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ABSTRACT

Two stochastic routing problems are included in this document. The first
addresses the maximum probability problem. The second addresses correlation
problems. Both problems are significant, but have not been studied well in the
literature. The maximum probability problem is constructed to capture the
requirements of arriving at the destination on time or earlier. Consider a network
with N nodes and various links connecting the nodes. Travel times over different
links are treated as independent random variables. The probability density functions
of link travel times are assumed to be known a priori. Given a traveler’s current
location at node i, we seek for the next successor node so that the probability of
arriving at the destination node N on time or earlier is maximized. This is a
stochastic on time arrival problem (SOTA).

The second problem addresses the shortest path problem in congestible
networks with correlated link travel costs. The objective is to minimize expected
travel time. In this problem, each link is assumed to be in one of two possible states,
congested or un-congested. Conditional probability density functions for link travel
times are assumed known for each state. The traveler takes into account his
experience on the link leading to the current decision point (node) when determining
the next node to go to.

These two problems are both formulated using Bellman’s principle of
optimality and solved through Picard’s method of successive approximations. Some

applied mathematics techniques are applied to improve the computational efficiency
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of our numerical procedures. Our numerical solution schemes have been tested in

various contexts, and proved to be reliable and efficient.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

Optimal routing problems are extensively studied in the fields of computer
science, operations research, and transportation engineering. They are of importance
in the routing of airplanes, trucks, and automobiles through transportation networks
and of messages through communication networks. More generally, they are also of
significance in the study of optimal system control, where we interpret nodes as the
possible states of a system and the links as transformations from one state to another.
Frequently, there is interest in transforming a system from a given initial state to a
desired terminal state in an optimal manner.

Many previous studies have focused on shortest path problems, including
deterministic and stochastic applications. The objectives are usually to minimize
time, cost, or maximize utility. However, link travel times are random in most
situations. Under uncertainty, there may be, for any origin and destination pair, more
than one path that has some positive probability of being shortest. Some links may
have a low expected travel time, yet have poor reliabilities. How might a model be
constructed if punctuality of arrival or delivery is the primary goal? Interest in these
problems has arisen from empirical experiences, as in transit and freight operations
where missing a designated arrival time can be very expensive. However, these

problems have not been studied well. One reason may be that this class of problems
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usually requires probability density functions to be modeled explicitly, which makes
it very computationally burdensome to obtain the solutions.

The first optimal routing problem in this document, the arriving on time
problem, is constructed to capture the requirements of arriving at the destination on
time or earlier. Consider a network with N nodes and various links connecting the
nodes. Travel times over different links are treated as independent random variables.
The probability density functions of link travel times are assumed to be known a
priori. Given a traveler’s current location at node i, what should be the next
successor node so that the probability of arriving at the destination node N on time or
earlier is maximized? This is a stochastic on time arrival problem (SOTA). This
problem is formulated using Bellman’s principle of optimality and solved through
Picard’s method of successive approximations. Some applied mafhematics
techniques are applied to improve the computational efficiency. Refer to Chapter 3
for a detailed description of the procedure of formulating and solving such problems.
Although there are a couple of papers considering maximum likelihood in the
literature of routing problems, no implementation has been given to our knowledge.
The major contribution of this part of research is formulating such problems and
providing reliable and efficient numerical implementations.

As in the SOTA problem, arc weights (link travel times, in the transportation
context) are assumed to be independent in almost all of the literature describing
network problems. However, this is not necessarily true in reality. In a

transportation network, performance may be affected by non-recurrent events, such
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as (in the extreme case) natural disasters or (more commonly) traffic incidents.
These random reductions in supply make network performance uncertain. If the
level of service of one transportation link is affected, it is very likely that the
adjacent links are also affected. Burton (1993), proceeding from a mathematician’s
point of view, identified the necessity of handling correlations between arc weights
in the applications of seismic wave propagation and traffic modeling. To our
knowledge, there has been no other study addressing the correlation issue. How
should the correlations between adjacent link conditions be accounted for? How
should knowledge learned through the trip be used to support the remaining
decisions?

The second optimal routing problem in this document addresses the shortest
path problem in congestible networks with correlated link travel costs. The objective
is to minimize expected travel time. In this problem, each link is assumed to be in
one of two possible states, congested or un-congested. Conditional probability
density functions for link travel times are assumed known for each state. The
traveler takes into account his experience on the link leading to the current decision
point (node) when determining which node to visit next, i.e., which link to traverse
next. Only the next immediate link in the path is identified, and the knowledge
gained during the course of the trip is used to optimally support the decisions
defining the remaining journey. Bellman's principle of optimality is applied to
formulate the basic mathematic model. Proof of existence and uniqueness of the

solution and a procedure of obtaining the solution are provided. Refer to Chapter 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for details. The major contribution of this part of the research is in identifying and
formulating routing problems with consideration of correlation between links, and

mathematically proving the some of the properties of the equations.

1.2 Research Design
Both routing problems involve multi-stage decisions. Dynamic programming
offers a way to mathematically formulate this type of problem. Picard’s method of

successive approximation can be used to solve the resulting equations.

1.2.1 Arriving-on-time problem

Our primary goals in this research are to formulate the equations that capture
the maximum probability requirement and to seek for a feasible solution scheme.
Instead of minimizing expected total travel time as in the conventional shortest path
problems, the objective is set to be maximizing the probability of arriving on time or
earlier. Only the next immediate link needs to be identified at each decision point
(node). As mentioned earlier, maximum probability problems have not been studied
well. This class of problems usually requires probability density functions to be
modeled explicitly. Even if a formulation of such problems is available, obtaining
the solution to the equations can be difficult. Therefore, besides the two primary
research goals, checking the accuracy of our procedure and studying the behavior of
the unknown functions are also our major concerns. This is important especially in

situations where no previous studies are available for comparison purposes.
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The problem can be stated as the following. Label the nodes in a network 7,
2, ..., N. The travel times over any two links are assumed to be independent random
variables. Probability density functions of link travel time on any link i/ are known
as pij(@w). These are assumed to be a priori knowledge. Given a traveler’s current
location at node i, what is the next node to visit to maximize the probability of
arriving at the destination node N within time ¢ or less? This is the stochastic on-
time arrival problem (SOTA).

The original problem could be from one specific node to the destination. To
handle this problem, we may imbed that problem within the class of problems in
which we start at any node i and wish to arrive at node N in time ¢ or less. Once the
problem is imbedded, we can make use of the Bellman’s principle of optimality. In
general, the first step is to define an optimal return function. Then, Bellman’s
principle of optimality shall be used to formulate the relationship among the return
functions.

Define u;(2) as the maximum probability of starting at node i and arriving at
the destination node N with time t or less. In the manner describe above, the SOTA

problem is formulated as
u,(f) = max 'Epij(a))uj(t —w)do, i=1,2, ..., N1, (1.12)
J#i

uy(t)=1; (1.1b)

where
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pii(w)dw = the probability of traversing the direct link 7 within time w and
w+dw,; and
u;(t) = the probability that, starting from node i, the traveler arrives at node N
within time ¢ or less when an optimal sequence of choices is made, i = 1,
2,..,N,0 t<a
The functions u;(t), i = 1, 2, ..., N and 0 <t <oq are the optimal return functions.
The next node to visit starting from each‘ node i with time ¢ remaining is the decision
variable to be determined. The solution gives u;(?), ... un(?). It also determines for
each node i the valﬁe of j that does the maximizing. This is the correct next node to
go to.
The detailed rational of the formulation is given in Chapter 3. Once the
problem is formulated, the following questions arise. First, can the solution to the
problem be uniquely defined? And second, how might the solution be obtained?

These questions will be discussed in detail in Chapter 3.

1.2.2 Shortest path problem in networks with correlated link travel times

The second part of the research, described in Chapter 4, treats the shortest
path problem in networks with correlated link service levels.

This problem can be modeled using a node-based definition of congestion or
a link-based definition of congestion. Given the node-based definition of congestion,
each node is assumed to have two possible states, congested or uncongested. In the

case of a natural disaster, these states might be more generally labeled “affected” and
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“unaffected.” The correlations between the states of adjacent nodes are taken into
account by introducing two probabilities, oj; and ;. The probability that, if node 7 is
uncongested, then node j is uncongested is ;. The probability that if, node i is
congested, then node j is congested is ;. For the sake of subsequent notational
convenience, define A; as the probability that, if node 7 is congested, then node j is
uncongested, i.e., 1 - B;. These probabilities are similar to but less restrictive than
the a priori correlations assumed by Burton (1993). They are assumed to be a priori
knowledge in this problem.

Similarly, in link-based congestion, each link is assumed to have two possible
states, congested or uncongested. A link is considered uncongested if the time
required to traverse this link 7/ is within an a priori bound t#g; and considered
congested otherwise. The distributions of link travel times associated with each state
are described by known probability density functions. The average link travel times
between node 7 and node j is ¢; under uncongested conditions and 7; under congested
conditions.

Experience from the previous link leading to the current decision node is
taken into account when making the optimal decision for the remaining journey.
That is, if a traveler experiences congestion at the current node or on the current link,
he applies the corresponding conditional probability or probability density function
to structure his decision about next successor node. The objective is to minimize the
expected travel time. As in the SOTA problem, the goal is to identify the next

immediate link to use, rather than identifying the entire path.
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Similarly as in the SOTA problem, the original problem could be from one
specific node to the destination. We may imbed that problem within the class of
problems, in which we start at any node i/ and wish to arrive at the destination node N
in minimum expected time. This imbedding makes it possible to formulate the
problem using Bellman’s principle of optimality. Optimal return variables have to
be defined and the relationship between these return variables shall be described
based on Bellman’s principle of optimality. Define u; as the minimum expected cost
from node i to the destination node N if the link leading to node i is uncongested.
Define v; as the minimum expected cost from node i to the destination node N if the
link leading to node i is congested. The variables u; and v; are the optimal return

variables. The problem is formulated

u, = min{tij +tau; +(1——aij)vj} ,i=12 .. N-I, (1.2a)
J=i
v, =min{r, +4u;+ (A=} i =12 . N, (1.2b)
J#i .
and
Uy, VW= 0, (120)
where
t; = the expected travel times on link 7 if the link leading to node 7 is
uncongested,
7; = the expected travel times on link 7 if the link leading to node i is
congested,
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ay; = the transition probability that link 7 is uncongested if the link leading to
node 7 is uncongested, and
A; = the transition probability that link i/ is uncongested if the link leading to
node 7 is congested.
The next node to visit starting from each node i given the previous link status is the
decision variable to be determined. The solution gives u;, ... uy, and vy, ..., vy. It
also determines for each node i the value of j that does the maximizing of u; and v;.
This is the correct node to visit from node i conditioned on the previous link status.
The detailed rational of the formulation is given in Chapter 4. Equations
(1.2a-c) are a new set of equations. The following questions arise from the
mathematic viewpoint. First, does a solution to these equations exist? Second, is the
solution unique? And third, how should the solutions be pursued? These questions

will be discussed in detail in Chapter 4.

1.3 Contribution

Two stochastic routing problems are included in this document. The first
addresses the maximum probability problem. The second addresses correlation
problems. Both problems are significant, but have not been studied well in the
literature.

We have successfully formulated the problem considering maximum
probability of on time arrival and provided an efficient numerical solution scheme.

Our experience has indicated that even if a formulation of such problem is available,
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obtaining the solution requires a great deal of mathematical effort. Our numerical
solution scheme has been tested in various contexts. It is shown that the numerical
scheme is reliable and efficient. To our knowledge, it is the first time that an
applicable implementation of such problems is provided.

The formulation of the shortest path problem in networks with correlated
travel costs is completely novel. The major contribution of this part of research is
defining and formulating the problem, and proving some of the properties of the new

set of equations.

1.4 Outline of the Dissertation

The remainder of this document consists of a report on the research
summarized above. It includes, in addition, a summary of the literature that provides
the perspective on which this research is based or related. The document is
organized as follows:

Chapter 2

Chapter 2 consists of a literature review that has been classified into sections
devoted to mathematic formulations and numerical computation of the path-finding
problems. The applicability of some relevant applied mathematics techniques, such
as solution of convolution integral equations, dynamic programming, and Picard’s

method of successive approximation, are also discussed.
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Chapter 3

Chapter 3 is dedicated to the on-time-arrival problem. The various sections
of Chapter 3 describe the formulation of the problem, the procedures of obtaining
numerical solutions to the problem, and the validation of the presented numerical
approaches.

Chapter 4

Chapter 4 is dedicated to the stochastic shortest path problem considering
correlated link travel times. The various sections of Chapter 4 describe the
formulation of the problem, the mathematic proof of the nature of the solutions to
this problem, and the numerical procedures for obtaining such solutions.

Chapter 5

Chapter 5 summarizes what has been achieved in this research. The
questions and problems that we have observed during our computational experiences

are presented. Possible extensions for future research are provided at the end.
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CHAPTER 2 LITERATURE REVIEW

The literature on the path-finding problems presented here is relevant.
However, it does not directly lead to the research presented in this dissertation. The
primary objective of this chapter is to provide a general view of what has been
studied, and more importantly, what has not been addressed in the current literature
of path-finding problems.

Besides the path-finding problems themselves, some applied mathematics
techniques will also be described and further discussed together with the
applicability and limitations. These include Bellman’s principle of optimality and
dynamic programming, Picard’s method of successive approximation, evaluation of
convolution integrals and solution of integral equations. These techniques are
essential in this research in formulating the problems, solving the nonlinear

equations, and improving the computational efficiency.

2.1 Path-Finding Problems

Various problems of finding optimal paths have been studied extensively in
the fields of computer science, operations research, and transportation engineering.
Depending on the application, the objective may be expressed in terms of cost, time,
reliability, uncertainty, or a combination of multiple criteria (Loui, 1983; Eiger,
Mirchandani and Soroush, 1985; Mruthy and Sarkar, 1996, 1998). The shortest path
problem and k-shortest paths problems are the most intensively studied. Initial

formulations involved only deterministic models, for which many efficient
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algorithms have been developed (Bellman, 1958; Dijkstra, 1959 and Dreyfus, 1969).
Excellent reviews of the earlier work have been done by Pollack and Dreyfus
(Pollack, 1961; Dreyfus, 1969). The ordinary shortest path problem only involves
looking for the best path, while the k-shortest path problems also look for the
suboptimal paths. The ordinary shortest path algorithms can be categorized as tree-
building algorithms and matrix algorithms. In tree-building algorithms, the shortest
path between one node and many nodes is usually obtained, while in matrix
algorithms, shortest paths between all nodes are found. Moore (1957), Ford (1956),
and Bellman (1958) published similar tree-building algorithms, which are widely
used in network studies. Those algorithms can be improved by applying the
indexing system of d’Esopo (Pollack and Wiebenson, 1960). The first ‘once
through’ algorithms were published by Dijkstra (1959). A sorting procedure was
introduced by Dial (1969) to improve the efficiency of the ‘once through’ algorithm.
Algorithms of Floyd(1962) and Dantzig (1966) are two excellent matrix algorithms
for finding paths between all nodes. For large networks, a tree-building algorithm is
much more efficient with respect to computer storage then a matrix algorithm
(Steenbrink, 1973). There are also heuristic procedures for cases when a good
solution is acceptable and the best solution is not required. Mill (1968) proposed a
heuristic tree-building algorithm for finding the shortest path between two nodes. In
this algorithm, less promising routes are not inspected further. Node aggregation
(Jansen, 1971) and network partitioning (Hu, 1968) are used for simplifying the

computations.
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According to Dreyfus, the first efficient algorithm that calculates the k-
shortest paths (allowing loops) was developed by Hoffman and Pavley (1959). This
procedure is efficient only when k is small, especially so when k is 2. Bellman and
Kalaba (1960) proposed an excellent and entirely different procedure, which out-
performs the Hoffman and Pavley algorithm when more than two paths are sought.
Dreyfus (1969) suggested a procedure based on both of the two previous procedures,
which seems more computationally efficient. However, no detailed implementation
was provided.

Many scholars contributed to implementation of k-shortest paths algorithms.
Shier and Minieka (Minieka, 1974; Minieka and Shier, 1973; Shier, 1974 and 1979)
have made significant contributions. A general bibliography with more than 300
references 1in k-shortest paths problem is available at the website
http://www.ics.uci.edu/~eppstein/bibs/kpath.bib.

However, randomness caused by time-of-day variations in demand,
accidents, construction, or disasters makes it difficult to predict network
performance. Under such stochastic circumstances, random link travel times and
their associated probability density functions should be considered explicitly.
Expected shortest path problems in networks of a stochastic nature (Loui, 1983;
Murthy, 1996), a time-dependent nature (Dreyfus, 1969; Kaufman, 1993), or both
(Hall, 1988; Fu, 1998, 2001; Miller-Hooks and Mahmassani, 2000) have been also
studied. Loui (1983) pointed out that the stochastic shortest path problem can be

reduced to the deterministic shortest path problem by taking expectations of link
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travel times and solving the resulting deterministic problem. In the time-dependent
stochastic shortest path problems, the link travel times are usually given by time-
dependent, random variables with probability distribution functions that are known a
priori. The problems are to determine the least expected cost path from each node i
to the given destination N for each departure time ¢#. Almost all the time-dependent
studies consider a set of discrete probabilities associated with a number of possible
link travel times that may occur during a given time interval. Continuous
distributions are rarely included to keep the formulation simple.

However, the identified expected shortest paths can be risky. An apparent
optimal path may have low expected travel times, yet poor reliability. A path of
slightly greater expected travel time, but with little probability of realizing very large
travel times may be preferable in some situations. A few scholars have tried to
construct different models to best account for risk. Frank (1969) proposed
considering the path that maximizes the probability of realizing a weight less than k
as the optimal path. This research provides an analytical formulation of calculating
the probability distribution of the shortest path. The formulation is based on the
assumption that the joint probability density functions of all arc weights are known.
Even if these functions are available, integration over all the arc weights required by
the formulation can be too complicated to proceed. It seems that Monte Carlo
simulation is the only feasible way to evaluate the probability distribution of a
shortest path proposed in this paper. Also, the algorithm only evaluates the

probability distribution of a shortest path. It does not provide an optimal routing
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strategy that leads to the shortest path. Sigal (1980) suggested considering the path
that has the greatest probability of realizing the least weight. Again, no
implementation has been provided.

How best to describe the random variables involved in shortest path problems
is unclear. Most studies ignore the higher moments of random variables, and
consider only their expectations. There are a few scholars that have considered both
expectations and higher moments of travel times. The statistic measurements (means
and variances) from historic traffic data are applied to describe the random nature of
the network. Estimating the probability density functions for link variables may be
burdensome. Even if the probability density functions for link variables are
available, obtaining solution to the models involving the density functions may be
difficult (Fu, 1998, 2001).

The large literature on path finding problems reveals two points. First, the
objectives are usually minimum time/cost or maximum utilities. Maximum
likelihood/reliability problems are seldom studied. This class of problems usually
requires probability density functions to be modeled explicitly. This requirement
makes it computationally burdensome to obtain the solutions. However, interest in
these problems has arisen from empirical experience, especially in situations where
punctuality of arrival or delivery is critically important. How do we construct
models that capture such requirements?

Second, arc weights are assumed to be independent in almost all of the

literature on path finding problems. In his Ph.D dissertation on the inverse shortest
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path problem, Burton (1993), proceeding from a mathematician’s point of view,
identified the necessity of handling correlations between arc weights in the
applications of seismic wave propagation and traffic modeling. Correlated arcs are
aggregated into classes. fhe weights of the arcs in the same class are derived from a
common value, which is referred to as the class’s density. This new formulation
reduces the number of variables, but involves more constraints. To our knowledge,
there has been no other study addressing the correlation questions. In transportation
networks, if the level of service of one transportation link is affected, it is very likely
that the adjacent links are also affected. How should the correlations between
adjacent link conditions be accounted for? How should knowledge learned through

the trip be used to support remaining decisions?

2.2 Bellman’s Principle of Optimality and Dynamic Programming

Bellman’s principle of optimality is the most essential principle in this
research. It is used to formulate the equations in both routing problems discussed
here. The principle states that

“An optimal sequence of decisions has the property that whatever the initial

state and decision are, the remaining decisions must be optimal with respect to the
state resulting from the initial decision” (Bellman and Kalaba, 1965).

This principle is widely used to model systems involving multi-stage
decisions.
The original problems could be from one specific stage to the final stage. To

handle these problems, we may imbed that problems within the class of problems in
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which we start at any stage i and wish to arrive at the final stage in an optimal
manner. Once the problem is imbedded, we can make use of the Bellman’s principle
of optimality. In general, the first step is to define an optimal return function or
variable. Then, Bellman’s principle of optimality is used to formulate the
relationship of the return functions or variables.

We shall give examples below of formulating some simple path-finding
problems using Bellman’s principle of optimality. The purpose is to help the reader
to become familiar with dynamic thinking and therefore be prepared for the more

complicated formulations occurring in the major part of this dissertation.

2.2.1 Formulating the deterministic shortest path problem using Bellman’s

principle of optimality

Consider a network with N nodes and various links connecting these nodes.
In this problem, the shortest path with minimum time cost from any origin node i to
the destination node N is sought. Link travel time on any direct link from node i to
node j is known as a constant. Let the quantity

t;; = the link travel time over the direct link from node i to node ;. 2.1
Introduce the unknown variable

T; = the minimum time cost required from node i to the destination node N.

(2.2)

These are the optimal return variables to be determined. For a traveler who 1s

currently at node i, no matter which node he chooses to visit next (label as node j),
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once he is at node j, the best return he can achieve is the minimum travel cost from
that node j to the destination node N, which is 7; by definition. He may have several
choices for node j. To optimize the entire journey, he should choose the one that
leads to the minimum cost from node i to the destination node N. When the traveler
is already at node N, the minimum total cost is always zero. The mathematical

formulations are therefore

T =min{t, +T},i=1 2 .., N-I, (2.3a)
J#i
Tn=0. (2.3b)
The solution gives 77, ... Ty. It also determines for each node i the value of j that

does the minimizing. This is the correct next node to visit.

2.2.2 Formulaﬁng the stochastic shortest path problem using Bellman’s
principle of optimality
Consider a network with N nodes and various interconnecting links.
Introduce the function
pi(t) = the probability density function of link travel time on the direct link
from node 7 to node j. (2.4)
These probability density functions are assumed to be a priori knowledge. Link
travel times on any two different links are assumed to be independent random
variables. The objective is to identify a path that leads to the minimum expected

travel cost from node i to the destination node N. Let us introduce the unknown
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T; = the minimum expected time cost required from node 7 to the destination

node N. (2.5)

Suppose a traveler is currently at node i, and chooses to visit next a node j (node j
can be any node except for node i that has a direct connection to node i). The

probability that it takes a time between @ and w+dm to traverse link ij, by definition,

is py(w)dw, where dw is sufficiently small. The quantity @ can be any number
between 0 and infinity. There may be several options for the next node j. No matter
which node j he chooses to visit next, once he is at that node j, the best return he can
achieve over the remaining journey is the minimum expected travel cost from that
node j to the destination node N, which is 7; by definition. He may have several
choices for nodej. To optimize the entire journey, he must choose the j that leads to
the minimum cost from node i to the destination node N. When the traveler is
already at node N, the minimum total cost is always zero. The mathematical

formulations are therefore

T, =min{ [ (@+T)p,(@)dw}, i=1 2, ., NI, (2.62)
J#i
Tn=0. (2.6b)
The quantities 77, ..., Ty are the optimal return variables. The next successor node to

visit from each node i is the decision variable. The solution to this problem gives 77,
... Ty. Tt also determines for each node i the value of j that does the minimizing.

This is the correct next node to go to.
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Let us further study the relationship between the stochastic shortest path
problem and the deterministic shortest path problem. Partitioning the integrand in

Equation (2.6a), we have

T, = min f wp,(@)do+ J;” Tp(@)dw}, i=1,2, ..., N-1. Q2.7)
It is apparent that the first term in the parenthesis is actually the expected travel time
over link 7. Introduce the quantity

t:.j = the expected travel time over the direct link . (2.8)

The second term is just 7} since 7} is independent of the variable w. Recall that

f py(@)do=1. (2.9)

Equation (2.7) then can be simplified to be
T =min{t;+T,}, i=1 2, .., N-I. (2.10)
i

Note that equations (2.10) and (2.3a) are equivalent. This agrees with what Loui
(1983) has reported: a stochastic shortest path problem can be reduced to a
deterministic problem by replacing the probability density functions describing link
travel times with expectations.

So far, we have discussed the problems for shortest paths from any starting
node i to the destination node N. If we wish to determine the shortest path from any
starting node i to any destination node j, we could apply the procedure just discussed

N times. However, there are more efficient ways to construct the model again using
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Bellman’s principle of optimality (Bellman and Kalaba, 1965). Let us introduce the
unknown variable

T,f = the minimum time cost from node i to node j using a path with at most

k intermediate nodes. (2.11)

These unknowns are the optimal return variables to be determined. Based on the

principle of optimality, the relationships between the optimal return variables are

k+ : k —
I;" = minft, + 7}, k=0, 1, .., N-3. (2.12)

For computational purpose, it may be reformulated as

T =min{T) +T5}, k=01, 3, .., N-3/2. (2.13)
J#i

Equation (2.13) permits us to determine the sequence of matrices T,-jO, T,-J-I , T,~j3 , T,f R
T,-jl 7, ..., which converges more rapidly.

The two examples of shortest path problems in deterministic and stochastic
contexts helps us to better understand the shortest path problems in networks with

correlated link travel times discussed in Chapter 4.

2.2.3 Formulating the maximum probability of connectivity problem using

Bellman’s principle of optimality

Consider a network with N nodes and various links connecting the nodes.
Links in this network may be affected for some reason and become unavailable. Let
us introduce the quatity

py = the probability that the direct link from node i to node j is available.

(2.14)
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These probabilities are assumed to be a priori knowledge. Our goal 1s to find a path
with the maximum probability that there is a connection from any origin node 7 to the
destination node N. Introduce the unknown
u; = the maximum probability that a connection is available from node i to the
destination node V. (2.15)
These unknowns are the optimal return variables to be determined in this problem.
For a traveler who is currently at node i, no matter which node he chooses to
visit next (label as node j), once he is at node j, the best return he can achieve over
the rest of the process is #;. By definition, the quantity u; is the maximum probability
that there is a connection available from that node j to the destination node N. He
may have several choices for node ;. To optimize the entire journey, he should
choose the one that leads to the maximum probability of connectivity from node i to
the destination node N. Note that the link travel times on any two links are assumed
to be independent and therefore multiplication of probabilities is applicable. When
the traveler is already at node N, the maximum probability of connectivity is always

one. The mathematical formulations are therefore

u,=max{pu;}, i=12 .., NI, (2.162)
J#L
uy = 1. (2.16b)
The quantities u, ..., uy are the optimal return variables. The next successor node to

visit from each node i is the decision variable j. The solution to this problem gives

uy, ... uy. It also determines for each node i the value ofj that does the maximizing.
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This is the correct node to go to. This example is relevant to the SOTA problem

discussed in Chapter 3.

2.3 Picard’s Method of Successive Approximation

Picard’s method begins with initial approximations to the solution, and then
refines these approximations by successive iterations. Let us illustrate how Picard’s
method works by solving a simple equation f{x) = x for the unknown x, where f(x)
can be an arbitrary function. The analytical solution to this problem should be the
point where the function y = x and y = f{x) intersect. Now let us use Picard’s method
to find the numerical solution. We start with the initial approximation as x;. The
second approximation of x is chosen to be x; = f{x;). The third approximation of x
then becomes x; = f{x3). Continuing in this manner, the approximations approach the
limiting value, which is the true solution x*.

Figure 2-1 shows how the sequence eventually converges to a limiting value,
and this limiting value is the solution to the equation f(x) = x. There are two
sufficient conditions to guarantee the convergence of the approximation scheme.
First, the initial approximation has to be sufficient good. Second, the slope at x*
must satisfy the inequality [f(x)] < 1.

Picard’s method can often be used to solve a system of nonlinear equations.
However, one has to first answer the following two questions before Picard’s method
can be applied. First, does the sequence converge to a limiting value? And second,

does this limiting value satisfy the original equation? These questions arise while we
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try to use Picard’s method to obtain numerical solutions. We prove the convergence
of the sequence by interpreting the physical meaning of the unknown variables and

functions. The detailed proofis given in Chapters 3 and 4.

A v=x
y = f{x)
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Figure 2-1: Solving the Equation f(x) = x Using Picard’s Method of Successive

Approximation
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2.4 Evaluation of Convolution Integrals and Integral Equations
Expressions in the form of _[}k(t —7)u(r)dr are called convolution integrals.

Equations with unknown functions occurring in the convolution integrand are called
convolution integral equations.

The discussion about convolution integrals is relevant to the arriving-on-time
problem presented in Chapter 3. Once the problem is formulated, the rest of the
problem is to solve a system of nonlinear convolution integral equations.

Linear integral equations in the form
s(t) = Au(t) + _[k(t,r)u(r)dr, (2.17)
with unknown function x(?) in the integrand, are called first kind if A = 0 and second
kind otherwise. Historically, integral equations are classified as:
e Fredholm, if the interval of integration in Equation (2.17) is finite and the
kernel k(t,7) is integrable;
e Volterra, if Equation (2.1) is Fredholm, and k(t,t) =0, t > ;
e Cauchy Singular Equation, if k(t,t) = g(t,t) / (t -t), where g(t,7) is integrable.
Additional classification depends on the form of the kernel k(t,1).
Mathematical and numerical properties of Equation (2.17) vary greatly as k(t,t)
changes. For example Equation (2.17) is called convolution if k(t,t) = k(t - 1), and
weakly singular when k(t,t) contains an integrable singularity. These classifications

originated from analytical discussions on integral equations. From a numerical point

of view, kernel’s numerical behaviors, such as piecewise continuity, smoothness,
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singularity, degeneracy, and linearity, are more essential (Anderson, R., Hoog, F.,
Lukas, M., 1980). Extensive studies on analytical and numerical solutions to integral
equations exist in the current literature.

However, the equations involved in Chapter 3 differ from the general
equations discussed right above in that first, there are a number of equations rather
than a single equation to be solved simultaneously, and second, the system is
nonlinear with respect to the unknown functions. These different natures make the
well-studied approaches of solving convolution integral equations less applicable.
The general approaches for solving convolution integrals are summarized below. It
is our intension to encourage possible application of these approaches to the
numerical procedure of solving the arriving-on-time problem.

Direct evaluation of convolution integrals in the time domain usually requires
a large computational effort (proportional to the square of the number of the time
stations) and storage (Paronesso and Wolf, 1995). This requirement makes it
unrealistic to solve large practical problems that involve convolution integrals.
Extensive research efforts have been given to reduce the computational burden of
evaluating convolution integrals.  Although most literature is about solving
convolution integral equations, we extended our search to evaluation of convolution
integrals as well, since integrals and integral equations often related to each other.

Srivastava and Buschman (1977) gave a review of analytical approaches for
solving Volterra integral equation of the first kind with special function kernels.

Based on the specific function kernels, equations can be solved via methods of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

integral transforms, such as Mellin transformation, Laplace transformation, Hankel
transformation, via successive integrations and differentiations, or via means of the
resolvent kermnel method and the method of fractional integration. Analytical
solutions to integral equations usually depend heavily on the form of the kernel
functions. Also most literature on analytical solutions emphasize the mathematical
properties of such equations rather than implementation. We will pay more attention
to numerical solutions in order to seek for possible implementation of a solution
scheme from existing literature.

Bellman and Kalaba (1964) proposed to solve equations containing
convolution integrals using the technique of differential approximation. This
research suggests possible linkage between convolution integral and ordinary
differential equation (ODE) problems. This method starts with a differential
approximation of the kernel function. In case where the coefficients of the primary
(ODE) of the kernel function are all constant, convolution integrals can be evaluated
by solving a resultant differential equation with same coefficients but different
constant term. With such an equation, the output could be computed directly as a
linear process simulation without any further computation of integrals. If constant
coefficients cannot be reached analytically, they may be sought in a least square
sense. In later chapter, we will compare the estimated results of convolution
integrals from method of using Laplace transforms and method of differential

approximation. This exercise is for the purpose of computational validation.
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Many efficient algorithms and approximation approaches have been
developed for evaluating convolution integrals, given both functions in the integrand
of the convolution integral are known. For example, recursive evaluation of
convolution integrals in the time domain (Wolf, 1989) and the frequency domain
(Wolf, 1989) were successfully implemented in problems treating unbounded
medium in structure dynamics. Convolution integrals are approximated by a set of
equations with unknown coefficient matrices. However, this method is only
applicable for linear systems. Another remaining problem is that the matrices cannot
be uniquely identified.

A quadrature rule for convolution integrals, the ‘convolution quadrature
method’ was proposed by Lubich (1988). Approximations of f*g(x) on the grid of
evenly spaced time points are obtained from a discrete convolution with the value of
g(x) on the same grid. The quadrature weights are determined with the help of the
Laplace transform of f(x) and a linear multistep method. The convergence of the
convolution quadrature method is of the order of the underlying multistep method.
This method is suitable to the approximation of convolution integrals whose kernel
f(x) is singular or has components at different time-scale, and to the numerical
evaluation of the expressions where the Laplace transform F of the convolution
kernel is known a priori.

A thorough study on numerical evaluation of convolution integrals using
Laplace transform and its inversion has been given by Bellman and Kalaba (1966).

In this study, convolution integrals can be approximated by a finite sum of functions
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evaluated at a number of discrete points. Problems of keeping the numerical
inversion of Laplace transform stable have been observed and possible improvement
has been suggested. This study is of significant relevance to our numerical

procedure of evaluating convolution integrals.
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CHAPTER 3 ARRIVING ON TIME

This chapter addresses the problem of maximizing the probability of arriving
on time. Given a current location (node), the goal is to identify the next node to visit
so that the probability of arriving at the destination node N within time ¢ or less is
maximized, given the probability density functions of link travel times. Bellman's
principle of optimality is applied to formulate the mathematical 'model of this
problem. Unknown functions describing the maximum probability of arriving on
time are accurately estimated for a few sample networks by using Picard's method of
successive approximations. The Lapalace transform and its numerical inversion are

introduced to reduce the computational cost of evaluating convolution integrals.

3.1 Problem Statement

Label the nodes in a network 7, 2, ..., N. The travel times over any two links
are assumed to be independent random variables. Probability density functions of
link travel time on any link jj are known as p;(@). These are assumed to be a priori
knowledge. Given a traveler’s current location at node i, what is the next node to
visit to maximize the probability of arriving at the destination node N within time ¢ or

less? This is the stochastic on-time arrival problem (SOTA).

3.2 Mathematic Model
Consider a network containing N nodes and various interconnecting links.

Suppose a traveler is now at the decision node i. There may be several options for
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the next possible node to visit from node i. The traveler’s objective is to select the
node that provides the maximum probability of arriving at the destination node N on
time or earlier. The traveler must continue his choices in the optimal manner at each
decision node until he reaches the destination. Bellman’s principle of optimality
states that an optimal sequence of decisions has the property that whatever the initial
state and decision are, the remaining decisions must be optimal with respect to the
state resulting from the initial decision (Bellman and Kalaba, 1965). Define u;(z) as
the maximum probability of arriving at the destination N from node 7 within time ¢ or
less. It is the optimal return function. Consider a traveler at node i who wants to
maximize the probability of arriving at the destination node N within time t or less.
Suppose he chooses to visit node j next and spends time @ on link ij. The probability
that he spends time between ® and @+dw is p;(w)d e by definition. The time left for
the remaining journey is then #-. Based on Bellman’s principle, no matter which
node j he chooses to go to, the traveler should at least achieve the best return from
that node j to the destination within the remaining time f-o. By definition, the best
return at node j is u;(t-@), the maximum probability of arriving at node N within time
t-w or less from the starting node j. There may be several options for the next node j
at current node i, but only the one that provides the best return at the current node i

should be chosen. The problem is therefore formulated as

u, () = max J:pij(a))uj(t——a))da), i=1,2,..., N-1, (3.1)
J#i
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uy()=1 (3-2)
where

pii(w)dw = the probability of traversing the direct link i within time w and

w+dw;
and

u;(t) = the probability that, starting from node i, the traveler arrives at node N

within time ¢ or less when an optimal sequence of choices is made, i =
1,2,..,N,0 st<o
Recall that the travel times over any two links are assumed to be independent
random variables. The functions wu;(¢), i = 1, 2, ..., N and 0 <t <oq and the next
nodes to visit starting from each node i are to be determined.

Suppose the traveler chooses to go from node i directly to node j. The real
travel time spent on link ij will not be known until after the traveler has traversed this
link. Once the traveler arrives at node j, the time left for completing the remaining
journey is identified. The formulation for the problem to be solved at node j is the
same as the formulation at node i, except for the change in starting node and the
reduction in remaining allowable travel time. It is apparent that no fixed optimal
path will be pre-determined at any node i. At each new decision node, the allowable
remaining time must be updated and the resulting problem must be solved for an

optimal choice of the next immediate node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

3.3 Numerical Solutions

3.3.1 Solving a system of nonlinear equations — Picard’s method of successive

approximations

Equations (3.1, 3.2) are a set of nonlinear convolution integral equations.
How are these equations to be solved for the unknown probabilities u;(t), ux(?), ...,
un(1)? How is the optimal sequence of nodes identified? Picard’s method of
successive approximation is one possible approach to solving this simultaneous
system of nonlinear equations. Picard’s method begins with initial approximations
to the solution, and then refines these approximations by successive iterations. We
begin with the initial, simple approximations

Wl (t) = j; pul@)dw, i=1,2, ... N-1,t =0, (3.3)
and

uy (@) =1,t =0. (3.4
These approximations are based on the distributions of travel times over direct links
between node i and node N. These first approximations may be poor, because most
of the probabilities identified in Equation (3.3) are necessarily zero. Most nodes i

have no direct link to node V.

The iterative relationships for successive approximations are

W () = max J; py(@y (t—w)Mo, i=1,2, .., N-1,0 < <o 3.5)

J#i

and
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ul' () =1, (3.6)
where the superscript & is the index of iteration.

The function u/(2) has a useful interpretation. It is the maximum probability
of arriving on time if no more than & intermediate nodes are allowed between an
origin and the destination. The results can always be improved, or at least remain
unchanged, if the k-intermediate-nodes constraint is relaxed to some degree.
Improvement may be possible if more intermediate nodes are allowed. Also,

because the values u,(2) are probabilities, they are bounded below by 0 and above by
1. Therefore, 0<u(t)<uf"'(t)<1. Thus, this sequence of ever improving

approximations is bounded, monotone, and converges to a limiting value. There are
N nodes in the network, including the origin and destination nodes. Thus, an optimal
path can have no more than N-2 intermediate nodes. This means the maximum

number of iterations needed to compute exact probabilities is N-2.

3.3.2 Evaluating the convolution integrals — Laplace transforms

Equation (3.5) includes a convolution integral that must be evaluated at each
successive approximation of u(). This requirement increases computational
complexity dramatically. There are several methods available for dealing with
convolution integrals (Srivastava and Buschman, 1992). Recall the convolution
theorem of Laplace Transforms: The transform of a convolution is given by the
product of the individual transforms. This theorem can be applied to greatly reduce

the complexity of each iteration.
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Let us show why this theorem holds. Given a function f{%), the definition of

its Laplace transform F{(s) is

F()=L(f@)= [ ft)e™dt. (3.7)
Suppose
nt)= [ f(@)g(t-w)do. (3.8)

The Laplace transform of 4(2), denoted L(h(2)), is

L(h(t)) = fe’“h(t)dt = f e[ £ f(w)g(t-w)dwldt. 3.9
The right hand side of Equation (3.9) is a double integral over a defined area where
te[0, o], and we[0, t]. See Figure 3-1. The shaded area can also be represented as

we[0, o], and t €[ @, o0]. Thus, Equation (3.9) can be re-written as

L) = [ f@) [ gt -w)dildo. (3.10)

Letx=t—w. Since t €[w, o], x€[0, «]. Thus, Equation (3.10) then can be further

rewritten as
L) = [ f@)] [ e g(x)dxlde

=1[ f@eda]l [ e "gx)d]. 311

This shows that the Laplace transform of a convolution is given by the product of the

individual Laplace transforms as asserted above. Thus, we have

L(n@)) = L(f (1)) L(g (1)) - (3.12)
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t

Figure 3-1: Values of t and w for the Double Integral L(h(t))

If the Laplace transforms of the function pj;(¢) and the function uik(t) are

known, then the Laplace transform of the function uit!

(1) in Equation (3.5) can be
obtained simply as the product of the two individual transforms. This leaves us with
the following two questions. How do we obtain the Laplace transform of a given

function? Given a function in the transform domain, how do we invert it into the

time domain?
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3.3.3 Numerical evaluation of a finite integral — Gaussian quadrature
To obtain a numerical evaluation of the Laplace transform of a given function

f{t), let us begin with the definition of the Laplace transform,

F(s)=L(f®) = [ f@)edt. (3.13)
The infinite interval in Equation (3.13) can be reduced to a finite interval between 0

and 1 by substituting 7 for e”. Proceeding, we have

t=-Int, (3.14)
and
dtz—gl. (3.15)
T

Substituting, Equation (3.13) becomes
F(s)= [ f(-In7)dr (3.16)

The integral over this finite interval now can be approximated by a finite sum. This

leads to the relationship
F(s)=Y 77 f(-lnt)w;, (3.17)
i=1

where 7, 1, ..., 7, are the points at which f{-In7) is to be evaluated, and wj, w, ..., wy
are weights to be attached to these values.

All of the standard quadrature formulas have the form of Equation (3.17),
including the rectangular rule, the trapezoid rule, and Simpson’s rule. Gaussian

quadrature is more sophisticated than these equal interval rules. It picks 7 and w;in
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such a way that the value of the finite sum in equation (3.17) achieves the true value
of the integral if the integrand is a polynomial of degree up to 2n-1 or less (Bellman
and Kalaba, 1966). Gaussian quadrature is employed here to evaluate integrals over
a finite interval. This reduces computational costs and guarantees the quality of the
approximation. The unknown probabilities in this research are expected to be
smooth, monotone functions of z. As the time available to complete the journey
decreases, the probability of arriving on time also decreases. Therefore, a
polynomial of a low degree should be sufficient in estimating these unknown
functions. This limits the number of quadrature points needed for the finite sum in

Equation (3.17) to estimate the integral in Equation (3.16).

3.3.4 Numerical inversion of Laplace transforms — linear algebra and

generalized inverses

Now let us determine how to obtain a function in the time domain, given the
function’s Laplace transform. Suppose the Laplace transform values F(s) are
obtained for a number of discrete values of s. The relationship between a single
transform at a value s and the original function in the time ¢ domain is given in
Equation (3.17). The relationships between a set of values F(s) and the values of the
original function in the time ¢ domain can be represented by a system of linear

algebraic equations. These are
F(s)= fo_lxi , 8 =81, 82, ., SL, - (3.18)
i=1

where
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x; = f(-In7)w;, (3.19)
over L observations of s.

These equations can be presented in the matrix format

F=T-X, (3.20)
where
F(1)
po| FO
rwl,

The quantity L is the total number of points to be evaluated for the function F{s).

The matrix T is of the form

1 1 1
ol oo 7
L-1 L-1 L-1

T, 7, T, |

The number of quadrature points is #, and the number of observations of F(s) is L.
The matrix T of the system is the well-known, ill-conditioned Vandermonde matrix.

The vector X is of the form

X

7 dnxl

The desired values f(—Inz,) can be obtained by
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f(—lnr,):’%, i=12 .. n, (3.21)

once the values of x;, x5, ..., X, have been determined.

If we have same number of independent conditions as we do unknown
variables in the system of algebraic Equations (3.20), and if the matrix T is
nonsingular, then the unknown vector X can be obtained by the formula

X=T"F, (3.22)
where T is the inverse of matrix 7. However, it will not generally be true that the
number of observations F(s) and the number of quadrature points are equal. This is
not trivial. Since the unknown probabilities, u;(%) us(t), ..., un(t) are expected to be
smooth monotone functions of ¢z, they will be well represented by polynomials of a
low degree. This means only a small number of quadrature points is needed.
Obtaining good-quality results from the numerical inversion of the Laplace
transform requires evaluating the Laplace Transform at more discrete values of s.
Thus, finding X generally requires solution of a system of algebraic equations with
more conditions than unknowns. Fortunately, non-singularity does not have to hold
for this system of algebraic equations to have a solution in the least square sense. If
the matrix 7 is singular, then the unknown vector X can be obtained by

X=T"F, (3.23)
where T" is the Moore-Penrose inverse of matrix 7. Methods to obtain the Moore-
Penrose inverse are widely available in the applied mathematics literature. Fan and

Kalaba (2001) give an efficient dynamic programming approach to computing the
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Moore-Penrose inverse, including a procedure for treating matrices with nearly
linearly dependent columns.

Based on our numerical experiments, inverse of Laplace transforms may be
instable sometime. The mathematical reason for this problem is that the inverse
Laplace transform is an unbounded operator. An arbitrary small change in F(s) can
produce arbitrary large changes in the value of u(z). Consider a function sin(at). Its
Laplace transform is a / (@’ + s ). This term becomes very tiny when a reaches a
very large number. If we add this small term to the Laplace transform of any
function f{z), the change may not even be noticeable. However, the original function
now becomes {f(¢) + sing(at)}. The resultant change in the original function is
significant, because sin(at) will cause high frequency oscillation when the value of a
is large.

This instability can also be demonstrated in the behavior of the ill-
conditioned matrix 7. The ill-conditioning of T rapidly worsens as L increases.
When T" contains elements of both signs of large magnitude, it becomes inevitable
that a small change in the vector F produces a large change in X. Some applied
mathematics techniques are available for improving such situation (Bellman and
Kalaba, 1966).

In our research, the instability problem might occur as the number of
quadrature points increases. However, we know how these probability functions
should behave. They do not have high frequencies. As a matter of fact, these

functions are smooth, monotone and bounded. Therefore, we will be able to detect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

the instability problem if oscillation occurs in the estimated unknown functions
u(1),...un(t). Examining the behavior of the estimated unknown functions can also
be a means of checking the accuracy of our procedure of numerical inversion of

Laplace transform.

3.4 Numerical Examples

Accuracy, reliability, and potential applicability are often the major concerns
in situations where new formulations or algorithms are proposed. The numerical
examples included below are designed to meet the following two principle purposes.
The first is to validate the accuracy and reliability of our numerical schemes. Some
of the numerical examples are small but not trivial, because accuracy is the most
basic concern, especially when there is no other study to be relied on or compared
with. With those simple examples, we have tested our numerical approaches in
various contexts. The second purpose is to study the applicability of our approach to
realistic network problems. The sizes of the numerical examples served for this
purpose are not large enough for realistic network problems yet. However, these
examples have shown that expansion of our approaches to more realistic problems 1s

feasible.

3.4.1 Test1: Numerical inversion of Laplace transforms
Examination of a few monotone, smooth functions validates the accuracy of
our algorithms for obtaining a Laplace transform, and the tranform’s numerical

inversion via solution of a system of linear equations. The functions selected are
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S =1, (3.24)

fat) =€, (3.25)

fit) =", (3.26)
and

fu(t) = 1-€". (3.27)

We proceed with Laplace transforms that can be analytically obtained so that
the numerical results of our procedure can be compared with the corresponding exact
solutions. For the sake of simplicity, the matrix T is defined to be square. This
permits the inverse of T to be computed as a standard matrix inverse, rather than
requiring the calculation of 7. In this case, the number of quadrature points and the
number of observations on the Laplace transform, F(s), are both taken to be eight.
Calculations are executed with double precision. Agreement between numerical and
analytical values is excellent, and we conclude that estimating the inverse of Laplace
tranforms via solution of a system of linear equations may be an effective procedure.
Inputs and results are listed in Table 3-1. Estimated and analytical results are too

similar to display graphically.

3.42 Test2: Application to a small network

Testing our procedure on a small network validates the accuracy of this
scheme. Consider the five-node network in Figure 3-2. Since link travel times are
non-negative random variables, we assume they follow gamma distributions, a

commonly made assumption in the theory of random duration.
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Table 3-1: True versus Estimated Values of Laplace Transforms and

Their Inverses

s 1 2 3 4 5 6 7 8
Quadrature o 1199 01017 02372 04083 05917 07628 0.8983  0.9801
Points t

Function  Gaussian
Quadrature  0.0506 0.1112  0.1569 0.1813 0.1813  0.1569 1.1119  0.0506
Weights
t = -In(x) 39193 22861 14387 0.8958 05247 02708 0.1072  0.0201
True Fys)  1.0000 0.5000 03333 02500 0.2000 0.1667 0.1429 0.1250
Estimated ) 5000 05000 03333 02500 02000 0.1667 0.1429  0.1250

po= 10

1 True fi(t) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000
Jlf;;gmated 0.9987 09981 1.0020 0.9996 09979 0.9988  0.9997  0.9990
True Fy(s)  0.5000 0.3333 02500 02000 0.1667 0.1429 0.1250 0.1111
Estimated 5000 03333 02500 02000 0.1667 0.1429 0.1250 0.1111
Fils)

ft) =

exp(-)  True fy(t) 0.0199 0.1017 02372 0.4083 05917 0.7630 0.8983  0.9801
f;;““ated 0.0188 01001 02389 0.4079 05900 0.7619 0.8981  0.9793
2
True Fy(s)  0.8862 03133  0.1706 0.1108 0.0793 0.0603 0.04785 0.03917
Estimated  cer7 03135 01707 01110 0.0794 0.0605 0.0480  0.0393

- Fi(s)

f3(1)
True fy(1) 1.9800 15120 1.1990 0.9465 07244 0.5204 03274  0.1418
Esmated 19790 15110 1.2000 09463 07236 05198 03273  0.1413
True Fis) 05000 0.1667 0.0833 00500 0.0333 0.0238 0.0179  0.0139
Estimated 5000 01667 00833 00500 0.0333 0.0238 00179 0.0139

. Fua5

folt) =

1-exp(Y)  True fy(t) 0.9801 0.8983 0.7628 05917 04083 02372 0.1017 0.0199
E;;mated 0.9799 0.8980 07632 05916 04079 02370 0.1016  0.0197

A gamma distribution is smooth,

Gamma distributions have the form of

which aids in computational treatments.
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Figure 3-2: A Small Network With Probabilistic Link Travel Costs

ane—attn—l
tL,n,o)=——m——HmF, 3.28
4t ) o) (3.28)

in which I'(n) is the gamma function of n. The mean y and variance o are
u=n/a, and (3.29)

o =n/d. (3.30)
See Equations (A-8 and A-9) in Appendix A for detailed derivation of the mean and
variance for gamma distribution. As before, the matrix T'is defined square. In this
case, the number of quadrature points and the number of observations on the Laplace

transform, F(s), are both taken to be eight.
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Applying this procedure yields the probabilities defined in Equations (3.1,
3.2). These probabilities of arriving at the destination node N = 5 in time ¢ or less
given an optimal direction of departure from each potential origin are shown in Table
3-2. A MATLAB code for obtaining the maximum probability of arriving on time
and the optimal successor node from each origin to the destination node 5 is given in
Appendix B. Each value of ¢ is associated by Equation (3.14) with one of the
selected quadrature points. As expected, the probability of arriving at destination
node N on time decreases monotonically for all origins as the time available for
completing the trip is reduced.

The procedure identifies the successor node that should be visited from each
potential origin. The entries in Table 3-2 demonstrate that the optimal strategies
change as the amount of time available to complete the trip to node N decreases. In
the case of trips originating from node 1, the optimal successor node changes from
node 3 to node 2 as the time available for an on-time arrival diminishes. Even
though the minimum expected travel time of link (2, 5) is bigger than that of link (3,
5), there is higher chance of on-time arrival by taking path (1, 2, 5) due to the higher
variance of travel time over that path. In the case of trips originating from node 2,
the SOTA strategy suggests node 3 as the best successor node when the time
available is big, even though taking the direct link (2, 5) will result in a smaller

average travel cost. This is again a result of considering both reliability and cost of
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Table 3-2: Probabilities of Arriving on Time at Destination Node N =5

Within Time t Given an Optimal Choice of Successor Nodes

Origin 4= = 3= 1= 5= 1= 7= tg=
§ 3.9193 2.2861 1.4387 0.8958 0.5247 0.2708 0.1072  0.0201
u(t) 0.9828 0.8351 0.5483 0.2672 0.0980 0.0303  0.0056 0.0001
1 Successor
Node 3 3 3 3 2 2 2 3
us(t) 0.9828 0.8980 0.7632 0.5916 04079 0.2370  0.1016  0.0197
2 Successor
Node 3 5 5 5 5 5 5 5
us(t) 0.9993 0.9891 09444 0.8332 0.6493 0.4178 0.1929  0.0391
3 Successor
Node 5 5 5 5 5 5 5 5
uy(t) 0.9626  0.8066 0.5822 0.3498 0.1665 0.0561 0.0103  0.0003
4 Successor
Node 2 2 2 2 2 2 2 2
5 us(t) 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
the possible alternatives. = Computational experience with double-precision

calculations suggests that probabilities calculated in this fashion are accurate to only
the second decimal. Thus, some of the results associated with 7z = 0.0201 are
suspect. As the time available to execute a complete trip becomes small, the
probability of success also becomes small, regardless of the origin of the trip.
Relative computation errors are largest under these circumstances. A computer
output of the detail results containing the intermediate successive approximations is
given in Appendix C to show how the results evolve.

The selection of quadrature points and associated weights is important
because the quadrature points define the values of time for which probabilities will

be evaluated. Additional probabilities can be computed if more quadrature points are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

defined. However, the range of the time points does not increase much, while
computational cost increases quickly with the number of quadrature points. Section
3.5 demonstrates a computationally efficient extension for evaluation of probabilities

for more time values and a larger time range.

3.4.3 Test3: Application to Larger Networks

3.4.3.1 Application to a 49-node network

Applying the procedure to a larger network tests the efficiency of the
algorithm and the sensitivity of the procedure to cumulative computational error.
Consider the 49-node network displayed in Figure 3-3. This is a fairly representative
spatial network in which nodes are connected to all of their nearest neighbors. Link
travel times are given in terms of gamma distributions. See Equation (3.28). The
number and value of the Gaussian quadrature points and weights are unchanged
relative to the previous examples. The parameters of the gamma distribution for

each link are defined using the following rules,

n = 0.4log10(10+0.8i+0.7j), and (3.31)

o = 2logp(12+1.2i+0.8j), (3.32)
where i and j are the starting and ending nodes for link ij. This produces values of #
on the approximate interval 0.4 to 0.75, and values of o on the approximate interval 2
to 4. Comparing to the 49-node network with another set of gamma distributed link

travel times that will be shown later, this network has more reliable link travel times.
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The definition of these two parameters is a matter of programming convenience

Other parameter ranges are admissible.

Figure 3-3: A 49-node Network
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The procedure converges quickly. The intermediate results of successive
approximation are available in Appendix D. Our experience indicates that the results
remain unchanged after 5 times of successive iterations. The probabilities of arriving
at the destination node N = 49 in time ¢ or less given an optimal direction of
departure from each potential origin are shown in Table 3-3. The next node that
should be visited from each node i to maximize the probability of arriving at the
destination within time ¢ is also shown. Results for this larger network parallel the
previous example. As the time available to execute a complete trip becomes small,
the probability of success also becomes small regardless of the origin of the trip.
The further the origin is from the destination node N, the smaller the probability of
arriving on time for any given value of £. As before, for a given origin, the optimal
choice of successor node changes as the amount of time available to complete the
trip to node N decreases. See node 15 as an example.

It is useful to compare the results from this maximum probability problem
with the results from the deterministic shortest path problem. The formulation of
deterministic shortest path problems using dynamic programming is given as
Equation (2.3a and 2.3b) in Chapter 2. Recall that the procedure for stochastic
shortest path problems can be reduced to the standard shortest path procedure for
deterministic networks by replacing the probability density function by the
expectations. A 49-node network with the same configuration as the network in

Figure 3-3 is used in the deterministic shortest path problem. The link travel times
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are set to be the expectations of the link travel times in the SOTA problem. The
equation for calculating the expectation of gamma distributed random variables is

I'(n+1)
T(na

mean =

(3.33)

Note that the values of the parameter n are not integers in this example. Equations
(3.29 and 3.30) are no longer applicable. See Appendix A for the detail derivation of
the mean and variance of gamma distributed random variables.

The minimum cost and the optimal successor node from each node i are
shown in the last column of Table 3-3. In this particular network, the successor
nodes suggested by the average shortest path algorithm and maximum probability
algorithm generally agree with one another when the allowable travel time is limited.
For some starting nodes, the maximum probability algorithm suggests different
strategies when the time available for completing the journey is larger. Recall that
link travel times in this example are quite reliable comparing to the other 49-node
network shown later. It is more likely to find an agreement between stochastic
model and deterministic model when variances of random variables are small. The
results from the second 49-node network will show more impact of variance on the
optimal decisions. However, it is difficult to quantitatively describe the pattern of

the agreement between the two algorithms.
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Table 3-3: Probabilities of Arriving at the Destination Node /V =49 within Time

t or Less Given an Optimal Choice of Successor Nodes

Average
shortest
path cost
4= 1= 1= 1= 5= 5= = 5= (& next
origin 3.9193 22861 1.4387 0.8958 0.5247 02708 0.1072 0.0201 |[nodes
u;(t) 0.7562  0.7205 0.5449 0269 0.0732 0 0 0 1.1284
Successor
1 node 9 9 9 9 9 undefined 9
u(t) 0.7591  0.7236 0.5477 0.2703 0.0735 0 0 0 1.1279
Successor
2 node 9 9 9 9 9 undefined 9
us(t) 0.7618 0.7266 0.5502 0.2716 0.0738 0 0 0 1.1274
Successor
3 node 9 9 9 9 9 undefined 9
uq(t) 0.7678 0.7328 0.5555 0274 0.0742 0 0 0 1.1272
Successor
4 node 10 10 10 10 10 undefined 10
us(t) 0.7731  0.7384 0.5602 0.2761 0.0746 0 0 0 1.1269
Successor
S node 11 11 11 11 11 undefined 11
us(t) 0.7796  0.7451 0.5658 0.2787 0.075 0 0 0 1.1268
Successor
6 node 12 12 12 12 12 undefined 12
us(t) 0.7855  0.7513  0.571 0.281 0.0754 0 0 0 1.1268
Successor
7 node 13 13 13 13 13 undefined 13
us(t) 0.8006 0.7674 0.5825 0.2766 0.0748 0 0 0 1.126
Successor
8 node 16 16 16 9 9 undefined 9
ug(1) 0.8383 0.8222 0.6996 0.4272 0.1583 0.0254 0 0 0.9401
Successor
9 node 17 17 17 17 17 17 undefined 17
uz(2) 0.8396 0.8235 0.7009 0.4281 0.1585 0.0254 0 0 0.9399
Successor
10 node 17 17 17 17 17 17 undefined 17
up() 0.8408 0.8249 0.7023 0.4289 0.1588 0.0254 0 0 0.9398
Successor
11 node 17 17 17 17 17 17 undefined 17
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Table 3-3: Probabilities of Arriving at the Destination Node N =49

Within Time ¢ or Less Given an Optimal Choice of Successor Nodes (Continue)

up(t) 0.8438  0.828 0.7053 0.4307 0.1592 0.0254 0 0 0.9397
Successor

12 node 18 18 18 18 18 18 undefined 18
uys3(t) 0.8466 0.8309 0.7081 0.4324 0.1596 0.0253 0 0 0.9397
Successor

13 node 19 19 19 19 19 19 undefined 19
Uzt 0.8503 0.8348 0.7118 0.4345 0.16 0.0253 0 0 0.9397
Successor

14 node 20 20 20 20 20 20 undefined 20
y5(t) 0.8372 0.8064 0.6102 0.2813 0.0757 0 0 0 1.125
Successor

15 node 23 23 23 9 9 undefined 9
uz4(t) 0.8567 0.8415 0.7183 0.4326 0.1597 0.0254 0 0 0.9391
Successor

16 node 24 24 24 17 17 17 undefined 17
ut) 0.894 0.8884 0.8201 0.6032 0.2999 0.0804 0 0 0.7526
Successor

17 node 25 25 25 25 25 25 undefined 25
Uzs(t) 0.8947 0.8892  0.821 0.6039 0.3002 0.0804 0 0 0.7525
Successor

18 node 25 25 25 25 25 25 undefined 25
ugo(t) 0.8955 0.89 0.8219 0.6046  0.3005 0.0804 0 0 0.7524
Successor

19 node 25 25 25 25 25 25 undefined 25
ua(t) 0.8973 0.8919 0.8239 0.6062 0.301 0.0804 0 0 0.7524
Successor

20 node 26 26 26 26 26 26 undefined 26
ua(t) 0.8991 0.8937 0.8258 0.6077 0.3015 0.0803 0 0 0.7523
Successor

21 node 27 27 27 27 27 27 undefined 27
() 0.8631 0.8324 0.6387 03072 0.0771 0 0 0 1.125
Successor

22 node 30 30 30 30 16 undefined 16
Ug3() 0.8802 0.867 0.7398 0.4365 0.1607 0.0253 0 0 0.9386
Successor

23 node 31 31 3] 17 17 17 undefined 17
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Within Time 7 or Less Given an Optimal Choice of Successor Nodes (Continue)

Uze(t) 0.8988 0.8935 0.8257 0.6078 0.3017 0.0804 0 0 0.752
Successor

24 node 25 25 25 25 25 25 undefined 25
uzs(t) 0.9365 0.9351 0.9069 0.7712 0.5007 0.2046 0.0365 0 0.5649
Successor

25 node 33 33 33 33 33 33 33  undefined| 33
tss(t) 0.937 09356 09075 0.7718 0501 0.2046 0.0365 0 0.5648
Successor

26 node 33 33 33 33 33 33 33  undefined] 33
uor(t) 0.9375 0.9361 0.908 0.7724 05014  0.2047 0.0365 0 0.5647
Successor

27 node 33 33 33 33 33 33 33 undefined| 33
Uzs(t) 0.9388 0.9374 0.9095 0.7737 0.5021 0.2047 0.0364 0 0.5647
Successor

28 node 34 34 34 34 34 34 34  undefined| 34
uzoft) 0.8721 0.8409 0.6438 0.3099 0.0781 0 0 0 1.1252
Successor

29 node 37 37 37 37 23 undefined 23
uzg(t) 0.8975 0.8842 0.7599 0.4605 0.1622 0.0251 0 0 0.9387
Successor

30 node 38 38 38 38 24 24 undefined 24
uz;(t) 0.9145 0.9098 0.8429 0.6114 0.303  0.0804 0 0 0.7516
Successor

31 node 39 39 39 25 25 25 undefined 25
Uszaft) 0.9398 0.9385 09107 0.7751 0.503  0.2049 0.0363 0 0.5645
Successor

32 node 33 33 33 33 33 33 33  undefined| 33
u33(t) 0.9707 09704 09636 0.903  0.7292 0.4391 0.1516 0.0124 | 0.3768
Successor

33 node 41 41 41 41 41 41 41 41 41
Us(2) 09711 0.9708  0.964 0.9035 0.7296 0.4392 0.1515 0.0124 | 0.3768
Successor

34 node 41 4] 41 41 41 41 41 41 41
uss(t) 0.9714 09712 09644 0504 0.7301 0.4393 0.1515 0.0123 | 0.3767
Successor

35 node 41 41 41 41 41 41 41 41 41
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Table 3-3: Probabilities of Arriving at the Destination Node N = 49

Within Time ¢ or Less Given an Optimal Choice of Successor Nodes (Continue)

uszg(t) 0.8697 0.8395 0.6451 0.31 0.0773 0 0 0 1.1259
Successor

36 pode 30 30 30 30 30 undefined 30
uz(t) 0.9001 0.8869 0.7583 0.4608 0.1636 0.0246 0 0 0.9388
Successor

37 node 38 38 45 45 31 31 undefined 31
uszg(t) 0.9256 0.9213 0.8553 0.63 0.3054 0.0801 0 0 0.7517
Successor

38 node 46 46 46 46 32 32 undefined 32
Usoft) 0.9426 09414 0914 07784 0.5049 0.205 0.0361 0 0.5642
Successor

39 node 33 33 33 33 33 33 33 undefined 33
Uyp(t) 0.9731 09729 09663 0.9062 0.732 044  0.1511 0.0122 | 0.3765
Successor

40 node 41 41 41 41 41 41 41 41 41
y(2) 0.9995 0.9986 1 0.9834 0.9228 0.76 0.4832 0.1512 | 0.1885
Successor

41 node 49 49 49 49 49 49 49 49 49
(1) 0.9995 0.9986 1 0.9835 0.9229 0.76 0.4828 0.1508 | 0.1885
Successor

42 node 49 49 49 49 49 49 49 49 49
uys(t) 0.877 0.8461 0.6485 0.3119 0.0779 0 0 0 1.1264
Successor

143 node 37 37 37 37 37 undefined 37
Ugg?) 0.9023 0.8893 0.7652 0.4637 0.1636 0.0247 0 0 0.9393
Successor

44 node 38 38 38 38 38 38 undefined 38
uys5(t) 0.9192 09146 0.8484 0.6252 0.3071 0.0796 0 0 0.7518
Successor

45 node 39 39 39 39 39 39 undefined 39
Uys(t) 0.9494 09483 = 0.9217 0.7858 0.5087 0.2047 0.0354 0 0.5643
Successor

46 node 40 40 40 40 40 40 40  undefined 40
Uy (1) 0.9753  0.9751 0.9687 0909 0.7345 04407 0.1505 0.0121 0.3763
Successor

47 node 41 41 41 41 41 41 41 41 41
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Table 3-3: Probabilities of Arriving at the Destination Node N =49

Within Time ¢ or Less Given an Optimal Choice of Successor Nodes (Continue)

s(t) 0.9995 0.998 1.0001 0984 0.9238 0.7603 0.4808 0.1482 | 0.1883
Successor
43 node 49 49 49 49 49 49 49 49 49

49 U49(t) 1 1 1 1 1 1 1 1 0

3.4.3.2 Application to another 49-node network with a second set of link travel
time distributions

It is also useful to compare the results of the maximum probability problems
with the same network configuration and average link travel times but different
variance of link travel times. We set the parameters « and » in link travel time
distribution as half of those in Equations (3.31 and 3.32). This change of parameters
results in the same average travel times but doubled variances. Refer to Appendix A
for the calculation of the mean and variance of the gamma distributed variables. The
results of the maximum probability of arriving on time and the optimal successor
nodes using the second set of gamma distribution parameters are reported in Table 3-
4. Maximum probabilities of arriving on time in this example are overall smaller
comparing to the data in Table 3-3. This is as expected because larger variances
indicate greater uncertainty. We also have observed that for some starting nodes, the
SOTA strategy and the shortest path strategy never agree with one another despite of
the amount of the remaining time for the on-time arrival. See the cases of starting

from nodes 23, 24, 31, 38, and 39 as an example.
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Table 3-4: Probabilities of Arriving at the Destination Node /V =49 within Time

t or Less Given an Optimal Choice of Successor Nodes Using the Second Set of

Gamma Distributions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1= ty== f3= 4= 15= 5= 1= ts=
Average
shortest
path cost
&  next]
origin 3.9193 22861 1.4387 0.8958 0.5247 02708 0.1072  0.0201 [nodes
u(t) 0.2771 02417 0.1708 0.0923 0.0346 0.007 0.0003 0 1.1284
Successor
1 node 9 9 9 9 9 9 9  unidentified] 9
uy(2) 0.2848 02489 0.1762 0.0952 0.0356 0.0072 0.0003 0 1.1279
Successor
2 node 10 10 10 10 10 10 9 unidentified] 9
us(t) 0.2918 0.2556 0.1811 0.0978 0.0365 0.0074 0.0003 0 1.1274
Successor
3 node 11 11 11 11 11 11 9 unidentified 9
uy(t) 0.2978 0.2612 0.1853 0.1001 0.0373 0.0074 0.0003 0 1.1272
Successor
4 node 12 12 12 12 12 11 10  unidentified] 10
us(t) 0.3026 0.2658 0.1887 0.1019 0.0379 0.0076  0.0003 0 1.1269
Successor
5 node 13 13 13 13 13 13 11  unidentified; 11
() 0.3059 0.269 0.1911 0.1032 0.0383 0.0076 0.0003 0 1.1268
Successor
6 node 14 14 14 14 14 12 12 unidentified] 12
ust) 0.3072  0.2702  0.192 0.1037 0.0385 . 0.0076 0.0003 0 1.1268
Successor
7 node 14 14 14 14 14 13 13 unidentified] 13
ug(t) 0.3232 0.2854 0.2033 0.1096 0.0405 0.008 0.0003 0 1.126
Successor
8 node 16 16 16 16 16 16 9 unidentified, 9
Ug(t) 0.396 0.3664 0.2902 0.184 0.0863 0.0247 0.0024 0 0.9401
Successor
9 node 17 17 17 17 17 17 17  unidentified] 17
Ugo(?) 04016 0372  0.2949 0.187 0.0876 0.0249 0.0024 0 0.9399
Successor
10 node 18 18 18 18 18 18 17  unidentified] 17
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Table 3-4: Probabilities of Arriving at the Destination Node V=49
Within Time 7 or Less Given an Optimal Choice of Successor Nodes Using the

Second Set of Gamma Distributions (Continue)

up(t) 0.4067 0377 0.2992 0.1897 0.0888 0.0252 0.0024 0 0.9398
Successor

11 node 19 19 19 19 19 19 17  unidentified] 17
Uyt 0.4107 0381 03025 0.1919 0.0897 0.0254 0.0024 0 0.9397
Successor

12 node 20 20 20 20 20 20 18  unidentified] 18
uys3(t) 04134 0.3837 03048 0.1933 0.0903 0.0255 0.0024 0 0.9397
Successor

13 node 21 21 21 21 21 20 19  unidentified] 19
U4t 0.4144 0.3847 0.3057 0.1939 0.0906 0.0256 0.0024 0 0.9397
Successor

14 node 21 21 21 21 21 20 20  unidentified] 20
ugs(t) 0.3557 03164 0.2265 0.1219 0.0446 0.0087 0.0003 0 1.125
Successor

15 node 23 23 23 23 23 23 9 unidentified 9
u;4(t) 0.4313 04015 03197 0.2027 0.0942 0.0265 0.0024 0 0.9391
Successor

16 node 24 24 24 24 24 24 17  unidentified] 17
ug(t) 0.5234 0.503 04364 0.3196 0.1849 0.0732 0.013 0 0.7526
Successor

17 node 25 25 25 25 25 25 25  unidentified] 25
uys(t) 0.5277 05073 0.4404 03226 0.1865 0.0736 0.0131 0 0.7525
Successor

18 node 26 26 26 26 26 26 25  unidentified] 25
ujo(t) 0.5313 0511 0.4438 0.3252 0.1879 0.0741 0.0131 0 0.7524
Successor

19 node 27 27 27 27 27 27 25  unidentified] 25
uzft) 0.5337 0.5134 0.4461 0.3269 0.1889 0.0744 0.0131 0 0.7524
Successor

20 node 28 28 28 28 28 28 26  unidentified], 26
() 0.5346 0.5143 0.447 03276 0.1893 0.0746 0.0132 0 0.7523
Successor

21 node 28 28 28 28 28 28 27  unidentified] 27
uso(1) 0.378 0.3377 02426 0.1304 0.0473 0.009 0.0003 0 1.125
Successor

22 node 30 30 30 30 30 30 16  unidentified] 16
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Table 3-4: Probabilities of Arriving at the Destination Node N =49
Within Time ¢ or Less Given an Optimal Cheice of Successor Nodes Using the

Second Set of Gamma Distributions (Continue)

u3(1) 0.457 0427 03414 02165 0.1001 0.0278 0.0026 0 0.9386
Successor

23 node 31 31 31 31 31 31 31  unidentified] 17
Us4(2) 0.5504 0.5304 0462 033806 0.195 0.0763 0.0134 0 0.752
Successor

24 node 32 32 32 32 32 32 32  unidentified] 25
us(t) 0.6644 0.6528 0.6059 0.5015 0.3507 0.1876 0.058 0.0018 | 0.5649
Successor

25 node 33 33 33 33 33 33 33 33 33
U6(1) 0.6673 0.6558 0.6089 0.5041 0.3525 0.1883 0.0581 0.0018 0.5648
Successor

26 node 34 34 34 34 34 34 33 33 33
(1) 0.6696 0.6581 0.6112 0.5062 0.3538 0.1889 0.0583 0.0019 | 0.5647
Successor

27 node 35 35 35 35 35 35 35 33 33
us4(t) 0.6704 0.659 0.6121 0.5069 0.3544 0.1892 0.0583 0.0019 | 0.5647
Successor

28 node 35 35 35 35 35 35 34 34 34
Us9(2) 0.3923  0.3515 0.2531 0.1359 0.0491 0.0093 0.0004 0 1.1252
Successor

29 node 37 37 37 37 37 37 23  unidentified; 23
Uso(t) 0.4736 0.4436 0.3556 0.2255 0.1039 0.0286 0.0025 0 0.9387
Successor

30 node 38 38 38 38 38 38 24  unidentified] 24
usz(t) 0.5696 0.55 0.4803 0.3524 0.2025 0.0787 0.0136 0 0.7516
Successor

31 node 39 39 39 39 39 39 39  unidentified} 25
us(t) 0.6832 0.6721 0.6253 0.5183 0.3618 0.1922 0.0589 0.0019 | 0.5645
Successor

32 node 40 40 40 40 40 40 40 33 33
u33(1) 0.8222  0.8167 0.7928 0.7209 0.5938 0.4132 0.2106 0.0371 0.3768
Successor

33 node 41 41 41 41 41 41 41 41 41
Uyt 0.8237 0.8183 0.7945 0.7226 0.5951 0.4139 0.2108 0.0371 0.3768
Successor

34 node 42 42 42 42 42 42 41 41 41
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Table 3-4: Probabilities of Arriving at the Destination Node NV =49
Within Time 7 or Less Given an Optimal Choice of Successor Nodes Using the

Second Set of Gamma Distributions (Continue)

u3s(t) 0.8245 0.8191 0.7954 0.7234 0.5958 0.4144 0.211 0.0371 0.3767
Successor

35 node 42 42 42 42 42 42 41 41 41
u36(t) 0.4001 0.3591 0.2589 0.1389 0.0501 0.0095 0.0004 0 1.1259
Successor

36 node 44 44 44 44 44 44 30  unidentified] 30
uss (1) 0.4827 0.4528 0.3634 0.2305 0.106 0.029  0.0026 0 0.9388
Successor

37 node 45 45 45 45 45 45 31  unidentified] 31
uss(t) 0.5801 0.5608 0.4905 0.3601 0.2067 0.08 0.0137 0 0.7517
Successor

38 node 46 46 46 46 46 46 46  unidentified] 32
U3g(2) 0.6954 0.6847 0.638 0.5293 0.3693 0.1956 0.0595 0.0019 | 0.5642
Successor

39 node 47 47 47 47 47 47 47 33 33
Wag(t) 0.8321 0.827 0.8037 0.7316 0.6022 04177 02117 0.0372 | 0.3765
Successor

40 node 48 48 48 48 48 48 41 41 41
Uyt 0.9998 0.9963 0.9921 0.9588 0.8975 0.7741 0.6016  0.3129 0.1885
Successor

41 node 49 49 49 49 49 49 49 49 49
Ut 0.9998 0.9964 0.9922 0.9589 0.8976 0.774 0.6012 0.3123 0.1885
Successor

42 node 49 49 49 49 49 49 49 49 49
uys(t) 0.4026 03615 0.2607 0.1399 0.0504 0.0095 0.0004 0 1.1264
Successor

43 node 44 44 44 44 44 44 37  unidentified] 37
Ul 0.4855 0.4556 0.366 0.2321 0.1067 0.0292 0.0026 0 0.9393
Successor

44 node 45 45 45 45 45 45 38  unidentified] 38
tys(t) 0.5834 .0.5642 0.4937 0.3626 0.2081 0.0804 0.0138 0 0.7518
Successor

45 node 46 46 46 46 46 46 39  unidentified] 39
Uys(t) 0.6992 0.6887 0.642 0.5329 0.3718 0.1967 0.0598  0.0019 0.5643
Successor

46 node 47 47 47 47 47 47 47 40 40
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Table 3-4: Probabilities of Arriving at the Destination Node N =49
Within Time ¢ or Less Given an Optimal Choice of Successor Nodes Using the

Second Set of Gamma Distributions (Continue)

145(8) 0.8366 0.8315 0.8085 0.7364 0.6063 0.4203 02127  0.0372 | 0.3763
Successor

47 node 48 48 48 48 48 48 4] 41 41
Ugs(t) 0.9998 0.9965 0.9925 0.9595 0.8981 0.7737 0.5992  0.3089 | 0.1883
Successor

48 node 49 49 49 49 49 49 49 49 49

49 140(2) 1 1 1 1 1 1 1 1 0

3.4.3.3 Application to a 100-node network

A network with 100 nodes is tested to further examine the applicability of the
algorithm to larger network and the sensitivity of the procedure to cumulative
computational error. The link travel time distributions are set to be the same as in
the first 49-node network. Refer to Equations (3.28) for the gamma distribution and
Equations (3.31 and 3.32) for the parameters o and n. The results of the maximum
probability of arriving on time and the optimal successor nodes are given in
Appendix F. These results are compared with those from the average shortest path
problem. See Table F-1. The probability functions are plotted in Figure F-1 for
better visual convenience. These functions are grouped in nine clusters, depending
on the number of minimum intermediate links between an origin and the destination.
Note that the difference of link travel time distributions is slight. The functions look

smooth and monotone in all the cases.
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The optimal successor nodes recommended by SOTA and shortest path
procedures tend to agree with one another in most cases. In some cases, the SOTA
procedure may recommend a different successor node if there is more time for on
time arrival. These are the general pattern of the results observed in this example,
which is similar as what has been observed in the 49-node network with small
variance. However, there are exceptions. For a few starting nodes (nodes 71, 72,
74, 81, 82, and 83), the optimal successor nodes change frequently among several
closest surrounding nodes as the remaining time for on-time arrival diminishes. This
is unusual relative to other examples, and inconsistent with our anticipated results.
These anomalous results create concern that cumulative computational errors and the
numerical instability problem associated with inverting Laplace transforms might be
degrading the quality of the outputs. Close examination of the maximum probability
functions for the alternative successor nodes mitigates these concerns. Consider
node 71. The recommended successor strategies for node 71 are to go to node 62 if
the remaining time for on time arrival is 3.9193, to go to node 82 if the remaining
time is 2.2861, to go to node 72 if the remaining time is 1.4387, to go to node 62 if
the remaining time is 0.8958. Since travel time distributions on the links (71, 62),
(71, 72) and (71, 82) are very similar, the optimal successor node depends mainly on
the maximum probability of on time arrival given a travelers location at these
successor nodes. The maximum probability functions of on time arrival from these
alternative successor nodes are plotted in Figure F-2. These functions are all smooth

and monotone, but increase at different rates. For some values of t, ug(t) is largest,
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while for other values of t, us(t) or ugy(t) is largest. Therefore, the oscillation of
optimal successor nodes seems reasonable. However, the exact impact of cumulative
computational error on these results remains unclear.

Note that when the network becomes larger and link travel time distributions
of adjacent links are very similar, the impact of the cumulative computational error
may have relatively larger impact on the results. Another 100-node network, where
travel time distributions of adjacent links are purposely designed to have greater
difference, is tested to further study the possible reason of the frequent change of
successor nodes observed in the last example. The parameters are set to be

n=0.2log,,(10+4i+6)), (3.34)
and

a=loglo(2+6i+10j)’ (3.35)

which results in larger difference of link travel time distributions among the adjacent
links. We hope that the relative impact of the cumulative computational error will be
diminished to some degree as the difference of link travel times increases. The
frequent change of the optimal successor nodes does not occur in this example. The
results of maximum probability of arriving on time and the optimal successor nodes
behave as the general pattern observed in other examples. These results are given in
Appendix G. Similar as in other examples, these results are compared with those
from the average shortest path problem. See Table G-1. The probability functions

are plotted in Figure G-1 for better visual convenience.
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3.5 Changing Time Scale

In previous sections, we used Guassian quadrature to numerically evaluate
the Laplace transforms and the inverse of Laplace transforms of convolution
integrals. The unknown functions uy(?), i =, 2, ..., N and 0 <t <oq are evaluated at
a discrete set of time values #; = -Int;, where 7; are the M Guassian quadrature points.
For example, M = 8 defines the quadrature points and times in Table 3-1. Note that
the unknown function u(?) is determined for only a small range of r-values.
Increasing M increases the upper bound of z. However, if the objective is to increase
the range of ¢, then increasing M is an inefficient approach. All of the quadrature
points are defined on the interval 0 to 1, so as M becomes large the columns in the
matrix 7 become nearly linearly dependant, and it becomes difficult to solve
Equation (3.20) for X. Computational cost increases quickly with M, and the quality

of results degrades.

3.5.1 Multiplicative property of the Laplace transfrom
Fortunately, the range of ¢ can be efficiently extended by relying on the
multiplicative property of the Laplace transform. If the Laplace transform of

function f{2) is F(s), then the Laplace transform of f{at) is F(s/a)/a. This is because if

@O

L{f®}= je F(0)dt = F(s), (3.36)

0

then

N0

L{f(at)} = [e™* f(at)ds

0
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=1 [ f ey
a 0

_F(s/a)
=——.

(3.37)

Replacing the values F(1), F(2), ..., F(N) with the values F(l/a), F(2/a), ..., F(N/a)
in Equation (3.17) makes it possible to approximate the unknown function u(z) for

the values ¢ =—aln7, by solving the system of linear algebraic equations

,s=1,2 ., N (3.38)

3o u-an = 2L

Consider the convolution integral in Equation (3.1),

f@)= [p@)u(t-w)do. (3.39)

Let F(s), P(s), and U(s) be the respective Laplace transforms of functions f{), p(t)
and u(z) in Equation (3.39), where u(#) corresponds to any u;(¢) and p(w) corresponds
to any associated p;j(w). According to the convolution theorem of Laplace
transforms,

F(s)=P(s)U(s). (3.40)
In our previous work, the unknown function f{?) is to be evaluated at a discrete set of
values, t;, t5, ..., ty. Defining

y(¥) = flat) (3.41)
makes it possible to evaluate the function f{#) over the sequence, at;, at, ..., aty. By

the multiplicative property of Laplace transforms,
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Y(s) =%F(§). (3.42)

Replacing the value s by s/a in Equation (3.40) and substituting into Equation (3.42)

gives
Y(s)= —(1;P(s /a@)U(s/a), (3.43)
where
P(s/a)= aZ": t 7 p(—alnt)w,,s=1,2, ..., N, (3.44)
i
and
U(s/a)= afr:“‘u(—a Intw,s=1,2 .., N (3.45)

i=1
The matrix T in equations (3.44) and (3.45) is same as the matrix 7 in equation
(3.20). Once Y(s), the Laplace transform of function y(?), is known, the inverse of
Y(s) can be obtained by solving the set of linear algebraic Equations (3.23) for the

vector X.

3.5.2 Validation: comparing numerical and analytical results

3.5.2.1 Test I: Inverting the Laplace transform of sin(at)

We test our reliance on the multiplicative property of the Laplace transform
by estimating the Laplace transform for functions sin(at), a = 1, 2, 3, and then
inverting the results to produce an estimate of the original function. These estimates

reproduce the original function nicely. Further, both the range of ¢ and the number of
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t-values is increased. The numerical results are shown graphically in Figure 3-4,

and more precisely in Table 3-5.

3.5.2.2 Test 2: Evaluating a convolution integral when u(t) = 1

Consider the simplest meaningful initial approximations for u(?), the
probability of arriving at N on or before time # given a current location at node i. The
simplest available estimates are to set u;(?) to zero for all nodes other than node N,

and to 1 for node N.

Figure 3-4: Changing the Time Scale Parameter « for sin(a?)
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Table 3-5: Numerical Comparison of sin(az) with Inverted Laplace Transforms

of sin(at)
a=1 a=2 a=3
at sin(at) sin(at) sin(at) sin(at) at sin(at) sin(at)
exact estimated exact estimated exact  estimated
39193  -0.7016 -0.7019 7.8386 0.9999 0.9995 11.7579 -0.7232° -0.7238
2.2861 0.7549 0.7545 45721 -0.9902 -0.9908 6.8582 0.5438  0.5430
1.4387  0.9913 0.9917 2.8774  0.2611 0.2619 4.3161 -0.9225  -0.9215
0.8958  0.7807 0.7806 1.7916 0.9757 0.9756 2.6874 0.4387 - 0.4386
0.5247  0.5010 0.5006 1.0495 0.8672 0.8664 1.5742 1.0000  0.9991
0.2708  0.2675 0.2672 0.5416 0.5155 0.5150 0.8124 0.7259  0.7253
0.1072  0.1070 0.1070 0.2144  0.2128 0.2127 0.3216 0.3161 - 0.3160
0.0201 0.0201 0.0199 0.0401 0.0401 0.0398 0.0602 0.0602  0.0597

Referring again to Equation (3.39), define the functions p(?) and u(2) to be e't
and 1, respectively, what is y(z) = f{at), a = 1, 2, 3, corresponding to Equation
(3.41)? Applying Equations (3.42) through (3.45) provides an estimate of the
Laplace transform Y(s). Applying Equation (3.23) produces an estimate of y(1),
which is also f(at).

Figure 3-5 and Table 3-6 compare the results obtained from this procedure
with the results provided by applying the MatLab Quad function to Equation (3.41)

over the interval £ = 0 to 15.
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Figure 3-5: Changing Time Scale for Function of Convolution Integral

The Quad function numerically evaluates integrals over a finite interval, and
thus provides a convenient benchmark when p(?) and u(z) are known. The points
obtained by using different values of a all seem to lie on a smooth curve. They also
agree with Matlab results. Unfortunately, in the network case, the functions u(z) are

not generally known.
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Table 3-6: Numerical Comparison of MATLAB Quad Function Estimates of

y(?) = flat) with Estimates Obtained via the Multiplicative Property of Laplace

Transforms
a=1 a=2 a=3
at quad f(at) at quad f(at) at quad f(at)
3.9193 0.9023 0.9066 7.8386 0.9965 0.9961  11.7579 0.9999 0.9998
2.2861 0.6659 0.6638 4.5721 0.9424 0.9424  6.8582 0.9917 0.9914
1.4387 0.4215 0.4227 2.8774 0.7818 0.7818 43161 0.9290 0.9294
0.8958 0.2260 0.2252 1.7916 0.5346 0.5347  2.6874 0.7490 0.7490
0.5247 0.0978 0.0983 1.0495 0.2824 0.2822 1.5742 0.4667 0.4664
0.2708 0.0307 0.0302 0.5416 0.1031 0.1030  0.8124 0.1957 0.1954
0.1072 0.0054 0.0056 0.2144 0.0200 0.0199  0.3216 0.0419 0.0418
0.0201 0.0002 0.0000 0.0401 0.0008 0.0007 0.0602 0.0017 0.0016

3.5.2.3 Test3: Application on a 9-node Network

scale is computable and efficient in our network context.

See Figure 3-6. The

A 9-node network is used to test whether this procedure for changing the time

parameters of the Gamma distribution for each link are arbitrarily defined using the

following rules,

n = 1.4logo(10+0.8i+0.7j), and

o= 2logo(12+1.2i+0.8j),

(3.46)

(3.47)

where i and j are the starting and ending nodes for link jj. This ensures that the link

travel time functions are similar, but slightly differ from one another. Under these

circumstances, the optimal probability of arriving on time will be most strongly
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influenced by the number of intermediate nodes between the origin and destination

node 9.

Figure 3-6: A 9-node Network

Three time scales are used, a = 0.5, a = 1, and a = 2. The results for these time
scales are combined in Table 3-77. As expected, the probabilities u;(2), i =1, 2,. ...,
n, 0 <t <oocan be clustered into three groups depending on the minimum number of
intermediate nodes between starting node i and destination node N = 9. These
groups are node 9; nodes 5, 6, and 8; and nodes 1, 2, 3, 4, and 7. Given the
similarities in the link travel time distributions, the probability of arriving on time is
necessarily higher when the origin node is closer to the destination. Node N =9 is

the destination, and thus a trivial case. The probabilities u;() in the other two groups
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vary across the group members, but these difference are small enough that they
cannot be distinguished graphically in this example. The averaged values of
probabilities u,(z) for each value of ¢ across nodes 1, 2, 3, 4, and 7 (ui2347(1)) and

across nodes 5, 6, and 8 (uses(t)) are plotted in Figure 3-7.

Table 3-7: Probabilities of Arriving on Time at Destination Node N = 9 within

Time t: Increasing the Number and Range of Time Points by Changing the

Time Scale
t u(t) u(t) us(t) uy(t) us(t) ug(t) uy(t) ug(t) ug(t)
0.01 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 1.000

0.0201 0.000 0.000 0.000 0.000 0.003 0.003 0.000 0.002 1.000
0.0401 0.000 0.000 0.000 0.000 0.010 0.010 0.000 0.009 1.000
0.0536 0.002 0.002 0.002 0.002 0.016 0.016 0.002 0.015 1.000
0.1072 0.000 0.000 0.000 0.000 0.053 0.052 0.000 0.049 1.000
0.1354 0.002 0.001 0.001 0.001 0.078 0.076 0.001 0.073 1.000
0.2144 0.009 0.008 0.008 0.008 0.157 0.155 0.007 0.151 1.000
0.2624 0.016 0.016 0.015 0.015 0.209 0.207 0.014 0.203 1.000
0.2708 0.017 0.016 0.016 0.016 0.218 0.216 0.015 0.213 1.000
0.4479 0.067 0.066 0.065 0.064 0.411 0.410 0.062 0.408 1.000
0.5247 0.101 0.099 0.098 0.097 0.487 0.486 0.094 0.485 1.000
0.5416 0.109 0.108 0.106 0.105 0.502 0.502 0.102 0.501 1.000
0.7194 0.208 0.207 0.205 0.204 0.648 0.648 0.201 0.649 1,000
0.8958 0.318 0.317 0.317 0.316 0.756 0.757 0.313 0.759 1.000
1.0495 0.418 0.417 0.417 0.417 0.825 0.826 0.415 0.828 1.000

1.143 0.474 0.474 0.474 0.474 0.858 0.860 0.474 0.862 1.000
1.4387 0.641 0.642 0.643 0.644 0.928 0.930 0.645 0.932 1.000
1.7916 0.787 0.788 0.789 0.792 0.969 0.970 0.795 0.971 1.000
1.9596 0.840 0.841 0.843 0.846 0.979 0.979 0.848 0.980 1.000
2.2861 0.906 0.908 0.909 0.912 0.990 0.991 0.915 0.992 1.000
2.8774 0.970 0.971 0.971 0.973 0.999 0.999 0.974 0.999 1.000
3.9193 0.996 0.996 0.996 0.997 1.000 1.000 0.997 1.000 1.000
4.5721 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 1.0600
7.8386 1.007 1.007 1.006 1.007 1.007 1.006 1.005 1.005 1.000
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—4A— Average u(t): nodes 1,2,3.4,7

0.6 —{}— Awerage u(t): nodes 5,6,8
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0.2

0.0

Figure 3-7: Maximum Probability of Arriving On Time from Each Node Using
' Changing Time Scale Procedure

3.6 Alternative Method of Evaluating Convolution Integrals via Differential
Approximation

In the previous sections, we have shown how to evaluate a convolution

integral,

z(t)= [ut-1)f (7)dr, (3.48)

using the convolution theorem of Laplace transform. In this section, we will provide

an alternative means of evaluating convolution integrals via solving ordinary
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differential equations. QOur intentions are, first, to seek for the possible existence of a
more efficient way to evaluate convolution integrals, second, to validate our
approach of evaluating convolution integrals via method of Laplace transforms

presented in the previous sections.

3.6.1 Method of differential approximation

3.6.1.1 Seeking for differential relationships for the convolution integrals
If the kernel of the integrand satisfies a second order linear differential
equation, then the convolution integral also satisfies a linear differential relationship.

The proof is given as follows. If z(t) is defined by Equation (3.48), then

2'=u(0) f(£) + j: w'(t-7)f(r)dr, (3.49)
and
2"=u(0) £ (O +uO) f()+ [u't-1)f(@)dr. (3.50)

Based on Equations (3.48 — 3.50), we have

z"taz'+bz

=[au(0)+u'(0)] f () +u(0) f () + ﬂbu(t ) +au't—-1)+u"(t-7)1f(v)dr,

(3.51)

where a and b are coefficients to be determined from the linear differential equation
of the kernel function.

If the kernel satisfies a linear differential equation; that is, if
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utau'tbu=0, . (3.52)
then

z"+az'+ bz =[au(0)+u'(0)] f (1) +u(0) f'(?). (3.53)

In the previous work, link travel times were assumed to follow a gamma
distribution. That is

n_—at n-1
t

o'e
p) = W (3.54)

The first order derivative and second order derivative are

n

p'= I’OE ) [~ae™®t"" + (n-D)e™ "], (3.55)
n
and
p " FO({ ) [a2e—attn~l _ 2a(7’l _ l)e—attn—2 + (I’l —1)(11 . 2)e~attn-3] . (3.56)
n

Therefore, we have

n _-—at, n-3
p'tap'+bp = —q——;—z—%—(az —aa+b)t* +(a-2a)n-Dt+(n-1)(n-2).
n

(3.57)
To let
p"tap'+bp=0, (3.58)

we must solve the following set of equations
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[ a*-aa+b=0, (3.59)
(a-2a)n-1)=0, (3.60)
<
and
(n-1)(n-2) = 0. (3.61)

-

Consequently, the value of n must be either 1 or 2. The values of a and b must be
a=2a, (3.62)
and
b=a’. (3.63)
Plug the values of a and b constrained by Equation (3.62, 3.63) to Equation

(3.58), the function p(?) has the following relationship

p"+2ap'+a’p=0. (3.64)
Equation (3.53) then becomes

2"+ 2az'+a’z =[2a p(0) + p'(0O)u(®) + p(O)u'(x) . (3.65)
The initial conditions of function p(z) are

p(0)=0, (3.66)
and

p'O)=a’[e™ +(~a)e “t]=a’. (3.67)
Therefore, Equation (3.65) can be written as

2"+ 2az'va’z = a’u(t). (3.68)

So far, we have shown that in case where the coefficients of the primary ODE

of the kernel function are all constant, convolution integrals can be evaluated by
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solving a resultant nonhomogenous differential equation with same coefficients.
With such an equation, the output could be computed directly as a linear process
simulation without any further computation of integrals. The detail procedure of
solving differential equations via modified Euler’s method is described in the next
section right below.

If a function does not satisfy a second order linear differential equation
analytically, there are ways to approximate a differential equation in a least square

sense (Bellman and Kalaba, 1964)

3.6.1.2 Procedure of solving differential equations
Consider solving the specific differential equation defined by Equation
(3.68). Let z’ be y, Equation (3.68) can be written as two first order differential

equations. They are

Z'=y, (3.69)
and
y'==2ay~a’z+a’u(t). (3.70)

The unknown function z(t) and y(t) can be solved through modified Euler’s
method. The detailed procedure of this method is described in the flowchart shown

in Figure 3-8.
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where the functions are to be evaluated

¥
Set step size &
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Initialize y(I) and z(
¥
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to the given set of linear
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Evaluate y (¢ +dt) and z (i +dt)
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¥

Sy(t) = (y (1) + y (Frdn)/2
Sz(t) = (£ () + 2’ (rhdi))i2

¥

y(t+dt) = y(t) + Sy(tdt
Z(Hdt) = 2(t) + Sz(t)dt

[t =t+dt /
4
Agthe upper bound of the

time interval been reached?

o

Figure 3-8: Procedure of Solving Ordinary Differential Equations Using

Modified Euler’s Method
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3.6.2 Numerical examples

3.6.2.1 Testl

Figure 3-9: A 4-node Network with Same Link Travel Time Distributions

Consider a four-node network as shown in Figure 3-9. Assume the travel

time distribution of each link to be

p(t)y=te” (3.71)

We pick this p(t) on purpose so that it agrees with a homogenous linear
differential equation. Therefore, the convolution integral can be evaluated by
solving the resultant nonhomogenous linear differential equation. The time step in
the procedure of differential approximation is set to be 0.01. A MATLAB program
for this task is available in Appendix H.

The results from the method of differential approximation and the method of

Laplace transform are compared in Table 3-8. Note that the results from the
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Table 3-8: Comparison between Results from the Method of Laplace

Transform and the Method of Differential Approximation

t  u(t) from ODE t u(t) from Laplace transform
0.0201 0.0001
0.09 0.0038
0.1072 0.0056
0.19 0.0159
0.2708 0.0304
0.29 0.0347
0.39 0.0589
0.49 0.0872
0.5247 | 0.0983
0.59 0.1186
0.69 0.1523
0.79 0.1876
0.89 0.2239
0.8958 0.2255
0.99 0.2606
1.09 0.2973
1.19 0.3338
1.29 0.3696
1.39 0.4047
1.4387 0.4227
1.49 0.4388
1.59 04718
1.69 0.5036
1.79 0.5342
1.89 0.5634
1.99 0.5913
2.09 0.6178
2.19 0.643
2.2861 0.6646
2.29 0.6668
2.39 0.6894
2.49 0.7106
2.59 0.7307
2.69 0.7495
2.79 0.7672
2.89 0.7838
2.99 0.7994
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Table 3-8: Comparison between Results from the Method of Laplace

Transform and the Method of Differential Approximation (Continued)

3.09 0.8139
3.19 0.8275
3.29 0.8402

3.39 0.852
3.49 0.863
3.59 0.8733
3.69 0.8829
3.79 0.8918
3.89 0.9
3.9193 0.9066
3.99 0.9077

4.09 0.9148
4.19 0.9214
4.29 0.9275

4.39 0.9332
4.49 0.9384
4.59 0.9432
4.69 0.9477
4.79 0.9519
4.89 0.9557
4.99 0.9592

method of differential approximation are reported using time step 0.1 to save the
space, while the actual time step used by the model is 0.01. Same quadrature points
are used here as in other examples. These results are also plotted in Figure 3-10 for
better visual convenience. The results from the two different methods agree with

each other very well.
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Figure 3-10: Maximum Probability of Arriving On Time from Node 2 to

Node 4

3.6.2.2 Test2

Consider another four-node network as shown in Figure 3-11. Assume the
travel time distribution of each link to be

p(t) =a’te™ (3.72)
The values of o for each link are shown in Figure 3-11. Similar to the previous
example, the function p(t) described by Equation (3.72) agrees with homogenous
linear differential equations. Therefore, the convolution integral with such kernel

can be evaluated by solving the resultant nonhomogenous linear differential
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Figure 3-11: A 4-node Network with Different Link Travel Time

Distributions

equation. The time step in the procedure of differential approximation is also set to
be 0.01.

The results from the method of differential approximation and the method of
Laplace transform are compared in Table 3-9. Note that the results from the method
of differential approximation are reported using time step 0.1 to save the space, while
the actual time step used by the model is 0.01. Same quadrature points are used here
as in other examples. These results are also plotted in Figure 3-12 for better visual
convenience. The results from the two different methods agree with each other very

well.
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Table 3-9: Comparison between Results from the Method of Laplace

Transform and the Method of Differential Approximation

t ul u2 ul
ODE Laplace ODE Laplace ODE Laplace
0.0201 0.0002 0.0007 0.0016
0.09]  0.0038 0.0144 0.0306
0.1072 0.0056 0.0199 0.0418
0.19  0.0159 0.0563 0.1122
0.2708 0.0304 0.103 0.1954
0.29  0.0347 0.1154 0.2166
039,  0.0589 0.1841 0.3266
049  0.0872 0.2569 0.4321
0.5247 0.0983 0.2822 0.4664
0.59, 0.1186 0.3302 0.5282
0.69  0.1558 0.4013 0.6126
0.79, 0.2151 0.4686 0.685
0.89)  0.2793 0.5312 0.7458
0.8958 0.2828 0.5347 0.749
0.99 0.3461 0.5886 0.7963
1.09, 0.4131 0.6405 0.8377
1.19)  0.4784 0.6872 0.8713
129 0.5407 0.7287 0.8984
1.39 0.599 0.7655 0.9201
1.4387 0.626 0.7818 0.9294
1490  0.6526 0.7978 0.9374
1.59)  0.7012 0.8262 0.9511
1.69  0.7446 0.8509 0.9619
179,  0.7831 0.8723 0.9703
1.89 . 0.8168 0.8909 0.977
1.99  0.8461 0.9069 0.9822
2.09 08713 0.9207 0.9862
2.19, - 0.8929 0.9326 0.9894
2.2861 0.9103 0.9424 0.9914
229 09112 0.9428 0.9918
239 0.9267 0.9515 0.9937
249  0.9397 0.9589 0.9952
259 0.9505 0.9652 0.9963
2.69 09596 0.9706 0.9972
2790 0.9671 0.9752 0.9978
2.89  0.9732 0.9791 0.9983
299 0.9783 0.9823 0.9987
3.09]  0.9825 0.9851 0.999
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Table 3-9: Comparison between Results from the Method of Laplace

Transform and the Method of Differential Approximation (Continued)

319 0.9859 0.9875 0.9993
320  0.9886 0.9895 0.9994
339 0.9909 0.9912 0.9996
349  0.9927 0.9926 0.9997
3500 0.9942 0.9938 0.9998
3690  0.9953 0.9948 0.9998
379 0.9963 0.9956 0.9999
3.89 0.997 0.9963 0.9999

3.9193 0.9973 0.9961 0.9998
399 0.9977 0.9969 0.9999
4.09  0.9981 0.9974 0.9999
4190  0.9985 0.9978 1
429 0.9988 0.9982 1
439  0.9991 0.9985 1
4.49  0.9993 0.9987 1
459  0.9994 0.999 1
4.69  0.9996 0.9991 1
479 0.9996 0.9993 i
489 09997 0.9994 1
499  0.9998 0.9995 1

3.7 Summary

86

This research solves a stochastic network problem via applied mathematical

techniques. We have shown that stochastic on-time arrival problems can be

formulated using Bellman’s Principle of Optimality and solved via Picard’s method

of successive approximation.

Relying on the convolution theorem of Laplace

transforms reduces the computational cost associated with evaluating convolution

integrals. Linear algebraic equations are solved in a least square sense.

multiplicative property of Laplace transforms makes it possible to change the time
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Figure 3-12: The Maximum Probability of Arriving on Time using the Method

of Differential Approximation

scale of the problems to be solved and so to evaluate the unknown functions at more
points in an efficient manner. Numerical examples and validation tests indicate that
this numerical approach of solving the arriving-on-time problems is efficient and
reliable.

Several methodological questions remain. First, the integer values s at which
the Laplace transforms are evaluated were selected arbitrarily. It is possible that the
quality of the results may be improved by choosing these values more systematically.
Note that the value of s should not be too large. Refer to the definition of Laplace
transform in Equation (3.7). If s becomes large, ¢* approaches zero when ¢ is not

close to 0. In this case, no matter what the value of u(?) is, the product of e’ and u(1)
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will be close to 0. Therefore only u(z) for ¢ close to 0 contributes to the Laplace
transform Ufs).

We know from computational experience that increasing the number of
quadrature points does not necessarily improve the quality of the results. However,
this relationship has not been studied closely and there may be circumstances in
which increasing the number of quadrature points sufficiently improves the quality
of results to justify the additional computational expense involved.

Note that other computational and analytical methods for dealing with
convolution integrals are available. The method of Laplace transform demonstrates
the feasibility of this approach and its performance with efficiency. This method is
validated via comparison against the method of differential approximation. Based on
our numerical experiments, evaluating a single convolution integral through
differential approximation can be very accurate and reliable.  However,
implementation of this method to the arriving-on-time problem may cause huge
computational cost because of the fine time step it requires. Evaluation of
convolution integrals is in the most inner part of the iterations relative to the entire
procedure of solving the arriving on time problem. Increasing number of iterations
at inner level will increase the total number of operations dramatically. In our future
research, we shall seek for other approaches that may offer advantages.

We evaluate the unknown functions u;(%), uy(t), ..., un(t) describing the
maximum probabilities of arriving on time and the optimal choice of the next node to

visit for discrete points in time. The uniqueness and continuity of these functions
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have not been proved mathematically here. Computing can be used as an
experimental tool to explore the hidden nature of general solutions. Our extensive
numerical experiments suggest that these functions should be unique and continuous,
though perhaps not everywhere differentiable. The value of these functions for other
times ¢, therefore, can likely be approximated via interpolation. However, it is not
clear how to identify successor nodes for intermediate values of ¢ for which u(?) is
not calculated.

Finally, the stochastic on-time arrival problem has been formulated based on
the assumption that the travel times on any two links are independent. Further
research is needed to accommodate the possibility of correlated travel times on
adjacent links. Such correlation might be a prominent aspect of large scale
applications, such as routing commercial airline to avoid meteorological threats. In
contrast, correlation between link travel times may be less important in the context of
urban road networks, because a large share of urban congestion is presumed to be

nonrecurrent and the result of random accidents that reduce road capacity.
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CHAPTER 4 OPTIMAL ROUTING THROUGH NETWORKS IN THE CASE
OF CORRELATED LINK TRAVEL TIMES

Various problems of finding optimal paths have been studied extensively in
the fields of computer science, operations research, and transportation engineering.
Link costs are assumed to be independent in almost all of the path-finding literature.
In transportation networks, knowledge of time costs on the link leading to the current
decision point (node) may include information that should inform subsequent route
decisions. How should these correlations between conditions in adjacent areas be
accounted for by travelers? How should knowledge of travel costs acquired during
the trip be used to inform subsequent choices of intermediate nodes?

This Chapter addresses the shortest path problem in congestible networks
with correlated link travel costs. The motivation for this research is that natural
disasters and accidents can be expected to affect a group of links or nodes in a
specific region of the network. Node- or link-based service levels can be defined. A
node is congested if the in-flow to that node exceeds the node’s out-flow capacity.
This definition is frequently applied in computer networks, airport operations, etc. A
link is considered congested if the link travel time exceeds an acceptable value.
Link-based congestion is frequently considered in roadway networks.

If the service level for one link or node is affected by some random incident,
it is possible that adjacent links and nodes are also affected. If so, then experience
on the link leading to the current decision node should be taken into account when

making the optimal decision about the next intermediate node to be visited. The
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objective is to minimize expected travel time to the destination. The problem will be
formulated separately for each of the two different definitions of congestion. These
two formulations are subsequently shown to be equivalent.

In this problem, each link is assumed to be in one of two possible states,
congested or un-congested. Conditional probability density functions for link travel
times are assumed known for each state. The traveler takes into account his
experience on the link leading to the current decision point (node) when determining
which node to visit next, i.e., which link to traverse next. Only the next immediate
link in the path is identified, and the knowledge gained during the course of the trip
is used to optimally support the decisions defining the remaining journey.

We have two principal goals in this chapter. The first is to formulate such
problems. The second is to show that our formulation of the problem has a unique

solution, and that a computable means for finding this solution is available.

4.1 Statement of the Problem

Consider a network with N nodes and various connections between them. In
a transportation network, performance may be affected by non-recurrent events, such
as (in the extreme case) natural disasters or (more commonly) traffic incidents.
These random reductions in supply make network performance uncertain. Given an
origin-destination pair, our objective is to define the sequence of nodes to be visited

such that the lowest expected travel time is achieved.
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Given the node-based definition of congestion, each node is assumed to have
two possible states, congested or uncongested. In the case of a natural disaster, these
states might be more generally labeled “affected” and “unaffected.” The correlations
between the states of adjacent nodes are taken into account by introducing two
probabilities, ¢y and B;. The probability that, if node 7 is uncongested, then node j is
uncongested is ¢ The probability that if, node i is congested, then node j is
congested is B;. For the sake of subsequent notational convenience, define A as the
probability that, if node i is congested, then node j is uncongested, i.e., 1 - 3;. These
probabilities are assumed to be a priori knowledge. They are similar to but less
restrictive than the a priori correlations assumed by Burton (1993).

Similarly, given the definition of link-based congestion, each link is assumed
to have two possible states, congested or uncongested. A link is considered un-
congested if the time required to traverse this link i is within an a priori bound #y,
and considered congested otherwise. The distributions of link travel times associated
with each state are described by known probability density functions. Introduce the
function p;(?) as the probability density function of link travel time on link ij given
that the link traversed to arrive at node i was uncongested. Introduce the function
¢;i(t) as the probability density function of link travel time on ij given that the link
traversed to arrive at node i was congested. The average link travel times between
node i and node j is #; under uncongested conditions, and 7; under congested

conditions.
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If a traveler experiences congestion at the current node or on the current link,
he assumes similar conditions exist on adjacent nodes or links, and applies the
corresponding probability or probability density function to structure his decision

about which node to visit next.

4.2 Formulation of the Problem

According to Bellman’s Principle of Optimality, an optimal sequence of
decisions has the property that whatever the initial state and decision are, the
remaining decisions must be optimal with respect to the state resulting from the
initial decision (Bellman and Kalaba, 1965).

Consider the sub-network in Figure 4-1. Suppose the traveler has traversed

some sequence of links and is now at node i. He wants to arrive at the destination

Figure 4-1: A General Sub-Network
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node N as soon as possible. There are competing options for the next possible node
to visit from node i, including nodes j and k. If he visits node j next, he then needs to
make an optimal choice of the next node to visit from node j. If he visits node k the
next, he then needs to make an optimal choice of the next node to visit from node &.
In any case, his objective is to select the next node to visit such that the expected

time until arriving at the destination node N is minimized.

4.2.1 Node-Based Congestion
In the case of node-based congestion, Bellman’s principle of optimality may

be applied to formulate this problem as

w, =min{t; +ou; +(—ay)v,},i=12 ., N-1, (4.1)
J#i
v, =minfe, + (U= B)u, + Byv, i =12 ., N-1, (4.2)
i=12 ., NI
and
Uy, VN = 0. (43)

In these relations,
u; = the lowest expected travel time from uncongested node i to the
destination node N, and
v;= the lowest expected travel time from congested node i to the destination
node N.
Current conditions at each decision node must be considered, and an optimal

choice of the next node to visit must be made. If the current node i is uncongested,
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then the function u; is evaluated to select the optimal next node j. Otherwise, the
function v; is evaluated. The condition of node j is ascertained once the traveler
arrives there. The problem to be solved at node j then can be formulated in the same
fashion as for node i. The traveler’s decision at node j is conditioned on the new
knowledge the traveler acquires about the state of node j once the traveler arrives

there. Thus it is apparent that no optimal path can be entirely pre-determined.

4.2.2 Link-Based Congestion Case
In the case of link-based congestion, Bellman’s principle of optimality may

be applied to formulate this problem as

u, =njy£1{£" (v +u,)p,(2)dr + I;(r+vj)pii(r)dr}, i=1 2 N-I, (4.4)
= mip{ j; (z +u;)g; (r)dr + f (T+vj)q,.j(r)dr} ,i=12 N-I, (4.5)
J# loij
and
Un, VN = 0. (46)

In these relations,

toyj = a predefined acceptable link travel time. Link 7 is considered uncoggested
if the travel time over link ij does not exceed #y;, and congested otherwise;

u = the least expected time needed to travel from i to NV if the link traversed to
arrive at node i is uncongested;

V= the least expected time to travel from 7 to NV if the link traversed to arrive at

node i congested;
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pi(r)dr= the probability traveling from i to j requires time between 7 and 7+dr
given that the link traversed to arrive at node i was uncongested; and
gs(tr)dr= the probability traveling from i to j requires time between r and r+dr

given that the link traversed to arrive at node i was congested.

Partitioning and reorganizing the terms in the equations (4) and (5), we have

U; =rrj;31{frpﬁ(f)dz'+ _E” p;(D)d7-u; + '[;pij(r)drvj}, i=1,2 N-1,(4.7)

and

v =min{frqij(z')dr+ f’ q;(v)d7 u; + f qij(r)dr-vj}, i=1 2 N-1. (4.8)
J#i 0y

Note that the unknowns u; and v; are independent of 7, the variable of

integration. Therefore, u; and v; can be taken out of the integral. Introduce the

notation
%=F%@h, (4.9)
and
2y = [ g0z (4.10)

Equation (4.10) gives the probability that the traveler traverses link ij within
time #p; when the link is conjested. This permits Equations (4.7) and (4.8) to be

expressed as

u; =min{t,.j +au; +(1—ozl.j)vj} ,i=12 .., N-1, 4.11)

J#

and
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v, =n}3;p{r,.j + A+ A=A, i =1, 2 N-L (4.12)
where

ty = frp,-,-(f)dr, (4.13)
Ty = ffqi,-(f)dr, (4.14)
and

uy, v =0. (4.15)

It is apparent from Equations (4.13) and (4.14) that #; and 7; are the expected
travel times on link ij corresponding to the uncongested and congested cases,
respectively.

If the link traversed to arrive at current node i is uncongested, then the
function u; must be evaluated to select the optimal successor node j. Otherwise, if
the link is congested, the function v; will be evaluated. The condition of link 7 is
ascertained once the traveler arrives at the successor node j. The problem to be
solved at node j then can be formulated in the same fashion as for node i. The
traveler’s decision at node j is conditioned on the new knowledge the traveler
acquires about the state of link i7. Thus, it is apparent that no optimal path can be
entirely pre-determined.

The simplified formulations given by Equations (4.11) and (4.12) for the case
of link-based congestion have the same form as node-based Equations (4.1) and
(4.2). Our analysis and discussion in the following sections are all based, without

loss of generality, on Equations (4.11) and (4.12).
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4.3 Numerical Solution — Picard’s Method of Successive Approximation

From a mathematical point of view, Equations (4.11) and (4.12) invite the
following questions. First, does the set of equations have a solution? Second, if a
solution exists, is it unique? And third, how can the equations be solved to evaluate
the unknown variables u;, uy, ..., uy and v;, vz, ..., va?

Let us first consider the question of existence. Picard’s method of successive
approximation is one possible approach to solve the system of nonlinear Equations
(4.11) and (4.12). Picard’s method begins with initial approximations to the
solution, and then refines these approximations by successive iterations. Let k be an

iteration counter. Setk =0. We begin with the simple initial approximations

w =t,,i=1,2, .. N-I, (4.16)

uy =0, 4.17)

W=t,, =12 ..N-I, (4.18)
and

vy =0. (4.19)

These approximations are based on the expected travel times over direct links
between nodes i and N. This first approximation may be quite poor, because most of
the travel times identified in Equations (4.16) and (4.18) are necessarily infinite:

Most nodes 7 have no direct link to node N.
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To obtain u; and v;, the solutions #; and v; are needed. At the conclusion of

the k™ iteration, the best estimates of u; and v; available are u and v}. The iterative

relationships
uf™ = min{z, +ay; +(1 —ayi}, i =12, ., N-1, (4.20)
ult =0, 4.21)
V" = min {o;+ Al + Q=25 |, i=1, 2, ., NEL, (4.22)
and
Vi =0 (4.23)

are used to improve the solution from the K" to the (k+1)" approximation.

4.3.1 Proof that u’and v/ Are Bounded Below

When k = 0,

u =1, 20, (4.24)
and

W=7, 20. (4.25)

If uf >0 and v} 20,
then

uf"! = min{t; +ayu + (1-a;)vi} 20, (4.26)
and

V! = min {7+ Ayt + (1= Ay 5} 2 0. (4.27)
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Inequalities (4.26) and (4.27) hold because 0 <, <1, 0<4; <1, ¢,20,and 7, 20.

4.3.2 Proof that u/ and v/ Are Monotone Decreasing in k

Whenk =0, u =t,,and v, =7, .

Whenk =1,
0 0, 0 0,
ty+au +(—a)v; th+ou +(1—ay)vp;
0 0 0 0
ot rau, +(L—a ), ; .t rau, +(1—a,, v,
ull =min .12 22 ( 12) 22 =min .12 i2%2 ( 12) 2 StiN Zu?
0 0
ty Fapuy +(—ay)vy Ly +0

(4.28)

Similarly we have v; <v;.
Next, assume that z* <u*? and v* <v*'. Then we have
2 i i i i

u"! =min {t,.j +out +(1-ay )vf} <min {tl.j +aul ™ +(1-ay )vf"l} =uf.(4.29)

In the same way, we have that v¥*' <v¥. This is an inductive proof that uand v}

are monotone decreasing in k& in addition to being bounded below by 0. Thus we

have

(4.30)

and

2y 20, @31)
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4.3.3 Proof that ©, and v, Are Determined in a Finite Number of Iterations

Because of Inequalities (4.30) and (4.31), and based on the principle of
bounded monotone convergence, the sequence of iterations will necessarily converge

to a single limit. Thus, we have

Il{im ulk =u,, (4.32)
and
%imv;c =v,. (4.33)

In the worst case, we might need to do an infinite number of iterations to

converge to the true solution. However, in this problem we can see that the values of
ufand v} the physical meanings. In fact, ufis the minimum expected time needed
to go from node i to node N over a path with at most & intermediate nodes, given that
the link traversed to reach node i is uncongested. Similarly, v¥ is the minimum

expected time needed to go from node i to node N over a path with at most k
intermediate nodes, given that the link traversed to reach node i is congested. There
are N nodes in the network, two of which consist of an origin and the destination.
Therefore, an optimal path can have no more than N-2 intermediate nodes. This
means the actual number of iterations cannot exceed N-2.

Thus we have shown that a solution to Equations (4.11) and (4.12) can be
obtained through a finite number of iterations. Therefore, this system of equations

does have a solution. Furthermore, we have also shown how the equations can be
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solved iteratively. Thus, the first (the existence of a solution) and third (a procedure
for obtaining a solution) of our questions have been answered.

We now proceed to the question of the uniqueness of the solution to the
system of Equations (4.11) and (4.12). Assume there are two alternative solutions.
Call the first »; and v; and the second U; and ¥;, where i = [, 2, ..., N. If we show
that it is necessarily true that u; = U; and v; = V;, then the solution is unique.
Consider the first solution. Assume the correct successor is r if the link traversed to
reach node i is uncongested, and s if the link is congested. Thus

u =t, +ou +(1-a,),,i=12, .., N-I, (4.34)
and

v, =7, +Au +(1-A,)v,. (4.35)
Consider the second solution. Assume the correct successor is / if the link traversed
to reach node i is uncongested, and m if the link is congested. Thus

U =t,+o,U, +(1~-a,)V,, (4.36)
and

V=1, +,U, +(1~4,)V,. (4.37)
Because successor node 7 is optimal for u;,

u, =t +ou, +(1-a, ), <ty +au +(1-a,)v,. (4.38)
Subtracting Equation (36) from Expression (38), and given that oy is a probability,

u ~U, <o, (u,=U)+A—a,)v,-V) <max(u, ~U,,v, = V)), 4.39)

where [ #i. Recall that that node / is associated with the solution U,.
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Consider the two solutions at node /. Given the first solution, u; and v, the
correct successor node is node p if the link traversed to reach node / is uncongested,
and q if the link is congested. Thus, we have

u =t,+au,+1-a,)v,, (4.40)
and

v =1, +A4u, +(1-24,)v,. (4.41)
Given the second solution, U; and V), the correct successor node to visit is node x if
the link traversed to reach node / is uncongested, and node y if the link is congested.
Thus, we have

U=t,+a,U +(1-a,)V, (4.42)
and

Vi=g, + 4,U, +(1-A,)V,. (4.43)
As in the manner of Expressions (4.38) and (4.39), this gives

u,~U, <max(u_-U_,v, -V.), (4.44)
where x#i{ and x #/, since nodes i and / already have been visited. Continuing in

this manner, it would never be efficient to revisit a given node. Consequently, we

must eventually reach the node N, where

u,~-U, =0, (4.45)
and

vy —Vy =0 (4.46)

Taken together, Inequality (4.44) and Equations (4.45) and (4.46) give the result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

u,-U,<0,i=1,2, .., N. (4.47)

To complete the proof, we also want to show that

U -u,<0,i=12 ..,N. (4.48)
Refer to Equations (4.34) and (4.36). Since the optimal successor node for U; is
node /,

U <t +a,U +(1-a,)V,. (4.49)
Given that ¢y is a probability, subtracting Equation (4.34) from Expression (4.49)
gives

U-u<a, (U, -u)+1-a)V,-v,)<max(U, ~u,,V,-v,), (4.50)
where » #i. Recall that that node 7 is associated with the solution u;.
Applying the previous procedure, it follows that Expression (4.48) holds. Taken
together, Expressions (4.47) and (4.48) require that

u,-U,=0,i=12 ..,N. (4.51)

By the same argument,

v,—~V,=0,i=12 .., N. (4.52)

The existence of two different solutions to the system of Equations (4.11) and

(4.12) is a contradiction. Consequently, there is one and only one solution to this

system of equations.
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4.4 Numerical Examples: Applications to Small Networks

4.4.1 Test1: Application to a Four-Node Network

A four-node network appears in Figure 4-2. The results for this very simple
example can be checked manually. Set the probability that link i/ is uncongested if
the link traversed to arrive at node i is uncongested to be

o =2/3,i,j=1,2,..,N; i #. (4.53)
Set the probability that link #j is uncongested if the link traversed to arrive at node i is
congested to be

No=1730j=1,2 ..,N:i#. (4.54)

Figure 4-2: A Four-Node Network

Arc weights in Figure 4-2 consist of elements of the matrix [#;], the set of

expected travel times for each link under uncongested conditions. The weights are
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symmetric in this example, but need not be. The matrix of expected link trave] times
under congested conditions is defined as follows:

[71 = 2[2]. (4.55)

Set the destination node to node 4. A simple MATLAB program for
obtaining these results is given in Appendix I. This program can easily be
generalized to larger examples. The lowest expected travel times to node 4 and the
optimal choice of successor node for origin nodes 1 — 3 are given in Table 4-1. We
assume that a link is traversed to reach any origin node, and thus the conditional
probabilities oy and N; are always defined. If no link was traversed to arrive at the
origin, then these conditional probabilities might practically be replaced with
corresponding unconditional values.

The entries in Table 4-1 demonstrate that the optimal strategies can change
based on link level of service information. In the case of trips originating from node
3, the optimal successor node changes from node 4 to node 2 if the level of service
on the link traversed to reach node 3 is congested rather than congested.
Computational results are unchanged if the initial node labels are redefined, which

serves as a check on the method and the MATLAB program.

4.4.2 Test2: Application to a Nine-Node Network
A nine-node network appears in Figure 4-3. The probabilities oj; and N; are
as before, as is the relationship between the matrices [#;]. and [7;]. In this case, the

travel time matrix is not symmetric.
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Table 4-1: Minimum Expected Travel Time from Each Origin Node to

Destination Node 4, and Optimal Choice of Successor Nodes

Minimum Expected Optimal
Origin Travel Time to Successor

Destination Node 4 Node
Node 1 | previous link is uncongested 7.6667 2
Node 1 | previous link is congested 10.3333 2
Node 2 | previous link is uncongested 5.0000 4
Node 2 | previous link is congested 10.0000 4
Node 3 | previous link is uncongested 7.0000 4
Node 3 | previous link is congested 12.3333 2

Figure 4-3: A Nine-node Network

Set the destination node to be node 9. The lowest expected travel times to
node 9 and the optimal choice of successor node for origin nodes 1 — 8 are given in

Table 4-2. As observed in the first example, the optimal strategy for proceeding
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from each node changes with the level of service experienced on the link traversed to
reach the node. See the results for nodes 1, 7, and 8. The network has at most seven

intermediate nodes in a path.

Table 4-2: Minimum Expected Travel Time from Each Origin Node to

Destination Node 9, and Optimal Choice of Successor Nodes

Minimum Expected Optimal
Origin Travel Time to Successor

Destination Node 9 Node
Node 1 | previous link is uncongested 9.3333 5
Node 1 | previous link is congested 13.5185 2
Node 2 | previous link is uncongested 7.4444 3
Node 2 | previous link is congested 10.5556 3
Node 3 | previous link is uncongested 4.3333 6
Node 3 | previous link is congested 7.6667 6
Node 4 | previous link is uncongested 11.7284 1
Node 4 | previous link is congested 14.1235 1
Node 5 | previous link is uncongested 4.0000 9
Node 5 | previous link is congested 8.0000 9
Node 6 | previous link is uncongested 1.0000 9
Node 6 | previous link is congested 2.0000 9
Node 7 | previous link is uncongested 9.3333 5
Node 7 | previous link is congested 14.5450 8
Node 8 | previous link is uncongested 8.0000 9
Node 8 | previous link is congested 14.8078 7

The results remain unchanged after the fifth iteration of the successive
approximation scheme. The intermediate results of the successive approximation are
available in Appendix J. Thus, numerical experience is consistent with the proof of
the convergence. As before, computational results are unchanged if the initial node

labels are redefined.
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Figure 4-4: A 49-node Network

4.4.3 Test3: Application to a 49-Node Network
The previous examples offer the advantage of results that can be

replicated by hand, or are otherwise transparent enough to allow convenient
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verification. A 49-node network appears in Figure 4-4. Average, travel times for
uncongested links are given in Table 4-3. As in the previous examples, average
congested travel times are taken to be twice the corresponding values for
uncongested flows. The minimum expected travel times to node 49 and the optimal
choice of successor notes for origin nodes 1 — 48 are given in Table 4-4. Links to
optimal successor nodes are provided in Figure 4-5. In some cases, congestion on
the link traversed to reach the current node has no impact on the definition of the
optimal successor node, though it always has an impact on the estimate of the
minimum expected time to reach the destination node. For those cases in which
traversing a congested link to arrive at the current node conditions a different choice
for the successor node than would traversing an uncongested link, the link to the
alternative successor node is shown in gray rather than black. The results
summarized in Figure 4-5 are counter-intuitive from a deterministic perspective.
Indeed, they are suboptimal from a deterministic perspective. However, this is not a
deterministic problem. Any node in the network may be defined as an origin. As the
minimum number of links that must be traversed to reach the destination node from
an origin increases, the expected travel time to the destination generally (but not

inevitably) increases. Consider the cut set defined in Figure 4-6. The minimum
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five nodes is less than the minimum number of links that must be traversed on trips
originating inside the cut set. This implies in neither the deterministic nor the
stochastic case that the minimum expected travel times from nodes 3, 9, 10, 15, and
16 must all be less than the minimum expected travel time between any node in the
cut set and node 49. Compare nodes 1 and 3, for example. However, optimality
requires that the expected minimum travel time from at least one of these five nodes
must be less than the corresponding minimum expected travel time for each node in |
the cut set. The values presented in Table 4-4 conform to these requirements for this

cut and for all other cuts on the network.
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Table 4-3: Average Uncongested Travel Times for Links in the 49-Node

Network
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Table 4-3: Average Uncongested Travel Times for Links in the 49-Node

Network (Continued)
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Table 4-3: Average Uncongested Travel Times for Links in the 49-Node

Network (Continued)
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Table 4-4: Minimum Expected Travel Time from Each Origin Node to

Destination Node 49, and Optimal Choice of Successor Nodes

Minimal Expected Optimal

Origin Travel Time to Successor
Destination Node 49 Node
Node 1 | previous link is uncongested 431 8
Node 1 | previous link is congested 48.2 8
Node 2 | previous link is uncongested 38.4 10
Node 2 | previous link is congested 40.9 10
Node 3 | previous link is uncongested 46.4 10
Node 3 | previous link is congested 56.7 4
Node 4 | previous link is uncongested 42 .4 10
Node 4 | previous link is congested 48.9 10
Node 5 | previous link is uncongested 39.8 12
Node 5 | previous link is congested 455 11
Node 6 | previous link is uncongested 37.8 12
Node 6 | previous link is congested 42.5 12
Node 7 | previous link is uncongested 38.3 14
Node 7 | previous link is congested 42.7 14
Node 8 | previous link is uncongested 38.0 16
Node 8 | previous link is congested 44.3 16
Node 9 | previous link is uncongested 40.7 17
Node 9 | previous link is congested 47.0 15
Node 10 | previous link is uncongested 36.0 16
Node 10 | previous link is congested 40.3 16
Node 11 | previous link is uncongested 36.0 19
Node 11 | previous link is congested 443 19
Node 12 | previous link is uncongested 33.0 19
Node 12 | previous link is congested 38.3 19
Node 13 | previous link is uncongested 32.8 21
Node 13 | previous link is congested 42.1 20
Node 14 | previous link is uncongested 33.8 21
Node 14 | previous link is congested 442 21
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Table 4-4: Minimum Expected Travel Time from Each Origin Node to

Destination Node 49, and Optimal Choice of Successor Nodes (Continued)

Node 15 | previous link is uncongested 41.8 22
Node 15 | previous link is congested 46.6 22
Node 16 | previous link is uncongested 31.7 24
Node 16 | previous link is congested 35.6 24
Node 17 | previous link is uncongested 33.7 25
Node 17 | previous link is congested 39.6 25
Node 18 | previous link is uncongested 34.7 25
Node 18 | previous link is congested 41.6 25
Node 19 | previous link is uncongested 278 27
Node 19 | previous link is congested 31.6 27
Node 20 | previous link is uncongested 30.4 26
Node 20 | previous link is congested 32.9 26
Node 21 | previous link is uncongested 233 28
Node 21 | previous link is congested 27.7 28
Node 22 | previous link is uncongested 37.0 16
Node 22 | previous link is congested 423 16
Node 23 | previous link is uncongested 36.7 24
Node 23 | previous link is congested 423 16
Node 24 | previous link is uncongested 27.8 32
Node 24 | previous link is congested 30.5 32
Node 25 | previous link is uncongested 27.8 32
Node 25 | previous link is congested 30.5 32
Node 26 | previous link is uncongested 28.0 34
Node 26 | previous link is congested 32.3 19
Node 27 | previous link is uncongested 24.0 34
Node 27 | previous link is congested 2913 34
Node 28 | previous link is uncongested 19.0 35
Node 28 | previous link is congested 23.0 35
Node 29 | previous link is uncongested 40.6 37
Node 29 | previous link is congested 46.4 37
Node 30 | previous link is uncongested 32.8 38
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Table 4-4: Minimum Expected Travel Time from Each Origin Node to

Destination Node 49, and Optimal Choice of Successor Nodes (Continued)

Node 30 | previous link is congested 36.2 38
Node 31 | previous link is uncongested 29.8 32
Node 31 | previous link is congested 34.5 32
Node 32 | previous link is uncongested 25.1 33
Node 32 | previous link is congested 30.2 33
Node 33 | previous link is uncongested 20.0 41
Node 33 | previous link is congested 293 34
Node 34 | previous link is uncongested 18.7 42
Node 34 | previous link is congested 25.7 28
Node 35 | previous link is uncongested 15.0 41
Node 35 | previous link is congested 21.0 41
Node 36 | previous link is uncongested 39.9 30
Node 36 | previous link is congested 471 30
Node 37 | previous link is uncongested 34.8 38
Node 37 | previous link is congested 40.2 38
Node 38 | previous link is uncongested 293 46
Node 38 | previous link is congested 33.7 46
Node 39 | previous link is uncongested 26.0 40
Node 39 | previous link is congested 37.0 40
Node 40 | previous link is uncongested 15.0 41
Node 40 | previous link is congested 21.0 41
Node 41 | previous link is uncongested 9.0 49
Node 41 | previous link is congested 18.0 49
Node 42 | previous link is uncongested 8.0 49
Node 42 | previous link is congested 16.0 49
Node 43 | previous link is uncongested 45.6 37
Node 43 | previous link is congested 56.4 37
Node 44 | previous link is uncongested 40.1 45
Node 44 | previous link is congested 499 45
Node 45 | previous link is uncongested 30.3 46
Node 45 | previous link is congested 35.7 46
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Table 4-4: Minimum Expected Travel Time from Each Origin Node to

Destination Node 49, and Optimal Choice of Successor Nodes (Continued)

Node 46 | previous link is uncongested
Node 46 | previous link is congested
Node 47 | previous link is uncongested
Node 47 | previous link is congested
Node 48 | previous link is uncongested
Node 48 | previous link is congested

25.0
35.0
18.0
27.0

9.0
18.0

40
40
41
41
49
49
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Figure 4-5: Optimal Successor Nodes in the 49-node Network
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4.5 Summary

Network problems that include correlated link travel times have not been well
studied. In this research, the case of a stochastic network routing problem with
correlated link travel time is formulated using Bellman’s principle of optimality, and
solved via Picard’s method of successive approximation. The formulation of this
problem defines a new set of equations. The existence, uniqueness, and convergence
of the approximations to the solution of these new equations are proved.

The major contribution of this research is defining and formulating the
problem, and mathematically proving some of the properties of the approximation
scheme. Our limited numerical experience demonstrates that the procedure can be
implemented simply. Our dynamic programming approach to this problem ensures
that the computation burden associated with solving this problem is low. However,
more numerical experiments with larger networks and a less aggregated
representation of level of service states are needed, as are field observations of the
probabilities « and A.

Only two possible level-of-service states are considered in these examples,
but increasing the number of states changes neither the nature of the formulation nor
the procedure for numerical solution. While the techniques sketched in this paper
can be applied to other stochastic network problems, they lead to many questions for

the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

CHAPTER 5 CONCLUSIONS AND DISCUSSION

Routing problems have broad applications in transportation engineering,
computer science, operations research, and neurophysiology. They are of
importance for passenger and goods movement, message delivery, and more general
system control. Our extensive literature review has brought two points to our
attention. First, most studies in routing problems focus on minimum expected cost.
Problems of maximum reliability or likelihood have not been well studied. Second,
arc weights are assumed to be independent random variables in all most all the
studies treating stochastic network problems. The two stochastic routing problems
included in this document are designed to address these two missing points in the
literature. We will summarize and discuss these two routing problems separately in
this chapter.

The stochastic on time arrival problem (SOTA) is to determine the optimal
strategy from each node i leads to the maximum probability of arriving at the
destination node N within time t or earlier, in a network where the link travel times
are given by independent random variables with probability density functions that
are known a priori.

The problem is formulated using Bellman’s principle of optimality. The
formulation results in a set of nonlinear convolution integral equations. The solution
to these equations is approximated through Picard’s method of successive
approximation. To our knowledge, this is the first time such problems are treated

with provision of feasible numerical implementations in the transportation literature.
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This class of problems considering probability or likelihood usually requires the
probability density functions to be modeled explicitly. Our experience has shown
that even if a formulation exists for such problem, obtaining numerical solutions can
be difficult. Several applied mathematical techniques are applied to improve the
computational efficiency of our numerical procedure. For example, relying on the
convolution theorem of Laplace transforms reduces the computational cost
associated with evaluating convolution integrals. Linear algebraic equations are
solved in a least square sense by applying generalized inverses. The multiplicative
property of Laplace transforms makes it possible to change the time scale of the
problems to be solved and so to evaluate the unknown functions at more points.
Numerical examples and validation tests indicate that this numerical
approach of solving the SOTA problems is efficient and reliable. The recommended
routing strategies from the SOTA procedure, where the goal is to maximize the
probability of arriving on time, is compared with that from the conventional shortest
path procedure, where the goal is to arrive at the destination as soon as possible. In
general, the strategies recommended by these two procedures tend to agree with one
another if the variances of the link travel times are small. In some cases, the optimal
successor nodes recommended by the SOTA procedure when the remaining time for
on time arrival is relatively bigger differ from those recommended by the shortest
path procedure. In most of the cases in our numerical examples, the optimal
successor nodes from a given starting node change no more than once as the

remaining time for on time arrival diminishes. There are a few exceptions observed
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in the first 100-node network. The detailed discussion of the exceptional cases is
given in Section 3.4. As observed in the numerical examples, the optimal strategies
may change when the remaining time is relatively larger, and the SOTA strategy
tends to agree with the shortest path strategy if the variances are small. However,
how small variances are small enough for the two strategies to agree with each other
completely? How large a remaining time is large relative to the minimum cost of the
shortest path? These quantitative measures remain unclear.

Some remaining methodological questions of evaluating convolution
integrals are discussed in detail in Chapter 3. They are briefly summarized as below.
First, the integer values s at which the Laplace transforms are evaluated were
selected arbitrarily. How to best select these s values to improve the quality of the
numerical scheme of evaluating convolution integrals is unclear. Second, the
relationship between the number of quadrature points and the quality of results of
approximating convolution integrals via a finite sum needs to be studied further.
Third, the instability problem seems inevitable during the procedure of numerical
inversion of Laplace transform when the functions involved are not smooth. Based
on our experience, a simple uniform distribution over a period of time may cause
instability of inversion of Laplace transform due to the sudden change at the two
extreme ends. This instability problem did not occur during the scope of this
research. However, it can be the most vulnerable part of the procedure of evaluating
convolution integrals via Laplace transform under some circumstances. Therefore,

validation tests are necessary before this procedure can be applied to a new situation.
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The applied techniques applied in this research, such as Picard’s method of
successive approximation and Laplace transform and its inversion, are proved to be
feasible and efficient. However, there may be other methods available. In earlier
chapter, we have shown that convolution integrals can be evaluated through the
method of Laplace transform and the method of differential approximations. Based
on our experiment, it seems that the method of Laplace transform requires less
computing resources, while the method of differential approximation evaluates the
unknown function at more flexible time points and provides more reliable solution.
Implementation of our current version of differential approximation method to the
SOTA problem seems inapplicable due to the huge computational resources it
requires. However, there are ways to improve our procedure of solving differential
equations. Besides, other methods of solving convolution integral equations may be
available. In our future research, we shall seek for other approaches that may offer
advantages.

We evaluate the unknown functions u(2), ux(t), ..., un(t) describing the
maximum probabilities of arriving on time and the optimal choice of the next node to
visit for discrete points in time. The uniqueness and continuity of these functions
have not been proved mathematically here. Computing can be used as an
experimental tool to explore the hidden nature of general solutions. Our extensive
numerical experiments suggest that these functions should be unique and continuous,

though perhaps not everywhere differentiable. The value of these functions for other
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times ¢, therefore, can likely be approximated via interpolation. However, it is not
clear how to identify successor nodes for intermediate values of ¢.

Finally, the stochastic on-time arrival problem has been formulated based on
the assumption that the travel times on any two links are independent. Further
research is needed to accommodate the possibility of correlated travel times on
adjacent links.

Link costs are assumed to be independent random variables in most studies
on network problems. Network problems that include correlated link travel times
have not been well studied. The second optimal routing problem in this document
addresses the shortest path problem in congestible networks with correlated link
travel costs. The objective is to minimize expected travel time. In this problem,
each link is assumed to be in one of two possible states, congested or un-congested.
Conditional probability density functions for link travel times are assumed known for
each state. The traveler takes into account his experience on the link leading to the
current decision point (node) when determining which node to visit next, i.e., which
link to traverse next. Only the next immediate link in the path is identified, and the
knowledge gained during the course of the trip is used to optimally support the
decisions defining the remaining journey.

This problem is formulated using Bellman’s principle of optimality, and
solved via Picard’s method of successive approximation. The formulation of this
problem defines a new set of equations. The existence, uniquehess, and convergence

of the solution to these new equations are proved. The major contribution of this
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research is defining and formulating the problem, and mathematically proving the
nature of the solutions.

Our limited numerical experience demonstrates that the procedure can be
implemented simply. Our dynamic programming approach to this problem ensures
that the computation burden associated with solving this problem is low. However,
more numerical experiments with larger networks and a less aggregated
representation of level of service states are needed, as are field observations of the
probabilities o and A.

Only two possible level-of-service states are considered in these examples,
but increasing the number of states changes neither the nature of the formulation nor
the procedure for numerical solution.

Both routing problems involve multi-stage decisions. We have shown earlier
how a specific problem can be imbedded to a class of such problems and therefore
can be formulated using Bellman’s principle of optimality. The two studies in this
document, coupled with the formulations of deterministic and stochastic shortest
path problems given in Chapter 2, demonstrate the significance of Bellman’s
principle of optimality in multi-decision process.

The two routing studies in this document provide optimal strategies for
routing through stochastic networks. These strategies are dynamically determined,
in the sense that only the next immediate successor node is sought for at a certain
decision point. Therefore, the knowledge accumulated through the trip can be taken

into account for the remaining journey. The decision support provided by this study
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has a number of applications. Both centralized and vehicle-based route guidance
applications in Advanced Traveler Management Information Systems (ATMIS)
require the means to account for probabilistic link travel times, and to update results
based on telemetric field data. Emergency responses to natural disasters must often
be made under conditions of uncertainly. Vehicle routing in a transportation network
damaged by an earthquake or a hurricane requires a mechanism for coping with
random loss of network capacity. This is especially true if telemetric data systems
are normally relied on to assess the state of the network. A natural disaster sufficient
to reduce the traffic carrying capacity of the network is also likely to disrupt traffic
data collection systems. We have focused our research in the context of
transportation networks. However, this research can be extended to more general
applications in system controls. We may interpret nodes as the possible states of a
system and the links as transformations from one state to another. This research can
therefore be used to determine a strategy for transforming a system from a given
initial state to a desired terminal state in an optimal manner.

While the techniques adumbrated in this research can be applied to other

stochastic network problems, they lead to many questions for the future.
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APPENDIX A: OBTAINING MEAN AND VARIANCE OF GAMMA
DISTRIBUTED VARIABLES

Assume the variable ¢ has Gamma probability distribution function, that is

n ot n-1
p(t) = g__e__.t___
Iy (A-1)
where n and o are associated parameters. The mean of # can be obtained by
mean = ftp(t)dt ' | (A2)
Define a new variable 1 by
T=at, (A-3)

Equations (A-1) to (A-3) result in

n_—ot_ n-1
mean = ftge—t—dt
['(n)
o’ 7., 1
- ~T¢ b n__d
I'(n) fe (a) o ‘
= ! J:e"’f”dr
I'(n)
_T'(n+1)

al'(n) (A-4)
The variance can be obtained by

var = f(t —mean)’ p(t)dt . (A-5)

Substitute the distribution given by Equation (A-1) and the obtained mean
given by Equation (A-4) into Equation (A-5). We have

B I(m+D),,
var = f(t maf(n) ) p(t)dt

.2 S L(n+]) (n+1).,
= f 2 p(t)dt 2——————ar(n) fzp(r)dt+[—~——~ar(n) ] f p(t)dt

[T(n+2)(n)-T*(n+1)]

T () . (A-6)
When n is an integer,
T(n)=(m-Dl (A-7)

Equations (A-4) and (A-6) then can be simplified as
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n
mean = —
a 2
(A-8)
and
var = 2
aZ
(A-9)
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APPENDIX B: MATLAB PROGRAMS FOR THE ARRIVING-ON-TIME
PROBLEM IN THE 5-NODE NETWORK

%$pathgamma8r5n.m
clear all
diary('Output8rbn.txt')

%input number of i in the gquadrature approximation

M = 8

$input number of F(s) to be evaluated

L = 8

$roots are where the f(t) is to be evaluated

root = [1.98550718E-02 1.01666761E-01 2.37233795E-01
4.08282679E-01 5.91717321E-01 7.62766205E-01
8.98333239E-01 9.80144928E-01]

weight = [5.06142681E-02 1.11190517E-01 1.56853323E-01
1.81341892E-01 1.81341892E-01 1.56853323E-01
1.11190517E-01 5.06142681E-02]

¢input the parameters of Gamma distribution for each link
alfa = [0 1 22 0; 1022 1; 22012;22101; 0121 0]
n=[{0122090; 10211; 22021; 21202; 0112 0]

connect = [01110; 10111; 11011; 11101; 01110]
=-log (root)

%input number of nodes N in this network

N=5

%the probability of starting at node N and
$arriving at node N in time t is always 1
for t=1:M

u(N,t)=1;
end

$initial guess on probability based on direct link between nodes i

and N.

s = 1:L;

lapu{1l, :)=zeros(1,L)

lapu(z,:)=(1 ./ s) .* ((1 ./{1+s)))
lapu(3,:)=(1 ./ s) .* ((2 ./(2+8)))
lapu(4,:)={(1 ./ s) .* ((1 ./(1+s))."2)

theu=lapinvfuncl8 (s, lapu(l, :));
u{l,:) = theu';
theu=lapinvfuncl8 (s, lapu(2, :));
u(2,:)= theu';
theu=lapinvfuncl8 (s, lapu(3,:));
u(3,:)= theu';
theu=lapinvfuncl8 (s, lapu(4, :));
u{4,:)= theu';
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disp('The initial u(t) is:*)
disp (u)

$Start Successive Approximation
for i=1:(N-1);

next _node (i, :)=ones (1,M) *N;
end

for k=1:N
k
for i=1:(N-1)
i
max=u(i,:);
for j=1:N %3j could be a set of possible next nodes from i
J
if ((§j ~= i) & (connect(i,j) ~= 0))
for t=1:M
t;
ff (t)=gamma (x(t),alfa(i,]),n{i,}));
end
[sp,1p] = Lapfunc (root, ££,weight, L, M) ;
thep=lapinvfuncls8 (sp, 1p};
[su,lu_current] = Lapfunc(root,u(j,:),weight,L,M);
lu_new=lu_current.*1p;
theu=lapinvfuncls8 (su,lu_new)

for t=1:M
t;
if theu(t)s>max(t)
max (t) =theu(t) ;
next_node(i,t)=];
end
end
max
next node (i, :)
end
end
u(i, :)=max
next_node
end
end
diary off
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APPENDIX C: MATLAB OUTPUT FILE CONTAINING DETAIL
INTERMEDIATE SUCCESSIVE APPROXIMATIONS FOR THE
ARRIVING-ON-TIME PROBLEM IN THE 5-NODE NETWORK

root =
Columns 1 through 7

0.0199 0.1017 0.2372 0.4083 0.5917 0.7628
0.8983

Column 8

0.9801

weight =

Columns 1 through 7

0.0506 0.1112 0.1569 0.1813 0.1813 0.1569
0.1112
Column 8
0.0506
alfa =
0 1 2 2 0
1 0 2 2 1
2 2 0 1 2
2 2 1 0 1
0 1 2 1 0
n =
0 1 2 2 0
1 0 2 1 1
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2 2 0 2 1
2 1 2 0 2
0 1 1 2 0
connect =
0 1 1 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
0 1 1 1 0

Columns 1 through 7

3.9193 2.2861 1.4387
0.1072

Column 8

0.0201

The initial u(t) is:
Columns 1 through 7

0 0 0
0
0.9799% 0.8980 0.7632
0.1016
0.9993 0.9891 0.9444
0.1929
0.9047 0.6646 0.4223
0.0055
1.0000 1.0000 1.0000
1.0000
Column 8
0
0.0197
0.0391
0.0001
1.0000

0.8958

0.5916

0.8332

0.2255

1.0000

0.5247

0.4079

0.6493

0.0981

1.0000

0.2708

0.2370

0.4178

0.0304

1.0000
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Columns 1 through 7

0.9828
0.0055
0.9828
0.1016
0.9993
0.1929
0.9626
0.0103
1.0000
1.0000

Column 8

.0001
.0197
.0391
.0003
.0000

H O O OO

next node

N W

Columns 1 through 7

0.9828
0.0056

0.9828
0.1016

U U W

0.

0.

8351

8980

.9891

.8066

.0000

N W

0.8351

0.8980

N U0l Ww

.5483

.7632

.9444

.5822

.0000

N U UT N

0.5483

0.7632

.2672

.5916

.8332

.3498

.0000

N O UT N

0.2672

0.5916

NN

.0980

.4079

.6493

.1665

.0000

N OO W

0.0980

0.4079

.0303

.2370

.4178

.0561

.0000

0.0303

0.2370
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0.9993 0.9891 0.9444
0.1929

0.9626 0.8066 0.5822
0.0103

1.0000 1.0000 1.0000
1.0000

Column 8

.0001
.0197
.0391
.0003
.0000

- O O 0O O

next_node =

3 3 3 3 2
3 5 5 5 5
5 5 5 5 5
2 2 2 2 2
k =
3
u =
Columns 1 through 7
0.9828 0.8351 0.5483
0.0056
0.9828 0.8980 0.7632
0.1016
0.9993 0.9891 0.9444
0.1929
0.9626 0.8066 0.5822
0.0103
1.0000 1.0000 1.0000
1.0000
Column 8
0.0001
0.0197
0.0391
0.0003
1.0000

0.

0.

1.

NN

8332

3498

0000

L2672

.5916

.8332

.3498

.0000

N UL O N

0.6493

0.1665

1.0000

N U W

0.0980

0.4079%

0.6493

0.1665

1.0000

0.4178

0.0561

1.0000

0.0303

0.2370

0.4178

0.0561

1.0000
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next_node =

3 3 3 3 2 2 2 3
3 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
2 2 2 2 2 2 2 2
k:
4
u =
Columns 1 through 7
0.9828 0.8351 0.5483 0.2672 0.0980 0.0303
0.0056
0.9828 0.8980 0.7632 0.5%916 0.4079 0.2370
0.1016
0.8993 0.9891 0.9444 0.8332 0.6493 0.4178
0.1929
0.9626 0.8066 0.5822 0.3498 0.1665 0.0561
0.0103
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000
Column 8
0.0001
0.0197
0.0391
0.0003
1.0000
next_node =
3 3 3 3 2 2 2 3
3 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
2 2 2 2 2 2 2 2
k:
5
u =

Columns 1 through 7
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0.9828
0.0056
0.9828
0.1016
0.9993
0.1929
0.9626
0.0103
1.0000
1.0000

Column 8

.0001
.0197
.0391
.0003
.0000

- oo oo

next node

N Ut W Ww

N U W

.8351

. 8980

.9891

.8066

.0000

N U o1 W

N U W

.5483

.7632

.9444

.5822

.0000

NN

.2672

.5916

.8332

.3498

.0000

NN

NN

.0980

.4079

.6493

.1665

.0000

SO 6 R E ) R VS

.0303

.2370

.4178

.0561

.0000
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APPENDIX D: DETAILED COMPUTER OUTPUTS OF SOTA PROBLEM
TESTED WITH A 49-NODE NETWORK OF THE FIRST SET GAMMA
DISTRIBUTED LINK TRAVEL TIMES (INCLUDING INTERMEDIATE

SUCCESSIVE APPROXIMATIONS)

The parameters in gamma distributions of link travel times over link ij are set to be

n = 0.4log10(10+0.8i+0.7])

and

a=2logl0(12+1.2i+0.8j).

Convergence is reached after the 5™ successive approximation iteration.

The initial u{t) is:

Columns 1 through 7

0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
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0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0.9995 0.9986 1.0000 0.9834 0.9228 0.7600
0.4832
0.9995 0.9986 1.0000 0.9835 0.9229 0.7600
0.4828
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0 0 0 0 0 0
0
0 0 0 0 Q 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0.9995 0.9986 1.0001 0.9840 0.9238 0.7603
0.4808
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000
Column 8
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Columns 1 through 7

k =
1

i =

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
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0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.9707
0.1516
0.9714
0.1515
0.9718
0.1515
0
0
0
0
0
0
0.9426
0.0361
0.9751
0.1511
0.9995
0.4832

.9704

.9711

.9715

.9414

.9749

.9986

.9636

.9644

.9648

.9140

.9686

.0000

.2030

.9039

.5044

.7784

.9090

.9834

L7292

.7300

.7304

.5049

.7339

.9228

.4391

.4392

.4393

.2050

.4400

.7600
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0.9995
0.4828

0.9192
0.0066
0.59514
0.0355
0.8770
0.1505
0.99295
0.4808
1.0000
1.0000

Column 8

el ReNeReReReRe N>R R>NeNeloNoNeNeolNeoleReNelolelNolNeNol ol oo wiie Re)

0.0124
0.0124

.9986

.9146

.9503

.9768

.9986

.0000

.0000

.8484

.9240

.9707

.0001

.0000

. 9835

.6252

.7881

.9115

.9840

.0000

.9229

.3071

.5095

.7362

.9238

.0000

.7600

.0796

.2047

.4407

.7603

.0000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147



0.0123
0
0
0
0
0.0122
0.1512
0.1508
0
0
0
0
0.0121
0.1482
1.0000

next node

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
42
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49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
42

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
42

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
42

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
42

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
41
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42 42 42 42 42
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
33 33 33 33 33
48 48 48 48 48
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 43
39 39 39 39 39
40 40 40 40 40
48 48 48 48 48
49 49 49 49 49

k =

2
u =

Columns 1 through 7

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0
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41
49
49
49
33
41
49
49
49
49
39
40
41
49

41
49
49
49
33
41
49
49
49
49
39
40
41
49

41
49
49
49
49
41
49
49
49
49
49
49
41
49
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0.9365
0.0365
0.9381
0.0365
0.9394
0.0365
0.923929
0.0364

0.9145
0.0069
0.9467
0.0363
0.9707
0.1516
0.9714
0.1515
0.9718
0.1515

0.8957
0.0011
0.9275
0.0068
0.9530
0.0361
0.9751
0.1511
0.9995

.9351

.9368

.9381

.9385

.9098

.9456

.9704

.9711

.9715

.8826

.9233

.9520

.9749

.9986

.9069
.9087
.9102

.8107

.8429
.9186
.9636
.9644

.9648

.5582
.8576
.9258
.9686

.0000

L7712

.7730

.7744

.7749

.6207

.782¢6

.9030

.8039

.9044

.4611

.6317

.7896

.90890

.9834

.5007

.5016

.5024

.5027

.3056

.5064

L7292

.7300

. 7304

.1645

.3084

.5100

.7339

.9228

.2046

.2046

.2047

.2047

.0804

.2049

L4391

.4392

.4393

.0269

.0800

.2050

.4400

.7600
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0.4832
0.9995
0.4828
0.8726
0.0002
0.9040
0.0010
0.9295
0.0066
0.95590
0.0355
0.9770
0.1505
0.9995
0.4808
1.0000
1.0000

Column 8

el ele RN eleRNelleReleReiNe e ol el NeNe e Ne e o oo NeoloNo o e e el o

0.012

.9986

.8427

.8914

. 9253

. 9540

.9768

.9986

.0000

.0000

.6480

L7671

.8599

.9281

.8707

.0001

.0000

.9835

L3127

.4658

.6335

.7919

.9115

.9840

.0000

.8229

.0791

.1654

.3093

.5113

.7362

.9238

.0000

.7600

.0077

.0265

.0796

.2047

. 4407

.7603

.0000
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0.0124
0.0123
0
0
0
0
0.0122
0.1512
0.1508
0
0
0
0
0.0121
0.1482
1.0000

next_node

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
33
34
35
35
49
49
39
40
41
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49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
33
34
35
35
49
49
39
40
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
33
34
35
35
49
49
39
40
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
33
34
35
35
49
49
39
40
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
33
34
35
35
49
49
39
40
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
33
33
33
34
49
49
25
33
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
33
33
33
34
49
49
25
33
41

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
41
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42 42 42 42 42
42 42 42 42 42
49 49 49 49 49
45 45 45 45 45
46 46 46 46 46
47 47 47 47 47
48 48 48 48 48
49 49 49 49 49
49 49 49 49 49
37 37 37 37 37
38 38 38 38 38
46 46 46 39 39
47 47 47 47 47
48 48 48 48 48
49 49 49 49 49

k =

3
u =

Columns 1 through 7

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
0

0 0 0
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41
41
49
31
32
33
41
49
49
37
38
39
40
41
49

41
41
49
31
32
33
41
49
49
37
38
39
40
41
49

41
41
49
49
49
49
41
49
49
49
49
49
49
41
49
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0.8940
0.0070
0.8970
0.0070
0.8996
0.0070
0.5013
0.0070
0.9019
0.0070

0.8805
0.0012
0.9124
0.0070
0.9365
0.0365
0.9381
0.0365
0.9394
0.0365
0.9399%
0.0364
0.8677
0.0002
0.8992
0.0011
0.9246
0.0069
0.9467
0.0363
0.9707
0.1516
0.9714
0.1515
0.9718
0.1515
0.8804
0.0002
0.9057
0.0011
0.9310
0.0068
0.9530
0.0361
0.9751
0.1511

.8884

.8915

.8942

.8960

.8967

.8665

.9076

.9351

.9368

.9381

.9385

.8375

.8863

.9202

.9456

.9704

.9711

.9715

.8511

.8932

.9269

.9520

.9749

.8201

.8235

.8263

.8282

.8290

L7423

.8406

.9069

.2087

.9102

.9107

.6433

.7618

. 8542

.9186

.9636

.9644

.9648

.6549

.7686

.8614

.9258

.9686

.6032

.6058

.6079

.6094

.6100

.4521

.6187

L7712

L7730

.7744

.7749

.3107

.4626

.6290

.7826

.9030

.8039

.9044

.3150

.4665

.6345

.7896

.9090

.2999

.3007

.3015

.3019

.3022

.1635

.3047

.5007

.5016

.5024

.5027

.0790

.1648

.3078

.5064

L7292

.7300

.7304

.0793

.1653

.3092

.5100

.7339

.0804

.0804

.0804

.0804

.0803

.0274

.0804

.2046

.2046

.2047

.2047

.0080

.0271

.0804

.2049

.4391

.4392

.4393

.0079

.0269

.0800

.2050

.4400
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0.9995
0.4832
0.9995
0.4828
0.8824
0.0002
0.9077
0.0010
0.9330
0.0066
0.9550
0.0355
0.9770
0.1505
0.9995
0.4808
1.0000
1.0000

Column 8

OO0 0O C O OO0 O0DODDDO0OO0OQ0COOO0DO0OOCO0OO00O00O0 00000 0o

.9986

.9986

.8533

.8953

.9289

.9540

.9768

.9986

.0000

.0000

.0000

.6569

.7708

.8637

.9281

.9707

.0001

.0000

.9834

. 9835

.3159

.4678

.6364

.7919

.9115

.9840

.0000

.9228

. 9229

.0793

.1657

.3098

.5113

.7362

.9238

.0000

.7600

.7600

.0077

.0265

.0796

.2047

.4407

.7603

.0000
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o
(&)
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o
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o
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next node

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
25
26
27
28
28
49
31
32
33
34
35
35
37
38
39
40
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49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
25
26
27
28
28
49
31
32
33
34
35
35
37
38
39
40

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
25
26
27
28
28
49
31
32
33
34
35
35
37
38
39
40

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
25
26
27
28
28
49
31
32
33
34
35
35
37
38
39
40

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
25
26
27
28
28
49
31
32
33
34
35
35
23
38
39
40

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
25
25
25
26
27
49
17
25
33
33
33
34
23
24
25
33

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
25
25
25
26
27
49
17
25
33
33
33
34
23
24
25
33

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
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41 41 41 41 41
42 42 42 42 42
42 42 42 42 42
44 44 44 44 30
45 45 45 45 45
46 46 46 46 46
47 47 47 47 47
48 48 48 48 48
49 49 49 49 49
49 49 49 49 49
44 44 44 37 37
45 45 45 45 38
46 46 46 46 46
47 47 47 47 47
48 48 48 48 48
49 49 49 49 49

k =

4
u =

Columns 1 through 7

0 0 0
0
0 0 0
0
0 0 0
0
0 0 0
0
0 0 0
0
0 0 0
0
0 0 0
0
0 0 0
0
0.8383 0.8222 0.6995
0.0012
0.8435 0.8278 0.7048
0.0012
0.8482 0.8327 0.7095
0.0012
0.8520 0.8366 0.7133
0.0012
0.8545 0.8393 0.7159
0.0012

41
41
41
30
31
32
33
41
49
49
37
38
39
40
41
49

.4275

.4305

L4333

.4355

.4370

41
41
41
29
31
32
33
41
49
49
37
38
39
40
41
49

41
41
41
49
49
49
49
41
49
49
49
49
49
49
41
49

.1585

.1592

.1598

.1602

.1605

.0273

.0273

.0274

.0273

.0273
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0.8555
0.0012
0.8377
0.0003
0.8696
0.0012
0.8940
0.0070
0.8970
0.0070
0.8996
0.0070
0.9013
0.0070
0.92019
0.0070
0.8648
0.0002
0.8902
0.0012
0.9124
0.0070
0.9365
0.0365
0.9381
0.0365
0.9394
0.0365
0.9399
0.0364
0.8774
0.0002
0.9026
0.0011
0.9246
0.0069
0.9467
0.0363
0.9707
0.1516
0.9714
0.1515
0.9718
0.1515
0.8840
0.0002
0.9091
0.0011
0.9310
0.0068
0.9530
0.0361
0.9751

.8403

.8058

.8551

.8884

.8915

.8942

.8960

.8967

.8344

.8768

.9076

.9351

.9368

.9381

.9385

.8478

.8899

.9202

.9456

.9704

.9711

.9715

.8549

.8968

.9269

.9520

.9749

L7170

.6164

.7313

.8201

.8235

.8263

.8282

.8290

.6406

.7524

. 8406

.9069

.0087

.9102

.9107

.6519

.7653

.8542

.9186

.9636

.9644

.9648

.6580

L7721

.8614

.9258

.9686

.4376

.3001

.4456

.6032

.6058

.6079

.6094

.6100

.3094

.4574

.6187

L7712

L7730

.7744

.7749

.3138

.4645

.6290

.7826

.9030

.9039

.9044

.3162

.4683

.6345

.7896

.9090

.1607

.0784

.1622

.2999

.3007

.3015

.3019

.3022

.07%90

.1643

.3047

.5007

.5016

.5024

.5027

.0792

.1651

.3078

.5064

.7292

.7300

.7304

.0793

.1655

.3092

.5100

.7339

.0273

.0082

.0274

.0804

.0804

.0804

. 0804

.0803

.o0o081

.0274

.0804

.2046

.2046

.2047

.2047

.0080

.0271

.0804

.2049

.4391

.4392

.4393

.0079

.0269

.0800

.2050

.4400
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0.1511
0.9995
0.4832
0.9995
0.4828
0.8860
0.0002
0.9111
0.0010
0.9330
0.0066
0.9550
0.0355
0.9770
0.1505
0.9995
0.4808
1.0000
1.0000

Column 8

C OO0 OO0 OO0 OO OCODC OO OO0 TCCOO0O0O0O00O0 oo Oo

.9986

.9986

.8571

.8989

.9289

.9540

.9768

.9986

.0000

.0000

.0000

.6600

L7744

.8637

.9281

.9707

.0001

.0000

.9834

.9835

.3170

.4697

.6364

.7919

.9115

.9840

.0000

.9228

.9229

.0793

.1657

.3098

.5113

.7362

.9238

.0000

.7600

.7600

.0077

.0265

.0796

.2047

.4407

.7603

.0000
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0
0.0124
0.0124
0.0123

0

0

0

0
0.0122
0.1512
0.1508

0

0

0

0
0.0121
0.1482
1.0000

next_node
49
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49
49
49
49
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25
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31
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34
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35
37
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49
49
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21
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23
24
25
26
27
28
28
30
31
32
33
34
35
35
37
38
39

49
49
49
49
49
49
49
49
17
18
19
20
21
21
23
24
25
26
27
28
28
30
31
32
33
34
35
35
23
38
39

49
49
49
49
49
49
49
49
17
17
17
18
19
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17
25
25
25
26
27
16
17
25
33
33
33
34
23
24
25

49
49
49
49
49
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49 49 49 49 49
49 49 49 49 49
44 44 44 44 37
45 45 45 45 38
46 46 46 46 46
47 47 47 47 47
48 48 48 48 48
49 49 49 49 49
k =
5
u =

Columns 1 through 7

0.7562 0.7205 0.5450
0.0002

0.7664 0.7312 0.5539
0.0002

0.7755 0.7407 0.5619
0.0002

0.7832 0.7488 0.5686
0.0002

0.7894 0.7552 0.5740
0.0003

0.7937 0.7598 0.5778
0.0002

0.7954 0.7615 0.5794
0.0003

0.8128 0.7798 0.5946
0.0003

0.8383 0.8222 0.6995
0.0012

0.8435 0.8278 0.7048
0.0012

0.8482 0.8327 0.7095
0.0012

0.8520 0.8366 0.7133
0.0012

0.8545 0.8393 0.7159
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41
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37
38
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.0773
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0.0012
0.8555
0.0012
0.8469
0.0003
0.8696
0.0012
0.8940
0.0070
0.8970
0.0070
0.8996
0.0070
0.9013
0.0070
0.9019
0.0070
0.8681
0.0002
0.8902
0.0012
0.9124
0.0070
0.9365
0.0365
0.9381
0.0365
0.9394
0.0365
0.9399
0.0364
0.8808
0.0002
0.9026
0.0011
0.9246
0.0069
0.9467
0.0363
0.9707
0.1516
0.9714
0.1515
0.9718
0.1515
0.8874
0.0002
0.9091
0.0011
0.92310
0.0068
0.9530
0.0361

.8403

.8156

.8551

.8884

.8915

.8942

.8960

.8967

.8379

.8768

.9076

.9351

.9368

.9381

.9385

.8513

.8899

.9202

. 9456

.9704

9711

.9715

.8584

.8968

.9269

.9520

L7170

.6246

L7313

.8201

.8235

.8263

.8282

.8290

.6435

.7524

.8406

.9069

.9087

.9102

.9107

.6549

.7653

.8542

.9186

.9636

.9644

.9648

.6610

L7721

.8614

.9258

.4376

.3032

.4456

.6032

.6058

.6079

.6094

.6100

.3105

.4574

.6187

L7712

.7730

L7744

.7749

.3148

.4645

.6290

.7826

.9030

.9039

.9044

.3172

.4683

.6345

.7896

.1607

.0787

.1622

.2999

.3007

.3015

.3019

.3022

.0790

.1643

.3047

.5007

.5016

.5024

.5027

.0792

.1651

.3078

.5064

L7292

.7300

.7304

.0793

.1655

.3092

.5100
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.0082

.0274

.0804

.0804

.0804

.0804

.0803

.0081

.0274

.0804

.2046

.2046

.2047

.2047

.0080

.0271
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.2049
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.4392

.4393

.0079

.0269

.0800

.2050
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0.4832
0.9995
0.4828
0.889%4
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0.9111
0.0010
0.9330
0.0066
0.9550
0.0355
0.9770
0.1505
0.9995
0.4808
1.0000
1.0000

Column 8
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.9986

.9986

.8606

.8989

.9289

.9540

.9768

.9986

.0000

.9686

.0000

.0000

.6630

L7744

.8637

.9281

.9707

.0001

.0000

.9090

.9834

.9835

.3180

.4697

.6364

.7919

.9115

.9840

.0000

.7339

.9228

.9229

.0793

.1657

.3098

.5113

.7362

.9238

.0000

.4400

.7600

.7600

.0077

.0265

.0796

.2047

.4407

.7603

.0000
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45 49 49 49 49
49 49 49 49 49
44 44 44 44 37
45 45 45 45 38
46 46 46 46 46
47 47 47 47 47
48 48 48 48 48
49 49 49 49 49
k =
6
u =

Columng 1 through 7

0.7562 0.7205 0.5450
0.0002

0.7664 0.7312 0.5539
0.0002

0.7755 0.7407 0.5619
0.0002

0.7832 0.7488 0.5686
0.0002

0.7894 0.7552 0.5740
0.0003

0.7937 0.7598 0.5778
0.0002

0.7954 0.7615 0.5794
0.0003

0.8128 0.7798 0.5946
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0.0012
0.8555
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0.8469
0.0003
0.8696
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0.8940
0.0070
0.8970
0.0070
0.89%6
0.0070
0.9013
0.0070
0.9019
0.0070
0.8681
0.0002
0.8902
0.0012
0.9124
0.0070
0.9365
0.0365
0.9381
0.0365
0.9394
0.0365
0.9399
0.0364
0.8808
0.0002
0.9026
0.0011
0.9246
0.0069
0.9467
0.0363
0.9707
0.1516
0.9714
0.1515
0.9718
0.1515
0.8874
0.0002
0.9091
0.0011
0.9310
0.0068
0.9530

.8393

.8403

.8156

.8551

.8884

8915

.8942

.8960

.8967

.8379

.8768

.92076

.9351

.9368

.9381

.9385

.8513

.8899

.9202

. 9456

.9704

.9711

.9715

.8584

.8968

.9269

.9520

. 7159

.7170

.6246

.7313

.8201

. 8235

.8263

.8282

.8290

.6435

.7524

.8406

.9069

.9087

.9102

.8107

.6549

.7653

.B8542

.9186

.9636

.9644

.9648

.6610

L7721

.8614

.9258

.4370

.4376

.3032

.4456

.6032

.6058

.6079

.6094

.6100

.3105

.4574

.6187

L7712

L7730

L7744

L7749

.3148

.4645

.6290

. 7826

.9030

.9039

.9044

.3172

.4683

.6345

.7896

.1605

.1607

.0787
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.2999

.3007

.3015

.3019
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.0790

.1643

.3047

.5007

.5016
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.5027

.0792

.1651

.3078

.5064

L7292

.7300

.7304

.0793

.1655
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.5100
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.0082
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0.9751
0.1511
0.8995
0.4832
0.9995
0.4828
0.8894
0.0002
0.9111
0.0010
0.9330
0.0066
0.9550
0.0355
0.8770
0.1505
0.9995
0.4808
1.0000
1.0000

Column 8
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.8989

.9289
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.9768
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.0000
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.0000
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.9281

.9707

.0001

.0000

.9090

.9834

.9835

.3180

.4697

.6364

.7919

.9115

.9840

.0000

0.7339

0.9228

0.9229

0.0793

0.1657

0.3098

0.5113

0.7362
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1.0000

.4400

.7600

.7600

.0077

.0265
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.4407

.7603

.0000
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49 49 49 49 49
44 14 44 44 37
45 45 45 45 38
46 46 46 46 46
47 47 47 47 47
48 48 48 48 48
49 49 49 49 49
k =
7
u =

Columns 1 through 7

0.7562 0.7205 0.5450
0.0002

0.7664 0.7312 0.5539
0.0002

0.7755 0.7407 0.5619
0.0002

0.7832 0.7488 0.5686
0.0002

0.78%94 0.7552 0.5740
0.0003

0.7937 0.7598 0.5778
0.0002

0.7954 0.7615 0.5794
0.0003

0.8128 0.7798 0.5%46
0.0003

0.8383 0.8222 0.6995
0.0012

0.8435 0.8278 0.7048
0.0012

0.8482 0.8327 0.7095
0.0012

0.8520 0.8366 0.7133
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0.0012
0.8545
0.0012
0.8555
0.0012
0.8469
0.0003
0.8696
0.0012
0.8940
0.0070
0.8970
0.0070
0.8996
0.0070
0.9013
0.0070
0.9019
0.0070
0.8681
0.0002
0.8902
0.0012
0.9124
0.0070
0.9365
0.0365
0.9381
0.0365
0.9394
0.0365
0.9399
0.0364
0.8808
0.0002
0.9026
0.0011
0.9246
0.0069
0.9467
0.0363
0.9707
0.1516
0.9714
0.1515
0.9718
0.1515
0.8874
0.0002
0.9091
0.0011
0.9310
0.0068

.8393

.8403

.8156

.8551

.8884

.8915

.8942

.8960

.8967

.8379

.8768

.9076

.9351

.9368

.9381

.9385

.8513

.8899

.9202

.9456

.9704

.9711

.9715

.8584

.B968

.9269

.7159

L7170

.6246

.7313

.8201

.8235

.B263

.8282

.8290

.6435

.7524

.8406

.9069

.9087

.9102

.9107

.6549

.7653

.8542

.9186

.9636

.9644

.9648

.6610

L7721

.8614

.4370

.4376

.3032

.4456

.6032

.6058

.6079

.6094

.6100

.3105

.4574

.6187

L7712

.7730

L7744

.7749

.3148

L4645

.6290

.7826

.9030

.9039

.9044

.3172

.4683

.6345

.1605

.1607

.0787

.1622

.2999

.3007

.3015

.3019

.3022

.0790

.1643

.3047

.5007

.5016

.5024

.5027

.0792

.1651
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.0793
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0.0002
0.9111
0.0010
0.9330
0.0066
0.9550
0.0355
0.9770
0.1505
0.9995
0.4808
1.0000
1.0000

Column 8

OO0 OO0 O0OO0O0OO0O0DO0OOO0OCOCOOOCOO0O0 OO0

.9520

.9749

.9986

.9986

.8606

.8989

.9289

. 9540

.9768

.9986

.0000

.9258

.9686

.0000

.0000

.6630

L7744

.8637

.9281

.9707

.0001

.0000

.7896

.9090

.9834

.9835

.3180

.4697

.6364

.79219

.9115

.9840

.0000

.5100

.7339

.9228

.9229

.0793

.1657

.3098

.5113

.7362

.9238

.0000

.2050

.4400

.7600

.7600

.0077

.0265

.0796

.2047

. 4407

.7603

.0000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171



(=]
o
iy
N
NS

o
[
9]
it
N

o
I_l
'S
[0 2]
| §)

next _node

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30
31
32
33
34
35
35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30
31
32
33
34
35
35

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30
31
32
33
34
35
35

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30
31
32
33
34
35
35

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30
31
32
33
34
35
35

9
9
9
10
11
12
13

17
17
17
18
19
20

17
25
25
25
26
27
16
17
25
33
33
33
34

9
9
9
10
11
12
13

17
17
17
18
19
20

17
25
25
25
26
27
15
17
25
33
33
33
34

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
45
49
49
49
49
49
49
49
49
49
49
49
49

172



37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

23
38
39
40
41
42
42
30
45
46
47
48
49
49
37
38
46
47
48
49

23
24
25
33
41
41
41
30
31
32
33
41
49
49
37
38
39
40
41
49

23
24
25
33
41
41
41
29
31
32
33
41
49
49
37
38
39
40
41
49

49
49
49
49
41
41
41
49
49
49
49
41
49
49
49
49
49
49
41
49

173



174

APPENDIX E: SOTA PROBLEM TESTED WITH A 49-NODE NETWORK
USING THE SECOND SET OF GAMMA DISTRIBUTIONS (DETAILED
COMPUTER OUTPUTS OF INTERMEDIATE SUCCESSIVE
APPROXIMATIONS)

The parameters in gamma distributions are set to be n =
0.210og10(10+0.8i+0.7j) and o= log10(12+1.2i+0.8j).

The intermediate results are shown below. The integer k is the index of the
successive approximation. Matrix u contains the maximum probability of arriving at
the destination within time ¢ or less, starting from node i. Matrix next_node contains
the optimal successor node from each starting node i with remaining time z. The
columns of the two matrices correspond to the time . The rows of the two matrices
correpond to the starting node i. The results indicate that the convergence is reached
after the 5™ iteration of successive approximation. The results below are from row

computer outputs. We apologize for the urgly format.

The initial u(t) is:
Columns 1 through 7

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0
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0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0
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0 0 0 o} 0 0
0
0 0 0 0 0 0
0
¢} 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0.9998 0.9963 0.9921 0.9588 0.8975 0.7741
0.6016
0.5998 0.9964 0.9922 0.9589 0.8976 0.7740
0.6012
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0.9998 0.9965 0.9925 0.9595 0.8981 0.7737
0.5992
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000
Column 8

OO0 0O OO0 OO0 OO0OO0OO0OOO0OO0 0 OO0
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Columns 1 through 7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
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0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0 0 0 0 0 0
0
0.8222 0.8167 0.7928 0.7209 0.5938 0.4132
0.2106
0.8237 0.8183 0.7945 0.7226 0.5951 0.4139
0.2108
0.8245 0.8191 0.7954 0.7234 0.5958 0.4144
0.2110
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0.6753
0.0587
0.8321
0.2117
0.9998
0.6016
0.9998
0.6012

0.5605
0.0136
0.6920
0.0594
0.8366
0.2127
0.9998
0.5992
1.0000
1.0000

Column 8

(o el eleleNeNe el e e leoleBeBNoBoNoBe Be e e e ol

.6641

.8270

.9963

.9964

.5408

.6813

.8315

.9965

.0000

.6173

.8037

.9921

.9922

.47189

.6346

.8085

.9925

.0000

.5116

.7316

.9588

.9589

.3465

.5265

.7364

.9595

.0000

.3578

.6022

.8975

.8976

L1997

.3675

.6063

.8981

.0000

.1909

L4177

L7741

.7740

.0780

.1948

.4203

L7737

.0000
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.0019
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.0019
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next node
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49
49
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49
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49
49
49
49
49
49
49
49
49
49
49
49
49
49

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
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49
49
49
49
49
49
49
49
49
49
41
42
42
49
49
49
33
48
49
49
49
49
39
40
48
49

Columns 1 through 7
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0

49
49
49
49
49
49
49
49
49
49
41
42
42
49
49
49
33
48
49
49
49
49
39
40
48
49

49
49
49
49
49
49
49
49
49
49
41
42
42
49
49
49
33
48
49
49
49
49
39
40
48
49

0

49
49
49
49
49
49
49
49
49
49
41
42
42
49
49
49
33
48
49
49
49
49
39
40
48
49

49
49
49
49
49
49
49
49
49
49
41
42
42
49
49
49
33
48
49
49
49
49
39
40
48
49

49
49
49
49
49
49
49
49
49
49
41
42
42
49
49
49
33
48
49
49
49
49
39
40
48
49

49
49
49
49
49
49
49
49
49
49
41
41
41
49
49
49
33
41
49
49
49
49
39
40
41
49

49
49
49
49
49
49
49
49
49
49
41
41
41
49
49
49
33
41
49
49
49
49
49
40
41
49
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0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.6644
0.0580
0.6673
0.0581
0.6696
0.0583
0.6704
0.0583
0
0
0
0
0.5531
0.0135
0.6832
0.0589
0.8222
0.2106
0.8237
0.2108
0.8245
0.2110

.6528

.6558

.6581

.6590

.5332

.6721

.8167

.8183

.8191

.6059

.6089

.6112

.6121

.4646

.6253

.7928

. 7945

.7954

.5015

.5041

.5062

.5069

.3409

.5183

.7209

L7226

.7234

.3507

.3525

.3538

.3544

.1966

.3618

.5938

.5951

.5958

.1876

.1883

.1889

.1892

.0770

.1922

L4132

.4139

.4144
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0.4636
0.0026
0.5741
0.0137
0.6954
0.0595
0.8321
0.2117
0.9998
0.6016
0.9998
0.6012
0.3822
0.0004
0.4751
0.0026
0.5774
0.0138
0.6992
0.0598
0.8366
0.2127
0.9998
0.5992
1.0000
1.0000

Column 8

OO 00 OO0 O0OD OO OO0OO0O0O00O0O0 OO0

. 4337

.5547

.6847

.8270

.9963

.9964

.3419

.4453

.5580

.6887

.8315

.9965

.0000

.3473

.4847

.6380

.8037

.9921

.9922

.2460

.3572

.4880

.6420

.8085

.9925

.0000

.2205

.3558

.5293

.7316

.9588

.9589

.1324

.2266

.3583

.5329

.7364

.9595

.0000

.1020

.2044

.3693

.6022

.8975

.8976

.0481

.1044

.2057

.3718

.6063

.8981

.0000

.0282

.0793

.1956

L4177

.7741

.7740

.0092

.0287

L0797

.1967

.4203

L7737

.0000
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next_node
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Columns 1 through 7
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0
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49
33
34
35
35
49
49
39
40
41
42
42
49
45
46
47
48
49
49
37
38
46
47
48
49

49
49
33
34
35
35
49
49
39
40
41
42
42
49
45
46
47
48
49
49
37
38
46
47
48
49

0

49
49
33
34
35
35
49
49
39
40
41
42
42
49
45
46
47
48
49
49
37
38
46
47
48
49

49
49
33
34
35
35
49
49
39
40
41
42
42
49
45
46
47
48
49
49
37
38
39
47
48
49

49
49
33
34
35
35
49
49
39
40
41
42
42
49
45
46
47
48
49
49
37
38
39
47
48
49

49
49
33
33
35
34
49
49
39
40
41
41
41
49
31
46
47
41
49
49
37
38
39
47
41
49

49
49
33
33
33
34
49
49
49
33
41
41
41
49
49
49
33
41
49
49
49
495
49
40
41
49

185



0.5234
0.0130
0.5277
0.0131
0.5313
0.0131
0.5337
0.0131
0.5346
0.0132

0.4437
0.0026
0.5504
0.0134
0.6644
0.0580
0.6673
0.0581
0.6696
0.0583
0.6704
0.0583
0.3767
0.0004
0.4686
0.0025
0.5696
0.0136
0.6832
0.0589
0.8222
0.2106
0.8237
0.2108
0.8245
0.2110

.5030

.5073

.5110

.5134

.5143

.4138

.5304

.6528

.6558

.6581

.6590

.3365

.4387

.5500

.6721

.8167

.8183

.8191

.4364

.4404

.4438

.4461

.4470

.3303

L4620

.6059

.6089

.6112

.6121

.2419

.3514

.4803

.6253

.7928

.7945

. 7954

.3196

.3226

.3252

.3269

.3276

.2096

.3386

.5015

.5041

.5062

.5069

.1302

.2228

.3524

.5183

.7209

L7226

.7234

.1849

.1865

.1879

.1889

.1893

.0974

.1950

.3507

.3525

.3538

.3544

.0474

.1028

.2025

.3618

.5938

.5951

.5958

.0732

.0736

.0741

.0744

.0746

.0272

.0763

.1876

.1883

.1889

.1892

.0091

.0284

.0787

.1922

.4132

.4139

.4144
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0.3916
0.0004
0.4776
0.0026
0.5801
0.0137
0.6954
0.0595
0.8321
0.2117
0.9998
0.6016
0.9998
0.6012
0.3939
0.0004
0.4804
0.0026
0.5834
0.0138
0.6992
0.0598
0.8366
0.2127
0.9998
0.5992
1.0000
1.0000

Column 8

[l eNelNoleNolNelNolNolNolelNoNollelellelolo el el o)

.3508

L4477

.5608

.6847

.8270

.9963

.9964

.3532

.4506

.5642

.6887

.8315

.9965

.0000

.2526

.3592

.4905

.6380

.8037

.9921

.9922

.2544

.3617

.4937

.6420

.8085

.9925

.0000

.1357

.2278

.3601

.5293

.7316

.9588

.9589

.1366

.2294

.3626

.5329

.7364

.9595

.0000

.0491

.1049

.2067

.3693

.6022

.8975

.8976

.0494

.1055

.2081

.3718

.6063

.8981

.0000

.0093

.0288

.0800

.1956

L4177

.7741

L7740

.0094

.0289

.0804

.1967

.4203

7737

.0000
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Columns 1 through 7

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.3960
0.0024
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35
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49
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45
46
47
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49
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35
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37
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41
42
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0
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0.2902
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0.1840
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33
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23
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41
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0.4016
0.0024
0.4067
0.0024
0.4107
0.0024
0.4134
0.0024
0.4144
0.0024
0.3453
0.0003
0.4313
0.0024
0.5234
0.0130
0.5277
0.0131
0.5313
0.0131
0.5337
0.0131
0.5346
0.0132
0.3740
0.0003
0.4570
0.0026
0.5504
0.0134
0.6644
0.0580
0.6673
0.0581
0.6696
0.0583
0.6704
0.0583
0.3882
0.0004
0.4736
0.0025
0.5696
0.0136
0.6832
0.0589
0.8222
0.2106
0.8237
0.2108
0.8245
0.2110

.3720

.3770

.3810

.3837

.3847

.3064

.4015

.5030

.5073

.5110

.5134

.5143

.3339

.4270

.5304

.6528

.6558

.6581

.6590

.3475

.4436

.5500

.6721

.8167

.8183

.8191

.2949

.2992

.3025

.3048

.3057

.2191

.3197

.4364

.4404

.4438

.4461

.4470

.2398

.3414

L4620

.6059

.6089

.6112

.6121

.2501

.3556

.4803

.6253

.7928

.7945

.7954

.1870

.1897

L1919

.1933

.1939

.1181

.2027

.3196

.3226

.3252

.3269

.3276

.1289

.2165

.3386

.5015

.5041

.5062

.5069

.1343

L2255

.3524

.5183

.7209

.7226

L7234

.0876

.0888

.0897

.0903

.0906

.0434

.0942

.1849

.1865

.1879

.1889

.1893

.0469

.1001

.1950

.3507

.3525

.3538

.3544

.0486

.1039

.2025

.3618

.5938

.5951

.5958

.0249

.0252

.0254

.0255

.0256

.0085

.0265

.0732

.0736

.0741

.0744

.0746

.0090

.0278

.0763

.1876

.1883

.1889

.1892

.0093

.0286

.0787

.1922

L4132

L4139

.4144
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0.3959
0.0004
0.4827
0.0026
0.5801
0.0137
0.6954
0.0595
0.8321
0.2117
0.9998
0.6016
0.9998
0.6012
0.3984
0.0004
0.4855
0.0026
0.5834
0.0138
0.6992
0.0598
0.8366
0.2127
0.9998
0.5992
1.0000
1.0000

Column 8

[oNeNoNeNeolNeNolNolNoleNololNeolNolNolNelolNolNoe o o)

.3550

.4528

.5608

.6847

.8270

.9963

.9964

.3574

.4556

.5642

.6887

.8315

. 9965

.0000

.2558

.3634

.4905

.6380

.8037

.9921

.9922

.2577

.3660

.4937

.6420

.8085

.9925

.0000

L1373

.2305

.3601

.5293

.7316

.9588

.9589

.1383

.2321

.3626

.5329

.7364

.9595

.0000

.0496

.1060

.2067

.3693

.6022

.8975

.8976

.04599

.1067

.2081

.3718

.6063

.8981

.0000

.0093

.0290

.0800

.1956

L4177

.7741

.7740

.0094

.0292

.0804

.1967

.4203

L7737

.0000
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.0018
.0018
.0019
.0019

.0019
.0371
.0371
.0371

.0019
.0372
.3129
.3123

.0019
.0372
.3089
.0000

next_node

49
49
49
49
49
49
49
49
17
18
19
20
21
21
23
24
25
26
27
28
28
30
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49
49
49
49
49
49
49
49
17
18
19
20
21
21
23
24
25
26
27
28
28
30

49
49
49
49
49
49
49
49
17
18
19
20
21
21
23
24
25
26
27
28
28
30

49
49
49
49
49
49
49
49
17
18
19
20
21
21
23
24
25
26
27
28
28
30

49
49
49
49
49
49
49
49
17
18
19
20
21
21
23
24
25
26
27
28
28
30

49
49
49
49
49
49
49
49
17
18
19
20
20
20
23
24
25
26
27
28
28
30

49
49
49
49
49
49
49
49
17
17
17
18
19
20

17
25
25
25
26
27
16

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
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31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

Columns 1 through 7

0.2771
0.0003
0.2848
0.0003
0.2918
0.0003
0.2978
0.0003
0.3026
0.0003
0.3059
0.0003
0.3072
0.0003
0.3232
0.0003
0.3960
0.0024

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

0.

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

2417

.2489

.2556

.2612

.2658

.2690

.2702

.2854

.3664

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
37
45
46
47
48
49

.1708

L1762

.1811

.1853

.1887

.1911

.1920

.2033

.2902

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
37
45
46
47
48
49

.0923

.0952

.0978

.1001

.1019

.1032

.1037

.1096

.1840

31
32
33
33
35
34
23
24
39
40
41
41
41
30
31
46
47
41
49
49
37
38
39
47
41
49

49
49
33
33
33
34
49
49
49
33
41
41
41
49
49
49
33
41
49
49
49
49
49
40
41
49

.0346

.0356

.0365

.0373

.0379

.0383

.0385

.0405

.0863

.0070

.0072

.0074

.0074

.0076

.0076

.0076

.0080

.0247
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0.4016
0.0024
0.4067
0.0024
0.4107
0.0024
0.4134
0.0024
0.4144
0.0024
0.3557
0.0003
0.4313
0.0024
0.5234
0.0130
0.5277
0.0131
0.5313
0.0131
0.5337
0.0131
0.5346
0.0132
0.3780
0.0003
0.4570
0.0026
0.5504
0.0134
0.6644
0.0580
0.6673
0.0581
0.6696
0.0583
0.6704
0.0583
0.3923
0.0004
0.4736
0.0025
0.5696
0.0136
0.6832
0.0589
0.8222
0.2106
0.8237
0.2108
0.8245
0.2110

.3720

.3770

.3810

.3837

.3847

.3164

.4015

.5030

.5073

.5110

.5134

.5143

.3377

.4270

.5304

.6528

.6558

.6581

.6590

.3515

L4436

.5500

.6721

.8167

.8183

.8191

.2949

.2992

.3025

.3048

.3057

.2265

.3197

.4364

.4404

.4438

.4461

.4470

.2426

.3414

.4620

.6059

.6089

.6112

L6121

.2531

.3556

.4803

.6253

.7928

. 7945

.7954

.1870

.1897

.1919

.1933

.1939

.1219

.2027

.3196

.3226

.3252

.3269

.3276

.1304

.2165

.3386

.5015

.5041

.5062

5069

.1359

.2255

.3524

.5183

.7209

.7226

.7234

.0876
.0888
.0897
.0903
.0%906
.0446
.0942
.1849
.1865
.1879
.1889
.1893
.0473
.1001
.1950
.3507
.3525
.3538
.3544
.0491
.1039
.2025
.3618
,5938v
.5951

.5958

.0249

.0252

.0254

. 0255

.0256

.0087

.0265

.0732

.0736

.0741

.0744

.0746

.0090

.0278

.0763

.1876

.1883

.1889

.1892

.0093

.0286

.0787

.1822

.4132

.4139

L4144
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0.4001
0.0004
0.4827
0.0026
0.5801
0.0137
0.6954
0.0595
0.8321
0.2117
0.9998
0.6016
0.95998
06.6012
0.4026
0.0004
0.4855
0.0026
0.5834
0.0138
0.6992
0.0598
0.8366
0.2127
0.95998
0.5992
1.0000
1.0000

Column 8

OO0 0O OLODO0OOO0ODO0O0OOCOOCOO0OCOO0OOo

.3591

.4528

.5608

.6847

.8270

.9963

.9964

.3615

.4556

.5642

.6887

.8315

.9965

.0000

.2589

.3634

.4905

.6380

.B037

.9921

.9922

.2607

.3660

.4937

.6420

.8085

.9925

.0000

.1389

.2305

.3601

.52893

.7316

.9588

.9589

.1399

.2321

.3626

.5329

.7364

.9595

.0000

.0501

.1060

.2067

.3693

.6022

.8975

.8976

.0504

.1067

.2081

.3718

.6063

.8981

.0000

0.0095

0.0290

0.0800

0.1956

0.4177

0.7741

0.7740

0.0095

0.0292

0.0804

0.1967

0.4203

0.7737

1.0000
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.0018
.0018
.0019
.0019

.0019
.0371
.0371
L0371

.0019
.0372
.3129
.3123

.0019
.0372
.3089
.0000

next node

9
10
11
12
13
14
14
i6
17
18
19
20
21
21
23
24
25
26
27
28
28
30
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9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30

9
10
11
11
13
12
13
16
17
18
19
20
20
20
23
24
25
26
27
28
28
30

9

10
11
12
13

17
17
17
18
19
20

17
25
25
25
26
27
16

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49

196



31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

Columns 1 through 7

0.2771
0.0003
0.2848
0.0003
0.2918
0.0003
0.2978
0.0003
0.3026
0.0003
0.3059
0.0003
0.3072
0.0003
0.3232
0.0003
0.3960
0.0024

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

0

0

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

.2417

.2489

.2556

.2612

.2658

.2690

.2702

.2854

.3664

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

.1708

L1762

.1811

.1853

.1887

L1911

.1920

.2033

.2902

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

.0923

.0952

.0978

.1001

.1019

.1032

.1037

.1096

.1840

31
32
33
33
35
34
23
24
39
40
41
41
41
30
31
46
47
41
49
49
37
38
39
47
41
49

49
49
33
33
33
34
49
49
49
33
41
41
41
49
49
49
33
41
49
49
49
49
49
40
41
49

.0346

.0356

.0365

.0373

.0379

.0383

.0385

.0405

.0863

.0070

.0072

.0074

.0074

.0076

.0076

.0076

.0080

.0247
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0.4016
0.0024
0.4067
0.0024
0.4107
0.0024
0.4134
0.0024
0.4144
0.0024
0.3557
0.0003
0.4313
0.0024
0.5234
0.0130
0.5277
0.0131
0.5313
0.0131
0.5337
0.0131
0.5346
0.0132
0.3780
0.0003
0.4570
0.0026
0.5504
0.0134
0.6644
0.0580
0.6673
0.0581
0.6696
0.0583
0.6704
0.0583
0.3923
0.0004
0.4736
0.0025
0.5696
0.0136
0.6832
0.0589
0.8222
0.2106
0.8237
0.2108
0.8245
0.2110

.3720

.3770

.3810

.3837

.3847

.3164

.4015

.5030

.5073

.5110

.5134

.5143

.3377

.4270

.5304

.6528

.6558

.6581

.6590

.3515

.4436

.5500

.6721

.8167

.8183

.8191

.2949

.2992

.3025

.3048

.3057

.2265

.3197

.4364

.4404

.4438

.4461

.4470

.2426

.3414

.4620

.6059

.6089

.6112

.6121

.2531

.3556

.4803

.6253

.7928

.7945

.7954

.1870

.1897

.1919

.1933

.1939

.1219

.2027

.3196

.3226

.3252

.3269

.3276

.1304

.2165

.3386

.5015

.5041

.5062

.5069

.1359

.2255

.3524

.5183

.7209

L7226

.7234

.0876

.0888

.0897

.0903

.0906

.0446

.0942

.1848

.1865

.1879

.1889

.1893

.0473

.1001

.1950

.3507

.3525

.3538

.3544

.0491

.1039

.2025

.3618

.5938

.5951

.5958

.0249

.0252

.0254

.0255

.0256

.0087

.0265

.0732

.0736

.0741

.0744

.0746

.0090

.0278

.0763

.1876

.1883

.1889

.1892

.0093

.0286

.0787

.1922

L4132

.4139

.4144
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0.4001
0.0004
0.4827
0.0026
0.5801
0.0137
0.6954
0.0595
0.8321
0.2117
0.9998
0.6016
0.9998
0.6012
0.4026
0.0004
0.4855
0.0026
0.5834
0.0138
0.6992
0.0598
0.8366
0.2127
0.9998
0.5992
1.0000
1.0000

Column 8

O OO0 00 OO0 O0OO0OO0ODODOOCO0O0O00 00O

.3591

.4528

.5608

.6847

.8270

.9963

.9964

.3615

.4556

.5642

.6887

.8315

.9965

.0000

.2589
.3634
.4905
.6380
.8037
.9921
.9922
.2607
.3660
.4937
.6420
.8085
.9925

.0000

.1389

.2305

.3601

.5293

.7316

.9588

.9589

.1399

.2321

.3626

.5329

.7364

.9595

.0000

.0501

.1060

.2067

.3693

.6022

.8975

.8976

. 0504

.1067

.2081

.3718

.6063

.8981

.0000

.0095

.0290

.0800

.1956

L4177

.7741

.7740

.0095

.0292

.0804

.1967

.4203

L7737

.0000
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.0018
.0018
.0019
.0019

.0019
.0371
.0371
.0371

.0019
.0372
.3129
.3123

.0019
.0372
.3089
.0000

next_node

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30
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9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30

9
10
11
12
13
14
14
16
17
18
18
20
21
21
23
24
25
26
27
28
28
30

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30

9
10
11
12
13
14
14
16
17
18
19
20
21
21
23
24
25
26
27
28
28
30

9
10
11
11
13
12
13
16
17
18
19
20
20
20
23
24
25
26
27
28
28
30

9

9
10
11
12
13

17
17
17
18
19
20

17
25
25
25
26
27
16

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
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31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

Columns 1 through 7

0.2771
0.0003
0.2848
0.0003
0.2918
0.0003
0.2978
0.0003
0.3026
0.0003
0.3059
0.0003
0.3072
0.0003
0.3232
0.0003
0.3960
0.0024

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

0

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

.2417

.2489

.2556

L2612

.2658

.2690

L2702

.2854

.3664

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

.1708

.1762

.1811

.1853

.1887

L1911

.1520

.2033

.2902

31
32
33
34
35
35
37
38
39
40
41
42
42
44
45
46
47
48
49
49
44
45
46
47
48
49

.0923

.0952

.0978

.1001

.1019

.1032

.1037

.1096

.1840

31
32
33
33
35
34
23
24
39
40
41
41
41
30
31
46
47
41
49
49
37
38
39
47
41
49

49
49
33
33
33
34
49
49
49
33
41
41
41
49
49
49
33
41
49
49
49
49
49
40
41
49

.0346

.0356

.0365

.0373

.0379

.0383

.0385

.0405

.0863

.0070

.0072

.0074

.0074

.0076

.0076

.0076

.0080

.0247
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0.4016
0.0024
0.4067
0.0024
0.4107
0.0024
0.4134
0.0024
0.4144
0.0024
0.3557
0.0003
0.4313
0.0024
0.5234
0.0130
0.5277
0.0131
0.5313
0.0131
0.5337
0.0131
0.5346
0.0132
0.3780
0.0003
0.4570
0.0026
0.5504
0.0134
0.6644
0.0580
0.6673
0.0581
0.6696
0.0583
0.6704
0.0583
0.3923
0.0004
0.4736
0.0025
0.5696
0.0136
0.6832
0.0589
0.8222
0.2106
0.8237
0.2108
0.8245
0.2110

.3720

.3770

.3810

.3837

.3847

.3164

.4015

.5030

.5073

.5110

.5134

.5143

.3377

.4270

.5304

.6528

.6558

.6581

.6590

.3515

.4436

.5500

L6721

.8167

.8183

.8191

.2949

.2992

.3025

.3048

.3057

.2265

L3197

.4364

.4404

.4438

.4461

.4470

.2426

.3414

.4620

.6059

.6089

.6112

.6121

.2531

.3556

.4803

.6253

.7928

.7945

.7954

.1870

.1897

.1919

.1933

.1939

.1219

.2027

.3196

.3226

.3252

.3269

.3276

.1304

.2165

.3386

.5015

.5041

.5062

.5069

.1359

.2255

.3524

.5183

.7209

.7226

.7234

.0876

.0888

.0897

.0903

.0906

.0446

.0942

.1849

.1865

.1879

.1889

.1893

.0473

.1001

.1950

.3507

.3525

.3538

.3544

.0491

.1039

.2025

.3618

.5938

.5951

.5958

.0249

. 0252

.0254

.0255

.0256

.0087

.0265

.0732

.0736

.0741

.0744

.0746

.0090

.0278

.0763

.1876

.1883

.1889

.1892

.0093

.0286

.0787

.1922

.4132

.4139

.4144
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0.4001
0.0004
0.4827
0.0026
0.5801
0.0137
0.6954
0.0595
0.8321
0.2117
0.9998
0.6016
0.9998
0.6012
0.4026
0.0004
0.4855
0.0026
0.5834
0.0138
0.6992
0.0598
0.8366
0.2127
0.9998
0.5992
1.0000
1.0000

Column 8

[« el ol oNeNolNs e e Be el e BeNe ol BeNeoNe e le N ol

.3591

.4528

.5608

.6847

.8270

.9963

.9964

.3615

.4556

.5642

.6887

.8315

. 9965

.0000

.2589

.3634

.4905

.6380
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APPENDIX F: SOTA PROBLEM TESTED WITH A 100-NODE NETWORK
USING THE FIRST SET OF GAMMA DISTRIBUTIONS

The parameters in gamma distributions of link travel times over link ij are set to be

and

n = 0.4*1og10(10+0.8%i+0.7%)

alfa = 2*log10(12+1.2*i+0.8%j).

Table F-1: The Maximum Probability of On Time Arrival and the Optimal
Successor Node from each Node, and the Shortest Paths in the First 100-Node

Network
Frem | SOTA tl= t2= 3= t4= t5= t6= t7= t8=  average-
Node 3.9193 2.2861 1.4387 0.8958 0.5247 0.2708 0.1072 0.0201 shortest-
path cost
& next
nodes
1 u;(t) 0.7595 0.6132 0.2713 0.0535 0 0 0 0 1.7003
Successor| 12 12 12 12 100 100 100 100 12
Node
2 (1) 0.762  0.6156 0.2724  0.0536 0 0 0 0 1.0998
Successor| 12 12 12 12 100 100 100 100 12
Node
3 us(t) 0.7643 0.6178 0.2735 0.0538 0 0 0 0 1.6994
Successor| 12 12 12 12 100 100 100 100 12
Node
4 uylt) 0.7692 0.6224 0.2755 0.0541 0 0 0 0 1.6991
Successor| 13 13 13 13 100 100 100 100 13
Node
5 us(t) 0.7736  0.6265 0.2774 0.0543 0 0 0 0 1.6989
Successor] 14 14 14 14 100 100 100 100 14
Node
6 ug(t) 0.7788 0.6313 0.2794 0.0546 0 0 0 0 1.6987
Successor] 15 15 15 15 100 100 100 100 15
Node
7 u,(1) 0.7837 0.6357 0.2814 0.0548 0 0 0 0 1.6987
Successor] 16 16 16 16 100 100 100 100 16
Node
8 ug(?) 0.7888 0.6404 0.2834  0.055 0 0 0 0 1.6986
Successor| 17 17 17 17 100 100 100 100 17
Node
9 Uy(t) 0.7936 0.6448 0.2852  0.0552 0 0 0 0 1.6986
Successor| 18 18 18 18 100 100 100 100 18
Node
10 Uuzp(t) 0.7985 0.6493 0.2871 0.0554 0 0 0 0 1.6987
Successor| 19 19 19 19 100 100 100 100 19
Node
11 Uy () 0.7915 0.648 0.2799 0.0547 0 0 0 0 1.6974
Successor] 21 22 12 12 100 100 100 100 12
Node
12 1;5(1) 0.8362 0.7378 04047 0.1068 0.0106 0 0 0 1.5112
Successor| 23 23 23 23 23 100 100 100 23
Node
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13 u;3(t) 0.8371 0.7387 0.4053 0.1069 0.0106 0 0 0 1.5111
Successor] 23 23 23 23 23 100 100 100 23
Node
14 Up(t) 0.838 0.7397 0.4058 0.107 0.0106 0 0 0 1.511
Successor] 23 23 23 23 23 100 100 100 23
Node
15 1y5(t) 0.8401 0.7418 0407 0.1072 0.0106 0 0 0 1.5109
Successor] 24 24 24 24 24 100 100 100 24
Node
16 Uys(t) 0.8421° 0.7438 0.4081 0.1074 0.0106 0 0 0 1.5109
Successor] 25 25 25 25 25 100 100 100 25
Node
17 uy(t) 0.8447 0.7464 04096 0.1076 0.0106 0 0 0 1.5109
Successor] 26 26 26 26 26 100 100 100 26
Node
18 uzs(t) 0.8471 0.7488 0.4109 0.1078 0.0106 0 0 0 1.5109
Successor} 27 27 27 27 27 100 100 100 27
Node
19 () 0.8499 0.7516 0.4124 0.108 0.0106 0 0 0 1.511
Successor] 28 28 28 28 28 100 100 100 28
Node
20 0(2) 0.8526  0.7543 0.4139 0.1082 0.0106 0 0 0 1.511
Successor] 29 29 29 29 29 100 100 100 29
Node
21 (1) 0.8418 0.684 - 0.2849 0.0554 0 0 0 0 1.6964
Successor] 32 32 12 12 100 100 100 100 12
Node
22 1z(t) 0.8441 0.746 04096 0.1078 0.0106 0 0 0 1.5102
Successor} 23 23 23 23 23 100 100 100 23
Node
23 Uz3(t) 0.8819 0.8259 0.5457 0.1936  0.0288 0 0 0 1.3232
Successor] 34 34 34 34 34 100 100 100 34
Node
24 Ut 0.8824 0.8264 0.5461 0.1937 0.0288 0 0 0 1.3231
Successor] 34 34 34 34 34 100 100 100 34
Node
25 1,5(t) 0.8829 0.827 0.5465 0.1938 0.0288 0 0 0 1.323
Successor] 34 34 34 34 34 100 100 100 34
Node
26 16(1) 0.8841 0.8283 0.5474 0.1941 0.0288 0 0 0 1.323
Successor] 35 35 35 35 35 100 100 100 35
Node
27 u;(1) 0.8852 0.8295 0.5483 0.1943 0.0288 0 0 0 1.323
Successor] 36 36 36 36 36 100 100 100 36
Node
28 1,5(2) 0.8868 0.8312 0.5494 0.1945 0.0287 0 0 0 1.323
Successor] 37 37 37 37 37 100 100 100 37
Node
29 Uo(t) 0.8884 - 0.8328 0.5506 0.1947 0.0287 0 0 0 1.3231
Successor] 38 38 38 38 38 100 100 100 38
Node
30 Usg() 0.8902 0.8347 0.5519 0.195 0.0287 0 0 0 1.3231
Successor] 39 39 39 39 39 100 100 100 39
Node
31 U31(t) 0.8568 0.7045 0.2929 0.0562 0 0 0 0 1.6966
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Successor] 41 42 22 22 100 100 100 100 22
Node
32 uss(t) 0.8757 0.7756 0.4132 0.1084 0.0106 0 0 0 1.5097
Successor| 43 43 23 23 23 100 100 100 23
Node
33 Us3(?) 0.8864 0.8308 0.5494 0.1946 0.0288 0 0 0 1.3226
Successorf 34 34 34 34 34 100 100 100 34
Node
34 Usy(t) 0.9143 0.8875 0.6838 0.3192 0.0729 0 0 0 1.1349
Successor] 45 45 45 45 45 100 100 100 45
Node
35 uss(t) 0.9146 0.8878 0.6841 0.3193 0.0729 0 0 0 1.1349
Successor| 45 45 45 45 45 100 100 100 45
Node
36 t34(1) 0.9149 0.8882 0.6844 03195 0.0729 0 0 0 1.1348
Successor] 45 45 45 45 45 100 100 100 45
Node
37 Us5(1) 0.9157 0.889 0.6852 0.3197 0.0729 0 0 0 1.1348
Successor{ 46 46 46 46 46 100 100 100 46
Node
38 Uss(1) 0.9165 0.8899 0.6859 0.32 0.0729 0 0 0 1.1348
Successor] 47 47 47 47 47 100 100 100 47
Node
39 Usoft) 09176 0.891 0.6869 0.3203 0.0729 0 0 0 1.1349
Successor] 48 48 48 48 48 100 100 100 48
Node
40 Uqolt) 0.9186 0.8922 0.6879 0.3206 0.0728 0 0 0 1.1349
Successor] 49 49 49 49 49 100 100 100 49
Node
41 ug(t) 0.885 0.7254 0.2967 0.0572 0 0 0 0 1.6969
Successor| 52 52 32 32 100 100 100 100 32
Node
42 wy(t) 0.8905 0.7902 0.4198 0.1092 0.0106 0 0 0 1.5098
Successor] 53 53 33 33 33 100 100 100 33
Node
43 ys(t) 0.9001 0.8453  0.5523 0.1954 0.0287 0 0 0 1.3222
Successor| 54 54 34 34 34 100 100 100 34
Node
44 Uglt) 0.9172 0.8907 0.6867 0.3204 0.0729 0 0 0 1.1345
Successor] 45 45 45 45 45 100 100 100 45
Node
45 Uy5(t) 0.9391 09288 0.8036 0.4796 0.1585 0.0202 0 0 0.9464
Successor] 56 56 56 56 56 56 100 100 56
Node
46 Ugs(l) 0.9393 0929 0.8039 04798 0.1586 0.0202 0 0 0.9463
Successor] 56 56 56 56 56 56 100 100 56
Node
47 (1) 0.9395 09292 0.8042 0.4799 0.1586 0.0202 0 0 0.9463
Successor] 56 56 56 56 56 56 100 100 56
Node
48 Ugs(t) 0.9401 0.9299 0.8048 0.4803 0.1586 0.0201 0 0 0.9463
Successor 57 57 57 57 57 57 100 100 57
Node
49 Ugolt) 0.9407 © 0.9305 0.8054 04806 0.1586 0.0201 0 0 0.9463
Successor] 58 58 58 58 58 58 100 100 58
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Node
50 Uso(l) 0.9415 09313 0.8063 0.481 0.1586 0.0201 0 0 0.9463
Successor] 59 59 59 59 59 59 100 100 59
Node
51 usy(t) 0.9056 0.7277 0.3028 0.0576 0 0 0 0 1.6976
Successor| 62 52 42 42 100 100 100 100 42
Node
52 us(t) 0.9045 0.8089 0.4239 0.1101 0.0103 0 0 0 1.51
Successor] 63 63 43 43 43 100 100 100 43
Node
53 us3(t) 0.9096 0.8554 0.5582 0.1966 0.0286 0 0 0 1.3224
Successor{ 64 64 44 44 44 100 100 100 44
Node
54 Us4(?) 0.9196 0.8934 0.6892 0.3213 0.0729 0 0 0 1.1342
Successor| 45 45 45 45 45 100 100 100 45
Node
55 uss(t) 0.9412 0931 0.8061 0.4811 0.1587 0.0201 0 0 0.9461
Successor] 56 56 56 56 56 56 100 100 56
Node
56 Uss(t) 0.9588 0.956 0.8939 0.6556 0.3056 0.0694 0 0 0.7575
Successor] 67 67 67 67 67 67 100 100 67
Node
57 Usy(1) 0.959 09562 0.8941 0.6558 0.3056 0.0693 0 0 0.7575
Successor| 67 67 67 67 67 67 100 100 67
Node
58 uss(t) 0.9592 09564 0.8943 0.6559 0.3057 0.0693 0 0 0.7575
Successor] 67 67 67 67 67 67 100 100 67
Node
59 tso(t) 0.9596  0.9568 0.8948 0.6563 0.3057 0.0693 0 0 0.7575
Successor| 68 68 68 68 68 68 100 100 68
Node
60 Ugplt) 0.96 09573  0.8953 0.6567 0.3058 0.0692 0 0 0.7575
Successor] 69 69 69 69 69 69 100 100 69
Node
61 ug(t) 0906 0.7404 03276 0.0582 0 0 0 0 1.6982
Successor| 72 72 72 52 100 100 100 100 52
Node
62 us(1) 0.9233 0.8108 0.4299 0.1106 0.0101 0 0 0 1.5106
Successor| 73 63 53 53 53 100 100 100 53
Node
63 Ugs(t) 0.9186 0.8724 0.5627 0.1974 0.0284 0 0 0 1.3225
Successor] 74 74 54 54 54 100 100 100 54
Node
64 Uss(t) 0.9254 0.8996 0.6946 0.3231 0.0728 0 0 0 1.1343
Successor] 55 55 55 55 55 100 100 100 55
Node
65 ugs(t) 0943 0.9329 0.8082 (.4823 0.1588 0.02 0 0 0.9458
Successor] 56 56 56 56 56 56 100 100 56
Node
66 Ugsl?) 0.9604 09577 0.8958 0.6572 0306  0.0692 0 0 0.7573
Successor] 67 67 67 67 67 67 100 100 67
Node
67 g (t) 0.9749 09745 0952 0.8149 0.5147 0.1905 0.0263 0 0.5684
Successor] 78 78 78 78 78 78 78 100 78
Node
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68 Ugs(t) 0975 09746 09522 0.8151 0.5148 0.1905 0.0263 0 0.5684
Successor] 78 78 78 78 78 78 78 100 78
Node
69 Ugo(t) 09752 09748 09523 0.8153 0.5149 0.1905 0.0263 0 0.5684
Successor] 78 78 78 78 78 78 78 100 78
Node
70 Uz(t) 0.9755 0.9751 0.9527 0.8157 0.5151 0.1904  0.0262 0 0.5684
Successor] 79 79 79 79 79 79 79 100 79
Node
71 Uy (t) 0.9088 0.7566 0.3282 0.0577 0 0 0 0 1.6991
Successor] 62 82 72 62 100 100 100 100 62
Node
72 Uz(t) 0.9217 0.8123 - 0.451 0.1113  0.0102 0 0 0 1.511
Successor; 83 63 83 63 83 100 100 100 63
Node
73 uzs(t) 0.9367 0.8738 0.5689 0.1984 0.0282 0 0 0 1.3229
Successor| 84 74 64 64 64 100 100 100 64
Node
74 Uz4(t) 0.93 09153 0.6989 0.3244 0.0725 0 0 0 1.1344
Successor} 65 85 65 65 65 100 100 100 65
Node
75 uy5(t) 09473 09376 0.8129 0.4847 0.1587 0.0198 0 0 0.9459
Successor] 66 66 66 66 66 66 100 100 66
Node
76 Uzelt) 0.9618 09591 0.8975 0.6586 0.3063 0.0691 0 0 0.7571
Successor] 67 67 67 67 67 67 100 100 67
Node
77 uz(1) 0.9761 09758 0.9535 0.8166 0.5156 0.1903 0.0261 0 0.5682
Successor] 78 78 78 78 78 78 78 100 78
Node
78 uzs(t) 0.9882 0.9881 0.984 0.9285 0.7469 0.4293 0.1309 0 0.3791
Successor] 89 89 89 89 89 89 89 100 89
Node
79 Uyo(t) 0.9883 09882 0.9841 09287 - 0.747 0.4293 0.1308 0 0.3791
Successor] 8§89 89 89 89 89 89 89 100 89
Node
80 Ugo(t) 0.9884 09883 0.9843 09288 0.7471 0.4293 (.1308 0 0.3791
Successor} 89 89 89 89 89 89 89 100 89
Node
81 ug(t) 0.9086 0.7537 0.3287 0.0561 0 0 0 0 1.6998
Successor 72 92 72 72 100 100 100 100 72
Node
82 uss(1) 0.9258 0.8289 0.4517 0.111 0.0102 0 0 0 1.5117
Successor] 73 93 83 73 83 100 100 100 73
Node
83 Ugsfl) 0.933  0.8751 05833 0.1995 0.0276 0 0 0 1.3233
Successor] 94 74 94 74 74 100 100 100 74
Node
84 Ugylt) 09469 09229 0.705 03261 0.0721 0 0 0 1.1348
Successor 95 95 75 75 75 100 100 100 75
Node
85 tgs(t) 0.9509 09414 0.8169 0.4866 0.1586 0.0195 0 0 0.946
Successor] 76 76 76 76 76 76 100 100 76
Node
86 Ugs(l) 0.9652 09627 09016 0.6616 0.3067 0.0685 0 0 0.7572
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Successor] 77 77 77 71 77 77 100 100 77
Node
87 Ugs(t) 0.9772 09769 0.9548 0.818 0.5163 0.1902  0.026 0 0.5681
Successor; 78 78 78 78 78 78 78 100 78
Node
88 Ugs(t) 0.9892 0.9891 0.9851 0.93 0.7482 0.4295 0.1304 0 0.379
Successor 89 89 89 89 89 89 89 100 89
Node
89 Ugo(t) 0.9994 09988 1.0004 0.9874° 0.9289 0.7583 0456 0.1233 0.1897
Successor] 100 100 100 100 100 100 100 100 100
Node
90 Ugy(t) 0.9994 0.9988 1.0004 09874 0929 0.7584 0.4559 0.1231 0.1896
Successor] 100 100 100 100 100 100 100 100 100
Node
91 ugy(t) 0.9165 0.7587 0.3284 0.0564 0 0 0 0 1.7007
Successor 82 82 82 82 100 100 100 100 82
Node
92 gy(t) 0.9237 0.8229 0.4523 0.1102° 0.0101 0 0 0 1.5123
Successor] &3 83 83 83 83 100 100 100 83
Node
93 Ugs(t) 0.9387 0.8841 0.5791 0.2001 0.0273 0 0 0 1.3238
Successor 84 84 84 84 84 100 100 100 84
Node
94 Uoy(t) 0.9419 0.9175 0.71 0.3274 0.0717 0 0 0 1.1351
Successor] 85 85 85 85 85 100 100 100 85
Node
95 Uos(t) 09561 0947 (0.8226 0.4893 0.1582 0.0192 0 0 0.9463
Successor] 86 86 86 86 86 86 100 100 86
Node
96 Ugs(t) 0.9681 0.9657 0905 0.6642 0.3069 0.068 0 0 0.7572
Successor| 87 87 87 87 87 87 100 100 87
Node
97 Uos(t) 0.98 09797 09581 0.8214 0.5176 0.1894 0.0255 0 0.5681
Successor] 88 88 88 88 88 88 88 100 88
Node
93 Ugs(t) 0.9908 0.99 0.9862 09313 0.7493 04296 0.1299 0 0.3788
Successor] 99 89 89 89 89 89 89 100 89
Node
99 Ugolt) 0.9994 0.9988 1.0005 09877 09296 0.7586 0.4544 0.1216 0.1895
Successor] 100 100 100 100 100 100 100 100 100
Node
100 Ugo(t) 1 1 1 1 1 1 1 1 0
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Arrival in the First 100-Node Network
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APPENDIX G: SOTA PROBLEM TESTED WITH A 100-NODE NETWORK
WITH THE SECOND SET OF GAMMA DISTRIBUTIONS

The parameters in gamma distribution of link travel times over link ij are
n=0.2*log10(10-+4*i+6*))

and

alfa = log10(2+6*1+10%).

tl= t2= t3= t4= 5= t6= 7= t8= average-
SOTA 3.9193 2.2861 1.4387 0.8958 0.5247 = 0.2708 0.1072 0.0201 shortest-
path cost
From & next
Node nodes

u;(t) 0.4528 0.3484 0.1621 0.0422 0.0048 0.0003 0 0 - 1.6741
Successor

1 Node 12 12 12 12 12 12 unidentified unidentified 12

(1) 0.4598 0.3542 0.1648 0.0428 0.0048 0.0004 0 0 1.6743
Successor

2 Node 13 13 13 13 12 unidentified unidentified unidentified 12

us(t) 0.4661 0.3595 0.1673 0.0433 0.0048 0.0003 0 0 1.6744
Suceessor

3 Node 14 14 14 14 12 unidentified unidentified unidentified 12

u 1) 04717 0.3642 0.1694 0.0437 0.0048 0.0003 0 0 1.6745
Successor

4 Node 15 15 15 15 13 unidentified unidentified unidentified 13

us(t) 0.4768 0.3685 0.1714 0.0442 0.0048 0.0003 0 0 1.6747
Successor

5 Node 16 16 16 16 14 unidentified unidentified unidentified 14

ug(t) 0.4812 0.3722 0.1731 0.0445 0.0049 0.0003 0 0 1.6749
Successor

6 Node 17 17 17 17 15 unidentified unidentified unidentified 15

uAt) 0.485 0.3754 0.1746 0.0448 0.0049 0.0003 0 0 1.6751
Successor

7 Node 18 18 18 18 16 unidentified unidentified unidentified 16

ug(t) 0.4881 0.3779 0.1757  0.0451 0.0049 0.0003 0 0 1.6754
Suceessor

8 Node 19 19 19 19 17 unidentified unidentified unidentified 17

u4ft) 0.4902 0.3797 0.1766 0.0453 0.0049 0.0004 0 0 1.6756
Successor

9 Node 20 20 20 20 18 unidentified unidentified unidentified i8

700 0.4909 0.3803 0.1768 0.0453  0.005 0.0004 0 0 1.6759
Successor

10 Node 20 20 20 20 19 unidentified unidentified unidentified 19

uny® | 05053 03924 0.1823 0.0464 0.0051 0.0004 0 0 1.6752
Successor

11 Node 22 22 22 22 22 unidentified unidentified unidentified 12

u;{t) 0.5446 0.4591 0.2564 0.0838 0.0136 0.0007 0 0 1.4905
Successor

12 Node 23 23 23 23 23 unidentified unidentified unidentified 23

uy(t) 0.5484 04626 0.2584 0.0843 0.013¢6 0.0007 0 0 1.4906

13 |Successor 24 24 24 24 23 unidentified unidentified unidentified 23
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Node
u14%) 0.552 0.4659 0.2602 0.0845 0.0136 0.0007 0 0 1.4907
Successor
14 Node 25 25 25 25 23 unidentified unidentified unidentified 23
w;s(t) 0.5552 0.4688 0.2619 0.0853 0.0136 0.0007 0 0 1.4908
Successor
15 Node 26 26 26 26 24 unidentified unidentified unidentified 24
u16(t) 0.5581 0.4715 0.2634 0.0857 0.0137 0.0007 0 0 1.4909
Successer
16 Node 27 27 27 27 25 unidentified unidentified unidentified 25
uAt) 0.5605 0.4737 0.2646 0.086 0.0137 0.0007 0 0 1.4911
Successor
17 Node 28 28 28 28 26 unidentified unidentified unidentified 26
() | 05625 0.4755 0.2656 0.0863 0.0137 0.0007 0 0 1.4912
Successor
18 Node 29 29 29 29 27 unidentified unidentified unidentified 27
up(® | 0.5638 0.4766 0.2663 0.0865 0.0138 0.0007 0 0 1.4914
Successor
19 Node 30 30 30 30 28 unidentified unidentified unidentified 28
wilt) | 05642  0.477 0.2665 0.0865 0.0138 0.0007 0 0 1.4916
Successor
20 Node 30 30 30 30 29 unidentified unidentified unidentified 29,
w(® | 0.5381 0.4201 0.1948 0.0489 0.0052 0.0004 0 0 1676
Successor
21 Node 32 32 32 32 32 unidentified unidentified unidentified 12
up® | 05776 0.4894 0.2734 0.0883 0.014 0.0007 0 0 14912
Successor
22 Node 33 33 33 33 33 unidentified unidentified unidentified 23
#33(%) 0.6186 0.5577 0.366 0.1505 0.0336 0.0028 0 0 1.3059
Successor
23 Node 34 34 34 34 34 34 unidentified unidentified 34
() | 0.6213 0.5603 0.3677 0.1511 0.0336 0.0028 0 0 1.3059
Successor
24 Node 35 35 35 35 34 34 unidentified unidentified 34
uys(t) 0.6238 0.5627 0.3694 0.1517 0.0337 0.0028 0 0 1.306,
Successor
25 Node 36 36 36 36 36 34 unidentified unidentified 34
st} 0.626 0.5648 0.3708 0.1521 0.0337 0.0028 0 0 1.3061
Successor
26 Node 37 37 37 37 35 35 unidentified unidentified 35
uyAt) 0.6279- 0.5666 0.3721 0.1526 0.0337 0.0028 0 0. 1.3062
Successor
27 Node 38 38 38 38 36 36 unidentified unidentified 36
u35(t) 0.6293  0.568 0.373 0.1529 0.0338 0.0028 0 0 1.3063
Successor
28 Node 39 39 39 39 37 37 unidentified unidentified 37
134{1t) 0.6302 0.569 0.3736 0.1531 0.0338 0.0028 0 0 1.3064
Successor
29 Node 40 40 40 40 38 38 unidentified unidentified 38
34(0) 0.6305 0.5692 03738 0.1532 0.0339 0.0028 0 0 1.3065
Successor
30 Node 40 40 40 40 39 39 unidentified unidentified 39
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(¥ | 0.5613 0.4398 0.2036 0.0504 0.0053 0.0004 0 0 1677
Successor

31 Node 42 42 42 42 42 unidentified unidentified unidentified 22

u3(1) 0.6017 0.5115 0.2858 0.0915 0.0142 0.0007 0 0 1.4917
Successor

32 Node 43 43 43 43 43 unidentified unidentified unidentified 23

w33t 0.6427 0.5812 0.3819 0.1559 0.0343 0.0028 0 0 1.3063
Successor

33 Node 44 44 44 44 44 34 unidentified unidentified 34

u3,(2) 0.686 0.6478 0.4874 0.2491 0.0753 0.01 0.0003 0 1.1205
Successor

34 Node 45 45 45 45 45 45 unidentified unidentified 45

u3s(1) 0.688 0.6498 0489 0.2498 0.0754 0.01 0.0003 0 1.1205
Successor

35 Node 46 46 46 46 46 45 unidentified unidentified 45

i34(1) 0.6898 0.6517 0.4905 0.2505 0.0755 0.01 0.0003 0 1.1205
Successor

36 Node 47 47 47 47 47 45 unidentified unidentified 45

uzA{1) 0.6913 0.6532 0.4917 0.251 0.0755 0.01 0.0003 0 1.1206
Successor

37 Node 48 48 48 48 47 46 unidentified unidentified 46

wg(® | 0.6924 0.6543 0.4926 0.2514 0.0757 0.01 0.0003 0 1.1207
Successor

38 Node 49 49 49 49 49 47 unidentified unidentified 47

Uyt | 0.6932 0.6551 0.4932 0.2517 0.0756 0.01 0.0003 0 1.1208
Successor

39 Node 50 50 50 50 48 48 unidentified unidentified 48

u49(t) 0.6934 0.6553 0.4934 0.2518 0.0757 0.01 0.0003 0  1.1208
Successor

40 Node 50 50 50 50 49 49 unidentified unidentified 49

)] 0.5783 0.4542 0.21 0.0515 0.0053 0.0005 0 0 1.6778
Successor

41 Node 52 52 52 52 52 unidentified unidentified unidentified 32

uno(® | 06193 0.5278 0.2948 0.0937 0.0144 0.0007 0 0 1.4925
Successor

42 Node 53 53 53 53 53 unidentified unidentified unidentified 33

w45 0661 0.5991 0394  0.16 0.0348 0.0028 0 0 13067
Successor

43 Node 54 54 54 54 54 34 unidentified unidentified 34

w{t) | 07041 0.6662 0.5021 0.2557 0.0765 0.01 0.0003 0 1.1208
Successor

44 Node 55 55 55 55 55 45 unidentified unidentified 45

wys5(1) 0.7501 0.7295 0.6124 0.3812 0.1537 0.0316 0.0018 0 0.9345
Successor

45 Node 56 56 56 56 56 56 56 unidentified 56

w(® | 07516  0.731 0.6137 0.382 0.1539 0.0316 0.0018 0 0.9345
Successor

46 Node 57 57 57 57 57 56 56 unidentified 56

U4t 0.7529 0.7324 0.6149 0.3827 0.1541 0.0316 0.0018 0  0.9346
Successor

47 Node 58 58 58 58 58 56 56 unidentified 56

48 145(t) 0.7539 0.7334 0.6159 0.3832 0.1543 0.0316 0.0018 0 0.9346
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Successor

Node 59 59 59 59 59 57 57 unidentified 57

B 49(t) 0.7545 0.734 0.6164 0.3835 0.1543 0.0316 0.0018 0 09347
Successor

49 Node 60 60 60 60 59 58 58 unidentified 58

usp(t) 0.7547 0.7342 0.6166 0.3836 0.1543 0.0316 0.0018 0 09347
Successor

50 Node 60 60 60 60 59 59 59 unidentified 59

usi(t) 0.5906 0.4647 0.2146 0.0523 0.0053 0.0005 0 0 1.679
Successor

51 Node 62 62 62 62 42 61 unidentified unidentified 42

(1) 0.6321 0.5397 0.3014 0.0953 0.0145 0.0007 0 0  1.4932
Successor

52 Node 63 63 63 63 63 43 unidentified unidentified 43

Hs3(t) 0.6743 0.6122 0.4029 0.163 0.035 0.0028 0.0001 0.0001  1.3073
Successor

53 Node 64 64 64 64 64 44 unidentified unidentified 44

Us4(t) 0.718 0.6803 0.5134 0.2607 0.0773 0.01 0.0003 0 1.1211
Successor

54 Node 65 65 65 65 65 45 unidentified unidentified 45

uss5(t) 0.7637 0.7435 0.6251 0.3886 0.1557 0.0316 0.0018 0 0.9348
Successor

55 Node 66 66 66 66 66 56 56 unidentified 56

use(t) 0.8128 0.8035 0.7311 0.5391 0(.2844 0.0882 0.0101 0 0.7482
Successor

56 Node 67 67 67 67 67 67 67 unidentified 67|

usAt) 0.8138 0.8045 0.7322 0.5399 0.2847 0.0882 0.0101 0 0.7482
Successor

57 Node 68 68 68 68 68 67 67 unidentified 67

uss(t) | 0.8147 0.8054 0.733 0.5406 0.28349 0.0882 0.0101 0 0.7482
Successor

58 Node 69 69 69 69 69 67 67 unidentified 67

usoft) | 0.8152 0.806 0.7336  0.541 0.2851 0.0882 0.0101 0 0.7482
Successor

59 Node 70 70 70 70 70 68 68 unidentified 68

use(t) 0.8154 0.8061 0.7338 0.5411 0.2851 0.0882 0.0101 6 0.7483
Successor

60 Node 70 70 70 70 70 69 69 unidentified 69

Hgi(t) 0.5993 0.4721 02179 0.053 0.0053 0.0005 0 0 1.6799
Successor

61 Node 72 72 72 72 52 unidentified unidentified unidentified 52

ueft) | 0.6411 0.5481 0306 0.0963 0.0146 0.0007 0 0 1.4941
Sueccessor

62 Nede 73 73 73 73 73 unidentified unidentified unidentified 53

ugs(t) 0.6837 0.6214 04091 0.165 0.0352 0.0028 0.0001 0 1.3078
Successor

63 Node 74 74 74 74 74 54 unidentified unidentified 54

s | 07277 0.6902 0.5213 0.2643 0.0779 0.0099 0.0003 0  1.1216
Successor

64 Node 75 75 75 75 75 55 unidentified unidentified 55

ues® | 07738 0.7539 0.6346 0.3942 0.1572 0.0316 0.0018 0 0935
Successor

65 Node 76 76 76 76 76 56 56 unidentified 56
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U6(t) 0.8224 0.8134 0.7411 0.5465 0.2872 0.0884 0.0101 0  0.7484
Successor

66 Node 77 77 77 77 77 77 67 unidentified 67

A1) 0.8748 0.8715 0.836 0.7054 0.4719 0.2144 0.0476 0 0.5615
Successor

67 Node 78 78 78 78 78 78 78 unidentified 78

ues() | 0.8755 0.8721 0.8367 0.7061 0.4723 0.2144 0.0476 0 0.5615
Successor

68 Node 79 79 79 79 79 78 78 unidentified 78

ug9(t) 0.876 0.8726 0.8372 0.7065 0.4726 0.2145 0.0476 0 0.5615
Successor

69 Node 80 80 80 80 80 78 78 unidentified 78

wro(t) 0.8761 0.8728 0.8373 0.7067 0.4726 0.2145 0.0476 0 0.5615
Successor

70 Node 80 80 80 80 80 79 79 unidentified 79

u7{t) 0.6049 0.4769 0.22 0.0533 0.0054 0.0006 0 0 1.681
Successor

71 Node 82 82 82 82 62 81 unidentified unidentified 62,

u7:(%) 0.647 0.5535 0.309 0.097 0.0146 0.0007 0 0 1.4948
Successor

72 Node 83 83 83 83 83 63 unidentified unidentified 63

u73(1) 0.6898 0.6274 0.4132 0.1663 0.0353 0.0027 0.0001 0 1.3086
Successor

73 Node 84 84 84 84 84 64 unidentified unidentified 64

1740 0.7341 0.6966 0.5264 0.2665 0.0783 0.0099 0.0003 0 1.122
Successor

74 Node 85 85 85 85 85 65 unidentified unidentified 65

uzs(t) 0.7804 0.7608 0.6408 0.3978 0.1581 0.0316 0.0018 0 0.9354
Successor

75 Node 86 86 86 86 86 66 66 unidentified 66

Uy4(1) 0.8293 0.8205 0.7482 0.5517 0.2893 0.0886 0.0101 0 0.7485
Successor

76 Node 87 87 87 87 87 87 67 unidentified 67

u7At) 0.881 0.8778 0.8427 0.7115 0.4752 0.2149 0.0476 0  0.5616
Successor

77 Node 88 88 88 88 88 88 78 unidentified 78

175(t) 0.9368 0.9358 0.924 0.8574 0.6969 0.4447 0.1794 0.0204 0.3745
Successor

78 Node 89 89 89 89 89 89 89 89 89

(1) 0.9372 0.9362 0.9244 0.8577 0.6972 0.4447 0.1794 0.0204 0.3745
Successor

79 Node 90 90 90 90 90 89 89 89 89

ugelt) 0.9373 0.9363 0.9245 0.8579 0.6973 0.4448 0.1794 0.0203  0.3746
Suceessor

80 Node 90 90 90 90 90 89 89 89 89

ug() | 0.6079 0.4794 0.2211 0.0535 0.0053 0.0005 0 0 1.682
Successor

81 Node 92 92 92 92 72 unidentified unidentified unidentified 72

g(1) 0.6501 0.5564 0.3106 0.0974 0.0146 0.0007 0 0 14958
Suecessor

82 Node 93 93 93 93 73 unidentified unidentified unidentified 73

83 ug3(1) 0.6931 0.6306 0.4153 0.167 0.0354 0.0027 0.0001 0 1.3092
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Successor
Node 94 94 94 94 94 74 unidentified unidentified 74
Uz () 0.7375 0.7001 0.5292 0.2677 0.0785 0.0099 0.0003 0 1.1226
Successor
84 Node 95 95 95 95 95 75 unidentified unidentified 75
w5t 0.784 0.7644 0.6442 0.3997 0.1586 0.0316 0.0018 0 0.9358
Successor
85 Node 96 96 96 96 96 76 76 unidentified 76
Ugg(t) 0.8331 0.8244 0.752 0.5545 0.2904 0.0886 0.0101 0 0.7489
Successor
86 Node 97 97 97 97 97 87 77 unidentified 77
ugAt) 0.8849 0.8818 0.8469 0.7152 0.4774 0.2153 0.0475 0.0004 0.5618
Successor
87 Node 98 98 98 98 98 98 78 unidentified 78
#33(t) 0.9399 0.9389 0.9273 0.8608 0.6995 0.4453 0.1793 0.0203  0.3747
Successor
88 Node 99 99 99 99 99 99 89 89 89
Uge(t) 0.9997 0.9981 0.9986 0.9759 0.9133 0.7635 0.5257 0.2016 0.1874
Successor
89 Node 100 100 100 100 100 100 100 100 100,
Hgo(t) 0.9997 0.9981 0.9986 0.976 0.9134 0.7635 0.5256 0.2015 0.1874
Successor
90 Node 100 100 100 100 100 100 100 100 100
uo(h) | 06087 0.4801 0.2214 0.0535 0.0054 0.0005 0 0 1.6831
Successor
91 Node 92 92 92 92 82 unidentified unidentified unidentified 82
ug)(t) 0.651 0.5572 0311 0.0975 0.0147 0.0007 0 0 - 1.4966
Successor
92 Node 93 93 93 93 83 unidentified unidentified unidentified 83
Hy3(t) 0.694 0.6315 0.4159 0.1672 0.0354 0.0027 0.0001 0 1.31
Successor
93 Node 94 94 94 94 94 84 unidentified unidentified 84
U (1) 0.7384 0.7011 0.5299 0.268 0.0785 0.0099 0.0003 0 1.1232
Successor
94 Node 95 95 95 95 95 85 unidentified unidentified 85
uys(t) 0.785 0.7654 0.6451 0.4002 0.1587 0.0316 0.0018 0 0.9363
Sucecessor .
95 Node 96 96 96 96 96 86 86 unidentified 86
uos(t) | 0.8341 0.8254 0.753 0.5553 0.2906 0.0886 0.01 0 0.7492
Successor
96 Node 97 97 97 97 97 87 87 unidentified 87
ugrAt) 0.886 0.8829 0.848 0.7162 0.4779 0.2154 0.0473 0.0004  0.5621
Successor
97 Node 98 98 98 98 98 98 88 unidentified 88
o5(t) 0.941 0.94 09285 0.862 0.7004 0.4456 0.1791 0.0203  0.3748
Successor
98 Node 99 99 99 99 99 99 89 89 89
ige(t) 0.9997 0.9981 0.9987 0.9761 0.9135 0.7633 0.5246 0.2002 0.1875
Successor
99 Node 100 100 100 100 100 100 100 100 100
100 | #100(0) 1 1 1 1 1 1 1 1 0
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Figure G-1: Nine Clusters of the Maximum Probability Functions of On Time

Arrival in the Second 100-Node Network
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APPENDIX H: A MATLAB PROGRAM FOR SOLVING THE ARRIVING-
ON-TIME PROBLEM WITH EVALUATING CONVOLUTION INTEGRAL
VIA THE METHOD OF DIFFERENTIAL APPROXIMATION

function w = myode (alfa,init_t, dt, NumberOfPoints, u)
n = NumberOfPoints - 1;

w(l)=0;

v(1)=0;

o0

u = zerog{lol);

U = cnes{101};

t(1) = init_t;

for i = 1:100

t{i+1) = t(i) + dt;

end
for 1 = 1: n
dwl = v(i);
dvi = -2*alfa*v(i)-alfa®2*w(i)+alfa”2+u(i);

w{i+l) = w({i) + dwl * dt;

v{i+l) = v(i) + dvl * dt;

dw2 = v{i+l);

dv2 = -2%*alfa*v(i+1l)-alfa™2*w(i+l)+alfa™2*u{i+1);
dw = {(dwl+dw2)/2;

dv = (dvi+dv2)/2;

w(i+l) = w(i) + dw * dt;

v(i+l) = v(i) + dv * dt;

end

$pathgamma8rin.m
$clear all
$diary ('OutputB8rin.txt '}

zinput number of t at where the probabilities are to be evaluated
M = 500

$input the parameters of Gamma distribution for each link
alfa = [0 2 3 1; 2012; 3103; 123 0]
ns=1[0222;2022;2202; 222 0]

Yinput number of nodes N in this network
N=4

$the probability of gtarting at node N and
$arriving at node N in time t ig always 1
for t=1:M

u(l, t)=0;

u({2,t)=0;

u{3,t)=0;
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u(N,t)=1;
end

$Start Successive Approximation
for i=1:(N-1);
next node (i, :)=ones(1,M) *N;

end
for k=1:N
k
for i=1:(N-1)
i
max=u{i,:);
for j=1:N %j could be a set of possible next nodes from i
3
if (§ ~= 1)
[theu] =myodealfa(alfa(i,j),0,0.01,M,u(j,:));
for t=1:M
t;
i1f theu(t)>max(t)
max (t)=theu(t) ;
next_node(i,t)=3;
end
end
end
end
u(i, :)=max;
end
end

£=0:0.01:4.99

disp('the output every 0.1 sgtep')

for i=1:50
theTT (i) =t (i*10);
theUU(1,i)=u(l,1*10);
theUU(2,1)=u(2,1*10);
theUU(3,1)=u(3,1i*10);

end

theTT

theUU

plot{t,u(l,:), 'r-',t,u{2,:),'v-",t,u(3,:), 'b-")

tdiary off
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APPENDIX I: A MATLAB PROGRAM FOR FINDING THE OPTIMAL
ROUTING THROUGH THE 4-NODE NETWORK IN THE CASE OF
CORRELATED LINK TRAVEL TIMES

expected shortest path with correlation in travel time for a 4-
node network
% Yueyue Fan 10/9/01

o 4P

clear all
% input
N=4
conmnect = {1 121 0; 11 11; 1
tp = [0 1 4 999999; 1 0 2 5; 4
tg = 2*tp;
alfa = 2/3;
lamda = 1/3;
% 1nitialize
for 1 = 1:N-1
u{i) = 999999;

111; 011 1];
2 0 7; 9999%9 5 7 0];

v(i) = 999999;
end
u(N) = 0;
v{(N) = 0;

,

% ilteration
for k = 1:N
for 1 = 1:N-1
min_u({i) = 999999;
min v{i) = 999999;
for 4 = 1:N
if ({(j ~= i)& {(connect(i,j) ~= 0))
the u = tp(i,j) + alfa*u(j) + (l-alfa)*v(j);
the v = tg(i,j) + lamda*u(j) + (1-lamda)*v(j);
if (the u < min_u(i))

min u(i) = the_u;
the ju(i) = 3;
end
if the v < min_v (i)
min v (i) = the_v;
the jv(i)= 3;
end
end
end
end
% output
u{l:N-1) = min_u
v(1:N-1)= min v
the ju
the jv
end
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APPENDIX J: DETAILED COMPUTER OUTPUTS OF THE SHORTEST
PATH PROBLEM WITH CORRELATED LINK TRAVEL TIMES IN THE 9-
NODE NETWORK (INCLUDING INTERMEDIATE SUCCESSIVE
APPROXIMATIONS)

The sequence converges after the 4™ jteration.

k =
1
I =
Columns 1 through 6
9999999 9999999 9999999 9999999 4
1
Columns 7 through 9
9999999 8 0
Vo=
Columns 1 through &
9999999 9999999 9999999 99959999 8
2
Columns 7 through 9
9999999 16 0
the ju =
0 0 0 0 9 9 0 9
the jv =
0 0 0 0 9 9 0 9
k =
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u =
1.0e+006 *
Columns 1 through 7
0.0000 10.0000 0.0000 10.0000 0.0000 0.0000
0.0000
Columns 8 through 9
0.0000 0
v o=
1.0e+006 *
Columns 1 through 7
0.0000 10.0000 0.0000 10.0000 0.0000 0.0000
0.0000
Columns 8 through 9
0.0000 0
the_ju =
5 0 6 0 9 9 5 9
the jv =
5 0 6 0 9 9 5 o
k =
3
U =
Columns 1 through 7
9.3333 7.4444 4.3333 12.1111 4.0000 1.0000
9.3333

Columns 8 through 9

8.0000 0
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Columns 1 through 7

10.5556

Columns 8 through 9

vV o=
14.6667
14.6667
14.8889
the ju =
5
the jv =
5
k =
4
u =
Columns 1
9.3333
9.3333
Columns 8
8.0000
Vo=
Columns 1
13.5185
14 .5926

Columns 8

14.8889

0

through 7

7.4444

through 9

0

through 7

10.5556

through 9

0

7.6667

4.3333

7.6667

14.8889 8.0000
9 5 9
9 5 7
12.1111 4.0000
14.8889 8.0000

2.0000

1.0000

2.0000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226



the ju =
5
the jv =
2
k:
5
u =

Columns 1

9.3333
9.3333

Columns 8

8.0000

vV =
Columns 1
13.5185
14.5926
Columns 8
14.8395
the__ju =
5
the_jv =
2
k =

227

6 1 9 9 5 9
6 1 S 9 8 7
through 7
7.4444 4.3333 11.7284 4.0000 1.0000
through 9
0
through 7
10.5556 7.6667 14.1235 8.0000 2.0000
through 9
0
6 1 9 9 5 9
6 1 9 9 8 7
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u =
Columns 1 through 7
5.3333 7.4444 4.3333 11.7284 4.0000 1.0000
9.3333
Columns 8 through 9
8.0000 0
v =
Columns 1 through 7
13.5185 10.5556 7.6667 14.1235 8.0000 2.0000
14.5597
Columns 8 through 9
14.8395 0
the_ju =
5 3 6 1 9 9 5 9
the_jv =
2 3 6 1 9 9 8 7
k:
7
u =
Columns 1 through 7
9.3333 7.4444 4.3333 11.7284 4.0000 1.0000
9.3333
Columns 8 through 9
8.0000 0
VvV o=
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Columns 1 through 7

13.5185
14 .5597

Columns 8 through 9

14.8176

]

the_ju

cr
=g
®
L.
<
]

Columns 1

9.3333
9.3333

Columns 8

8.0000

Columns 1

13.5185
14.5450

Columns 8

14.8176

the ju =

5

10.5556 7.6667
0
6 1 9
6 1 9
through 7
7.4444 4.3333
through 9
4]
through 7
10.5556 7.6667
through 9
0
6 1 S

14.1235 8.0000 2.0000
9 5 9
9 8 7

11.7284 4.0000 1.0000

14.1235 8.0000 2.0000
9 5 9
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