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Abstract

Civil infrastructures play a vital role in human societies. Recent catastrophic events due to the de-

ficiency, failure or malfunction of these systems, claiming many lives and resulting in substantial

economic loss, have attracted extensive attention focused on reviewing and amending the design

and maintenance procedures of civil infrastructures. In addition to the possible failure of struc-

tural components, long-term forms of damage due to deterioration or fatigue may also necessitate

regular monitoring of civil structures. Therefore, depending on the importance, use and risk, the

structure of interest needs to be equipped with inspection, monitoring and maintenance systems.

Structural Health Monitoring (SHM) is generally associated with any engineering methodology

whose aim is to detect, locate and quantify the damage in the target system. Vibration-based tech-

niques, as the most conventional SHM approaches, acquire and analyze the structural response

using a variety of sensors mounted at different locations on the structure. The main goal of the

study reported herein is to investigate and evaluate different vibration-signature-based methods for

system identification, damage detection and health monitoring of civil structures. Various well-

known techniques such as finite element model updating approach and damage detection methods

based on artificial neural networks are studied and evaluated. Experimental data from two case

studies, a quarter-scale two-span bridge system, tested at the University of Nevada, Reno, and a

1/20 scale 4-story building equipped with smart devices of magneto-rheological (MR) damper,

are used for investigation and validation purposes. Guidelines are established for the optimum

selection of the dominant control parameters involved in the application of some of the robust

SHM approaches for achieving reliable SHM results under realistic conditions.

xii



Chapter I

INTRODUCTION

I.1 Background

CIVIL infrastructures such as high-rise buildings, dams, bridges and lifelines play a vital

role in human societies. The investment of the United States in civil infrastructure is es-

timated to be $20 trillion. Recent catastrophic events due to the deficiency, failure or malfunction

of these systems, claiming many lives and resulting in substantial economic loss, have attracted

extensive attention focused on reviewing and amending the design and maintenance procedures

of civil infrastructures.

One of the challenging issues in designing civil infrastructures is the high initial cost of these as-

sets. Performance-based design, as a trade-off approach, may allow the structure to undergo some

ductile inelastic deformation with an acceptable level of damage. Such damage is component-

based rather than system-based, meaning that the structure as a whole will still perform to a

desired level, despite the failure in one or more isolated elements. This design philosophy re-

sults in a cost-effective design and higher system reliability, at the expense of possible localized

damage. Therefore, depending on its importance, use and risk, the structure needs to be equipped
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with inspection, monitoring and maintenance systems. Furthermore, long-term forms of damage

due to deterioration or fatigue may also necessitate regular monitoring of civil infrastructures.

Consequently, the ability to continuously monitor the integrity of civil infrastructures provides

the opportunity to reduce maintenance costs, while increasing the safety to the public.

The topic of Structural Health Monitoring (SHM) is generally associated with any engineer-

ing methodology whose aim is to detect, locate and quantify the damage in the target system.

Vibration-based SHM techniques acquire and analyze the structural response using a variety of

sensors mounted at different locations on the structure. Broadly speaking, SHM may be inter-

preted as a “continuous system identification of a physical or parametric model of the structure

using time-dependent data” (Brownjohn (2007)).

Vibration-based methods are the most conventional approaches for SHM, but other methodolo-

gies such as optical or acoustic emission techniques have also been developed and employed in

this field. While SHM is usually associated with on-line global damage detection in the structure,

it is often followed by off-line local damage detection strategies (e.g., Non-Destructive Evalua-

tion (NDE)) if any damage is detected. Meanwhile, it should be noted that damage is not the

only source of variations in the measured dynamic response of the system. Hence, understanding

and detecting (quantifying) the effects of other influencing parameters such as system nonlinear-

ity, temperature variations, unobserved excitations, soil-structure interactions, and measurement

noise, should also be carefully investigated and considered (Nayeri et al. (2008)).

Application areas of SHM may include, but are not to be limited to the following categorizes

(Brownjohn (2007)):

2



• Structures subject to long-term movement or degradation of materials

• Feedback loop to improve future design

• Assessment of post-earthquake structural integrity

• Fatigue assessment

• Complementary to performance-based design philosophy

• Modifications to an existing structure

• Monitoring of structures affected by external works or during demolition

I.2 Literature Review

Qualitative and non-continuous methods of SHM have long been used to evaluate structures and

machineries for their capacity to serve the intended purpose. For instance, since the beginning of

the 19th century, the sound of a hammer striking on the train wheel was a useful tool to detect if

damage was present. In the last half a century, the development of quantifiable SHM approaches

has been closely coupled with the evolution of digital computing hardware and inexpensive, fast

networking technologies. Significant developments in the field have originated from major con-

struction projects, such as offshore gas/oil production installations, large dams and highways

bridges. During the 1970s and 1980s, the oil industry received the greatest attention and research

effort to develop damage identification methods for offshore platforms. Applications of vibration-

based methods of SHM in the aerospace community started during the late 1970s and early 1980s

in conjunction with the development of the space shuttle. The development of a composite fuel

tank for a reusable launch vehicle in mid-1990s motivated studies of damage identification for
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composite materials. Since the early 1980s, the vibration-based damage assessment of bridge

structures and buildings has been of interest to the civil engineering community (Farrar and Wor-

den (2007)).

Some representative publications that provide a comprehensive overview of the broad interdis-

ciplinary field of SHM, the main technical challenges, as well as promising proposed approaches

that have the potential of being useful tools for damage detection purposes in different classes of

civil infrastructure systems, are available in the works of Doebling et al. (1996), Hou et al. (2000),

Wang et al. (2001), Chang et al. (2003), Staszewski et al. (2004), Hera and Hou (2004), Ko and

Ni (2005), Kim et al. (2007), Farrar and Worden (2007), Brownjohn (2007), Wang (2007) and

Chandrashekhar and Ganguli (2009).

I.3 Motivation and Technical Challenges

Generally speaking, any SHM process may be defined in terms of the following four-step statisti-

cal pattern recognition paradigm (Farrar and Worden (2007)):

(i). Operational evaluation

(ii). Data acquisition, normalization and cleansing

(iii). Feature selection and information condensation

(iv). Statistical model development for feature discrimination

Each step is involved with many technical challenges to the adaptation of SHM that are common

to all applications of this technology. These challenges include (Farrar and Worden (2007)):

• How to optimally define the number and location of the sensors?
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• How to identify the appropriate features that are sensitive to small damage levels?

• How to discriminate the changes due to damage from those caused by other parameters

such as changing environmental and/or test conditions?

• What are the appropriate statistical methods to discriminate features from undamaged and

damaged structures?

Every civil infrastructure is usually unique and may require developing a special and customized

SHM strategy. It should be noted that the chosen SHM strategy might be a trade-off solution

to different aspects of the problem. For instance, one of the basic current technical challenges

in SHM is that, with a minimum of optimally located sensors, any damage to be detected must

have significant effects on the underlying structural dynamic properties (e.g., stiffness, mass or

damping) of the system, which, in turn results in a measurable change in the observed dynamic

response. Unfortunately, this is not usually the case in real operational structures, since typi-

cal localized damage will not significantly influence the dominant lower-frequency modes of the

monitored structure. With increasing widespread availability of sensor networks and data acquisi-

tion and communication capabilities, one may think of a dense, fine-grained sensor architecture as

an intuitive solution, but any increase in the size of the problem will introduce new impediments

in the form of processing huge amounts of multi-faceted data sets with embedded mathematical

and computational challenges.

I.4 Scope

The main goal of the study reported herein is to investigate and evaluate different vibration-

signature-based methods for system identification, damage detection and health monitoring of
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civil structures. The following chapter reports the performance of two stochastic methods of

global optimization for a subset of well-known benchmark functions. The application of these

methods in finite element model updating approaches for damage detection purposes is investi-

gated in Chapter 3. The case study is a quarter-scale, two-span bridge system, experimentally

tested at the University of Nevada, Reno. Chapter 4 reports the performance of different sys-

tem identification approaches for experimentally recorded data of a 1/20 scale 4-story building

equipped with smart devices of magneto-rheological (MR) damper. This case study is also stud-

ied in Chapter 5 to investigate the application of artificial neural networks for identification of

nonlinear structural models. The last chapter provides a brief overview of the whole dissertation

and highlights the concluding remarks.

6



Chapter II

COMPARISON OF DIFFERENT GLOBAL

OPTIMIZATION TECHNIQUES FOR

HIGH-DIMENSIONAL PROBLEMS

II.1 Introduction

STRUCTURAL health monitoring through the use of finite element model updating tech-

niques for dispersed civil infrastructures usually deals with minimizing a complex, non-

linear, non-convex, high-dimensional cost function with several local minima. Hence, global op-

timization algorithms with promising performance have received considerable attention for finite

element model updating purposes. In recent years, different types of optimization algorithms have

been designed and applied to solve real-life optimization problems, especially with engineering

applications. Some of the most well-known approaches include classical deterministic methods

such as quasi-Newton method as well as stochastic approaches such as genetic algorithms, evo-

lutionary strategies, particle swarm optimization, hybrid evolutionary-classical methods, other

non-evolutionary methods such as simulated annealing (SA), tabu search (TS) and others.
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Global optimization methods can be categorized as follows:

(i). Deterministic methods, in which the computation is completely determined by previously

sampled values . This group of optimization approaches are not generally successful on

non-convex high-dimensional functions. Some examples are algorithms based on real al-

gebraic geometry, interval optimization methods and branch and bound methods.

(ii). Stochastic methods, that incorporate probabilistic elements in the optimization procedure.

Genetic algorithms, evolutionary strategies and particle swarm optimization belong to this

group of optimization methods.

II.1.1 Scope

In this chapter, we empirically investigate the global search performance of some well-known op-

timization packages on a subset of standard test problems. The remainder is organized as follows:

A brief explanation of each optimization method, definition of the benchmark functions, common

termination criteria, size of problems and initialization scheme are presented. The results of sta-

tistical study based on an ensemble of 100 simulations for each case are provided and discussed.

In particular, the effects of function order as well as population size on the performance of these

methods are investigated, followed by the summary and concluding remarks.

II.2 Optimization Methods under Discussion

II.2.1 CMA-ES

Evolutionary Strategy based on Covariance Matrix Adaptation, abbreviated as CMA-ES, was pro-

posed for the first time in 1994 (Ostermeier et al. (1994)) and has been considerably developed
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since then. In this method, any new population is generated based on the multivariate normal

mutation distribution with adapted covariance matrix. The adaptation is based on increasing the

likelihood of previously realized successful mutation steps, as well as exploiting the evolution

path of the distribution mean of the strategy.

Theoretical concept behind CMA-ES can be summarized as follows (Akimoto et al. (2012)).

If the probability density function of the multivariate normal distribution with mean vector m

and covariance matrix σ2C is represented as N(x,m, σ2C), the CMA-ES starts with the initial

parameters of m0, σ0, C0, p0
σ = 0 and p0

C = 0 and repeats the following steps:

(i). Generate λ independent sample points x1, x2, ..., xλ from N(x,m, σ2C).

(ii). Evaluate the function values at sample points f(x1), f(x2), ..., f(xλ).

(iii). Update the parameters of the algorithm as follows.

Mean vector:

mt+1 =
λ∑

i=1

WRiXi (II.1)

where Ri is the ranking of f(xi). WRi represents the weight for the Rith highest point and

has the following properties:

0 ≤Wi ≤Wj ≤ 1∀i > j &
λ∑

i=1

Wi = 1 (II.2)

Global step-size:

σt+1 = σtexp

(
cσ
dσ

pt+1
σ − χd
χd

)
(II.3)

where cσ and dσ denote learning rate and the damping parameter, respectively. χd is the
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Figure II.1: Concept behind the covariance matrix adaptation for generation evolution. Two phenomena
are observed as the generations develop: 1- The center of the new generation is shifted toward global
minimum due to the weighting of the population for reproduction process. 2- The distribution shape adapts
to an ellipsoidal or ridge-like landscape along the principle axis, which is the eigenvector corresponding to
the largest eigenvalue of the covariance matrix. (figure adapted from http://en.wikipedia.org/wiki/CMA-
ES).

expectation of the chi distribution with d degrees of freedom and pσ is an evolution path

being updated as

pt+1
σ = (1− cσ)ptσ +

√
cσ(2− cσ)
∑λ

i=1W
2
i

(Ct)−
1
2 (mt+1 −mt)
σt

(II.4)

Covariance matrix:

Ct+1 = (1− c1 − cµ)Ct + c1p
t+1
C (pt+1

C )T + cµ

λ∑

i=1

WRi

xi −mt

σt

(
xi −mt

σt

)T
(II.5)

where c1 and cµ are learning rate parameters and pC is an evolution path, being updated as

pt+1
C = (1− cc)ptC +

√
cc(2− cc)∑λ

i=1W
2
i

(mt+1 −mt)
σt

(II.6)

cc represents the learning rate for the evolution path update.

Figure II.1 schematically illustrates the main concept behind the covariance matrix adaptation for

a 2-D optimization problem. As shown, the search direction is modified such that the candidate

solutions in the new generation are more likely to be sampled along the principle axis. Further
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details concerning this approach are available in Ostermeier et al. (1994). A module, written in

MATLAB R© by the developers of this optimization method, is used for this study.

II.2.2 Genetic algorithm

Genetic algorithms are considered as a computational analogy of adaptive systems. They are

modeled based on the principles of the evolution of generations via natural selection, mutation

and crossover. Evaluation of the individuals is performed using a fitness (cost) function. General

paradigm of genetic algorithm methods involves:

(i). Initialization: Randomly generation of an initial population.

(ii). Selection: Selection a proportion of the existing population based on fitness to breed a new

generation.

(iii). Reproduction: Production of the new generation population through genetic operators such

as crossover and mutation.

(iv). Termination: Repeating step 2 and 3 until satisfying solution is obtained.

For this study, the ga module in the Optimization Toolbox of MATLAB R© is exploited.

II.3 Test functions

In the field of global optimization methods, it is common to compare different algorithms using

a large test set. Five well-known benchmark function are considered in this section to evaluate

and compare the performance of global optimization methods under discussion. The benchmark

functions include:

(i). Rosenbrock function: Function with a deep valley with the shape of a parabola.
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(ii). Schwefel function: Function composed of a great number of peaks and valleys.

(iii). Ackley function: Function with an exponential term that covers its surface with numerous

local minima.

(iv). Rastrigin function: Function made up of a large number of local minima whose value

increases with the distance to the global minimum.

(v). Griewank function: Function with a product term that introduces interdependence among

the variables.

Rosnebrock function is symmetric, uni-modal and non-separable with the global minimum at

x
˜

= 1.0. The rest of the test problems have a high number of local optima (multi-modal), and are

scalable in the problem dimension. The Rastrigin and Schwefel functions are additively separable,

while Ackley function is separable, in that the global optimum can be located by optimizing each

variable independently. Griewank is considered a partially separable function. The known global

minimum is located at x
˜

= 0.0 for all functions, except for the Schwefel function, where the

global minimum within [−500; 500]n resides at x
˜

= 420.9687. All the test problems have a

global minimal function value of 0. Figure II.2 to II.6 show 2-D plots of the functions under

investigation. The definition of each function as well as the range of interest and the global

minimum are also provided in these figures. The termination criteria in the optimization process

are defined as follows:

f ≤ 10−4 ∆f ≤ 10−10

∆x ≤ 10−10 Maxeval =∞
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Figure II.2: Plot of 2-D Rosenbrock function.
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Figure II.3: Plot of 2-D Schwefel function.
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Figure II.4: Plot of 2-D Ackley function.
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Figure II.5: Plot of 2-D Rastrigin function.
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Figure II.6: Plot of 2-D Griewank function.
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II.4 Results and discussion

Preliminary investigation of optimization methods under discussion shows that the success rate to

reach fstop strongly depends on the population size and problem dimension with other parameters

of less of influence. Therefore, it is decided to study the effects of these two parameters on the

performance of global optimization methods. A statistical study based on an ensemble of 100

simulations for each case is conducted. The starting point x0 is sampled uniformly within the

initialization intervals. All the data history of each optimization process is recorded in a MAT file

with double digit precision.

II.4.1 Problem-order effects

The dimensionality of the search space is an important factor in the complexity of the problem.

In order to establish different degrees of difficulty in the problems, we have chosen a search space

of dimensionality of n = 5, 10, 25, 50, 100 for each test functions. For both CMA-ES and GA
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Figure II.7: Effects of problem-order on the performance of evolutionary optimization methods
(GA and CMA-ES) for Ackley function. Population size in each generation is set as 100. The
results are based on 100 simulations for each case. In each plot, the solid line shows the average
of normalized error in the final solution vector while the dashed line indicates the average number
of function evaluation to reach the solution. The statistical distribution for normalized error of the
final solution and average number of function evolutions are also shown in small subplots. Note
that the relatively small mean value and standard deviation of the normalized error (with respect
to the dimension range = 32.768) shows the robustness and fidelity of these methods in solving
high-order problems. 16



algorithms, all 100 runs in each case are performed with the default strategy parameter defined in

the packages except for the population size, which is selected as Pop = 100.

The performance of optimization methods is highly influenced by the problem dimension. As

shown in Figure II.7, where exemplary results are illustrated for Ackley function, normalized er-

ror of the solution vector slightly increases for higher function dimensions. As expected, both op-

timization methods require significantly more function evolutions to reach the solution for higher

problem orders. The statistical distribution for normalized error of the final solution and average

number of function evolutions are also plotted in this figure. For ease of comparison between

different cases, the error is defined as the deviation of the final solution vector from exact global

minimum, normalized with respect to the problem-order. Based on this definition, the error can

be represented as:

ε =
|x
˜
− x
˜min
|

√
n

(II.7)

where ε is the normalized error, x
˜

is the final solution found by the optimization method, x
˜min

is the exact global minimum, and n is the function dimension. Note that the relatively small

mean value and standard deviation of the normalized error shows the robustness and fidelity of

these methods in solving high order problems. Comparing Figure II.7(a) and Figure II.7(b) also

shows that the average number of required function evaluations in CMA-ES to reach the solution

increases almost linearly with the problem-order. On the other hand, the corresponding plot for

GA illustrates superlinear behavior. The Ackley function represents the typical picture for the

effects of problem-order on the performance of global optimization methods.
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Figure II.8: Effects of population size on the performance of evolutionary optimization meth-
ods (GA and CMA-ES) for Rastrigin function of order n = 5. The population size of
Pop = 5, 10, 25, 50, 100, 250, 500, 1000 is implemented. The results are based on 100 simu-
lations for each case. In each plot, the solid line shows the final function value while the dashed
line indicates the average number of function evaluation to reach the solution. The statistical dis-
tribution for the final function value and number of function evolutions are also shown in small
subplots. Note that the success rate to reach better results (i.e., lower function value) strongly
improves for larger population sizes, at the expense of higher computational effort (i.e., higher
number of function evolutions). 18



II.4.2 Population size effects

The effects of the population size on the performance of evolutionary methods are also investi-

gated in this study. To do so, the population sizes of Pop = 5, 10, 25, 50, 100, 250, 500, 1000 are

implemented for a given problem size for each test function. Figure II.8 illustrates the perfor-

mance versus population size for Rastrigin function of order n = 5, based on 100 simulations for

each case. The statistical distribution for the final function value and average number of function

evolutions are also shown in small subplots. As shown in this figure, the success rate to reach

better results (i.e., lower function value) improves for larger population sizes, at the expense of

higher computational effort (i.e., higher number of function evolutions).

II.5 Concluding Remarks

In this study, the performance of two global optimization methods are empirically investigated on

a subset of well-known test functions. The global optimization algorithms under discussion were

Genetic Algorithm (ga modules in MATLAB R©) and an evolutionary strategy called CMA-ES. A

suit of five standard test functions with a search space of dimensionality n = 5, 10, 25, 50, 100

was considered to study the effects of the problem-order on the performance of the optimization

methods. In addition, the effects of population size on the performance of evolutionary methods

are investigated for a subset of population sizes of Pop = 5, 10, 25, 50, 100, 250, 500, 1000. For

each case, an ensemble of 100 simulations was generated to reach a reliable statistical data set.

Based on the comparison of these results, the following conclusions can be made:

• Evolutionary stochastic optimization methods are generally successful in solving high-

dimensional problems.
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• As expected, both optimization methods require significantly more function evolutions to

reach the solution for higher problem orders.

• Increasing the population size remarkably improves the performance of these methods at

the expense of higher number of function evaluations. The study shows that the optimal

population size takes a wide range of values depending on the cost function. For a given

objective function, the optimum population size may be tuned through calibration process

with the help of a statistical analysis.

• For multi-modal functions, CMA-ES shows better performance than GA in the sense that

it returns smaller final function value with less average number of required function evalu-

ations to reach the solution. For instance, while CMA-ES outperform GA on Ackley and

Rastrigin functions (as shown in Figures II.7 and II.8), it significantly falls behind GA on

Rosenbrock function. Noting that Rosenbrock is the only uni-modal non-separable test

function of this study, this indicates that the performance of these optimization packages

varies with the topography of the functions. This conclusion also agrees with the findings

of the developers of CMA-ES, reported in Hansen and Kern (2004).
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Chapter III

FINITE ELEMENT MODEL UPDATING USING

EVOLUTIONARY STRATEGIES

III.1 Introduction

IN this chapter, the performance of global optimization methods which were discussed in the

previous chapter is investigated for damage detection purposes, through the finite element

model updating approach. The case study is a quarter-scale, two-span, reinforced concrete bridge

system, which was investigated experimentally at the University of Nevada, Reno. The damage

sequence in the structure was induced by a range of progressively-increasing excitations in the

transverse direction of the specimen. Intermediate nondestructive white noise excitations and

response measurements were used for system identification and damage detection purposes. It is

shown that, when evaluated together with the strain gauge measurements and visual inspection

results, the applied finite element model updating algorithm of this study could accurately detect,

localize, and quantify the damage in the tested bridge columns throughout different phases of the

experiment.

21



III.1.1 Literature Review

The finite element model updating method has been studied for many years as an important subject

in the mechanical and aerospace engineering fields. It has also developed into a major research

area within the field of SHM, responding to an increasing demand for evaluating the integrity of

civil infrastructures. Many research projects have been conducted to develop a successful tool in

structural health monitoring through finite element model updating methods. Most of these tech-

niques are based on searching for an admissible set of structural parameters to minimize an error

function involving the analytical and measured dynamic response. The success of these method-

ologies strongly depends on having a suitable definition for the cost function, an appropriate

analytical model, an accurate system identification approach, and an effective robust optimization

algorithm for global minimization.

Some representative publications that provide a comprehensive overview of the broad interdis-

ciplinary field of finite element model updating for SHM, the main technical challenges, as well

as promising proposed approaches that have the potential of being useful tools for damage de-

tection purposes in different classes of civil infrastructure systems, are available in the works

of Farhat and Hemez (1993), Adeli and Cheng (1994a), Zimmerman and Kaouk (1994), Adeli

and Cheng (1994b), Friswell and Mottershead (1995), Doebling et al. (1996), Levin and Lieven

(1998), Atalla and Inman (1998), Fritzen et al. (1998), Doebling et al. (1998), Hemez and Doe-

bling (2001), Teughels et al. (2002), Jaishi and Ren (2005), Chu et al. (2008), Ni et al. (2008),

and Cheung and Beck (2009).
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III.1.2 Motivation and Technical Challenges

One of the basic current technical challenges in SHM is that, with a minimum of optimally lo-

cated sensors, any damage to be detected must have significant effects on the underlying struc-

tural dynamic properties (e.g., stiffness, mass or damping) of the system, which, in turn results

in a measurable change in the observed dynamic response. Unfortunately, this is not usually the

case in real operational structures, since typical localized damage of interest in practical SHM

applications may not induce significant influence on the dominant lower frequencies and the cor-

responding mode shapes of the monitored structure (unless it happens to occur at locations of high

strain energy).

With increasing widespread availability of sensor networks and data acquisition and commu-

nication capabilities, one may think of a dense, fine-grained sensor architecture as an intuitive

solution, but any increase in the size of the problem will introduce new impediments in the form

of processing huge amounts of multi-faceted data sets with embedded mathematical and com-

putational challenges. Of particular relevance to potential applications of finite element model

updating approaches for SHM in conjunction with dispersed systems are issues dealing with min-

imization of a complex, non-linear, non-convex, high-dimensional cost function with several local

minima. The more complicated the structure is with greater number of variables, the less likely

the optimal solution is found by means of conventional deterministic optimization methods.

The major strides that have been achieved in the recent past with regard to the development

of numerical optimization techniques for engineering applications, coupled with the tremendous

increase of computational power, bring SHM through model updating approaches for large-scale
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structures within the realm of practicality. Specifically, the fact that stochastic optimization tech-

niques, such as evolutionary algorithms, simulated annealing, and other random search methods

have shown promising performance in solving global optimization problems is one of the main

drivers for the growing interest in the investigation and implementation of these methods for

large-scale finite element model updating approaches.

III.1.3 Scope

As a component of a collaborative multi-university, multi-disciplinary project utilizing the Net-

work for Earthquake Engineering Simulation (NEES), a comprehensive series of experimental

studies have been recently conducted at the University of Nevada, Reno (NEES@Reno) on large

bridge systems. Recorded from densely-instrumented test specimens with a very large number

of accelerometers, displacement transducers, and strain gauges at several locations and in differ-

ent orientations, this collection of data provides a unique opportunity for applications in various

fields of earthquake engineering, including the development and evaluation of structural health

monitoring methodologies and damage detection techniques.

The main goal of the study reported here is to investigate the performance of two global opti-

mization methods in finite element model updating approaches for damage detection purposes.

The developed damage detection method was implemented on the NEES@Reno recorded data

from the shake-table experiments conducted on a quarter-scale, two-span bridge system. The

specimen was gradually damaged due to a sequence of low (Peak Ground Acceleration = 0.075g)

to high (PGA = 2.11g) amplitude progressive excitations in the transverse direction. Intermediate

nondestructive white noise excitations were also applied to the structure for system identification

and damage detection purposes.
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The remainder of this chapter is organized as follows. Section III.2 provides an overview of the

system identification approach and finite element model updating technique used in this study;

section III.3 describes the test bridge, data collection, and computational model; and section III.4

reports and discusses the damage-detection results and investigates the effectiveness of the pro-

posed approach. Section III.5 highlights the concluding remarks.

III.2 Overview of Identification Approach

III.2.1 Subspace Method for System Identification

The subspace state-space system identification algorithm (n4sid module in the System Identifi-

cation Toolbox of MATLAB R©) was employed for this study. Subspace algorithms have been

shown to be computationally very efficient and robust, specially for large data sets and large-scale

systems. The two main steps in the subspace system identification methods can be summarized

as follows (De Cock and De Moor (2003)):

(i). Estimating the Kalman filter state sequence of the dynamical system without any prior

knowledge of the mathematical model, through an orthogonal or oblique projections of row

spaces of data block Hankel matrices, and then determining the order, the observability

matrix and/or the state sequence, by applying a singular value decomposition.

(ii). State space model realization through the solution of a linear least-squares problem.

Various linear algebra algorithms such as QR and singular value decomposition may be imple-

mented in different stages of this procedure. The main principles of subspace identification meth-

ods with related mathematical derivations are available in De Cock and De Moor (2003).
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The kth time step in the discrete-time state-space representation of a Linear, Time-Invariant (LTI)

model can be expressed as:

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk (III.1)

where x, y and u represent the state, output and input vectors, respectively. Process noise (w) and

measurement noise (v) are assumed to be zero-mean, stationary, white-noise vector sequences.

The state space realization to estimate matrices A (dynamical system matrix), B (input matrix),

C (output matrix) and D (feedthrough matrix) can be achieved by means of the subspace system

identification algorithm (Ljung (1986)). It is impossible to measure the input term u in the case

of ambient vibration; however, it can be modeled as white noise in the following form:

xk+1 = Axk + wk

yk = Cxk + vk (III.2)

This simplified model is suitable as long as the input does not contain some dominant frequency

components in addition to white noise; otherwise, those frequency components cannot be sepa-

rated from the eigenfrequencies of the system (Skolnik et al. (2006)). If eigendecomposition of

the state matrix (A) is represented in the form of:

A = ΨΛΨ−1 (III.3)

where Ψ and Λ are eigenvector and eigenvalue matrices respectively, the modal properties of a

continuous-time structural system can be subsequently derived from (Nayeri (2007)):
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Λ = diag(σi ± jΩi) (III.4)

σi ± jΩi =
ln(σi ± jΩi)

∆t
(III.5)

ωi =
√
σ2
i + Ω2

i (III.6)

ζi = − cos
[
tan−1(

Ωi

σi
)
]

(III.7)

Φ
˜ i

= CΨ
˜ i

(III.8)

where ωi, ζi and Φ
˜ i

represent the natural frequency, damping ratio, and the mode shape of the

ith mode of the system, respectively. Through the use of stability diagrams, the physical modal

properties of the structure can be accurately identified and distinguished from the spurious ones

usually generated due to the sensor noise and measurement errors.

III.2.2 Formulation of Cost Function

The cost function describes a Potential Energy Surface (PES) in the parameter space, and its

global minimum optimizes the desired objective. One of the most common feature-extraction

methods in finite element model updating is based on correlating the measured system response,

in the frequency or time domain, with the corresponding quantities in the analytical model. For

the study reported herein, the cost function to be minimized in the model updating process is

calculated by cumulatively summing over the first n dominant modes of the structure. Each

term, corresponding to one of the structural modes, is the summation of two weighted, normal-

ized values which quantify the deviation of the analytical frequency and mode shape from the

corresponding measured ones. From this definition, the cost function can be written as follows:

J(α
˜
) =

n∑

i=1
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White noise excitation and structure response

Identify experimental fi and Фi using N4SID

Select initial values for parametrs

Update finite element model

Identify analytical fi and Фi of FEM
Calculate the cost function (J(α)) between 

analytical and experimental modal data

Optimization Method:

Termination criteria 

reached?

NO

YES

STOP

Figure III.1: Flowchart of finite element model updating process.

where α
˜

is the set of input parameters to be identified, fi and Φ
˜ i

represent the natural frequency

and the mode shape of the ith mode, and Wi denotes the corresponding weight. Superscripts (e)

and (a) stand for experimental and analytical results, respectively. The flowchart in Figure III.1

illustrates the steps in finite element model updating process.

III.3 Experimental Case Study

III.3.1 Description of Test Bridge Structure

The case study to illustrate the application of the method under discussion is a two-span reinforced

concrete bridge tested experimentally at the University of Nevada, Reno. The quarter-scale speci-

men has equal span-length of 30 ft (9.14 m) and three double-column bents with variable column

heights of 6 ft (1.83 m), 8 ft (2.44 m), and 5 ft (1.52 m) respectively. The column section is a
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Figure III.2: Rendering of the bridge structure (adapted from Johnson et al. (2006)).

1 ft diameter circular reinforced concrete with 1.56% longitudinal steel ratio. The deck of the

bridge is a precast slab with post-tensioned reinforcement in both the longitudinal and transverse

directions. It consists of six superstructure beams (three on each span) resting on the ledges at

the top of the columns. An amount of 280 kip (1245 kN) of additional mass is also provided on

the slab to consider scaling effects. More detailed information about this structure and the related

experimental study are available in Johnson et al. (2006). Figure III.2 shows a rendering of the

bridge structure.

III.3.2 Destructive Shaking Procedure

The bridge was tested under simulated excitations based on records from the Century City Coun-

try Club (1994 Northridge earthquake). Different levels of shaking amplitude, covering the range

of PGA = 0.075g∼ 2.11g, were conducted on the structure. Intermediate, white-noise excitations

were also applied for system identification purposes (Johnson et al. (2006)). Although the spec-

imen underwent these excitations at different times, a combined 390-sec time-history for each

record was used in this paper. The corresponding combined time-history record for the sequence

of excitations in the transverse direction is shown in Figure III.3, and its specifications are pre-

sented in Table III.1.
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Table III.1: NEES@Reno information of the combined time-history record for the excitations in the
transverse direction as shown in Figure III.3.

Test Ground Motion Tstart (sec) Tend (sec) PGA(g)
WN-1 White Noise 0 60 0.07
Test-13 Low Earthquake 60 75 0.18
Test-14 Moderate Earthquake 75 90 0.31
WN-2 White Noise 90 150 0.07
Test-15 High Earthquake 150 165 0.68
Test-17 High Earthquake 165 180 1.26
WN-3 White Noise 180 240 0.07
Test-18 Severe Earthquake 240 255 1.65
WN-4 White Noise 255 315 0.07
Test-19 Extreme Earthquake 315 330 2.11
WN-5 White Noise 330 390 0.07
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Figure III.3: NEES@Reno combined time-history record for the sequence of the excitations applied to
the bridge model in the transverse direction. Windows indicated by WN-i represent the ith white noise
excitation test, and windows designated by T-n denote earthquake-like test number n. Note the significant
difference in test levels covering the 390-sec record.

III.3.3 Instrumentation, Data Acquisition and Filtering

Extensive instrumentation consisting of 298 channels (25 for slab displacements, 3 for footing

slip, 68 for column curvatures, 15 for column shear, 14 for slab accelerations, 1 for support frame

acceleration, 104 for longitudinal reinforcement strain, 56 for transverse reinforcement strain, and

12 for shake table response) were used to record the data at the frequency rate of 100 Hz (Johnson

et al. (2006)). From a practical point of view, real structures outside of the lab environment do not

generally enjoy such a comprehensive level of instrumentation. Consequently, it was decided for

the purposes of the study reported here, to also investigate a case under the assumption that only
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Figure III.4: Top View (a) and Elevation View (b) of the NEES@Reno bridge, together with selected
sensor locations for this study. S1 to S5 denote the location of accelerometers on the bridge deck. (adapted
from Johnson et al. (2006)).
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Figure III.5: First three identified transverse mode shapes of the tested structure in the undamaged state.
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a limited number of sensors is available. The following two scenarios were considered:

(i). Only time-history records in both the longitudinal and transverse directions of the bridge

obtained from the five accelerometers on the deck are available.

(ii). Time-history records of the accelerometers on the deck as well as column curvature trans-

ducers are available.

Figure III.4 illustrates the location of the selected instrumentation for this study, deployed by the

NEES@Reno team on the tested bridge structure.

The first three transverse modes, in addition to the first longitudinal mode, were considered in

the calculation of the cost function. Note that, since the deck of the bridge is rigid, considering

the physics of the problem, it is impossible to evaluate the stiffness of the structure and detect

damage in the column level by just using the data from the sensors on the superstructure. There-

fore the second scenario requires more data from the curvature transducers on the top and the

bottom of the columns. In the definition of mode shapes for the cost function in the second sce-

nario, the measurements from the curvature transducers were used to determine the rotational

degrees of freedom about the longitudinal axis of the structure at the distance of 8.5 in (21.6 cm)

from the end of the columns. As illustrated in Figure III.5, based on the data processing conducted

for this study, the first transverse mode was identified as a dominant deck translation with slight

in-plane rotation (f = 3.09 Hz); the second mode as a dominant deck in-plane rotation with slight

translation (f = 4.15 Hz), and the third one as a deck bending (f = 12.90 Hz). The first longitudinal

mode was in translation and dominated the longitudinal response (f = 2.99 Hz). System identifi-

cation results for the aforementioned modes with low-pass filtered data at 25 Hz or at any higher

range were found to be identical. Consequently, a low-pass filter of 25 Hz was applied to all the
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processed records.

III.3.4 NASTRAN R© Finite Element Model

With the assumption that the behavior of the tested bridge would stay in the linear region when it

underwent low amplitude white-noise excitation, a NASTRAN R© computer model was developed

using linear beam column elements. The NASTRAN R© model emulated the SAP2000 model pro-

vided by the NEES@Reno research team who conducted the bridge test. Gross section properties

were used for all of the elements, but the stiffness of the reinforced columns were calibrated and

updated to represent the equivalent cracked moment of inertia.

As mentioned earlier, two scenarios were considered for investigating the model updating pro-

cedure:

• Scenario 1: Modal properties were identified based on the records from the 5 accelerome-

ters on the deck. Based on system identification results from white-noise excitation records

after each destructive shaking test, a 4-dimensional cost function (3 parameters for the stiff-

ness of the bents in the transverse direction + 1 parameter for the longitudinal stiffness of

all bents) was optimized to quantify the overall damage in the bents.

• Scenario 2: Modal properties were identified based on the records from 17 sensors (5 ac-

celerometers on the deck + 12 curvature transducers on the top and bottom of the columns).

A 13-dimensional cost function (12 parameters for the stiffness on the top and bottom of

the columns in the transverse direction + 1 parameter for the longitudinal stiffness of all

columns) was optimized to detect and quantify the overall and localized damage for each

column, after each destructive shaking test.
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Figure III.6: Finite element model updating results for the calibration study. Plots (a) and (b) show
the variation of the modification factors with function evaluation through the optimization procedure for
Scenario 1 while plots (c) and (d) corresponds to Scenario 2. Each function evaluation consists of a finite
element analysis to find the modal properties of the analytical model for the given set of input parameters
and then computation of the cost function. The dark thick vertical line on the Right-Hand-Side (RHS)
indicates the end of optimization process. In each plot, the RHS small panel provides a high-resolution plot
of the modification factors when the identification procedure converged. Numbers on the RHS indicate the
index of the system parameter being identified and the straight lines point to the corresponding curve. The
correspondence of these parameters to the physical properties of the tested structure is available in Table
III.7.
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Table III.2: Calibration results for analytical finite element model based on the identified experimental
modal properties of the undamaged state of the bridge using subspace method. S1 to S5 represent the
location of the accelerometers on the deck as shown in Figure III.4.

Mode Method Freq. (Hz) MAC Mode Shape Values
S1 S2 S3 S4 S5

1st Transverse Experimental 3.09 0.995 0.67 0.57 0.38 0.26 0.08
Analytical 3.10 0.63 0.55 0.43 0.30 0.15

2nd Transverse
Experimental 4.15 0.995 0.42 0.16 -0.23 -0.50 -0.70

Analytical 4.22 0.38 0.07 -0.23 -0.51 -0.73

3rd Transverse
Experimental 12.90 0.996 0.42 -0.42 -0.61 -0.36 0.39

Analytical 13.83 0.41 -0.35 -0.64 -0.34 0.42

1st Longitudinal Experimental 2.99 1.00 0.44 0.44 0.45 0.45 0.46
Analytical 2.94 0.45 0.45 0.45 0.45 0.45

For calibration purposes, as shown in Figure III.6, finite element model updating for both sce-

narios was conducted to reproduce the response of the bridge specimen in the undamaged state.

The identified parameters through the model updating process were modification factors to be

applied to the gross section properties of the columns in the finite element model, eventually rep-

resenting the equivalent cracked reinforced concrete. For Scenario 1, shown in Figure III.6(a) and

Figure III.6(b), parameters 1-3 represent the modification factors for the stiffness of the bents in

the transverse direction and parameter 4 for the longitudinal stiffness of all bents. For Scenario

2, illustrated in Figure III.6(c) and Figure III.6(d), parameters 1-12 correspond to the stiffness in

the transverse direction on the bottom and top of the columns and parameter 13 to the longitu-

dinal stiffness of all bents. The correspondence of these parameters to the physical properties of

the tested structure is available in Table III.7. The resulting set of modification factors agreed

fairly well with the factor (33% of the gross moment of inertia) calculated by the NEES@Reno

researchers (Johnson et al. (2006)) using the slope of the elastic region in the elasto-plastic ide-

alized moment-curvature relationship obtained from an analysis performed through a computer

program called RCMC (Moment-Curvature analysis of confined and unconfined Reinforced Con-

crete sections).
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Calibration results including obtained analytical and experimental frequencies as well as Modal

Assurance Criterion (MAC) values for the corresponding mode shapes are listed in Table III.2.

MAC values greater than 99.5% with frequency differences less than 2% (except the third trans-

verse mode which is of less importance) clearly indicate that there is a satisfactory agreement

between the modeled and the observed modal properties.

III.3.5 Choice of Initial Parameters and Weights

Parameter selection is a key issue in model updating procedures. The confidence in different

measured test values and initial parameter estimations can be expressed through the weights in

the cost function. Proper weighting factors can improve the optimization results significantly;

however, this requires a good deal of knowledge about the assumptions made in the finite element

modeling of the system, as well as the possible error sources in the analysis.

For typical structures, the system response is generally dominated by the low frequency modes.

In general, the higher the number of parameters is to be identified, the more modes are required to

be included in the cost function. On the other hand, using higher modes may not be reliable due to

not only the measurement noise but also the discretization effect in analytical finite element mod-

eling. Consequently, a plausible choice leads to setting higher weighting on the dominant modes,

while avoiding too little weighting factors for higher modes to preserve their embedded informa-

tion in the cost function (e.g., the inverse of the natural frequency). Nevertheless, model updating

results cannot be considered unique since they ultimately depend on user-defined weights and

constraints, as well as incorporating all the well-known limitations associated with inverse prob-

lems.
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Upon implementing all of the aforementioned considerations, different sets of weighting factors

in the model updating algorithm used in this study were evaluated for a synthetic damage detec-

tion scenario in the structure. To this end, a randomly damaged computer finite element model

was generated for each simulation and the original undamaged model was updated to capture the

modal properties of the damaged state through the optimization of the cost function. Scenario 2

(availability of data from 17 sensors) with a cost function involving a parameter vector of order 13

was considered for the simulation. Statistical data based on an ensemble of 100 simulations, with

a maximum of 5000 iterations for each test (needed due to the stochastic nature of the algorithm),

were investigated to determine the proper selection of the identification parameters. Despite the

fact that even the accurate computational simulation of realistic damage phenomena is a chal-

lenging problem in its own right, random initial parameter choice was employed for each run

in order to evaluate the robustness of the algorithm under discussion. Figure III.7 illustrates the

probability density function of the random error in each parameter estimation for the weighting

set of Wf
˜

= WΦ
˜

= {4 2 1 1} (4, 2 and 1 for the first three transverse modes, and 1 for the first

longitudinal mode). For the weighting set of {4 2 1 1}, the model updating algorithm was found

to be capable of detecting, localizing, and quantifying the damage in all sections of the structure,

with a high level of confidence (95% level of confidence with an error margin of less than 4% for

all parameters). Therefore, this weighting set was adopted in the rest of the study.

III.4 Results and discussion

III.4.1 Preliminary Damage Tracking

Finite element model updating is inherently a time-consuming process which makes it impracti-

cal for on-line prediction of system parameters. On the other hand, change-detection in modal
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Figure III.7: Probability density function (pdf) of the parameters estimation error. A total of 100 simu-
lations for scenario 2, with maximum of 5000 iterations for each test, were conducted for this study using
CMA-ES. The cost function to be optimized consisted a parameter vector of order 13. X(1) to X(12) rep-
resent the stiffness on the top and bottom of the columns in the transverse direction and X(13) denotes the
longitudinal stiffness of the bents. The correspondence of these parameters to the physical properties of the
tested structure is available in Table III.7. Initial parameters set was selected randomly for each simulation
to evaluate the robustness of the algorithm. In each plot panel, a thin line indicates the outline of the his-
togram of the parameter estimation error, and the solid line represents the estimated Gaussian pdf having a
matching mean (σ) and standard deviation (µ) to the corresponding histogram. Note that the abscissa and
ordinate ranges are not identical.
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properties (i.e., frequencies, mode shapes, and system damping) is quite well known as an easily

quantifiable structural damage index in the field of SHM (Masri et al. (2008)). Hence, a prelimi-

nary damage tracking technique that relies on detection of any shift in these quantities to trigger

the model updating procedure may drastically increase its efficacy. Notice that, actual damage

in real structures manifests itself in different complex forms (Masri et al. (2008)) and therefore,

one of the practical challenges in conjunction with damage detection in physical systems is the

monitoring indicators. For example, it is well recognized in the structural dynamics community

that, solely detecting frequency shifts is a poor precursor of damage in realistic systems, due to its

relative insensitivity to small changes (Nayeri et al. (2008), Peeters and De Roeck (2001), Sohn

et al. (1999), Cornwell et al. (1999)). Therefore, a reliable change-detection scheme should pro-

vide a meaningful correlation between the estimated system parameters and physical measures of

the structural dynamic properties of the monitored system.

Considering all the above mentioned aspects, a preliminary damage tracking technique was de-

veloped for this study using a recursive autoregressive moving average model (Recursive ARMA)

to produce a near-real-time (on-line) monitoring method to detect any significant change in the

system response. The first order single-output recursive ARMA structure to predict the value of

the cost function is defined as:

(1 + φL)J(t) = (1 + θL)ε(t) (III.10)

where J is the real-time cost function value (defined by Equation III.9) based on extracted modal

properties from a given window size of the past response record. φ and θ are Autoregressive

(AR) and Moving Average (MA) parameters, ε represents the white noise disturbance value and
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Figure III.8: Preliminary damage detection through tracking of the standard deviation of the moving
average parameter (θ) in the ARMA model. Four typical values of the forgetting factor (λ = 0.90, 0.95,
0.98 and 0.995) and different window sizes for system identification were considered in this study. The
first row illustrates the synchronized plot of the excitation to the structure in the transverse direction.

L denotes the lag operator in time series analysis. Any change in the dynamic system throughout

the experiment, resulting in the fluctuation of the value of the cost function, would be presumably

reflected in the estimated parameters by the ARMA model. This procedure was implemented

in MATLAB R© (using the rarmax module) for the response of the structure to the combined

excitation in the transverse direction.

Successive values of the standard deviation of the MA parameter (θ) in the recursive ARMA

model over a 5-second window size is shown in Figure III.8. The plot illustrates the effects of

different lengths of the response record used for system identification, as well as the forgetting

factor variant, λ, which weighs past information exponentially less as time goes on. As expected,

using a short-length of response (5T1 ∼ 15T1, where T1 is the fundamental period of the lin-
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earized system) for system identification would result in fast damage detection at the expense of

a possible false-positive damage indication (indication of damage when none is present), while

employing a too-long window size (20T1 ∼ 60T1) would increase the possibility of false-negative

damage indication (no indication of damage when damage is present). Both types of these errors

are clearly undesirable, since the former would cause unnecessary downtime and consequent eco-

nomic disruption, while the latter would bring safety issues to the system.

Figure III.8 also compares the effects of four typical values for the forgetting factor (λ = 0.90,

0.95, 0.98 and 0.995). Similar to the system identification window size, the forgetting factor value

showed a significant effect on the reaction time to changing system parameters, and an inverse

effect on ignoring noise. The smaller forgetting factor was more robust in detection of instanta-

neous damage to the system, but also more vulnerable to noise. A window size of (10T1 ∼ 30T1)

for system identification, and a forgetting factor of λ = 0.95 were found to be suitable for re-

liable instantaneous damage tracking of the investigated structure and therefore implemented in

this study. To simulate the real-time continuous monitoring of the structure, this proposed pre-

liminary damage tracking method was used to trigger the model updating procedure whenever

the monitored quantity settled down to a steady-state near-zero value after exceeding a predefined

threshold.

III.4.2 Model Updating Results

Damage detection using input-output data

The finite element model updating procedure was employed for both scenarios at different lev-

els of damage to the structure. Table III.3 to Table III.6 display the identified frequencies and
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the corresponding mode shapes (measured at the location of the accelerometers on the deck) of

the structure in the various time windows depicted in Figure III.3 (WN-2 to WN-5) for the first

longitudinal and the first three transverse modes. These identified quantities were used in the

calculation of the cost function for the finite element model updating procedures illustrated in

Figures III.9 to III.12.

Figure III.9 and Figure III.10 show the finite element model updating results using CMA-ES for

scenario 1 and 2, respectively. Similar results using GA optimization algorithm in the finite ele-

ment updating procedure are illustrated in Figure III.11 and Figure III.12. As shown in Figure III.9

and Figure III.11, based on system identification results using recorded response measurements

by 5 sensors, a 4-dimensional cost function was optimized to detect and quantify the overall dam-

age in each bent. Parameters 1-3 represent the remaining stiffness of the bents in the transverse

direction and parameter 4 is the corresponding value for the longitudinal stiffness of all bents. As

illustrated in Figure III.10 and Figure III.12 for scenario 2, based on system identification results

using recorded response measurements by 17 sensors, a 13-dimensional cost function was opti-

mized to detect and quantify the overall and localized damage for each column. Parameters 1-12

indicate the remaining stiffness in the transverse direction on the bottom and top of the columns

and parameter 13 represents the corresponding value for the longitudinal stiffness of all bents.

The correspondence of these parameters to the physical properties of the tested structure is avail-

able in Table III.7. In each figure, plots (a) to (d) show the variation of the modification factors

with function evaluation through the optimization procedure for white-noise excitation windows

WN-2 to WN-5, respectively. Diminishing fluctuation of the parameters being identified through

the optimization process indicates the convergence of these quantities to their final values. The

dark thick vertical line denotes the end of optimization process. In each plot, the RHS small panel
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Table III.3: System identification results for test window WN-2. S1 to S5 represent the location of the
accelerometers on the deck as shown in Figure III.4. These values were used for the finite element model
updating procedures illustrated in Figures III.9(a), III.10(a), III.11(a), and III.12(a).

Mode Freq. (Hz) Mode Shape Values
S1 S2 S3 S4 S5

1st Transverse 2.46 0.68 0.54 0.40 0.26 0.08
2nd Transverse 3.44 0.34 -0.04 -0.25 -0.51 -0.75
3rd Transverse 12.33 0.40 -0.41 -0.62 -0.37 0.38

1st Longitudinal 2.82 0.44 0.44 0.44 0.45 0.45

Table III.4: System identification results for test window WN-3. These values were used for the finite
element model updating procedures illustrated in Figures III.9(b), III.10(b), III.11(b), and III.12(b).

Mode Freq. (Hz) Mode Shape Values
S1 S2 S3 S4 S5

1st Transverse 1.53 0.69 0.54 0.40 0.26 0.10
2nd Transverse 1.82 0.31 0.01 -0.23 -0.50 -0.78
3rd Transverse 11.95 0.39 -0.43 -0.62 -0.38 0.37

1st Longitudinal 2.02 0.44 0.44 0.45 0.45 0.45

Table III.5: System identification results for test window WN-4. These values were used for the finite
element model updating procedures illustrated in Figures III.9(c), III.10(c), III.11(c), and III.12(c).

Mode Freq. (Hz) Mode Shape Values
S1 S2 S3 S4 S5

1st Transverse 1.39 0.55 0.48 0.45 0.39 0.34
2nd Transverse 1.57 0.39 0.11 -0.18 -0.47 -0.77
3rd Transverse 11.94 0.42 -0.41 -0.62 -0.39 0.34

1st Longitudinal 1.82 0.44 0.45 0.45 0.44 0.45

Table III.6: System identification results for test window WN-5. These values were used for the finite
element model updating procedures illustrated in Figures III.9(d), III.10(d), III.11(d), and III.12(d).

Mode Freq. (Hz) Mode Shape Values
S1 S2 S3 S4 S5

1st Transverse 1.34 0.61 0.53 0.42 0.33 0.22
2nd Transverse 1.56 0.45 0.12 -0.16 -0.44 -0.75
3rd Transverse 11.81 0.40 -0.41 -0.62 -0.40 0.35

1st Longitudinal 2.05 0.45 0.44 0.45 0.44 0.45
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Figure III.9: Finite element model updating results for Scenario 1, using CMA-ES. Plots (a) to (d) show
the variation of the modification factors with function evaluation through the optimization procedure for
white-noise excitation windows WN-2 to WN-5, respectively. Based on system identification results using
recorded response measurements by 5 sensors, a 4-dimensional cost function was optimized to detect and
quantify the overall damage in each bent. Parameters 1-3 represent the remaining stiffness of the bents
in the transverse direction and parameter 4 is the corresponding value for the longitudinal stiffness of all
bents (Please also see the caption of Figure III.6 for further details).
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Figure III.10: Finite element model updating results for Scenario 2, using CMA-ES. Plots (a) to (d)
show the variation of the modification factors with function evaluation through the optimization procedure
for white-noise excitation windows WN-2 to WN-5, respectively. Based on system identification results
using recorded response measurements by 17 sensors, a 13-dimensional cost function was optimized to
detect and quantify the overall and localized damage for each column. Parameters 1-12 represent the
remaining stiffness in the transverse direction on the bottom and top of the columns and parameter 13 is
the corresponding value for the longitudinal stiffness of all bents (Please also see the caption of Figure III.6
for further details).
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Figure III.11: Finite element model updating results for Scenario 1, using GA. Plots (a) to (d) show
the variation of the modification factors with function evaluation through the optimization procedure for
white-noise excitation windows WN-2 to WN-5, respectively. Based on system identification results using
recorded response measurements by 5 sensors, a 4-dimensional cost function was optimized to detect and
quantify the overall damage in each bent. Parameters 1-3 represent the remaining stiffness of the bents
in the transverse direction and parameter 4 is the corresponding value for the longitudinal stiffness of all
bents (Please also see the caption of Figure III.6 for further details).
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Figure III.12: Finite element model updating results for Scenario 2, using GA. Plots (a) to (d) show
the variation of the modification factors with function evaluation through the optimization procedure for
white-noise excitation windows WN-2 to WN-5, respectively. Based on system identification results using
recorded response measurements by 17 sensors, a 13-dimensional cost function was optimized to detect
and quantify the overall and localized damage for each column. Parameters 1-12 represent the remaining
stiffness in the transverse direction on the bottom and top of the columns and parameter 13 is the corre-
sponding value for the longitudinal stiffness of all bents (Please also see the caption of Figure III.6 for
further details).

47



provides a high-resolution plot of the modification factors when the identification procedure con-

verged. Numbers on the RHS indicate the index of the system parameter being identified and the

straight lines point to the corresponding curve. As shown in these figures, both CMA-ES and GA

converge to pretty close global minimums; however, GA may take more computational effort to

reach the solution, especially for higher order problem.

Note that, as the damage induced in the test structure escalates in response to increasing lev-

els of shaking in the test windows WN-2 through WN-5, the measure of damage provided by

the modification factors assures a diminishing value (since a value of 1.00 for modification factor

indicates an undamaged state, whereas 0.00 represents a completely damaged state). Damage de-

tection results for the test windows WN-2 to WN-5 are also tabulated in Table III.7 to Table III.10,

respectively. In each table, the identified damage quantities ((1.00 - Modification Factor)×100%)

through the optimization process for both scenarios as well as their correspondence to the phys-

ical properties of the tested structure are presented. Please note that in the second scenario, the

average of four obtained damage values for each bent (last two columns in Table III.7 to Table

III.10) represents the overall damage to that bent. Comparing this average to the damage value

obtained in the first scenario for each bent (column #4 and column #5 in Table III.7 to Table III.10)

indicates a fair agreement between the results of two scenarios. The damage indices calculated by

the NEES@Reno test team for the bents are also listed for comparison and validation purposes.
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Table III.7: Damage detection results for test window WN-2. Damage values show the percentage of
the loss of stiffness in the columns with respect to the intact stage. The damage indices calculated by
the NEES@Reno test team for the bents using strain gauge records are also listed. The corresponding
finite element model updating procedures, resulting in these quantities, are illustrated in Figures III.9(a) ,
III.10(a), III.11(a), and III.12(a).

Bent no. Damage Index Scenario 1 Scenario 2
(NEES@Reno) X(i) CMA-ES GA X(i) Location CMA-ES GA

Bent-1T 0.28 X(1) 43% 43%

X(1) East Column Bottom 42% 45%
X(2) East Column Top 45% 41%
X(3) West Column Bottom 38% 40%
X(4) West Column Top 39% 38%

Bent-2T 0.14 X(2) 10% 11%

X(5) East Column Bottom 1% 5%
X(6) East Column Top 21% 15%
X(7) West Column Bottom 12% 12%
X(8) West Column Top 3% 3%

Bent-3T 0.18 X(3) 35% 35%

X(9) East Column Bottom 37% 36%
X(10) East Column Top 34% 22%
X(11) West Column Bottom 36% 36%
X(12) West Column Top 30% 39%

All BentsL - X(4) 16% 16% X(13) All Col. Longitudinal 16% 16%

Table III.8: Damage detection results for test window WN-3. The corresponding finite element model
updating procedures, resulting in these quantities, are illustrated in Figures III.9(b) , III.10(b), III.11(b),
and III.12(b).

Bent no. Damage Index Scenario 1 Scenario 2
(NEES@Reno) X(i) CMA-ES GA X(i) Location CMA-ES GA

Bent-1T 1.19 X(1) 80% 79%

X(1) East Column Bottom 79% 75%
X(2) East Column Top 81% 81%
X(3) West Column Bottom 79% 81%
X(4) West Column Top 78% 80%

Bent-2T 0.61 X(2) 50% 49%

X(5) East Column Bottom 53% 63%
X(6) East Column Top 63% 62%
X(7) West Column Bottom 50% 41%
X(8) West Column Top 50% 44%

Bent-3T 0.99 X(3) 83% 83%

X(9) East Column Bottom 82% 74%
X(10) East Column Top 82% 79%
X(11) West Column Bottom 84% 90%
X(12) West Column Top 83% 89%

All BentsL - X(4) 63% 63% X(13) All Col. Longitudinal 63% 62%
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Table III.9: Damage detection results for test window WN-4. The corresponding finite element model
updating procedures, resulting in these quantities, are illustrated in Figures III.9(c) , III.10(c), III.11(c),
and III.12(c).

Bent no. Damage Index Scenario 1 Scenario 2
(NEES@Reno) X(i) CMA-ES GA X(i) Location CMA-ES GA

Bent-1T 1.63 X(1) 82% 77%

X(1) East Column Bottom 80% 78%
X(2) East Column Top 83% 89%
X(3) West Column Bottom 81% 78%
X(4) West Column Top 80% 77%

Bent-2T 0.86 X(2) 67% 54%

X(5) East Column Bottom 68% 72%
X(6) East Column Top 70% 70%
X(7) West Column Bottom 65% 60%
X(8) West Column Top 62% 55%

Bent-3T 1.38 X(3) 88% 84%

X(9) East Column Bottom 87% 89%
X(10) East Column Top 87% 84%
X(11) West Column Bottom 90% 90%
X(12) West Column Top 87% 88%

All BentsL - X(4) 71% 67% X(13) All Col. Longitudinal 71% 74%

Table III.10: Damage detection results for test window WN-5. The corresponding finite element model
updating procedures, resulting in these quantities, are illustrated in Figures III.9(d) , III.10(d), III.11(d),
and III.12(d).

Bent no. Damage Index Scenario 1 Scenario 2
(NEES@Reno) X(i) CMA-ES GA X(i) Location CMA-ES GA

Bent-1T 2.15 X(1) 84% 84%

X(1) East Column Bottom 83% 79%
X(2) East Column Top 83% 81%
X(3) West Column Bottom 82% 85%
X(4) West Column Top 86% 89%

Bent-2T 1.15 X(2) 68% 74%

X(5) East Column Bottom 66% 65%
X(6) East Column Top 79% 69%
X(7) West Column Bottom 72% 71%
X(8) West Column Top 66% 80%

Bent-3T 1.87 X(3) 89% 88%

X(9) East Column Bottom 88% 87%
X(10) East Column Top 89% 88%
X(11) West Column Bottom 88% 89%
X(12) West Column Top 87% 89%

All BentsL - X(4) 63% 64% X(13) All Col. Longitudinal 63% 61%
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The changes in the stiffness of the columns after WN-5 are generally insignificant. Interestingly,

an increase in the stiffness of the structure in transverse direction is also observed after WN-5

(71% damage after WN-4 and 63% after WN-5). Note that such an outcome is not uncommon

when dealing with experimental data. Meanwhile, this may be attributed to some extent to the

self-healing behavior of concrete cracks.

Damage detection using output-only data

In continuous monitoring of a large-scale system, it is usually infeasible to excite the structure

by a measurable artificial source, and even if possible, it will require expensive input devices

such as shakers. Moreover, during real operation, the loading conditions may be substantially

different from the ones used in the modal test. Therefore there is a considerable tendency to-

ward the use of freely available ambient excitation sources for system identification and damage

detection purposes. Various output-only system identification methods for operational modal

analysis have been proposed in the frequency domain (e.g, Peak-Picking method (PP), Complex

Mode Indication Function (CMIF), etc) and time domain (e.g, Instrumental Variable method (IV),

Covariance-Driven Stochastic Subspace Identification (SSI-COV), Data-Driven Stochastic Sub-

space Identification (SSI-DATA), etc) and have successfully been applied to real-life vibration

data (Peeters and Roeck (2001)).

To evaluate the proposed finite element model updating approach for output-only data analysis,

the damage detection procedures for both scenarios are conducted in window test WN-2 and

the results are presented in Figure III.13 and tabulated in Table III.11. Again, subspace method is

applied for modal identification of the structure. As expected, comparison of these results with the

corresponding quantities which are obtained from input-output data analysis (presented in Table

51



0 100 200 300 400 500 600 700 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

 f=0.26706876527626 (0.26706876527626)

abs(f) (blue), f−min(f) (cyan), Sigma (green), Axis Ratio (red)

0 200 400 600
0

0.2

0.4

0.6

0.8

1

 1

 3

 4

 2
Object Variables (4D)

Function evaluation

M
o

d
ifi

ca
tio

n
 f

a
ct

o
r

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

10
0

 1

 3

 4

 2
Standard Deviations of All Variables

function evaluations
0 100 200 300 400 500 600 700 800

10
−2

10
−1

10
0

10
1

Scaling (All Main Axes)

function evaluations

(a) Scenario 1 - CMA-ES

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Function evaluation

M
o
d
ifi

ca
tio

n
 f
a
ct

o
r

Object Variables (4D)

1

3

4

2

(b) Scenario 1 - GA

0 500 1000 1500 2000 2500 3000 3500 4000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

 f=0.013993382609669 (0.0139930842325851)

abs(f) (blue), f−min(f) (cyan), Sigma (green), Axis Ratio (red)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

 2
 11
 3
 4
 1
 9
 12
 10
 6
 13
 5
 8
 7

Object Variables (13D)

Function evaluation

M
o

d
ifi

ca
tio

n
 f

a
ct

o
r

0 500 1000 1500 2000 2500 3000 3500 4000
10

−4

10
−3

10
−2

10
−1

10
0

 13
 2
 12
 3
 4
 9
 10
 1
 7
 11
 5
 8
 6

Standard Deviations of All Variables

function evaluations
0 500 1000 1500 2000 2500 3000 3500 4000

10
−0.9

10
−0.6

10
−0.3

10
0

Scaling (All Main Axes)

function evaluations

(c) Scenario 2 - CMA-ES

0 0.5 1 1.5 2 2.5
x 10

4

0

0.2

0.4

0.6

0.8

1

Function evaluation

M
o

d
ifi

ca
tio

n
 f

a
ct

o
r

Object Variables (13D)

2

11

12

1

3

4

9

10

8

13

7

6

5

(d) Scenario 2 - GA

Figure III.13: Finite element model updating results using output-only data for test window WN-2. Plots
(a) and (b) show the variation of the modification factors with function evaluation through the optimization
procedure for Scenario 1 while plots (c) and (d) corresponds to Scenario 2. The correspondence of these
parameters to the physical properties of the tested structure is available in Table III.11. For comparison
purposes, the reader is referred to the corresponding figures using input-output data for damage detection
in test window WN-2 which are illustrated in Figures III.9(a), III.10(a), III.11(a), and III.12(a).

52



III.7; see also Figures III.9(a), III.10(a), III.11(a), and III.12(a)) shows an acceptable agreement,

primarily due to the white-noise nature of the excitations. Of course, the performance of the

method for real-life situations will highly depend on the accuracy of the important modal features

of the structure extracted from output-only vibration measurements.

Table III.11: Damage detection results for test window WN-2 using output-only data. The corresponding
finite element model updating procedures, resulting in these quantities, are illustrated in Figure III.13.

Bent no. Damage Index Scenario 1 Scenario 2
(NEES@Reno) X(i) CMA-ES GA X(i) Location CMA-ES GA

Bent-1T 0.28 X(1) 41% 41%

X(1) East Column Bottom 38% 46%
X(2) East Column Top 48% 51%
X(3) West Column Bottom 39% 33%
X(4) West Column Top 39% 31%

Bent-2T 0.14 X(2) 4% 6%

X(5) East Column Bottom 13% 4%
X(6) East Column Top 19% 9%
X(7) West Column Bottom 2% 12%
X(8) West Column Top 12% 16%

Bent-3T 0.18 X(3) 35% 34%

X(9) East Column Bottom 35% 24%
X(10) East Column Top 29% 19%
X(11) West Column Bottom 42% 49%
X(12) West Column Top 34% 49%

All BentsL - X(4) 16% 17% X(13) All Col. Longitudinal 16% 15%

III.4.3 Validation Results

To quantitatively estimate the amount of damage to the structure, the NEES@Reno research team

calculated a damage index for each bent and for each test motion using strain gauge records. This

damage index, developed by Park and Ang (1985) for reinforced concrete, is a practical mea-

sure of damage based on a combination of the amount of dissipated hysteretic energy, and the

maximum displacement demand over ultimate displacement ratio. For validation purposes, these

damage indices are also listed in Table III.7 to Table III.10. Values greater than 1.00 indicate

collapse. However, the probability of collapse at this threshold is approximately 50 percent with

a standard deviation of σ = 0.54. Damage indices greater than 1.00 represent a higher probability
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of collapse (Johnson et al. (2006)).

The index represents a mechanistic damage model through the following equation:

DI =
δM
δu

+
β

Qyδu

∫
dE (III.11)

in which δM , δu, Qy and dE represent maximum deformation under earthquake, ultimate defor-

mation under monotonic loading, calculated yield strength and incremental absorbed hysteretic

energy, respectively. Coefficient β is defined as follows:

β =
(
−0.447 + 0.073

l

d
+ 0.24n0 + 0.314pt

)
× 0.7ρω (III.12)

where l
d(≥ 1.7), n0(≥ 0.2), pt and ρω indicate shear span ratio, normalized axial stress, lon-

gitudinal steel ratio and confinement ratio respectively (Park and Ang (1985)). More detailed

information regarding the calculation of these indices is available in Johnson et al. (2006).

Figure III.14 illustrates the linear regression relating the damage index and the quantified damage

through the model updating procedure. Computed correlation factors (ρcmaes = 0.956, ρga =

0.946) strongly confirm the accuracy of the detected damage values qualitatively and quantita-

tively. Unfortunately, such a validation is not possible for detected localized damages on the top

and the bottom of the columns; hence, the reliability of these results highly depends upon the ac-

curacy of the identified modal properties of the structure in the different stages of the experiment.

In order to gauge the damage detection results of this study, it is useful to compare them with
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Figure III.14: Linear regression plot relating the damage index and the quantified damage. The abscissa
shows the quantified damage, identified through the model updating procedure in the first scenario (column
#4 and column #5 in Table III.7 to Table III.10), and the ordinate is the damage index introduced by Park
and Ang (1985) (column #2 in Table III.7 to Table III.10), which is a practical measure of damage based
on dissipated hysteretic energy and ductility demand.

the observations of the NEES@Reno team throughout the experiment. Table III.12 compares

the finite element model updating results with the visual inspections reported in Johnson et al.

(2006). As explained in the last column of this table, there is a fair agreement between the quali-

tative reported visual inspections and the quantitative identified damage indices through the model

updating approach.

III.5 Concluding Remarks

The underlying objective of this study is to evaluate the performance of two global optimiza-

tion methods in the finite element model updating approaches for damage detection in dispersed

structural systems, which usually deals with minimization of a complex, non-linear, non-convex,

high-dimensional cost function. The case study was a two-span reinforced concrete bridge, exper-

imentally tested at the University of Nevada, Reno. The subspace method for system identification
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Table III.12: Comparison of finite element model updating results with NEES@Reno observations
Test Window NEES@Reno Observation (Johnson et al. (2006)) Model Updating Results

WN-2
“No damage was observed in the bridge until af-
ter test 13. During test 13, initial hairline flexural
cracks developed in Bent-1.”

The higher detected damage value in Bent-1 (43%
and 43%) agrees with the reported visual inspec-
tion. (Table III.7)

WN-3 “Flexural cracking began in Bent-3 and became sig-
nificant in the columns of both Bents-1 and 3 during
test 15. Also during test 15, initial hairline cracks
began to develop in Bent-2. During test 17, signif-
icant concrete spalling exposed the column lateral
reinforcement in both Bents-1 and 3.”

Significant detected damage values in Bent-1 (80%
and 79%) and Bent-3 (83% and 83%) are in com-
plete agreement with visual observations. Lower
value in Bent-2 (50% and 49%) shows the incipi-
ent stages of damage in the middle of the structure.
(Table III.8)

WN-4 “Significant spalling and exposure of lateral column
reinforcement in Bent-2 became evident during test
18. Also during test 18, the longitudinal reinforce-
ment of Bent-3, the shortest of the bents, became
exposed and initial buckling was observed on the
bottom west side of the west column.”

Very high detected damage value in Bent-3 (88%
and 84%) indicates severe situation in the shortest
bent. Damage values of (82% and 77%) in Bent-
1 and (67% and 54%) in Bent-2 confirm the visual
inspection results. (Table III.9)

WN-5 “Both columns of Bent-3 failed in flexure during test
19. The top and bottom of Bent-3 columns experi-
enced significant plastic hinging and crushing of the
core concrete. Four Bent-3 spirals fractured, and 36
longitudinal bars buckled.”

Complete failure in Bent-3 is clearly reflected in its
significant detected damage value (89% and 88%).
Bent-1 is also in severe condition with more than
84%/84% loss of stiffness. As predicted, since
Bent-2 would be the most unlikely bent to fail dur-
ing the experiment, it has the least damage index of
68%/74%. (Table III.10)

was used to extract the modal parameters (natural frequencies, mode shapes, and modal damping)

of the bridge system. A NASTRAN R© computer model was developed based on the previous

SAP2000 model provided by the NEES@Reno team and validated with the system identification

results from the measured data. A simple on-line damage detection method, using an ARMA

model, was proposed and employed to trigger the finite element model updating process. Two

scenarios, assuming the availability of limited or large number of sensors were investigated for

the finite element model updating procedure. The feasibility of the proposed finite element model

updating algorithm to accurately detect, localize, and quantify the damage in the columns of the

tested bridge throughout the experiment was investigated and validated by comparison to experi-

mental measurements and visual inspections.
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Based on the comparison of the results from the application of the finite element model updat-

ing algorithm under discussion with the strain gauge measurements and visual observations, the

following conclusions can be made:

(i). The simple ARMA model proposed for preliminary on-line damage detection can signifi-

cantly increase the efficacy of the model updating process.

(ii). The finite element model updating algorithm presented and applied in this study could

accurately detect and quantify the overall damage in the tested bridge bents throughout the

experiment.

(iii). The proposed method also showed very promising results for damage detection in the sys-

tem using output-only data. This reveals the potential of the technique to provide a useful

tool for SHM purposes in conjunction with promising methods for the identification of

modal properties using available ambient vibration data.

(iv). The finite element model updating algorithm used in this study was shown to be robust and

accurate to detect, localize and quantify the damage in the columns in synthetic simulations;

however, the experimental results could not be completely validated. The reliability of these

results highly depends upon the accuracy of the identified (equivalent) modal properties of

the (damaged, nonlinear) structure in different stages of the experiment.

(v). Detected damage values are highly correlated (ρcmaes = 0.956, ρga = 0.946) with the

damage index developed by Park and Ang (1985), which is a practical measure of damage

based on dissipated hysteretic energy and ductility demand.

(vi). Both CMA-ES and GA converge to pretty close global minimums; however, GA may take

more computational effort to reach the solution, especially for higher-order problem.
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Even though the cost function to be optimized in this study was not relatively high-dimensional

(13-D), considering the promising performance of the optimization method under discussion in

solving well-known benchmark problems of global optimization, the general conclusions from

this study are useful in providing guidelines for the application of stochastic optimization methods

to real-world search problems, especially in the implementation of structural health monitoring

for complex, nonlinear distributed systems.
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Chapter IV

EVALUATION AND APPLICATION OF SOME

DATA-DRIVEN APPROACHES FOR THE

DEVELOPMENT OF EQUIVALENT LINEAR

SYSTEM FOR NONLINEAR STRUCTURES

IV.1 Introduction

THE performance of six different system identification methods is studied in this section.

The fidelity of the methods under discussion in identifying the structural dynamic prop-

erties of a nonlinear system is evaluated by using the experimental data from a 4-story model

building.

IV.1.1 Vibration-Signature-Based Nonlinear System Identification Methods: A Lit-

erature Review

The large family of system identification methods for estimation of nonlinear models based on

experimental measurements can be classified in several different approaches. The current pre-
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sentation gives an overview on some essential features in the area which includes a summary

of a comprehensive literature review and classification of methods presented by Kerschen et al.

(2006), variants and developments in each class, and their possible advantages and limitations.

Linearization

Several studies have attempted to find an equivalent linear model that can predict the response of

a nonlinear system. Caughey (1963) generalized the equivalent linearization method of Kryloff

and Bogoliubov to the case of nonlinear dynamic systems with random excitation. The method

operates directly on the equations of motion of a nonlinear oscillator under external Gaussian

excitation and replaces the nonlinear structure by a linear model based on minimizing a statistical

error function between the outputs of two systems. Many developments have been proposed since

to address the drawbacks of the technique such as the requirement of partially knowing the system

or its limitation to specific excitations. More works in this field can be found in Iwan (1973), Wen

(1980), Iwan and Mason (1980), Bruckner and Lin (1987), Roberts and Spanos (1990), Socha and

Soong (1991), Bouc (1994), Rice (1995), Soize and Le Fur (1997), Proppe et al. (2003), Bellizzi

and Defilippi (2003), Belendez et al. (2008), and Socha (2008).

Time-domain methods

Time-domain system identification methods have the advantage of taking direct measurements as

input, resulting in no loss of embedded information about the system in the recorded data, as well

as less time and effort to spend on data acquisition and processing. A fundamental time-domain

approach, called “Restoring Force Surface” (RFS), was proposed by Masri and Caughey (1979)

and Masri et al. (1982) that initiated the analysis of nonlinear structural systems in terms of their

internal RFSs. The original method was extremely appealing for its simplicity of concept; how-

60



ever, it suffered from complicated numerical analysis. It also required all vibration-signatures

(acceleration, velocity, displacement) data at all DOFs. Many researchers tried to improve the

method and overcome these demands in the following years including Masri et al. (1987a), Masri

et al. (1987b), Worden (1990a), Worden (1990b), Mohammad et al. (1992), Duym and Schoukens

(1995), Kerschen et al. (2001), Haroon et al. (2005), Nayeri et al. (2008), and Allen et al. (2008).

Another interesting time-domain technique for nonlinear system identification based on the gen-

eralization of the multivariable ARMAX models for linear systems, called NARMAX (Nonlin-

ear Auto-Regressive Moving Average models with eXogeneous input), has been proposed by

Leontaritis and Billings (1985a) and Leontaritis and Billings (1985b) and received considerable

attention in the structural dynamics community.

Frequency-domain methods

Frequency-domain system identification methods study the data mainly in the form of spectra or

Frequency Response Functions (FRF). Easier computation and more intuitive interpretation are

key advantages of these methods over time-domain approaches. Early frequency-domain methods

for nonlinear system identification were based upon the use of functional series such as Volterra

and Wiener series (Schetzen (1980)). An example of the application of these methods in the field

of structural dynamics was presented by Gifford (1989) in his doctoral dissertation. His pro-

posed method was based on extracting nonlinear parameters by fitting surfaces or hyper-surfaces

to the Higher Order Frequency Response Functions (HOFRF). The method was later improved

and expanded in various works such as Storer and Tomlinson (1993), Khan and Vyas (2001),

and Chatterjee and Vyas (2004). Other frequency-domain approaches have been developed for

identification of nonlinear systems, including methods using nonlinear resonances (e.g., Nayfeh

(1985)), spectral methods based on the reverse path analysis (e.g., Rice and Fitzpatrick (1988));
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methods using higher-order spectra (e.g., Roberts et al. (1995)); techniques using associated lin-

ear equations (e.g., Feijoo et al. (2004)), or those developed for Hammerstein models (e.g., Bai

(2010)). For a comprehensive overview of this field of research, readers may consult Pintelon and

Schoukens (2001).

Modal methods

Modal analysis represents a dynamic system in the form of its modal parameters. Despite the

popularity and suitability of this traditional method for linear models, its application to highly-

nonlinear systems usually leads to erroneous results. Seminal work of Rosenberg (1962) and

Rosenberg (1966) on the concept of Nonlinear Normal Mode (NNM) has provided an excellent

theoretical foundation for developing nonlinear system identification methods based on modal

analysis; however, new complications will arise due to the amplitude-dependency of NNMs and

their periods. Among many techniques that have been developed based on this methodology is

an early attempt by Szemplinska-Stupnicka (1979) and Szemplinska-Stupnicka (1983) to approx-

imate NNMs using the mode of vibration in resonant conditions.

Investigators have also proposed other modal methods for identification of nonlinear systems.

Masri et al. (1982) introduced a low-order regression analysis in modal space using the classical

RFS method. Bellizzi et al. (2001) proposed an identification method based on comparing exper-

imental coupled nonlinear modes to the predicted ones. Representatives of recent applications of

modal analysis for nonlinear system identification can be found in He et al. (2008) and Platten

et al. (2009).
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Time-frequency analysis

Time-frequency analysis is based on studying the time-varying nature of the vibrational character-

istics of the nonlinear system by decomposing the signal into a set of simpler components. Spina

et al. (1996) studied the application of time-frequency analysis using Gabor transform on nonlin-

ear oscillations. The Gabor transform identifies a time-variant matrix to decouple the transient

response into a set of quasi-harmonic components. Kitada (1998) proposed a method based on

expanding the response and excitation of the nonlinear system in terms of scaling functions using

wavelet transform. Ghanem and Romeo (2001) presented a wavelet-based approach using orthog-

onal Daubechies scaling functions for model and parameter identification of nonlinear systems.

Kareem and Kijewski (2002) studied the use of the wavelet transform for time-frequency analysis

of wind effects on structures. Pai et al. (2008) proposed a methodology that uses the Hilbert-

Huang transform (HHT) and a Sliding-Window Fitting (SWF) technique to drive time-dependent

dynamic characteristics of nonlinear systems through perturbation analysis.

Black-box modeling

Black-box modeling is a practical data-only-based system identification method that makes no

a priori assumption about the model. When physical insight about the system or the source of

nonlinearity is not available, nonlinear black-box modeling can be considered for system iden-

tification purposes; however, the identified model parameters may not be specifically attributed

to physical information of the structure. Artificial neural network is among the most popular

approaches that have been used for nonlinear mapping between recorded input and output data

of the system. The fundamental paper of Narendra and Parthasarathy (1990) demonstrated that

neural networks can be used effectively for the identification and control of nonlinear dynamical

63



systems. Masri et al. (1992) and Masri et al. (1993) used “dynamic neurons” in a multi-layer

perceptron neural networks structure to represent nonlinear systems. Chen and Billings (1992),

Chassiakos and Masri (1996), Masri et al. (2000), Kosmatopoulos et al. (2001), and Chen (2009)

have also studied using artificial neural networks for black-box nonlinear system identification

purposes. Other methods for non-parametric identification of nonlinear systems include splines

models (e.g. Peifer et al. (2003)), and dynamic fuzzy wavelet neural networks models (e.g. Adeli

and Jiang (2006)).

Structural model updating

Structural model updating techniques compute and update the model parameters through min-

imizing an objective function that measures the deviation of simulated response of the model

from the corresponding real measurement. One of the main applications of these techniques is to

make corrections to the initial finite element model of complex structures which usually suffers

from modeling, parameter, and testing errors. Berman and Flannelly (1971) and Baruch (1978)

were among the first researchers to introduce finite element model updating for linear structures.

Schmidt (1994) used the method of modal state observers to update the parameters of nonlin-

ear dynamic systems. Dippery and Smith (1998) employed the minimum model error estimation

algorithm for updating nonlinear models. Kyprianou et al. (2001) used differential evolution al-

gorithm for minimizing the objective function in the method. Meyer and Link (2003) defined

the objective function based on the difference between the measured and predicted displacement

response in the frequency domain. Yuen and Beck (2003) proposed a model updating method

to quantify the uncertainties in the model parameters. Kerschen and Golinval (2005) proposed a

two-step methodology for decoupling the estimation of the linear and nonlinear parameters of the

finite element model. Muto and Beck (2008) developed an identification method for hysteretic
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systems using Bayesian updating. For a detailed description of model updating methods, the

readers are referred to Friswell and Mottershead (1995).

IV.1.2 Scope

In this study, the performance of six different system identification methods is investigated, using

experimental data obtained from a 4-story model building. The six methods under discussion are:

(i). Linear System Using Least-Squares Method

(ii). Symmetric Linear System Using Least-Squares Method

(iii). Restoring Force Surface (RFS) Method for Chain-Like Systems

(iv). Model Updating Method

(v). Sub-Space Identification Method

(vi). Iterative Prediction-Error Minimization Method

It is not the intention of this research to compare these methods in detail, but rather to study their

performance in identifying the structural dynamic properties of the system. Comparison of dif-

ferent system identification techniques on operational data is potentially a subjective matter for

several reasons. Firstly, due to the lack of a reliable reference system, the methods can only be

compared relative to one another rather than to the exact solution. Furthermore, the comparison

criterion is also a highly subjective choice depending on the actual application. Some researchers

may suggest that the accuracy of the identified modal properties or the regenerated response is

the critical parameter for comparison of the methods, while others might emphasize the signifi-

cance of other factors such as robustness, computational efficiency, etc (Andersen et al. (1999)).
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Considering the relatively small size of the structural model under discussion (4 DOF system),

emphasis in this study is placed on studying the identified structural matrices (mass, damping,

and stiffness matrices), and modal properties (frequencies, damping, and mode-shapes) for the

purpose of detecting, localizing and quantifying the nonlinearity in the system throughout the ex-

periment.

The theory behind each method is briefly reviewed in section IV.2. In section IV.3, the test

structure, a 4-story model building which was investigated experimentally at Hunan University in

China, as well as the test procedure are explained. Section IV.4 presents the results and discussion,

and section IV.5 highlights the concluding remarks.

IV.2 Overview of System Identification Methods Under Discussion

IV.2.1 Linear System Using Least-Squares Method

Consider a discrete nonlinear MDOF system that is subjected to directly applied excitation forces

f1(t) as well as prescribed support motions x0(t). The governing equations of motion for this

multi-input/multi-output nonlinear system can be written as

Me
11ẍ1(t)+Ce

11ẋ1(t)+Ke
11x1(t)+Me

10ẍ0(t)+Ce
10ẋ0(t)+Ke

10x0(t)+fNL(t) = f1(t) (IV.1)

where the coefficients are defined as follows:

• f1(t) = column vector of order n1, representing directly applied forces;

• x(t) = (xT
1 (t), xT

0 (t))T = system displacement vector of order n1 + n0;

• x1(t) = active DOF displacement vector of order n1;
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• x0(t) = prescribed support displacement vector of order n0;

• Me
11, Ce

11, Ke
11 = constant matrices that characterize the equivalent inertia, damping, and stiffness

forces associated with the unconstrained DOFs of the system, each of order n1 × n1;

• Me
10, Ce

10, Ke
10 = constant matrices that characterize the inertia, damping, and stiffness forces

associated with the support motions, each of order n1 × n0;

• fNL(t) = an n1 column vector of nonlinear nonconservative forces.

The governing equation of the linearized version of this system can be presented as

Me
11ẍ1(t) + Ce

11ẋ1(t) + Ke
11x1(t) + Me

10ẍ0(t) + Ce
10ẋ0(t) + Ke

10x0(t) = f1(t) (IV.2)

For clarity of presentation, let the six matrices appearing in Equation IV.2 be denoted by 1A, 2A,

..., 6A, respectively. If the ith row of a generic matrix jA is shown as 〈jAi〉, the parameter vector

αi, that constitutes all of these elements in six matrices, can be introduced as:

αi = (〈1Ai〉, 〈2Ai〉, 〈3Ai〉, 〈4Ai〉, 〈5Ai〉, 〈6Ai〉)T (IV.3)

Let the response vector r(t) of order 3(n1 + n0) be defined as

r(t) = (ẍT1 (t), ẋT1 (t),xT1 (t), ẍT0 (t), ẋT0 (t),xT0 (t))T (IV.4)

If the excitation and the response of this linear system is measured at time steps t = t1, t2, ..., tN ,

then at every tk

1Aẍ1(tk)+2Aẋ1(tk)+3Ax1(tk)+4Aẍ0(tk)+5Aẋ0(tk)+6Ax0(tk) = f1(tk) k = 1, 2, ..., N

(IV.5)
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With introduction of matrix R as

R =




rT (t1)

rT (t2)
...

rT (tN )




(IV.6)

the grouping of the measurements can be expressed concisely as

R̂α̂ = b̂ (IV.7)

where R̂ is a block diagonal matrix whose diagonal elements are equal to R, α̂ = (α̂T
1 , α̂

T
2 , ..., α̂

T
n1

)T

and b̂ is the corresponding vector of excitation measurements. It should be noted that R̂ is of or-

der m × n where m = Nn1 , and n = 3n1(n1 + n0), and therefore, if a sufficient number of

measurements is taken, it will result in m > n. Under these conditions, least-squares procedures

can be used to solve for all the system parameters that constitute the entries in α̂:

α̂ = R̂†b̂ (IV.8)

where R̂† is the pseudo-inverse of R̂. In the more general case where the measurements asso-

ciated with certain DOFs are more reliable than others and/or measurements accumulated over

certain time periods are to be emphasized differently from the others, a symmetric, nonsingular,

usually diagonal error weighting matrix W can be used with the overdetermined set of equations

in Equation IV.7. Let the deviation error ê be

ê = b̂− R̂α̂ (IV.9)
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Using the weighted least-squares method to minimize the cost function J ,

J = êTWê (IV.10)

results in the following approximate solution

α̂ = (R̂TWR̂)−1R̂TWb̂ (IV.11)

Considering the diagonal nature of partitioned matrix R̂, the solution of Equation IV.7 can be

simplified into a set of n1 decoupled matrix equations, each of the form:

Rα̂i = b̂i i = 1, 2, ..., n1 (IV.12)

Comparing the orders of R̂ to R shows that the order of R is smaller by a factor of n2
1, making

Equation IV.12 much more computationally efficient. Least-squares techniques can again be used

to find the components of the n1 parameter vectors α̂i:

α̂i = R̂†b̂i (IV.13)

Note that R̂† needs to be computed only once (Masri et al. (1987a)).

IV.2.2 Symmetric Linear System Using Least-Squares Method

When dealing with structural systems, it is a legitimate assumption that structural matrices possess

symmetric properties. For a special case of linear system with symmetric matrices, the ith (row)
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component of the n1 system of equations in Equation IV.2 is presented as

n1∑

j=i

(
1Aij ẍ1j + 2Aij ẋ1j + 3Aij x1j + 4Aij ẍ0j + 5Aij ẋ0j + 6Aij x0j

)
+

i−1∑

j=1

(
1Aij ẍ1j + 2Aij ẋ1j + 3Aij x1j

)
= f1i(t) i = 1, 2, ..., n1 (IV.14)

Let 〈jAli〉 denote the elements of a square matrix jA that reside in row i and lie below the diagonal

of the partitioned matrix. For example 〈jAli〉 = 0 and 〈jAlk〉 = (jAk,1,j Ak,2, ...,j Ak,k−1).

Similarly, let 〈jAui 〉 denote the complement of 〈jAli〉 associated with row i. In other words, 〈jAui 〉

corresponds to the diagonal and above the diagonal elements of row i. For example, in a matrix

jA of order n, 〈jAuk〉 = (jAk,k,j Ak,k+1, ...,
j Ak,n). Using this notation, the following quantities

are defined:

αi = (〈1Aui 〉, 〈2Aui 〉, 〈3Aui 〉, 〈4Ai〉, 〈5Ai〉, 〈6Ai〉)T (IV.15)

β
i

= (〈1Ali〉, 〈2Ali〉, 〈3Ali〉)T (IV.16)

ri(t) = (ẍT1i(t), ẍ
T
1i+1

(t), ..., ẍT1n1
(t), ẋT1i(t), ẋ

T
1i+1

(t), ..., ẋT1n1
(t),

xT1i(t),x
T
1i+1

(t), ...,xT1n1
(t), ẍT0 (t), ẋT0 (t),xT0 (t))T (IV.17)

vi(t) = (ẍT11
(t), ẍT12

(t), ..., ẍT1i−1
(t), ẋT11

(t), ẋT12
(t), ..., ẋT1i−1

(t),

xT11
(t),xT12

(t), ...,xT1i−1
(t))T (IV.18)

With the definition of αi, βi, ri(t) and vi(t), Equation IV.14 can be expressed as:

ri
T (t)αi + vi

T (t)β
i

= f1i(t) (IV.19)
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which can be rewritten in the form:

ri
T (t)αi = fi(t)− vi

T (t)β
i

(IV.20)

Starting from the first row (i = 1), vi(t) is a null vector and elements of α1 can be computed

as in general method. For the next rows, system parameters in β
i

have been determined in the

previous stage of the calculation and the term on the RHS of Equation IV.20 is known or can be

measured. Thus a system with symmetric matrices can be identified for the given measurements

(Masri et al. (1987a)).

IV.2.3 Restoring Force Surface (RFS) Method for Chain-Like Systems

m2

1m

nm

(1)

G

G
(2)

G
(3)

G
(n)

F (t)
1

2
F (t)

F (t)
n

x (t)
i

Figure IV.1: Model of a MDOF chain-like system.

Consider the MDOF chain-like structure shown in Figure IV.1 which consists of n elements, each

with a lumped mass mi, and an arbitrary (unknown) nonlinear restoring function G(i). The struc-

ture may be subjected to a base excitation x0(t), and/or directly applied forces Fi(t). In the

context of civil structures, this system would be analogous to an n-story building with rigid floor
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slabs under ambient forces or ground motion excitation. It is assumed that the absolute acceler-

ation at each element, ẍi(t), is directly available from measurement. The other state variables,

ẋi(t) and xi(t), can be computed through integration of acceleration records. At this stage, we

also need to assume that the applied force Fi(t) are measurable. The relative motion between two

consecutive elements can be computed as follows:

zi(t) = xi(t)− xi−1(t) i = 1, 2, ..., n (IV.21)

A reasonable assumption in the field of structural dynamics is that the restoring force at each

element is only dependent on the relative displacement and velocity across the terminals of that

element:

G(i) = G(i)(zi, żi) (IV.22)

Therefore the equations of motion for such a system can be written as

mnẍn = Fn(t)−G(n)(zn, żn)

miẍi = Fi(t)−G(i)(zi, żi) + G(i+1)(zi+1, żi+1) i = n− 1, n− 2, ..., 1 (IV.23)

Equation IV.23 can be rewritten to express the unknown restoring force functions as

G(n)(zn, żn) = Fn(t)−mnẍn

G(i)(zi, żi) = Fi(t)−miẍi + G(i+1)(zi+1, żi+1) i = n− 1, n− 2, ..., 1 (IV.24)
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which can be presented in the more compact form of

G(i)(zi, żi) =
n∑

j=i

(Fj(t)−mjẍj) i = 1, 2, ..., n (IV.25)

Thus, starting from the tip of the chain, one can sequentially determine the time-histories of all

the inter-story restoring forces within the chain. The advantage of this formulation is that the

identification problem of a MDOF system is converted to a set of decoupled SDOF problems. For

the very top element, the restoring force is directly computed by subtracting the inertia force from

the external force measured at the top element. Then, starting from the element right before the

very last, the restoring force can be calculated by subtracting the inertia force from the external

force at that element, plus the restoring force of the previous element which has been computed

in the previous step. It should be noted that since the identification of the restoring force for each

element within the chain is dependent on the restoring force of the previous element, there is an

error accumulation effect, in which the error propagates down the chain and leads to a bigger error

for the lower elements of the chain.

Once the time-history of the restoring functions for all the elements is determined, one can

use suitable basis functions to approximate a nonparametric model for each element. A suit-

able choice of basis functions would be a power series expansion in the doubly indexed series as

follows:

Basis = Φ =
qmax∑

q=0

rmax∑

r=0

zqżr (IV.26)

A third-order expansion is usually sufficient for most of practical applications in structural dy-
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namics. Thus, for qmax = rmax = 3, the set of basis functions becomes

Φ =
{

1, ż, ż2, ż3, z, zż, zż2, zż3, z2, z2ż, z2ż2, z2ż3, z3, z3ż, z3ż2, z3ż3
}

(IV.27)

Standard least-squares methods can then be used to find the individual coefficients associated with

each basis function

G(i) =
qmax∑

q=0

rmax∑

r=0

p(i)
qr zqi ż

r
i

G(i) = Φ(i)p(i) (IV.28)

p(i) = [Φ(i)]†G(i)

where G(i) is an N × 1 vector whose elements are the time history samples of the ith restoring

function; p(i) is a ((1+qmax)(1+rmax))×1 vector of the unknown parameters p(i)
qr to be identified

in the process, Φ(i) is an N × ((1 + qmax)(1 + rmax)) matrix of the known time-histories of the

basis functions (Equation IV.26), N is the number of time samples, and the superscript † denotes

the pseudo-inverse. Note that identified damping and stiffness matrices for chain-like systems will

be in symmetric tridiagonal form while the mass matrix is in diagonal form (Masri et al. (1982)).

IV.2.4 Model Updating Method

As discussed earlier, one of the most popular feature-extraction methods in finite element model

updating is based on correlating the measured system response, in the frequency or time domain,

with the corresponding quantities in the analytical model. For the study reported herein, the cost

function to be minimized in the model updating process was similar to the one in the least-squares

method for linear systems. The defined cost function quantifies the deviation of the analytical
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response from the corresponding measured ones and cumulatively sums them over the N data

points. In other words, for the linear MDOF system governed by Equation IV.2, model updating

procedure was applied for each unconstrained degree of freedom to minimize the following cost

function:

J(α̂i) = ‖Rα̂i − b̂i‖ i = 1, 2, ..., n1 (IV.29)

where ‖ ‖ measures the Euclidian norm of the vector. The CMA-ES optimization package was

used to minimize the cost function and achieve an optimal set of elements for the structural dy-

namic matrices of the system.

IV.2.5 Sub-Space Identification Method

The last two methods under discussion are based on identifying the state-space representation of

the structural system. In control engineering, a state-space representation is a mathematical model

of a physical system as a set of input, output and state variables related by first-order differential

equations. For an LTI dynamical system, these differential and algebraic equations can be written

in matrix form, which provides a convenient and compact way to model and analyze multi-input,

multi-output (MIMO) systems. Continuous-time state-space representation of an LTI model is

presented as:

Ẋ(t) = AcX(t) + BcU(t) + v(t)

Y (t) = CcX(t) + DcU(t) + w(t) (IV.30)

where X , Y , and U represent the state, output, and input vectors, respectively. Process noise

(v) and measurement noise (w) are assumed to be zero-mean, stationary, white-noise vector se-

quences. The state-space realization will result in estimation of matrices Ac (dynamical system
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matrix), Bc (input matrix), Cc (output matrix) and Dc (feedthrough matrix). For the discrete-time

state-space representation of this model, the kth time step can be expressed as:

X((k + 1)T ) = AX(kT ) + BU(kT ) + v(kT )

Y (kT ) = CX(kT ) + DU(kT ) + w(kT ) (IV.31)

where T is the sampling interval. The relationships between the discrete-time state-space matrices

A, B, C, and D and the continuous-time state-space matrices Ac, Bc, Cc, and Dc are given for

piece-wise-constant input as follows:

A = eAcT B =
∫ T

0
eAcτBc dτ C = Cc D = Dc (IV.32)

To form the state-space representation of the MDOF dynamic system governed by Equation IV.2,

state, output, and input vectors are defined as:

X(t) =



x1(t)

ẋ1(t)


 (IV.33)

Y (t) = x1(t) (IV.34)

U(t) = f1(t) (IV.35)

These definitions will result in the following state-space representation

Ac =




0 I

−M−1K −M−1C


 Bc =




0

M−1


 Cc =

[
I 0

]
Dc =

[
0

]
(IV.36)
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This state-space representation is not unique in the sense that we get an equivalent equation by

introducing a non-singular transformation matrix T as follows

TẊ(t) = TAcT−1X(t) + TBcU(t) + v(t)

Y (t) = CcT−1X(t) + DcU(t) + w(t) (IV.37)

Equations IV.30 and IV.37 are said to be equivalent because they describe the same system and

have the same transform function. On the other hand, care must be taken because two state-space

equations might have the same transfer function without being equivalent.

Inversely, in order to extract the mass, stiffness, and damping matrices of the structure from its

state-space representation, it is necessary to have the identified state-space matrices in the form

of Equation IV.36. Since the identification process usually leads to an estimate of the state-space

matrices up to a similarity transformation T (AT = TAcT−1,BT = TBc,CT = CcT−1), the

abstraction of M, C, and K is not straightforward as from [Ac,Bc,Cc]. It can be shown that

there exists a unique similarity transformation P that transforms [AT ,BT ,CT ] to the form of

[Ac,Bc,Cc] in Equation IV.36. A similarity transformation P that satisfies

Ac = PATP−1

Bc = PBT (IV.38)

Cc = CTP−1
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is obtained as follows:

P =




CT

CTAT


 (IV.39)

The mass, damping, and stiffness matrices can then be determined as (Jezequel (1997)):

M = (CTATBT )−1 [K C] = MCTA2
T




CT

CTAT




−1

(IV.40)

The n4sid module in the System Identification Toolbox of MATLAB R© was employed for this

study.

IV.2.6 Iterative Prediction-Error Minimization Method

The iterative Prediction-Error Minimization algorithm (the pem module in the System Identifi-

cation Toolbox of MATLAB R©) was used to estimate model parameters of the structure. For the

linear model defined in Equation IV.30, the general symbolic transfer function description is given

by:

Y (t) = GU(t) + He(t) (IV.41)

where G is a transfer function that takes the input U to the output Y . H is a transfer function that

describes the properties of the additive output noise model. PEM uses optimization to minimize

the cost function, defined as follows, to find G and H:

VN (G,H) =
tN∑

t=t1

e(t)2 (IV.42)
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where e(t) is the difference between the measured output and the predicted output of the model.

For a linear model, this error is defined by the following equation:

e(t) = H−1(q) [Y (t)−G(q)U(t)] (IV.43)

where q is the lag operator. The subscript N indicates that the cost is a function of the number of

data samples and becomes more accurate for larger values of N. As with any nonlinear optimiza-

tion algorithm, there is a chance that the model might find a local minimum that is not accurate

for a specific system. When matrices G and H are estimated, one of many available methods can

then be used to derive a minimal state-space realization of the system from the transfer function

matrix.

IV.3 Experimental Case Study: Hunan University Building Model

Structure

IV.3.1 Description of Test Building Model

The case study is a 4-story frame structure which was investigated experimentally at Hunan Uni-

versity, China. The steel-frame building model is 40cm × 30cm in plan and 120cm in height

with a total mass of ' 52.4kg. All the junctions between the floors (each made of a 10mm thick

steel plate) and the column elements (each made of a 120cm long steel bar with a cross section

of 30mm × 5mm) are connected by bolts. In the second phase of the experiment, the structure

is also equipped with a magneto-rheological (MR) damper between the third and the fourth floor

to simulate nonlinear behavior in the system, and the actual nonlinear hysteretic restoring force

is measured by a force transducer. The building model was equipped with one accelerometer at
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(a) Building without MR damper (b) Building with MR damper

Figure IV.2: Experimental case study building model before and after the installation of the MR damper.
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Figure IV.3: (a) Top view and (b) Elevation view of the tested building structure
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each floor to record the data at the frequency rate of 1000 Hz throughout the experiment. Figure

IV.2 shows photos of the building model before and after the installation of the MR damper on

the structure. The top view and elevation view of the structure are also illustrated in Figure IV.3.

IV.3.2 Test Cases

For the purpose of nonlinear behavior identification, the experiment was conducted in two stages:

(1) before and (2) after adding the MR damper. The behavior of the structure is assumed to be

linear before it is equipped with the MR damper. In the second stage, four different nonlinearity

scenarios based on the electric current input to the MR damper (0.00A, 0.05A, 0.10A and 0.15A)

were considered. In each of these five cases, the structure was excited at each floor by means

of an impact hammer, and the corresponding accelerations were measured simultaneously by the

accelerometers mounted on each floor, while the velocity and the displacements of the structure

were obtained from the integration of the measured accelerations. Figure IV.4 to Figure IV.8

show the applied force on the structure and the corresponding measurements for Case 0 to Case

4, respectively. The description of these tests are also tabulated in Table IV.1 (Xu et al. (2010)).
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Figure IV.4: (a) Applied forces and the corresponding recorded (b) Acceleration, (c) Velocity and (d)
Displacement at each floor for Case 0 (No MR damper)
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Figure IV.5: (a) Applied forces and the corresponding recorded (b) Acceleration, (c) Velocity and (d)
Displacement at each floor for Case 1 (MR damper with 0.00A input current)
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Figure IV.6: (a) Applied forces and the corresponding recorded (b) Acceleration, (c) Velocity and (d)
Displacement at each floor for Case 2 (MR damper with 0.05A input current)
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Figure IV.7: (a) Applied forces and the corresponding recorded (b) Acceleration, (c) Velocity and (d)
Displacement at each floor for Case 3 (MR damper with 0.10A input current)

82



0 1 2 3 4 5 6 7 8
0

500

1000

1500

F
4
 (

N
)

0 1 2 3 4 5 6 7 8
0

500

1000

1500
F

3
 (

N
)

0 1 2 3 4 5 6 7 8
0

500

1000

1500

F
2
 (

N
)

0 1 2 3 4 5 6 7 8
0

500

1000

1500

F
1
 (

N
)

Time (sec)

(a) Force

0 1 2 3 4 5 6 7 8
−10

0

10

A
c
c

4
 (

g
)

0 1 2 3 4 5 6 7 8
−10

0

10

A
c
c

3
 (

g
)

0 1 2 3 4 5 6 7 8
−10

0

10

A
c
c

2
 (

g
)

0 1 2 3 4 5 6 7 8
−10

0

10

A
c
c

1
 (

g
)

Time (sec)

(b) Acceleration

0 1 2 3 4 5 6 7 8
−50

0

50

V
e

l 4
 (

c
m

/s
)

0 1 2 3 4 5 6 7 8
−50

0

50

V
e

l 3
 (

c
m

/s
)

0 1 2 3 4 5 6 7 8
−50

0

50

V
e

l 2
 (

c
m

/s
)

0 1 2 3 4 5 6 7 8
−50

0

50

V
e

l 1
 (

c
m

/s
)

Time (sec)

(c) Velocity

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

D
is

4
 (

c
m

)

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

D
is

3
 (

c
m

)

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

D
is

2
 (

c
m

)

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

D
is

1
 (

c
m

)

Time (sec)

(d) Displacement

Figure IV.8: (a) Applied forces and the corresponding recorded (b) Acceleration, (c) Velocity and (d)
Displacement at each floor for Case 4 (MR damper with 0.15A input current)

Table IV.1: Description of the conducted experiments
Case # Input current Impact forces Sequence of excitations
Case 0 No MR damper Single impact force on each floor 1-2-3-4
Case 1 0.00A Two impact forces on each floor 4-3-2-1
Case 2 0.05A Single impact force on the 4th floor and two impact forces on others 4-3-2-1
Case 3 0.10A Two impact forces on each floor 4-3-2-1
Case 4 0.15A Single impact force on the 4th floor and two impact forces on others 4-3-2-1

IV.4 Results

No information about the structure was assumed for the identification of the system, and only the

applied excitations and corresponding system response measurements were used to implement

each of the methods under discussion. Therefore the mass, damping, and stiffness coefficients

for each test case were identified independently with no priori knowledge about the system. The

building model was equipped with one accelerometer at each floor to record the response of the

system. From a practical point of view, real structures outside of the lab environment might not en-

joy such a comprehensive level of instrumentation on all key degrees-of-freedom. Consequently,

it was decided for the purposes of this study, to also investigate a situation under the assumption

that only a limited number of sensors is available. The following two scenarios were considered:
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(i). Full Instrumentation Recordings: Time-history records obtained from all four accelerom-

eters are available.

(ii). Partial Instrumentation Recordings (Model Order Reduction): Only time-history records

obtained from the accelerometers on the top two floors are available. Considering the se-

quence and timing of the applied impact forces on the structure, this scenario is only con-

templated for cases 1 to 4, using the first 4.0 seconds of the recorded data to avoid the

effects of missing excitations on the system.

The recorded data was processed and high pass filtered with the lowest cut-off frequency of 1 Hz.

IV.4.1 Identified Mass, Damping and Stiffness Matrices

Full Instrumentation Recordings

Tables IV.2 and IV.3 present the obtained mass, damping and stiffness matrices from different

system identification methods for case 0 and 4, respectively. Comprehensive results for all case

studies are tabulated and presented in Appendix A. As expected, other than elements correspond-

ing to the MR damper in the damping matrix (bolded values), no significant change is detected in

other structural dynamic matrices throughout the experiment. The identified values in the damp-

ing matrix corresponding to the location of MR damper (between the third and fourth floors)

monotonically increase as the input current to the MR damper is intensified. Furthermore, there

is a reasonable agreement among the identified matrices obtained from different methods.
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Partial Instrumentation Recordings (Model Order Reduction)

For this scenario, it is assumed that only time-history records obtained from the accelerometers

on the top two floors are available. Tables IV.4 and IV.5 present the obtained mass, damping

and stiffness matrices using partial instrumentation recordings for case 1 and 4, respectively.

Comprehensive results for all case studies are tabulated and presented in Appendix A. Similar to

the results from full instrumentation data, other than elements corresponding to the MR damper in

the damping matrix (bolded values), no significant change is detected in other structural dynamic

matrices throughout the experiment. For all methods, the identified values in the damping matrix

corresponding to the location of MR damper (diagonal terms) monotonically increase as the input

current to the MR damper is intensified which is a sign of change in this location. However,

there is much less agreement among the identified matrices from different system identification

methods probably due to short length of recordings.

IV.4.2 Identified Classical Frequencies and Damping Values

To extract the classical frequencies, damping values, and mode-shapes of the structure, the state-

space representation of the system should be constructed using relationships given in Equation

IV.36. The modal properties of the system can then be derived using the Equations III.4 to III.8.

Figure IV.9 schematically illustrates the four identified frequencies and corresponding mode-

shapes of the tested building structure in the excitation direction for case 0.

Tables IV.6 and IV.7 present four extracted classical frequencies and corresponding damping val-

ues of the structure using full instrumentation recordings for cases 0 and 4, respectively. Compre-

hensive results for all case studies are tabulated and presented in Appendix A. As shown in these
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Table IV.4: Identified mass, damping, and stiffness matrices of the system, using partial instrumentation
recordings: Case 1

Method \Matrix M C K(×10−5)

Linear System Method
[
9.00 1.00
0.85 12.83

] [
243.18 −199.32
−191.80 236.73

] [
1.10 −0.84
−1.45 1.40

]

Sym. Linear System Method
[
9.00 1.00
1.00 10.77

] [
243.18 −199.32
−199.32 222.34

] [
1.10 −0.84
−0.84 0.86

]

RFS Method for Chain-Like Systems
[
14.93 0.00
0.00 13.65

] [
296.55 −227.11
−227.11 227.11

] [
1.64 −1.29
−1.29 1.29

]

Model Updating Method
[
9.02 0.96
0.84 12.88

] [
250.66 −194.03
−192.14 233.61

] [
1.11 −0.85
−1.46 1.41

]

Sub-Space Method
[
14.77 −3.04
0.34 11.33

] [
276.80 −274.35
−177.99 213.74

] [
2.36 −1.91
−1.35 1.29

]

Iterative PEM Method
[
17.70 0.10
0.26 14.68

] [
322.95 −290.92
−221.23 269.75

] [
2.38 −1.86
−1.77 1.69

]

Table IV.5: Identified mass, damping, and stiffness matrices of the system, using partial instrumentation
recordings: Case 4

Method \Matrix M C K(×10−5)

Linear System Method
[
10.56 1.72
1.10 11.72

] [
356.80 −346.07
−331.42 393.60

] [
1.21 −0.93
−1.19 1.19

]

Sym. Linear System Method
[
10.56 1.72
1.72 11.34

] [
356.80 −346.07
−346.07 389.24

] [
1.21 −0.93
−0.93 0.97

]

RFS Method for Chain-Like Systems
[
15.04 0.00
0.00 13.59

] [
454.52 −404.18
−404.18 404.18

] [
1.73 −1.37
−1.37 1.37

]

Model Updating Method
[
10.57 1.70
1.09 11.76

] [
356.71 −345.17
−331.40 393.89

] [
1.22 −0.94
−1.20 1.20

]

Sub-Space Method
[

15.98 0.02
−0.48 12.01

] [
365.85 −405.81
−340.41 411.16

] [
2.15 −1.73
−1.45 1.41

]

Iterative PEM Method
[
17.11 0.27
0.21 15.05

] [
449.51 −481.20
−405.32 495.60

] [
2.29 −1.83
−1.72 1.68

]
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Figure IV.9: Four identified frequencies and corresponding mode-shapes of the tested building structure
in the excitation direction for Case 0.

tables, there is a reasonable agreement among the obtained values from different system identi-

fication methods. It is also noticeable that the nonlinear behavior of the MR damper is mainly

manifested in the damping value of the third dominant mode of the system. As shown in Figure

IV.9, the top two floors (location of the MR damper) have the highest participation in the third

mode of the system.

Table IV.8 to IV.9 show two identified classical frequencies and corresponding damping values

of the structure using partial instrumentation recordings for case 1 to 4, respectively. Note that

the two identified modes using partial instrumentation recordings correspond to the first and the

third dominant modes of the structure. This is due to the fact the third floor of the structure is

minimally excited by the second dominant mode of the system (see Figure IV.9). This reveals one

of main potential disadvantages of model order reduction in system identification applications.

Again, the increasing damping value of the second identified mode (third mode of the structure)

shows a significant change in the damping properties of the system.
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Table IV.6: Identified frequencies and damping ratios: Case 0

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%) f3(Hz) ζ3(%) f4(Hz) ζ4(%)

Linear System Method 5.62 1.623 16.70 1.324 26.56 1.165 35.89 0.765

Sym. Linear System Method 5.72 2.024 16.51 1.479 26.81 1.083 35.73 0.759

RFS Method for Chain-Like Systems 5.70 0.279 17.66 0.740 26.18 0.998 32.82 1.564

Model Updating Method 5.62 1.604 16.69 1.369 26.57 1.141 35.90 0.771

Sub-Space Method 5.65 1.768 16.65 1.114 26.54 1.065 35.83 0.629

Iterative PEM Method 5.64 1.497 16.58 0.781 26.38 0.794 35.75 0.560

Table IV.7: Identified frequencies and damping ratios: Case 4

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%) f3(Hz) ζ3(%) f4(Hz) ζ4(%)

Linear System Method 5.55 1.974 16.68 5.003 25.60 11.894 34.64 5.119

Sym. Linear System Method 5.50 1.750 16.50 6.248 26.87 13.504 35.18 4.881

RFS Method for Chain-Like Systems 5.54 0.829 16.76 4.897 24.79 11.194 30.09 6.340

Model Updating Method 5.46 2.045 16.68 5.017 25.61 11.895 34.64 5.111

Sub-Space Method 5.42 2.193 16.70 4.296 25.95 13.149 34.59 4.262

Iterative PEM Method 5.45 1.829 16.51 4.776 25.66 11.010 34.63 4.097

Table IV.8: Identified frequencies and damping ratios (partial instrumentation): Case 1

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%)

Linear System Method 5.44 4.751 24.68 14.740

Sym. Linear System Method 5.50 4.489 23.05 16.992

RFS Method for Chain-Like Systems 5.39 3.337 22.10 12.327

Model Updating Method 5.42 5.534 24.70 14.651

Sub-Space Method 5.41 3.206 24.65 10.505

Iterative PEM Method 5.44 3.668 24.68 11.122
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Table IV.9: Identified frequencies and damping ratios (partial instrumentation): Case 4

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%)

Linear System Method 5.45 3.888 24.30 24.089

Sym. Linear System Method 5.51 3.630 23.62 26.115

RFS Method for Chain-Like Systems 5.47 2.572 22.73 20.373

Model Updating Method 5.45 3.965 24.36 23.921

Sub-Space Method 5.41 3.346 24.43 17.548

Iterative PEM Method 5.39 3.649 24.50 18.695

IV.4.3 Restoring Forces in Chain-Like System

To evaluate the dependence of the restoring forces on basis functions, the parameters of Equa-

tion IV.29 is evaluated by means of the method developed by Masri and Caughey (1979). The

approach uses information about the state variables of non-linear systems to express the system

characteristics in terms of two-dimensional Chebyshev polynomials as follows:

G(z′, ż′) =
m∑

i=0

n∑

j=0

CijTi(z′)Tj(ż′) (IV.44)

in which Ti represents the ith Chebyshev polynomial of the first kind and z′ and ż′ are the

displacement and velocity vectors, normalized through the following equation:

z′ =
z − zmax+zmin

2
zmax−zmin

2

(IV.45)

The orthogonal nature of the Chebyshev polynomials and their equal ripple characteristics make

them convenient to use in least-squares approximations.
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The fidelity of the method is first evaluated using the synthetic data obtained from two analyt-

ical models. The first case is a linear 4-DOF system while a nonlinear damper is added to the

second model between the 3rd and 4th DOFs. The nonlinearity is assumed to be proportional to

the odd powers of velocity and displacement and their products as follows:

Mẍ(t) + Cẋ(t) + Kx(t)

+fNL
(
x(t),x3(t), ẋ(t), ẋ3(t),x(t)ẋ(t),x3(t)ẋ(t),x(t)ẋ3(t),x3(t)ẋ3(t)

)
= f(t) (IV.46)

Tables IV.10 and IV.11 present the corresponding parameters of the Chebyshev polynomials in the

approximation of the inter-story restoring forces for the linear and nonlinear cases, respectively.

Comparison of the two tables shows that the values in the last row of Table IV.11 identify the

damping (increase in the value corresponding to ż) and its nonlinearity (non-zero values for odd

powers of ż and z and their products) between the 3rd and 4th DOF of the system.

For the experimental data, Table IV.12 to IV.16 illustrate the corresponding parameters of Cheby-

shev polynomials of each basis function in the inter-story restoring forces for case 0 to 4, respec-

tively. As shown in these tables, the inter-story forces are primarily determined by the relative

displacement in each floor with much less dependence upon other basis functions. The high values

representating the relative displacement for the restoring forces in the first three floors show no

significant change throughout the experiment while the contribution of the corresponding param-

eter for the restoring force in the 4th floor gradually decreases during the experiment. Meanwhile,

the contribution of the relative velocity of the 4th floor (where nonlinear damper is employed)

increases as the current in the MR damper is intensified. The nonlinearity in the system, imposed

by MR damper, is also identified by gradual escalation in contribution of z3 and ż3. Note that
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ż
2

z
3
ż
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ż

z
2

ż
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ż
′3

z
′3

ż
′3

1

G
1

22
5.

25
1.

13
-4

.0
7

-1
.3

7
6.

88
-1

.3
2

-2
0.

57
-2

.3
2

10
.4

9
3.

02
21

.0
1

17
.8

4
-1

2.
19

2.
78

-1
8.

83
1.

82
G

2
24

9.
91

0.
06

-0
.3

6
-0

.1
1

-5
.4

9
0.

08
-2

.9
4

0.
03

-3
.5

6
0.

21
2.

99
3.

24
3.

13
-0

.0
5

-3
.3

1
0.

15
G

3
27

5.
74

-0
.0

2
0.

54
0.

06
11

.4
1

0.
23

-0
.2

7
-0

.0
3

-6
.8

2
-0

.2
5

1.
40

2.
14

1.
39

0.
13

-2
.7

5
-0

.2
8

G
4

29
0.

05
0
.0

4
-1

.9
0

-0
.3

7
21

.3
6

0
.0

1
0.

40
-0

.0
8

6.
72

0.
74

-0
.2

0
-0

.3
9

-1
0.

24
0.

07
0.

21
0.

99

Ta
bl

e
IV

.1
3:

C
or

re
sp

on
di

ng
pa

ra
m

et
er

s
of

ba
si

s
fu

nc
tio

ns
in

re
st

or
in

g
fo

rc
es

us
in

g
C

he
by

sh
ev

po
ly

no
m

ia
ls

:C
as

e
1

G
i

z
′

ż
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ż
′2

z
′2

ż
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ż
′2

z
′3

ż
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the negative sign of parameters corresponding to ż3 shows nonlinear softening with respect to the

velocity whereas the positive sign of parameters for to z3 is a sign of nonlinear hardening with

respect to the displacement.

IV.5 Concluding Remarks

Based on evaluation of the results from six different system identification methods using experi-

mentally recorded data from a 4-story model building, the following conclusions can be made:

(i). All six methods could successfully identify, locate and quantify the increasing damping

imposed to the system by MR damper throughout the experiment when using full instru-

mentation recordings. The identified values in the damping matrix corresponding to the

location of the MR damper (between the third and fourth floors) monotonically increase as

the input current to the MR damper is intensified.

(ii). Identified system matrices from different methods were in acceptable agreement with each

other when using full instrumentation recordings. However, identified mass values by Sub-

space and Iterative PEM methods are generally higher (8% ∼ 13%) than real measured

values in the lab. For other four system identification methods, the identified mass values

are very close to measured mass in all case studies except for case 0, where these values are

less (14% ∼ 16%) than real values. The identified of the stiffness of floors by RFS method

is generally less (15% ∼ 20%) than corresponding identified values by other five methods.

(iii). Identified system matrices using partial instrumentation recordings were in less agreement

with each other due to the short length of recordings; however, all identification methods

could successfully detect the change in the damping properties of the system.
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(iv). In addition, the RFS method could identify the nonlinearity of the damping in the system

and its behavior (softening or hardening) with respect to different vibrational signatures of

the structure.
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Chapter V

IDENTIFICATION OF NONLINEAR STRUCTURAL

MODELS USING ARTIFICIAL NEURAL NETWORKS

V.1 Introduction

THIS chapter explores the potential of using artificial neural networks for the detection of

changes in the characteristics of the structure-unknown non-linear dynamic systems.

V.1.1 Background

An Artificial Neural Network (ANN) or simply Neural Network (NN) is a mathematical or com-

putational model of an interconnected group of artificial neurons, that mimics the behavior of

biological nervous systems to model complex relationships between inputs and outputs or find

patterns in data. A neural network processes information using a connectionist approach to com-

putation and adapts its structure based on external or internal information that flows through the

network. Neural networks have been extensively employed to solve problems in numerous fields

of engineering and science and have opened up new possibilities in the various domains such as

signal processing, control systems, robotics, pattern recognition, speech recognition, medicine,
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business and financial analysis, and gaming.

Of particular relevance to the field of SHM, there has been increasing interest in recent decades

toward using neural networks for the identification of mathematical models of physical struc-

tures on the basis of experimental measurements. Non-parametric identification methods can be

used when the model structure is not clearly known. These methods try to provide the parame-

ters of a mathematical model which fits the input/output data rather than to identify the physical

parameters of the system. Some inherent properties of artificial neural network models such as

computational-efficiency, fault-tolerance, and adaptation make them a superior tool for this pur-

pose in comparison to traditional computational models. Furthermore, a neural network with

proper architecture can can treat both linear and nonlinear systems with the same formulation.

This is a plausible property when dealing with civil engineering structure where nonlinearity is

usually present.

These potentials have motivated many researchers to study neural network based approaches for

signature analysis of the system response in system identification and damage detection fields.

Kudva et al. (1992) applied a BP neural network to detect and localize large area damage in an

analytical plate model. Wu et al. (1992) trained a Back-Propagation (BP) Neural Network to de-

tect individual member damage (loss of stiffness) from the measured response of a three-story

building modeled by a two-dimensional ”shear building” driven by earthquake excitation. Masri

et al. (1993) developed a procedure based on the use of ANN for the identification of nonlinear

dynamic systems and applied it to the damped Duffing oscillator under deterministic excitation.

Worden et al. (1993) trained a three-hidden-layer BP neural network to identify damage in a

twenty-member framework structure using simulated data and later tested it on an experimental
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model of the same geometry. Elkordy et al. (1993) proposed a structural damage diagnostic sys-

tem based on a BP Neural Networks using both experimental and analytical data. They concluded

that NN could diagnose complicated damage patterns and handle noisy and partially incomplete

data sets. Szewczyk and Hajela (1994) formulated detection of damage in analytical models of

frame and truss structures as an inverse problem and utilized a modified Counter-Propagation

(CP) Neural Networks to solve it. Stephens and VanLuchene (1994) used a single-layer BP neu-

ral network to identify damage and condition assessment in multistory buildings using response

data from an experimental one-tenth scale reinforced concrete structure. Tsou and Shen (1994)

developed an on-line damage identification methodology for damage characterization (location

and severity) of two spring-mass systems through a BP neural network. The neural network was

constructed by three multi-layer sub-nets and used to identify the map from the change in modal

frequencies to the change in the spring stiffness values. Rhim and Lee (1995) examined the poten-

tial of using a Multi-Layer Perceptron (MLP) artificial neural network in conjunction with system

identification techniques to detect and characterize the damage in composite structures. Pandey

and Barai (1995) compared a two-hidden-layer to a single-layer BP neural network architecture

for damage detection of steel-truss bridge structures through mapping from various nodal time

histories to changes in stiffness. A non-parametric neural network-based approach is presented

by Masri et al. (2000) for the detection of changes in the characteristics of structure-unknown

systems. They showed that proposed damage detection methodology was robust in detecting rel-

atively small changes in the structural parameters, even in presence of noise in vibration measure-

ments. A structural damage detection method based on parameter identification using an iterative

neural network (NN) technique was proposed by Chang et al. (2000) and verified both numeri-

cally and experimentally using a clamped-clamped T beam. Zang and Imregun (2001) studied a

structural damage detection using measured frequency response functions (FRFs) as input data to

99



artificial neural networks. Zapico et al. (2001) studied a vibration-based procedure for damage

assessment in a two-storey steel frame and steel-concrete composite floors structure using neural

networks. Two natural frequencies and mode shapes were used as inputs to the neural network,

and three different definitions of damage (sections, bars and floors) were predicted as outputs.

Zubaydi et al. (2002) used neural network for damage identification in the side shell of a ship’s

structure. The input to the network was the auto-correlation function of the vibration response

of the structure while the output was a single function formed by adding together the damping

and a part of the restoring forces. The function was used to identify, quantify, and locate the

damage in the model. Wu et al. (2002) introduced a decentralized parametric damage detection

approach based on neural networks. Yam et al. (2003) studied a vibration-based damage detec-

tion for composite structures using wavelet transform and neural network identification. Kao and

Hung (2003) introduced a methodology to detect structural damage via free vibration responses

generated by approximating artificial neural networks. The extent of changes to the system was

assessed through comparing the periods and amplitudes of the free vibration responses of the dam-

aged and undamaged states. Quantification and localisation of damage in beam-like structures for

location and severity prediction of damage in beam-like structures was studied and experimen-

tally validated by Sahin and Shenoi (2003) by using a combination of global (changes in natural

frequencies) and local (curvature mode shapes) vibration-based analysis data as input in artifi-

cial neural networks. Maity and Saha (2004) used neural networks for damage assessment in

structure from changes in static parameter. They applied the idea on a simple cantilever beam,

where strain and displacement were used as possible candidates for damage identification by a

BP neural network. A neural networks-based damage detection method using the modal proper-

ties was studied by Lee et al. (2005) for modelling errors in the baseline finite element model of

bridges. In this model, the differences or the ratios of the mode shape components between before
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and after damage were used as the input to the neural networks since they were found to be less

sensitive to the modelling errors than the mode shapes themselves. Fang et al. (2005) explored

the structural damage detection using frequency response functions (FRFs) as input data to the

back-propagation neural network (BPNN). Bakhary et al. (2007) proposed a statistical approach

to take into account the effect of uncertainties in developing an ANN model for damage detection

purposes. In this model, the probability of damage existence (PDE) was calculated based on the

probability density function of the existence of undamaged and damaged states. Jiang and Adeli

(2007) developed a non-parametric system identification-based approach for damage detection

of high-rise building structures subjected to seismic excitations using the dynamic fuzzy wavelet

neural network (WNN) model. The model could work for a partially instrumented system, where

the structure was divided into a series of sub-structures around a few pre-selected instrumented

floors. Li et al. (2008) proposed a damage identification method based on the combination of

artificial neural network, Dempster-Shafer (D-S) evidence theory-based information fusion and

the Shannon entropy, to form a weighted and selective information fusion technique to reduce the

impact of uncertainties on damage identification. Comprehensive literature reviews on the subject

of using neural networks in damage identification and health monitoring of structural systems can

be found in Doebling et al. (1996), Adeli (2001), and Sohn et al. (2004).

V.1.2 Scope

An overview of the concept behind the approach is presented in Section V.2. Three different neu-

ral network architectures for the identification method are proposed. In Section V.3, the usefulness

of the approach for the detection of structural changes is demonstrated in a physical systems for

four different levels of imposed nonlinear damping. Two formulations of error between actual

and predicted output are presented and the correlation between the level of change and predic-
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Figure V.1: Schematic diagram of damage detection using neural networks. (Nakamura et al. (1998))

tion errors are studied. The potential advantages as well as limitations of the methodology are

discussed. The concluding remarks are highlighted in Section V.4.

V.2 Formulation

V.2.1 Methodology

Figure V.1 shows the schematic diagram of the neural network based approach for the damage

detection. The overall procedure is conducted in two steps:

(i). Training stage: As shown in Figure V.1(a), a neural network is trained by the data obtained

from the undamaged structure.

(ii). Detection stage: As illustrated in Figure V.1(b), the trained network is fed input data, which

is the same input to the system (reference structure) and the output from the network and
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Figure V.2: Diagram of the neural network in MATLAB R© (Adapted from the software manual).

the output from the system are compared to each other.

If the network is well trained, both the intact system and the network should have reasonably

matching outputs. However, if the properties of the system have changed, the output from the

trained network will deviate from the system output, resulting in a quantitative measure of the

changes (error) in the physical system relative to undamaged condition. Using this methodology,

changes (damage) in the system can be detected just by observing the output error of the trained

network. It is worth to note that the proposed approach requires the training the neural network

only once for the reference system. The scheme is appealing for field implementation due to its

simplicity; however, attributing the quantified of the changes in the neural network output with

respect to changes in the physical system parameters will still be a challenging issue.

V.2.2 Neural Network Architecture

The nftool module in the Neural Network Toolbox of MATLAB R© was employed for this study.

The neural network used is a two-layer feed-forward network with sigmoid hidden neurons and

linear output neurons (Figure V.2). The network will be trained with Levenberg-Marquardt back-

propagation algorithm, unless there is not enough memory, in which case scaled conjugate gra-

dient back-propagation (trainscg) will be used. According to the software manual, “the network

can fit multi-dimensional mapping problems arbitrarily well, given consistent data and enough
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Figure V.3: Neural Network (NN) with Input of Measured Displacements, Velocities, and Excitations and
Output of System Accelerations.
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ties, and Output of Restoring Forces on Each Story

neurons in its hidden layer.”

A significant feature of the present study is the development of a sufficiently general neural

network approach which will be adequate to handle linear as well as nonlinear system with-

out any modifications. Two different architectures for the neural network are considered. As

shown in Figure V.3, the first system model approximates the unknown function H in the equa-

tion ẍ = H(x, ẋ, f). This function will be approximated by a neural network whose outputs

are the four system accelerations, while the inputs to the network are the four force excitations,

displacements and velocities recorded on all floors. This model can be easily incorporated with

a numerical differential equation solution (e.g., Runge-Kutta method) for prediction and control

purposes (Masri et al. (2000)). The representative neural network used in this study has 12 input

and 4 output nodes with 12 hidden neurons.

One classification of the non-destructive evaluation (NDE) of structural systems is local vs global

methods or, alternatively, micro or macro methods (Masri et al. (1996)). Global methods attempt

to simultaneously assess the condition of the whole system, whereas local methods are designed

to provide information about a relatively small region of the structure by using local measure-
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ments. The two approaches are complementary to each other, with the optimum choice of method

highly dependent on the scope of the problem at hand and the nature of the sensor network.

The topology of the experimental model building which can be modeled as a chain-like sys-

tem also provides the opportunity to develop and investigate global and local NDE methods. In

the second model studied herein, the relative displacement and the relative velocity of floors are

selected as the input to the network and the restoring force is selected as the output of the network.

For this model, two different scenarios are studied. In the first case (Figure V.4), all the input data

are fed to a single neural network to predict four restoring forces in the floors. In the second case

(Figure V.5), four neural networks are trained, each individual representing a physical system cor-

responding to a specific storey of the building. The number of neurons in the hidden layer of the

neural network are selected as 8 and 4 for global and local models, respectively.

V.2.3 Performance Criteria

To evaluate the performance of the proposed method, two definitions of error are used to measure

the deviation of predicted output of the neural network models (Ŷ ) from the corresponding actual

data (Y ).

(i). Root Mean Square (RMS): A normalized error which is the average squared difference

between outputs and targets. Lower values are better. Zero means no error.

RMS =

√√√√√
∑N

i=1

(
Yi − Ŷi

)2

∑N
i=1 Y

2
i

(V.1)

(ii). Regression value (R): R measures the correlation between outputs and targets. An R value
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of one means a close relationship, while zero shows a random relationship. For ease of

comparison, the value of 1−R is measured and presented in the study.

1−R = 1.0−

∑N
i=1

(
Yi − Ȳi

) (
Ŷi − ¯̂

Yi

)

√
∑N

i=1

(
Yi − Ȳi

)2∑N
i=1

(
Ŷi − ¯̂

Yi

)2
(V.2)

V.3 Results and Discussion

V.3.1 Performance in Detection of Change

As explained in previous section, the measured data from case 0 (no MR damper) was used to

train the neural network. Then the network was used as a model for prediction of the system’s

responses in cases 1 to 4, where various levels of nonlinearity were induced to the system by the

installed MR damper between the third and the fourth floors. To evaluate the trained network

performance, the previously two discussed indices, Root Mean Square (RMS) and Regression (1

- R) errors between the output of the network and the corresponding actual data, were calculated

for the training data set itself (case 0), as well as the recorded data after imposing nonlinearity to

the system (cases 1 to 4).

It is worth pointing out that the network size is an important factor in the final performance. If the

net is too small, then it is not able to store all the training patterns, due to an insufficient number

of parameters. On the other hand, if the net is too large, then it does not “generalize”, meaning it

tends to simply store the training patterns rather than performing interpolation. For the application

presented here, number of neurons in the hidden layer of each neural network is selected to meet

these criteria. The results for all three neural network based approaches are illustrated in Figure

V.6. Each of the panels shown in this Figure V.6 corresponds to a bar chart of the output error for
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Figure V.6: Performance of different neural networks models for detection of change in the system.

different floors throughout the experiment. For example, the first panel shown on the top of LHS

exhibits the output 1 - R error for the general neural network model that predicts the acceleration

of the floors. The abscissa shows the floor number. At each floor, the first bar illustrates the error

for case 0 and the rest of the bars show the corresponding error for cases 1 to 4 in the same order.

Therefore, the height of the bars shown in the panel is directly proportional to the extent of the

deviation error between the measured system response and the predictions on the basis of the

behavior of the reference model. Three major observations in these plot are conspicuous:

(i). Damage Localization: All three approaches clearly indicate higher values of error for both

RMS and 1 - R where the MR is installed (between the third and fourth floors) in cases 1

to 4.

(ii). Damage Quantification: The value of errors are ascending as the increase of current in the
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MR damper introduces higher levels of nonlinearity to the system. Thus, both qualitatively

and quantitatively, it is seen that as the extent of the parameter changes is increased, a

corresponding increase in the deviation error of the network is observed.

(iii). For a given measured and predicted data sets in each case study, RMS generally gives

higher values of discrepancy while 1 - R index shows higher relative sensitivity toward

change in the system.

Note that both approaches which model the structure as a chain-like system are more successful in

pinpointing the location of change (fourth floor) compared to the general neural network method.

This behavior is attributable to the fact that no extra information about the physical system was

given to the net in the first approach, other than the input/output sequences, and that no model of

the system was assumed during the learning phase; whereas the neural networks that predict the

inter-story restoring forces of the building are actually benefiting from a prior information about

the topology of the system.

Without any knowledge of the characteristics of the structure being identified, the accuracy of

a well-trained neural network can be quantitatively gauged by means of its output performance

indices. In other words, dimensionless deviation errors (such as RMS or 1 - R) can be reliably

used as an straight-forward index to select an appropriate network for authentic representation of

the reference system. The results also indicate that, by selecting a threshold level relative to the

deviation error associated with the undamaged system response, all the well-trained networks can

be utilized to provide a sensitive indicator of the presence of potentially serious damage in the

system being monitored.
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V.3.2 General Neural Network Model Combined with ODE Solvers

The general neural network model of this study can be easily incorporated with a numerical

differential equation solution (e.g., Runge-Kutta method) for prediction and control purposes.

For a system with the governing equations of motion in the form of:

mẍ(t) +G(ẋ(t),x(t)) = f(t) (V.3)

, which can be rewritten as:

ẍ(t) =
1
m

(f(t)−G(ẋ(t),x(t))) = H(ẋ(t),x(t), f(t)) (V.4)

the trained neural network can replace function H to predict the response of the system. This

procedure is schematically shown in Figure V.7. After training five neural network for all the

linear and nonlinear cases, the predicted response of the structure on all floors are numerically

computed in the manner discussed above and plotted versus the corresponding measured data.

The results are illustrated in Figures V.8 to V.12 for cases 0 to 4, respectively. The ode45 solver in

MATLAB R© which implements fourth-fifth-order formulas of the Runge-Kutta-Fehlberg method

was employed for this study. The accuracy of the predictions is so high as to make the two distinct

curves in each of the plots practically indistinguishable. This also reveals that the neural network

predictor gives promising results for both linear and nonlinear systems. It should be noted that

the predicted response will include the effects of both the network identification errors as well as

error propagation effects associated with the computational scheme (Runge-Kutta) used to obtain

the numerical solution.
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Figure V.7: General neural network model combined with an ODE solver to predict the response of the
system.
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Figure V.8: Measured vs. predicted displacement of the structure at each floor for Case 0 using RK4.5
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Figure V.9: Measured vs. predicted displacement of the structure at each floor for Case 1 using RK4.5

0 1 2 3 4 5 6 7 8 9 10
−5

0

5
x 10

−3 1−R = 0.02  RMS = 0.23

Time (sec)

D
is

1 (m
)

−5

0

5
x 10

−3 1−R = 0.02  RMS = 0.22

D
is

2 (m
)

−5

0

5
x 10

−3 1−R = 0.02  RMS = 0.22

D
is

3 (m
)

−5

0

5
x 10

−3 1−R = 0.02  RMS = 0.22

D
is

4 (m
)

 

 

Measured
Predicted

Figure V.10: Measured vs. predicted displacement of the structure at each floor for Case 2 using RK4.5
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Figure V.11: Measured vs. predicted displacement of the structure at each floor for Case 3 using RK4.5
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Figure V.12: Measured vs. predicted displacement of the structure at each floor for Case 4 using RK4.5
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V.3.3 Estimation of Structural Mass for Chain-Like Systems
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Figure V.13: Model of a MDOF chain-like system.

As discussed in previous chapter, for the MDOF chain-like structure shown in Figure V.13 which

consists of n elements, each with a lumped mass mi, the nonlinear restoring function G(i) at each

floor can be calculated as:

G(i)(zi, żi) =
n∑

j=i

(Fj(t)−mjẍj) i = 1, 2, ..., n (V.5)

where zi and żi are the relative displacement and velocity between two consecutive floors, respec-

tively. Thus, starting from the tip of the chain, one can sequentially determine the time-histories of

all the inter-story restoring forces within the chain. However, as shown in Equation V.5, this will

require knowing the mass either through measuring the structural masses at the floors or calculat-

ing them based on design information. The objective of the study reported herein is to combine

a neural network that predicts the restoring forces from given displacement and velocities of the

floor with an optimization package to eliminate the requirement of knowing the structural mass.

114



First, restoring forces will be computed based on an arbitrary estimation of mass at each floor.

Then, a neural network will be trained to predict these restoring forces from the measured veloc-

ities and displacements. If the assumed masses deviate from accurate values, there will be a poor

relationship between the relative displacement and velocity at each floor and the corresponding

calculated restoring force. This will consequently result in a poor-trained neural network that

reflect itself in high values of performance criteria (RMS or 1 - R). Therefore, a cost function

based on these errors can be defined and optimized by adjusting the assumed structural masses to

archive a well-trained neural network:

J(α
˜
) =

n∑

i=1

Wi ×RMSi (V.6)

As shown in Equation V.6, the importance of accuracy of the estimated values for each floor can

also manifested with weights (Wi) in the cost function. The final optimized set of values will

represent the actual mass of each floor in the structure. Figure V.14 shows a graphical interpreta-

tion of the process. The mass of the experimental structure under investigation is estimated using

the proposed method and representative result of optimization process is shown in Figure V.15.

Initial population is randomly selected from a uniform distribution in the range of 0 ∼ 25kg and

equal weights for all floors are considered in the definition of the cost function. Note that esti-

mated final values are in close agreement with the measured structural mass of each floor in the

lab (52.4/4 = 13.1kg).

The results of estimated structural mass for cases 0 to 4 are tabulated in Table V.1 and also illus-

trated in a bar plot format in Figure V.16. As shown in this figure, the final estimated values in all
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ẋn

ẋ2
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Figure V.14: Flowchart of structural mass estimation for chain-like systems using optimization methods.
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Figure V.15: Estimation of mass of the floors using CMA-ES for Case 0 and Case 3. Initial population is
randomly selected from on a uniform distribution in the range of 0 ∼ 25kg and equal weights for all floors
are considered in the definition of the cost function.
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Figure V.16: Estimated mass of the floors using CMA-ES for Cases 0 to 4.

Table V.1: Estimated mass of the floors using CMA-ES for Cases 0 to 4 (Mmeasured = 13.2kg).

Floor Number Mass (kg)
Case 0 Case 1 Case 2 Case 3 Case 4

1st Floor 12.59 13.33 13.81 13.70 13.83
2nd Floor 13.32 13.62 14.05 13.96 14.04
3rd Floor 14.40 15.26 15.45 15.45 15.41
4th Floor 12.76 14.23 14.35 14.46 14.28

floors are very close the actual measured structural mass for all linear and nonlinear cases. The

deviation of these values from the actual measured mass of each floor in the lab is bounded to just

−5% ∼ 16%. This is highly superior and more consistent when compared to the estimation of

structural mass by other system identification methods in the previous chapter.

V.4 Concluding Remarks

A time-domain non-parametric approach using artificial neural networks is presented for the de-

tection of changes in the characteristics of structure-unknown systems. The neural network is
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trained, using vibration measurements from a “healthy” (reference) structure. The trained net-

work is subsequently fed with vibration measurements data from the slightly damaged (changed)

structure to monitor its health. The method requires no detailed knowledge about the topology or

the nature of the underlying structure, or of the failure modes of the system. This is a significant

advantage since the method can potentially cope with unforeseen failure scenarios. However, a

major disadvantage of the approach is that detectable changes can not be directly attributable to

a specific failure mode, but simply indicate that damage has occurred. For systems with certain

topologies (e.g., chain-like systems), the method can also provide useful information about the

damaged region of the structure. The approach is applied to recorded data from the 4-story exper-

imental model building that was studied in the previous chapter.

Through this study, it is shown that the proposed non-parametric approach is capable of pro-

viding a relatively sensitive indicator of changes (damage) in the structural parameters and can

be utilized as a high-fidelity tool for assessing the condition of structures. A technique based on

combination of neural networks with optimization methods to estimate the structural mass of the

floors in chain-like systems is also proposed. Results of the study show that the estimated final

values are in close agreement with the measured structural mass of each floor in the lab.
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Chapter VI

Conclusion

THE main goal of the study reported herein is to investigate and evaluate different vibration-

signature-based methods for system identification, damage detection and health monitor-

ing of civil structures. A brief introduction to Structural Health Monitoring is presented in the

first chapter. The following chapter reports the performance of two stochastic methods of global

optimization for a subset of well-known benchmark functions. The application of these meth-

ods in finite element model updating approaches for damage detection purposes is investigated in

Chapter 3. The case study is a quarter-scale, two-span bridge system, experimentally tested at the

University of Nevada, Reno. Chapter 4 reports the performance of different system identification

approaches for experimentally recorded data of a 1/20 scale 4-story building equipped with smart

devices of magneto-rheological (MR) damper. This case study is also studied in Chapter 5 to in-

vestigate the application of artificial neural networks for the identification of nonlinear structural

models.

Considering the promising performance of various system identification and damage detection

methods and approaches under discussion, the general conclusions from this study are useful in

providing guidelines for the application of vibration-signature-based methods to real-world prob-
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lems, especially in the implementation of structural health monitoring for complex, nonlinear

distributed systems.

VI.1 Overview of dissertation

VI.1.1 Chapter II

In the second chapter, the performance of two global optimization methods are numerically in-

vestigated on a subset of well-known test functions. The global optimization algorithms under

discussion were Genetic Algorithm (ga modules in MATLAB R©) and an evolutionary strategy

called CMA-ES. A suit of five standard test functions with a search space of dimensionality

n = 5, 10, 25, 50, 100 was considered to study the effects of the problem-order on the per-

formance of the optimization methods. In addition, the effects of population size on the per-

formance of evolutionary methods are investigated for a subset of population sizes of Pop =

5, 10, 25, 50, 100, 250, 500, 1000. For each case, an ensemble of 100 simulations was generated

to reach a reliable statistical data set. Based on the comparison of these results, the following

conclusions can be made:

• Evolutionary stochastic optimization methods are generally successful in solving high-

dimensional problems.

• As expected, both optimization methods require significantly more function evaluations to

reach the solution for higher problem-orders.

• Increasing the population size significantly improves the performance of these methods at

the expense of higher number of function evaluations. The study shows that the optimal

population size takes a wide range of values, depending on the cost function. For a given
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objective function, the optimum population size may be tuned through calibration process

with the help of a statistical analysis.

• For multi-modal functions, CMA-ES shows better performance than GA in the sense that

it returns smaller final function value with less average number of required function evalu-

ations to reach the solution. For instance, while CMA-ES outperform GA on Ackley and

Rastrigin functions (as shown in Figures II.7 and II.8), it significantly falls behind GA on

Rosenbrock function. Noting that Rosenbrock is the only uni-modal non-separable test

function of this study, this indicates that the performance of these optimization packages

varies with the topography of the functions. This conclusion also agrees with the findings

of the developers of CMA-ES, reported in Hansen and Kern (2004).

VI.1.2 Chapter III

The underlying objective of the study in chapter 3 is to evaluate the performance of two global

optimization methods in the finite element model updating approaches for damage detection in

dispersed structural systems, which usually deals with minimization of a complex, non-linear,

non-convex, high-dimensional cost function. The case study was a two-span reinforced concrete

bridge, experimentally tested at the University of Nevada, Reno. The Subspace method for sys-

tem identification was used to extract the modal parameters (natural frequencies, mode shapes,

and modal damping) of the bridge system. A NASTRAN R© computer model was developed based

on the previous SAP2000 model provided by the NEES@Reno team, and validated with the sys-

tem identification results from the measured data. A simple on-line damage detection method,

using an ARMA model, was proposed and employed to trigger the finite element model updating

process. Two scenarios, assuming the availability of limited or large number of sensors were in-
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vestigated for the finite element model updating procedure. The feasibility of the proposed finite

element model updating algorithm to accurately detect, localize, and quantify the damage in the

columns of the tested bridge throughout the experiment was investigated and validated by com-

parison to experimental measurements and visual inspections.

Based on the comparison of the results from the application of the finite element model updat-

ing algorithm under discussion with the strain gauge measurements and visual observations, the

following conclusions can be made:

(i). The simple ARMA model proposed for preliminary on-line damage detection can signifi-

cantly increase the efficacy of the model updating process.

(ii). The finite element model updating algorithm presented and applied in this study could

accurately detect and quantify the overall damage in the tested bridge bents throughout the

experiment.

(iii). The proposed method also showed very promising results for damage detection in the sys-

tem using output-only data. This reveals the potential of the technique to provide a useful

tool for SHM purposes in conjunction with promising methods for the identification of

modal properties using available ambient vibration data.

(iv). The finite element model updating algorithm used in this study was shown to be robust and

accurate to detect, localize and quantify the damage in the columns in synthetic simulations;

however, the experimental results could not be completely validated. The reliability of these

results highly depends upon the accuracy of the identified (equivalent) modal properties of

the (damaged, nonlinear) structure in different stages of the experiment.
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(v). Detected damage values are highly correlated (ρcmaes = 0.956, ρga = 0.946) with the

damage index developed by Park and Ang (1985), which is a practical measure of damage

based on dissipated hysteretic energy and ductility demand.

(vi). Both CMA-ES and GA converge to pretty close global minimums; however, GA may take

more computational effort to reach the solution, especially for higher-order problem.

VI.1.3 Chapter IV

Based on evaluation of the results from six different system identification methods using experi-

mentally recorded data from a 4-story model building, the following conclusions can be made:

(i). Identified system matrices from different methods were in acceptable agreement with each

other when using full instrumentation recordings.

(ii). All six methods could successfully identify, locate and quantify the increasing damping

imposed on the system by the MR damper throughout the experiment, when using full

instrumentation recordings. The identified values in the damping matrix corresponding to

the location of the MR damper (between the third and fourth floors) monotonically increase

as the input current to the MR damper is intensified.

(iii). Identified system matrices using partial instrumentation recordings were in less agreement

with each other due to the short length of recordings; however, all identification methods

could successfully detect the change in the damping properties of the system.

(iv). In addition, the RFS method could identify the nonlinearity of the damping in the system

and its behavior (softening or hardening) with respect to different vibrational signatures of

the structure.
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VI.1.4 Chapter V

In chapter 5, a time-domain non-parametric approach using artificial neural networks is presented

for the detection of changes in the characteristics of structure-unknown systems. The neural

network is trained, using vibration measurements from a “healthy” (reference) structure. The

trained network is subsequently fed with vibration measurements data from the slightly damaged

(changed) structure to monitor its health. The method requires no detailed knowledge about the

topology or the nature of the underlying structure, or of the failure modes of the system. This is

a significant advantage since the method can potentially cope with unforeseen failure scenarios.

However, a major disadvantage of the approach is that detectable changes can not be directly

attributable to a specific failure mode, but simply indicate that damage may have occurred. For

systems with certain topologies (e.g., chain-like systems), the method can also provide useful in-

formation about the damaged region(s) of the structure. The approach is applied to recorded data

from the 4-story experimental model building that was studied in the previous chapter.

Through this study, it is shown that the proposed non-parametric approach is capable of pro-

viding a relatively sensitive indicator of changes (damage) in the structural parameters, and can

be utilized as a high-fidelity tool for assessing the condition of structures. A technique based on

combination of neural networks with optimization methods to estimate the structural mass of the

floors in chain-like systems is also proposed. Results of the study show that the estimated final

mass values are in close agreement with the measured structural mass of each floor in the lab.
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Table A.6: Identified mass, damping, and stiffness matrices of the system, using partial instrumentation
recordings: Case 1

Method \Matrix M C K(×10−5)

Linear System Method
[
9.00 1.00
0.85 12.83

] [
243.18 −199.32
−191.80 236.73

] [
1.10 −0.84
−1.45 1.40

]

Sym. Linear System Method
[
9.00 1.00
1.00 10.77

] [
243.18 −199.32
−199.32 222.34

] [
1.10 −0.84
−0.84 0.86

]

RFS Method for Chain-Like Systems
[
14.93 0.00
0.00 13.65

] [
296.55 −227.11
−227.11 227.11

] [
1.64 −1.29
−1.29 1.29

]

Model Updating Method
[
9.02 0.96
0.84 12.88

] [
250.66 −194.03
−192.14 233.61

] [
1.11 −0.85
−1.46 1.41

]

Sub-Space Method
[
14.77 −3.04
0.34 11.33

] [
276.80 −274.35
−177.99 213.74

] [
2.36 −1.91
−1.35 1.29

]

Iterative PEM Method
[
17.70 0.10
0.26 14.68

] [
322.95 −290.92
−221.23 269.75

] [
2.38 −1.86
−1.77 1.69

]

Table A.7: Identified mass, damping, and stiffness matrices of the system, using partial instrumentation
recordings: Case 2

Method \Matrix M C K(×10−5)

Linear System Method
[
9.55 1.38
1.01 12.41

] [
302.81 −278.96
−252.23 320.27

] [
1.16 −0.89
−1.36 1.34

]

Sym. Linear System Method
[
9.55 1.38
1.38 11.17

] [
302.81 −278.96
−278.96 317.53

] [
1.16 −0.89
−0.89 0.92

]

RFS Method for Chain-Like Systems
[
14.78 0.00
0.00 13.70

] [
369.14 −307.79
−307.79 307.79

] [
1.76 −1.40
−1.40 1.40

]

Model Updating Method
[
9.56 1.38
1.00 12.44

] [
303.96 −279.68
−252.59 320.79

] [
1.17 −0.90
−1.37 1.34

]

Sub-Space Method
[

15.89 −0.08
−0.25 12.10

] [
299.48 −315.93
−247.97 315.58

] [
2.20 −1.75
−1.50 1.45

]

Iterative PEM Method
[
17.43 0.18
0.07 15.09

] [
372.44 −374.36
−304.21 391.21

] [
2.40 −1.89
−1.83 1.76

]
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Table A.8: Identified mass, damping, and stiffness matrices of the system, using partial instrumentation
recordings: Case 3

Method \Matrix M C K(×10−5)

Linear System Method
[
9.60 1.02
1.10 12.64

] [
323.17 −298.93
−309.31 371.76

] [
1.03 −0.79
−1.32 1.30

]

Sym. Linear System Method
[
9.60 1.02
1.02 11.36

] [
323.17 −298.93
−298.93 343.00

] [
1.03 −0.79
−0.79 0.82

]

RFS Method for Chain-Like Systems
[
15.88 0.00
0.00 13.78

] [
437.65 −377.82
−377.82 377.82

] [
1.70 −1.33
−1.33 1.33

]

Model Updating Method
[
9.85 0.95
1.03 12.74

] [
346.98 −315.60
−302.65 363.48

] [
1.03 −0.78
−1.34 1.32

]

Sub-Space Method
[
16.53 0.32
0.46 15.10

] [
457.98 −430.65
−374.14 442.64

] [
1.86 −1.45
−1.70 1.65

]

Iterative PEM Method
[
16.81 0.38
0.25 16.07

] [
442.44 −438.23
−432.21 512.71

] [
1.81 −1.40
−1.84 1.79

]

Table A.9: Identified mass, damping, and stiffness matrices of the system, using partial instrumentation
recordings: Case 4

Method \Matrix M C K(×10−5)

Linear System Method
[
10.56 1.72
1.10 11.72

] [
356.80 −346.07
−331.42 393.60

] [
1.21 −0.93
−1.19 1.19

]

Sym. Linear System Method
[
10.56 1.72
1.72 11.34

] [
356.80 −346.07
−346.07 389.24

] [
1.21 −0.93
−0.93 0.97

]

RFS Method for Chain-Like Systems
[
15.04 0.00
0.00 13.59

] [
454.52 −404.18
−404.18 404.18

] [
1.73 −1.37
−1.37 1.37

]

Model Updating Method
[
10.57 1.70
1.09 11.76

] [
356.71 −345.17
−331.40 393.89

] [
1.22 −0.94
−1.20 1.20

]

Sub-Space Method
[

15.98 0.02
−0.48 12.01

] [
365.85 −405.81
−340.41 411.16

] [
2.15 −1.73
−1.45 1.41

]

Iterative PEM Method
[
17.11 0.27
0.21 15.05

] [
449.51 −481.20
−405.32 495.60

] [
2.29 −1.83
−1.72 1.68

]
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Table A.10: Identified frequencies and damping ratios: Case 0

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%) f3(Hz) ζ3(%) f4(Hz) ζ4(%)

Linear System Method 5.62 1.623 16.70 1.324 26.56 1.165 35.89 0.765

Sym. Linear System Method 5.72 2.024 16.51 1.479 26.81 1.083 35.73 0.759

RFS Method for Chain-Like Systems 5.70 0.279 17.66 0.740 26.18 0.998 32.82 1.564

Model Updating Method 5.62 1.604 16.69 1.369 26.57 1.141 35.90 0.771

Sub-Space Method 5.65 1.768 16.65 1.114 26.54 1.065 35.83 0.629

Iterative PEM Method 5.64 1.497 16.58 0.781 26.38 0.794 35.75 0.560

Table A.11: Identified frequencies and damping ratios: Case 1

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%) f3(Hz) ζ3(%) f4(Hz) ζ4(%)

Linear System Method 5.37 1.920 16.45 3.326 25.93 6.148 35.34 2.802

Sym. Linear System Method 5.46 1.629 16.38 3.856 26.09 7.093 35.39 2.724

RFS Method for Chain-Like Systems 5.45 0.867 16.25 4.109 23.93 7.443 30.03 5.073

Model Updating Method 5.39 1.891 16.46 3.348 25.92 6.125 35.32 2.809

Sub-Space Method 5.42 1.878 16.43 3.266 26.07 7.163 35.27 2.577

Iterative PEM Method 5.38 1.714 16.47 3.225 25.93 5.077 35.39 2.680

Table A.12: Identified frequencies and damping ratios: Case 2

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%) f3(Hz) ζ3(%) f4(Hz) ζ4(%)

Linear System Method 5.49 2.393 16.59 4.280 25.58 9.233 35.01 4.151

Sym. Linear System Method 5.50 1.690 16.53 5.706 25.84 10.256 35.42 3.741

RFS Method for Chain-Like Systems 5.56 0.807 16.71 3.914 24.76 8.530 30.65 5.310

Model Updating Method 5.44 2.380 16.56 4.287 25.56 9.246 34.99 4.149

Sub-Space Method 5.36 2.700 16.58 4.408 25.67 8.953 34.91 3.216

Iterative PEM Method 5.44 2.293 16.56 4.061 25.64 8.410 34.80 3.235
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Table A.13: Identified frequencies and damping ratios: Case 3

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%) f3(Hz) ζ3(%) f4(Hz) ζ4(%)

Linear System Method 5.43 2.286 16.49 4.686 25.61 9.751 34.94 4.281

Sym. Linear System Method 5.36 1.824 16.40 5.915 26.16 11.079 35.23 3.836

RFS Method for Chain-Like Systems 5.54 0.885 16.52 4.819 24.36 10.117 29.98 6.074

Model Updating Method 5.42 2.284 16.50 4.694 25.58 9.773 34.93 4.275

Sub-Space Method 5.47 2.361 16.52 4.222 26.14 13.253 34.86 3.897

Iterative PEM Method 5.48 2.146 16.34 4.474 26.00 9.829 33.54 1.073

Table A.14: Identified frequencies and damping ratios: Case 4

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%) f3(Hz) ζ3(%) f4(Hz) ζ4(%)

Linear System Method 5.55 1.974 16.68 5.003 25.60 11.894 34.64 5.119

Sym. Linear System Method 5.50 1.750 16.50 6.248 26.87 13.504 35.18 4.881

RFS Method for Chain-Like Systems 5.54 0.829 16.76 4.897 24.79 11.194 30.09 6.340

Model Updating Method 5.46 2.045 16.68 5.017 25.61 11.895 34.64 5.111

Sub-Space Method 5.42 2.193 16.70 4.296 25.95 13.149 34.59 4.262

Iterative PEM Method 5.45 1.829 16.51 4.776 25.66 11.010 34.63 4.097

Table A.15: Identified frequencies and damping ratios (partial instrumentation): Case 1

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%)

Linear System Method 5.44 4.751 24.68 14.740

Sym. Linear System Method 5.50 4.489 23.05 16.992

RFS Method for Chain-Like Systems 5.39 3.337 22.10 12.327

Model Updating Method 5.42 5.534 24.70 14.651

Sub-Space Method 5.41 3.206 24.65 10.505

Iterative PEM Method 5.44 3.668 24.68 11.122
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Table A.16: Identified frequencies and damping ratios (partial instrumentation): Case 2

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%)

Linear System Method 5.52 4.446 24.87 19.353

Sym. Linear System Method 5.51 4.273 23.54 22.180

RFS Method for Chain-Like Systems 5.49 2.992 23.03 15.681

Model Updating Method 5.47 4.506 24.93 19.320

Sub-Space Method 5.53 3.803 24.81 13.397

Iterative PEM Method 5.50 4.390 24.86 14.266

Table A.17: Identified frequencies and damping ratios (partial instrumentation): Case 3

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%)

Linear System Method 5.33 4.232 23.59 22.325

Sym. Linear System Method 5.29 4.996 21.64 24.565

RFS Method for Chain-Like Systems 5.45 2.902 22.04 19.130

Model Updating Method 5.44 4.193 23.37 22.577

Sub-Space Method 5.43 3.329 23.15 19.594

Iterative PEM Method 5.50 4.390 24.86 14.266

Table A.18: Identified frequencies and damping ratios (partial instrumentation): Case 4

Method \Mode f1(Hz) ζ1(%) f2(Hz) ζ2(%)

Linear System Method 5.45 3.888 24.30 24.089

Sym. Linear System Method 5.51 3.630 23.62 26.115

RFS Method for Chain-Like Systems 5.47 2.572 22.73 20.373

Model Updating Method 5.45 3.965 24.36 23.921

Sub-Space Method 5.41 3.346 24.43 17.548

Iterative PEM Method 5.39 3.649 24.50 18.695
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