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ABSTRACT

Structural health monitoring (SHM) is the process of monitoring structural
health and identifying damage existence, severity and location. Clear needs for SHM
exist for various types of civil structures. Yet, the dominant method for monitoring
the health of civil structures is manual visual inspection. Global vibration-based
SHM techniques have been studied, but no approach has been well established and
accepted due to the limitations of ambient excitation for most civil structures and the
small sensitivity of global vibration characteristics to damage. One approach that
may alleviate some of the SHM difficulties for civil structures is using variable
stiffness and damping devices (VSDDs) to improve damage estimates. In addition to
providing near optimal structural control strategies for vibration mitigation, these
low-power and fail-safe devices can provide parametric changes to increase global
vibration measurement sensitivity to damage.

This dissertation proposes using VSDDs in structures to improve SHM, and
demonstrates the benefits analytically and experimentally in contrast with
conventional passive structures. A two degree-of-freedom (2DOF) bridge structure
model and two shear building models, are used as test beds to study the VSDD
approach with several identification algorithms. Using multiple channels of data
from multiple VSDD configurations, a least-squares error formulation is used to
estimate unknown structural parameters. The improvements in identification are

even more effective when adding higher effective levels of stiffness or damping to a
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structural system; the resulting VSDD forces are small due to low ambient
excitation. A 2DOF shear building laboratory structure is excited at the base using a
small shaking table and its parameters are identified; using VSDDs gives parameter
estimates that have better means and smaller variations than the conventional
structure approach. Finally, a controlled approach is introduced for SHM. A state
feedback gain matrix is chosen to minimize a cost function of parameter
identification error and control effort. This controlled approach is applied to the
2DOF bridge model where an ARMAX (Auto Regressive Moving Average

eXogenous disturbance) model is assumed to represent the controlled system.

XX
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1 INTRODUCTION

Detecting damage in structures at an early stage, before they deteriorate, is a
vital action to protect these structures. Generally, damage may be caused by acute
events, such as earthquakes and other natural disasters, or sometimes long-term
degradation from environmental effects and human use (and abuse). Whatever the
cause, structural damage can threaten both danger to human life and huge economic
losses. Consequently, a process that can detect damage as early as possible would be
extremely useful. The process of monitoring structural health and identifying damage
existence, severity and location is generally termed structural health monitoring
(SHM). Chang (1999) defined structural health monitoring to be an “autonomous
[system] for the continuous monitoring, inspection, and damage detection of [a
structure] with minimum labor involvement.”

The SHM process includes system identification as a major step. Thus, high
fidelity modeling and accurate response estimation are required. This would help to
monitor the changes of structural characteristics and response, and subsequently
predict the onset of failure or the expected remaining life. With identification at
different points in time — periodic or shortly after natural disasters — changes in
these characteristics may be monitored. With damage models, changes in structural
characteristics are used to predict damage severity and location. This study proposes

using smart, controllable passive devices such as Variable Stiffness and Damping
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devices (VSDDs) in structures to improve SHM, and demonstrates the benefits over

conventional passive structures.

1.1 SHM Benefits

Clear needs for SHM exist for both building and bridge structures. This is
reflected in the significant expenditures after the 1994 Northridge and the 1995 Kobe
earthquakes that went to inspecting joints of steel buildings for damage (Mita, 1999).
The problem lies in the fact that these joints are often hidden within a structure, such

as behind walls or encased in concrete (e.g. see Fig. 1-1 to Fig. 1-3).

Fig. 1-1. Beam-column connection damage
(Kiremedjian, 1999)

TN
B

S

Fig. 1-3. Plastic hinging at top
of column (Hall, 1995)

Fig. 1-2. Cracks through column flange and
extending into web (Hall, 1995)

Moreover, a recent report to the U.S. Congress by the Federal Highway

Administration (FHWA, 2002) indicates that approximately 25% of the bridges in
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the U.S. are rated as deficient. It is estimated that it will require 7 billion dollars per
year for the next two decades to rebuild or replace the bridge infrastructure in the
U.S. (Patten er al., 1999). All of these facts indicate the essential need for effective

SHM systems.

1.2 Difficulties of Conventional SHM Approaches

One approach to SHM is based on global vibration methods. In applying
these methods, many global vibration SHM studies assume a class of mathematical
models that may represent the actual structure. When considering damage detection,
studies have focused on identifying changes in modal parameters (natural
frequencies, mode shapes, and modal damping ratios) obtained from measured
vibration response. Recent state-of-the-art surveys of global vibration SHM
techniques applied to civil engineering are given by Doebling et al. (1996, 1998).

Unfortunately, no global technique has been well established and accepted as
an overall successful approach (Sanayei et al., 1998). Some explanatory reasons are
that (/) models cannot exactly predict the full behavior of real structures, (ii) periodic
environmental effects such as thermally-induced variations may mask the effects of
damage on global vibration characteristics, (iii) measurement noise can cause
significant variation from one test to the next, (iv) excitation is limited to ambient
sources for most civil structures, and (v) sensitivity of global vibration characteristics

to damage may be small. These can all lead to variations in the identified model
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parameters characteristics that are not due to true changes in the structure, raising
uncertainty in damage estimates (Vanik et al., 2000).

Using forced structural response strategies can overcome some of the
aforementioned problems. For example, forced response interrogation can be timed
to minimize periodic environmental effects from one test to the next, and may
provide greater excitation energy to decrease signal-to-noise ratios in comparison
with ambient excitation. For structures with embedded active vibration control
systems, the actuators can be used to enhance damage detection by tuning the
actuation signals to directly increase closed-loop damage sensitivity of global
vibration characteristics (Ray and Tian, 1999). However, large actuation devices are
not being used in a continuous manner for civil structures (except a few 1solated
cases in Asia) due to large power requirements, concerns about stability and so forth,
rendering them impractical for damage mitigation or SHM of civil structures.
Further, building and bridge owners typically prefer their structures not be
deliberately shaken, both for comfort of occupants and to lessen the chance of
risking further damage.

Given these limitations, one is restricted to analyzing response to ambient
excitation in order to perform SHM. Ambient excitation of structures takes a number
of forms (e.g., wind, traffic, waves and microtremors). The ambient excitation
approach has several advantages over approaches using forced vibration response.
For example, for low amplitude excitations typically experienced during ambient

vibration, most structural systems are well characterized with linear models. In
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addition, continuous ambient vibration tests can be performed at a very low cost.
However, the sensitivity of the measured signals to noise is a pressing question. Due
to small structural response under such ambient excitations, measurement signal-to-

noise ratios are small enough to make SHM difficult and results uncertain.

1.3 Use of VSDDs to Improve SHM

One approach that may help alleviate some of the SHM difficulties for civil
structures would be to use “smart” variable stiffness and damping devices (VSDDs)
— controllable, low-power and fail-safe passive devices that have received
significant study for vibration mitigation (Spencer and Sain, 1997, Symans and
Constantinou, 1999) — in a synergistic manner to provide internal parametric
changes to affect sensitivity to damage. Further, the integration of smart damping
and SHM can exploit, in a synergistic manner, the common aspects of both

technologies as seen in the flowcharts in Fig. 1-4.

Structural Health Monitoring Variable Stiffness/Damping

{ Excitation Structure]———}@ ( Excitation| Structure }——@

| Exciter; Controlied Energy
Dissipation
Health Indication

Controllers

Fig. 1-4. SHM and variable stiffness/damping flow charts
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VSDDs can adjust the behavior of a structure by real-time modification of
stiffness and damping at discrete points within the structure. By commanding
different behavior for each VSDD in a structure, multiple structural configurations
can be tested, each of which can be designed to increase the sensitivity to damage in
different portions of the structure (see Fig. 1-5). For example, consider a structure
with four stiffness devices with “on” and “off” settings; there are 2 or 16, distinct
configurations, each of which can provide some information about the structural
characteristics. The SHM is provided, then, with multiple signatures of the structure,
each of which can provide additional and, if done efficiently, mostly complementary

information.

Superior Reliability

damage / /(Pd:l.tza\

IETING e models response
lifetime o 5 >
indicators SHM modi VSDDs mitigation

Fig. 1-5. Mutual benefits of SHM and VSDDs

1.4 Overview of the VSDD/SHM Research Studied Herein

This study proposes using VSDDs in structures to improve SHM, and
demonstrates the benefits in contrast with conventional passive structures. The focus
herein is introducing a better approach for estimating the structural dynamic
parameters through the use of variable stiffness and damping devices. The study in
general can be divided into three parts. The first part is an analytical study of the
benefits of applying VSDDs in SHM. The second part studies the VSDD approach

benefits in SHM from an experimental perspective. The third part introduces a
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controlled monitoring approach for SHM. Since controllable stiffness/damping
devices are used to give the parametric changes necessary for improved monitoring,
the structural models must be control-oriented dynamic models — i.e., low-order
models that still capture most of the salient dynamic characteristics of a real
structure, particularly in locations of the controllable devices and in the frequency
ranges driven by the excitation.

Using different identification techniques in investigating the use of VSDDs
for SHM gives a broad view of how VSDDs are useful for SHM. In this study, the
VSDDs are investigated primarily in the context of parametric frequency domain
identification to determine structural parameters. Conventional parametric
identification in the frequency domain is described. The direct transfer function
polynomial identification 1is rather complex in the unknown parameters.
Consequently, one simplification discussed in the literature is explained. However, it
is shown that this simialiﬁcation can often lead to significant bias in parameter
estimates due to unwanted magnification of sensor noise effects. The numerical
examples herein use a fairly noisy signal to challenge the methods. Thus, an iterative
method is proposed that approximates the more direct method. In addition, one
subspace method, the Eigensystem Realization Algorithm (ERA) technique, is also
used in investigating the effectiveness of adding VSDD in improving the
identification of structural parameters. Moreover, time domain techniques, such as

the ARMAX model, are also used in the application of online controlled monitoring
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of the structures. These methods are applied to conventional structural identification,
assuming no VSDD within the structure, and then with VSDDs.

In the analytical part (Chapter 3), several structures are studied, with one or
more VSDDs installed. First, two degree-of-freedom (2DOF) and then six-degree-of-
freedom (6DOF) shear building structural models are studied, each in several
configurations: the 2DOF structure with a VSDD in (i) the first story, (i7) the second
story, and (iif) both stories, and the 6DOF building with VSDDs in the first three
stories. Then, a 2DOF bridge structure model (Erkus et al., 2002) 1s studied with a
VSDD attached in the bearing layer between the pier and the deck. In each case, the
VSDD is chosen to act as an ideal variable stiffness/damping device, with one of
several discrete stiffness/damping values. These devices are located in the structures
in the form of lateral bracing or, in the bridge example, in the isolation layer between
the bridge deck and the pier supports. Two sets of VSDD stiffness/damping levels
are studied: a lower level where the additional VSDD stiffness/damping is a fraction
of the corresponding story stiffness/damping; and a higher level where the additional
stiffness/damping is several times the order of the corresponding story
stiffness/damping.

As a result, it is shown that using the least squares approach on the modified
version of the error in transfer functions with known starting guesses, both using
VSDD and conventional identification techniques give parameter estimates. The
VSDD approach gives better means and rather smaller variation when the additional

stiffness/damping by a VSDD is only up to 40% of the corresponding story
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stiffness/damping. However, using higher levels of additional stiffness/damping, the
VSDD approach is found to significantly improve the mean estimates and reduce the
variations compared to the conventional structure approach. Using the ERA
technique, it is found that the root mean square error (RMSE) of the estimated
structure stiffnesses is considerably reduced, indicating more accurate results.

In the experimental part (Chapter 4), a 2DOF shear building structure,
composed of vertical aluminum plates and horizontal plexi-glass plates, with weak
springs elements in the diagonal bracing, is the test bed of the study. A small shake-
table excites the structure to replicate ambient ground motion. The ground
acceleration takes two forms: a band limited white noise and a filtered band limited
white noise. The effect of VSDDs in the structure is replicated by a set of stiff
springs that are added, in the diagonal bracing, in pairs. The number of pairs added
varies as per the assumed additional stiffness by a VSDD in the same story. The
outcome of the experimental study is found to validate the improvements exhibited
in the analytical study. The VSDD approach gives better means and smaller
variations, whereas the conventional structure approach indicated less confidence in
its results.

In the controlled SHM study (Chapter 5), the 2DOF bridge model is the test
bed. A quadratic cost function, that includes the error in the estimated system
parameters and the force exerted by the actuator, is defined. This cost function is
minimized by an optimal choice of control gains. The structure is assumed subjected

to traffic loads on its deck and to ambient ground excitation at the base of the pier,
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both represented by Gaussian noise. The actuator is assumed located in the isolator
layer between the deck and the pier. The identified parameters, in this case, are the
ARMAX model coefficients. Using the controlled SHM approach, the estimates of
the structural parameters are expected to rapidly converge to their correct values
faster than with the conventional structure approach.

Finally, the conclusions (Chapter 6) summarize the results and provide some

thoughts on future directions of this work.

10
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2 LITERATURE REVIEW

2.1 Introduction

The field of structural health monitoring has been quite rich with research in
the last few decades. The potential impact and benefits, both economic and societal,
of SHM have drawn the interest of many researchers. The results of relevant work in
the literature can be loosely broken down into several related categories; some
representative examples in each category are briefly highlighted in this chapter. First,
an overview of SHM approaches is given, followed by a discussion of modeling
issues. Then several classes of system identification methods are described. Finally,
variable stiffness and damping devices are reviewed, highlighting the various types

and some applications in which they have been studied.

2.2 Research on Structural Health Monitoring

Conventional research in SHM and damage detection for civil structures can
be roughly classified into local and global methods. Local SHM methods detect
changes in a structure in localized regions using, for example, ultrasound, x-ray,
piezoelectric devices and so forth. Unfortunately, local SHM methods have limited
range; e.g., piezoelectric devices have an effective range on the order of 30 cm
(Wang and Chang, 1999). For large civil structures, this would require a staggering
number of devices to monitor the entire structure. Furthermore, other local methods

usually require significant human involvement or are limited to areas where damage
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might be expected to occur. Consequently, service costs and errors in expected
damage locations limit the usefulness of such methods.

Conventional global vibration SHM methods (Doebling et al., 1996, 1998)
typically focus on identifying changes in modal parameters (e.g., natural frequencies,
mode shapes, and modal damping ratios) computed from measured vibration
response. With identification at different points in time — periodic or shortly after
natural disasters — changes in these characteristics may be monitored. However,
these approaches also have their difficulties. Global methods based on ambient
excitation are easy to implement as they require no additional excitation source, but
simply may not reveal certain defects since some damage mechanisms are only
strongly observable with narrowband excitation that ambient sources alone cannot
provide. Using known excitation with force actuators can overcome this difficulty
but, with a few exceptions in Asia, such active devices are not used in civil structures
for other purposes, so widespread permanent installation and use is unlikely. As a
result, no global technique has been well established and accepted as an overall
successful approach (Sanayei et al., 1998).

A benchmark study in structural health monitoring based on simulated
structural response data was developed by the joint IASC-ASCE task group on
structural health monitoring. This benchmark was created to facilitate a comparison
of various methods employed for the health monitoring of structures. The focus of
the problem is simulating acceleration response data from an analytical model of an

existing physical structure. This problem was addressed and studied by various
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researchers including Yuen et al. (2004), Hera and Hou (2004), Yang et al. (2004),
Bernal and Gunes (2004), Caicedo et al. (2004), Jobnson et al. (2004), Lam et al.
(2004) and Lus et al. (2004). This SHM benchmark problem, both the definition and
the application of a number of SHM methods to solve the problem, was published in
a special issue of the Journal of Engineering Mechanics in January 2004.

SHM approaches, particularly ones based on global vibration, often involve
some level of structural modeling and some type of system identification. The
modeling, which is described in more detail in the following section, whether
discrete or continuous in nature, has the difficulty that no model has the exact same
dynamic properties as the structure it is intended to represent. Fortunately, the small
motion levels typical of ambient vibration response can alleviate some of these
issues. In addition to various modeling approaches, there are numerous system
identification techniques, some of which are described in the third section of this

chapter.

2.3 Modeling of Structures for SHM

Picking the right model to represent a particular structure has been a critical
issue in the application of SHM. Capecchi and Vestroni (1999) state that, from a
theoretical point of view, it is convenient to distinguish between continuous and
discrete structures. Although all structures are in fact continuous, structures in which
concentrated masses are dominant are considered discrete in dynamic analysis. In the

context of damage identification, structures are considered as discrete 1f the damage
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cannot affect a portion smaller than the element. Thus frames, for example, are seen
as discrete structures whereas bridge decks and pipelines are usually considered
continuous. For continuous structures, it is conceptually correct to pose the problem
of localizing of a crack, because its position affects the entire dynamics. For a
discrete structure the problem is different; for example, it is not possible to precisely
determine where, in an element, a crack exists because the structure is modeled
discretely, with all characteristics of the element taken as a whole.

Despite extensive research in modeling, structural models cannot be expected
to perfectly predict the full behavior of the structure. For example, the model may
not account for effects such as thermally-induced daily variations and amplitude
dependence of modal parameters. Further, the available measured information is
restricted by limits on the amount of instrumentation. Nonlinearities are also a major
obstacle where the model becomes very difficult to implement and each nonlinear
system is a special case of its own. Moreover, while finite element modeling is
convenient, it often produces a dynamic model that neither is of modest order nor
accurately captures the dynamics of the built structure. Some reasons for the latter
are mismodeling of structural elements, differences between actual and modeled
material properties and dimensions, approximation in finite element derivations, and
poor convergence of the numerical model (Juang, 1994). For SHM, models of
extremely high order are of limited utility as often only a small number of the lower
modes of a structure can be identified with confidence (Beck et al, 2001).

Additionally, a real structure often has nonlinearities and higher frequency modes (or

14
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local vibration modes) that may be missed in the analytical modeling, leading to
what is generally termed “model error.” All of these difficulties make clear the
complexity of the modeling problem.

Using ambient excitation sources may simplify the modeling problem
necessary for SHM. Basically, the structural model can be considered linear (see,
e.g., Beck et al., 2001) since ambient excitations are small, and civil structures are
highly rigid, making them behave linearly under small external excitations. Linear
behavior and safety considerations have encouraged numerous researchers to adopt

ambient excitation approaches in SHM.

2.4 System Identification for SHM

As there is no unique and general mathematical definition for damage,
researchers tend to relate damage to changes in structural model parameters (such as
stiffness, damping, and masses) or, sometimes, modal parameters (such as natural
frequencies and mode shapes). This may be done by assigning damage indices that
are functions of the structural parameters or by evaluating the damage as the
reduction in one or more of these parameters. Accordingly, identifying these
parameters, whether modal or model parameters, is crucial for SHM application.
Unfortunately, these parameters cannot be easily or directly mathematically derived
from structural response but rather require extensive measurements and signal
processing that are generally termed system identification techniques. System

identification is the process of developing or improving a mathematical
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representation of a physical system using experimental data (Juang, 1994).
Thereafter, this model is used to estimate the properties of the dynamic system, such
as stiffness, damping, frequencies, etc., through computational techniques that use
the known input/output data.

System identification (SI) techniques to study the actual states of civil
engineering structures have received considerable attention in recent years, as
extensive full-scale experimental studies are expensive and often difficult to perform.
Identification techniques are divided into frequency domain and time domain
methods. Some of the key approaches among these techniques are discussed in the
next two sections, followed by brief summaries of ERA/subspace approaches and
some research in the literature that focuses specifically on structural model parameter

identification.

2.4.1 Frequency Domain Techniques

Frequency-domain identification (parametric/non-parametric) techniques in
control engineering and system identification gained relevance with stability and
design methods based on frequency response measurements (Juang, 1994). This
approach began with the technique known as transfer function (TF) analysis. Many
frequency dependent methods, such as the empirical transfer-function estimate
(ETFE), bootstrap methods, separable least squares methods, etc., are detailed by

Ljung (1999).
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One of the first methods that used the frequency domain data in the
identification of the transfer function of the system was attributed to the efforts by
Levy (1959). Levy’s method, for a single-input-single-output (SISO) system was
based upon expressing the TF in the form of frequency-dependent numerator A(jw)
and denominator B(jw) polynomials as H(jw) = B(jw)/ A(jw) where @ is any
frequency within the frequency range of interest in the specific problem. The
experimental TF H( jo) is obtained from input/output measured data. Thereafter,
Levy (1959) considered the difference between the experimental and theoretical TFs
as the error e(jow) =[B(jw)/ A( ja))]—ﬁ (jo); as minimizing the numerator of the
error IS computationally simpler, Levy wuses the simpler form
e(jo)=B(jw)— A( ja))I:I (jow). Finally, by differentiating, with respect to the
unknown coefficients of the polynomials B(jw) and A(jw), the norm of the sum of

the squares of the simplified error evaluated at known frequencies, a number of
equations (equivalent to the number of the unknown coefficients) are obtained. By

solving these equations, the coefficients of B(j®) and A(jw) are obtained.

2.4.2 Time Domain Techniques

Time domain methods became quite popular as well later in the last century
especially with the great advance of computational resources (Juang, 1994). Many
time domain identification techniques are explained thoroughly in Ljung (1999).
Some examples of time domain identification techniques are ARX, ARMA,

ARMAX, recursive least squares, etc. Also, Beck er al (1994a) presented a
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methodology for determining the modal characteristics of a structure from its
measured ambient vibration response at several instrumented locations, an extension
of the MODE-ID algorithm that uses a Bayesian probability framework to build a

linear model based on a classical normal modes approach (Beck, 1978; Beck, 1990).

2.4.3 ERA and Subspace Identification Techniques

One example of non-parametric time-domain methods is given by Juang and
Pappa (1985), which proposed a method called the Eigensystem Realization
Algorithm (ERA) for state-space identification from measured responses. This
method uses a singular-value decomposition to derive the basic formulation for a
minimum-order realization, which i1s an extended version of the Ho-Kalman
algorithm (Ho and Kalman, 1965). First, a block Hankel matrix is obtained by
arranging the pulse response data into the blocks of the Hankel matrix. By examining
the singular values of the Hankel matrix, the order of the system is determined. A
minimum-order realization (A, B, and C state-space matrices) is constructed using a
shifted block Hankel matrix. By finding the eigensolution of the realized state
matrix, modal damping ratios and frequencies may be obtained. The method then
evaluates coherence and co-linearity accuracy parameters to separate system modes
from noise modes. Based on these accuracy parameters, the system model is
determined and the Hankel matrix based on identified state space matrices is
reconstructed and compared with the measurement data.

Some modifications were later considered to improve the ERA method.

Juang et al. (1988) introduced a modification to the ERA algorithm, using response
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data correlations (ERA/DC) rather than the pulse response values in the formulation
of the Hankel matrix. The ERA/DC modified method was found to reduce
measurement noise bias without model over—speciﬁcaﬁon. However, when over-
specification is permitted and singular value decomposition is used to obtain a
minimum order realization, both old and modified methods give equally good results
for the data used.

Other subspace techniques have also been introduced and studied. Quek ez al.
(1999) introduced the Eigen-space Structural Identification technique for tall
buildings subjected to stationary ambient excitations and based on the forward
innovation model of the Kalman filter sequence. The method used QR
decomposition and Quotient Singular Value Decomposition (QSVD) techniques,
which are substitqted into a least-square formulation to obtain a non-unique solution.
Lus et al. (1999) presented an algorithm, based on the ERA and Observer/Kalman
filter Identification (OKID) approaches, that uses earthquake-induced ground
accelerations and structural vibrations as input/output data sets for identification

purposes.

2.4.4 Structural Model Parameter Identification

Having accurate and updated information about the condition of structures,
that may suffer hazardous shaking or loading, is crucial. This would save many lives
as well as a lot of money. Accordingly, identifying the structural model parameters
such as stiffness and damping is done to predict the behavior of structures under

expected future loadings. Significant research effort, therefore, has been directed to
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find methods to identify these parameters. Some methods, such as that by Takewaki
et al. (2000), have studied the simultaneous stiffness-damping identification of
building structures using limited earthquake records with higher intensity level.
Other research has been based on probabilistic methods related to Bayesian theory,
such as Vanik et al. (2000) and Katafygiotis and Yuen (2001).

The focus of model parameter identification to achieve SHM is usually on
local loss of stiffness as a proxy for local damage (Capecchi and Vestroni, 1999;
Caicedo et al., 2001; Elmasry and Johnson, 2002; Beck et al., 1994b, 2001). Some
research has sought to identify relationships between change in the modal
characteristics and changes in structural properties such as mass, stiffness, and
damping. For example, Bayesian methodologies have been used for identifying the
loss of structural stiffness, such as in Beck et al. (1994b, 2001). Bayes’ theorem is
invoked to develop a probability density function (PDF) for the model stiffness
parameters conditioned on modal data and the chosen class of models. This method
estimates the natural frequencies, damping ratios, and mode shape components of a
linear model with classical normal modes that best fits the measured data in a least
squares sense. Then, the parameters of the structural model are determined from the
computed modal data. The critical assumption is that the change in the structural
model implies changes in the parts of the real structure. As a first step, changes in the
values of the modal parameters are identified and, then as a second step, the

corresponding loss of stiffness within the structure is identified.
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In other previous research work focusing on identifying model parameters,
ambient vibration, such as ambient wind response measurements, is used for
excitation. Béliveau and Chater (1984) outlined a procedure to estimate modal
parameters (natural frequencies, and corresponding mode shapes) based on relatively
simple ambient wind response measurements of story accelerations. Also, several
other research studies have considered ambient vibration for identification of
stiffness parameters and, in turn, stiffness loss, such as Beck ef al. (1994, 2001), and
Caicedo et al. (2001). Ray and Tian (1999) introduced a method, intended for smart
structures embodying self-actuation and self-sensing capabilities, that enhances

modal frequency sensitivity to damage using feedback control.

2.5 Variable Stiffness/Damping Devices

“Smart” variable stiffness/damping devices (VSDDs), such as semiactive
dampers and controllable stiffness devices, are controllable passive devices that
potentially offer the reliability of passive devices, yet maintain the versatility and
adaptability of fully active systems (Dyke et al., 1996). These devices have received
significant study for mitigating various types of natural hazards for many types of
civil structures (Spencer and Sain, 1997; Symans and Constantinou, 1999) and are

useful for improving SHM.

2.5.1 Passive, Active and Semiactive Devices

Control devices for civil structures can be divided into four classes: passive,

active, semiactive and hybrid. Passive devices, generally, are those that have fixed
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properties and require no energy to function. In contrast, the controllable forces
generated by active devices are induced directly by energy (electrical or otherwise)
put into the device. Between passive and active are semiactive devices that are
passive devices with properties that are controllable by application of a small amount
of energy. Hybrid devices are combinations of the other three classes. Each of these
is discussed briefly in the following paragraphs, with greater detail on semiactive
devices.

Passive devices, such as visco-elastic dampers, viscous fluid dampers,
friction dampers, metallic yielding dampers, tuned mass dampers, and tuned liquid
dampers can partially absorb structural vibration energy and reduce response of the
structure (Soong and Dargush, 1997). These passive devices are relatively simple
and easily replaced. However, the effectiveness of passive devices is always limited
due to the narrow frequency ranges in which they tend to be effective, the
dependence of their force only on local information, and their inability to be
modified if goals (or design codes) change.

Active control devices, including active mass dampers and active tendon
systems, can reduce structural response more effectively than passive devices
because feedback and/or feed-forward control systems are used (Housner et al.,
1997). However, large power requirements during strong earthquakes and other
hazards hamper their implementation in practice. Further, active devices have the
ability to inject dynamic energy into the structural system; if done improperly, this

energy has the potential to cause further damage to the structure. In particular, this
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can occur when the assumptions used to design the control algorithm are incorrect
(e.g., linear control design models for a nonlinear structure) or do not have a proper
characterization of the structural dynamics.

In contrast, “smart” devices are controllable passive devices that require
small amounts of power to control certain passive behavior. Moreover, these devices
cannot add energy to the structural/mechanical system; rather, they may only
(temporarily) store and dissipate energy. Furthermore, they offer highly reliable
operation at a modest cost and can be viewed as fail-safe in that they default to

passive devices should the control hardware malfunction (Dyke et al., 1996).

2.5.2 Types of Semiactive Devices

Different types of semiactive devices have been developed recently. One type
is the semiactive damper, such as a variable-orifice damper, a controllable fluid
damper, or a controllable friction device. Variable-orifice dampers use an
electromechanical variable orifice to alter the resistance to flow in a conventional
hydraulic fluid. Controllable fluid dampers are passive hydraulic dampers containing
a fluid, such as magnetorheological (MR) or electrorheoiogical (ER) fluid, with
controllable yield stress (Spencer et al., 1997). Another type of semiactive device 1s
a semiactive stiffness device such those developed by Kobori and Takahashi (1993),
Patten et al. (1999) and Yang et al. (1996). They are on-off hydraulic devices
capable of providing mainly variable damping and limited variable stiffness
capability. Nagrarajaiah and Ma (1996) introduced a variable stiffness device that

consists of four sets of spring elements and telescoping tube elements; varying the
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position of the springs with a servomotor produces the continuously variable
stiffness.

Controllable fluid dampers use fluids with properties that can be modified by
some outside influence. MR or ER fluids change their properties in the presence of a
magnetic or electric field, respectively. These fluids were originally developed in the
1940s (Rabinow, 1948; Winslow, 1949), but few applications were foreseen at that
time. While ER fluids showed early promise for civil applications (see, e.g., Ehrgott
and Masri, 1992), most of the attention of the civil structural control community has
shifted to using MR fluids due to their insensitivity to impurities, relatively constant
behavior over a wide range of operating temperatures, and the low voltage required
to activate them (Spencer et al., 1997). MR dampers typically consist of a hydraulic
cylinder containing micron-sized magnetically polarizable particles suspended within
a fluid. In the presence of a magnetic field, the particles polarize and form particle
chains that resist fluid flow. By varying the magnetic field, the mechanical behavior
of an MR damper can be modulated. Since MR fluids can be changed from a viscous
fluid to a yielding semisolid within milliseconds and the resulting damping force can
be considerably large with a low-power requirement, MR dampers are applicable to

large civil engineering structures.

2.5.3 Applications of Semiactive Control to Civil Structures

The idea of incorporating variable stiffness/damping devices in civil
structures is not new. These devices have been extensively researched for base

isolation of structures and other structural control applications, particularly in the last
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decade. Some researchers have investigated MR dampers for control of seismic
response such as Dyke et al. (1996), Spencer et al. (1997, 1998) and Yang et al.
(2002). ER dampers were studied for seismic response control by Ehrgott and Masri
(1992), Gavin et al. (1996a,b), Makris et al. (1996), and others. Dyke et al. (1996)
proposed a clipped-optimal force control algorithm with acceleration feedback and
obtained excellent results when this algorithm was applied to control a seismically
excited three story scaled building model. Ribakov and Gluck (1999) investigated
the effectiveness of ER dampers in mitigating seismic response of frame structures.
They used an optimal linear passive control strategy to determine the viscous
constant of the ER damper and then use active control strategy to determine control
forces. Through numerical simulation they found that ER dampers could reduce the
peak displacement response of a seven-story frame structure up to 65 per cent
without increases in base shear forces and accelerations. In Xu ef al. (2000), the
force-displacement relationship of an MR damper or an ER damper, based on a
parallel-plate model, is first extended to include the flexibility of the chevron brace
supporting the smart damper. An extensive parameter study is performed in terms of
the maximum yield shear stress and the Newtonian viscosity of the fluid, the brace
stiffness, and the earthquake intensity. VSDDs are also studied for damping of stay
cables in suspended bridges. Johnson et al. (2003) investigated the potential of
improving the damping to these cables through the use of semiactive damping
devices. The response of the cables with a semiactive damper is found to be reduced

dramatically compared to the optimal passive linear viscous damper for typical
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damper configurations, thus demonstrating the efficacy of a semiactive damper for
absorbing cable vibratory energy. Varadarajan and Nagrarajaiah (2000) introduce the
use of a semiactive variable stiffness tuned mass damper to control the response of
tall buildings excited by wind. Using the semiactive variable stiffness tuned mass

damper is able to reduce the response similar to using an active tuned mass damper.

2.5.4 Experimental and Full Scale Studies Using Semiactive Devices

Since theoretical VSDD research has shown significant promise, researchers
have progressed to experimental work to apply semiactive control in real world
applications. Symans and Constantinou (1997) describe shaking table tests of a
multi-story scale-mode] building structure subjected to seismic excitation and
controlled by a semiactive fluid damper control system. The semiactive dampers
were installed in the lateral bracing of the structure and the mechanical properties of
the dampers were modified according to control algorithms that utilized the
measured response of the structure.

Patten et al. (1999) reported the first successful full scale demonstration of
semiactive control technology, installing an Intelligent Stiffener for Bridges (ISB) on
an in-service bridge on interstate I-35. The ISB consists of an otherwise generic
stiffener, retrofitted to a bridge, that is equipped with an adjustable hydraulic link
used to regulate the amount of stiffness (and damping) provided by the stiffener as
vehicles pass over the bridge. The ISB acts much like a muscle, sometimes flexing,

and other times remaining relaxed. A 12-volt automobile battery energizes the ISB.
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The performance of the system was assessed via

experimental results (see Fig. 2-1). The results indicate

Deflection [mim]

that the ISB system can add decades of service life to

an existing bridge.

The Kajima Corporation has developed a
semiactive hydraulic damper (SHD) and installed it in
an actual building (Kurata et al., 2000). This was the
first application of a semiactive seismic building
control system that continuously changes the device

damping coefficient. A forced vibration test was

carried out by an exciter with a maximum force of

Fig. 2-1. ISB vibration

100kN to investigate the building vibration absorber on I-35 bridge
(Patten ef al., 1999)

characteristics and to determine the control system

performance. As a result, the primary resonance frequency and the damping ratio of
a building (without semiactive hydraulic dampers) decreased as the exciting force
increased due to the influence of non-linear members such as plain concrete curtain
walls. After the eight semiactive hydraulic dampers were installed in the building,
the control system performance was identified by a response control test for steady-
state vibration. The elements that composed the semiactive damper system
demonstrated the specified performance and the whole system operated successfully,

considerably reducing the displacements at the roof of the structure.
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To prove the scalability of MR fluid technology to devices of size appropriate
for civil engineering applications, Yang et al. (2002) study an MR fluid damper with
a nominal maximum damping force of 200 kN (20 tons). For design purposes, two
quasi-static models, an axisymmetric and a parallel-plate model, are derived for the
force-velocity relationship of the MR damper, and both models give results that

closely match the experimental data.
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3 PARAMETRIC FREQUENCY DOMAIN AND

SUBSPACE IDENTIFICATION WITH VSDDs

3.1 Introduction

This chapter investigates, analytically, whether variable stiffness and
damping devices can be effectively used to identify local damage in structures. This
study is based on simulation of structural motion due to ambient excitation. Using
one or more variable stiffness and damping devices (VSDDs) to modify the
response, structural parameters are estimated. Two of the identification methods used
herein to identify the structure model parameters are based on a least-squares error
convergence technique and conventional frequency domain structural identification.
One simplification that is discussed in the literature (Levy, 1959) is used to
overcome the complexity of the direct transfer function polynomial identification.
An iterative method, based on Levy (1959), is proposed that approximates the more
direct exact method. Also, a modified frequency domain identification technique, the
INVFREQS-Least Squares method, is introduced. The derivation of the new method
is given and a numerical example is used to demonstrate the effectiveness of the
VSDD approach. Later in this chapter, it is shown that increasing the stiffness and
damping levels that are induced by the VSDDs in the structures gives even better
results compared to the conventional structure approach. In addition, the

Eigensystem Realization Algorithm (ERA), a subspace technique, is described and
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applied with the VSDD approach. The work in this chapter is adapted from
METRANS project 01-10 and 03-17 reports (Johnson and Elmasry, 2003, 2005a),

and from Elmasry and Johnson (2002, 2004a), and Johnson and Elmasry (2005b).

3.2 Least Squares Numerator Method (LSN)

One method of identifying parameters of a dynamical system is by
representing transfer functions (TFs) in the frequency domain as ratios of
polynomials. For simplicity, in the method developed herein, the input force is
assumed to be a single scalar force. The transfer functions generally are defined by
the ratio between the Fourier transforms of the output and input signals. For

example, consider a linear structural model of the form:
Mx+C,x+Kx=bf, y=Cx+C,x+df+v 3-1)

where M, K, and Cy are the mass, stiffness and damping matrices of the system, and
C,, C,, and d are the output influence matrices for the displacement, velocity and the

external force f. Similarly, one can write the model in state-space form
q=Aq+Bf, y=Cq+Df+v (3-2)

where ¢ = [xT XT]T is the state vector, A is the system state matrix that is

dependent on the mass, damping, and stiffness matrices, B is the input influence
matrix, C is the output influence matrix for the state vector q, and D is the direct
transmission matrix. In both equations, f is an excitation force, and y is a mx1

vector of measured responses corrupted by m x1 sensor noise vector v.
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Thus, the system can be represented by the mx1 transfer function matrix
H(j®). Each element of H(jw) can be expressed as the ratio of numerator and
denominator polynomials at a certain frequency with coefficients depending on
matrices in Egs. (3-1) or (3-2). It is important to state that, for many structural
systems, the denominator polynomial is the same for all transfer functions from the
same input. Therefore, identifying the denominator polynomial is crucial in defining
the system dynamics. The transfer function vector from a single input to the outputs

can, consequently, be written in polynomial ratio form as:
H(jw)=B(jo)/ A(jo) (3-3)

where B(jw) and A(jw) are the numerator and denominator polynomials, which may

be expanded as:

- Br (]a)) = b’:B‘l (ja))lig—l + b,:B_z (ja))ng—z +...+ bg (3 4)
A(jo) = (o) +a, (jo) ™ +...+a,

where the b’s and a’s are real coefficients.
Assuming that the transfer function has been determined experimentally
through standard procedures from measured input and output data (Bendat and

Piersol, 2000), the experimental transfer function matrix, expressed as
H(jo), i=1,2, ..., ny (3-5)

is known at various discrete frequency points. Therefore, the difference between the

estimated theoretical transfer function H(j®) and the actual experimental one ﬁ( jo)
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represents the error equation, which is then used in the parameter identification
process.

Parametric frequency-domain methods to match such theoretical and
measured transfer functions date back to the work of Levy (1959) who parameterized
a continuous-time TF by the coefficients of numerator and denominator polynomials.
One approach to this problem is to follow Levy’s procedure in determining the
polynomial coefficients and then, as a subsequent step, estimate structural
parameters such as mass, stiffness and damping coefficients. The latter could be
through an intermediate step of first identifying modal characteristics such as modal
frequency, damping ratio and mode shapes. In this study, however, the
parameterization method is chosen to be through the structural parameters directly
without calculating the coefficients of the polynomials as an intermediate step.

For a structure with one or more variable stiffness and/or damping devices,
the properties of which are determined through a local control system, some of the
coefficients in the transfer function polynomials may be adjusted through changing
the VSDD control algorithms. Thus, it is convenient to introduce notation to
explicitly state that the transfer function polynomials are functions of unknown
structural parameters, denoted by the »x1 vector 8, which is to be estimated, and of
known controllable structural parameters, denoted by the vector w. The transfer

function expression is thus modified to be:

H(jo)=B(j»,0,x)/ A(jw,0,x) (3-6)
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For a given structural model, the 4 and B polynomials are specific known functions
of their parameters. Substituting the measured TF in place of the exact TF leaves a
residual error e that may be defined by

B(jo,,8,k) - A(jo,,0,x)H(jo,, k)

(@, 0,x) = A(,,8,1)

3-7)

A conventional least-squares approach may be adopted to solve this problem,

forming a global square error

N ®)= Ze*(ja)i’O:K) -e(jo,,0,k) (3-8)

where (-)* denotes complex conjugate transpose. The optimal choice of the unknown
parameters is found by minimizing the square error — i.e., take the derivatives of the
square error Eq. (3-8) with respect to the elements of unknown vector 8, set them
equal to zero, and solve the resulting (generally nonlinear) equations. However, if
there are known controllable structural parameters in a structure with multiple
configurations — which is the case when using VSDDs, for example — the square
error equation can be augmented by using several combinations of known

controllable structural parameters

AZ(B)=ZZe'(jco,.,O,Kk)-e(jcol.,e,lck) (3-9)

where the symbol x, denotes one of multiple distinct sets of parametric changes to

the structure. The error is, then, minimized simultaneously for all configurations.
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Because the residual error e in Eq. (3-7) is a ratio of polynomials, the square
error in Eq. (3-9) is an extremely complex function of the unknown paranieters 0.
One simplification, which has been suggested and used in various studies in the
literature, is to recognize that the denominator of Eq. (3-7) is nonzero for systems
with damping, so minimizing the error in the numerator may prove sufficient (e.g.,

Levy, 1959). In other words, minimize the sum of the squares of:
€(j@,,0,k,) = B(j,,0,k,) ~ A(joo,, 0,10 H(joo, K, ) (3-10)

which is, herein, denoted the least-squares numerator (LSN) method.

3.3 Iterative-Least Squares Numerator Method (ILSN)

it may be shown that the alternate error measure Eq. (3-10) in the LSN
method, while simpler to solve, can be susceptible to strong bias from sensor noise in

frequency ranges where A(jw,,0,x) is large (i.e., often the case where H(jw) is

small). To avoid this bias, and to avoid the difficulty in solving the least-squares
problem for the standard error measure e, an iterative method, described as follows,

is adopted here using an approximation to the denominator in Eq. (3-7).

Assume that iteration / begins with a starting approximation 0 ., to the
unknown parameter vector 8 ; then, the denominator of Eq. (3-7) is estimated based
on the vector 6,_1 of estimated parameters and is no longer a function of these

unknowns, but only in the frequency and the multiple distinct sets of parametric

changes to the structure
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4,(jo, k) = A(jo,8,,,x,) (3-11)
The error is, thus, formed as:

B(jw,,0,k,) - A(jw,,0,x, H(jo, k)

e,(jo,,0,x,)= — (3-12)
A, (jo,, %)
And the squared error takes the form:
AO) =228 (jo,.8,%,)-& (jo,0,k,) (3-13)
ki

Minimizing the sum of the square error in Eq. (3-13) will result in an updated

estimate 0 , to the unknown parameter vector 0. The iterations continue until the

relative differences between 0 ., €lements and the corresponding elements of 0 , are

all below some threshold. (Absolute or relative norms of the difference could also be
used.) A maximum number of iterations may also be set to stop the algorithm in the
case that the iterative method does not converge (though this termination criterion
was not required in this study as convergence always occurred within a limited
number of iterations).

Whichever method is used to estimate the unknown parameter vector 0, the
use of multiple structural configurations, denoted by the different values of known
parameters k,, provided by VSDDs in a structure, can generate more accurate
estimates of O than with a comparable amount of data in a conventional structure

with a fixed w . This is demonstrated for some examples in the following section.
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3.4 Illustrative Examples

The least-squares identification with VSDDs may be applied to various types

of structures. In this study, both building and bridge models are considered.

3.4.1 Two Degree-of-Freedom Shear Building Model

Consider the two degree-of-
freedom (2DOF) shear building structure
model shown in Fig. 3-1. The structure is
subject to ambient excitation from the
ground. Absolute acceleration measurem-

ents of the ground, X, and of the two

floors, (%, +%,) and (¥, +%,), are used to

generate a 2x1 experimental transfer

function at n, distinct frequency values.

Fig. 3-1. 2DOF shear building model

(Note that x; herein denotes the displace-
ment of the i floor relative to the ground.)

Let the unknown parameter vector be given by:

T
ool koo 6 o m (3-14)
m, m, m m, m

A VSDD that can provide a number of distinct stiffness levels is located in

the first story of the structure. The VSDD is installed in the lateral bracing of the

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



structure and the mechanical properties of the dampers are modified according to
control algorithms, which utilize the measured response of the structure. The device
is considered ideal and semiactive; i.e., it can generate the desired forces with no
delay and with no actuator dynamics (Ramallo ef al., 2000).

Therefore, the known controllable vector is related to the stiffness of a

variable stiffness device such that

K=Kk =k, /m, (3-15)
or to the damping coefficient of a variable damping device

K =K = Cpeppy [ T (3-16)

Then, the theoretical transfer function can be written in the polynomial form as:

H(jo,«) = [ (3-17)

B,(jw,0,5) B,(jw,8,5)]
A(j,0,6)  A(jo,8,x)

Note that the denominator polynomial A(jw,0,x) is the same for all transfer

functions from the same input. The numerator and denominator polynomials can be

expressed as:

A(s,0,6) =5 +(0,+6, +0,0,)s> + (6, + 0, + 0,0, + 6,6, + k)s’
+(6,6, + 6,0, + k8,)s + (8,0, + x6,)
B,(5,0,) = (8,)s* + (6, + 6,0, + )s* + (6,0, + 6,0, + k8,)s + (6,0, + k6,)

B,(5,0,5) =(6,0,)s” + (6,6, + 0,0, + x80,)s + (6,0, +x6,)  (3-18)
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The parameter identification methods discussed in the previous section can then be
applied. The explicit reference to m; has dropped out of the transfer function
polynomials; it will be assumed here that of all the parameters, only m; is known.
Different VSDD locations in the structure are studied in order to investigate
the best way of using these VSDDs to improve SHM through better identification of
the structural model parameters. Accordingly, this example is also solved
considering a VSDD that can provide a number of distinct stiffness levels located in
the second story of the structure and in both stories as well, as shown in Fig. 3-2 and
Fig. 3-3. This will generally give an idea of how VSDDs should be distributed in a
structure for good SHM. In all cases, the VSDD is chosen to act as an ideal variable
stiffness/damping device, with one of several discrete stiffness/damping values.

Some examples from simulation are used to demonstrate the proposed method.

Fig. 3-2. VSDD in 2™ story of Fig. 3-3. VSDDs in both stories of 2DOF
2DOF model model
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This 2DOF model system identification was solved for the variable stiffness
VSDD and for a conventional structure (no VSDD). In the simulations, each
installed VSDD is assumed to provide additional stiffness at five discrete levels: 0%,

10%, 20%, 30% and 40% of the stiffness of the story at which it is located.

3.4.2 Two Degree-of-Freedom Pier-Deck Bridge Model

Consider a bridge structure such as
the one shown in Fig. 3-4, which is a typical
elevated highway bridge that consists of
decks, bearings, and piers. The behavior of
the bridge deck and piers, with a bearing
between them, while complex, can be well
approximated with the simple 2DOF model

shown in Fig. 3-5¢. This 2DOF model may

be used to represent a passive system with ~ Fig. 3-4. General view during

construction of high occupancy vehicle
rubber bearings if the girder is continuous (HOV) lanes (ADOT, 2001)

with one pier and one bearing, or for several piers and bearings with identical
properties. Also, this model can be used for VSDD systems if the devices are
attached as shown in Fig. 3-6 and commanded to provide identical force levels. It is

assumed in this problem that the pier mass m, is known.

The theoretical polynomial transfer function matrix H(jw,x) is defined

similarly to Eq. (3-17) where, here, B,(jw,0,x)/A(j®,8,x) is the transfer function
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between the ground acceleration and the absolute acceleration of the pier and
B, (jo,0,x)/ A(jo,8,x) is the transfer function between the ground acceleration and
that of the bridge deck. The unknown parameter vector 8 is defined similarly to
Eq. (3-14). The vector of known parameters i denotes the additional stiffness added
through the VSDD connected between the pier and the deck. In the simulations, the
installed VSDD is assumed to provide additional stiffness at five discrete levels: 0%,

10%, 20%, 30% and 40% of the stiffness of the deck. A second related example will

use five similar discrete levels of VSDD damping instead of stiffness.

X2
Deck
my

Bearing
X3

my

ier kl,Cl

Fig. 3-5. 2DOF bridge model

% Deck

AL AELL LA AT
Fig. 3-6. Placement of VSDDs in bridge
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3.4.3 Six Degree-of-Freedom Shear Building Model

To demonstrate that these methods can be extended to more complex
problems, a six degree-of-freedom shear building model is also studied. The shear
building model is found to be a good representation for general problems that may
exist in multi-story (or multi-degree-of-freedom (MDOF)) structures. This 6DOF
model System identification was solved for the variable stiffness VSDD and the
conventional structure (no VSDDs). In simulation, each installed VSDD is assumed
to provide additional stiffness at four discrete levels: 0%, 10%, 20%, and 30% of the
stiffness in the story at which it is located. The VSDD devices included in the
structure are also considered ideal; i.e., they can generate the desired forces with no
delay and with no actuator dynamics. In this problem, the VSDDs are considered to

be located in the first three stories only, as shown in Fig. 3-7.
X6

Fig. 3-7. 6DOF model with VSDDs in first three stories
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In this example, the masses are assumed known a priori whereas the previous
2DOF model assumed knowledge only of the first mass. The unknown parameter
vector 8 for the six degree-of-freedom model is, then, a set of unknown stiffness £;

and damping c¢; coefficients as follows:

0=k k &k k k k ¢ ¢ ¢ ¢ ¢ ¢l (3-19)

Finally, the solution for the parameters was done using the MATLAB® software and
using the function £solve() for the solution of the non-linear equations in the
unknown parameters 0. It is important to note that applying the ILSN method for
estimation of parameters in case of higher degrees of freedom (such as the 6DOF

model) was very challenging in terms computational speed and memory.

3.5 NUMERICAL EXAMPLES AND ANALYSIS OF RESULTS

To demonstrate the benefits and the advantages of testing a structure with

VSDDs configured in multiple settings, some numerical examples are considered.

3.5.1 Two Degree-of-Freedom Shear Building Model

First, a numerical example of the 2DOF structure is studied. For simplicity,
the floor masses and story stiffnesses are taken to be unity in the numerical model.
The story damping coefficients are set to 0.05, which results in 1.5% and 4.0%
modal damping in the two modes, respectively. The single VSDD is assumed to
provide additional stiffness in the story at which it is located with five discrete

stiffness levels, corresponding to an additional 0%, 10%, 20%, 30% and 40%
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stiffness; i.e., k1 = 0.0, ix=10.1, ..., x5 = 0.4. The primary comparison reported here
is the difference between:
e The VSDD approach, using five experimental transfer function matrices,
one per VSDD stiffness level, and
e The conventional structure approach with x=0.0 — to make for a fair
comparison using the same amount of data, the conventional approach uses
a square error based on five separate experimental transfer functions.

The experimental transfer functions are generated in MATLAB® by using the
exact transfer functions plus the Fourier transform of a Gaussian pulse process that
would be typical of band-limited Gaussian white sensor noise vector processes. The
sensor noise used in generating the five experimental VSDD transfer functions is the
same as those used for the conventional structure approach. The number of evenly

spaced frequency points, n,, is taken equivalent to 51.

— Exact H,(jo)
187 ' — Exact Hy(io) ||
161 #  Noisy Hy(jo) |
14l € Noisy Hy(j@) ||

TF magnitude (linear)

Frequency (rad/s)

Fig. 3-8. Exact and noisy TF magnunitudes (linear scale)
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Fig. 3-9. Exact and noisy TF magnitudes (log scale)

Fig. 3-8 and Fig. 3-9 show a comparison, in both linear and log scales, of the exact
transfer function magnitudes that represents the true model with those of the
experimental transfer function corrupted by a quite challenging noise, when VSDD
stiffness is zero.

Once the experimental transfer functions are generated, MATLAB® code
employing the Symbolic Math Toolbox™ is used to determine the total square error
symbolically. The result is then differentiated with respect to the unknown parameter
vector @, giving a number of equations that should equal zero. These equations,
which are cubic polynomials in 8 for the parameterization in Eq. (3-14), are solved
numerically using the fsolve() function in the Optimization Toolbox™ of
MATLAB® with function tolerances and  solution tolerances both set to 107, The
iterative approach uses a relative tolerance of 10 (which must be met for all

elements of the unknown parameter vector @) as a termination criterion.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5.1.1 Least-Squares Numerator Method Results

First, the expected bias in the LSN method is verified by minimizing the sum
of the squares of the numerator error in Eq. (3-10). The VSDD and conventional
structure approaches are used to determine the unknown parameters. Each approach
is performed 26 times, with different seed sets for generating the random noise, to
see the distribution of estimation error that may be expected with the least-squares
numerator method. The initial guess provided to the numerical equation solver is the
exact value.

Fig. 3-10, which shows the error in the stiffness estimates for the 26 trials,
demonstrates that both approaches give significant error in the estimates as well as a
wide systematic bias. This bias is expected, as the denominator magnitude is quite
large for higher frequency points as shown in Fig. 3-11, causing the noise to

significantly skew the parameter estimates.
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Fig. 3-10. Stiffness estimate error levels with least-squares numerator method
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Fig. 3-11. Denominator magnifies error at higher frequency with LSN method

Therefore, one can conclude that, as expected, this simplified technique
cannot be adopted for fair comparison between the VSDD and conventional structure

approaches because the results are not accurate with either approach.

3.5.1.2 Results with the Iterative Method

The iterative approach gives significantly better results in contrast with the
LSN method. Using the true parameter vector as an initial starting guess for the
iterative procedure, the algorithm converges, generally in 3-5 iterations, to estimates

that are fairly accurate — much better than the least-squares numerator method.

3.5.1.2.1 VSDD in First Story

Fig. 3-12 shows the relative error in the estimates of the stories stiffness for
the conventional structure and VSDD approaches. Here, 100 separate estimates were

computed (each with a different noise seed) to examine the variation due to sensor
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noise. The graph also shows approximate one-, two- and three-sigma (standard
deviation) curves for the two approaches. The curves are generated, assuming a
Gaussian distribution, using the means and covariance matrix of the 100 estimates.
The variation in stiffness estimates of first- and second-story using VSDD approach

are about half and two-thirds of those using the conventional structure approach.

—©—  VSDD
--¥-- Conventional

Exact

S W

Relative % error in estimate of %,

Relative % error in estimate of &,

Fig. 3-12. Stiffness estimate error levels for iterative method
with exact start for 2DOF model with VSDD in 1* story only
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-1 0 . .10 20
Relative % error in estimate of ¢;

Fig. 3-13. Damping estimate error levels for the iterative method
with exact start for 2DOF model with VSDD in 1% story only
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Damping estimates are, as expected, much less accurate for both approaches.
Fig. 3-13 shows the error variation in damping coefficient estimates using the ILSN
method, and demonstrates that the VSDD approach has again generated a smaller
variation as sensor noise changes. The maximum (absolute) three-sigma limits in this
case are somewhat larger than that of the stiffness estimates: equals 22% using
VSDDs and 27% for the conventional structure approach estimating the damping
coefficient in the first floor c1; 36% and 40% for estimating the damping coefficient
in the second floor c;. This larger relative damping estimate error, for both VSDD
and conventional structure approaches, compared to stiffness, is typical of most
identification methods. Yet, it is clear that the VSDD approach, while not making
vast improvements, shows some decrease in error compared to the conventional
approach.

An initial guess that is biased, offset from the correct parameter vector by
some amount, would be expected to give poorer estimates. This is indeed the case.
Using an initial parameter vector that is 20% higher (in all components) than the
exact values, 20 separate estimates were computed. Fig. 3-14 shows that both
approaches, as anticipated, are much less accurate in estimating the story stiffnesses
than with the exact initial guess. Here, the VSDD approach gives estimate means that
are less biased than the conventional structure approach, though with slightly larger
variation in the estimate of k. Again, this indicates that using VSDDs improved the

stiffness estimates.
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Fig. 3-14. Stiffness estimate error levels for the iterative method
with offset start for 2DOF model with VSDD in 1% story only

The computational effort to solve these problems symbolically was much
higher than anticipated. To compﬁte one estimate with the correct initial starting
guess took approximately 15 minutes on a 600 MHz Pentium Il computer. With an
offset starting guess, more iterations were required, both in the iterative approach
outlined above as well as within the numerical solver fsolve(), requiring slightly
longer time to converge. The estimate means and coefficients of variation are shown
for the two approaches in Table 3-1. The average number of iterations required for
the MATLAB® solver to converge are always less in case of VSDD approach than the

conventional structure approach as shown in Table 3-1.
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Table 3-1. Estimate Means and Coefficients-of-Variation for 2DOF Shear Building

Model
Mean Coeff. of Variation [%] .
Exact Init. Offset Init. Exact Init. Offset Init.
Var. | Exact Guess Guess Guess Guess
Conv. Conv. Conv. Conv.
St. VSDD St. VSDD Struct. VSDD Struct. VSDD

& 1 0.9999 | 0.9999 | 1.0711 | 1.0241 | 0.0770 | 0.0390 | 1.1990 | 2.4560
& 1 0.9972 | 0.9970 | 0.9337 | 0.9845 | 0.5310 | 0.3660 | 1.2620 | 1.8750
& 0.05 | 0.0519 | 0.0531 | 0.0523 { 0.0521 | 7.4810 | 5.0920 | 6.2690 | 7.1560
6, 0.05 | 0.0450 | 0.0445 | 0.0477 | 0.0460 | 11.224 | 9.5930 | 9.2310 | 13.491

6 1 0.9982 | 0.9975 | 1.0672 | 1.0183 | 0.3780 | 0.2950 | 1.1220 | 1.8370
ky 1 0.9999 | 0.9999 | 1.0711 | 1.0241 | 0.0770 | 0.0390 | 1.1990 | 2.4560
ky 1 0.9955 | 0.9945 | 0.9964 | 1.0023 | 0.8930 | 0.6570 | 1.0410 | 0.9100

cl 0.05 | 0.0519 | 0.0531 | 0.0523 | 0.0521 | 7.4810 | 5.0920 | 6.2960 | 7.1560
1) 0.05 | 0.0449 | 0.0444 | 0.0509 | 0.0469 | 11.163 | 9.6220 | 9.1460 | 14.165
) 1 0.9982 | 0.9975 | 1.0672 | 1.0183 | 0.3780 | 0.2950 | 1.1220 | 1.8370

Average No.

of Iterations 4.98 4.06 5.05 4.85

3.5.1.2.2 VSDD in Second or Both Stories

To understand the effect of VSDD location(s) on the estimation, this 2DOF
numerical example is modified to consider a VSDD in the second story and in both
stories. The parametric frequency domain identification is applied and the results
with a VSDD in the second story or one in each of the two stories are compared with
those in conventional structure case.

From Fig. 3-15, it can be observed that the variation of the stiffness in the
second stéry was clearly reduced, giving better identification of the second-story
stiffness compared to a VSDD in the first story only. However, the variation in
estimation of the first-story stiffness k; is larger with the second-story VSDD than

with the conventional approach. Fig. 3-16 shows that the damping estimation is still
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poor, as seen in the previous section. Yet, the VSDD approach still improves over
the conventional structure approach.

Finally, two VSDDs are considered, one located in each story. Several
simultaneous values of both VSDDs are considered. Each VSDD is controlled to
exert an extra stiffness of 0%, 20%, 30%, and 40% each in its location. Five different
profiles of simultaneous values of the exerted extra stiffness by both VSDDs are
considered in the identification problem such that the values of additional stiffness
are (0%,0%), (0%,40%), (20%,30%), (30%,20%) and (40%,0%) of the stiffness of
each story, respectively. The results of the stiffness parameter identification problem

are compared to those from similar amounts of data for the conventional structure

casc.
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Fig. 3-15. Stiffness error levels for the iterative method with
exact start for 2DOF model with VSDD in 2™ story only
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Fig. 3-16. Damping error levels for the iterative method with
exact start for 2DOF model with VSDD in 2" story only
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Fig. 3-17. Stiffness error levels for the iterative method with exact
start for 2DOF model with VSDD in both 1* and 2™ stories

The stiffness estimate results in Fig. 3-17 show that though the variation of
the stiffness identification of the second story is clearly decreased and improved, the
variation of the stiffness identification of the first story is still more than the
conventional approach case. However, some improvement in the variation of the

stiffness of the first story compared to the case of a VSDD in the second story can be
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observed. As a result, it can be inferred that VSDDs may be most effective in
identifying the stiffness of the stories or levels where they are located. However,
multiple VSDDs simultaneously may provide decreasing returns in a 2DOF
structure. This may not be the fact for more complex structures. Comparing Fig.
3-13, Fig. 3-16 and Fig. 3-18, it is obvious that using a VSDD in each story
simultaneously results in better identification of the damping coefficients of the 1%
and 2" stories where the variation is reduced significantly and the means are more

accurate.
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Fig. 3-18. Damping error levels for the iterative method with exact
start for 2DOF model with VSDD in both 1* and 2™ stories

Table 3-2 shows the ranges for three standard deviations of stiffness and
damping estimate error for the different cases of the 2DOF shear building model.
Note that in all VSDD configurations in the 2DOF structure model, the number of
estimations was 100 times with exact starting guesses and 20 times for the case with

biased starting guesses.
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Table 3-2. Range of 3¢ Stiffness and Damping Estimate Relative Errors for ZDOF

Shear Model
Init.
Guess Case ks o - 2
Conv. o o 0 o 0 0 0 o
sructure | [024%,023%] | [-3.1%,2.2%] | [-20%,27%] | [-40%, 20%]
\{Sstzgr’;’ [-0.13%, 0.11%] | [-24%, 14%] | [-10%, 23%] | [-22%, 5.0%]
Exact :
;’:ﬁzfy‘ [-0.70%, 0.70%] | [-2.0%, 1.1%] | [~12%, 16%] | [-20%, 20%]
poiDs I | [0.50%, 0.40%] | [-2.3%, 1.5%] | [-5.0%, 10%] | [-25%, 10%]
omV. | [3.50%, 12.00%] | [-3.5%, 2.8%] | [~16%,25%] | [~26%, 30%]
Biased VSDD o R o 0 o 0 0 o y
Iststory | [25:00%, 10.0%] | [-2.5%,3.0%] | [-18%,27%] | [-46%, 34%]

3.5.2 Two Degree-of-Freedom Pier-Deck Bridge Model

The 2DOF bridge model shown in Fig.3-5 provides an example that
has full-scale structural parameters. A VSDD, attached between the deck and the pier
as shown in Fig. 3-6, is assumed to provide an additional 0%, 10%, 20%, 30% or
40% stiffness; i.e., ki1 = 0.0, i =0.1, ..., k5=0.4. Numerical quantities for

this model, drawn from Erkus et al. (2002), are considered as an

illustrative example ki = 15.791 MN/m, &, = 7.685MN/m, m; = 100 Mg (tons),
my =500 Mg, ¢; =125.6 kN s/m, and c, =196 kN s/m. The experimental transfer
functions are simulated in MATLAB® by using the exact transfer functions plus the
Fourier transform of a Gaussian pulse process typical of band-limited Gaussian white
sensor noise vector processes. The noise induced in the experimental transfer

function of the 2DOF bridge model is shown in Fig. 3-19, in linear and log scales.
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Fig. 3-19. Exact and noisy TF magnitudes for 2DOF bridge model
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The iterative least-squares parametric frequency domain identification is
performed on this 2DOF bridge model, both with a VSDD in the isolation layer
between the deck and pier and without. The results show error reductions in both
stiffness and damping estimates (though with the latter more modest than the
former). The relative error in the stiffness estimates, shown in Fig. 3-20, have some
small bias — about 0.5% in the estimate of the pier stiffness and about 2% in that of
the isolator — that exists both with and without the VSDD (though the bias is to
higher pier stiffness estimates with the VSDD, and lower without). While the bias is
similar, the VSDD approach shows reductions in stiffness estimate variation,
demonstrating that the VSDDs improve the identification. Similar observations may
be made regarding damping estimates, as shown in Fig. 3-21. The VSDD approach
slightly decreases the bias in the pier damping coefficient estimate, and modestly

decreases the variation in both pier and isolator damping estimates.
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Fig. 3-20. Stiffness estimate error levels for the iterative
method with exact start in 2DOF bridge model
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Fig. 3-21. Damping estimates error levels for the iterative
method with accurate start in 2DOF bridge model

3.5.3 Six Degree-of-Freedom Shear Building Model

The six degree-of-freedom structure has story and VSDD characteristics
similar to the 2DOF building structure discussed previously. The story stiffnesses
and floor masses are chosen, for simplicity, to be unity. The damping coefficient in
each story is 0.05. There are three VSDDs in this structure, one in each of the first
three stories, that can each provide five discrete stiffness levels that are 0, 10, 20, 30
and 40 percent of the story stiffness. The transfer functions are generated using the
exact transfer function plus noise (shown in Fig. 3-22 for one noise realization), and
the estimation is performed 20 times (each with a different random seed). In each
estimation, the VSDD approach uses four sets of VSDD stiffness combinations:
(0%,0%,0%), (10%,20%,30%), (20%,30%,10%), and (30%,10%,20%) in the first,
second and third floors, respectively. For fair comparison, the conventional structure

approach uses four realizations of the TFs, similar to the VSDD approach case.
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Fig. 3-22. Exact and noisy TF magnitudes for 6DOF shear building model

Fig. 3-23 shows the improvement in the estimates of the stiffness and
damping coefficients when using VSDDs in the structural model. It is quite evident
that the variations are dramatically reduced — up to 3 times for stiffness estimates
and up to 4 times in the damping estimates. These results are similar to the
improvements observed in lower-order 2DOF shear building model and the 2DOF
bridge model. However, it may be inferred that the expected improvements may be
more con;crasted for higher degree of freedom models (i.e., more complex models).
Table 3-3 shows the resulting estimates of the mean and the coefficient of variations

for the stiffness and damping coefficients.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-
o

[4)]

(=]

'
(4]

1
-
[=]

Relative % error in estimate of &,
Relative % error in estimate of ¢,

o
o

[
n

Relative % error in estimate of &,
Relative % error in estimate of ¢,

S VSDD
-~¥~- Conventional |

* Exact

-
o

(4]

o

]
93]

[l
-
o

Relative % error in estimate of kg
Relative % error in estimate of ¢4

Relative % error in estimate of ks Relative % error in estimate of ¢s

Fig. 3-23. Stiffness and damping estimates error levels for the
iterative method with exact starting guess in 6DOF model
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Table 3-3. Estimate Means and Coefficients-of-Variation for 6DOF Shear Building

Model
Exact Init. Guess
Variables | Exact Mean Coeff. of Variation [%]
Conv. Conyv.
Struct. VSDD Struct. VSDD
k, 1.0 1.0003 1.0001 0.18 0.066
k> 1.0 0.9996 0.9998 0.097 0.034
ks 1.0 1.0001 0.9999 0.163 0.068
ks 1.0 1.0002 1.0003 0.219 0.074
ks 1.0 0.9999 0.9999 0.172 0.062
ks 1.0 0.9995 0.9998 0.135 0.042
) 0.05 0.051095 | 0.050920 4,824 1.364
1) 0.05 0.049145 | 0.049415 3.497 0.816
c; 0.05 0.049555 | 0.049515 4.667 1.032
Cq 0.05 0.050210 | 0.050065 7.281 1.248
Cs 0.05 0.049230 | 0.049365 3.444 1.188
Co 0.05 0.049560 | 0.049965 4.553 0.877

3.6 Using VSDDs with Variable Damping Only

Whereas the previous sections investigated the effects of VSDDs operating in
a variable stiffness mode, it is possible that inducing added damping would have an
effect on the SHM as well. Using variable damping would be of great interest since
“smart” semiactive damping devices have received extensive study for vibration
mitigation purposes (Soong and Spencer, 2002) and capitalizing on the synergies
between control and SHM would be a cost-effective solution. In this example, the
2DOF bridge model is studied with a variable damping device in the isolation layer
between the pier and deck. The damping levels of the device are 0%, 10%, 20%,
30%, and 40% of the isolator damping coefficient. As in the other numerical

examples, the device is considered ideal (no internal device dynamics), the transfer
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functions are measured through standard means, and the iterative least-squares
parametric frequency-domain identification technique is applied.

The results, shown in Fig. 3-24 and Fig. 3-25, indicate that the VSDD
approach, with the damping levels described above, did not differ significantly from
the conventional structure approach. The relative error in stiffness estimates in Fig.
3-24, have similar bias in both approaches and a slightly larger variation with the
VSDD damping device. Similar observations may be made about the damping

estimates (Fig. 3-25).
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Fig. 3-24. Stiffness estimates error levels for the iterative method with exact starting
guess in bridge model with multiple variations of damping coefficients

One reason that the variable damping here did not provide any notable
improvement is the very small force levels generated by the damping device. The
damping forces in the isolation layer of this bridge model are about two orders of
magnitude smaller than the stiffness forces. As a result, changing the damping by a
fraction of this small amount has relatively little effect. Using larger force levels in

the variable damper may overcome this difficulty and are studied in Section 3.7.
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Fig. 3-25. Damping estimates error levels for the iterative method with exact starting
guess in bridge model with multiple variations of damping coefficients

3.7 Effect of Using Larger VSDD Stiffness/Damping Forces

To improve the advantages of the VSDD approach, larger VSDD
stiffness/damping levels may be used. This section studies and verifies the effect of
adding higher levels of stiffness or damping to a structural system for improving the
system identification process. The ILSN method is used for identification of
parameters in the examples within this section. The initial guess provided to the
numerical equation solver is the exact value. The primary test bed here is the 2DOF
bridge model, however, some results for the 2DOF and 6DOF shear building models
are also given. The transfer functions are measured through standard means. As in
the other previous numerical examples, the VSDD device is considered ideal (i.e., no

internal device dynamics are considered).
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3.7.1 Case of 2DOF Bridge Model

Sections 3.5.2 and 3.6 investigated the effects of VSDDs operating in a
variable stiffness or damping modes on the 2DOF bridge model, however, the levels
of stiffness or damping of the VSDD device were limited to 0%, 10%, 20%, 30%,
and 40% of that of the isolator — between the bridge deck and the pier — stiffness
or damping coefficients, respectively. In contrast, the VSDDs in this section are
assumed to: (i) add {0,1,2,3,4} times the bearing stiffness, (i7) add {0,5,10,15,20}
times the bearing stiffness, (iii) add {0,25,50,75,100} times the bearing damping,
and (iv) add {0,100,200,300,400} times the bearing damping.

It is found that by increasing the level of stiffness that the VSDD induces at
the isolator level, the variation of the relative error of stiffness coefficients estimation
decreases dramatically as shown in Fig. 3-264,b. In addition, the variation of the
relative error of the damping coefficients estimation, as seen in Fig. 3-26¢.d,
improves considerably compared to cases of lower levels of induced VSDD stiffness
(Fig. 3-21), though the improvement is limited and the damping coefficient
estimation error is up to 5-10%. For the case of varying VSDD damping, it is shown
in Fig. 3-26e,f that the estimation of the stiffness coefficients are improved by
increasing the damping levels. Moreover, the variation of the relative error decreases
dramatically at highest level of damping (Fig. 3-26f). The damping estimates are also
improved considerably, though the variation of the relative error tends to have a
linear trend with a maximum error of 5% of the damping coefficients of the system

as shown in Fig. 3-26g,h.
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Relative % error in estimate of k;
(a) add stiffness 100-400%

5 0 5
Relative % error in estimate of &,
(b) add stiffness 500-2000%

Relative % error in estimate of ¢, Relative % error in estimate of k; Rejative % error in estimate of k,

Relative % error in estimate of ¢;
(c) add stiffness 100-400%

Relative % error in estimate of ¢,

Relative % error in estimate of ¢;
{d) add stiffness 500-2000%

Relative % error in estimate of k,

Relative % error in estimate of &,

Relative % error in estimate of ¢,

1 S — f

Relative % error in estimate of k;
(e) add damping 2500-10000%

5
Relative % error in estimate of &,
(f) add damping 10000-40000%

—5— VSDD

Exact

~-%~-- Conventional

Relative % error in estimate of ¢,
(g) add damping 2500-10000%

Relative % error in estimate of ¢,
(h) add damping 10000-40000%

Fig. 3-26. Comparison of stiffness and damping estimate error levels for higher VSDD
induced stiffness/damping for 2DOF bridge model
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Furthermore, Table 3-4 shows the improvements in the mean estimates and
the mean-square error percentage of the identified structural parameters with higher
levels of variable stiffness or damping. The improvements are demonstrated in terms
of better mean estimates and much smaller variation (root mean square error

(RMSE) percentage).

Table 3-4. Estimate Means and Root Mean-Square Error Percentage for 2DOF Pier-
Deck Bridge Model Using Higher Levels of Induced Stiffness or Damping

Mean RMSE (%)
No Add Add No Add Add
VSDD kvs_m) Cyspp VSDD kvsop Cvsop

One kMN/m] | 15.791 | 15.726 | 15.791 15.791 1.634 0.034 0.013

Yfg? o[MN/m] | 7.685 | 7.507 | 7.683 | 7.685 | 3.484 | 0.160 | 0.027

bearing | ¢;[kNs/m] | 125.6 110.8 124.8 125.4 17.931 1.499 1.846

VSbBD Struct. Exact
Loe. Param. Values

bz‘ﬁfn c[kNs/m] | 196 1928 | 2032 195.7 5390 | 4492 | 1.625
and pier | M, [tons] | 100 | 98.29 100 100 2398 | 0.030 | 0.035

One initial reaction to this approach is that the stiffness/damping levels sound
unreasonable. However, it must be understood that these are effective levels of
stiffness and damping forces exerted during low-level ambient excitation. Thus, the
actual forces are well within the capabilities of current VSDDs.

To verify that the force levels are reasonable, the response of the structure to
a low-level earthquake excitation (Kanai-Tajimi filtered white noise with a 0.002g
root mean square (RMS) ground acceleration) is computed. With the VSDD
producing 20 times the bearing stiffness, the RMS pier and deck drifts are 1.5 mm
and 0.125 mm, respectively, RMS absolute pier and deck accelerations are 0.0037g

and 0.0041g, respectively, and RMS VSDD force is 19.2 kN. This force level is quite
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small relative to the masses (500 ton deck, 100 ton pier). Meanwhile, with the VSDD
producing 400 times the bearing damping, the RMS pier and deck drifts are 1.44 mm
and 0.074 mm, respectively, RMS absolute accelerations are 0.003g at both deck and
pier, and the RMS VSDD force is about 15 kN, which is also small compared to the
masses. In contrast, when no VSDDs are used, the RMS pier and deck drifts are
0.85 mm and 1.61 mm, respectively, RMS absolute pier and deck accelerations are

0.0032g and 0.0025g, respectively.

3.7.2 2DOF Shear Building Model with Larger VSDD Forces

The identification results for the 2DOF shear building also showed
considerable improvement by increasing the additional stiffness level induced by the
VSDDs. The identification results introduced here add VSDD stiftness that is
{0,5,10,15,20} times the stiffness of the corresponding story or VSDDs damping that
is {0,100,200,300,400} times the damping of the corresponding story. The
improvements are well demonstrated in Table 3-5.

By using higher levels of induced VSDD stiffness/damping, faster
convergence in the identification code is observed. Using the true parameter vector
as an initial starting guess for the iterative procedure, the algorithm converges,
generally in 35 iterations, to estimates that are fairly accurate.

The results in Table 3-5 for a single VSDD in the first story show that the
identification of the stiffness in the first story is quite accurate using both

conventional and VSDD approaches. On the other hand, the means of all other

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



identified structural parameters are better when using the VSDD approach. The
results in Table 3-5 indicate that the root mean square errors are reduced by more
than two times for the second story stiffness, and by nearly ten times for the second

story damping coefficient by varying VSDD stiffness with these higher levels.

Table 3-5. Estimate Means and Root Mean-Square Error Percentage for 2DOF Shear

Building Model
Mean RMSE (%

Vliﬂ? ggr‘;f; ‘];: :l?f:s No Add Add No Adé Add
VSDD kvsop Cysop VSDD kv§pb Cyspp
one T 1.0000 | 09999 | 09993 | 09980 | 0078 | 0288 | 0.428
vspD | & 1.0000 | 09955 | 09985 | 09966 | 0994 | 0443 | 0.710
;‘tloiyt o 0.0500 | 0.0519 | 00495 | 00495 | 8.646 | 4160 | 5.553
(exact ca | 00500 | 00449 | 00497 | 00496 | 14.303 | 1.422 | 2.799
guesses) [, | 1.0000 | 09982 | 09987 | 09967 | 0417 | 0413 | 0716

o T 1.0000 | 1.0368 | 0.9993 " 4174 | 0289 ~

vsDD | 1.0000 | 0.9953 | 0.9985 B 1021 | 0445 B

gtlolr; o 0.0500 | 0.0520 | 0.0495 ~ 9.759 | 4.167 ~

(offset & | 00500 | 00482 | 0.0497 _ 12.403 | 1424 _

guesses) [ 7 | 1.0000 | 1.0343 | 0.9987 ~ 3.958 | 0416 ~
o % 1.0000 | 00999 | 1.0022 | 1.0004 | 0078 | 0272 | 0.099
vsop | k& 1.0000 | 09955 | 09835 | 09989 | 0994 | 1.877 | 0.581
1;025 o 0.0500 | 0.0519 | 0.0501 | 00500 | 8.646 | 2758 | 2.429
(Bxact | 2 | 00500 | 0.0849 | 0.0465 | 00467 | 14303 | 9.952 | 9.946
guesses) [~ .7 | 1.0000 | 09982 | 09949 | 09990 | 0417 | 0587 | 0.195
Two T 1.0000 | 09999 | 1.0001 | 10002 | 0.078 | 0.125 | 0.093
ViiDl]s?S % 1.0000 | 09955 | 09996 | 09989 | 0994 | 0.092 | 0234
and2® | | 00500 | 0.0519 | 00500 | 0.0495 | 8646 | 1.934 | 2.296
?gﬁ 1 c; | 00500 | 00449 | 00498 | 00495 | 14303 | 2303 | 2.889
guesses) | m2 | 1.0000 | 0.9982 | 09999 | 09993 | 0417 | 0027 | 0173

For the case of an initial parameter vector that is 20% higher (in all

components) than the exact values, 100 separate estimates were computed. Fig. 3-27,
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showing the variation of the identified stiffnesses using higher levels of induced
VSDD stiffness, indicates that the VSDD approach did very well compared to the
conventional structure approach that shows large bias and variation. Similar results
are observed in the identified damping coefficients of the first and second stories, as
shown in Fig. 3-28. Both Fig. 3-27 and Fig. 3-28 show approximate one-, two- and
three-sigma (standard deviation) curves for the two approaches.

For a VSDD in the second story, one can observe that the results resemble
those with a VSDD in the first story only, yet the improvement is more reflected in
the case of varying VSDD damping only. Moreover, the variation of the stiffness
estimate of the 1% story is reduced compared to the case of having the VSDD in the

first story only (Table 3-5).

._.e_ VSDD ........ ........ ........ ........ ........
--%-- Conventional [ : : : : :
2 % Exact

Relative % error in estimate of &,

Relative % error in estimate of &,

Fig. 3-27. Stiffness estimate error levels for the iterative method with offset start for
2DOF model with VSDD in 1st story only (varying stiffness case)
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Fig. 3-28. Damping estimate error levels for the iterative method with offset start for
2DOF model with VSDD in 1st story only (varying stiffness case)

For the case of having VSDDs in both stories of the structure, Fig. 3-29 and
Fig. 3-30 show that the variation of the stiffness identification of the second story is
clearly decreased and improved. The mean of the first story stiffness estimate is now
almost similar to that of the conventional approach case, as shown in Table 3-5.
However, some improvement in the variation of the stiffness of the first story,
compared to the case of a VSDD in the first and second stories only, can be
observed. Generally, the variations are vastly improved compared to any of the
previous cases of a single VSDD in the structure such that it is now one tenth that of
the conventional approach case for the second story stiffness and nearly one fifth for
the damping coefficients in both stories. However, the variance of the identified
stiffness coefficient in the first story is still a little more than the conventional

structure approach case.
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Fig. 3-29. Stiffness error levels for the iterative method with exact start for 2DOF
model with VSDD in both 1st and 2nd stories (varying stiffness case)

—©—  VSDD
-~¥-- Conventional
%

Relative % error in estimate of &,

Relative % error in estimate of &;

Fig. 3-30. Stiffness error levels for the iterative method with exact start for 2DOF
model with VSDD in both 1st and 2nd stories (varying damping case)

3.7.3 Case of 6DOF Shear Building Model

The 6DOF model system identification in this section is solved for the

variable stiffness VSDD and the conventional structure (no VSDDs) approaches,
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using the ILSN method with exact starting guesses of the unknown parameters. The

VSDDs are located in the first three stories only. The masses are assumed known a

priori. In simulation, each installed VSDD is assumed to provide additional stiffness

at four discrete levels: 0%, 500%, 1000%, and 1500% of the corresponding story

stiffness.

Table 3-6 shows the improvement in the estimates of the stiffness and

damping coefficients when using VSDDs in the structural model. Also, it is quite

evident that the variations are dramatically reduced — up to 12 times for stiffness

estimate in the 6 story and up to nearly 23 times in the damping estimates. The
ry p y ping

results here confirm the improvements observed before for the lower-order 2DOF

shear building model and the 2DOF bridge model.

Table 3-6. Estimate Means and Mean-Square Error Percentage for 6DOF Shear
Building Model (Varying Stiffness)

VSDD | Structural | Exact Mean RMSE(%)
Loc. | Parameters | Values | v vonyn | Varying k | No VSDD | Varying k

ky 1.0000 1.0003 | 1.0000 0.183 0.036
k, 1.0000 | 09996 | 1.0000 0.105 0.071
s 1.0000 1.0001 | 0.9999 0.163 0.083
K 1.0000 10002 | 1.0000 0.220 0.020
Three ks 1.0000 | 09999 | 1.0000 0.172 0.026
Vf}?]z)fd in ks 10000 | 09995 | 1.0000 0.144 0.011
and 3% o 0.0500 0.0511 0.0500 5.399 0.783
stories e 0.0500 | 00491 | 0.0501 3.877 1.444
e 0.0500 | 0.0496 | 0.0496 4.698 2.028
c 0.0500 | 0.0502 | 0.0500 7.321 0.296
cs 0.0500 | 0.0492 | 0.0500 3.748 0.267
¢ 0.0500 | 0.0496 | 0.0500 4.587 0.202
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3.8 INVFREQS-Least Squares Method

The INVFREQS-Least Squares (INVFLS) method is a frequency domain
identification method, based on the general definition of the transfer function and the
least squares error approach. The method is composed of two stages. The first stage,
called the INVFREQS stage, concerns estimating the coefficients of polynomials of
the transfer functions of structural systems. The second, also by least squares,
estimates the structural parameters, such as stiffness and damping coefficients, from
direct relations with the coefficients of the transfer function polynomials. The
INVFREQS stage for Single-Input-Single-Output (SISO) systems already exists as a
MATLAB® function. In this study, the first stage is extended to Single-Input-Multi-
Output (SIMO) and Multi-Input-Multi-Output (MIMO) systems as well. To explain
the method, the first stage application to the SISO systems is explained thoroughly,
and then the extension to SIMO and MIMO systems is introduced. The second stage,

using a least squares technique to find the structure parameters, is then discussed.

3.8.1 INVFREQS Method for SISO System

To explain the general derivation of this method, a SISO system 1s a good

start (Ljung, 2000). Generally, the transfer function H(jw) for a SISO system can
be represented in the form of a numerator polynomial B(j®w) and a denominator

polynomial A(jw) as:

H{jo)=B(jw)! A(jo) (3-20)
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The numerator and denominator polynomials B(jw) and A(jw) can be expressed

in a polynomial form as in Eq. (3-4), and are considered of orders n; and n,,
respectively.

By measuring the output response for known input excitation, an
experimental transfer function H (jw) may be obtained. The residual error between

the theoretical and experimental transfer functions can, consequently, be defined as:

B(jw)- A(jo)H (jo)
A(jo)

e(jo) = (3-21)

However, to simplify the conventional transfer function problem, the error in the
numerator of Eq. (3-21), €, at any frequency @ is used instead of the residual error

such that:
e(jo,X)=[b, (jo)" +...+ bo]——ﬁ(ja))[(ja))”" +a, (jo)" " +...+a,] (3-22)
where X is the vector of unknown coefficients,
X=la, . a,, .. a b, b, . bl (3-23)
Then, rearranging the components of Eq. (3-22) as

H(jo)a,, (jo)"" +...+a]-[b, (jo)" +...+b]=~H(jo)jo)* —&(jo.X)

(3-24)

which can be expressed in a matrix form
nmx(nu-i—nAH)i(nB-mA+1)xl = Vnmxl - En,m (3-25)
73
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where 7, is the number of frequencies in the frequency domain of interest. The D

matrix is, thus, expressed for n, frequencies as:

Gy AGe) - AGe)| -Ge)t —Ge)™ -]
D= (jw,o“fﬁl(jwi) H(;w) —(jc:on"a -(fa%i)"f‘ —:1 (3-26)
_(jwn,,q"f;ﬁ(jw,,m) ﬁ(j?)nm)i ~Go, )" G,y ?1_
and the vector V is defined as:
V,u =l Go) BGo) - ~Go) AGe) - -Go, ) Aa,)] 3-27)

Minimizing the squared error vector € ¢, with respect to the vector of unknown

coefficients X, gives

i e

Jde’e
ox

5 ~ * ~— a ~ T e ¥ yrn ™~ ~T e * L *
=—{({(DX-V)(DX-V)=—ExX DDx-XDV-VDX+VV
(DX V) (DX - V) = —( ) 3.28)

=2(D'DX-DV) =07

where (-)" denotes complex conjugate transpose. For the system to be causal, all

coefficients should be real. Thus, the vector of unknown coefficients X can be

obtained from the equation,
£=(D'D)'Re(DV) (3-29)

The Re(:) is not theoretically necessary but, in numerical computation, this

eliminates small imaginary components resulting from round-off.
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The results from Eq. (3-29) are initial estimates of the transfer function

coefficients. The stability of the estimated system is checked by calculating the roots

of the estimated denominator polynomial, ;4( jo), and verifying the roots have
negative real parts.

An iterative technique refines the estimates by reducing the residual transfer

function error, in terms of the estimated polynomials B( j)and 13( jo),

&jo) = B(jw)/ 4(jo) - H(jo) (3-30)
The estimated coefficients of the numerator and denominator polynomials are not yet

the best estimates. Therefore, each of the coefficients of B(jw)and A(jw) has error

Ab and Aa, respectively. In other words, the estimated polynomials equal the exact

polynomials plus some error such that:
B(jw) = (b,, +2b, ) jo)” +(b,,_, +Ab, Yjo) ™ +...+ (b, + Aby) (3-31)
A(jo) = (jo) +(a,  +Aa, (o)™ +...+(a, +Ag,) (3-32)
Substituting Egs. (3-31) and (3-32) into Eq. (3-30) and simplifying, results in

(jw)Aj@) = (B, +Ab, Y @)™ +...+ (B, +Ab,))]

. (3-33)
—H(jo)(a, , +Aa, o) +...+(a, +Aay)]

The right hand side of Eq. (3-33) can be divided into two parts: one includes
the coefficients of the actual polynomials and the other formed of the error

coefficients
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é(j@)A(jo) = B(jo) - H(jo)A(jo) +[Ab, (jo)™ +...+Ab]

. (3-34)
~A(jo)Aa, (jo)y" " +...+ Ag]

For the exact actual B(jw)and A(jw), the first two terms in the right hand side of

Eq. (3-34) cancel and, thus, the resulting equation of the error is

(i) = — {86, oy +...+ 80, |- i) pa, GOy +...+ Mg, || (3-35)
A(jo)

The new residual error Eq. (3-35) is used for the evaluation of the error coefficients.

This is done by rewriting Eq. (3-35) in a matrix form such that

nmx(nB+nA+1)Ai(nE+nA+l)><1 = énmxl (3'36)
where the error coefficients vector AX is
AX=[Aa, , Aa, , ... AayiAb, Ab_, .. AbJ  (3-37)
and the matrix AD is defined as
o)t H(e)  H(e) | (o)™ (o)™ 1
A(jo,) L AUe) | AGe)  AGe)  AGe)
AD— _Go)"'HGe)  _HGe) | o)™ (o)™ 1
A(jo,) L Ae) | AGe)  AGe)  AGe)
(o, )" H(o,)  H(ywe,)i(e,)" (o) 1
A(jo,) Ao, | Ao,) A(o,) A(j,)
(3-38)
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Multiplying both sides of Eq. (3-36) by the complex conjugate transpose

AD’, taking the real parts and solving for the error coefficients vector AX,
AX = (ADAD")'Re(AD '¢) (3-39)

The calculation of error coefficients helps in finding a general direction to better
estimate the transfer function coefficients. The new resulting coefficients vector
X..q 18 equal to the sum of the initial estimates vector X and the error coefficients
vector AX. For enhancement however, a check is performed on the evaluated error

coefficients AX before adding them to the initial estimates X . In the check, the new

modified coefficients will be represented as,
X4 = X+ Ek(AX) (3-40)

The convergence check starts with calculating the squared residual error e*é where

*é:[é({”’) - H( ja))jl {AU_”) ~ H( ja))} (3-41)
A(jo) A(jo)
The result is then compared to the modified squared residual error & .e

o>

mod ?

considering 4=1, where

nkn B JJO) A * B (o) A
_| PV ZnalJD) gy 342
é'é {Amd o) (JG))} |:Amod (o) (J 0))} (3-42)

If e"¢ is smaller than & & ., ,then X is recalculated from Eq. (3-40) by taking &

equivalent to half of its previous value. The comparison is repeated between é'é and

Ak A

é €., till the latter is smaller. After the check is fulfilled, another loop of
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recalculating the error coefficients vector AX is applied. In the new loop, the vector

X,.o¢ 18 considered as the initial estimate. These loops of evaluation of AX and

modification of the estimated coefficients are repeated until the norm of the error

coefficients vector becomes smaller than a tolerance factor
A% < tol (3-43)
This tolerance factor is dependent on the sensitivity that the user requires.

3.8.2 INVFREQS Method for SIMO and MIMO Systems

For the case of SIMO and MIMO systems, a series of transfer functions is
identified rather than the single one in the SISO case. Each transfer function
represents the ratio between one of the inputs and one of the outputs. The global
transfer function matrix is represented such that each column corresponds to one of
the inputs, and each row to one of the outputs.

To start solving the problem, consider a system that is subjected to M
excitation inputs and has L measured outputs. Then, the transfer function to the ™

output of the system from the m™ input is expressed as
H,,(jo)=8,(jo)/ 4,(j») (3-44)

where the denominator polynomial 4 (jw) of the transfer functions of all measured

outputs is considered unique for a single input, and the numerator polynomial

B, (jw) is considered unique for each input/output combination. Accordingly, the
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residual error between the polynomial transfer function and the corresponding

experimental transfer function H m(J@) is defined as

B, (jo)- 4,(jo)H,, (jo)
4, (jo)

e,(jo)= (3-45)

where
. 1., . 1,m) A . 1,m)-1 l,
B, ( ]a))_b,SE;;'?m)( Jjo) =" +b,§ﬂ;’;3mH( jay= ™ ¢+ hI™ (3-46)

A, (jo)=(Go)" +a, (o)™ +. +a” (3-47)

n,(m)-1

By simplification of residual error Eq. (3-45) one would get an equation for each
input/output transfer function similar to Eq. (3-22) in SISO systems case. However,
in contrast to SISO systems, the residual error in SIMO/MIMO case is defined as a

vector error for transfer functions from a single input to all related outputs such that

Bt (@)™ 4.+ b 1= H,, (o) (@)™ +...+a"]

ng(1,m)

err™ (jo) = :
[ Gy =™ 4.+ b= H ), (jo)(jo)™ ™ +...+a”]

(3-48)
Eq. (3-48) can be set in a matrix form as
(m) & (m) —ym (m) _
DLnn,x(ZnB(m,1)+nA(m)+L) X(z:nl;(m,lﬁ-n,,(m)+L)><1 - VanXI eranwxl (3 49)
7 T
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where the vector V for the m™ input is defined as

ﬁl,m (Jo)(jo)™ )

Ao, )jo, )™

Vi = : (3-50)

I:IL,m (o) jo, )”A(m)

_ﬁL,m (ja)nm )(ja)nw )”A ) B

and D is a matrix that is defined for m™ input as

D™ D™ o0 . 0
D™ = D" 0 DY : (3-51)
: : .0
D” ¢ .. 0 D™
where submatrices D™ are given by
(o)™ H,,Geo) (o) H,, (o) - H,(jo)
D = (o, )" H,,(jo,) (jo,)" " H,,(jo,) H,,(jo,) (3-52)
LT : : :
(o, " H,,(jo,) (o, )" ,,(e,) - H,(e,)]
and block matrices D™ that sit along a diagonal in D™ are
- _(ja)l)nB(l,m) _(]a)l )HB(I,m) . —1_
ﬁ(m) _ _(ja)z)nB(l’M) “(jwz)na(l’m) e =1 (3-53)
T : : : :
~(jo, )" =, )" e -1
80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and X, the vector of the coefficients of the numerator and denominator polynomials

of all transfer functions from the m™ input to all L outputs is

~ i ! ! T
%™ :[a("” g™ BT e pOMY e bgL”")] (3-54)
] 1

n,~1 ng(l,m) ng{L,m)
Similarly to SISO systems, the vector of unknown coefficients X is evaluated from
X=(D'D)'Re(D'V) (3-55)

The procedure described by Eq. (3-48) to Eq. (3-55) computes the initial
approximate estimation part of the INVFREQS method for SIMO systems case.
However, for MIMO systems, the same procedure is executed M times in order to
obtain the transfer functions with respect to each input. The stability of the estimated
system is checked by calculating the roots of the estimated denominator polynomial
for each input m, 4, (jw), and verifying that the real parts of the roots are negative.

The iterative part of INVFREQS method for SIMO and MIMO systems
considers the estimated vector X as an initial estimate. Similarly to SISO case, the
estimated coefficients of the transfer function polynomials are assumed biased by an

error A where,

B, (joy= @Y, +AbED Y(j@)s ™ .+ (b + Ab™) (3-56)

ng(l,m ng{l,m)

le (o) =(Go)"™ + (@) +Ad™ | Vo) + (@l +Aal”) (3-57)

n4(m)-1 n,(m)-1
where

™ =al™ +Aal™ and b =p"" + AP (3-58)
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By substituting the estimated polynomial coefficients, the vector error as defined in

Eq. (3-48) is evaluated,

ng(l,m)

BLw, (o) +. b = H, , (jo) (o)™ +...+a(")
err™ (jw) = :
by GO)* ™ 4+ b)) = H (o) (jo)"™ +...+4™)]

(3-59)

whereas by substituting Egs. (3-56) and (3-57) into Eq. (3-48) gives a matrix form of

the resulting equation similar to that in the SISO case

(m) % (m) = epprm
L, x(Y np(mlyn ,,(m)+L)AX(Zn,,(m,z)+n RO A err,, ) (3 -60)
The AD matrix for m™ input is
AD™ AD™ 0 - 0
i Him
S e ‘ (3-61)
: : . .0
AD™ 0 - 0 ADY
where submatrices AD™ are given by
o) H,, (o) (o) H,Go)  H,(o)
Ajo,) ijo) Ao
(].a)z)n"(m)—1 H,, (aw,) (J'a’z)n"(’n)~2 H,, (w,) H,, (jo,)
B s ~ .~
AD;™ = A(jo,) A(jo,) A(jo,)

(ja)nm )nA(m)_l ﬁl,m (ja)nm ) (ja)nm )nA(M)—2 ﬁl,m (ja)nm ) L ‘ﬁl,m (ja)nw )
AGjo,) A(jo,) A(jo,) |

(3-62)
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and block matrices AD{™ that sit along a diagonal in AD"™ are

—(e)” ™ -Ge) ™ -1
Ajo,) A(jo,) A(jo,)
I S S 078 K A
AD” =l Ao, AUe) | AGw) (3-63)
=(jo, )" =(jo, )"
Ajo,) Ajo,) A(jo,) |

In case of SIMO systems, the vector of the error coefficients is defined as,

AX™ =[Aa .. Aal™) ABCT L ARS™ L AREm o ApEm ]

n(m)-1 [ ng(l,m) ng(L,m)

(3-64)

(m)

Then the error coefficients vector AX"™ is evaluated through the following equation,

AZ™ = (AD™ AD™) ' Re(AD™ efr ™) (3-65)

For MIMO systems, the same procedure is repeated M times to obtain the
error coefficients of transfer functions with respect to each input. A similar
convergence check to that explained for SISO systems is applied. These loops of
evaluation of AX and modification of the estimated coefficients are repeated untill
the norm of the error coefficients vector becomes smaller than the value of a

tolerance factor as in Eq. (3-43).
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3.8.3 Least Squares Estimation of Structural Parameters

The next task, then, is to use estimates of the polynomial coefficients of the
transfer functions to obtain estimates of structural parameters such as stiffness and
damping coefficients. This, however, requires knowledge of the direct relations
between the transfer function coefficients and the structural parameters. To develop
such relations, a method is used that is based on the conventional definition of the
transfer function in the frequency domain.

By considering a state-space representation of a structural system

Gg=Aq+Bf, y=Cq+Df+v (3-66)

where q=[x" Xx"]" is the state vector, Ais the system state matrix which is
dependent on the mass M, damping Cy4, and stiffness K matrices of the structural

system such that,

~ I: 0 nDOFxnDOF I nDOFxnDOF jl (3 _67)

) (‘M_IK)nDOFanOF (_M-lcd)nDOFanOF
and nDOF is the number of degrees of freedom of the system. The B matrix is the
input influence matrix, C is the output influence matrix for the state vector q, and D
is the direct transmission matrix. In both equations, f'is an excitation force, and y is a
mx1 vector of measured responses corrupted by m x1 sensor noise vector v.

Thus, the system can be represented by the mx1 transfer function (TF)

matrix H(jw), expressed as the ratio of numerator and denominator polynomials as
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H(jo) =B(jw)/ A(jo) (3-68)

However, another definition of the TF that depends on the system state matrix A is,

~

H(j®) = (@) pomamor) — Al B+D (3-69)
Equating the right hand sides of Eqgs. (3-66) and (3-67) gives
B(jw)/ A(jo) = A ON puporm@oanor = Al B+D (3-70)

Knowing the structure of the system state matrix, the dependence of C, the output

influence matrix, on M, Cq, and K matrices, and the dependence of the B and D on
the type of the excitation force f, one can obtain a parametric representation of the
coefficients of the numerator and denominator polynomials in terms of M, Cq4, and K

matrices components which will be denoted X(M,C,,K).

Finally, the difference between the parametric forms of the coefficients of the

polynomials, B(jw) and A(jw), from Eq. (3-68) and the estimates of these

coefficients obtained from the INVFREQS stage X, , is defined as an error vector
error =X, — X(M,C,K) (3-71)

Minimizing the sum of the square errors in Eq. (3-69) for all coefficients will result
in an estimate to the unknown parameter vector that includes the stiffness and

damping coefficients.
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3.8.4 Some Applications and Results for INVFLS Method

The two degree-of-freedom (2DOF) shear building structure model shown in
Fig. 3-1 is studied within the context of the INVFLS method. The structure is
subjected to ambient excitation from the ground. Absolute acceleration

measurements at the ground, X,, and at the two floors, (X, +X,) and (X, +%,), are

used to generate a 2x1 experimental transfer function at n, distinct frequency
values. The theoretical transfer function matrix is the same as in Eq. (3-17) where 0
is the vector of unknown structural parameters and x is the vector of known
parameters based on the VSDDs actions.

The experimental transfer functions are generated in MATLAB® as discussed
in Section 3.5.1. The sensor noise used in generating the five experimental VSDD
transfer functions is the same as those used for the conventional structure approach
for both the INVFLS and ILSN applications. The VSDD is installed in the lateral
bracing of the structure. For comparison with the results from ILSN method, similar
VSDD locations in the structure are studied: a VSDD in the first story of the
structure, then only in the second story and, finally, in both stories. As in the
previous sections, the results are compared to the conventional structure approach. It
is assumed that, of all structural parameters, only the mass of the 1% story m; is
known.

In the numerical model considered here, the floor masses and story

stiffnesses are taken to be unity. The story damping coefficients are set to 0.05. The
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single VSDD is assumed to provide additional stiffness in the story at which it is
located with five discrete stiffness levels, corresponding to an additional 0%, 10%,
20%, 30% and 40% stiffness; i.e., s = 0.0, ix=0.1, ..., &5 = 0.4 where, in this case,

K = K = ky,, / m,. For this study, the number of evenly spaced frequency points, 7,

is 251 when comparing results of VSDD approach and the conventional structure
approach, and is 2001 when comparing the INVFLS and ILSN methods. (The ILSN
study in the previous sections used only 51 frequency points; such a larger number of
frequency points is used here since INVFREQS is non-parametric so it can handle
the computation for a large number of frequencies in much shorter time than ILSN
method.) In addition, picking a larger number of frequency points is done since the
least squares solution in the ILSN method depends on more information than the
least squares stage in case of INVFLS method. It is also assumed that the same noise
level exists for the simulated experimental transfer functions.
The comparisons reported here are the differences between:
e The VSDD approach, using five experimental transfer function matrices,
one per VSDD stiffness level, and
e The conventional structure approach with = 0.0 where the conventional
approach uses a square error based on five separate experimental transfer

functions.
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3.8.5 Analysis of Results

The INVFLS method is found to be successful in estimating stiffness
coefficients. However, the estimation of the damping coefficients exhibits large
deviations from the exact values. The results are shown in Fig. 3-31 for a VSDD in
the first story, in Fig. 3-32 for a VSDD in the second story, and in Fig. 3-33 for
VSDDs in both stories. Based on 100 noisy patterns of the simulated transfer
function, the results indicate that, for the VSDD approach, the relative error in the
estimates of stiffness coefficients has a maximum standard deviation of 3% for the
first story and 1% for the second story. Meanwhile, the relative error in the estimates
of the damping coefficients has a maximum standard deviation of 35% for the 1%
story and 20% for the 2" story.

Comparing the VSDD and conventional structure approaches, it is observed
from Fig. 3-31, for one VSDD in the 1* story, that the stiffness coefficient estimate
of the 1% story is improved by using VSDDs whereas better estimation of the 2
floor stiffness coefficient is achieved using the conventional structure approach. The
trend of the variation of the damping coefficients estimates, however, shows no clear
difference between the two approaches.

For a VSDD in the 2™ story only, the stiffness estimates for both stories have
smaller variations using VSDD approach. Also, the damping coefficients estimates
for both stories, though still with large variations, show some modest improvement

with the VSDD approach.
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Fig. 3-31. Stiffness and damping estimate error levels for INVFLS method for 2DOF
model with VSDD in 1% story only
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Fig. 3-32. Stiffness and damping estimate error levels for INVFLS method for 2DOF
model with VSDD in 2™ story only

Using VSDDs in both stories, the variation of the stiffness coefficient
estimate in the 2™ story is smaller than any other VSDD or conventional structure
case. However, while the variation of the estimate of the stiffness coefficient of the
1% story is smaller than that of the conventional structure approach, locating a single
VSDD in the 1% story or ond story only gives slightly smaller variation for the relative

error of estimation as shown in Fig. 3-31 and Fig. 3-32. The variation of the relative
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error of the damping estimates shows the same trend as using a VSDD in the 2n
story only.

By increasing the number of frequencies, n,, the results for stiffness and
damping coefficients identification are improved. This is clear by comparing the

results of INVFLS method in Fig. 3-31 to Fig. 3-33 to those in Fig. 3-34.
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Fig. 3-33. Stiffness and damping estimate error levels for INVFLS method for 2DOF
model with VSDDs in both stories

Comparing the results from the INVFLS method to those of ILSN method,
shown in Fig. 3-34, one can observe that the ILSN method gives better estimates for
the stiffness coefficients in the first story whereas INVFLS method gives better
estimates for the stiffness coefficients of the second story. This is the case for all

three VSDDs configurations in the 2DOF shear building structure.
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Fig. 3-34. Comparison of stiffness and damping estimate error levels between INVFLS
and ILSN methods for 2DOF shear building model
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However, the estimates of the damping coefficients are found to have less
variation using the ILSN method for solving the identification problem.
Nevertheless, Fig. 3-34 shows that the mean estimates for either stiffness or damping
coefficients are always better using the INVFLS method. This may be attributed to
the large number of frequency points used in the optimization problem in the
INVFLS method. The INVFLS method also proved to consume much less
computational time and converged faster to the results. This may be attributed to the
fact that the INVFREQS stage of the INVFLS method uses a non-parametric
numerical technique that is easily handled numerically, in contrast with the
parametric problems in the ILSN method. Moreover, the application of the ILSN
method requires some a priori initial guesses of the parameters to be estimated,
whereas the INVFLS method has no such requirement and is able to estimate the
stiffness parameters successfully with relatively small errors.

When it comes to choosing which method is applied on-site, the control
designer should study the priorities whether absolute accuracy is more important
than computation time or vice versa. Also, the designer should consider that using
the ILSN method may require some prior guesses of the estimated parameters, which
may require some experience. A good suggestion is to use the results of INVFLS

method as an initial guess for the ILSN method.
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3.9 VSDDs in Subspace ID

3.9.1 Introduction

The identification of modal parameters for structures from experimental data
is sometimes carried out using methods that operate in the time domain. Typically, a
curve is fit to free decay response data. This 1s based on a difference equation or state
space mathematical model for the structure. In addition, the state space model has
received considerable attention for system analyses and design in control and
systems research during the last three decades. The basic development in state space
realization is attributed to Ho and Kalman (1965) who introduced the important
principle of minimum realization theory, which is the process of constructing a state
space representation (Juang and Pappa, 1985). The Eigensystem Realization
Algorithm (ERA), a modification and an extension to the minimum realization
theory, was developed by Juang and Pappa (1985). The ERA is a state-space
realization identification technique from noisy measurement data. Then, based on the
identified state space model, the modal parameters can be obtained. This method is
very effective in the identification of lightly damped structures (like many civil
structures) and can also be applied to multi-input/multi-output systems. This Section
studies the improvement in identifying structural parameters (stiffness) using the
ERA method for identification when VSDDs are included and commanded to induce

additional stiffness.
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3.9.2 Eigen System Realization Algorithm

The Eigensystem Realization Algorithm (ERA) is a modal testing method
(Juang and Pappa, 1985) developed at the NASA Langley research center. This state
space method makes use of model overspecification in the initial stage in order to
reduce bias. Spurious results are minimized by reducing an over-specified model
order by singular value truncation. Moreover, a judicious choice of data and its
proper arrangement in the block matrix can also be used to minimize the
computational requirements of the method. The important features of the ERA
method (Juang and Pappa, 1985) can be summarized in the following:

1. From the computational standpoint, simple numerical operations are needed.

2. The computational procedure is numerically stable.

3. The structural dynamics requirements for modal parameter identification and
the control design requirements for a reduced state space model are satisfied.

4. Data from more than one test can be used simultaneously to efficiently
identify closely spaced eigenvalues.

5. Computational requirements are moderate.

Generally, the ERA algorithm consists of two major parts, namely, the basic
formulation of the minimum-order realization and the modal parameter computation.
The technique begins by forming a block data matrix which is obtained by deleting
some rows and some columns of the generalized Hankel matrix of the pulse response
(Markov Parameters), but maintaining the first block matrix intact. Singular value

decomposition is then applied on the system Hankel matrix to compute the singular
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values and unitary matrices (all of the columns are orthonormal) of a system, which
are subsequently used to know the order of the system and to obtain a realization for
the state space matrices. Natural frequencies, damping ratios, and mode shapes of the
simulated structure can be obtained from the realized system matrix.

The system to be identified is assumed to be discrete-time, linear, and time

invariant of the form:
x(k+1) = Ax(k) +Bu(k), y(k)=Cx(k) (3-72)
with 7, inputs and n, outputs. The Markov (pulse response) parameters are given
by:
Y(0)=D, Y(k)=CA"'B, >0 (3-73)

where A is the discrete state matrix, B is the input influence matrix that characterizes
the location and type of inputs, C is the output influence matrix for the state vector x,
and D is direct transmission matrix.

For the application in this chapter, the Markov parameters are measured in
the time domain by introducing impulses to system inputs. Then, a generalized

Hankel matrix H(k) of the Markov parameters is formed where H(%) is in the form:

Y (%) Yk+1) - Y(k+s)
o[ YD YD MGy
Yk+r) Ylk+r+1) -+ Yk+r+s)
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where » and s are arbitrary integers. The variables » and s are taken as 20-30 and 10
times, respectively, the assumed order of the system for best results (Caicedo et al.,
2004).

The generalized Hankel matrix is then evaluated for 4=0. This is followed by

performing a singular value decomposition on the Hankel matrix H(0) such that:
H(0)=PZQ" (3-75)

where the P and Q matrices are unitary matrices (all of the columns are
orthonormal), and the matrix ¥ is the diagonal matrix of singular values. The order
of the system will be apparent in the absence of noise because the first # singular
values are non-zero while the rest are zeros or approximately zero. When noise
exists, the order may not be so clear and one must choose what order n to use. The
smaller singular values in the diagonal of £ correspond to computational or noise
(non-physical) modes. Once the estimated order of the system is chosen, the rows
and columns associated with the computational modes are eliminated to form a

condensed version of the singular values and unitary matrices, Z,, P, ,and Q,,,

respectively.

Using these truncated matrices, estimates of the state space matrices for the discrete-

time structural model are found by using the formulas (Juang, 1994):

A=3"P/H()Q,Z;" (3-76)
B=2"2Q'E, (3-77)
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C=E'p z!? (3-78)
where
E;=[l 0], E,=[I 0] (3-79)

The eigenvalues and eigenvectors of the system can then be computed from
the identified system matrix A using a standard eigenvalue problem. The output

matrix én is used to transform the computed eigenvectors (corresponding to non-

physical states in the identified model) to displacement at the floors of the structure

using the equation
v=Cd® (3-80)

where y is the matrix of the output shapes and & is the matrix of the eigenvectors

of the state space matrix A . The ERA method was implemented using MATLAB®.

3.9.3 Least Squares Stiffness Estimation of the Eigenvalue Problem
Solution

The structural parameters, especially the stiffness parameters, are the main
interest herein. Thus, a technique that would evaluate such parameters from the
modal parameters is required. The method used herein follows that of Caicedo et al.

(2004), which is summarized as follows.
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By considering a lumped mass system (such as a shear building model and

the 2DOF bridge model) with ngq degrees of freedom, the mass matrix, M, and the

stiffness matrix, K, are assumed to be of the form

m, 0 0 0
0 m, 0 0
M= : : : (3-81)
0 et 0
0 O 0 m,
—kl +k, -k, 0 0 ]
-k, k,+k, : :
K= 0 K . - k,ld_1 0 (3-82)
. “knd-l knd—l +knd —-knd
0 e 0 -k, k,
L d 4]
The eigenvalue problem of such a structure is (Chopra, 1995)
K-AM),=0 or K¢,=41Mo, (3-83)

where 4, and ¢ are the jth eigenvalue and eigenvector of the structure, respectively.

Substituting the mass and stiffness matrices into the eigenvalue problem and

reorganizing so that the stiffness coefficients can be assembled in a vector

Ak=A,;

7

(3-84)
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where

—¢1,j ¢1,j "¢2,j 0 0
0 ¢2,j_¢1,j ¢2,j"¢3,j 0
Aj = : : .. - : (3-85)
0 0 ¢nd—l,j —¢nd—2,j ¢nd—l,j “¢nd,j
L 0 0 0 Do "¢nd—1,ji
and the stiffness vector k is
k=[k k, ... k] (3-86)
and the vector A is
A=[¢1,,-/1jm1 ¢2’j)»jm2 gé,,d’j/ljmnd I’ (3-87)

where ¢, , is the i element of the eigen vector ¢ .

Eq. (3-82) can be applied for each of the n4 eigenvalues and eigenvector pairs
identified. Thus, by gathering all of the equations corresponding to Eq. (3-82) into

one big matrix equation gives

A1 kl Al
A, |k A
Sl =Ak=A=]" (3-88)
An kn An

representing n. equations which are used to solve for the vector of stiffnesses k by

the relation

k=A'A (3-89)
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It is important to note that the matrix A is not square and, consequently, a pseudo-
inverse of this matrix is computed to obtain a least squares estimate of the

stiffnesses. Using multiple eigenvectors improves the resulting estimations.

3.9.4 Applying VSDD approach to the ERA method

In order to apply the VSDD approach to the ERA method, some assumptions
are considered. The stiffnesses of VSDDs are assumed known for any desired
configuration of VSDD stiffnesses. Once the identification process (of the structure
including VSDDs) is complete, the added VSDD stiffness in each corresponding
story is subtracted from the estimated stiffness parameter. Thus, the results are
considered estimates of the structure’s stiffnesses at this configuration of the VSDDs
stiffnesses.

This can be expressed through the equation

kactual = kestimated - kVSDD (3-90)

Then, by applying the same operation for each case of the VSDD stiffness and
obtaining the resulting corresponding stiffness estimates, a mean estimate of the
stiffnesses for all different VSDD cases can be obtained. This can be expressed in the

form of the equations
ki =—2 Fisoo, (3-91)

where 7, is the number of the VSDD stiffness configuration cases.
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3.9.5 Application to the 2DOF Bridge Model

The ERA approach with VSDDs is applied to the 2DOF bridge model shown
in Fig. 3-5. The bridge stiffness and damping parameters are the same as in Section
3.5.2. The suggested technique is applied such that every realization of the stiffness
parameters is averaged over 100 different patterns of noisy data. This is done for 20
times. The RMS noise level was taken as 10% of that of the original signal. The
impulse response was generated in MATLAB® based on the exact parameters of the
structure bridge structure. The additional stiffnesses induced by the VSDD are 0%,
125%, 250%, 375%, and 500% of the isolator stiffness. The system is assumed of the
4™ order in the identification process, so the ERA algorithm chooses the first four
singular values to represent the system. The arbitrary integers r and s are taken

equivalent to 50 and 20, respectively. In addition, the state space system matrices A,

B, C,and D are
i 0 0 1 0 ]
0 0 0 1
A= k) Ry, Ktk (G tG) 6 (3-92)
m, m, m, m,
ky + kyspp _ ky +kyspp & _ 6
L m, m, m, m, |
B=[0 0 1Ym, 1/m, 1 (3-93)
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~ (ky + k) +kygpp ey + e _ (¢, +¢,) &
m m m m
C= 1 i 1 i 3.94
ky +kyspp _ ky + kyspp Oy _ & (3-59)
m, m, m, m,
D=[l/m, 1m,]" (3-95)

3.9.6 Results of Identification Process

Fig. 3-35 shows the relative error in the stiffness estimates. It demonstrates
that using a VSDD was beneficial in giving more accurate means of the estimated
stiffnesses. In addition, the root mean square error (RMSE) of the identified
stiffnesses in the first and second stories, with the VSDD approach, are about two-
thirds and half, respectively, of those obtained through the conventional structure
approach. Thus, it can be concluded that using VSDDs also has potential for
improving the accuracy of sub-space techniques such as ERA method in

identification.

Table 3-7. Estimate means and mean-square error percentage for 2DOF bridge model
using ERA method (Varying stiffness)

Exact With VSDD No VSDD
Mean (kN/m) | RMSE (%) | Mean (kN/m) | RMSE (%)
ky 15791 15734.9 0.67 15651.65 0.99
ky 7685 7692.5 0.73 7781.995 1.42
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Fig. 3-35. Variation in the stiffness parameters of the pier and deck of the 2DOF Bridge
system model
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4 EXPERIMENTAL VERIFICATION OF THE

BENEFITS OF VSDDs IN SHM

4.1 Introduction

Experimental investigations are essential to obtain a fundamental
understanding of many phenomena. To verify the advantages gained by using
VSDDs in structures for SHM, it is vital to identify these advantages in an
experimental basis. This chapter introduces a laboratory experiment that replicates
the effect of VSDDs on structures when used for SHM. A two degree-of-freedom
(2DOF) experimental shear building structure is subjected to a band-limited white
noise (BLWN) ground acceleration and a filtered band-limited white noise
(FBLWN) through a small-scale shaking table. The acceleration of the table and the
absolute accelerations of the first and second stories are recorded. The measurements
are processed to obtain an identification of the stiffness of the first and second stories
of the 2DOF structure before and after damage. The results verify the observations
from the theoretical results in the previous chapters that the identification is

improved by using VSDDs.

4.2 Experiment Description

In the area of control and SHM of civil structures, it is well recognized that

experimental verification is necessary to focus research efforts in the most promising
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directions (Housner ef al., 1994a,b). Consequently, a small-scale shaking table
experiment is performed to validate the analytical results that show the
improvements to SHM when using VSDDs. A schematic of the experiment, where a
two degree-of-freedom (2DOF) shear building structure is mounted on and fixed to a
small shaking table, is shown in Fig. 4-1. Fig. 4-1 also shows the blue power module
that passes the analog command voltage signals from the MultiQ (D/A, A/D
converter) board to the table and passes back the accelerometer analog measurement
signals. The experiment was built and run in the SHM and Control Lab at the

University of Southern California (USC).

e —

Fig. 4-1. The shaking table with the 2DOF shear building structure mounted on it

The components of the experiment, in general, include the shaking table,
2DOF shear building model, digital controller (MultiQ I/O) board, the power module
for the table, PC computer, three accelerometers and two sets of steel springs
necessary to replicate the various stiffness levels that would be achieved with
VSDDs in a real-world application. The computer used in the experiment is a

Windows 98 466MHz Pentium 3.
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4.2.1 Experiment Steps

The experiment goal can be summarized in identifying damage in an
experimental 2DOF structure composed of the shear building structure and two pairs
of weak springs per floor, acting as bracing to the structure, as shown in Fig. 4-1.
The damage in the structure will be effected by changing the stiffness of one of the
two stories by removing a pair of the weak diagonal bracing springs.

The damage identification problem is solved once with no VSDDs included
in the system (conventional structure) and then again when VSDDs exist in the
system. In the course of the experiment, the additional forces induced by the VSDDs
in the system are replicated by adding strong springs in the diagonal bracing with
different configurations giving different stiffness levels. The identification process,
in each damage case, is performed using four sets of measured ground and floor
absolute accelerations data, obtained using four different configurations of the strong
springs. For fairness in comparison, the conventional structure approach uses the
same amount of measured data.

The 2DOF structure, during the experiment, is subjected to ambient ground

- excitation induced by the shake table. The ambient ground excitation is generated in
two ways: by a band-limited white noise (BLWN) ground excitation with a cutoff
frequency of approximately 20Hz, and by a filtered BLWN using the Kanai-Tajimi
filter to simulate ground effects (Soong and Grigoriou, 1993; Ramallo et al., 2002).

Once the data is obtained, the Iterative Least Squares Numerator (ILSN)

identification method is then applied to estimate the stiffness coefficients for both
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floors of the 2DOF structure. This is done in a manner similar to the simulation study
in Chapter 3. (The ILSN identification technique is not detailed here; the reader is
referred to Chapter 3 for more information.) Finally, the identification results of the
stiffnesses in both stories are compared, before and after damage occurs, both with
VSDDs in the system and without VSDDs. The experimental results confirm the
simulation observations showing more accurate damage assessment when using

VSDDs.

4.2.2 Components of the Experiment

Before introducing the results, the properties and nature of each component

of the experiment are detailed in the following subsections.

4.2.2.1 Shaking Table Properties

The key component of the experiment is a bench-scale shake table, shown in
Fig. 4-2. The shaking table is a small-scale uniaxial earthquake simulator
manufactured by Quanser Consulting Inc. The table is located in the SHM and
Control Lab at the University of Southern California (USC). The specifications of
the table have been developed to produce a unit that is effective for a wide variety of
experiments for civil engineering structures. The table is computer-controlled with a
user-friendly interface. The design specifications of the shaking table, as supplied by

the manufacturer, are shown in Table 4-1.
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Fig. 4-2. Plan view of the shaking table

Table 4-1. Design Specifications of the Shaking Table

Specification Value Unit
Shake table system overall dimensions (LxWxH) 61x46x13 cm
Shake table system mass 27.2 kg
Table dimensions (payload area), (LxW) 46x46 cm
Maximum payload at 2.5g 15 kg
Peak Displacement +7.5 cm
Operational bandwidth 20 Hz
Peak velocity 83.8 cm/s
Peak acceleration 24.5 m/s
Accelerometer range +49 m/s’
Accelerometer sensitivity 1/9.81 Vs*/m
Lead screw spread pitch 12.7 mm/rev
Brushless servo motor power 745.7 W
Maximum continuous current 12.5 A
Motor maximum torque 1.65 Nm
Linear bearing load carrying capability 131.5 kg
Linear bearing life expectancy (total travel) 6350 km
Leadscrew encoder resolution 1096 counts/rev
3.1 um/count
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The nominal operational frequency range of the simulator is 0-20 Hz.
Because the shake table motor is inherently open loop unstable, position feedback,
measured from the shake table motor, is employed to stabilize the table (Christenson

et al., 2003).

4.2.2.2 Digital Controller

The digital controller, used in the experiment, is the MultiQ /O board

(http://www.quanser.com/English/html/solutions/fs_soln_hardware.html) with the WinCon

(http://www.quanser.com/English/html/solutions/fs_soln_software wincon.html) real time

controller installed in a Windows computer. The MultiQ interface board is connected
to the MultiQ I/O board by a ribbon cable, and to the power module that is, in turn,
connected to the shake table. The extended terminal of the MultiQ interface board, as
shown in Fig. 4-3, has 13-bit analog/digital (A/D) and 12 bit digital/analog (D/A)
connections with eight input and eight output analog channels. Eight digital encoders
are also available. The table control algorithm is developed using SIMULINK (1999)
under MATLAB® 5.3 and executed in real time using the WinCon software. The
SIMULINK code is converted to C++ code using the Real Time workshop in
MATLAB® and interfaced through the WinCon software to run the control algorithms

on the CPU of the PC (Quanser Consulting, 1995; Christenson et al., 2003).
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Fig. 4-3. Plan view of the extended terminal of the MultiQ interface board
4.2.2.3 2DOF Structure

A 2DOF shear building structure, shown in Fig. 4-1, is the test bed of this
experiment. The structure is composed of two vertical aluminum plates in each story,
with thick plexi-glass plates at the bottom, first and second stories of the structure to
connect the vertical plates. The horizontal plexi-glass plates and the vertical
aluminum plates are fixed to each other by three 8-32 UNC bolts in each side at each
level. The interstory height is 490 mm.

The experimental structure also includes two pairs of weak steel springs
located in each story as shown in Fig. 4-4. Including these weak springs as part of
the experimental structure allows inducing damage in the structure, by removing one
or two of these pairs, without damaging the original structure. Each pair of the weak
springs represents about 7.38 % of the estimated stiffness of each story of the

original structure.
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Fig. 4-4. Front view of the experimental 2DOF structure including the added weak steel
springs

Prior to experimentation, the 2DOF structure was disassembled so that its
dimensions and measurements could be recorded. A caliper was used to measure the
thickness of the structure’s components. The lengths, widths, and heights were
measured using a measuring tape with accuracy of 1/32 of an inch. An electronic
scale, with measurement sensitivity 1 gm, was used to weigh each component of the
structure. Table 4-2 lists the measured dimensions in centimeters and masses in
kilograms. It is important to note that the mass tabulated for the plexi-glass plate,
also includes the mass of the screws, washers, fastener plates, and accelerometers
located at the corresponding level. The weak springs are manufactured by Century
Spring Corp. (Los Angeles) and have vendor stock #80039. The physical properties
of the weak steel springs, as per the manufacturer’s catalogue, are shown in Table

4-3.
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Table 4-2. Measured Dimensions and Masses of the 2DOF Structure

Mass (kg) Length (cm) Width (cm) Thickness (em)
Plexi-glass plate at
shake table level 0.654 30.48 10.80 1.24
Plexi-glass plateat | 4 54 30.48 10.80 1.24
17 story level
Plexi-glass plateat | = 45 30.48 10.80 1.24
2™ story level
Vertical Aluminum
Plates (1 story) 0.236 50.17 10.80 0.18
Vertical Aluminum
Plates (Z“d story) 0.236 50.17 10.80 0.18
Table 4-3. Physical Properties of Weak Spring #80039 as per Manufacturer Catalogue
Stock puter Length without | Stiffness Initi.al Suggested Max. Suggested
No, |Diameter | "y iksmm) | Nm) | % | Defiection (mm) | , M2*:
’ (mm) (N) Load (N)
80039 2.39 25.40 90.00 0.30 37.00 3.60

For the sake of accuracy in the processing of results, the stiffnesses of the
weak springs are verified by applying an additional test using a spring tester at the
manufacturer main office (see Appendix B for manufacturer test reports). The tests
are applied on two pairs of the weak springs. One of the two pairs is the one removed
from the first story to replicate damage there, and the other pair is the one removed
from the second story to replicate damage there. The results of the tests are shown in
Table 4-4. It is found that, based on the verification tests results, that the mean
stiffness of the weak springs (#80039) is 83.11 N/m, which is less than that
documented in the catalogue. Thus, a pair of the weak springs represents 7.38% of

the estimated overall stiffness of each floor of the experimental 2DOF structure. The
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configurations of the weak springs pairs in the structure, in order to replicate damage

in the structure, are shown in Table 4-5.

Table 4-4. Weak Spring (#80039) Stiffness Test Results Supplied by Manufacturer

Spring #80039 Location Stiffness (N/m)
Sample 1 1% story 83.46
Sample 2 1% story 82.41
Sample 3 2™ story 82.06
Sample 4 2" story 84.51

Table 4-5. Different Configurations of Spring Pairs in the 2DOF Structure to Replicate
Damage in the Structure

Case Location No. of Pairs
st :
@ No damage 1nd story 2 pairs
g 2" story 2 pairs
& | 7.38% damage in 1% 1% story 1 pair
g story 2™ story 2 pairs
g | 7.38% damage in 2n 1* story 2 pairs
= story 2" story 1 pair

4.2.2.4 Accelerometers

The resulting response of the structure during the experiment is measured by
accelerometers as shown in Fig. 4-5. One accelerometer is fixed to the table base
level. Another two are fixed to each of the two stories in the middle bottom of the
plexi-glass plates at each story. The range of the accelerometers is + 5g with an
output of = 5 volts. Each accelerometer is connected via cable to the power module

which is, in turn, connected to the MultiQ® unit.
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Fig. 4-5. Isometric view of the mounted accelerometer

4.2.2.5 Springs Representing VSDDs

The theoretical simulations in Chapter 3 (e.g., the 2DOF bridge model

problem) show that using higher VSDD stiffness to story stiffness ratio improves the

results considerably. For the case of the experimental structure, the small cross-

section of the aluminum plates limits the feasible added stiffness per floor because

too much added vertical load could cause the vertical plates to buckle. Consequently,

the springs used to represent the additional forces exerted by VSDD are chosen to

have stiffness of the same order as that of the columns per story. Therefore, Century

Spring Corp. spring stock number #80222 is chosen. The physical properties of this

stiff spring, from the manufacturer catalogue, are shown in Table 4-6.

Table 4-6. Physical Properties, as per Manufacturer Catalogue, of Stiff Springs Used to
Replicate the Effect of VSDD Forces

Outer Length . Initial Suggested
Sg’:k Diameter without S:g?;;ss Tension ]S)::g%ii:sg ?::::S Max.
’ {mm) Hooks (inm) (N) Load ()
80222 4.57 69.90 340.00 3.00 37.00 34.00

Fig. 4-6 shows the experimental structure with the stiff springs attached. Due

to the short lengths of the springs, steel links are used to connect the springs to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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aluminum connections as shown in Detail A, Fig. 4-7, at each joint of the 2DOF
structure. The springs are staggered across the depth of the structure, as shown in
Detail B, Fig. 4-8, so that the springs do not rub against each other.

To replicate the effect of varying forces by VSDDs, the stiff spring pairs are

added in four configurations. Table 4-7 shows the different configurations of the stiff

spring pairs in the 2DOF structure.

Fig. 4-6. Experimental structure with springs representing VSDDs

Fig. 4-7. Detail (A) showing aluminum Fig. 4-8. Detail (B) showing staggered
connections and steel link springs connected by steel link
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Table 4-7. Different Configurations of Stiff Springs Pairs in the Two Stories of the
2DOF Structure

Configuration No. No. of Pairs in 1% Story No. of Pairs in 2™ Story
1 0 0
2 4 G
3 4 2
4 2 4

The reason for even numbered spring pairs per configuration, in each story, is
to minimize any coupling of the transverse modes with those of torsion. The results
obtained in system identification with the stiff springs included in the structure are
compared to the case without any stiff springs in either of the two stories
(conventional structure).

Since an accurate estimate of the VSDD stiffness is required in the
identification, spring stiffness tests are performed by the manufacturer on the stiff
springs (#80222). (See Appendix B for the test report by the manufacturer.) During
the experiment, a maximum of six pairs are required (Table 4-7). Thus, the twelve
springs forming these six pairs are tested to obtain the stiffnesses as shown in Table
4-8. The results show differences from those documented in the manufacturer
catalogue. The measured stiffnesses are the ones used in the identification process.

Where Table 4-7 shows four pairs of stiff springs in a story, they are samples
1,3,4,5,6,7,8, and 12 Table 4-8. Where Table 4-7 shows two pairs, they are samples

2,9,10and 11.
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Table 4-8. Stiff Spring (#80222) Stiffness Test Results Supplied by Manufacturer

Spring #80222 Stiffness (N/m)
Sample 1 989.291
Sample 2 974.563
Sample 3 962.464
Sample 4 978.069
Sample 5 991.396
Sample 6 969.653
Sample 7 993.499
Sample 8 980.875
Sample 9 980.875

Sample 10 966.146
Sample 11 963.165
Sample 12 967.549

4.2.3 Modeling and Stiffness Calculations for the Experimental

Structure

A critical precursor to SHM is the development of an accurate dynamic
model of the structural system. For this study, the approach used for system
identification is to construct a mathematical model to replicate the input/output
behavior of the system (Dyke et al. 1996). The model assumed here is a shear-
building model. Thus, in the calculation of the stiffness for the first and second
floors, the total stiffness is considered the sum of the columns’ stiffnesses and the
additional equivalent stiffness due to spring pairs. Accordingly, the stiffness of each

story is calculated from

kstory = (Zﬂkcol}'i' np X 2% ks X C052 & (4_1)
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where n,=2 is the number of columns, &, is the stiffness of each vertical aluminum
plate. The stiffness of each spring is %, and n, is the number of spring connections

pairs. # is the angle of inclination of the spring, calculated from
6 =tan"' (B/h) 4-2)

where B is the horizontal width of the 2DOF structure and / is the interstory height

of each story of the 2DOF structure.

E,; , the modulus of elasticity of aluminum (material of the plates), is taken

as 75GPa. All cross sections of the aluminum and plexi-glass plates are rectangular.
Thus, the moment of inertia of each plate can be calculated from

o

I=
12

(4-3)

where ¢ is the thickness of the plate and b is the plate width. Consequently, the

stiffness matrix for the undamaged structure is

2 -1
K= [ﬁ%{-—]& + 4% kg0 X COS” 9}[4 . } (4-4)

where /,, is the moment of inertia of each of the aluminum plates and kg, is the

stiffness of the stiff spring #80039. Note that this stiffness matrix is based on the
measured dimensions and assumed material properties and may not be exact due to
the difference between actual and assumed material properties and modeling

idealization.
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4.2.4 Generation of Simulated Ground Acceleration

During the shake table experiment, the laboratory structure is assumed
subjected to ambient ground excitation induced by the shake table. The ambient
ground excitation is generated in two ways: by a band-limited white noise (BLWN)
ground excitation with a cutoff frequency of 20Hz and by a filtered band-limited
white noise (FBLWN) using the Kanai-Tajimi filter (Soong and Grigoriou, 1993;
Ramallo et al., 2002). The procedure for obtaining each excitation type is explained

in the following paragraphs.

4.2.4.1 Band-Limited White Noise (BLWN) Generation

The SIMULINK toolbox under MATLAB® 5.3 is used for designing the
excitation model that commands the shake table to generate white noise ground
acceleration. The software WinCon 3.1, supplied by the manufacturer of the shake
table (Quanser), uses the SIMULINK toolbox to generate models and compile them
using C++. Fig. 4-9 shows the BLWN acceleration generator model used in the
experiment.

The generator model of white noise ground acceleration is designed such that
a BLWN displacement is commanded to the shake table. Theoretically, the
commanded white noise displacement should produce BLWN acceleration.
However, due to noise resulting from imperfections, frequency dependence of table
dynamics and nonlinearities in the table system, this is not the case. Thus, the

commanded BLWN displacement to the table should be filtered through some
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frequency domain filters in order to obtain the desired white noise ground
acceleration, and to enforce table safety and limitations. Consequently, two filters
(Filter 1 and Filter 2 in Fig. 4-9) are added to the designed generator SIMULINK
model. The first filter (Filter 1) ensures that the power spectral density (PSD) of the
resulting table acceleration has a constant magnitude in the frequency domain. The
second filter (Filter 2) is a low pass filter that limits the effective frequency range of
the table motion with a cutoff frequency at 20 Hz. For the safety of the table, the
magnitude of the commanded displacement is scaled so as not to exceed one inch,

and its magnitude is only allowed to ramp up at the start of the table motion.

Band-L imilad
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Fiber_1 Fitiar_2 Scaling
—"‘-\— R
2881 E-Bs+-15.81 20
(D= \[pj2ieelsn ], | 2 .
se 281 _~ Product
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WMagniuds displecemen: command
Low Pass Fillar

Fig. 4-9. SIMULINK model for generation of band-limited white noise ground
acceleration using the shaking table

Fig. 4-10 shows a sample time history of the generated ground acceleration as
measured by the accelerometer located on the table. The power spectral density
(PSD) of this sample ground acceleration is shown in Fig. 4-11. (The sampling

frequency is 1000 Hz.)
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Ground Acceleration mag. (g)

04 50 100 150 200
Time (sec.)
Fig. 4-10. Sample four minute realization of the band-limited white noise acceleration
at the table level

The Hanning window with an overlap of 75% between the consecutive data samples
is used for the evaluation of the PSD. To obtain a correct PSD, the time history was
detrended to remove any DC gains that may exist due to any static charges or

manufacturing defects in the accelerometers.

PSD magnitude (dB)

-60

10" 10°

Frequency (Hz)
Fig. 4-11. PSD magnitude of the generated BLWN ground acceleration
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4.24.2 Filtered Band-Limited White Neise (FBLWN) Generation

For a more realistic loading model to replicate ground motion, it is better to
consider the effect of the soil on the propagation of ground vibrations. A good
assumption for the experiment applied here is to consider the soil as a filter through
which the vibrations pass before reaching the location of interest. This assumption,
however, is complicated by the fact that the soil conditions and layers are different in
different site locations. Thus, the approximation here considers a simple stationary
representation of the soil that was originally proposed by Kanai (1957) and Tajimi
(1960), who suggested that surface ground acceleration can be approximated by the
motion of a simple oscillator with a concentrated mass supported by a linear spring
and a dashpot and subjected to a white noise excitation (bedrock acceleration) of

spectral density §,. Thus, the power spectral density of the absolute surface ground

acceleration becomes

4 2.2 .2
o, +4 0.0

2 242 2.2 .2
(0, —~07) +45, 0,0

Sy (@) = S (4-5)

where @, and £, are the natural frequency and the damping ratio of the assumed

oscillator determined by the characteristics of the local ground conditions. The

intensity S, of the excitation is determined by the strength of the excitation waves

(Soong and Grigoriou, 1993). The Kanai-Tajimi model is widely used as an
earthquake excitation for engineering structures because of its ability to simulate

earthquake-induced ground motions in a very simple way.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To use the Kanai-Tajimi model, the three parameters, namely @y, &, and
S,, are estimated from representative earthquake records by means of statistical

estimation procedures. Thus, an approximation based on the study of frequency
content of a number of two strong ground-motion records each in the USA and Japan

is considered. In the experiment here, the natural frequency of the oscillator, @, , is
taken equivalent to 17 rad/s; the oscillator damping ratio ¢, is taken equivalent to

0.3 (Ramallo et al., 2002). Fig. 4-12 shows the frequency response of this Kanai-

Tajimi filter used in the experiment.

Freq. Response magnitude (dB)

N

+ 2

10

Frequency (Hz)
Fig. 4-12. Frequency response of the Kanai-Tajimi filter used in the experiment

4.2.5 Determination of the Transfer Function from Measurement Data

and Identifying the Structure

The ILSN identification method (previously explained in Chapter 3) used

here attempts to match a parametric model of a transfer function to measured transfer
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function data. To apply the ILSN identification technique; the experimental transfer
function needs to be obtained. Thus, based on the measurement acceleration /O data
(Bendat and Piersol, 2000), the transfer function between the ground acceleration
excitation input and the absolute acceleration outputs at the first and the second
stories can be evaluated. In the application here, the input u(¢) to the structure is the
measured table (ground) accelerations data, and the measured first and second story

accelerations are the outputs y,(r) and y,(¢), respectively. The PSD matrix of the

acceleration input u(¢) is
8,(0) = U" (@)U () (4-6)
The cross-spectral density (CSD) function between the table acceleration and the

measured story accelerations are

$,u(@=U'@Y@ ad S, @=U@hLe @7

Finally, the transfer functions H,(w) and H,(w) from the ground acceleration input

to the absolute accelerations of the two floors are evaluated from the ratio between

the CSDs and PSD

H SW‘ (0)) . Syzu (a))
(@)= S @ and H,(0)= S (@) (4-8)

uu uy

Thus, having the experimental transfer functions, the ILSN technique can be used to
obtain the values of the structural parameters by minimizing the residual error

between the experimental and the theoretical parametric transfer functions.
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4.3 Data Analysis

The main task of the experiment is to detect a small amount of damage (about
7.38% of the estimated story stiffness) located in one of the two stories of the
structure. The accuracy of the identified damage is then compared between the cases
when VSDDs are used in a structure and when they are not. The damage is defined
as a loss in stiffness. There are two damage cases, one where a pair of weak springs
are removed from the first story (to simulate damage there), and one removing a pair

of weak springs from just the second story.

4.3.1 Experimental Challenges and Solutions

The main task of the experiment is complicated by different factors. These
difficulties include accuracy of modeling, nonlinearities in the experiment, the
sensitivity of the accelerometers (sensor noise), and unmeasured vibrations coming
from the ground under the table or from connecting cables. Moreover, the memory of
the computer, used in the storage of the data, is limited. Consequently, the amount of
data that can be stored is also limited. These problems add to the complexity of the
identification problem.

In order to overcome some of these challenges, some actions are considered.
For example, the experiment was performed in the basement of a building in order to
minimize the ground vibrations under the table and to avoid building vibrations
encountered in higher levels. Moreover, the level of excitation is kept small enough

that the 2DOF structure response is linear and the weak and stiff springs in the
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bracings exhibit only elastic behavior. Further, the weak and stiff springs are
pretensioned to nearly half their maximum elastic deflection so they are always in
tension during the experiment and, thus, the bracing forces exerted by the springs
never vanish. In addition, all flexible cables connected to the structure (such as those
connected to the accelerometers) in the first and the second stories are banded and
fixed to the structure, as shown in Fig. 4-4.

To ensure good structure modeling, the 2DOF structure is designed as a shear
building where the moment of inertia of the plexi-glass plate is 327 times that of the
aluminum vertical plate. Moreover, all weights and dimensions are accurately

measured.

4.3.2 Data Processing

The excitation generator models of the table are designed to excite the
structure for 3800 seconds continuously (the limits of memory in the laboratory
computer). The stored data is divided into non-overlapping two-minute samples of
data or six-minute samples of data; in both cases, ten seconds is omitted between
each sample to eliminate coherence between successive samples. The data is split
into a number of samples, each of which is used to generate one set of parameter
estimates, in order to get a statistical distribution of the identified structure
parameters. The sample duration is varied in order to observe the effect of the
amount of data in each sample on the identification of the structure parameters. Each
of the samples is processed in a separate identification problem for the unknown

structure parameters, which are here assumed to be only the stiffness coefficients.
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Thus, it is assumed that the masses and damping coefficients of the two stories of the
structure are known a priori. The masses of each of the two floors are considered
equivalent to 1.125 kg. Based on the measurements recorded in Table 4-2. The
logarithmic decrement method is used to obtain modal damping ratios of the 2DOF
structure. The results of testing the damping ratios indicate a 1% damping in the first
and second modes. In addition, the natural frequencies of the structure without
adding the weak springs are measured and found to be 2.197 Hz and 6.24 Hz
respectively. Consequently, the uncoupled damping coefficients for the two floors
are computed to be 0.2 and 0.5 N-sec/m, respectively.

The ILSN method requires initial estimates of the unknown stiffness
parameters. Using the dimensions of the aluminum vertical plates (Table 4-2) and
assuming the modulus of elasticity of Aluminum to be 75 GPa, the initial estimates
of the stiffnesses of the first and second stories (including the springs) are computed

from Eq. (4-1) to be 657.94 N/m.

4.3.3 Damage Identification Results

The damage, within the context of this research, is defined as the loss in
stiffness after damage. Thus, the mean and the standard deviation (STD) of the
identified values of the first and second story stiffnesses, &; and &, respectively, are
evaluated for the undamaged and damaged cases. Fig. 4-17 to Fig. 4-32 show the
error in the identified first and second story stiffnesses, k; and k», relative to the
assumed stiffnesses which are based on the material properties. This is done for both

the undamaged and damaged cases; in both cases, a one-standard deviation ellipse is

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



shown in the figures. The shift in the one-standard deviation ellipse, before and after
damage, indicates damage quantity and location in any of the graphs. Moreover,
Table 4-10 to Table 4-24 give the percentage of damage as the difference in stiffness
between mean values of the identified stiffnesses, before and after damage, relative
to the assumed values of the stiffnesses since it is a constant reference. In order to
compare between the VSDD and conventional structure approaches, the resulting

identified percentages of damage are compared to the exact ones.

4.4 Resulting Transfer Functions

To show the success of the ILSN identification technique in estimating the
stiffness of the two stories of the 2DOF structure, the estimated theoretical TF of one
two-minute sample and one six-minute sample data, based on the values of the
identified stiffness parameters of these samples, are demonstrated here in contrast to
their experimental counterparts (computed as per Section 4.2.5). This is applied for
both the VSDD and conventional structure approaches, respectively. The TFs here
represent a single sample case, either two-minute (Fig. 4-13 and Fig. 4-14) or six-
minute (Fig. 4-15 and Fig. 4-16), for the undamaged structure when subjected to
FBLWN ground excitation. The TF identification for the sample studied in this
section is found to be successful for both the VSDD and the conventional structure
approaches. This was not always the case for all samples when using the

conventional structure approach.
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4.4.1 Two-minute sample

As shown in Fig. 4-13 and Fig. 4-14, the identified theoretical TFs have done
very well in tracing the experimental one for both the VSDD and the conventional
structure approaches. This is the case despite the considerable noise in the
experimental TFs. However, as will be shown in the coming sections, for the

conventional structure approach, the identification is not always ideal.

4.4.2 Six-minute sample

Similarly, the identified theoretical TFs, for the VSDD and conventional
structure approaches, are successful in defining the system in one sample of the six
minutes data samples. This is expected due to better averaging of the PSD of the
inputs and the CSD functions between the inputs and the outputs for longer duration
data samples. This, in tumn, reduces the noise in the evaluated experimental TFs.
However, this is not always the case for the conyentional structure approach, as will

be shown later. The resulting identified TFs are shown in Fig. 4-15 and Fig. 4-16.
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Fig. 4-13. Experimental transfer functions versus identified transfer functions of the
2DOF experimental structure without damage, using VSDDs approach, for one 2-min
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Fig. 4-14. Experimental transfer functions versus identified transfer functions of the
2DOF experimental structure without damage, using conventional structure approach,
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Fig. 4-15. Experimental transfer functions versus identified transfer functions of the
2DOF experimental structure without damage, using VSDDs approach, for one 6-min
sample under FBLWN excitation
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Fig. 4-16. Experimental transfer functions versus identified transfer functions of the
2DOF experimental structure without damage, using conventional structure approach,
for one 6-min sample under FBLWN excitation
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4.5 Damage Identification Results for BLWN Excitation

4.5.1 Two-Minute Data Samples

4.5.1.1 Damage in First Story

Fig. 4-17 and Fig. 4-18 show the results of the identification, with VSDDs
and without, respectively, using two-minute samples for damage in the first story.
Fig. 4-17 shows that the VSDD approach is successful in identifying the damage in
the first story. In contrast, Fig. 4-18 indicates that the conventional structure
approach is not successful in determining the damage; in fact, nearly half of the
samples give quite inaccurate estimates for the undamaged stiffnesses. This,
consequently, leads to a huge bias in the mean estimates of stiffnesses, and large
variations, as shown in Table 4-9. In addition, one estimate after damage, using the
conventional structure approach, gives a dramatically different result, exaggerating
the variance. Table 4-10 shows that the damage is well estimated with relatively low
variation using the VSDD approach whereas, in the conventional structure approach,

the damage location is incorrect and the severity is exaggerated.
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Fig. 4-18. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
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Table 4-9. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF
Structure for Case of Damage in 1* Story (BLWN, 2 min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage
Mean | COV | Mean COV | Mean | COV Mean Cov
(Nm) | (%) (N/m) (%) (N/m) (%) (N/m) (%)
ki | 609.380 | 1.959 | 562.009 | 1.992 | 636.816 | 4.475 | 697.215 | 23.672
ky, 1 801.629 | 0.336 | 801.958 | 0.441 | 756.166 | 6.960 | 621.486 | 30.045

Table 4-10. Mean and STD Estimates of the Identified Damage for ZDOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 1" Story Only (BLWN, 2 min)

Damage | Actual % of | Relative Identified Damage
Location | Damage Mean(%) STD(%)
1* 7.3 : :
VSDD App. _ 6 7.20 2.49
2 0 0.05 0.68
1% : 9.1 46
Conv. St. App. 5 7.36 018 25
2" 0 2047 29.49

4.5.1.2 Damage in Second Story

The damage in the second story is usually well identified for both the VSDD
and the conventional structure approaches as demonstrated in Fig. 4-19 and Fig.
4-20. However, using the conventional structure approach, very inaccurate stiffness
estimates occurred in one sample for the undamaged structure case, causing large
variance as shown in Table 4-11. This, in turn, affects the credibility of the identified
damage severity for the conventional structure approach. This is represented in Table
4-12 in terms of large standard deviation, bigger than the identified damage, leading
to doubts about the results. In contrast, the VSDD approach supplied a good

identification of damage in the second story with very small variation. Moreover, the
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indication of stiffening in the first story, identified after damage in both approaches,

by the negative damage mean is suspect since the magnitude of stiffening is smaller

than the standard deviation.
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Fig. 4-19. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2™ story, (BLWN, 2-min samples, VSDDs approach)
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Fig. 4-20. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2" story, (BLWN, 2-min samples, Conv. St. approach)
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Table 4-11. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF
Structure for Case of Damage in 2™ Story (BLWN, 2 min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage
Mean | COV | Mean | COV | Mean COov Mean | COV
(N/m) | (%) | (N/m) (%) (N/m) (%) (N/m) (%)
ki ] 609.380 | 1.959 | 615.433 | 1.414 | 636.816 | 4.475 | 641.553 | 0.704
ky, | 801.629 | 0.336 | 754.192 | 0.690 | 756.166 | 6.960 | 708.729 | 0.418

Table 4-12. Mean and STD Estimates of the Identified Damage for 2DOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 2™ Story Only (BLWN, 2 min)

Damage | Actual % of | Relative Identified Damage
Location Damage Mean(%) STD(%)
1* -0.92 2
VSDD App. — 0 09 2.25
2 7.39 7.21 0.89
¥ 0 -0.72 4.
Conv. St. App. v 07 3
2" 7.39 7.21 8.01

4.5.2 Six-Minute Data Samples

4.5.2.1 Damage in First Story

Both approaches, VSDD (Fig. 4-21) and conventional structure (Fig. 4-22),
did extremely well in identifying the damage using six-minute samples when the
damage is in the first story. This shows that a longer sample duration improved the
results of both approaches, particularly for the conventional structure approach.
However, the VSDD approach still give better means. The VSDD approach
estimates the damage at 7.38% — very close to the exact of 7.36% — whereas the
conventional structure approach gives 7.43%. In Table 4-14, the extra 0.97%

stiffness estimated in the second story for the conventional structure approach case

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



may be considered significant compared to the 0.29% standard deviation, in contrast

with an insignificant 0.19% extra stiffness with a 0.36% standard deviation when

using VSDDs.
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Fig. 4-21. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 1* story, (BLWN, 6-min samples, VSDDs approach)
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Fig. 4-22. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 1* story, (BLWN, 6-min samples, Conv. St. approach)
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Table 4-13. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF

Structare for Case of Damage in 1% Story (BLWN, 6 min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage
Mean | COV | Mean Ccov Mean | COV | Mean Cov
(N/m) (%) (N/m) (%) (Nm) | (%) (N/m) (%)
ky ] 613.328 | 0.895 | 564.772 | 1.009 | 632.408 | 0.165 | 583.523 | 0.562
ky 1 800.642 | 0.157 | 801.892 | 0.248 | 765.509 | 0.117 | 771.891 | 0.222

Table 4-14. Mean and STD Estimates of the Identified Damage for 2DOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 1" Story Only (BLWN, 6 min)

Damage | Actual % of | Relative Identified Damage
Location Damage Mean(%) STD(%)
1* 7.36 7.38 1.20
VSDD App.
PP 2 0 20.19 0.36
* 7.36 7.43 0.5
Conv. St. App. T 2
2" 0 -0.97 0.29

4.5.2.2 Damage in Second Story

With damage in the second story and using six-minute samples, the VSDD
and the conventional structure approaches did well as shown in Fig. 4-23 and Fig.
4-24, but the VSDD approach is clearly superior. With the conventional structure
approach, despite very low variations in stiffness estimates as shown in Table 4-15,
the first story appears to have stiffened by 1.56% and the damage in the second story
has been overestimated, as shown in Table 4-16. The very low standard deviation in
the conventional structure approach suggests it may be more accurate, but that is

clearly misleading.
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Fig. 4-23. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2™ story, (BLWN, 6-min samples, VSDDs approach)
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Fig. 4-24. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2™ story, (BLWN, 6-min samples, Conv. St. approach)
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Table 4-15. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF
Structure for Case of Damage in 2™ Story (BLWN, 6 Min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage
Mean | COV | Mean | COV | Mean | COV | Mean | COV
(N/m) { (%) | (N'm) | (%) (N/m) (%) (N/m) | (%)
ky | 613.328 | 0.895 | 616.881 | 0.729 | 632.408 | 0.165 | 642.672 | 0.282
ky | 800.642 | 0.157 | 753.666 | 0.370 | 765.509 | 0.117 | 708.597 | 0.180

Table 4-16. Mean and STD Estimates of the Identified Damage for 2DOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 2™ Story Only (BLWN, 6 min)

Damage | Actual % of | Relative Identified Damage
Location Damage Mean(%) STD(%)
| 0 -0.54 1.08
VSDD App.
PP ond 7.39 7.14 0.46
1™ 0 -1.56 0.32
Conv. St. App.

PP 2nd 7.39 8.65 0.24

4.6 Damage Identification Results for FBLWN Excitation

4.6.1 Two-Minute Data Samples

4.6.1.1 Damage in First Story

Similar to the case of BLWN ground excitation with two-minute samples, the
VSDD approach is found, with FBLWN excitation, to be able to identify the damage
accurately in the first story whereas the conventional structure approach fails, as is
clear from Fig. 4-25 and Fig. 4-26. Table 4-17 also shows that the damage deviations
are very large for the conventional structure approach. In addition, from Table 4-18,
it can be observed that the damage location is swapped and estimated to be severe in

the second story when no damage has actually occurred there.
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Fig. 4-26. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 1% story, (FBLWN, 2-min samples, Conv. St. approach)
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Table 4-17. Mean and COVY Estimates of the Identified Stiffnesses of the 2DOF
Structure for Case of Damage in 1* Story (FBLWN, 2 Min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage
Mean | COV | Mean | COV | Mean | COV | Mean COovV
(N/m) | (%) | (N/m) (%) | (N/m) (%) (N/m) (%)
ky | 606.222 | 1.5421 559.180 | 1.884 | 629.776 | 0.481 | 687.148 | 17.415
ky | 802.485 | 0.300 | 803.340 | 0.369 | 764.061 | 0.264 | 582.010 | 28.620

Table 4-18. Mean and STD Estimates of the Identified Damage for 2DOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 1* Story Only (FBLWN, 2 min)

Damage | Actual % of | Relative Identified Damage
Location | Damage Mean(%) STD(%)
1% 7.36 7.15 2.14
VSDD App.
PP 2™ 0 -0.13 0.58
1% 7.36 -8.72 18.19
Conv. St. App. 5
2" 0 27.67 25.32

4.6.1.2 Damage in Second Story

With damage in the second story, both approaches, the VSDD and the
conventional structure, did well also, as shown in Fig. 4-27 and Fig. 4-28. However,
the conventional structure approach overestimated the damage in the second story
and indicates significant stiffening in the first story, as shown in Table 4-20.
However, these are accompanied by very small deviations, which falsely gives
credibility to these results and is misleading. On the contrary, the VSDD approach
gives a very good estimate of damage in the second story. While the VSDD approach
estimates some extra stiffness in the first story, it is less than the deviation, which

indicates that this extra stiffness is probably spurious.
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Fig. 4-27. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2™ story, (FBLWN, 2-min samples, VSDDs approach)
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Fig. 4-28. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2™ story, (FBLWN, 2-min samples, Conv. St. approach)
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Table 4-19. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF
Structure for Case of Damage in 2™ Story (FBLWN, 2 min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage

Mean | COV | Mean | COV Mean COV | Mean 160)%
(N/m) (%) | (N/m) (%) (N/m) (%) (N/m) (%)
k] 606222 | 1.542 | 613.131 | 1.033 | 629.776 | 0.481 | 638.527 | 0.658

ky | 802.485 | 0.300 | 754.455 | 0.579 | 764.061 | 0.264 | 708.860 | 0.435

Table 4-20. Mean and STD Estimates of the Identified Damage for 2DOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 2™ Story Only (FBLWN, 2 min)

Damage | Actual % of | Relative Identified Damage
Location Damage Mean(%) STD(%)
1 0 -1.05 1.72
VSDD App.
PP 2nd 7.39 7.30 0.76
™ 0 -1.33 0.79
Conv. St. App.

PP ond 7.39 8.39 0.56

4.6.2 Six-Minute data samples

4.6.2.1 Damage in First Story

Despite the advantage of having the longer duration six-minute samples, the
conventional structure approach performs poorly here for damage in the first story
with FBLWN excitation. As seen in Fig. 4-30, many of the samples are vastly
inaccurate for the undamaged case. The VSDD approach, on the other hand, is able
to identify damage quite well and with very small deviations. Table 4-21 and Table
4-22 show that the conventional structure approach gives heavily biased estimates
together with large deviation, in contrast with the VSDD approach which gives very

good estimates with small deviations.
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Fig. 4-30. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 1% story, (FBLWN, 6-min samples, Conv. St. approach)
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Table 4-21. Mean and COV Estimates of the Identified Stiffnesses of the 2DOF
Structure for Case of Damage in 1" Story (FBLWN, 6 min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage

Mean | COV | Mean { COV | Mean | COV Mean Cov
(N/m) (%) (N/m) (%) (N/m) (%) (N/m) (%)

ki | 608.854 | 1.013 | 562.272 | 0.940 | 630.632 | 0.193 | 645.830 | 10.809
ky | 801.958 | 0.156 | 803.143 | 0.249 | 763.864 | 0.132 | 623.723 | 25.013

Table 4-22. Mean and STD Estimates of the Identified Damage for 2DOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 1% Story Only (FBLWN, 6 min)

Damage | Actual % of | Relative Identified Damage
Location Damage Mean(%) STD(%)
1* 7. : :
VSDD App. _ 36 7.08 1.23
2 0 -0.18 0.36
1™ 7. -2. :
Conv. St. App. 5 36 231 10.61
2" 0 21.30 23.71

4.6.2.2 Damage in Second Story

Fig. 4-31 and Fig. 4-32 indicate that both the VSDD and the conventional
structure approaches did well in identifying the damage in the second story for six-
minute samples with FBLWN excitation. However, the conventional structure
approach overestimated the damage in the second story, and gave statistically
significant stiffening in the first story, as shown in Table 4-24. This is, again,
accompanied with very small variations in stiffness and damage estimates, which is
misleading about the credibility of such results. In the meantime, the VSDD

approach is successful in estimating the damage more accurately.
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Fig. 4-31. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2" story, (FBLWN, 6-min samples, VSDDs approach)
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Fig. 4-32. Relative errors in identified stiffnesses of 2DOF structure to assumed ones,
before and after damage in 2™ story, (FBLWN, 6-min samples, Conv. St. approach)
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Table 4-23. Mean and COV Estimates of the Identified Stiffnesses of the 2ZDOF
Structure for Case of Damage in 2™ Story (FBLWN, 6 min)

VSDDs Approach Conventional Structure Approach
Before After Before After
Damage Damage Damage Damage
Mean | COV | Mean | COV | Mean | COV | Mean | COV
(N/m) | (%) (N/m) (%) § (N'm) | (%) (N/m) (%)
ki | 608.854 | 1.013 | 614.052 | 0.417 | 630.632 | 0.193 | 638.790 | 0.286
ky | 801.958 [ 0.156 § 753.929 | 0.322 | 763.864 | 0.132 | 709.058 | 0.168

Table 4-24. Mean and STD Estimates of the Identified Damage for 2DOF Structure,
Relative to Assumed Stiffnesses, in Case of Damage in 2™ Story Only (FBLWN, 6 min)

Damage | Actual % of | Relative Identified Damage
Location Damage Mean(%) STD(%)
1 0 -0.79 1.02
VSDD App.
PP ond 7.39 7.30 0.42
s 0 -1.24 0.33
Conv. St. App.

PP 2nd 7.39 8.33 0.24

4.7 Overview of results and comments

Comparing the identified stiffness results obtained using the VSDD and the
conventional structure approaches, it can be observed that the VSDD approach
performed significantly better. This is particularly demonstrated with shorter
duration data samples. With two-minute data samples, the VSDD approach is found
to be successful in identifying the damage accurately, whether damage exists in
cither the first or the second story. The identified damage is accompanied with small
deviations giving credibility to the results. Meanwhile, for the same case of two-
minute data samples, the conventional structure is found to be unsuccessful in

identifying damage in the first story. While damage identification is more successful
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when the damage is in the second story, the conventional structure approach often
overestimates the damage and assigns statistically significant extra stiffness to -
undamaged stories.

With longer duration data samples (six-minute), the VSDD approach gives
even better damage means with much smaller variations. For the conventional
structure approach, the identified results are improved in some cases compared to the
two-minute samples, but often with biased mean damage estimates represented by
overestimating damage.

Based on these observations, one can conclude that using the VSDD
approach helps overcome the noise in the data more efficiently than the conventional
structure approach. This result confirms experimentally the conclusions in the

analytical part of this research comparing the two approaches.
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5 CONTROLLED REALTIME HEALTH MONITORING

OF STRUCTURES

5.1 Problem Definition and Introduction

Online health monitoring of structural systems with actuators in real time is
not an easy process. The problem is complicated by unmodeled dynamics, unknown
external forces (ambient excitation), rapidly changing control forces, and various
noise sources associated with real measurements (Johnson, 1997b). Generally, the
dynamics of a linear structural system with actuators driven by ambient excitation

can be represented by the equation
Mx+Cx+Kx=f=1f +f (5-1)

where the vector x denotes the n generalized degrees of freedom and vector f is a
forcing term that can be decomposed into known and unknown parts. The known

parts f, may include forces that are generated by control actuators. The unknown
parts f include unmodeled and unmeasurable exogeneous disturbances (e.g., car

motion over bridges, vibration coming from neighboring construction sites, internal
vibration activity by occupants, etc.).

One of the goals of SHM is to monitor a structure’s stability (through
knowledge of the stiffness matrix) in order to predict and/or avoid the onset of types

of failure such as sudden breakage of structural elements leading to collapse
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mechanisms. Having a good form of the model of the system, composed of the
structure and actuators, and sufficient output data is crucial for the success of the
identification process. Once the model of a structure is fairly well established, one
can begin to consider how to control the structure using actuators to better predict the
onset failure. However, many of the existing damage detection and monitoring
algorithms do not fully address the issues that arise in the monitoring of civil
structures (Sohn and Law, 2000). In summary, the main challenges for the
development of a robust damage detection and monitoring system for civil structures
subjected to ambient excitation are:

e Civil structures involve significant uncertainties caused by environmental
effects such as temperature, loading, humidity, etc.

e Civil structures have complicated geometry, consist of many different
materials, such as steel, concrete, cable and asphalt, and involve redundancy
in the design.

e Civil structures require a large number of sensors and actuators to catch
detailed properties; however, this may not be economical.

e Ambient vibration tests are more suitable for civil structures; yet ambient
excitation typically does not excite higher modes.

The problem is even more complicated when considering the internal
dynamics of an actuator and its nonlinear behavior. In addition, available

computational ability is different between laboratory and real world environments.
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Thus, one can conclude that the task of identifying the structural parameters (e.g.,
stiffness and damping) online is very complex.

In this chapter, a controlled approach for realtime health monitoring is
introduced. A quadratic cost function, that includes the error in the estimated system
parameters and the force exerted by the actuator, is defined. This cost function is
minimized by an optimal choice of control gains. This approach is applied to the
2DOF bridge model discussed previously in Chapter 3. An ARMAX (Auto
Regressive Moving Average eXogenous disturbance) model is assumed to represent
the system. The RMS of the total relative error in the resulting identified parameters

would be evaluated for n, consecutive control cycles and can be compared to the

corresponding values for the conventional structure approach.

5.2 Proposed Approach for Controlled Online Monitoring

The challenge in controlled - SHM lies in developing a methodology for
determining the best actuator force time histories to improve the structural parameter
estimation. In order to develop such a methodology, some assumptions are required.
As responses of civil structures are small under ambient vibration loading, the whole
system is assumed linear and time-invariant. Generally, then, a structure/actuator

system can be represented at time step & by the equation

y(k) = G(q)u(k) + H(g)e(k) (5-2)
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where G(g) is the discrete-time transfer function from the control force input u(k)
to the model output y(k), and H(q) is the discrete-time transfer function from the
external disturbance e(k) to the model output y(k). The argument g is the forward

shift operator. For example, in the case of scalar y,  and e, the transfer functions in

Eq. (5-2) may be expressed as

G(g) = 2Q) and H(q) 4@) (5-3)

and the corresponding polynomials A(q), B(g)andC(q)are

A =1+aq” +...+a,q ™
B(g)=bq +...+b, g™ (5-4)

C(q)=c,+c g™ +...+ ¢, 4"

A black-box model — an ARMAX model, for example — can be used as an

identification model, where the model output at any time step, y(k), is expressed in

terms of the old inputs and disturbances through the linear difference equation

(Ljung, 2000)

y(k)=—-A,y(k-1)~...- A, y(k—n)+Bulk-1)+...+B, u(k —n,)

(3-5)
+Ce(k)+Ce(k -1 +...+C, e(k-n,)

where y(k) is the mx1 model output vector, and u(k) is an »x1 input (control

force) vector. The disturbance e(k) is assumed a zero-mean Gaussian vector pulse

process with E[e(l)e” (m)]=Q3,,. The disturbance herein represents the effect of
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the external unknown ambient excitations, assumed to be in the form of wind force

or ground acceleration. The values n_, n,, and n_, are chosen based on the assumed

a?
order of the system model.

An optimal control algorithm that would determine the actuator forces to
improve the identification process is required. The goals of the controller here are to
find the best estimate of the system parameters and to ensure that the additional
actuator forces are reasonable. Accordingly, an appropriate cost function to control
the actuator in the discrete time interval k, <k <k, would be

J(ky) = E[b(k,) - 0} 0k, ) - 0]+ -;— S EfuT (k)Ru(k)] (5-6)

The first term of the right hand side of Eq. (5-6) is a weighted mean square
estimation error of the model parameters vector 0. The second term, however, helps
limit the feedback control force within the control time interval. The matrices X > 0
and R>0 are symmetric weighting matrices necessary to normalize different
dimensions and units of the terms of the cost function, and to trade off the two
control goals of the problem according to the priorities of the control designer.

To evaluate the cost function in Eq. (5-6), some intermediate definitions and
functions need to be identified and introduced. These functions include the predicted
response, the control force and the prediction error. Also, a formulation that

describes how to obtain an estimate of the unknown parameters 0 is needed.
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5.2.1 Predicted Response for Structural Systems

5.2.1.1 Scalar Input and Output

In order to explain the analysis of the control technique, a SISO system is
taken as an example. The ambient excitation is assumed in the form of wind loads or
ground acceleration. As a start, it is convenient to introduce the filtered

disturbance w(k) (Ljung, 2000) from Eq. (5-2) such that
w(k) = H(q)e(k) (5-7)

For the case of wind ambient excitation, and since the disturbance, e(k), has
a zero mean, the predicted value of filtered disturbance w(k), based on previous
data, is
(k) = E[w(k) | ek =D, wk = 1D),..] = E [wik)]= eg)[Z h(le(k - l)}
I=0

B . (5-8)
= E[h(0e(i)]+ eg)[z h(d)e(k - 1)} = > hbelk ~1) = [H(g) ~ h(O)le(k)

where A(k) denotes the pulse response associated with the transfer function H(g). In

the case of ambient ground excitation, A(0) = 0 thus, to accommodate that case, the

following predicted value of the filtered disturbance w(k) is used instead

w(k) = E[wk) | e(k - 2), w(k - 1),...]= e({z:l)[w(k)] = e(ﬂ{i h(De(k - z)}
" = (5-9)
= h(De(k ~1) =[H(g) - c,g ™ Je(k)
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5.2.1.1.1 Case of Ambient Wind Excitation
The following represents the solution with A(0) #0 (e.g., ambient wind
excitation); the A(0)=0 case (ambient ground acceleration) is similar and the

modifications to the solution are explained later. The solution of the problem for the
ambient wind excitation proceeds by substituting Eq. (5-8) in Eq. (5-7)

w(k |k ~1) =[H(q) ~ h(0)]e(k) = [1- A(0)H ~' (g)Iw(k) (5-10)

In addition, the measured output y(k) is introduced as the sum of the model

output y(k) and the error v(k) due to sensor noise, modeling error, etc.

y(k) = y(k) +v(k) (5-11)
where the stochastic properties of v(k) are assumed known: E[v(k)]=0 and
Elv(lyv(m)]=y5,, . In addition, the random variables e(k) and’ v(k) are assumed
independent; i.e., E[e(l)v(m)]=0 for all m and /.

Solving Eq. (5-2) for w(k) and using Eq. (5-11)

w(k) = -G(q)u(k) + y(k) —v(k) (-12)

Therefore, by taking the expectation of Eq. (5-2) with respect to the disturbance e(k)
and the noise v(k), and substituting Egs. (5-10) and (5-12) in the resulting equation,

the expected output given previous outputs and measurements can be obtained from

(k| k=1) = G(qu(k)+wk | k-1)

» _ (5-13)
= G(q)u(k) +[1-h(O)H (D] [y (k) - G(g)u(k)]
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which leads to
3k [k =1) = HOYH ™ (9)G(g)u(k) +[1- h(O)H ™ (g)]7(k)
But
h(0) =,

Substituting Eq. (5-15) in Eq. (5-14)

0k |k =1) = coH ™ ()G(q)u(k) +[1 - ¢, H ™ ()]7(k)
Simplifying Eq. (5-16) using Eq. (5-3)

C(@)9k |k —1) = c,B(q)u(k) +[C(q) - co ADIF(K)
Furthermore, by dividing both sides by ¢,

C(g)9(k |k =1) = B(q)u(k) +[C(q) - A(g)]7(k)
where
Cl@) =1+(c;[e)g ™ +...+(c, [er)q™

With some rearranging, Eq. (5-18) can be rewritten as

(5-14)

(5-15)

(5-16)

(5-17)

(5-18)

(5-19)

Pk |k =1) = B(Qu(k) +[1 - A(@)5(k) +[C(q) ~1][F(k) - H(k [k ~1)] (5-20)

Moreover, the prediction error £ (£ ) is defined to be the difference

between the output measurement y(k) and p(k |k —1), the predicted output given

previous measurements,
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e(k)=y(k)-y(k|k-1) (5-21)
Substituting Eq. (5-21) into Eq. (5-20) and expanding gives

Pk =1 =—a (k-1 ~...~a, 5k -n)+bulk=1)+...+b, u(k—n,)

+(cl/co)g(k—1)+"'+(c"=/co)5(k—nc) (5-22)

By letting the predicted response take the form

Pk|0) =" (k,F(k-Lk~n),u(k-1Lk—n)ek~-L,k—n))0  (523)
where ¥(k~1,k—n,) is a shorthand for [y(k-1) y(k-2) ... y(k-n,)], then,
the vector of unknown model parameters 8 can be defined as

0=[a, a, ... a, b, b ... b, clc, c,/cy ... cnc/co]T(5—24)

ny

and the vector, ¢, includes previous measurements, control forces, and prediction

CITrors.

5.2.1.1.2 Case of ambient ground excitation

As for the problem of ambient ground excitation, the main change, as shown
before, is using € =¢,q”" instead of ¢, = A(0) as in Eq. (5-9). A procedure similar to

that described up through Eq. (5-17) would give
C@y(k | k=1) = eB(q)u(k) +[C(g) - cA(g)1y(k) (5-25)

Dividing both sides by ¢

C()9(k | k~1) = B(q)u(k) +[C(q) - A@lyk) (5-26)
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where
C@)=M1+(c,/e)g™ +...+(c, [e)g "] (5-27)
With some rearranging, Eq. (5-26) can be rewritten as
Pk k=1) = B(qu(k) +[1~ ADIF(k) +[C(g) - 11[F(k) - 5k | k~D] (5-28)
and, similarly as before, using Eq. (5-21),
yklk-D)=-ayk-1)~...~a, y(k—n)+bu(k-1)+...+b, u(k —n,)

+(c,/c)etk =D +...+(c, [c))etk—n, +1)
By letting the predicted response take the form

(5-29)

)A}(k l 0) = (PT (ks Y(k - 1: k- na)’“(k - 19k - nb)s 8(k - Lk —n, + 1))9 (5'30)
then, the vector of unknown parameters 0 becomes

0=[a, a, ... a, by b .. b, clc cle ... ¢ /gl (531

"y

and the vector, ¢, includes previous measurements, control forces, and prediction
errors.
5.2.1.2 Multi-Input/Multi-Output (MIMO) System

In the general case, the input control force u(k) is an r-dimensional vector,
the external disturbance e(k) is a p-dimensional vector, and the output y(k) is an

m~-dimensional vector. The linear difference equation will take the form of a vector

linear difference equation as shown in Eq. (5-5), where the A, ’s are m x m matrices,

the B,’s are mxr matrices, and the C,’s are mx p matrices. Analogously to Eq.
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(5-4), the polynomials of the transfer functions are now matrix polynomials such

that:

A(Q=T+A g +...+ A, g™
B(¢)=Bg" +...+B, g™ (5-32)
C(q)=C,+Cig"' +..+C, g™

Consequently, the transfer functions for a MIMO system, similar to those in

Eq. (5-2), are defined as

G(@=A"(9)B(g) and H(g)=A"(9)C(g) (5-33)

Clearly, the transfer function G(gq) is an mxr matrix and the transfer function
H(g) is an mx p matrix. The factorization in terms of two matrix polynomials is

called the (left) matrix fraction description (MFD) (Ljung, 2000).

5.2.1.2.1 Case of Ambient Wind Excitation

The test bed for the analyses introduced in this chapter is a shear building
structural model, used frequently for structures and sometimes for bridges as shown
in Chapter 3. However, in order to apply to MIMO systems the same approach
discussed previously for the scalar systems, it is required that the transfer function

H(g) be invertible. In other words, the number of external disturbances to the

system should be equivalent to the number of outputs. This is a good assumption for
the ambient wind excitation case when using a shear building structure model, since

each story is subjected to a load due to wind excitation. Accordingly, if H(g) 1s
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invertible, then a derivation similar to the SISO system case can be applied. Thus, by

introducing the filtered disturbance
w(k) = H(g)e(k) (5-34)

with w(k) of dimension mx1, and since the disturbance vector e(k) has a zero

mean, the prediction of the filtered disturbance w(k) is

Ww(k) = Elw(k) | e(k = 1), w(k - 1),...]= eg)[w(k)] = g)[i h()e(k - 1)}

= Eh©e(0)]+ (E)[Z h(()e(k - l)] = > h()e(k ~1) <[H(g)~h(O)l(k) (5-35)

=[H(q) - C, Je(k)

where h(k) is the pulse response matrix associated with the transfer function matrix

H(g), and h(0) = C,, similar to the scalar input and output case. By substituting Eq.

(5-35) into Eq. (5-34)
W(k |k~ 1) =[H(g) ~ h(0)Je(k) = [T~ h(O)H " (g)]W(k) (5-36)

Since the measured output mx1 vector y(k) is the sum of the mx1 model
output vector y(k) and the mx1 error vector v(k) due to sensors noise, modeling

error, etc.,
y(k) =y(k)+ v(k) (5-37)
Solving Eq. (5-2) for w(k) and using Eq. (5-37)

w(k) = -G(q)u(k) + ¥ (k) - v(k) (5-38)
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By taking the expectation of Eq. (5-2) with respect to the disturbance e(k) and the
noise v(k), and substituting in Egs. (5-36) and (5-38), the expected outputs given

previous outputs and measurements are

§(k | k=1) = G(gm(k) + Wk | k-1)

(5-39)
= G(g)u(k) +[I-h(OH(DI[F () - G(g)u(k)]
Using h(0) = C, leads to
k| k=1 =CH (9)G(qu(k) +[I-C,H (qIy (k) (5-40)

Simplifying Eq. (5-40) using Eq. (5-33)
(k| k~1)=(k) = C,C™(q)B(g)u(k) - C,C™ (9)A(q)¥ (k) (5-41)
Considering the m x 1 prediction error vector € (k) defined as
ek)=y(k)-y(k|k-1) (5-42)
Eq. (5-41) can be rearranged as
§(k | k=1) = B(qhu(k) +[1 - A(@)Iy(k) +[C(q) - Tle(k) (5-43)
where é(q) is defined as
C(g)=C(q)C;' =1+C,Cylg™ +...+C, Cylg™ (5-44)

Considering the form of A(g), B(g) and C(g) in Eq. (5-32) and substituting Eq.

(5-44) into Eq. (5-43) and expanding gives
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§k|k-D=-AFk-D)~...~A, Fk-n)+Buk-1)+...+B, u(k—n,)

(5-45)
+C,Cile(k - +...+ CnCCgls(k -n,)

By letting the predicted response be expressed as
§(k|0) =" (k,5(k-1Lk~n,),u(k—1,k—n,),e(k-Lk-n))0  (5-46)

then, let the matrix coefficients of the A(g), B(g) and E(q) polynomials be written in

terms of their row vectors:

1 ! a7 ! ! AT
A=a® o .. a®T, B0 b0 ... 0]
~ ~W ~( ~(
and C,=c¢” ¢ ... ¢¥T (5-47)

Then, for each matrix coefficient, a vector of all elements in each of the polynomial

coefficient matrices can be expressed

[ L O L0 L0 @ () (n) (n)qT

0, =[a’ a’ .. a,) a° a” .. a’ .. a a,” ... a,”]

0, =" b ... b ® BP ... BP ... B™ ™ . BT (5-48)
—rz® =0 0 @ ~(2) () x(n) ()T

8, =[c’ ¢’ .. ¢, ¢~ &7 .. c” .. ¢ c, e €]

then the overall vector of unknown model parameters, 8, is, then,
8=[0; 6, 0] (5-49)

The matrix ¢ contains data of past control forces input W(k -1,k —n,), previous
measured output y(k—1%k—n,), and the past prediction errors €(k -1,k —n_ ) with

dimension n, x m
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¢, =9, (5-50)
¢,
where
-y(k-1) 0 ] u(k 1) 0 1
0 ~y(k-1) 0 u(k -1
—y(k-2) ¢ o wk-2 0
0 —y(k-2) 0 u(k -2)
¢, = ) ¢, =
_y(k-n) 0 wh-ny 0
0 -y(k—n, 0 uk—n,)
(5-51)
and
ek -1) 0 ]
0 gk-1
k-2 0
o.=| 0 D (5-52)
stk-n) 0O
0 g(k—n,
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5.2.1.2.2 Case of Ambient Ground Excitation

A similar derivation for the predicted résponse of a MIMO system, subjected
to ambient ground excitation, can be obtained. As an example, this may be the case
for the 2DOF bridge model, as described in Chapter 3, with disturbance applied to
the deck due to traffic excitation and another disturbance coming from the ground
due to neighboring vibrations (sometimes due to traffic as well). Thus, analogously
to the case of exciting a scalar system by an ambient ground excitation, considering

the prediction of the filtered disturbance w(k) from Eq. (5-34)

W(k) = E[w(k) | e(k —2),w(k ~1),...] = e(gl)[w(k)] = ef_l)[i h(De(k - 1)}
R (5-53)

- ih(z)e(k ~1)=[H(q)-C,q" Je(k)

where h(0) =0.

By steps similar to Eq. (5-36) through Eq. (5-46), the predicted response of a

MIMO system subjected to ground excitation may be expressed as

k| k-1 =-Ay(k-D—...-A, yk-n)+Butk-D+...+B_u(k-n,) ool
a2 b _5
+C2C1"‘a(k——1)+...+CnCCl"s(k—nc+1)( )

Eq. (5-54) can be rearranged to a similar form to Eq. (5-43) where, now, E(q) is

defined for ground excitation as

C(g)=1+C,C;'q™ +..+C, C]'g ™ (5-55)
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Let the matrix coefficients of the A(g), B(g) and E(q) polynomials be written in

terms of their row vectors in a manner similarly to Eq. (5-47)

= [,D (D ® (2) (2) (2) (n4) (n) (ng) T
8, =g’ a,’ ... a, a” a” ... a) .. @ a, v ay”]
o, =" BP ... bY BP P ... P . bW bW pWTT
[0 O S0 =@ 3@ ~(2) (- (a1 ~(n~1) T
8. =[c’ ¢’ .. ¢’ ¢ ¢ ...¢”’ .. ¢ ¢, v G
(5-56)

and. ¢ is a matrix containing data of past control forces input u(k-1k-n,),
p‘revious measured output y(k-Lk-n,), and the past prediction errors
€(k—-1,k—-n, +1) with dimension n,xm. ¢ is the same in Eq. (5-50) and its
submatrices are the same as in Egs. (5-51) and (5-52) except ¢_ only goes back to
time (k-n¢+1) instead of (k-n.).

5.2.2 Control Force

In the applications envisioned here, the applied control forces u(k) are

assumed to be a function of the olrder measurements such that
u(k)=—K yk-1)-.. K ,(k-p) (5-57)

K,K,,. K , are the control gain matrices of the system such that

TH WM e
k1,1 k1,2 o kl,m
N P I &)
K, = 2_" 2_"” (5-58)
PO G) 7 ()
kr,l kr,Z kr,m
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where m is the number of measurements and r is the number of control forces inputs.

5.2.3 Estimating Model Parameters

By collecting a large number N of measured and predicted output data
samples and finding the prediction error € for each time step &, then the sample

variance of the prediction error would be

Vary[e(k) |y ,(k),a,(k),E, (k)] =

L S FO-9TwT,).8,0).5 O FO-0" G.F,0).5,1)E,0)0]
1.5 (5-59)

where ¥, (k) = ¥(k -1,k —n,), §,(k) =Wk ~Lk~n,),and &,(k) =&k - Lk —n,).

By minimizing the variance in Eq. (5-59) with respect to the unknown

parameters, @, an estimate of the unknown model parameters at any time step, £, is

obtained
0, (k)=
1 k o N k (50
[————i_ Z(P(Zﬁyp’up’ap)(pT(l’yp’up9£p):1 4 Z(P(l’yp9up98p)y(l)
T L I=k~N+1 - 1 I=k-N+1

5.2.4 Cost Function Evaluation at the Beginning of the Control Horizon
In order to evaluate the cost function in Eq. (5-6) at time k,, it is essential to

gvaluate the term é(kf) in the first term of the right hand side. This can be done
using Eq. (5-60). However, from the structure of matrices ¢@(k, — k), it can be

observed that they include some unknown future output measurements y(k,,%;),
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control force inputs u(k,,%;), and future prediction errors &(k,,k;). These future
measurements are a function of the unknown deterministic parameters 0, the
unknown control gains K ;» the unknown stochastic disturbance e(k,,k;) and the
unknown stochastic noise error v(k,, k). However, due to the summation over the

entire control horizon as required by the 6 evaluation Eq. (5-60), it may be very
messy to directly substitute the estimated measurements of the output response, the
control forces and the prediction errors and then try to obtain @. Also, the
computational resources required for such an operation are huge and a solution may
not be feasible. Thus, an alternative method of finding the system parameters at the
end of the control interval, ﬁ(kf ), should be sought.

Consider a scalar system, where by expanding Eq. (5-60) in terms of the
previous outputs, previous control inputs, and previous prediction errors, an equation

for evaluating 0 v (k) takes the form

Z(P(k)y(k) (5-61)

kko

0, (k) [ Z«p(k)tp (k)}

=12 ke
where

[ P03ty | ey (k=2) §=F(k-Du(k=1); ~F(k—Du(k-2)| ~F(k-D)e (k1) ]
Fk=2)70e-1) | F(=2)7(k~2) 1= (k-2)u(h-D}-F(k-2u(k-2)~F (k-2)e (k1)
9(k)Q" (B)=| ~u(k—DF(ke-D)} -u(e-DF(k-2)] u(k-Duk-1) | ule-Du(k-2) | u(k-Ds(k-D
~u(k-2)7(k~ 1).—u(k 25k~ 2). u(k=2)uk-1) | ulk—2)u(k-2) | u(k—2)e(k-1)
| —e(k-D (k- 1):-8(k Dyk- 2): s(k-Du(k-1) . s(k—Du(k-2) . e(k-e(k-1) |

(5-62)
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and

[ (k-D (k) ]
y(k=2)y(k)
o(k)y(k)=| u(k-D)y(k)
u(k=2)y(k)
Le(k-D)y (k) |

(5-63)

Collecting sufficiently large amounts of data (N samples), and using the

statistical laws of large numbers, averaging N samples of the product terms in each

of the elements of in Eq. (5-61) converges to the autocorrelation or cross correlation

functions. Thus, a new definition of the cost function may be posed in terms of the

autocorrelation and the cross correlation functions of the previous measurements,

control forces, and prediction errors. Moreover, considering that the input to the

system is stationary, and since the system is assumed linear and time-invariant, then

the response of the system is also stationary. Thus, using the properties of stationary

stochastic processes, Eq. (5-61) can be modified to the following equation

Ry("l) Ry(o) Ryu("l) Ryu(o) Rye(”"l)
v =| Ry RzDH R, () R D R,(©O)
Ry(-1) Rg(0) R,(-1) R,(0) R,(-D)

[==32

(R, (0) Ry (D) Ry, (0) Ry, (D) Ry (0) T

| Rg(0) Ry() R,(0) R,(D) R,(0) |

I Ry (“‘ 1) |
Ry (-2)
Ruy (" 1)
Ruy (“2)

25D
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where

Ry(n) = E[(y(m)y(k —n)], Ry(n)= Elu(n)y(n+k)]

Rg(n) = Els(m)y(n+B)], R, (k)= E[u(n)e(n+k)]

R, (k) = Ele(me(n+K)], R, (k) = Elu(nu(n + k)]

For a stationary process in a scalar system, R(n) = R(—n), then

R;(D) Ry(0) Ry, () Ry (0) Ry ()
v&)=|Rz(0) Rg1) R,(0) R,(1) R,(0)
Ry Rg(0) R, R,(0) R,

>

[Ry(0) Ry(1) Ry, (0) Ry, () R, (O]

R5(0) Rg() R, (0) R, (D) R.(0)]

R;2)

Ruy (1)
R5(2)

CR)]

L Rsy (1) |

(5-65)

(5-66)

However, for MIMO systems, R,(n)=R}(-n) and R, (n)=RJ (-n);

then, for the 2DOF bridge model

8,(k)=R7'R
where
R, R, R,
E = _R—u' —ﬁu iuts
—li y ﬁﬁu Ke
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such that

[R;©@ 0 Ry®m 0 ] [-R5,(0) 0 -Ry() ©

_ 0 Ry0 0 RyM)| _ 0 -Ryu(® 0 -Ry(®
R.= , Ry =
IR 0 Ry 0 "IRLMD 0 R0 0
0 R{(D) 0 Ry ) 0 RN 0  -Ry, )
Ry () 0 ] R0 0 -RgD 0 ]
_ 0 -Ry(0) - 0 -Rg(0 0 -Rg®
PTRE o |7 YRLO 0 Rz 0
0 RGO | 0 -R{(D 0 -Ry0)]
R, (0) 0 R, () O ] R, (0) ©
_ 0 R,(0) 06 R,(D}| _ 0 R,O)f _ [RS(O) 0 }
Ru= 5 Ruez Rs=
RIQ) 0 R0 0 RIm o 0 R (0)
L 0 R{® 0 R,(0)] L 0 Ru(]

ey

_ [RG0 0 -Rg@) 0 = [R,® 0 R, o 7
R [ 0 -Ry(0) 0 —Rsy(l)}’ and RE“‘[ 0 R,(0) 0 Rw(())]

(5-69)

and
R=[RI (1) RL () R, (2) RL 2 RLA) RL(2) RL @) RL )] (5-70)

Thus the vector of estimated system parameters, é(kf), can be expressed in

terms of the autocorrelations and cross correlations of the response measurements,

the control forces and the prediction errors of the system within the control horizon
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[k, .k ]of the control problem. Therefore, Eq. (5-64) can be used in evaluating é(kf)

in the first term of the right hand side of the cost function equation.

As for the second term of the right hand side of the cost function equation,
Eq. (5-6), the same assumption of a large number of samples is used. In addition, the
weighting matrix R is assumed symmetric and diagonal. Thus, the second term of
Eq. (5-6) can be expressed in terms of the autocorrelation function of the control

force input as
%:V:E[“T(k)Rll(k)]=~;—Trace[RRu(O)] (5-71)

As a result, if one can obtain the autocorrelations and cross correlations of the

output response, the control force, and the prediction errors, then the cost function

can be evaluated in terms of the control gains fii , the system parameters 6, and the

statistical properties of the disturbance e and the noise v. The following subsections

derive the formulas for the auto- and cross correlations in Egs. (5-66) to (5-71).

5.2.4.1 Evaluation of the Cross Correlation between the Stochastic Input and
the Measured Response

To obtain the associated auto-/cross correlations of the measurements, it is
useful to first obtain the cross correlation of the stochastic inputs (disturbance e and

noise v) and the measured output response (¥ ). This may, however, require

modifying the originally introduced ARMAX model to an equivalent ARMA model

with stochastic noise v and the disturbance e as inputs. The control force is expanded
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in the ARMA model equation in terms of the control gains and the older response
measurements as per Eq. (5-57).

The test bed of the application in this chapter is the 2DOF bridge model
introduced in Chapter 3. Thus, the following derivations are mainly derived for this
model. The system is fourth order and the response output at the deck and pier levels
is measured; thus, the number of backward time steps p to express the finite linear
difference equation is two. Accordingly, the ARMAX model of the 2DOF bridge

model is

yk)=-A Kk -D)-A,yk-2)+Buk -1)+B,u(k -2)+C,e(k)+C,e(k-1)
+Ce(k-2)+v(H)+ A v(k-1)+A,v(k-2)

(5-72)
The control force, as per Eq. (5-57) with p=2, can be expressed as
u(k) = K yk-1)-K,y(k -2) (5-73)
Therefore, Eq. (5-73) can be modified to get the closed-loop ARMA model equation

F(k) =—(A)¥(k-1) - (A, +BK ¥k -2)-(BK, +B,K )y(k-3)
~B,R )yk-9+[c, ') viw] +lc, AeTw-n viE-nf
+c, AJe"k-2 vie-2f

(5-74)

Now, let \y(k)z[eT(k) VT(k)]'r and let the coefficients of the finite linear

difference equation of the closed-loop ARMA model, Eq. (5-74), be written as
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a,=A, a,=A,+BK,, ¢,=BK,+B,K,, «,=B,K, (575
and
So =[C0 I]a & = [Cx Al]n 6 = [Cz Az] (5-76)

Thus, Eq. (5-74) can be expressed in a more compact way such that
4 _ 2
V(k) == a5k -1+ g ,wlk~j) (5-77)
i=1 J=0
Since ¥ and y are assumed stationary and zero mean, then

Ry, (1) =Rig(-m) = EF(R)" (k-m], n20  (578)

But, by substituting Eq. (5-77) in Eq. (5-78) and, since the expectation is a linear

operator, then
4 T < T
R,, (n) ==Y o, E[y(k—i)y" (k-n)]+ ZG JEMW(k =y (k-n)]  (5-79)
i=1 Jj=0
which can be modified to be

R, (n)=-Y aR;, (n—1)+ Zg R, (n-)) (5-80)

i=1

Note, however, that future inputs are independent of past measurements;

therefore E[y(k —i)y" (k—n)] is a zero matrix for n—i<0. Further, the input

y(k) is independent at every time step. Thus Eq. (5-80) can be rewritten as
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min(4,7) 2

R, (m=- Y oR, -0+ ¢R, (-5, (5-81)
i=1 7=0
where J,; is the Kronecker delta. Thus,

Ry5y (0)=5,C,

Ry, () =(-a,5, +¢,)C,

Ry, (2) =lo@, ~a,)5, a6, +5,]C,

Ry, Q) =l(-a00, + 0@, + 0,0, —0y)5, + (0,0, —a,)5, — @G, JC,

Ry, (n)=—a,R;,(n—1)—0,R; (n-2)~0a;R;,, (n-3)—0,R;, (n—4), n>3
R;,(n)=0,n<0

(5-82)
where C,, is the covariance matrix of the stochastic input.

5.2.4.2 Evaluation of the Autocorrelation of the Measured Response

Using the cross correlation between the stochastic input and the measured

response, the autocorrelation of the measured response can be obtained.
Postmultiplyihg both sides of Eq. (5-77) by ¥ (k —n) gives
T 2 T < T
YO (k=m) == a5k -0 (k—n)+ 2 6 wk- )y (k—n) (5-83)
=0

i=1

Then, by taking the expectation,

R, (n) = —ZaiRy(n —i)+ZijW(n— 7 (5-84)
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which indicates that the autocorrelation function of the output response ¥ satisfies

the finite linear difference equation. Then, by expanding for n=0,1,2,3 and 4, a

system of equations is formed

R, (0)=—a,RT(1)-a,RT (2)-0,RT(3)-a,RT (4)+g,RY, (0)+¢, R, (+5,RY, (2)
R, ()=—a,R, (0)-a,RI ()-a,R!(2)-0,RI 3)}+¢,RL, (0+5,RY, (1)

R, (2)=—0,R, (1)-a,R, (0)-0,R! (1)~ ,RI(2)+¢,RY, (0)

R, (3)=—a,R,(2)-0,R. ()-a,R, (0)-a,R (1)

R, (4)=0,R,(3)-0,R, (2)-0,R ()-a,R_ (0)

(5-85)

where the property that R, (n) = R} (-n) has been applied.
The autocorrelation functions of the output response y for n=0,1,2,3 and 4

can then be obtained from

ﬁy(()) B,
R.(1 — 4| P
ﬁy(z) A A 5 5-86
i( ) - “A‘ K P3 ( - )
> 3 4
R.(3) 0
R;(4 ] 0
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where

1 0 0 0 aly al 0 0 a?  al
0o 1 0 0 0 0 af o) 0 0
6 0 1 0 al) a0 0 a? o
0o 0 0 1 0 0 af) al) 0 0
x - of 0 af 0 I+ep ap 0 0 ay @y
0 af 0 af 0 1 a?  a? 0 0
o 0 af 0 ey oap 1 0 ay g
0 of 0 af) 0 0 a? 1+a2 0 0
a 0 a 0 af+a? o af 0 l+ap @)
0 a? 0 of 0 a) af a+ay) 0 1]
(5-87)
(0 0 a® @ 0 0 a¥ o 0 0]
of af 0 0 af af 0 0 af a
0 0 a2 a2 0 0 o a® 0 0
o af 0 0 af af 0 0 oy @)
— 0 0 af a2 0 0 0 0 0
A2 0 0 0 a® a® 0 0 0 0
60 0 o @ 0 0 0 0 0 O
a o 0 0 a af 0 0 0 0
o 0 o0 o0 o0 o0 0 0 0 O
a? a9 0 0 0 0 0 0 0 0]
(5-88)
177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© @ @ ® 3) 3 M (4) ON
Oy 0 ay 0 oy +ay 0y oy 0 Oy Oy
0 P 0 @@ 0 o of alead 0 0
3) 3) @ 4 4 o)) M
41 0 ay 0 oy +ay o, ay 0 I 0
3 3) @ @ 2 (4 1
0 ay 0 ap 0 Gy G Gy tag, 0 Oy
®3) 3 @ (4) @ @ o
A = O 0 oy 0 oy +ay ayp oy 0 128 0
37 3) (3) 63 (4 (2) (4) 0]
0 ay 0 ay 0 Oy Gy Oy T0y 0 ay
“@ 0) 3) 3 @
ap, 0 oap 0 ag 0 a; 0 oy, 0
0 of 0 ay 0 al 0 a 0 a?
a? 0 o 0 al) 0 af 0 a0
(4 %) 3) 3 @
L 0 ay 0 a, 0 a,, 0 a,, 0 ay ]
(5-89)
1 0 0 0 0 0 00 0 O
a 1+a) 0 0 0 0 00 0 O
al 0 1 0 0 0 0000
0 a? 0 1 0 0 0000
® ‘
— a 0 0 0 1 0 0 0 0 O
A, =| 2 o (5-90)
0 (% 0 0 0 i 0 0 0 0
a? 0 af 0 af 0 1000
0 a2 0 af 0 a 01 00
a2 0 o 0 a) 0 0010
0 af) 0 a8 0 af 00 0 1
and the vectors
Ri (l) = [Rﬁy] (l) R)_/Jz (l) RPzJ_’l (l) Ryziz (l)]T (5-91)
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and the vectors

gf;”RM 0)+¢i Ry, (M) +cDR;, (0)+¢ PR, (0)
+¢VR;, D +6 Ry, W +cE Ry, D+ R, (D)
Ry, Qe Ry, Q) +ep) Ry, D)6 Ry, ) |
¢ Ry O +65' Ry, (0 +¢ R, (0)+¢R;, (0)
+¢V Ry, D +6H'R;, D+¢HR;, D+ci/R;, (1)
+¢V R, (D+6' R, () +6i R, (D+6PR;, (2)
SWR;, (0)+cHR,, (0)+cHR;, (0)+cR,, (0)
+ g;?Rm M +cH Ry, D+cHR;, O+cHR;, ()

2)
P M OTC O e e
+cS R, D +cHR;, D+cHR,, W+cyR;, (D)
+SR, Q)+ R, (D) +CR;, (D) +6R

2)

yl/l4(

gl:)Rylwl (0) + gl(;)Ry 723 (O) + gl(;) Ry w3 (O) + gl(tlt) Ry Vs (O)
+ cff’Ry b D+ cf?Ry., m+ cf?’Ry wD+ Cff)R .0

o
li

---------------------------------------------------- (5-92)

s R, (0>+c:§2Ry v (0) +cw R, <0>+c§13Ry v 0
_+ gﬁ)R}zy/l (1) + QS)RPZ:/IZ (1) + gg) Riz% (1) + géi) Ryzyu (1)_

12)Ryw (O) + C1(;)Ry W, (O) + gl(BZ)Ry Vs (0) + gl(;lZ)Ry Wy (O)

QS)R (0) + §$)R (0) + Q;(z?RyM 0)+ C%ﬁ’&m (0|

Yl Vs
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Knowing R;(0), R; (1), R;(2), R;(3) and R;(4), then
R;(m)=-aR;(n-D-a,R;(n-2)-a;R;(n-3)-a,R;(n-4), n>4 (5-93)

5.2.4.3 Evaluation of the Cross Correlation between the Prediction Error and

the Measured Response

The cross correlation between the prediction error and the output response

can be also evaluated in a similar procedure. Postmultiplying both sides of Eq. (5-42)
by ¥'(k—n) gives
e(b)Y " (k=n) =&)Y (k—n)~§(k| k-1)y" (k-n) (5-94)

Taking the expectation of both sides of Eq. (5-94) and assuming stationary behavior

gives
R;(n) =Ry (n) - E[§(k | k-1 (k- n)] (5-95)
Expanding the predicted response y(k | k —1) using Eq. (5-45) gives

R;(m)=R;(n)+oR;(n-D+e,R;(n-2)+a;R;(n-3)+a,R;(n-4)

5-96
~C,C'R(n-1) (5-96)

where C, and C, are coefficient matrices of the disturbance e in the finite linear

difference equation of the ARMAX model. Note that using Eq. (5-45) implicitly

assumes h(0)=C,=0 (i.e., the ambient ground excitation case).
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The equation for R ; (n) can be written as

R, (n)=R,(n)+OQR, (n-1)

where

(5-97)

R, (n) =R, (n)+ &R, (n -1 +a,R,(n~-2)+0a,R, (n—3)+a,R, (n—4) (598)

and

Q=-C,C/'

Based on Egs. (5-97) to (5-99) and by expanding the R ;(n) for n=12,...

R (1) =R;(1)+ OR 4 (0)
R, (2)=R,(2)+Q[R, (1) + QR (0)]

= —_ n-l =
R, (m)=R;(n)+Q"R3(0)+ ;Q"Ry (n—k)
But, for » sufficiently large, then the following applies
Iim Ry (1) =0 and lim R, (n)=0
Accordingly, an expression of R - (0) is
R, (0)= li_{g{gnii@ (-m)+Y Q"R (—k)] = > Q'R (-k)
k=0 k=0

Given R ;(0), R ;(n), n>0, can be obtained from Eq. (5-100).
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It should be noted that, for a scalar system, solving the linear equations for

R;(0) and R;(1)

|:Rsy (O)} B [ | oX o T {Ry (0) + Ry (1) + 2, R, (2) + o, R (3) + @, R, (4)}

R () C,C/ I R, (1) +0,R; (0) + o, Ry (D) + a3 R (2) + 0, R; (3)
(5-103)
5.2.4.4 Evaluation of the Autocorrelation of the Prediction Error
Postmultiplying each side of Eq. (5-42) by &' (k—n) yields
g(k)e" (k-n)=y(k)e" (k~n)-y(klk-1)e" (k—n) (5-104)

Taking the expectation of both sides and expanding the predicted response

y(k | k —1) using Eq. (5-45) gives

R,(n) =Ry, (n)+ R, (n-1)+0,R (n-2)+0,R (n-3) +0, R, (1 -4)

(5-105
~C,C;'R,(n-1) :

A procedure similar to the evaluation of R (n) in Egs. (5-97) to (5-102) can be

applied to evaluate R, (0), from which the series R, (n), #»>0, can be obtained.

Similarly, for a scalar system, a system of equations can be obtained from for

n=0 and n=1 to solve for R _(0) and R_(1)

R.(0) | I C,C;' B R5. (0)+a, Ry, (1) +a, Ry, (2) + 03 Ry, (3) + a1, Ry, (4)
R.() = e I Ry, (D) + Ry, (0) + a, Ry (D) + a3 R, (2) + a4 Ry, (3)

(5-106)
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5.2.4.5 FEvaluation of the Autocorrelation of the Control Force

Herein, the control force is assumed to be a function of the control gain and
measured responses. The autocorrelation of the control force for the 2DOF bridge
problem (p=2), can be formed by multiplying Eq. (5-57) by its transpose at time

(k—n) and taking the expectation such that

E[u(kyu" (k —n)] =K E[y(k - Dy" (k - n-DIK] + K, E[y(k -2)y" (k -n-2)]K;
+ K Ely(k-Dy" (k-n-2))K; +K,E[y(k-2)y" (k—n-DIK

(5-107)

which, by further simplification, yields the general equation of the autocorrelation of

the input control force for a 2DOF system.
R,(n) =K, R, (K] +K,R;(mK] +K R, (n+1)K; +K,R_(n-1K] (5-108)
A similar derivation can be found for more complex systems with p>2.

5.2.4.6 Evaluation of the Cross Correlation between the Control Force and the

Measured Response
Postmultiplying both sides of Eq. (5-57) with p=2 by ¥’ (k—n) and taking

expectation gives
Elu(k)y" (k - n)] = K, E[y(k - D)¥" (k - )] - K, E[F (k - 2)§ (k - n)] (5-109)

which, by further simplification, yields the general equation of the autocorrelation of

the input control force for the 2DOF system
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R, (n)=-K R;(n-1)-K,R,(n~2) (5-110)

5.2.4.7 Evaluation of the Cross Correlation between the Control Force and the

Prediction Error
In a similar way, by postmultiplying the control force equation for the 2DOF
model by &"(k—n) and taking expectation, a general form for the cross correlation

between the control force and the prediction error is obtained as

R, (n)=-K R, (n-1)-K,R (n-2) (5-111)

5.3 Illustrative Example: 2DOF Bridge Model

The test bed for the control approach introduced here is the 2DOF bridge
model, introduced in Chapter 3 in Section 3.4.2. The stiffnesses and the damping
coefficients of the 2DOF bridge model are given in Section 3.5.2. The structure is
assumed subjected to ambient ground excitation at the base and to ambient traffic
loading at the deck level. The system is assumed linear and time-invariant since the
magnitude of the excitations is small enough that the structure is expected to behave
in a linear manner. Two outputs, y,(k) and y,(k), the absolute accelerations of the
pier and the deck, respectively, are to be measured.

A control force, u(k), given by the control gains and previous observations
as described in Eq. (5-6) is exerted in the bearing level between the pier and the

deck. The control force, in this case, is expressed by the following equation
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u(k) = -K,y(k-1)-K,y(k-2) (5112

where the control gains, K, and K,, are two row vectors of dimension 1x2 such

that
K =k® £’ and K,=[k? k2] (5-113)

and the output response observation vectors y(k—1) and y(k—2) are column vectors

of dimension 2x1 such that

v, (k=1)

5-114
Y, (k=1) ( )

y(k—l){

} and y(k—2)=[yl(k—2)]

y,(k=2)

As explained earlier in this chapter, an ARMAX model is chosen to represent
the system. The exact ARMAX model coefficients can be obtained from the exact
physical properties (masses, stiffnesses and damping coefficients) of the structure
model; this procedure is thoroughly explained in Appendix C. The finite linear
difference equation of the 2DOF bridge model takes the following form for the

ARMAX model

F(k) = —A F(k -1~ A,F(k - 2) + Bu(k -+ Buk -2) +[C, ") v @®)[

e Aferw-y vie-nf +lc, AJetk-2 V-2
(5-115)
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where the coefficient matrices are

[ t)) 2y _(2) 1) 2)

A = a ap A= dy” 4y B = by, B.— by
17w T2 @ @ T po | 27 p@ |’

dy Gy a,’ 4y 12 12

© .0 ® W 2 @
C = i O C = 1 Cp C.= iy Cpp (5-116)
NS EN()] O W RONK 270 @ @

Cou Cp Cn Cxn Ci Cp

Thus, by using Eq. (5-112) in Eq. (5-115),a stochastic ARMA model is obtained as

¥(k) =~(A)¥(k -~ (A, +BK)y(k -2)-BK, +B,K)y(k-3)
~BK)¥k-d+[c, eT® v®] +lc, AJeTxk-n vTE-D]
ile, A" k-2 vie-2)f
(5-117)
The ground and traffic ambient excitations, to which the system is subjected,
are assumed to be Gaussian pulse processes such that Efe(/)e” (m)]=QJ,,, where

e(k)=[e, (k) e, (k)] and Q is the diagonal covariance matrix of the disturbance

vector. e, (k) is the disturbance due to the ground ambient excitation, and e, (k)

stands for the disturbance in the stochastic model due to ambient traffic excitation at
the deck level. In the numerical example, the RMS (Root Mean Square) of both the
ground and traffic ambient excitations is suggested to be 0.02 m/s%. Also, the sensor
noise, v(k), is added to the exact structural response (absolute accelerations

observations in both the pier and the deck), with suggested RMS of 10 m/s? such

that E[v([)v' (m)]=TS,, where v(k)=[v,(k) v,(k)]" and T is the diagonal
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covariance matrix (I(10°m/s%)* in this example). With these disturbance and noise

RMS values, the resulting RMS of the prediction error, £(k), should be two orders

of magnitude less than that of the absolute accelerations of the pier and deck of the
structure.
To maintain a vector form for the unknown system parameters 0, it is

expressed as
I, 0 O 1) @) 2 (2) 2) p) p() 52 p2) =) =) =0 =T
0=(a)) a; a3y ay aiy ay ay’ ayp by by by by’ €y €y € ¢ ] (5-118)

where

= ey &y
Cl =C2C1 = —1) =) (5‘1 19)
Ca Cop

It is assumed that the coefficient matrix C, is a zero matrix. Also, the coefficient
matrix C, is assumed known a priori; justification for this assumption 1s discussed
in Appendix C. However, knowing C, a priori requires previous knowledge of the

masses, m, and m,, of the pier and the deck of the bridge model and requires the

sampling time for the measured data to be small. The data sampling time is, thus,
chosen to be 0.01 s.

The information matrix including older data, ¢, as per Egs. (5-50) to (5-52)
except @, only goes back to time (k-n.+1) instead of (k-n.), is organized, for the

bridge model example, to suit the form of the vector of unknown structural

parameters 0. Thus, ¢ takes the form
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(p;_'iyl(k-l) =y, (k-1 0 0 ~n(k=2) =y,(k-2)

0 0 k-1 -y, (k-1 0 0
0 0 u(k—1) 0 w(k —2) 0
-nk=-2) -y, (k-2) 0 u(k-1) 0 u(k-2)
g (k-1 g,(k-1) 0 0 :I (5-120)
0 0 g(k-1) g,(k-1)
such that
Yk k-1)=¢' (k)0 (5-121)

5.3.1 Modified Cost Function and Minimization with Respect to the
Control Gains
In order to obtain the control gains necessary to improve the estimation of the
structural parameters, the cost function in Eq. (5-6) is minimized with respect to the

control gains and a system of equations is obtained then solved for them. Generally,

the cost function in Eq. (5-6) is designed to minimize the error between the estimated

system parameters, é, and the actual system parameters, 8. However, as observed

from Eq. (5-60), the evaluation of the estimated system parameters vector, at the end
of control horizon [k,,k;] is complicated by the fact that future unknown
measurements exist in the equation. In addition, finding the inverse of the summation
of the product of vectors @(k)@" (k) over the duration of the control horizon is quite

expensive and may be infeasible in terms of computer memory and processor time.
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Accordingly, an alternative cost function is used that replaces the first term of
the cost function in Eq. (5-6), the error in the parameter estimation, with its

numerator. Thus, the modified cost function is expressed as

J(k,) = E[VTEV]+ -12- i Efu” ()Ru(k)]

k=k,
(5-122)

The information matrix, ¢, is evaluated using the autocorrelation and cross
correlation functions as shown in Sections 5.2.4.1 to 5.2.4.7.

By differentiating the modified cost function with respect to the control gains
(KD, £, kP and £{?), a system of four nonlinear equations is obtained. Solving
the resulting equations gives the control gains that minimize the cost function. The
MATLAB® function £solve is used to solve the nonlinear equations for the control
gains. However, this may require obtaining the gradients and the Jacobians for the

system of equations with respect to the control gains. Therefore, consider the vector

v =—ﬂ;iw(k)y(k)—[f;izfcp(k)wk)}e (5-123)

~

Then, the gradient of the modified cost function for any scalar control gain & is

obtained from

T T
aJ(fO){VTEQX—] + (ﬁlj v |+ 1 -a;R-”—N(—Ol (5-124)
ok ok Ok 2 ok
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which, by simplification, leads to

aJ(ky) _ (6V) wv |+ Lr OR.0) (5-125)

Moreover, by considering the matrix P being defined as

v
ok

P= (5-126)

the Jacobian of the resulting system of equations, considering any scalar control gain

k,is

2 2
9 f(@) =2 l:P Zav] [61)} wv [+ Lr 2 If"g)) (5-127)
ok ok ok ok ok ok

Finally, since both the gradients Eq. (5-125) and the Jacobian Eq. (5-127)

include the unknown estimated parameters implicitly, then the most updated estimate
of the unknown system parameters, 0, is required for their evaluation. The estimate

of the system parameters, é, is based on Eq. (5-60). Moreover, for better
performance of the control approach and better usage of the collected data, the
estimate of the system parameters is obtained by using a code running in parallel to

the control code. This is done such that at the end of each control horizon [£,,%;],

there is an updated estimate of the system parameters based on the control gains

obtained at time k,. This iterative process between the estimation of the control

gains and the estimation of the system parameters continues for n, consecutive
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times, each for 20 seconds. The results can be compared to the case of having no
actuators with an equivalent amount of data.

The weighting matrix, %, i1s assumed a diagonal matrix with diagonal
elements equivalent to the square of the reciprocal of each of the elements of the
exact values of @ ; consequently, the first term in the cost function in Eq. (5-6) is the
relative square error of the elements of 8. The weighting matrix, R, is a scalar value,
suggested to be taken equivalent to 102° N2, Also, in the application of the control
approach introduced in the 2DOF example, an initial guess of the control gains is
required for the solution of the nonlinear equations.

The controlled SHM approach is applied for », different sequences of
disturbances and noises. For each sequence, the online controlled monitoring

approach introduced herein is applied for n, consecutive control horizons. Each time

the approach is applied, an estimate of structural parameters is obtained.

Subsequently, the norm of the total relative identification error, € , in the identified

~

parameters, 0, compared to the exact values, @, is evaluated. The identification

error, ¢ , is defined as

g=Jel +e) +..+el (5-128)

where the error, for each of the identified parameters, is defined as the ratio between
the difference between the identified and exact parameter, and the exact value of this

parameter
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e, =(6,-6)/6, (5-129)

The resulting total relative identification error, ¢, in each consecutive application of
the approach, can be compared to that for the conventional structure approach. This

should be done for every noise sequence. Finally, the RMS of the total relative

identification error, €, of the system parameters estimate, é, in each of the

consecutive control cycles, for the =», different data time histories, should be

obtained for both the controlled and the conventional structure approaches. The

vector, é, used in the comparison, include only the elements of the A; and C;

coefficient matrices since the B; coefficients only concern the controlled approach.

Moreover, the RMS of the relative identification error, ¢ , in the elements of
the matrix coefficients A, and A, only, should be studied. This is because the

system matrix, A, of the equivalent discrete-time observable canonical form state
space model, is formed out of these matrix coefficients, as shown in Appendix C,
Eq. (C-13).

Future research should consider follow running this illustrative example in a
numerical solution. Also, other predictive control methods should be considered
(though they may require much faster computers and larger available computer
memories, with more powerful programs) in order to deal with the complex nature of
such parametric approaches as the one introduced in this chapter. Ambient vibration
measurement data from actual structures should be considered to deal with other

problems that may not evolve in theoretical studies. In addition, structures with
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higher degrees of freedom should be a main focus in future as well, such as high-rise

buildings and complex structures.
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6 CONCLUSIONS

The research introduced in this thesis studies the improvements in the health
monitoring of structures that are available by using semiactive variable stiffness and
damping devices (VSDDs). The work here demonstrates the effectiveness of using
VSDDs to improve the estimates of structural parameters for SHM and damage
detection.

In general, the research in this dissertation is divided into three major parts.
The first part focuses on the improvements in the identification of the structural
parameters when using frequency domain identification techniques. A traditional
technique, that is introduced in the literature review by Levy (1959), is modified to
obtain an iterative method, the Iterative Least Squares Numerator (ILSN) method,
that approximates the more complicated conventional error in the transfer function
and, finally, minimizes this error to give fairly accurate estimates through least
squares optimization. It is shown that, using the ILSN technique in identification of
parameters, the variable stiffness and damping induced by the semiactive device in
the structure helps reduce the variation of the estimates of the structural parameters.
This is the case when using relatively small additional stiffnesses (a fraction of the
corresponding stories stiffnesses) induced by the semiactive devices. The means of
the structural parameter estimates are improved and their variations are found to be

substantially reduced when using larger induced stiffnesses and damping coefficients
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than those of the corresponding stories. The test beds in the research herein are a
2DOF bridge model and two-story and six-story shear building models.

Moreover, the first part introduces another newly modified technique,
INVFLS, that identifies the coefficients of the numerator and denominator
polynomials of the transfer function and uses the resulting values in identifying the
stiffnesses and the damping coefficients of the structure. The resulting identified
parameters from applying this technique consistently confirm the improvements
obtained in the identification process of the structural parameters in terms of reduced
variations when using VSDDs. However, the results are not as impressive as those
obtained from the ILSN technique. In addition, the improvements in the
identification of the structural parameters are studied in the context of the
Eigensystem Realization Algorithm (ERA). The ERA is applied with and without the
semiactive devices. The results indicate that the root mean square error in the
identified paraméters is clearly reduced by using semiactive devices in the structure.

The second part of this dissertation studies the effect of using variable
stiffnesses in an experimental structure for improving identified structural
parameters. A 2DOF shear building structure, composed of horizontal plexi-glass
plates, vertical aluminum plates and two pairs of soft springs as bracings, is used in
the lab experiment. Stiff springs are used in pairs to replicate the effect of VSDDs in

| the structure. The structure is excited through a small-scale shaking table in the SHM
and Control Lab at the University of Southern California. The excitation takes two

forms: a band limited white noise and a filtered band limited white noise. The
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absolute accelerations of the shake table and the first and second stories of the
experimental structure are measured using one accelerometer fixed to each of the
three levels. It is assumed that the masses and the damping coefﬁciénts are known a
priori. Damage is incurred in the structure by removing a pair of the weak springs.
The resulting estimates of the reduction in the story stiffness due to damage in the
structure indicate more accuracy in the mean estimates when using four different
configurations of additional stiffnesses (replicating the effect of VSDDs) compared
to the case of the conventional structure. In addition, using the conventional structure
approach shows more sensitivity to noise such that the variation in the identified
parameters is sometimes much larger than using the VSDD approach. In general, the
‘results of the experimental work are consistent with the results from the analytical
work since they indicate better mean estimates and sometimes considerably less
variations when VSDDs are used in the structure.

The third part of the dissertation studies realtime controlled health monitoring
of structures in the context of time domain identification techniques. An
ARMA/ARMAX black box model of the 2DOF bridge model is used as a test bed of
the approach. A quadratic cost function, that includes the error in the estimated
system parameters and the force exerted by the actuator, is defined. Some techniques
for evaluating the autocorrelation functions of the measurements and the inputs in
terms of the control gains minimizing the cost function are introduced. The resulting
autocorrelations functions are used to evaluate the cost function. The equivalent

ARMA/ARMAX coefficients are evaluated based on the physical properties of the
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bridge model (stiffnesses and damping coefficients). The resultiﬁg model is assumed
to be excited by ambient traffic excitation acting on the deck and ambient ground
excitation at the support of the pier. The ambient excitations and the associated
measurements noises are all assumed Gaussian pulse processes. An illustrative
example for testing the introduced controlled approach is introduced for future
studies.

Future research studying the improvements in identification of structural
parameters should include data from real structures. The dynamics of the VSDD
should be incorporated, for more accurate behavior rather than assuming ideal
behavior for VSDDs. Also, more complicated structures should be examined, in

order to generalize the VSDD approach.
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Appendix A

A.1 Computational Procedure for 6DOF Shear Building Model

While using the symbolic math capabilities of MATLAB® to formulate the
iterative least-squares frequency-domain identification is convenient, it is not very
efficient for larger problems, requiring the development of a semi-numerical solution
procedure. The core of this alternate solution procedure lies in recognizing that the

residual error €, in Eq. (3-12) can be separated into a set of numerical coefficients

and a numeric representation of the symbolic unknowns. The ™ element of the

mx1 error €, in Eq. (3-12) can be modified as

B.(jo,,0,k,) “A(jwiseaxk)ﬁr(jwia‘(k) _

é,(jo,,0,x,)= 1;1(]60 K.
i Ly

CII (ja)i ’ Kk)Vr (9) (A'l)

where ¢,(jo,,k,) is an n,x1 vector of numeric coefficients of the corresponding

elements of v, (8), which themselves are each of the form
v, ®) =[]0, s=Lucon, , r=1..,m (A-2)
i=1

where the p” are non-negative integer exponents that can be arranged in nx1

vectors p” which can be collected into set P. ={p",...,p" }. The symbolic v, (0)
is a polynomial function only of the unknown parameters and is different for each

element of the transfer function error. The coefficient vector ¢ ,(jw,,x,) depends on
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the frequencies and the known parameters, and is different in each iteration and for
each element of the transfer function matrix. Since the v,(8) can be defined by the
numeric exponents of the elements of the unknown @, they can be stored and
manipulated just through a numeric tensor p;”.

Substituting Eq. (A-1) into the square error Eq. (3-13), results in

A®)=2.2 D v, 0)c, (o, k), (jo,1,)V,(0) (A-3)

where (-)' denotes complex conjugation. The order of summation and multiplication

can be rearranged since v,(0) is independent of i and £, giving

HOEDY Vf(ﬂ){zchz(jwi,Kk)CZ(jwnKk)}V,(9) (A-4)

The quantity in brackets is purely numerical and can be computed quite easily; let it

be defined
C, =ZZc:’,(ja)i,Kk)cf,(ja)i,Kk), r=1,...m (A-5)
i ok
which incorporates all of the information for the data frequency points j®, and the

different sets of known parameters , .

The vectors v,(8) are not all the same. It is convenient to define a single
similar vector v(0) that contains all of the symbolic products of powers of all

unknown @ contained in the individual v,(0).
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v, =167, s=1...n, (A-6)
i=1

where the p; are non-negative integer exponents that can be arranged in n, nx1

vectors p° that can be collected as set P={p',...,p™}, which is the union of the

individual sets for each element of the transfer function,
P=Jr, (A-7)
r=1

The individual symbolic vectors v,(0) can be related to the global symbolic vector
by

v,0)=Tv(®), r=1...,m (A-8)
where T, is a transformation matrix containing ones and zeros
(A-9)

[T,],S =I(p",p"), r=1,...,m, i=L..,n, ,s=1..,n

where /(x,y) is an indicator function that has value 1 when every element of x
matches the corresponding element of y .

Substituting Eqs. (A-5) and (A-8) into the square error Eq. (A-4) gives

A7 (0) =2 v'(8)T/C,T,v(6) (A-10)
which can be simplified since v(8) is independent of transfer function index r
AL(®) = vT(e)[Z T Cr,T,}v(m = V7 (0)C,v(6) (A-11)
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where C,is a n, xn, symmetric numeric matrix with elements ¢/, . Computing these

elements can be done quite efficiently; the slowest part is the process of forming the

union of the exponent sets and building the resulting transformation matrices T, .
Determining the least-square estimates of the unknowns, then, requires the

gradient of A7 ()

b%ﬂzzim, R (A-12)

r=l s=1

and the elements of its corresponding Jacobian

oy, v By, v, By,
A2(0)|=2 v, + + A-13
6969 [ ®)-= 22, { " 06,00, ae 36, 06,06, 06,06, ]( )

The j ' clement of the gradient can be simplified to a set of products of powers of

unknowns and the corresponding coefficients

[Az(ﬂ)] 222 el v,,(0) (A-14)

r=l §=1

where

s, J

gl =c.pt and 7, ,@)=[]67"" =[]/ (A-15)
i=1 i=1

The elements of the Jacobian can be formed in a similar manner, resulting in a set of

coefficients and exponents.
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Equation (A-14), then, is a nonlinear equation that is the linear combination

of products of powers of the unknowns and the zeros can be found through standard

numerical root solving algorithms — this study used the function fsolve( ) in
MATLAB’s Optimization Toolbox. The coefficients E,’s ; and the exponents p;; can

be computed in a purely numeric procedure from the assumed structural model, and
the root solver is numerical. Thus, this alternate numerical solution avoids symbolic
computation entirely. The result is that the 2DOF identification problems can be
solved in a few seconds on a 2.4GHz Pentium 4, whereas a mostly symbolic

computation takes on the order of several minutes on the same computer.
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Appendix B

B.1 Testing Reports of Springs Used in the Lab Experiment as Issued

from Supplier

B.1.a Weak Steel Springs Report (spring #80039)

Century Spyvying
2 1EYE. L& LIS

" Larson Yystems Inc. Tester

Model 2 . Buper DHT
Version Number : 2.54 ‘
* Load Cell : 110,208 1b
. Date : P&/11/704
" Time : MR1E5:E9 pm
Operator  :-

" Two Point with Rate Mode

Tp 1 Tpi.  Tpe Tp &

N
~ Test | Length Force | tLength Force Rate
Number | (ip) [$1.Y) . (in} (1) {ith/im

S 3. 2000 -@, 152 3.9995 f@.ﬁéw . 2. 468
g 1 3. 2000 -@. 156 C3.9995 ~@, 632 @. 476
3 1 3. a0 -3, 192 © - 3.9995 ’ -B.672 .. 488
4 3. paea -@, 19¢ 3.9995 -3, 668 A. 470

~ END OF DATA )

% SUMMARY DATR

- i TR 1 Tp1 Tp 2 Tp &

t Test | L.ength Force Length Force. Rate

¢ Number | (in) (1) (in} {1b} (ibk/in)

{ - .

i Mean Z. ARRRa ~Q. 1788 3.99%350 ~, 6468 @, 474Q

. Btd Dev 2, BRREY 2. 128 @. BYOREe 2. 2241 o, Bee 3

E Maximum ' 3. B2 ~@, 158 ‘3. 9995 ~B. 624 . 48z

' Minimua 3. e ~@, 199 3. 9995 -@, 672 . 4686

i Range . BEga n.e38 ?. 2023 ., 052 3. @14

{ END OF SUMMARY

e
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B.1.b Stiff Steel Springs Report (spring #80222)

et agry

Spying

AR BN e LSS
".LawSPU SVStémé Ing. Tester Co »
Model ¢ Buper DHT
Yersian Number 'z 2.54
Load Cell 3 11Q.000 1b
Djte ' 1 W6/ BE/ D4
Time : @B:a3:23 am
- Operator s -
. Twe Point with Rate Mode
{ Tp 1 Tp 1 Tp & Tp &
, . Test [ Length Force Length Foree Rate
Lo Number | (in} (1) (in (1) tib/im)
v 1 &, GuaR -5, 224 3.9995 ~8. 842 .64
: 2 | 3. 5000 ~4. 388 3. 9995 ~7. 756 5. 558
f‘ 31 3. 5008 3. vae 3. Goida @, 292 @, Qg
= 4 | 3. oo @, dz 3 H0an . 2@ 2, B
5 i 2. 5000 8. BoR 3. S 2, 02 &, O
: 6 1 3. Heew ~4. BT 3.9995 ~7. 418 ' 5. 489
§ 701 3. Spae -5, B18 - 3. 9995 ~7.798 5.5378
s 8 | 3. 5000 —b,I72 13,9995 ~7.796 5. 654
3 4 3. SR ~&4, 282 3. 9995 T T84 5,530
12 | 3. Sond 0. P04 3. 5002 2. DA% 7. aBa
11t 3, 5008 -5 B36 3, 9995, -7. 866 %, Bb6
2 3. Sna -5, 0E6 3.9995 ~7.86@ . 594
13 1 3, Glad - -5, Bge . 3. 9995 ~7. 83 5.594
14 i QRCAR. ] -5, 816, 3.999% ~7.768 5. 518
15 1 3. S@aa. -5« 112" 3.9995 -7.856 5. 493
6 i 3, Bee ~5. 138 - 3.9993 ~7. 886 5. 518
END OF DRTA
© SUMMARY DRTA
o Tp L Tp i Tp & Tp 2
Test Length Force Length Force Rate .
" Number | {ing (1 {in) (ib} (lb/7in}
Mean 3. G0000 -3 7683 3. 87463 5. BABS 4, 1766
Std Dev @. BOPHG e B4TS B, 22338 3. 4928 2.49149
Maximum 3. 5008 . B4 3. 99935 B B4 5. 6656
Minimun B HAGR -5, 284 3. Sopg ~8. 042 . aud
JRange 3. 8308 5. 228 3. 4995 8, 46 5. 66

END 0OF BUMMARY

Tests 1-2,6-9,and 11-16 correspoﬁd to spi'ing samﬁiés 1-2,3-6, and 7-12 in Table 4-8.
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Appendix C

C.1 Getting the Equivalent ARMA/ARMAX Model of 2DOF Bridge

Model from Available Physical Structural Properties

In order to apply the controlled realtime health monitoring technique applied
in Chapter 5, an equivalent discrete time ARMAX model, corresponding to the
bridge model in Chapter 3, is used. However, the original bridge model parameters
are the physical quantities of the bridge including the stiffnesses, damping
coefficients, and masses. Thus, a technique is needed to transform these parameters
into the equivalent matrix coefficients of the finite linear difference equation.

The procedure starts with evaluating the mass matrix, M, the stiffness matrix,
K, and the damping matrix, C, based on the available model data such that

M:[m’ O} K=|:k1+k2 —kz} and Czlic1+c2 ——cz} C-1)

0 m, -k, k, —C, c,

where m, and m, are the masses of the pier and the deck, respectively, &, and £,
are the stiffnesses of the pier and the isolator, respectively, and ¢, and ¢, are the

damping coefficients of the pier and the isolator, respectively. Consequently, a
continuous time state space model, with absolute accelerations at the pier and the
deck as observations and the ground acceleration and the deck acceleration due to
traffic plus the control force as inputs, can be obtained. Thus, the resulting

continuous time state space model is
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x=Ax+Bu ¢, e, y=Cx+D]Ju, e, el (C-2)

where u is the actuator force, e, is the ambient excitation at the base, e, is the

traffic ambient excitation at the deck level, and the matrices are

F o 0 0
g I 0 0 0
Ac - 2><.z1 2x31 , Bc = (C-3)
-MK -MC -1/m -1 0
1/m, -1 -1
» B 0 00
Cy=[—M K -M7C] and D, = 00 0 (C-4)

where the matrix D, is taken as a zero matrix because of the expected delay

encountered between the action of external forces or vibrations, such as traffic
vibrations or ground vibrations, and the response of the system to these excitations.
By changing the continuous time state space model to a discrete time state

space model, the state space matrix and the input influence matrices become

At
A=e*  and  B= [e"diB, (C-5)

0

where At is the sampling time. This is done such that the sampling frequency is 40
times that of the highest natural frequency of the 2DOF bridge model, resulting in a
sampling time of 0.01 second. Then, the resulting discrete time state space model is
changed to an observable canonical form using the observability matrix as the

transformation matrix
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A, =TAT', B, =TB and C, =CT" (C-6)

where the observability matrix is obtained from the first row of the observation

matrix, C,, and the state matrix, A. This is based on the fact that a system must be

observable starting from the first observation.
T=[C,CA,CA*,CA’]" and C=[C (1) C,(12) C,(13) C,Q1HI(C-7)

In the meantime, the finite linear difference equation of the ARMAX model

- can be expressed as
vyEY+AyEk-D+Ayk-2)=Bu(k-1)+B,u(k-2)+Ce(k—1)+C,e(k-2)
(C-8)

where u(k) is the control force at time £, the term e represents the ground ambient

excitation, e, , and the deck traffic ambient excitation, e,

e(k) =[e, (k) e (O (C-9)

For i=1,2, the matrix coefficients of the observations, A,, and the matrix

coefficients of the ambient excitations from the ground and traffic loads on the deck,

C,, are 2x2 dimensional matrices, whereas the coefficients B, are vectors of
dimension 2x1. As shown in Eq. (C-6), B,=0 due to the time delay in the control
force and C =0 due to time delay in the effect from both the ground ambient

loading and the deck traffic loading.
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By changing the ARMAX model to an equivalent ARMA model where,

y(k)+ A y(k -1+ A, y(k-2)=B,U(k-1)+B,U(k-2) (C-10)
where
A (k) _ T
y(k) = ) U(k) =[u(k) e, (k) e, (k)] (C-11)
Y2 (k)
and
B,(k)=[B,(k) C,(®)], i=12 (C-12)

and considering an equivalent discrete time state space model to the ARMA model

as per Juang (2001) then
0,, —-A B
A \rma =I:sz§ —Aj’ B ruma =!'§ﬂ’ Carma =[0,, I,]
000
Drva = 00 0 (C-13)

Then, applying the same procedure of transforming the matrices in Eq. (C-13) of the

state space corresponding to ARMA model to an observable canonical form using

the observability matrix, T , where
T=[C,CA,CA?,CA’]" and C=[0 0 1 0] (C-14)

Thus, the resulting matrices in observable canonical form are

A \rvachs = TAARMA T, B irvaohs = TB and CARMA,obs = CARMA_T_—l (C-15)
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Since the corresponding matrices in Egs. (C-4) and (C-13) have the same
form, then, by equating the corresponding coefficients, a system of equations is

obtained that are equal in number to the total number of elements of the matrices, A,
and C,, and the vectors, B,, for i=1,2. Solving the equations yields the elements of

the matrix coefficients of the finite linear difference equation of the ARMA model.

C.2 Feasibility of Assuming the C, Matrix Coefficient be Known a Priori
for the 2DOF Bridge Model Online Monitoring

By considering the continuous time state space model as in Eq. (C-2), it can
be observed that knowing the masses of the pier and the deck, m; and m,, is
sufficient to define the input influence matrix, B_. Then, by changing the continuous
time input influence matrix, B_, to discrete time matrix, B, using

At

B= jeAc’dch = [IAt+%!AC(At)2 +%!A3(At)3 +...+H.0.T.kc (C-16)
0

Thus, it can be deduced that, for a considerably low value of the sampling

time such as Ar=0.01s, which is applied for the solution of the problem in

Chapter 5, the higher order terms, starting from the term %,Ac (Ar)? within brackets

in the right hand side of Eq. (C-14), would tend to zero and have a negligible effect
in the evaluation of the influence matrix, B, in discrete time. This, consequently,

would yield
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At

B= [e"deB, =[1Al]B, (C-17)

0

which indicates that the discrete time influence matrix can be obtained by knowing
the masses of the pier and the deck, m, and m,, and the sampling time, Az. Finally,
by applying the transformation in Eq. (C-6) to the influence matrix in Eq. (C-15) and
recalling from Eqgs. (C-10) and (C-11) that the elements of the coefficient matrix C,
are parts of the final influence matrix B, , then it is clear that assuming C, is
reasonable. The remainder of the input inﬂu@nce matrix, which represents the
elements of coefficients matrices, B,, B, and C,, are considered unknown in the

solution procedure.
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