stiff soil (Vs = 280.0 m/s).
When the pile spacing ratio is small (s/d = 1.5 ~ 2.5), the energy is not dissipated by the
nonlinear hysteretic behavior of the springs at the soil-pile interface. Because the total
energy is small, the resultant spring force does not exceed the ultimate resistance of the
soil near the pile. As the total system energy increases by increasing the pile-spacing
ratio (increasing the mass of the soil blocks), the portion of energy dissipated through the
nonlinear behavior of the springs increases. However, if a closely spaced pile group is
placed into soft soil (Figure 4.6 (b)), a relatively large portion of energy is dissipated by
the response of the soil near the piles. The spring forces can exceed the ultimate
resistance of the soil in the case of soft soil even when the system energy is small.

Figure 4.7 illustrates the response of a 6 x 6 pile group foundation in soft soil
(Vs = 70.0 m/s) for different friction coefficients and excited by a short input pulse (7; =
0.2 s). The pile-spacing ratio is 4.0 (s/d = 4.0), and the friction angle is 50° (¢ =50°).
Three kinds of damping factors are used in computation ( £ =0.02, 0.03, 0.04).

Percentages of energy dissipated by the components in the system are shown in

Figure 4.7 (a). The x axis shows the friction coefficient (= 0.2 ~ 0.7), and the y axis

represents the percentage of energy dissipated. The energy dissipated by soil blocks
increases as the friction coefficient of soil becomes larger. There are small differences in
percentages of energy dissipated by the dashpots in the near field of soil for different

values of damping factor. The energy dissipated by dashpots with £ =0.04 is slightly
larger compared with that with £ =0.02, but the portion of energy dissipated by the

soil blocks does not depend upon the damping factor of the soil.
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Fig. 4.6 Percentages of energy dissipated by springs, dashpots, and soil blocks when a short pulse
(T, = 0.2 s) propagates into a 6 x 6 pile group.
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Fig. 4.7 Response of a 6 x 6 pile group in soft soil (V; = 70.0 m/s) cause by a short pulse (T, =0.25)
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Figures 4.7 (b) and (c) show maximum displacements and bending moments of
a pile for different damping factors and for different friction coefficients in the soil.
Displacements are normalized to the maximum displacement of the input pulse (1.0 m).
Maximum displacements and bending moments of piles decrease with increasing
friction coefficients of the soil blocks in the system. The damping factor of the soil in

the near field also affects the displacements and bending moments of the piles.

\\N\

5 @ s(=4 X dp) =20dp

Fig. 4.8 A 6 x 6 pile group system with a mass of rigid building on the pile cap.

In the following, the changes in energy flow resulting from overall weight of
the building and its the kinetic energy are illustrated for different values of friction angle

in the soil. Figure 4.8 shows the 6 x 6 pile group system with a mass of building added
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to the pile cap. To simplify dynamics and to maintain emphasis on the behavior of the
pile, the building is assumed to be rigid and is allowed to translate only in the horizontal
direction. Three “building” (1-story, 10-story, 30-story) are used in the analysis. The
assumed mass of the building is 376.16 kg/m®, which is calculated approximately for
the Hollywood Storage Building in California (Trifunac et al., 2001). The system is
placed on soft soil (Vs = 70.0 m/s) and is shaken by a short input pulse (7 = 0.2 s) with

an amplitude of 0.5m (Ug=0.5m). The pile-spacing ratio is 4.0 (s/d = 4.0).
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Figure 4.9 shows the percentages of maximum kinetic energy of the total
system energy for three example “buildings”. The friction angle is changed from 5° to
70°, and the friction coefficient is 0.5. The kinetic energy in the soil rises as the friction
angle of the soil becomes larger, because the total mass of the soil increases. Figure 4.10
shows the fatio of the mass of building and piles to the mass of soil for different friction
angles of soil. This ratio goes down as friction angles increase. The kinetic energy of
the building decreases as the friction angle increases. The energy available to excite the

building is reduced when a large portion of energy is dissipated in the foundation.
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5. Response of piles in the system

The input energy associated with large pulse amplitudes causes nonlinear
behavior of soil and is then dissipated by the nonlinear response. The piles embedded in
the soil are affected by the nonlinear motion of the soil. In particular, the movement of
soil blocks can cause irrecoverable, permanent deformation of the piles even though the
pile material is assumed to respond in a linear elastic range. This chapter examines the
movement of piles in groups when a vertically incident wave propagates into the systein.
The gaps caused by nonlinear behavior of the soil in soil-pile interface are computed for
6 x 6,4 x4, and 2 x 2 pile groups. The maximum bending moment and total
displacement of piles are also presented. Finally, the effects of a group are investigated

by analyzing the response of different pile groups with the same dimensions.

5.1 Movement of piles

Figures 5.1 and 5.2 show the relative displacements (U, —U, ) of piles in a 6 x
6 pile group system for two types of vertically incident waves, (7, =0.25,0.4s) for 6

points in time. The foundation is placed in soft soil (¥, =70.0 m/s) and the pile spacing

ratio is 2.5 (s/d = 2.5). In each figure, there are 6 graphs, which represent motions of 1st
pile to 6th pile from left to right. The y axis represents the depth from ground surface.
Figure 5.1 shows the relative displacement of piles excited by a short pulse at 6
different times, t = 0.125s, 0.25 s, 0.375 s, 0.5 s, 0.625 s, and 0.75 s. In the beginning
(t=0.125 s, 0.25 s), the motion of the piles is similar to the motion of the vertically
propagating wave. At ¢ = (.125 s, the lower parts of piles begin to deform as the wave
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Fig. 5.1 Motion of a piles in 6 x 6 pile group in soft soil (V; = 70.0 m/s) caused by a short incident
pulse (T, = 0.2 s).
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Fig. 5.1 Motion of a piles in 6 x 6 pile group in soft soil (V; = 70.0 m/s) caused by a short incident
pulse (T, = 0.2 s). (continued)
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Fig. 5.2 Motion of piles in a 6 x 6 pile group in soft soil (VV; = 70.0 m/s) caused by a incident pulse
with medium period (T, = 0.4 s).
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Fig. 5.2 Motion of piles in a 6 x 6 pile group in soft soil (VV; = 70.0 m/s) caused by a incident pulse
with medium period (T, = 0.4 s). (continued)
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comes into the system. The second plot (¢ = 0.25 s) illustrates the motion of the piles
when the amplitude of the incident wave is doubled at the ground surface due to the
reflection of the incident wave. However, the motion of the pile; becomes different
from the movement of incident wave at = 0.375 s, 0.5 s, 0.625 s, and 0.75 s because of
the inertial forces from soil blocks that move between the piles. After the input wave
goes out from the system, the piles continue to move until all the transmitted energy is
dissipated. If a large energy has been transmitted into the system, the piles can have
irrecoverable, permanent deformation, due to permanent displacement of soil blocks.

Figure 5.2 shows the relative displacements of piles caused by a vertically

propagating pulse with a medium period (7, =0.4s). A relatively small motion is

generated by a relatively long incident wave. The magnitude of input energy is not great
enough to cause nonlinear deformations in this case. The motion of piles follows the
passage of the propagating wave and returns to the original position when all vibrations
are damped out.

The motion of piles in 4 x 4 and 2 x 2 pile group foundations is presented in
Appendix B. It is also plotted at six time steps and for two durations of a vertically

incident wave (7, =0.2s,0.4s). Similar trends are found for these pile groups.

However, the amplitudes of motion are relatively small compared with the present
example for a 6 x 6 pile group foundation, and therefore little influence from the

movement of soil blocks is present.
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5.2 Gaps opening adjacent to piles

When a pile embedded in soil is subjected to lateral loading, it is often observed
that gaps are formed between the pile shaft and the surrounding soil (Pender and
Pranjoto, 1996). In this study, gaps are computed by using the nonlinear springs that
represent soil and that are presented in section 2.2. The deformations of piles and the
creation of gaps, which are caused by the nonlinear behavior at the soil-pile interaction,
are considered in the following.

Figure 5.3 shows the absolute displacements of piles and gaps in adjacent soil

at the ground level in soft soil (¥, =70.0m/s) when the short pulse (7, =0.2s,
U,, =0.5m) shakes the 6 x 6 grouped pile system. Deformations are normalized to the

maximum displacement of the input pulse (1.0 m). Parts (a), (b), (c), (d), (e), and (f)
show the displacements of piles and gaps adjacent to the 1st, 2nd, 3rd, 4th, 5th, and 6th
piles, respectively. The x axis shows the time in seconds, and the y axis shows the
normalized displacement and gaps. The solid line shows the absolute displacement of a
pile. The thin solid line and the dotted line represent gaps at the left side and right side
in the near-field soil adjacent to the pile. The separation between pile and soil remains
open when the amplitude of transmitted energy is large enough to cause nonlinear
behavior in the soil. The gap is generated by soil compression with large stress, and the
largest gap is formed in the soil at the right side of the 6th pile, which is located at far
right side of the 6 x 6 pile group system.

Figure 5.4 shows the same results in medium soil (¥, =140.0m/s), with all other

parameters remaining same as for the case shown in Figure 5.3. The gaps at the soil-pile

interface are not found in the soil adjacent to the 2nd, 3rd, 4th, or 5th piles, which are

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g
=}

—
w
T

—
<
Y

<
[
"

1.50 1.75 2.90

S

W
e
s
S

-1.0 ¢

Normalized displacement
<
(o]

-5

gapl ul e gap2

2.0

(a) 1st pile and gapl, gap2

e
(3
;

1.00 1.25 1.50 1.75 2.0

Normalized displacement
(=
(=

gap3 u2 - gapd

2.0

(b) 2nd pile and gap3, gap4

20

1.0

05

0.0

0 50. )0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.0

Normalized displacement

-LS F

gap5 u3 e gap6

2.0

(c) 3rd pile and gap5, gap6

Fig. 5.3 Displacements of piles and gaps at the ground level when a short pulse (T, = 0.2 s)
propagates into a 6 x 6 pile group in soft soil (', = 70.0 m/s).
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placed inside the 6 x 6 pile group. The separation between pile and soil remains open
only in the soil at the right side of the 6th pile.

A larger gap is formed when the wave propagates into a group of piles placed in
soft soil. This is illustrated in Figures 5.3 (soft soil) and 5.4 (stiff soil). Nonlinear
behavior is more frequent in soft soil due to its low stiffness, and the relative motion is
greater because of wave amplification.

Figure 5.5 shows the gaps and absolute displacements of piles in soft soil for a
vertically incident pulse with medium period (Tg = 0.4 s), and for a 6 x 6 pile group
system. Gaps remain open in the soil at the right side of 6th pile and in the soil at the
left side of the 1st pile. The amplitudes of these gaps are small compared with the case
when shorter pulse (7, = 0.2 s) propagates into the system (Figure 5.3). However, piles
do not go back to their original positions even after all vibrations are damped out in this
case (Figure 5.4). Although the pile behaves in a linear elastic range, irrecoverable,
permanent deformation is created due to the movement of the soil blocks between the
piles.

Figure 5.6 shows the permanent deformation of piles and of soil blocks in a 6 x
6 pile group system in soft soil excited by a vertically incident wave (T, = 0.4 s, Up=
0.5 m), at time ¢ = 2.0 s. The solid lines represent the permanent deformations of piles,
and thick gray lines represent the residual displacements of soil blocks. The thin solid
lines from left to right represent the original positions of the 1st pile and soil blocks in
the 1st column to soil blocks in the 5th column and the 6th pile. Almost all components
in the system remain at right relative to their initial positions. In particular, large

permanent deformations are found at the top layers of the soil blocks. The elastic piles
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also have residual deformation due to the forces from the soil blocks, which are
generated by their permanent deformations. The recoverable forces of the piles do not
exceed the friction forces of soil blocks when all movements of the system are damped
out. Because piles are connected by a rigid pile cap, the 1st pile also has irrecoverable
deformation even though it does not have contacts or forces exerted on it by soil blocks.

Figure 5.7 illustrates schematically the permanent deformation of the system,
including irrecoverable deformation of piles and the gaps in the soil at the soil-pile
interface. A large gap is formed at the right side of the 6th pile. As the vertically incident
wave shakes the system from left to right, the significant deformation is found at the
right part of the system, and gaps are formed mainly at the top parts of the system.

The absolute displacements of piles and the gaps for the 6 x 6 pile group
foundation in stiff soil are presented in Appendix B. No separations between pile and
soil are found in this case because of the greater stiffness of stiff soil. The results for 4 x

4 and 2 x 2 pile group foundations are also presented in Appendix B.
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5.3 Bending moment and deformation of piles

The maximum deflection and bending moment of piles are important for an
engineer designing a pile foundation for lateral loads (Hsiung, 2003). The maximum
deflection is related to the safety of the super-structure supported by piles. The piles will
be overstressed when the bending moment exceeds the allowable moment of the pile
materials. Therefore, the maximum bending moment and deformation of piles in a
group are analyzed in the following.

Figure 5.8 shows the maximum absolute bending moments and maximum
displacements of piles in a 6 x 6 pile group system placed in medium soil
(V,=140.0m/s). The maximum displacement of the piles is normalized by the
maximum displacement of the input pulse (1.0 m). The responses of the piles are

computed for short a incident pulse (7, =0.2s) and for a long incident- pulse
(T, =0.8s). The pile-spacing ratio and amplitude of input pulse are assumed to be 4.0
(s/d = 4.0) and 0.5m (U, = 0.5 m).

The plot in the left part of Figure 5.8 shows the maximum absolute bending
moment of piles in the system. The x axis shows the maximum bending moment in kN-
m and the y axis shows the depth below the ground surface. The solid lines with full
circles and open circles represent the responses of the 1st pile and 6th pile, respectively,
which are at the outer ends of the group. The gray lines show the responses of piles
located inside of the group. The maximum bending moment occurs at the tops of the

piles where they are connected to the rigid pile cap. A short input pulse (7, =0.2s)

generates a large bending moment at the tops of the piles. Particularly, the pile at the far
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right side of the system experiences a large bending moment at the top (1st and 6th piles
in 6 x 6 pile group system, Ist and 4th piles in 4 x 4 system). Because of the effects of
the movement of soil blocks, relatively large bending moments are generated at the mid-
height of the piles that are located inside the system.

The plot in the right part of Figure 5.8 shows the maximum total displacement

(U+U,) of each pile and the maximum displacement of the incident wave. The x axis

represents the normalized displacement, and the y axis shows the depth. Solid lines and
gray lines represent the displacements of piles in the group. The thick gray line with
crosses represents the maximum displacement of the vertically incident input pulse.
There is considerable difference between the maximum displacement of piles and wave

amplitude near the top of the piles for a short pulse (7, =0.2s), which causes

permanent gaps in the soil-pile interfaces near the ground surface. The piles and the soil

move almost simultaneously when excited by a long input pulse (7, =0.8s), which

generates no separation between piles and soil.

Figures 5.9 (a) and (b) illustrate the response of piles in stiff soil

(V, =280.0m/s) and in soft soil (¥, =70.0m/s) when a short input pulse (7, =0.2s)

shakes the 6 x 6 pile group. The other conditions are the same as in the case shown in
Figure 5.8. The maximum absolute moment and total displacement are greater when the
system is placed in soft soil, due to amplification of response and low stiffness of soil in
the near field of the piles. A greater bending moment is generated in the mid-height of
the piles in soft soil relative to the system placed in stiff soil. A large difference between
the total displacement of the piles and the input pulse is found for the pile foundation

placed in soft soil, which forms large gap openings in the soil-pile interfaces, as seen in
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section 5.2. However, the movements of the piles relative to the incident pulse are small
in stiff soil due to the high stiffness of the soil. The maximum absolute bending moment
is relatively small compared with the response determined when a short pulse shakes the
system in soft soil.

The maximum bending moments and displacements of piles for excitation by a

pulse with intermediate duration (7, =0.4s) are presented in Appendix B. The results

for 4 x 4, and 2 x 2 pile groups are also shown in Appendix B. The same trends as for

the 6 x 6 pile group are found in these cases.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Investigation of group pile effects

In the following, the group effects are investigated by analyzing different types
of pile foundations with the same dimensions. Figure 5.10 illustrates five types of pile
group systems schematically. The pile-spacing ratios are 10.0 (s/d = 10.0) in a 2 x 2 pile

group foundation and 2.0 (s/d = 2.0) in a 6 x 6 pile group foundation. The total length

from the 1st pile to the last pile is the same, 10.0-d,, where d, is the diameter of a

pile. The friction angle and friction coefficient of the soil are assumed to be 50° and
0.5 (¢=50°, p=0.5). The mass of the rigid building is add to the pile cap. Three
kinds of “building” (1-story, 10-story, and 30-story) are used for computation, which
have unit mass of 376. 16kg/m3 (as shown in Chapter 4).

Figure 5.11 shows the percentages of maximum kinetic energy of the total
system energy for various types of pile groups with rigid “building” on the top. The x
axis shows the number of piles (2 ~ 6), and the y axis presents the percentage of energy.
The kinetic energy of the building grows as the number of piles increases. A relatively
small portion of energy is dissipated in the foundations with a large number of piles, but
the percentage of kinetic energy of the soil to total system energy decreases as piles are
added to the foundation. The amount of total mass of the soil is small in foundations
with a large number of piles, with a small pile-spacing ratio. Figure 5.12 shows the ratio
of the masses of building and piles to the mass of soil in the foundation.

Maximum displacements of piles normalized with the maximum displacement
of the incident wave are shown in Figure 5.13 (a). Relatively large displacements are

generated in the system with a small number of piles because the foundation does not
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Fig. 5.10 Five types of pile group foundations with the same dimensions.
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offer much resistance to horizontal translation. Figure 5.13 (b) shows the maximum
bending moments for piles in different pile groups.

It can be seen that small horizontal displacements and bending moments in
piles are generated in foundations with a greater number of piles. Howevgr, a large
portion of incident wave energy is then transferred to the super structure. This energy
excites the building and can damage it. In contrast, relatively littel energy gets into the
building at the foundation with a small number of piles, although a large displacement
and bending moment of the piles may occur in this type of foundation. This can be

critical for piles and the stability of the foundation.
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6. Summary and Conclusions

In this study, a simple pile-soil-pile model for the lateral response is
investigated, considering nonlinear behavior of the soil and grouped effects on the piles.
The grouped pile effects are developed via interaction force of the soil blocks. The
general excitation and response of a foundation subjected to a non-vertically incident
wave are presented briefly.

The properties of the proposed model are studied by comparison with
compliance functions for horizontal oscillation of a rigid disc placed on an elastic half-
space. The compliance function of the group pile system is very close to the results
found by of Luco et al. (1971, 1972) in a linear range. As the amplitudes of force
become greater, the real part of compliance increases significantly, and the peak shifts
toward a value of low frequency, which is seen in a stiffness-softening system.

Pile-soil-pile interactions may change the motion of the ground and the
response of total foundation system. These interactions depend upon the properties of
soil, the pile group, and input motions. The pile-soil-pile interactions dissipate and can
significantly reduce the input energy, which can excite and damage the superstructures.

Considerable energy is imparted into the system by a short input pulse with low
velocity (in soft soil) due to large relative deformation caused by the wave passage. The
incident wave energy can cause nonlinear behavior of the soil in the system and is
dissipated by this response during pile-soil-pile interaction. Large input motions cause
big bending moments in piles and create gaps at the soil-pile interface. Piles located at

the outer ends of groups experience the greatest bending moments and separations
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(gaps) from the adjacent soil, and the frictional movements of soil blocks can cause
permanent deformation of piles even though the pile material is assumed to respond in a
linear elastic range. Larger gaps and bending moments are generated when a group of
piles is placed in soft soil. When soil-pile interaction remains in a linear range of
deformation, the energy is dissipated only by the friction of the soil blocks.

Studies of the examples show that the number of piles and the pile-spacing ratio
also effect the interactions in the pile foundation. The designer should search for
appropriate parameters to reduce the energy transferred into the building, while

maintaining suitable safety factors in the design of piles and foundations.
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Appendix A

1. Stiffness of the soil in the near field

It is assumed that the contact pressure at any point is proportional to deflection

at the same point of the beam as

p=K-u, (A1)
where
p = contact pressure

K = modulus of subgrade reaction

u = deflection.

The differential equation of bending of a beam of flexural stiffness is obtained

by introducing equation (A1) as follow

d'u
ElL—+K-u=0, A2
ol (A2)

4
where E,I, is flexural stiffness of the beam. By substituting u=e™ in equation

(A2), we obtain the characteristic equation
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(A3)

Eb‘[b .

The roots are

(1+i)=20+i), m= K (-1+8)=A(-1+i),

4E,1, 4F,1,

X K , . .

_] e A1 - 1—i)=A(l -

s 4E,,I,,(1 )=A-1-1), " 4EbIb( )=,

1:4/ K | (A4)
AE],

A = characteristic of the system

m =4

where

The general solution of equation (A2) is

u=A1'em1x+A2'em2x+A3'em3x+A4'eM4xa (AS)
where

4, 4,, 4, A, =constants.
By using

e = cos Ax +isin Ax

e ™ =cos Ax —isin Ax
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and A, we can get general form of equation (AS5) as

u = e™(C, cos Ax +C, sin Ax)+ e~ (C, cos Ax + C, sin Ax) , (A6)
where

C., C,, C;, C, =new constants.

Vesic(1961) presented rigorous analysis for a beam of infinite length by
extending Biot’s solution. He assumed that the subgrade behaves as an homogenous,
isotropic, elastic solid, characterized by a Young’s modulus and Poisson’s ratio of soil.
The integration was solved by interpolation and approximation.

The characteristic of system by Vesic is

0.813
Je O.689(é) ’ (A7)
b \c
E] 1/3
c:[l.lO(l—vs)z éb} , (A8)

where

v, = Poisson’s ratio of soil

E = Young’s modulus of soil

b = half width of beam.

Vesic(1961) demonstrated that the two approaches are equivalent if the beam is

sufficiently long. Then, the relation can be obtained between the modulus and the soil
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characteristics, flexural rigidity and width of the beam, by equating equation (A4) to

equation (A7).

4
K=(0.65)1 EB' Es2 ’ (A9)
B EI, \1-v,

K = modulus of subgrade reaction

where

E_ = Young’s modulus of the soil
E, I, = flexural stiffness of the beam

B = width of the beam =2b.

2. Ultimate resistance of soil

For clay, the resistance is given as a strength per unit length of the soil layer by

(American Petroleum Institute, 1991)

P,=3cd+y'zd+Jc,z,z<z, (A10)
P, =9cd, z<z,,
where

¢, = undrained shear strength

u

y'= effective unit weight of the soil

J = dimensionless empirical constant
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z = depth below soil surface
d = pile diameter

zZ, =— 6d = the depth of the reduced resistance zone.
y'd
—+J
c

u

Dimensionless empirical constant, J, with values ranging from 0.25 to 0.5 has been

determined by field test. Lateral bearing capacities of sand at shallow depth P and at

large depth P, are recommended (American Petroleum Institute, 1991) as

P . =(C-H+C,-D)-y“H (All)
P,=C,-D-y"H,
where
y'= effective unit weight of the soil
H = depth
D = average pile diameter from surface to depth

C,,C,,C; = coefficient determined as ¢'

¢'= angle of internal friction.
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Appendix B

The movements caused by the vertically incident waves for 9 cases
(V, =280.0m/s, 140.0m/s, 70.0m/s, and 7, =0.2s, 0.4s, 0.8s) are summarized
in Figure B.1. Figure B.2 shows the total system energy for a 4 x 4 pile group. The
motions of the piles in 4 x 4 and 2 x 2 pile group foundations are presented in Figures
B.3 through B.6. It is plotted at 6 time steps and for 2 durations of vertically incident
waves (T, =0.25,0.4s).

The absolute displacements of the piles and the gaps for a 6 x 6 pile group in
stiff soil are presented in Appendix B. The results for 4 x 4 and 2 x 2 pile group
foundations are also presented in Figures B.8 through B.13. The maximum bending
moments and displacements of the piles for excitation by a pulse with intermediate

duration (7, =0.4s) are shown in here. The results of 4 x 4, and 2 x 2 pile groups are

also shown in Appendix B.
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Fig. B.1 Movements of a vertically incident wave. (continued)
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Fig B.2 Total system energies for a 4 x 4 group pile caused by a short incident pulse (T, = 0.2 s)
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Fig. B.3 Motion of piles in a 4 x 4 pile group in soft soil (V; = 70.0 m/s) caused by a short incident
pulse (T, = 0.2 s). (continued)
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Fig. B.7 Displacements of piles and gaps at the ground level when a short pulse (T, = 0.2 s)
propagates into a 6 x 6 pile group in stiff soil (V; =280.0 m/s).
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propagates into a 6 x 6 pile group in stiff soil (', = 280.0 m/s). (continued)
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Fig. B.10 Displacements of piles and gaps at the ground level when a short pulse (T', =0.25)
propagates into a 4 x 4 pile group in medium soil (V; = 140.0 m/s). (continued)

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Normalized displacement
-
fe) Ulo (=] (9] < wh ()

'
[
W

2.0

2.0
1.5
1.0
0.5
0.0

-1.0

Normalized displacement

-1.5
2.0

-0.57F

)0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.
Time (s)
gapl ul e gap2
(a) 1st pile and gapl, gap2
g4ip |1 epip
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.
Time (s)
gap3 u2 e gap4 J

(b) 2nd pile and gap3, gap4

Fig. B.11 Displacements of piles and gaps at the ground level when a short pulse (T, =0.2 s)
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Fig. B.14 Maximum absolute bending moments and maximum displacements of piles of group pile in soft soil
(V¢ = 70.0 m/s) by a vetically incident pulse (T, = 0.4 s).
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Fig. B.14 Maximum absolute bending moments and maximum displacements of piles of group pile in soft soil
(Vs = 70.0 m/s) by a vetically incident pulse (T, = 0.4 s). (continued)
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Fig. B.14 Maximum absolute bending moments and maximum displacements of piles of group pile in soft soil
(Vs = 70.0 m/s) by a vetically incident pulse (T, = 0.4 s). (continued)
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Fig. B.15 Maximum absolute bending moments and maximum displacements of piles of a 4 x 4 pile group in
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Fig. B.15 Maximum absolute bending moments and maximum displacements of piles of a 4 x 4 pile group in
medium soil (V; = 140.0 m/s). (continued)
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Fig. B.16 Maximum absolute bending moments and maximum displacements of piles of a 4 x 4 pile group by a

short incident pulse (T, = 0.2 m).
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Fig. B.16 Maximum absolute bending moments and maximum displacements of piles of a 4 x 4 pile group by a
short incident pulse (T, = 0.2 m). (continued)
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Fig. B.17 Maximum absolute bending moments and maximum displacements of piles of a 2 x 2 pile group in
medium soil (V; = 140.0 m/s).
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Fig. B.17 Maximum absolute bending moments and maximum displacements of piles of a 2 x 2 pile group in
medium soil (V' = 140.0 m/s). (continued)
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Fig. B.18 Maximum absolute bending moments and maximum displacements of piles of a 2 x 2 pile group by

short incident pulse (T, = 0.2 m).
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Fig. B.18 Maximum absolute bending moments and maximum displacements of piles of a 2 x 2 pile group by

short incident pulse (T, = 0.2 m). (continued)
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