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Abstract

This study presents a design methodology for multistory steel moment
framed buildings for the effects of earthquakes that is energy based. After past work
in the area is discussed, fundamentals of plastic analysis are presented. The central
thesis of the proposed method is to establish energy demands and size members in
steel moment frames, limiting plastic rotations to specified levels. An initial
example of a two story building is presented. The broader case study buildings used
in this effort are three story, nine story and twenty story steel structures designed as
part of the SAC Steel Program. Nonlinear dynamic time history analyses are
conducted for an ensemble of earthquake ground motions that are representative of
earthquakes having a 10% probability of exceedance in 50 years and those for so-
called Near Fault records. The distribution of hysteretic energy over the heights of
each building is presented. The energy design procedure is demonstrated for the
three case study buildings and verified by nonlinear time history analyses. Finally,
the hysteretic energy obtained from the multistory analyses is also compared with the
results from an equivalent generalized single degree of freedom analysis for each

building type to demonstrate its applicability.
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Chapter 1: Introduction

The current state of building design for earthquake loads is in a state of flux
and change. The 1997 Uniform Building Code (ICBO 1997) and subsequently the
2000 International Building Code (IBC 2000) have come out in recent years and
have changed the method of calculating code mandated earthquake forces
dramatically. Dynamic analysis is more common and even non-linear “pushover”
analyses are increasing in usage. “Performance based design” is a phrase widely
used today which, in a good sense, seeks to bring some uniformity and
standardization to the development of earthquake ground motion input and design of
building frames. However, none of these consider explicitly such important
elements as duration and input energy. Building codes do try to consider energy
dissipation in general terms and many detailing requirements attempt to mandate
ductile details with the intention of preventing collapse mechanisms. It seems that
the quantity most often focused on in building codes remains the peak ground
acceleration. Complying with a single parameter, such as peak acceleration, can
satisfy that single parameter, but may not provide for a prudent or safe design. In the
words of Uang and Bertero, “It looks as if any attempt to base seismic design of
structures on a design earthquake developed by only one engineering parameter is
doomed to fail” (Uang and Bertero 1988). Probably the single most ignored quantity

in earthquake design today is the issue of duration, which relates directly to input
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energy. The aim of this present work is to examine the role of energy in seismic
design and establish a design method incorporating energy concepts.

The organization of this dissertation is as follows: After a discussion of past
literature on seismic energy and a review of energy terms, plastic analysis of frames
is discussed with a suggested method to explicitly incorporate energy into the design
process. A simple example for a two story building frame is discussed. Three, nine,
and twenty story prototype building frames are then analyzed for a suite of ground
motions. A design procedure is then presented discussing each frame type with
confirming nonlinear computer analyses. Supporting data and discussions of
important design considerations are presented at each stage, ending with conclusions

and recommendations.
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Chapter 2: Literature and Historical Background

In the past, there have been remarkably few published works in the area of
energy based seismic design. Two very early papers that were truly prophetic
relative to the subject of earthquake energy are “The Physical Evaluation of Seismic
Destructiveness” by Hugo Benioff (Benioff 1934) and “A Mechanical Analyzer for
the Prediction of Earthquake Stresses” by M. A. Biot (Biot 1940). Benioff was
apparently one of the first to publish a concept that links the area under a response
vs. frequency curve (i.e. energy) to the destructiveness of earthquakes. Biot’s paper
describes the mechanical process of developing such curves or spectra. Biot makes
some far reaching statements, well ahead of his time, about the use of these curves,
the presence of soft first stories and the lengthening of the period of a building that
are considered in base-isolated buildings today. However, probably the foundational
paper in this area of energy-based design is “Limit Design of Structures to Resist
Earthquakes” by George Housner (Housner 1956). In it Housner describes the
fundamental methodology that has been used in seismic design for the past 40+
years. To quote from the abstract, “Structures having small amounts of damping
may develop stresses, when subjected to strong earthquake ground motion, that
correspond to relatively large lateral loads, 50%g to 100%g having been observed. If
plastic deformations are accepted, a safe design much less strong than required for
50%g can be made. The proposed method of limit-design is based on energy input
into a structure by recorded strong ground motions.” In these simple statements,

Housner has set the standard that buildings are still designed for up to this day.
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Simply put, it is not considered viable to design buildings to resist the maximum
possible earthquakes elastically. This is judged to be economically and politically
too extreme. It is a matter of the amount of risk that society is willing to accept as
initial costs versus future damage. If building structures can be allowed to enter into
the plastic range, while preserving life safety and preventing collapse, the
construction cost will be reduced. This philosophy has been the basis of the
Structural Engineers Association of California (SEAOC) Blue Book (SEAOC 1999)
over many years that has been, in turn, the basis for the seismic provisions for the
Uniform Building Code.

The critical question is how does one maintain elastic response for more
frequent earthquakes, yet insure against catastrophic collapse for extreme
earthquakes? In allowing buildings to experience plastic deformation, many other
factors must be considered. Considerations such as ductility, strain hardening,
strength degradation, damping, stress reversals and energy become important. As
recently as 1997, George Housner has said that the energy approach described in his
early paper “was clearly an appropriate direction in which to go, because the energy
dissipated by inelastic deformation is the key item in preventing a structure from
failing. People have tried to follow up on energy design, but it has not yet gotten
into the code design process because of the unknown properties that many structures
have. Designers now recognize the significance of inelastic deformation and energy
loss, but we have not yet reached the point where energy dissipation is explicitly
incorporated into the code.” (EERI 1997). In a similar vein, Fajfar and Krawinkler

4
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state in their preface “to this day, energy concepts have been ignored in earthquake
resistant design because of apparent complexities in the quantification of energy
demands and capacities and their implementation in the design process” (Fajfar and
Krawinkler 1992).

Others have done some limited work in this area of energy-based design
(Arya 1974, Berg and Thomaides 1960, Gluck 1974, McKeritt 1979, Muse 1960,
Soni 1977). John Blume wrote on the subject in a 1960 paper (Blume 1960).

George Housner even followed up his initial energy paper at the Second U.S.
Conference on Earthquake Engineering (Housner 1960). It seems, however, that
most are using a ductility factor concept to account for inelastic deformation.

Usually displacement ductility is considered. The considerations seem to either
create inelastic response spectra by means of the ductility factor or consider a ratio of
yield to maximum forces through the ductility factor. In other words, energy seems
to be mentioned in passing, but is not explicitly utilized.

One of the important works in the area of energy design is “Earthquake
Resistant Limit-State Design for Buildings” by Hiroshi Akiyama (Akiyama 1985). It
is undoubtedly the most rigorous treatment of the subject. He goes into great depth
of the analysis and treatment of hysteretic damping in order to achieve estimates of
energy. Two companion papers by Uang and Bertero (Uang and Bertero 1988) are
also very important in this area. The first discusses the implications of recent ground
motions studies and the other specifically discusses the use of energy in the area of

earthquake design. There is a discussion of a shake table simulation to consider

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



multidegree of freedom systems, but again the presentation is somewhat general. A
collection of papers for a workshop in nonlinear analysis of concrete buildings
addresses the use of energy in design (Fajfar and Krawinkler 1992). Recent papers
by Leelataviwat et al (Leelataviwat, Goel, and Stojadinovic 1999, 2002) attempt to
develop a design procedure based on energy. At the more recent Seventh U.S.
Conference on Earthquake Engineering (2002) several papers were presented on the
subject of seismic energy. Two papers described procedures for developing energy
spectra (Riddell and Garcia 2002, Chou and Uang 2002) for use in design. Although
there seems to be an increase in interest regarding this subject, viable design
methodologies are still waiting to be developed and thus the motivation for this

present work.
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Chapter 3: Energy Considerations in Seismic Design

In considering energy in relation to design, it is important to study each term
in the equations of motion and to try and evaluate its meaning and significance to the
design process. The basic equation of motion for a single degree of freedom system

subjected to base excitation is well known:

mx+cxt+kx=-mg 3.1
The means of obtaining the energy terms are, for each time step, to integrate each

term with respect to x.

[mxdx+ [exax+ [kndx = - [m g (3.2)

Uang and Bertero (Uang and Bertero 1988) discuss in some detail the use of the
terms “relative energy” and “absolute energy.” If one uses the “absolute”
displacement, the resulting energy is the “absolute energy.” Conversely, if one uses
the “relative” displacement, the resulting energy is the “relative energy.” As Uang
and Bertero explained, past researchers have been a bit remiss in using undefined
terms. The displacement in the above equation produces different values of energy if
it is the total absolute displacement versus the relative displacement between the
floor level and the ground. The two differences are in the kinetic energy term and
the input energy term, which are discussed below to be small. As will be discussed,
the focus of the proposed design procedure is on the inelastic or hysteretic energy

and is not affected by the above distinction.
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The terms in the above Equation 3.2 form the basis for the energy analysis.
While it is relatively straightforward to program the summation of each energy term
for each time step in a numerical analysis, the summing of the terms and the
generation of plots; a proper understanding of the meaning and significance of each
term merits some scrutiny. The energy of an inelastic single degree of freedom
system is made of five terms - the kinetic energy, the damping energy, the strain
energy plus the hysteretic energy, and the input energy. Each of these terms relates
to Equation 3.2 above. The kinetic energy is the energy generated by inertial forces
displacing as the frame moves, the first term in the equation. The damping energy is
the damping force multiplied by the displacement at each time step, the second term.

The strain energy is the elastic energy stored in an elastic resistance produced in a

spring (l/zlocz). Related to the spring term is the hysteretic energy or the inelastic
energy generated by a nonlinear resistance experiencing inelastic deformation.
These last two are embodied in the third term on the left side of Equation 3.2. The
input energy on the right side of the equation is the base shear times the ground
displacement. Theoretically, the input energy is the sum of the other four terms.
The four energy terms on the left side of the equation can be considered in two
groups. The kinetic plus strain energy terms are termed the stored energy. The
damping plus hysteretic energy terms are termed the dissipated energy. Therefore,
the stored energy plus the dissipated energy equals the total input energy.

A central question is, “How does each of these energy terms enter into the

design process?” Specifically, what part of these energy terms must be dissipated by

8
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the building frame? Housner states “at any instant the sum of the kinetic energy plus
strain energy plus energy dissipated through normal damping plus energy dissipated
through permanent deformation will be equal to the total energy input” (Housner
1956). However, later Housner states that the energy resisted by the building frame
must be equal to the elastic energy plus the plastic energy. Akiyama follows suit in
considering only the elastic plus plastic energy (Akiyama 1985). What becomes
clear is that in designing a frame to resist a given earthquake input, the inertial and
damping energies are not specifically resisted by the building frame. Kinetic energy
is produced by the inertial forces undergoing displacements. Damping energy is
generated by elements in a building that tend to dampen out free vibration, such as
office partitions, slip of connections, the exterior window wall, etc. These energies
are independent of member sizes and the building frame does not dissipate nor store
them. The elastic and inelastic strain energies are therefore the energies relevant to
design of the building frame. Figure 3.1 shows a typical plot of energy versus time.
Today several commercial software programs can generate plots such as this. One
can see the distribution of plastic energy between stories of a building. In reviewing
plots like this, several things are clear. One is that the kinetic and strain energies are
almost negligible. Therefore, it seems entirely appropriate that these two terms are
not significant in energy based design. Conversely, the two terms that contain the
vast majority of the energy are the damping and hysteretic energy. Therefore,
researchers from Akiyama to Goel (Akiyama 1985, Leelataviwat et al 1999) seem to

agree that the central term relevant to the design process is the hysteretic energy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This 1s the term that the building frame must be able to dissipate through inelastic

deformation and should therefore be central to the design methodology.

ENERGY PLOT FOR TWO STORY BUILDING
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The above discussion has been focused on a single degree of freedom system.
The extension to a multidegree of freedom system is fairly straightforward. The

terms in the equations of motion become matrices and the energy equation becomes:

[(Mlxds+ [[Clxds+ [[KIxdx=-[ (. [M]g)d (3.3)

11
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Chapter 4: Plastic Analysis and an Energy Design Method

4.1 Introduction to Plastic Analysis

Plastic analysis of frames seems to be going through a bit of a renaissance.
What was once a rather isolated field of academic structural analysis has recently
emerged as a very relevant tool in designing for earthquakes. It is believed that this
shift parallels the shift from considering the design process in an elastic manner to
considering it with a strength design orientation. The quantum shift in the 1997
Uniform Building Code was the transformation of the equivalent static loads from a
“working stress” design level to an “ultimate strength” design level. Even when the
code mandated static analysis was not used, elastic dynamic analyses were
traditionally used. In recent years there has been a corresponding shift in the
analysis tools used in engineering offices. Nonlinear static and dynamic analyses are
becoming more common, especially in the analysis of existing buildings. As our
engineering knowledge and codes have developed, our analysis tools have become
more sophisticated. While these tools have been present in universities for many
years, they are only relatively recently emerging into design practiée. It seems that
the analysis of existing buildings is the driving force behind these more sophisticated
forms of analysis largely because of economic considerations. With each earthquake
that occurs the Ievei of design forces tends to escalate in the minds of those
responsible for writing codes. Businesses with large real estate holdings or critical
facilities such as fire, police or even utility providers correctly conclude that they are

at risk and their buildings should be evaluated and possibly seismically upgraded.
12
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To upgrade a large holding of buildings to comply with the full current code level
forces can be cost prohibitive. It is, therefore, attractive to consider more site-
specific geotechnical data instead of a rote application of code level forces, plus to
consider the limit state of a building frame versus an elastic analysis. Likewise,
commercially available programs are now available which can accommodate these
more sophisticated analyses. Even more fundamentally, it is now gefting clearer in
the mind of the practicing engineer that building response in a major earthquake is a
dynamic event and will most certainly push the building frame into the inelastic
range. It is very appropriate to view the limit state of a steel frame for seismic
design in light of its ultimate capacity, the formulation of hinges, and energy
dissipation. The design of reinforced concrete has used a strength design approach
for many years. Steel is transitioning over to strength design (or load and resistance
factor design), as is masonry. Therefore, since the forces and allowable capacities of
materials are being considered at a limit state, it seems appropriate that plastic

analysis could become a tool for design practice.
4.2 Review of Plastic Analysis Fundamentals

As a brief review of plastic analysis methods, the limit state behavior of a
simple fixed-fixed beam will first be considered. As Figure 4.1 shows, a clamped
beam with a concentrated load at midspan can be analyzed by the method of virtual
work. The total external work is the factored load, P,, times the distance it travels, 8.

The internal work done is the plastic moment capacities times the plastic rotations at

13
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Figure 4.1 Beam Mechanism

each hinge. Since internal work equals external work,
P,*6=M,*0,+M_, *20,+M, *0,=4%*M 0, 4.1)
And, therefore, one can solve for the required M,
M,=P *5/4%9, (4.2)
Since 6 =1/2*0, (for small 6,),
M,=P,*1/8 (4.3)
Consider a simple one story frame as shown in Figure 4.2. It is assumed for
this illustration that the beam and columns have the same plastic moment capacity.
A horizontal load V is assumed with no vertical loads. The external work is again
V * A, A being the horizontal drift in this case. For the sway mechanism shown, the
internal work is 4*M , *¢,. Therefore, again V' *A=4*M 6, . However, in this

case, A=h* Qp . Therefore,

14
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M,=V*hi4 (4.4)

1t is desirable to introduce the energy demand into this process. Up to this
point, for a fixed-fixed beam or a simple one story moment frame, the required
plastic moment capacity of the members can be determined knowing the ultimate
factored or limit load. Conversely, one could solve for the limit load knowing the
plastic moment capacity of the members. In deriving these expressions, work
considerations were used. The external work was equated to the external load times
the distance it traveled. Also, the internal work was equal to the sum of the plastic
moment capacities multiplied by the plastic rotations of the beams and columns. Ina
frame, it is assumed that a prudent and safe design will comply with the strong
column-weak beam philosophy that attempts to restrict plastic hinging to the beams
rather than the more vulnerable columns. If a column hinge appears, it is desirable
that it should appear at the base as collapse is not necessarily induced. A key
element of this present work is to establish a design input energy and equate that to
the internal or external work capacities of the frame members. A suitable acceptance
criterion could be established in order to solve for the required member sizes
(Allahabadi 1987, Uang and Bertero 1988). As has been alluded to previously, this
is proposed to be the hysteretic energy. For a one story frame (or single degree of
freedom system), the process is greatly simplified. One can use either the external
work or internal work and equate this to the energy demand. Since the goal of the
design process is to establish the required member sizes, the internal work or plastic

moments times plastic rotation restraints seems more appropriate.

15
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Figure 4.2 Frame Mechanism

4.3 Multistory Building — Storywise Optimization
The next logical case to consider would be a multistory building frame. The

optimum design of large multistory frames becomes overly cumbersome with many
collapse mechanisms possible and many constraints feasible. A safe method of

piecewise design of such structures is therefore desirable and will be demonstrated

after Ridha and Wright (Ridha and Wright 1967). One story at a time is considered
starting with the uppermost story. The forces considered in the design of each story
include the story loads, the lateral loads for the upper stories, the column axial loads
from the upper columns, and moments equal to the plastic moment capacities of the
column directly above the story. A short part of the column above is included to

represent the existence of that column at its base joint, and to express the applied
16
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Figure 4.3 Multistory Frame and Isolated Story
moments by couples. The geometry and the loading considered for each story are
shown in Figure 4.3. The basic and combined mechanisms for the single story are
shown in Figure 4.4.

The safety of the resulting design is demonstrated by comparing the
mechanisms in the whole frame and the similar ones for a single story, and showing
that the internal work for the single story does not exceed that of the whole frame,
and, likewise, that the external work for the whole frame does not exceed that of the
single story.

The beam mechanisms of the considered story are shown in Figure 4.4a and
Figure 4.4b for the entire frame and single story. The internal work and external

work are identical for the two mechanisms.

17
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Figure 4.4 Mechanisms for Whole Frame and Single Story
The sway of the single story is shown in Figure 4.4c and 4.4d. The internal
work and the external work are identical for the two mechanisms.
The sway of all the stories above the story being considered is shown in
Figure 4.4e and 4.4f. 1t will be shown that the design is safe against failure by the
mechanism shown in Figure 4.5.
1. The design of the top story, shown in Figure 4.5 satisfies

Proot ¥1 *8, = 2% M (roof beam)* 8, +2* M ,(col2)* 8, (4.6)

18
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in which 2% M , (roof beam)™ 8, represents the internal work of the roof beam,
2% M ,(col2)* 8, represents the internal work of the columns, col2 meaning the

second story column, coll later meaning the first story column. It is important to
note that a strong column-weak beam mechanism has been assumed. The term

above that contains the beam plastic moment capacity could be the plastic moment of

the top of the column.
Froof  Mp(fbm) M, (beam)
Op
by My, (col2
p (col2) M p {col2)
j . . /’\ /‘\\

/

// \ L roof  ~ floor ’
Mp(colZ) Mp(colz) Mp(ﬂr bm) M pf (fir bm)
h2
3\ \
Mp(c012)\/‘ \/‘M p(°0]2)

TOP STORY LOWER STORY
MECHANISM MECHANISM

Figure 4.5 Separated Story Mechanisms
2. The design of the second story from the top, shown in Figure 4.5, satisfies

(Proog + Pong) ¥y ¥8, + 2% M (c0l2)* 6, =2* M ,(2nd flr beam)* &,
+2*M ,(coll)*8, 4.7)

This equation can be rewritten as:
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(Proog + Popa)* By *0,=2*M ,(2nd flr beam)* 8, +2% M ,(col})* 6,
~2*M ,(col2)*8, (4.8)
3. Adding equations 4.6 and 4.8 gives
Pt ¥ (B +1y)%0, + Py *hy %0, =2* M (if bm)* 6, +2* M ,(2nd)* 6,
+2*M ,(col)* 0, (4.9)

Equation 4.9 relates the internal work and the external work of the mechanism
shown in Figure 4.5. Thus the frame is safe against failure by the mechanism
represented by the sway of both stories.

4. By continuation of the above process it may be shown that the design
resulting from the storywise optimization is safe against failure by the mechanism
shown in Figure 4.4¢ or any mechanism involving the sway of a group of stories.

The interaction between adjacent stories is considered to provide a closer
representation of the conditions in the whole frame. Two stories are considered in
each step. The check for the upper story becomes that obtained from the optimum
solution with the story below. However, the lower story is combined with the story
below it and its design altered as the new pair of stories is optimized. The geometry
and the loading for each pair are determined as in the single story optimization.

Two further considerations are important at this juncture. Figure 4.6 shows
the similar mechanisms of a multistory, multispan building frame. The same logic
can be followed for a multispan frame with the piecewise story optimization.

Secondly, from Equation 4.9 the external work and internal work are separated on
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each side of the equation. Either side can be equated with the story hysteretic energy
demand to solve for the plastic moment capacities. More will be discussed relative

to the optimization of the required column and beam plastic moments.

[ [y ]
l_cll

(€}

Figure 4.6 Multispan, Multistory Building Frame Mechanisms

4.4 Damping and Hysteresis

One important distinction should be made relative to internal work and
energy. The procedure for simple plastic analysis is a static, monotonic process.

The procedure that has been selected here to establish the hysteretic energy demand
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is to perform a DRAIN2D+ inelastic time history analysis for a given earthquake
record or series of records. DRAIN2D+ is an enhanced version of the DRAIN2D
program. “The enhancement made in the DRAIN2D+ program includes capabilities
of performing constant stiffness implicit-explicit integration, static nonlinear
analysis, energy, mode shapes and periods, and structure section force computations”
(Tsai and Li 1994). Contrary to even later versions of DRAIN2D, DRAIN2D+
allows the user to assign the elements into energy groups. It is believed that this is
the only program currently available with this capability. This enhanced capability
may be the key in quantifying the energy demands that Housner and earlier
researchers have described as difficult to establish. The cumulative inelastic energy
is summed at each time step. Therefore, it is possible to group the columns and
beams in a building frame to obtain the story hysteretic energy. If the story energy
demand can be established, the internal work for that story can be compared in order
to solve for the required member sizes.

DRAIN2D+ is a two dimensional analysis program that can perform inelastic
time history analysis. Since this analysis can incorporate real earthquake records and
subject a given building frame to them, the energy developed is a result of random
oscillatory motion which includes many load reversals. Therefore, the totality of
hysteretic behavior is accounted for. On the other hand, a static plastic analysis will
only include the static, monotonic energy. It became obvious in the course of this
work that an adjustment needed to be made to correlate the static, monotonic energy

with the full dynamic energy. This is illustrated in Figure 4.7 for a simplistic, highly
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idealized hysteresis loop showing plastic moment capacity versus plastic rotations.
The shaded area represents the static pushover case. The initial, inclined and top
horizontal lines represent an elastic perfectly plastic bilinear representation of a static
pushover analysis. The shaded area represents the energy generated by that analysis.
However, the total enclosed area represents the total energy for a full cycle dynamic

analysis. Clearly, comparing the two energies must account for this difference and

MOMENT

4

MONOTONIC AREA

i

ROTATION

FULL CYCLE AREA

Figure 4.7 Hysteresis Loop
for the purposes of this work, a factor of 4 was taken to account for the ratio of these
areas i.e. energies. There is some disagreement in the literature regarding this factor.
One group has followed the method suggested by Newmark in relating an elastic
system to an inelastic system (Leclataviwat et al 1999). Both systems are assumed to
deflect to the same deflection and the plastic energy is equated to the equivalent

linear energy. This seems somewhat dated and simplistic. Akiyama and Kato argue
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through examination of a typical hysteresis loop that the ratio of the monotonic to
full cycle energy is two (Akiyama and Kato 1982). This seemed a bit
counterintuitive. Perhaps the best discussion on this subject was found in ATC 40
for the analysis of existing concrete buildings (ATC 1996). There is an analysis of
points on a typical hysteresis loop using a factor of four to relate monotonic to full
cycle areas. Although the methodology in ATC 40 is used in establishing inelastic
response spectra, the methodology of their argument seems the most reasonable that
was encountered. Then based on the assumed ductility of the existing structure,
factors to simulate the pinching of the hysteresis loops are proposed. The factors for
different types of building categories fall into a typical range of .75, .67, etc. to
provide an estimate of reduction in area or pinching of the hysteretic loops due to
less ductile frame components. FEMA 273 contains recommendations for the
analysis of existing buildings and also proposes a factor to account for pinching of
hysteresis loops based on performance category and framing type (FEMA-273
1997). The thrust of this present work is ductile steel moment frames and it is
concluded that the factor of four for well designed frames is appropriate. In fact, in
the application of the proposed design procedure the four factor produced reasonable
and consistent results that were confirmed by nonlinear dynamic analyses. Other
values were analyzed and found to give inconsistent results. It is also certainly
possible that in the analysis of existing buildings or other types of materials, that the

ATC 40 or FEMA 273 reduction factors could be considered.
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It should be said in passing that DRAIN-2D+ can incorporate strain
hardening and 2% was used in the present analysis. No strength degradation was
considered.

From the previous discussion, damping and hysteretic energy are the two key
energy demand terms. Therefore, establishing the damping accurately is key to this
process. DRAIN2D+ uses Rayleigh proportional damping, which is generally
perceived to be the best mathematical model for representing building damping. For
this method, [C] = a[M] + BIK], the damping matrix {C] uses proportions of the
mass [M] and stiffness [K] matrices. A preliminary data checking run is first made
with the percent of critical damping input for two periods. The result of the first run
gives the o and P factors which are then input for the full analysis. For the purposes
of this analysis of very regular essentially square buildings, 5% damping was used in
the first two modes to establish the o and § factors.

An excellent study of the energy dissipation of different damping models has
been made by Leger and Dussault (Leger and Dussault 1992). The effects of viscous
damping on seismic response are studied by varying the mathematical model
selected for its representation. They considered a damping representation using
mass-proportional, stiffness-proportional, or Rayleigh damping computed from
either the initial elastic or the tangent inelastic system properties. Various heights of
buildings were analyzed using records from the 1940 El Centro earthquake record,
the 1952 Taft record and the 1962 Parkfield record. The ratio of hysteretic versus

input energy was plotted by building height for various analyses. These analyses
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held certain parameters constant while varying other parameters such as damping
ratio and strain hardening to study the effect of their influence on energy dissipation.
Among their conclusions are that for periods less than .5 seconds, Rayleigh damping
should be used. For periods between .5 seconds and 1.5 seconds, Rayleigh
proportional damping using damping factors based on initial elastic properties is
recommended. The use of a tangent damping model is discussed in this range,
although this model is difficult to implement and typically not used in practice. For
building periods greater than 1.5 seconds, the seismic response is not affected by the
type of Rayleigh damping model used. Therefore, Rayleigh proportional damping is
verified to be the best model for the energy dissipation characteristics of damping
and this model has been used for the present study.

From the work of SAC (a consortium of the Structural Engineers Association
of Califomia, the Applied Technology Council, and the California Universities for
Research in Earthquake Engineering) and the work of many researchers on full scale
test components after the Northridge earthquake, it seems that a value of .025 to .030
radians is a consensus for the maximum allowed plastic rotation (FEMA Interim
Advisory No. 1 1997). In subsequent years, these figures have been modified. In
FEMA 350 the drift angle is used which is the vertical deflection in a test divided by
the length of the test beam piece. The drift angle is equated to the plastic rotation by
subtracting .01 from the drift angle. The interstory drift angle is affected by an
uncertainty factor, a variability factor, the performance level required, the type of

moment frame, and confidence level desired. For example, the allowable plastic
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rotations calculated based on FEMA 350 for the SAC three, nine, and twenty story
buildings discussed later in this document are .039, .038 and .017 radians,
respectively. This assumes a Collapse Prevention level of performance, a Special
Moment frame, a 95% confidence level, analyzed by a nonlinear dynamic procedure.

In this present work, a target plastic rotation of .030 radians has been used.
4.5 Minimum Weight Considerations

Previously it was discussed how one might consider a single story frame and
perform a design check based on energy. The procedure for a one bay, one story
building frame is relatively simple. It is desired to consider a multi story, multi-bay
building frame. When there are several unknown variables i.e. beams, columns at
the ends of the frame, columns interior to the frame; a minimum weight
methodology is proposed. Minimum weight design establishes a weight function
and minimizes it subject to constraint equations. The constraint equations are
established according to the possible collapse mechanisms. It is assumed, and it was
verified in this work, that vertical load mechanisms are not significant when
considering earthquake forces. However, in the top stories of multi-story building
frames, vertical load mechanisms should be checked versus the required moment
capacity from the lateral analysis. It was found that beyond the top story or two, the
required plastic beam moments for vertical load mechanisms are smaller than the
energy based moment demands. In fact, it was found that for the frames studied in
this work that were designed to the Uniform Building Code (UBC) that the vertical

load demand moments never required an increase in the beam sizes. Frames
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designed to the UBC are generally limited by drift requirements, in addition to some
practical considerations grouping columns and beams for several stories and,
consequently, vertical load mechanisms never governed for beam or columm sizes.

For a typical story in a multi-story building, collapse mechanisms must be
prevented. For lateral sway mechanisms, equations can be written for each assumed
mechanism — hinges in columns, hinges in beams. These equations become the
constraint equations. Then a weight function is established based on the dimensions
of the frame members. The weight function for a given member can be assumed to
be proportional to its plastic section modulus multiplied by the length of the member.
Therefore the total weight function for a story is the sum of the plastic section
moduli times the lengths of the respective members (Foulkes 1953).

Minimizing (or maximizing) a function subject to constraints is a well known
mathematical problem. In its most general form, the function fis such that,

Fmc o0 X, (4.10)

subject to the constraints,

ay %+ +ay,x, =b

Ay Xy o +a,,x, =b,

A Xy + o +a,,x, =b, (4.11)
x,20 (i=1...,n)
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In this general form, fis the objective function, x;’s are the design variables, and b;’s
are the constants. For our problem, f'is the weight function and the x;’s are the
plastic moments required. This is a Linear Programming problem that is readily
programmed into a computer. Three approaches to the solution will be
demonstrated. For finding the optimal solution of this problem, Basic Feasible

Solutions are the only solutions that need be considered. An n-tuple (x,,....... x.)

that satisfies all the constraints is called a feasible point or feasible solution. A
feasible solution is called an optimal solution if its objective function becomes a
maximum, compared with all values of fat all feasible solutions. Then a basic

feasible solution is one for which at least n - m of the variables x,,.......,x,, are zero.

In 1948 G. B. Dansig published an iterative method called the Simplex
Method for solving this problem in a systematic way. In this method, one proceeds
stepwise from one basic feasible solution to another in such a way that the objective
function f always increases in value. The method begins with an initial operation in
which a basic feasible solution is found and started with. Each further step consists
of three operations:

Operation Oy: Test for optimality,
Operation O,: Location of a better feasible solution,
Operation Os: Transition to a better solution.

The method will be demonstrated with a simple example from an earlier

paper (Rubenstein and Karagozian 1966). The first step is to establish any basic

feasible solution. This is done by dividing the variables xy, ... ....,X, into two classes

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by selecting m variables as basic variables, and the other » — m variables are those
which must be zero at a basic feasible solution; these are called nonbasic variables.
For the example problem, a one story frame is considered. The weight function is
f=20M, +16M _, (4.12)

M, being the required plastic moment capacity of the beam and M, being the plastic
moment capacity of the columns. From the Rubinstein paper, there are four
constraint equations,

M, =26 kft

M, 225 k-ft

M, + M, 217

M, +M, 212 (4.13)
Introduce variables x; and x4 (sometimes called slack variables) into the bottom two
equations listed above and consider them as basic variables. Make plastic moment
quantities, My, and M,, the nonbasic variables. Therefore,

M, + M, +x, =17

My +M, +x, =12 (4.14)
Solve for x; and x4,

x, =17-2M, - M,

x,=12-M,-M, (4.15)
In favorable cases such as these, values of the variables of a basic feasible solution

are obtained by setting the variables on the right side of the above equations equal to
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zero. Then , x3 = 17, x4 = 12 and My, =0, M, = 0. This solution yields both moments
equal to zero and is not satisfactory.

Operation Oy: Test for optimality. Find out whether all coefficients of £,
expressed as a function of the present non-basic variables, are negative or zero. If
this optimality criterion is satisfied, then the basic feasible solution is optimal. Then
f'cannot increase if positive values are assigned to the non-basic variables. For this
example, fis expressed in terms of the non-basic variables My, and M. Therefore,

f=20M, +16M,,

which is not optimal since 20 and 16 are both positive. The next operation is taken.
Operation O2: search for a better basic feasible solution. If the basic feasible
solution just tested is not optimal, go to a neighboring basic feasible solution for
which fis larger. To go to a neighboring basic feasible solution means to goto a
point at which another x; is zero; that is, to make an exchange. The variable x; which
will now be zero leaves the set of basic variables, and one other variable becomes a
basic variable instead. Consider a non-basic variable xi that has a positive
coefficient in /. Keep the other non-basic variables at zero. Determine the largest
increase Axg of xg such that all the old basic variables are still nonnegative; also list
the corresponding increase Af of £ From the above equations, for M, this looks as
follows:

%, =17-2M, ~M,; 0=17-2M,; AM, =8.5; Af =170
X, =12-M,-M,; 0=12-M,; AM, =6; Af =240 (4.16)
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Underline xg = My, in the equation that blocks any further increase in xg; i.e. the
maximum numerical value of the coefficient on My. Do this for every non-basic
variable xg whose coefficient in f, expressed as a function of the non-basic variables,
is positive. Therefore, also consider xg = M, underlining as before:

%, =17-2M,-M,; 0=17-M_; AM, =17; Af =272

Xy =12-M, -M_; 0=12-M_; AM_ =12; Af =192 4.17)
Operation O3: Exchange variables. Isolate both equations above where a variable
is underlined.

x3=17-2M, -M_; Af =170

X, =12-M, - M, ; A =192 (4.18)
Exchange that non-basic variable xz which gave the greatest Af with the basic
variable in the equation where xg is underlined. So M, and x4 are exchanged, so that
M, becomes basic and x4 non-basic. Solve the system for the new basic variables.

Therefore, by solving Equation 4.18 above for M, and inserting this M, into the first

equation above.
M, =12-M, -x,
X3=5~-M,+x, (4.19)

Perform Operations Oy, Oy, and O3 again. Substituting values above into the

weight expression, Equation 4.12,

=192 +4M, -16x, (4.20)
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By the optimality criterion, the present basic feasible solution is not optimal because
M, has a positive coefficient. For Operation O,, now consider xg =M,. From the
above expressions for M, and x3,

M, =12-M,~-x,; 0=12-M,; AM, =12, Af =240

Xy =5-M, +x,, 0=5-M,; AM, =5; Af =100 (4.21)
x4 need not be considered since it is negative in the last expression for f Write

expression for M, in Equation 4.21,

M =5-x +x (4.22)
b 3 4

and substitute into first equation above for M,

M, =7+ Xy + 2x4 (4.23)

Then,

f=20M, +16M, = 20(5 ~ x

b 3+x4)+16(7+x +2x )=212-4x, —52x

3 4 3 4

Which yields the solution with x; and x4 set equal to zero,

M, =5 k-ft; M, =7 k-ft; f =212, fbeing the minimum weight of the
function. Note that the other constraints are also satisfied by this solution, namely,
M,>6 and M, 225.

This problem can also be presented and solved graphically, as in the

following figure. The constraint equations are plotted on the graph. The shaded
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Figure 4.8 Minimum Weight Design Example Graph

area represents the region of permissible design solutions. Generally, a point at the
lower left of this region is going to be a minimum weight solution. One could
simply pick points off the graph and test for minimum weight. Three points could be
selected,

M, = 6; M, =6 and therefore /= 20Mb + 16Mc =216 or

My,=5,M,=7, /=212 or

My =25, M,=12; f=242.
Therefore, the middle point My, = 5; M, =7; f= 212 is the solution which is in
agreement with the mathematical treatment above.

A third method can be employed to solve minimum weight problems which
employs the Simplex Method as proposed by Rubenstein and Karagozian and it is
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required for more than two variables. The initial constraints are expressed as a series
of inequalities moving all terms over to the left side of the equations. Namely,

M, 26 k-ft becomes M, -620
M, =25 k-t becomes M,-2520

M, + M, 217 becomes M, +M,-1720

M, +M,212 becomes M,+M,-1220 (4.24)
0 1 -6
M 1 0 -2.5
which takes the form [a} " *t+§}>0. So [¢]= and §r}= . The
M, 2 1 -17
11 -12

following Figure 4.9 shows the procedure for the matrix solution using the Simplex
Method for this problem. The inequalities above are entered into the first four rows.
In rows 5 and 6, an identity matrix [b] of order 2 is stored (when 7 unknowns are
involved an identity matrix of order 7 is stored). Zeros are placed in the third or
indicator column to the right of the identity matrix. The position of these zeros will
contain My, and M, after the solution has been obtained. In the last row, the
coefficients of My and M, in the weight function are recorded with zeros in the third
or indicator column. The position of this lower right zero in the matrix will contain

the minimum weight corresponding to the optimum solution. Therefore the matrix

a. v

g 7
takes the general form: | b, 0 |, where [a] and {r} are as defined previously. [5]
c, O

J
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is the identity matrix described above and [c] contains the coefficient of the weight

function. Then the initial matrix for the solution becomes the left matrix below.

- - -~ - — —

0 1 -6 0 1 -6 -1 2 1

1 0 -25 S -5 6 1 -1 25

2 1 -17 1 O 0 1 0 0

1 1 =12 S =5 =35 0 1 O

1 0 0 S5 -5 85 i -1 5

0 1 0 0 0 -1 2 7
120 16 0 | 10 6 170 | L4 12 212
First iteration Second iteration Third iteration

Figure 4.9 Matrix Procedure — Minimum Weight Example
The steps for the solution by the Simplex Method are as follows:

1. Pick a row k with a negative number in the indicator column and compute the
ratios cj/ay; if the row picked is in matrix [a] or ¢/by; if it is in matrix [5].

2. Find the smallest value of ¢j/ay; or ¢j/by;. The corresponding element ax; or
by is called the “pivot element.” For example, in the initial matrix above
and picking row 3, then c¢i/a3; = 20/2 = 10, ¢y/as; = 16/1 = 16 and,
therefore, a3, is a pivotal element (the value of 2 is underlined in the first
column).

3. Divide each element of the first column in which the pivotal element ay is
positioned by ay, and record this new column as the first column in a new
table (column 1 in the second iteration matrix above). Use this column to
reduce to zero all other elements of row £ in the new table.
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4. To record a zero in row £ of any column » of the new table, multiply all the
elements of column / of the new table by element oy, and subtract from
column 7 of the preceding table. For example, column 3 in the second
iteration table above is obtained by multiplying each element of column 1
in the second table by (—17) and subtracting from column 3 of the initial
table.

5. Repeat steps 1 to 4 with the second table to generate a third one. The
solution is completed when no negative numbers appear in the indicator
column.

Therefore, in the third column of the last table it can be seen that the two values
opposite the initial b identity matrix in column 3 are 5 and 7. The value in the lower
right corner of the table is 212. These are the moment values and minimum weight
given in the previous results. It can be seen that the matrix operations mirror the
naming of basic and non-basic variables, the method of exchange and the test for
optimality that were performed in the more mathematical method. It can also be
seen that when 3 or 4 or 5 variables are sought, the mathematical solution can be
quite cumbersome. However, the matrix method can be readily programmed and
handle many variables.

This is precisely what was done to facilitate the design methodology using
energy for multistory buildings. The details of how the energy for each story is
obtained will be demonstrated in following pages, but the principle follows the
plastic design procedures and the Simplex procedure presented in this chapter.
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Microsoft Excel was used to generate a spreadsheet that automatically performs the
above mentioned matrix operations. A sample of this spreadsheet is presented below
in Figure 4.11 with a flow chart of its use in Figure 4.10. It was believed that Excel
allows great flexibility for interactive design, while at the same time providing a
great degree of sophistication in programming. Each cell in the spreadsheet contains
a large amount of logical evaluation operations based on the pivot element entered
from the previous step. An evaluation matrix is between each iteration to determine
the pivot element. The steps in the analysis are exactly the same as listed above for
the simple example. However, the division by the weight function coefficients (cj/ay
or ¢i/by) is performed automatically in the intermediate matrix. The pivot element
value and location are entered interactively in the space listed after the evaluation
matrix. The next matrix is computed automatically and the next evaluation matrix is
examined. The next pivot element value and location is entered after the next
evaluation matrix and so on until the values in the last indicator column are positive,
again as indicated in the steps for the example above. The Excel spreadsheet has a
capacity of five constraint equations and three unknowns. This can obviously be
expanded, but the amount of information in each cell in the spreadsheet must be
altered with care as each cell address must be accurate. The procedure follows the
same steps as the previous example; the weight in the lower right cell must increase
with each new matrix. Capacity is allowed for six iterations or new matricies. This
capacity was not exceeded for up to a twenty story building examined in this effort.

Further, the text of a typical cell of one of the derived Simplex matrices (matrix 2,
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matrix 3, etc.) is shown in Figure 4.12 to show the complexity of the logical
operations performed by the minimum weight subroutine. For each cell, thereis a
test to evaluate the location of the pivot element; if the cell under consideration is the
pivot cell there is one set of calculations and others if not. This spreadsheet aliows
for great flexibility in reviewing interactively the entire process in evaluating the

desired moments, the pivot elements and the minimum weight values.
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Figure 4.10 Flow Chart of Minimum Weight Subroutine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40



SOOLIJRJA] OM [, ISIL] — SUNNOIQNS JYSIA\ WINWITUIIA [99XH [P 2an31y

L b | 1’66022} |ve 2 4
0zl 0L- ot- L6Y'L10L |20 20 0
I0/AIQ# |2 I0/AIQ# 0 0 L 0
At iO/NIG# | IO/AIa# ¥ 0 0 0 b
10Ald Jo anfeA Jeul 0gL- £99999°L oL 16¥°L10L-12°0- Z'l 0
€ iO/AIQ# |2 8- 0 0 b G0~
10Ald jO MOY Jaju3 0zL- £99999°1 |01 /6Y'/L10L-|2°0- Z'l ¥'0
2 44 i0/AIQ# | i/AIQ# 0 I 0 0
10Ald JO uwnjo) Jeju3 iO/NIQ# |2 2 ev.'evse- |0 L Z
juswa|g 1onld pug pul XUje|\ puooag
L L L 0 0z} 92 2s
ozl iO/AIQ# | 10/AIQ# 0 b 0 0
i0/NIQ# |92 I0/NQ# 0 0 b 0
G I0/AIQ# | i0/AIQ# |25 0 0 0 L
10Ald JO eN[eA Jejuz 021~ 92 i0/A1Q# 0 b b 0
e i0/AIQ# |92 ¥01- 0 0 ! G'0-
10AId JO moy Jejul 0ZL- 92 i0/AIQ# 0 - b 0
£ ¥Z 92 9g 98%°'2808- |G L 2
10Ald JO UWNoQ Jau3 i0/AI0% |92 92 ev.L'€¥Se- j0 b 2
Juswa|3 10Ald iS| puld XU (e
101 = (enoqy 100 "Jul)dp Jeu3 805 = (8A0QY ‘|02 "IX8)d|A JeJUT LEEL = ABlauz AI0)S J8juy

Ai01g Ag ufiisaq Jybioan WNWiUAL Joj sulnolgng

41

Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner.



=SUM(IF($$8=1,A7/PIVOT1,0), IF(AND($J$8=2,81$10=1),
N7*AT+AT,JF(AND($I$8=2,81$10=2),-N7*A8+A7,IF(AND($1$8=2,$7$10=3),
N7*A9+A7,IF(AND($I$8=2,$J510=4),-N7*A 10+A7,IF(AND($$8=2,$7$10=5),
N7*A11+A7,0))))), IF(AND($J$8=2,$1$10=6),
N7*A12+A7,IF(AND($I$8=2,$J810=7),-N7*A13+A7, [F(AND($I$8=2,$7$10=8),
N7*A14+A7 IF(AND($7$8=2,$7510=9),-N7*A15+A7,0)))),
TF(AND($J$8=3,8J$10=1),-O7*A7+A7,IF(AND($J$8=3,$]$10=2),
-O7*A8+A7,IF(AND($I$8=3,$7$10=3),-07*A9%+A7,IF(AND($7$8=3,$1$10=4),
-07*A10+A7 IF(AND($J$8=3,$1810=5),-O7*A11+A7,0))))),
IF(AND($J$8=3,$1$10=6),-07*A12+A7,IF(AND($$8=3,$7$10=7),
-O7*A13+A7,IR(AND($7$8=3,$1510=8),-O7*A14+A7, IF(AND($J$8=3,$1$10=9),
OT*A15+A7,0))))

Figure 4.12 Contents of Sample Cell in Simplex Matrix

4.6 Summary of the Proposed Method

The following is a general summary of the proposed procedure outlined in
this chapter:
1. Ttis assumed that a code level analysis, or even a nonlinear pushover analysis,
has been performed on a given frame and initial member sizes have been
determined. If an existing building is the subject of study, then obviously one

uses the existing member sizes.
Ly}
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2. Anenergy demand is established for the building frame as a whole and then
distributed to each story such that there is a demand story by story. This will be
examined in later chapters of this document.

3. The member sizes are then determined by a minimum weight subroutine limiting

the plastic rotation to .03 radians.

Important issues to be explored and confirmed are the effect of vertical load,
maintaining a “strong column-weak beam” configuration, limiting overall drift, and
confirming if the resulting maximum plastic rotations are in fact less than .03
radians.

It could be noted that a possible starting point for the energy demand may be
to utilize an Energy Spectrum for a given earthquake record or records. The elastic

energy being £ =1/2mS, 2 S, being the spectral velocity and m being the mass of a

single degree of freedom structure. After Housner, elastic energy can be considered
as an upper bound of inelastic energy and has been used as such by several
researchers. Energy spectra are commonly plotted in a normalized form as E/m

versus period or frequency and could be easily adopted into this procedure.
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Chapter 5: Example of a Two Story Moment Frame Building

In order to test the outlined procedure it was desired to first look at a simple
example. A two story moment frame building was severely damaged by the
Northridge earthquake. The building, located in Santa Clarita, California, has
received considerable analysis and testing at USC (Anderson, Johnston, and
Partridge 1995). It was a two story steel framed building with lateral resistance
provided by single bay steel moment frames on each of its four sides. During the
Northridge earthquake in 1994 this building did not collapse but experienced severe,
irreparable damage. Several of its moment connections experienced the now well-
known column flange cracking. As the building was torn down, key beam-column
connections were cut out and brought to USC for full scale testing. A great deal of
analysis, both elastic and inelastic, was performed on the building in conjunction
with the full scale testing. Therefore, this building seemed a good test case to try this
new method of analysis.

The first story of the lateral resisting frames of the building experienced the
clear majority of the structural damage. The first story columns and beams
underwent significant inelastic excursions while the top story almost moved as a
rigid body. A representative building frame in the building was analyzed by inelastic
time history analysis using DRAIN 2D. Even though there are later versions of this
program, it was decided to utilize DRAIN 2D+ as modified by Tsai and Li at Taiwan
National University (Tsai and Li 1994). The procedure outlined previously was

followed. Starting with the “as designed” sizes, Frame #1 was analyzed.
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Several different approaches are presented in what follows. First, the
selected building frame was analyzed using the Uniform Building Code static force
procedure in effect at the time the building was designed. In reconstructing this
analysis, all of the stress ratios for all of the members were one or less. In other
words, the building complied with the building code when it was designed.
Additionally, a pushover analysis was performed using the FEMA 273 method as
shown in Figure 5.1. The FEMA method establishes a target displacement. Using
the program XLINEA (RAM XLINEA version 3.0), which uses DRAIN 2DX as its
core solver with various postprocessing functions, the frame was pushed over to the
target displacement. At the target displacement, all plastic rotations were within .03
radians with plastic hinges located in the beams. In other words, using a pushover
analysis in addition to a static code analysis would seemingly deem this frame
adequate.

Of interest, an elastic time history analysis was also performed using the
Newhall Fire Station record utilizing the computer program ETABS with its
STEELER postprocessor. Considering only lateral loads and checking the members
with the LRFD specification of the AISC (a load factor of 1.0 was used with the time
history), stress ratios of 4 to 5 resulted. This would seem to indicate that the member
sizes would need to be increased dramatically. However, a nonlinear analysis can be

utilized to produce a safe design.
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Figure 5.1 Two Story Building Analyzed with FEMA 273

Several inelastic analyses were performed on the building frame using the
Newhall Fire Station North record. The first presentation in what follows is to
perform a series of inelastic analyses in an iterative fashion to check the resulting
hysteretic energy for each story. The members are grouped into two energy story
groups. The energy demand is verified with each computer run. Secondly, the
building frame was analyzed for all twenty of the SAC records having a 10%
probability on exceedance in 50 years (10/50) (Somerville et all 1997). Then using
the mean plus one standard deviation hysteretic energy of the twenty records as the
energy demand, each story was checked and member sizes verified with the
minimum weight subroutine. The resulting frame sizes were checked by inelastic
analysis using records near the mean plus standard deviation energy. The resulting

maximum plastic rotations are presented. Finally, the building frame is designed to
46
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the energy demand from the SAC Near Fault records (Somerville et all 1997) ina
similar fashion. The results of the analyses of the 20 Near Fault SAC records for the
building frame are presented. The frame is checked for the twenty near fault records
to establish the mean hysteretic energy demand. The sizes are checked by the

minimum weight procedure and verified by inelastic time history analysis.
5.1 Design Procedure for a Single Bay Moment Frame

First, an iterative methodology is used with successive DRAIN 2D+ runs and
member sizes changing as indicated with each run.

Iteration #1: From the initial DRAIN 2D+ analysis with initial sizes, the
hysteretic energy for the first story is calculated as 3545 kip-inches. For the second
story, the resulting hysteretic energy is 667 kip-inches. Starting with the top story,
the existing beam and columns are W24x62 and W14x132, respectively. Assuming
a plastic sway mechanism for the second story similar to Figure 4.5, write an
equation for the internal work and equate this to the hysteretic energy demand. Limit
the plastic rotation to .03 radians.

Hysteretic Energy = 667 =[2M ,(col) + 2M ,(bm)}0, * 4
667 =[2M ,(col) +2M ,(bm)]*.03*4 (5.1)

The column plastic moment capacity will be made larger than the beam plastic
moment capacity to assure a “strong column-weak beam” configuration, however,

for this example assume one M, for the story. Therefore, the expression in the
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Figure 5.2 Two Story Moment Frame Building — Original Sizes

brackets above becomes 4M,,.

667

M, =——=1390"" =116" (5.2)
4%4%03

This is a low figure. The W14x132 column and W24x62 roof beam will be

maintained.

For the first story, the column is a W14x132 and the beam is a W24x76.

Again, write an equation setting the hysteretic energy demand equal to the internal

48
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work. The added complexity is that the column plastic moments from above will be
included as external forces for this lower story consistent with the mechanism shown
in Figure 4.5. The column plastic moment capacity from above is used:

HE =3545=[2M ,(col) + 2M ,(bm) - 2M ,(col above)]*4*.03
3545=[4M ,-2%116*12]*4*.03
3545 = 48M , -334

Mp = 8081"" = 673" (5.3)
The factor of 12 is included to produce required moment capacities in kip-feet, as is
commonly listed in the American Institute of Steel Construction Manual. Choose a
W14x145 column and a W24x94 floor beam.

Note that the second story members have been maintained and the first story
sizes have been increased.

Iteration #2 with revised sizes: From the second DRAIN 2D+ run, the
hysteretic energy demand for first story is 3613 kip-inches; the second story
hysteretic energy is 618 kip-inches. The 2“d story members are the same W14x132
column and W24x62 roof beam. Writing the same equations,

Hysteretic Energy = 618 =[2M (col) + 2M ,(bm)]*.03*4

_ 618
7 16*.03

=1288"" =107" (5.4)

Maintain the same sizes of a W14x132 column and a W24x62 roof beam.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the first story the member sizes have been revised to a W14x145 column
and a W24x94 floor beam. Again, write an equation for the internal work and

energy demand including the plastic column moments from above.

HE =3613=[2M ,(col)+2M ,(bm) - 2M ,(col above)]* 4*.03
3613 =[4M, —2%107*12]* 4% 03
3613 = 48M , 308

Mp = 8169 = 681" (5.5)
Maintain a W14x145 column and a W24x94 floor beam.

Observation: This is an iterative process. Large changes in member sizes are
not advised. The energy comes to equilibrium quickly. There must be a balance
between limiting plastic rotation, hinging in undesirable column locations, and
making the sizes practical. In Figure 5.5, the resulting maximum plastic rotations
from an analysis of the original frame subjected to the Newhall Fire Station North
record are presented. Figure 5.6 shows the resulting maximum plastic rotations for
the revised sizes above subjected to the Newhall Fire Station North record.

The second approach to this building frame is to subject it to all twenty of the
SAC 10/50 records. The energy distribution from these analyses is shown in Figure
5.3. The mean plus standard deviation hysteretic energy is used as the energy
demand for each story. The hysteretic energy demand for the top story is 512 kip-
inches. The energy demand for the bottom story is 3724 kip-inches. In order to use

the minimum weight subroutine, constraint equations are formulated. For the top
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story, first a sway mechanism assuming hinges in the top and bottom of the columns
is used. For this case,
HystereticEnergy(HE) = [4Mp(col)]*.03* 4
then, M ,(col) = HE /(.03*16*12) (5.6)
Therefore, with the energy demand of 512 kip-inches,
M ,(col) =889
In order to put this in the form to use in the Simplex Method, the first constraint
equation becomes,
M ,(col)~88920 (5.7)
Considering next the plastic mechanism in the top story with hinges at the bottom of
the columns and the ends of the beams,
HystereticEnergy = [2Mp(col) + 2Mp(bm)}*.03* 4
M ,(col)+ M ,(bm) = HE /(.03*8*12) (5.8)
With the energy demand = 512 kip-inches, the right side of the equation becomes
177.8. Moving this to the left side and formulating this in the Simplex form,
M ,(col)+ M ,(bm)-177820 (5.9)
There is another constraint equation that can be written and that is to insure that the
column moment capacity is always greater than the beam plastic moment capacity.
This is to produce a “strong column/weak beam” configuration to help prevent
collapse. Therefore, it can be said,
M ,(col) =2 M ,(bm) (5.10)
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or again in the Simplex form,

M, (col)— M ,(bm) 20 .1

The weight function for the top story is the plastic moments multiplied by the lengths
of the members. Therefore, for the top story, f=2%14.83"*M,e; + 32" *Mpm =

29.6TMeq + 32Myy. Consequently, for input into the Simplex algorithm, the initial

matrix becomes:
1 0 -889]
1 1 -1778
1 0 0
0 1 0
129.67 32 0

The required moment capacity from the Simplex subroutine is the same for both
beam and column at 86 kip-feet. This is less than the capacity of the eXisting
members, so no change is recommended.

For the bottom story and following Figure 4.5, an equation for hinges in the

columns only becomes

HE =[4M ,(col) ~2M ,(col abv)]*.03* 4
then, M ,(col) = HE /(16 * 03 * 12) = 5M ,(col abv)  (5.12)

Using HE = 3724 k-in and M) (col abv) = 86,

M ,(col) = 604

or M, (col)~ 604> 0 (5.13)
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For the second mechanism with hinges in the beams only,

HE =[2M ,(col)+2M ,(bm)—2M ,(col above)]*4*.03

M ,(coly+ M ,(bm)= HE /(.03*8*12) + M ,(col above) (5.14)
then, M ,(coly+ M ,(bm)=1379
M ,(col)+ M ,(bm)—-1379 20 (5.15)

Note that the calculated column plastic moment demand from above is used which is
different than was used previously. In all examples that follow, the calculated
column demand will be used, as opposed to that from the actual column size. With
the same constraint that the column plastic moment be equal to or greater than the

beam plastic moment, the input matrix into the Simplex algorithm becomes,

1 0 -604]

11 -1379

1 0 0

6 1 0
3525 32 0

The weight function is slightly different due to the different story height. From the
minimum weight subroutine, the required plastic moment for the beam and column is
690 kip-feet. Selecting a column slightly larger than the beam plastic moment
capacity, use a W14x145 column and a W27x84 beam. Vertical loads are not
considered in plastic mechanisms, but are included in the computer models as fixed
end forces. With these sizes then selected, a DRAIN 2D+ run is made checking with
the SAC records LA14 and LA16. These were records with approximately the same

energy demand as the mean plus standard deviation used in this procedure. The
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resulting maximum plastic rotations are shown in Figure 5.7, resulting in rotations
equal to or less than .03 radians.

Finally, the proposed energy method was applied to this frame using the SAC
Near Fault records to produce the energy demand. These records simulate a
phenomenon that has received much attention in recent years, that of faults in close
proximity to a given site that tend to possess a distinct “pulse.” More will be
discussed regarding these records later. The methodology is the same as above and
the results of these analyses are presented in Figure 5.4, 5.7, and 5.8, including the
inelastic time history runs for records near the mean energy. Note the mean energy
demand was used for the Near Fault records.

In summary, for the several analyses that were performed on the two story
building, the proposed energy design procedure has produced member sizes that

satisfy the rotational constraint with reasonable and consistent results.
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Chapter 6: Energy Analysis of a Three, Nine and Twenty
Story Building Frame

The energy design method has been described in detail for a simple two story
frame. It is desired to broaden the method to be applicable to a wide range of
buildings. SAC has analyzed several prototype buildings with ground motions
representative of Los Angeles. Three, nine, and twenty story buildings have been
examined. SAC has also developed a suite of ground motions for the Los Angeles
area based on scaled records of past earthquakes. The records have been scaled to
provide an equivalent level of risk or type. Records used in this study are those with
a 10% probability of exceedance in 50 years and for Near Fault sites. Other suites of
ground motions have been developed for a 50% probability of exceedance in 50
years, a 2% probability of exceedance in 50 years and for Soft Soil sites. Other
records with other values of risk or return period could obviously be used. The two
cited above were judged to be of most interest in this study. A schematic picture of
each building is shown in Figure 6.1. A single frame of each building was selected
and analyzed in a two dimensional DRAIN 2D+ model and subjected to all 20 of the
SAC time histories in each of the 10/50 and Near Fault categories. In this way, two
areas could be studied. One is the effect of the different ground motions. Second is
the variation of energy with the height of a building frame or by story. The
hysteretic energy can be somewhat fluid, based on the loading, mass, stiffness and
yielding properties of the frame members. It is intended to “envelope” the energies

for the given ground motions and perform a design check based on this envelope.
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The following pages show charts of hysteretic energies for each of the three building
heights. The hysteretic energy for each story is plotted versus the height of the
buildings. For each building, first the energy from the 10/50 records is shown, and
then those for the Near Fault records. It is very interesting to note the distribution of
energy as it “radiates” up the building frame. The three-story frame appears to be
quite predictable. Starting with the nine-story frame, the energy is seentobe ata
peak, not at the base, but somewhere several stories up. The twenty-story frame
verifies this phenomenon. The energy lines for each earthquake record are shown, in
addition to the mean and mean plus standard deviation (M+SD) shown in dotted
lines. Also very important are the magnitudes of the hysteretic energy for each
building type for the 10/50 records versus the Near Fault records. The hysteretic
energy demand for the Near Fault records is approximately 5 times that for the 10/50
records. This is very interesting in light of the Near Fault Factors currently in the
Uniform Building Code and International Building Code. These code factors vary
from about 1.5 to 2.0. Although these are modifications on force, the significant

energy increase suggests that they need to be reexamined based on these results.
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Chapter 7: Design of a Three, Nine and Twenty Story Building
Frame Using an Energy Method

The minimum weight design procedure will now be discussed as it applies to
each of the prototype SAC buildings. For each building frame, an energy demand is
taken from the preceding charts for the 10/50 SAC records and the Near Fault SAC
records. Each building frame is designed according to the energy demand for each
story and inelastic time histories are run in DRAIN 2D+ to verify the resulting

maximum plastic rotations.
7.1 Consideration of Vertical Loads

It might be said in passing that the inclusion of vertical loads has a minimal
effect on the hysteretic energy demands. DRAIN 2D+ runs were made with and
without vertical loads and the difference between the resulting energies was on the
order of a low single digit percentage.

However, to design a beam-column according to the American Institute of
Steel Construction (AISC) Manual it is necessary to include vertical load and
bending effects. To do this, the equations for beam-column interaction according to
the AISC Load and Resistance Factor Design (LRFD) were used (AISC 1997).
Similar equations appear in FEMA documents (FEMA 1997). The vertical loads for
each building type were first calculated and applicable load factors imposed. The
LRFD interaction equations depend upon P,/@P,. For Py/oP, less than .2 and from

Chapter H in the LRFD Manual,
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A + M, <1.0 (7.1
2¢an b n
From Chapter E,
¢, = .85 P, = A,F, F, =(658*)F, (7.2)
F
A, = Ly (7.3)
re \ E

These factors obviously will vary with the section selected. A is less than 1.5 in

these equations. If one rearranges the initial Equation 7.1 above,

M, <1.0- L (7.9
¢bM n 2¢c P ”
M, e (7.5)
1.0-—2
A 26D, )
The factor -~——}—~}3~—— becomes the increase factor on the required M, to account
10—~
7y %
for the reduction in section capacity due to vertical loads.
Likewise, for P,/oP, greater than .2,
L, +§ M, <1.0 (7.6)
¢cP n 9 ¢bM 7
3 M, <1.0- L, 7.7
9 ¢bM /] ¢c})ﬁ
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8,

M,z —“'9—"‘7—‘ (7.8)
¢,(1.0- ¢an)

Figures 7.1, 7.2, and 7.3 show the calculations to establish the modification factors to
account for vertical load effects for the prototype SAC buildings. This also insures
that the plastic moment capacity of the columns is larger than the beams to produce a
“strong column/weak beam” configuration. The columns in the figures that indicate
“Axial Load” are from the computer run for the record closest to the M+SD for each
building. They include factored dead and live loads plus the axial load from the
overturning due to the earthquake forces. The “increase factor” for columns is
essentially 1.20 to 1.30 for the three story and nine story buildings and is fairly
constant. The factors for these buildings were somewhat insensitive to the axial
load. They were approximately the same just considering dead load plus live load.
The effects of axial load become quite significant for the twenty story building. It
can be seen in Figure 7.3 that the necessary increase in the beam plastic moments
exceeds 2 and even 3 at the bottom stories. These factors rely on the magnitude of
the axial load, however, when analyzed with a Near Fault record they did not change
appreciably.

It is important to note that the prototype building frames are already designed
for the effects of secondary moments i"rom vertical loads (P-A analysis) as part of the

SAC analysis.
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