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4.1 HEST vs Hẍi ,üg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Covariance of HEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Error Prediction Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Least Square Estimator Surface . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Maximum Likelihood Estimator Surface . . . . . . . . . . . . . . . . . . . . 65

5.3 Jacobian of HEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Substructure Identification Error Predictions . . . . . . . . . . . . . . . . . 86

6.1 Bias Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Bias Resdiual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Variance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Damage Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Variance Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



7.1 Regulator Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Uncontrolled Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Controlled Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Pole Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Interstory Acceleration Response for Various Controllers . . . . . . . . . . 117

7.6 Interstory Acceleration Response for Various Controllers . . . . . . . . . . 118

7.7 Observer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.8 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.9 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1 Bench Scale Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2 Bench Scale Performance Index . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Bench Scale Control 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.4 Bench Scale Control 02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5 Identified Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.1 UConn Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2 PSD of Shake Table Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 146

9.3 UConn Accelerometer Installation . . . . . . . . . . . . . . . . . . . . . . . 147

9.4 UConn Error Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.5 Damage Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.6 Substructure Identification for D0 . . . . . . . . . . . . . . . . . . . . . . . . 153

9.7 Substructure Identification for D1 . . . . . . . . . . . . . . . . . . . . . . . . 154

9.8 Substructure Identification for D2 . . . . . . . . . . . . . . . . . . . . . . . . 155

9.9 Substructure Identification for D3 . . . . . . . . . . . . . . . . . . . . . . . . 156

ix



9.10 UConn Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.11 UConn Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

x



Abstract

As civil infrastructure ages, occupants and users are placed at risk. Due to limited funding,

agencies are required to push structures past their original design lifetime. This creates an

imperative for the civil engineering community to develop robust and accurate methods

for monitoring the health of civil structures and ensuring public safety. This goal is

realized by developing methods to detect both long-term degradation and immediate

post-event health assessment. New methods are required because current practice, based

on subjective time- and labor-intensive visual inspection is unable to adequately meet

these needs. This requires novel research to transform the current state-of-the-art of visual

inspection into a new paradigm of continuous monitoring.

Substructure identification has emerged as a promising damage detection and long-

term monitoring tool for civil structures. Substructure identification starts by applying a

reduced order model to a portion of the structure — analogous to a coarse finite element

model — and then forms an estimator of the reduced order behavior using response

measurements from the global structure. Its benefits are increased sensitivity to common

structural damage, decentralized data processing, improved statistical performance, and

others. This work develops a generalized framework for formulating substructure estima-

tors. Moreover, it develops two important predictors of estimator performance: model

xi



function curvature and an identification error analysis. This allows the analyst to develop

an improved estimator and evaluate its performance.

These theoretical developments are applied to several simulations including uncer-

tainty propagation, damage detection, and damage localization. These simulations demon-

strate that substructure identification is well-suited for chain structures. Next, a controlled

substructure identification procedure is described and the performance is evaluated. An

active control law is developed using non-convex constrained optimization.

Experimental verification is provided by two studies. First, a two-story, bench-scale

flexible structure is identified. Then, improved identification precision is provided by

passive structural control. The second study uses a 12 ft, four-story, steel structure. This

structure is identified and damage, caused by releasing a story-level’s boundary condition,

is detected. Moreover, second-floor identification is not achieved, which is correctly

predicted by the identification error analysis developed herein.

Concluding remarks are provided and avenues for future work are detailed. Specif-

ically, an active control experiment using the 12 ft structure is proposed. Semi-active

control design is discussed and substructure identification estimators for frame and bridge

structures are outlined.
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Chapter 1

Introduction

To ensure life-safety and minimize economic costs, damage in civil structures should

be detected, located, and quantified at the earliest possible moment. In contrast with

many mechanical structures, a civil structure is designed and operated to be life-safe

throughout its life-cycle. This means that occupant safety will be held to the highest

consideration, earning civil engineers a reputation as conservative practitioners. This

results in an aversion to new methodologies and an over-reliance of visual inspection as a

tool to detect damage in civil structures.

Visual inspection evolved as a set of inspection procedures to detect common forms

of damage. Many federal, state, and local regulations govern damage detection in civil

structures. While considerable effort has standardized visual inspection, its application is

inherently subjective. Specifically, visual inspection suffers from multiple defects: visual

inspection is time- and labor-intensive; it is costly; it is subject to human error; and is

limited to detecting visually accessible damage.

There are two classes of inspection methodologies that can be used in combination

(or exclusion) with visual inspection: enforced downtime and automated monitoring.
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Enforced downtime works by specifying a design life of the structure and then decom-

missioning the structure when that time expires. Likewise, after a large load event (e.g.

earthquake), enforced downtime would mandate that structures remain un-occupied

for a specific time and remove a portion of the remaining design life of the structure.

Conversely, an automated monitoring inspection methodology would be condition-based

and continuously monitor the health of the structure through a set of features. When one

of the damage features indicates that damage is likely to have occurred, the structure will

be evacuated. This assessment will occur continuously and can detect damage after a large

load event. A more complete discussion of current practice and motivation is provided in

Section 2.1.

Many researchers have developed automated damage detection methodologies, which

are commonly known as structural health monitoring (SHM). These techniques comple-

ment visual inspection and try to overcome its deficiencies. Specifically, SHM overcomes

the inherent variability of visual inspection by prescribing a procedure which is data-

driven and automated. Several popular techniques are described in Section 2.2.

Among SHM researchers, many have focused their attention on dynamic data. In

this approach, the structure being monitored is instrumented with dynamic sensors, the

data from which are processed by a variety of algorithms to classify a set of features that

can differentiate between a healthy and a damaged structure. Within a subset of these

researchers are a group using decentralized algorithms. These methods are of great prac-

tical importance because real-world implementations make centralized data processing

unlikely, particularly as the availability of inexpensive wireless sensors becomes a reality

and dense sensor arrays are utilized.
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This work will investigate the use of substructure identification as a decentralized

method to detect damage in a civil structure. Substructure identification works by consid-

ering a portion of the structure and identifying a parametric reduced order model (ROM)

that describes the local structural behavior. Specifically, this work will track locally iden-

tified stiffness parameters and consider statistically significant deviations to represent

damage. To provide context, a comprehensive literature review of substructure identifica-

tion is provided in Section 2.3.

To evaluate the effectiveness of substructure identification, one fundamental question

needs to be answered: To what extent does structural damage cause a detectable change

in local stiffness? In answering this question, this work will investigate the statistical

properties of the estimator, analyze different structural configurations, and consider

different damage scenarios. Predictive error analysis will show which substructures

admit better identification performance than others while different model functions can

be compared via statistical curvature.

The thesis of this work is that substructure identification does not generate a unique

estimator. Rather, many different formulations can be used, each with unique properties.

Moreover, the behavior and performance of these different estimators can be predicted

through the statistical curvature of the model function and an error analysis of the estima-

tion function. A generalized procedure for formulating and predicting the performance

of substructure estimators is described in Chapters 4 and 5 and forms the first major

contribution of this work.

Next, this dissertation considers the numerical performance of substructure iden-

tification in two ways. Chapter 6 analyzes the uncertainty propagation and damage

3



detection capabilities of the proposed algorithm. Chapter 7 develops a procedure to use

an active control device to temporarily change the dynamics of the structure to improve

substructure identification performance of a particular substructure.

The final major contribution of this work is the experimental verification of substruc-

ture identification in two structures. In Chapter 8, a bench-scale structure is identified

using substructure identification. Identification precision is improved by altering the struc-

tural configuration which confirms controlled substructure identification. In Chapter 9,

damage is detected and located using substructure identification on a 12 ft. four-story

steel structure. The findings show that substructure identification is more sensitive to

damage than equivalent global methods. Furthermore, observed substructure identifica-

tion performance was predicted and observed experimentally. This motivates the future

work of controlled substructure identification.

This study will conclude with a summary of major findings. A discussion of future

work will be presented to outline areas of fruitful research.

4



Chapter 2

Literature Review

This chapter provides a literature review of topics related to substructure identification.

First, the motivation is provided in the context of damage detection of civil infrastructure.

Second, a brief discussion of global structural health monitoring techniques is presented.

Third is an extensive review of substructure identification methods. Fourth is a discussion

of areas where future work is needed.

2.1 Motivation

As civil infrastructure ages, there is growing concern about the safety of the nation’s built

infrastructure. Signs of deterioration, including the catastrophic collapse of the I-35W

Bridge (NTSB, 2008), indicate that civil engineers need to take a new interest in ensuring

the structural reliability and safety of civil structures. Quantifying these concerns, the

American Society of Civil Engineers (ASCE) published its 2009 infrastructure report card

and gave the nation’s bridge inventory a “C”. Among the reasons given was that one in

four bridges are structurally deficient (ASCE, 2009). This report indicates that current

construction and spending levels are insufficient to improve this ratio. Therefore, to

5



extend the life cycle of civil infrastructure, it is necessary to find cost effective methods to

characterize a structure’s health and predict its life expectancy.

In addition to bridge infrastructure, the nation’s building inventory is at risk. Like

bridges, buildings are susceptible to long-term deterioration caused by fatigue, corrosion,

material defects, and so forth. However, a more fundamental concern is excessive loading

caused by extreme events such as earthquakes, high wind, and hurricanes. Following an

extreme event, it is necessary to evaluate the health of the structure to ensure life safety

for occupants. Thus, current practice prescribes that after a strong earthquake a visual

inspection will be performed to determine if damage has occurred (ATC, 1989).

Unfortunately, visual inspection is a costly process that suffers several defects. First,

visual inspection is both time and labor intensive. ATC-20 (ATC, 1989) indicates that,

on average, post-earthquake visual inspection of buildings in an effected area will take

90 days. Likewise, federal regulations specify that bridges should be routinely inspected

on a 24-month interval (Bridges, Structures, and Hydraulics, 2011). Many states struggle

to meet this requirement, which reflects the time-consuming nature of visual inspection.

Second, visual inspection is costly. Specialized training is required to teach structural in-

spectors and further specialized inspections are often required. Following the Northridge

earthquake, buildings with welded steel moment frames needed each welded joint in-

spected with an average cost of $1000 per joint (Gates and Morden, 1995). Third, even

with uniform code regulations and standardized training, visual inspection is an inher-

ently subjective technique. Many researchers and building officials have criticized visual

inspections for this reason. A United States Geological Survey (USGS) report (Bruce and

Tubbesing, 1994) finds that visual inspections are a tenuous predictor of structural safety

6



and that many building inspectors are under pressure to conservatively list structures as

damaged because of their own uncertainty.

A technique complimentary to visual inspection is design-controlled life cycles and

code-regulated downtime following an extreme event. Much of current practice is cen-

tered around the idea of the design life of a structure. Within this time-frame, the structure

is assumed to be healthy. Also, after an extreme event, it is assumed that the structure

is damaged until properly inspected and found undamaged. Yeo and Cornell (2009)

developed a dynamic programming method to determine the optimal amount of down-

time for a structure following an earthquake. This prescription is found by weighing

the uncertainty surrounding life-safety risks, after-shock hazards, and damage transition

probabilities. While these methods can be designed to minimize life-safety risks, they are

unable to autonomously utilize information about the structure’s current condition.

It is clear that further research is needed to address the limitations of current practice

in civil damage detection. Civil infrastructure is aging and under risk from extreme events.

Current practice relies on visual inspections which suffer from numerous defects. New

techniques that provide automated, standardized, and data-driven techniques are needed.

2.2 Structural Health Monitoring

To overcome the limitations of visual inspections, the field of SHM has aligned itself

to mitigate life-safety risks and realize cost savings provided by rapid inspection and

continuous monitoring. Over the past 30 years, SHM researchers found many different

identification techniques to monitor the changing condition of a variety of structures

including mechanical, aerospace, and civil structures. Many SHM literature reviews were
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performed in a variety of contexts (Brownjohn, 2007; Doebling et al., 1996; Farrar and

Worden, 2007; Sohn et al., 2004). This section will not try to recreate these works but

instead summarize the common approaches of SHM and indicate some of the draw-backs.

Farrar and Worden (2007) provide an inter-disciplinary description which defines SHM

in terms of a four-step statistical pattern recognition paradigm. The four-step process

includes:

1. Operational Evaluation

Operational evaluation begins to set the limitations on what will be monitored and

how the monitoring will be accomplished.

2. Data Acquisition

The data acquisition portion involves selection of the excitation methods; sensor

types and locations; and the network transmission and data storage hardware.

These selections often create limitations for SHM implementations and should be

considered when developing new procedures.

3. Feature Extraction and Information Condensation

This portion receives the most attention in the literature and has a significant effect

on the preceding steps. Common features selected are stiffness and modal character-

istics. This step is important in reducing the data to a manageable size that can be

reviewed by the engineer.

4. Statistical Model Development

To discriminate between the undamaged and damaged states, it is necessary to de-

velop a statistical model that can analyze the statistical distributions of the measured
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features. This step is concerned with finding the existence, location, type, and extent

of damage. Additionally, a prognosis of the health of the structure can be provided.

In this study, the author will be primarily concerned with feature extraction and

statistical model development. However, much of the work relies on assumptions for

operational evaluation and data acquisition. As such, this study will concern itself with

techniques that estimate the stiffness using acceleration signals at sparse locations. Several

global SHM techniques that use similar assumptions are described herein.

Caicedo et al. (2004) describe an application of the eigensystem realization algorithm

(ERA) method (Juang and Pappa, 1985) to Phase I of the IASC-ASCE Benchmark SHM

problem. Their analysis utilized a plane-frame ROM of the three-dimensional, two-bay

by two-bay, four story testbed structure. Then, assuming unknown inputs, the natural

excitation technique (NeXT) technique is exploited, where cross-correlation functions are

used instead of time histories in the ERA formulation. The natural frequencies, mode

shapes, and stiffness are computed through a least squares (LS) procedure and applied

to a variety of damage cases. Multiple cases are considered, including time histories

generated with the full order model, asymmetric mass causing lateral-torsional coupling,

and limited sensor information. In most cases, the authors found that the method was

capable of predicting stiffness within 1%.

Sim et al. (2010) present a technique to use a network of distributed wireless sensors to

combine local modal information and identify global modes. This method is implemented

by considering local groups of sensors and using them to compute the local modal

information. Then, global modes are computed using ERA and NeXT and the global

modes are combined using a LS estimation procedure. In the case of measurement noise,
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they developed a technique to reject computed modes of a local group if they do not

correlate with the other computed modes. Interestingly, they report that the first mode

was often rejected which suggests that local vibrations do not have sufficient frequency

bandwidth to measure low frequency modes.

Lew (1995) presents a method of detecting damage through deviations in the identified

transfer function parameters. This paper considers the effects of environmental change

where an ensemble of undamaged time histories are identified and the maximum and

minimum values for each transfer function parameter are tabulated. He uses ERA to

identify the transfer functions using noisy time histories. The study is performed on a nine-

bay truss structure and damage is simulated by the removal of one beam. Damage was

successfully detected as identified transfer function parameters deviating from tabulated

intervals.

Kim et al. (2005) present a new method to identify multi-input, multi-output systems in

the frequency domain. The method uses experimentally determined frequency response

function (FRF) data to identify a rational polynomial transfer function. Identification is

accomplished by using physical relations to minimize the number of identified values

and a three-part optimization procedure is followed. First, an initial estimate is provided

by a linear LS method. Second, the Steiglitz-McBride method is applied to a nonlinear

estimator. Third, the Levenberg-Marquardt method is applied to a maximum likelihood

(ML) estimator. The method is validated with experimental and simulated data on a smart

base-isolated structure employing a magnetorheological damper and a two-story structure

employing an active mass driver (AMD). Results indicate that the proposed method is

quite effective at identifying transfer function models of common civil structural systems.
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Damage detection was not directly explored but these methods could be combined with

that of Lew (1995), for example, to provide damage detection measures.

Interested readers are referred to several excellent SHM literature reviews to cover the

wide range of research styles (Brownjohn, 2007; Doebling et al., 1996; Farrar and Worden,

2007; Sohn et al., 2004).

Global methods are not considered in this study because of the limitations they present

in a full-scale implementation. Civil structures contain many degrees of freedom and

complicated damage scenarios that often cannot be detected using global methods. Fur-

thermore, implementation of global algorithms require cost-prohibitive sensor and cabling

requirements or else present un-realistic data transfer requirements in a wireless smart

sensor network. Therefore, this study will look to SHM methods that can be implemented

in a decentralized manner.

2.3 Substructure Identification

The last two decades saw a number of researchers using substructure identification to

perform SHM on civil structures. This focus is a result of substructure identification’s

ability to simplify both analysis and data processing. Additionally, as wireless smart

sensors mature (Lynch and Loh, 2006), substructure identification offers a clear algorithmic

advantage due to its decentralized nature.

Decades before civil engineers were using substructure identification, substructure

analysis was an important tool used by aerospace engineers to analyze complex structures.

Craig and Bampton (1968), building off the work of Hurty (1965), developed a technique to

decompose a complex structure into a series of smaller substructures. This methodology,
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and the closely related component mode synthesis (CMS), allowed design teams to make

local changes to a component and analyze its global effects in an efficient manner using

local modal behavior.

The benefit of substructure analysis and CMS is that large, complex structures can

be broken into smaller parts that are easier to analyze and subsequently design. This

process is directly applicable to the field of SHM because complicated structures that

refuse to be confidently identified can be broken apart, analytically, and studied in smaller

substructures. Moreover, many structures have critical components that are known to be

susceptible to damage. Substructure identification allows the analyst to focus identification

energies on these components, providing for an analysis that is more damage-sensitive

when compared to global identification.

This section will describe the state-of-the-art of substructure identification. It will

be broadly organized by first discussing linear parametric substructure models. Then,

nonlinear parametric models will be considered and, finally, model-free methods.

2.3.1 Linear Parametric Methods

The majority of substructure identification research has focused on a linear substructure

model that can be parametrized by a small set of identified features; many researchers have

applied a diverse set of such methods. Some researchers have focused on time domain

identification using an extended Kalman filter (EKF), an auto-regressive moving average

with exogenous input (ARMAX) model, and so forth. Other researchers have focused

on the frequency domain and performed parametric identification on combinations of

measured FRFs and cross-power spectral densities (CPSDs). Still others used a Bayesian
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methodology or focused on different substructure isolation methods. This section will

describe these methods in a damage detection context.

Koh et al. (1991) present the first noted application of substructure identification

for a civil structure. This study used an EKF to identify the stiffness and damping

parameters of a selected substructure. Substructuring was accomplished by partitioning

the global coordinates as internal or interface coordinates and then re-writing the equation

of motion (EOM) of the substructure with the interface nodes applying force to the

substructure. This selection was not minimal and all of the substructures considered

were multiple degree of freedom (MDOF) structures themselves. In particular, a six story

shear building was considered with the top three stories and bottom three stories as two

substructures. With a limited set of measured acceleration response variables on floors

three and six, they found that substructure identification significantly out-performed

identification using the complete structural model. The values identified by substructure

identification converged rapidly even with poor initial guesses. The work concludes with

a frame and truss bridge example.

Tee et al. (2005) provide a first- and second-order model for substructure identifi-

cation of a shear building. The first-order formulation utilizes the ERA method and

observer/Kalman filter identification to identify a substructure’s stiffness and damping

parameters. The second-order model is based on a LS identification of stiffness and damp-

ing parameters using the sum of the square distance between the estimated restoring

forces and the inertia and/or applied force. Results are verified via numerical simulation

of 12 degree of freedom (DOF) and 50 DOF shear buildings subject to base excitation with

additive measurement noise. Experimental studies are performed on a 2 m, 12 DOF shear
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structure. Statistically significant damage is detected in both numerical and experimental

work.

Hou et al. (2011) develop a substructure isolation method using the virtual distortion

method. This method adds a virtual fixed support to the substructure which isolates the

substructure from the global structure. This allows the analyst to treat the substructure as

an independent structure using any system identification. In this study, they use a numer-

ical plane frame truss structure and an experimental continuous beam for verification. In

both cases, damage was successfully detected in the presence of measurement noise.

Xie and Mita (2010) describe a technique to use CMS to decompose and identify

the dynamics of the superstructure of a base-isolated structure. They represent the

superstructure as a truncated set of the superstructure vibration modes, which, in turn,

simplifies analysis. They found that this representation was less sensitive to incorrect mass

estimates and allowed for satisfactory results with fewer total sensors. The method was

validated in simulation and demonstrated experimentally on a full-scale, eight-story base

isolated structure. This study was used for system identification but could be adapted for

a SHM regime.

Xing and Mita (2012) propose a time domain substructure identification procedure that

utilizes an ARMAX model. This study focuses on shear buildings with discrete masses

and considers minimal substructures (one DOF). By representing the time derivatives

through a difference equation, the EOM is decomposed into a time-delayed equation of

the acceleration response of the floor level considered and adjacent floors. This equation

is easily demonstrated to be an ARMAX model. The simulation structure considered

is a five story shear building with a fundamental frequency of 4.5 Hz. The structure
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is excited by white noise base excitation and 5% measurement noise is added to the

acceleration time histories. Five damage levels are considered where the stiffness of each

floor level is decreased by 10–50%. Simulation showed that damage is detected with

statistical significance for most damage cases considered and for all of the damage cases

corresponding to stiffness loss greater than 20%. Incidentally, damage is detected at the

floor below the damaged floor as well. These results were compared to an auto-regressive

with exogenous input (ARX) model which was found to perform poorly with high error

and variance.

The simulation results of Xing and Mita (2012) were verified through experimental

testing on a five-story structure with story-level height of 1 m. Damage was simulated by

removing a central column. For each damage case, statistically significant damage was

identified in the story level and the one below. Larger error and variance was observed

for the third floor identification (especially in the case of first floor damage) though not

high enough to effect the statistical significance of damage detection. This behavior is

predicted in a similar 5-story shear building simulated by Zhang and Johnson (2012b).

Koh et al. (2003) and Trinh and Koh (2011) provide results of substructure identification

of the stiffness parameters of a chain structure identified with genetic algorithms. The

substructuring is accomplished with or without overlap and a new technique called pro-

gressive substructure identification is introduced. Progressive substructure identification

works by gradually expanding the substructure considered to include new unknown,

to be identified, parameters. Numerical results in Koh et al. (2003) show that progressive

substructure identification performs best, followed by substructure identification with

no overlap, which outperforms substructure identification with overlap. It is also noted
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that, as the number of unknowns increases, complete structure identification performs

poorly. Trinh and Koh (2011) provide experimental verification using a 2 m, 10 DOF

shear building. These results show that substructure identification outperforms complete

substructure identification, especially in the case of incomplete measurements.

Yuen and Katafygiotis (2006) present a substructure identification procedure in a

Bayesian context. A MDOF substructure is considered and the measured responses are

partitioned into two sets. Working in the frequency domain, one set of responses is written

in terms of the other through the use of transfer functions and a set of trial identification

parameters. This allows computing the probability of one set of measurements conditioned

on the other set of measurements and on the identified parametric system model. The

optimal parameter values for a particular model are found by maximizing the likelihood

of this conditional probability. The study concluded with numerical simulation of a 100

DOF structure, successfully detecting damage as small as 5% stiffness loss in one floor.

The substructure considered was the lower five stories.

Zhao et al. (1995) develop a LS estimator for frequency domain identification of

stiffness parameters for a shear building structure. Substructures were considered as

combinations of multiple floors. The results are performed for various levels of additive

white noise on the simulated time histories. The substructure identification procedure

out-performed complete structure identification.

Zhang and Johnson perform substructure identification in the frequency domain using

a minimal substructure model. A nonlinear least squares estimator of the floor-level

stiffness and damping parameters is used. The estimator is specifically formed to ensure

that the substructure behaves as a single degree of freedom (SDOF) oscillator, which
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greatly simplifies the dynamics. Zhang and Johnson (2012a) uses estimated FRFs of

the floor-level acceleration at, below, and above the floor being analyzed. One of the

acceleration time histories is selected as the FRF input to ensure minimum noise effects.

Zhang and Johnson (2012c) presents an estimator formed with the cross power spectral

densities of the floor-level acceleration below, at, or above the floor being analyzed. The

reference signal is specifically chosen to minimize the effects of measurement noise.

In both studies, numerical simulation is performed on a uniform shear structure

subject to base excitation. Additive measurement noise is considered, up to 50% root mean

square (RMS) in Zhang and Johnson (2012c). In both studies, Monte Carlo simulation is

used to determine estimator performance and small levels of error variance are observed

for identified stiffness parameters. This indicates that substructure identification is well-

suited for damage detection.

Both studies perform a first-order, approximate analytical error analysis to predict

which substructures will be identified with less error than others. For a five story shear

building, third story substructure identification provides the worst identification perfor-

mance. This analysis is exploited in Zhang and Johnson (2012b) to temporarily re-purpose

a structural control device to improve identification accuracy. This is demonstrated in

simulation using an AMD to temporarily improve the identification accuracy of the third

floor stiffness and damping. This control paradigm is also used in Zhang et al. (2009, 2010)

to improve the identification accuracy of a 1 m, two-story, flexible shear structure. The

details are described further in Chapter 8.
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2.3.2 Nonlinear Parametric Methods

In contrast with linear parametric substructure methods, nonlinear parametric substruc-

ture methods do not rely on a governing linear model for the substructure’s dynamics,

which allows the consideration of more complicated models. One common nonlinear

model that approximates hysteretic behavior is the Bouc-Wen model (Wen, 1976). This

particular form of non-linearity is discussed in Smyth et al. (1999) and Yang and Lin (2005).

A more general form of accounting for non-linearity in the substructure is presented in

Hernandez-Garcia et al. (2010) which uses Chebyshev polynomials to represent nonlinear

behavior in the displacement and velocity terms. Finally, Koh and Shankar (2003) present

a procedure that can be adapted to consider non-linearities in the parameters models

with arbitrary frequency dependence. Many studies researched identification of nonlinear

systems; however, this review will consider only those methods capable of decentralized

implementation.

Smyth et al. (1999) develop an on-line parametric identification procedure for nonlinear

systems. The procedure relies on a Bouc-Wen representation of the element level non-

linearity. The problem is then linearized by representing the Bouc-Wen non-linearity

as a truncated series which becomes linear in the parameters. The parameters of this

approximated model are then identified using a modified LS adaptive law with a forgetting

factor. This allows the determination of the system parameters at each time step to

instantaneously detect changes that can signify damage. This method is applied to SDOF

and MDOF systems with both over- and under-parametrized models. This method is

easily implemented in a decentralized manner by considering interface forces.
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Yang and Lin (2005) develop an adaptive tracking parameter identification procedure

for linear and nonlinear systems. This method is similar in derivation to Smyth et al.

(1999) which follows a LS procedure. In contrast, Yang and Lin choose the adaptive matrix

through the minimization of the weighted absolute value between sequential parameter

estimates. They find that this method provides tighter tracking to abrupt parameter

changes than an adaptive tracking with a forgetting factor. Linear and nonlinear systems

are considered though non-linearities are restricted to a cubic displacement term.

Hernandez-Garcia et al. (2010) present a model-free method of identifying the nonlin-

ear restoring forces in a chain structure. This method uses a truncated series of Chebyshev

polynomials of the story displacement and velocity. This generalized formulation is used

to capture the dominant nonlinear features of the restoring force at a particular connection.

The identified model can then be used to identify damage by tracking changes to the

Chebyshev series coefficients. This method was experimentally verified on a three-story,

aluminum, shear building subjected to white noise excitation. Non-linearities were intro-

duced through a gap between braces at a particular floor level; in the case of no introduced

non-linearity, the floor-level restoring force expansion simplified to linear stiffness and

damping forces. Results showed a statistically significant change in cases of damage.

Koh and Shankar (2003) present a method to identify a substructure’s parameter

without measuring interface forces. The method relies on a dense measurement of the

substructure’s response, which is broken into two or more sets that are used to predict the

interface force based on the unknown, to be identified, parameters. The distance between

the estimated parameters is used as the fitness function and genetic algorithms are used to

compute the optimal parameter value. Several different continuous beams are tested and
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successfully identified in the presence of additive white noise (5% RMS). The stiffness of a

10 story substructure of a 50 story shear building is also identified. This method, though

presented using a linear model, can easily be adapted to account for a non-linearity in the

parameters with arbitrary frequency dependence.

2.3.3 Model-free Methods

Separate from linear and nonlinear substructure methods, model-free methods can detect

damage without an underlying physical model. While not a proper substructure method,

model-free methods can detect local damage in a decentralized fashion, which make them

important analogues to substructure identification methods. In this section, the use of

information theory to detection damage is described and two applications are discussed.

Nichols et al. (2006a) present two information-theoretic measures for use in detecting

non-linearities in structures. The first measure is the time-delayed mutual information,

which is the distance from the hypothesis of statistical independence for a particular time

delay. The second measure is the time-delayed transfer entropy, which is the distance

from the hypothesis that dynamics can be described entirely by past history. Both of

these measures provide a scalar value for two points within a structure at a particular

time-delay. Using these measures, it is shown that non-linearities in the connectivity

of a chain structure can be detected using either measure. This method is model-free

and distributed because it only relies on two measured time histories and is able to

detect nonlinearites within the frequency bandwidth measured. Neither measure relies

on a particular structural model nor assumed distribution as the probability density

function (pdf) is estimated using a kernel estimator. Of interest to SHM researchers, these

20



measures remain invariant to global linear changes to the structure as may be experienced

during changing environmental conditions.

Nichols et al. (2006b) present a study that utilizes both time-delayed mutual informa-

tion and transfer entropy to detect impact damage in composite structures. A composite

plate and unmanned aerial vehicle (UAV) wing were instrumented with fiber Bragg grat-

ing strain sensors and excited with white noise excitation. Several damage cases were

considered with impact damage of various energies. They found that the two measures

were able to detect damage-induced non-linearities independent of a baseline, confirming

the information theoretic measures as absolute measures of non-linearity.

Overbey and Todd (2009) utilize the time-delayed transfer entropy to characterize

damage analytically and experimentally in a frame structure. They found that damage

detection is possible under low input signal to noise ratio (SNR) but not possible with

output SNR under 30 dB. This behavior was observed in simulation and experiment.

Further experiments showed that preload loss in bolted connections was detected when

the output SNR was 60 dB.

2.4 Limitations of Current Substructure Identification

This section will describe several limitations of current research in substructure identifica-

tion. While this analysis is directed towards substructure identification (as is the focus of

this study), many of the criticisms will be valid for SHM research as well.

The fundamental question that all SHM researchers should be asking is: To what

extent does structural damage cause a detectable change in identified features? This

question directs attention to several areas which will be discussed herein. First, how can
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common structural damage scenarios be modeled and detected? Second, do higher-order

dynamics, present in physical systems, contribute to identification error? Third, what

are the prerequisites for identifying features; specifically, what levels of excitation and

response are required? Finally, what methods are in place for quantifying uncertainty and

predicting statistically confident damage prediction in the presence of perturbing effects?

Damage is a complex process and affects structures on many different scales. At the

primary level, damage is initiated by cracks and material imperfections in structural

components. As the damage progresses, the component properties are degraded, which

can ultimately cause system-level changes. Absent an atomistic model, each identification

program is an approximation of a physical system. Therefore, successful identification

models will contain features that are susceptible to the component and system level

changes that real damage causes. Specific investigation of the effect of degraded sections,

cracked joints and others is necessary to determine if damage makes discernible changes

in the identified features.

A properly identified system that successfully approximates system dynamics to a

given precision may be incapable of identifying certain types of damage. For example,

a structure that admits a vibration node at the third floor will not detect damage there

by tracking modal properties. Successful SHM researchers will do well to move from a

system identification-centric mindset to one that approaches damage detection from a

feature-extraction perspective.

In the realm of substructure identification, many researchers are concerned with iden-

tifying the totality of the structure at the price of detecting damage features. This misses

a significant advantage of substructure identification that substructure identification is
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capable of identifying a component in isolation of the rest of the structure. Furthermore, it

is possible to find that a feature that may not represent the “true” structural parameter but

remains sensitive to damage. In other words, an identified feature that has a consistent

bias error with low error variance is preferable to one that has no bias but larger variance.

In either case, it is important that the identified feature change in a statistically significant

way for considered damage scenarios.

In addition to considering how damage creates detectable changes in identified fea-

tures, it is necessary to quantify how higher-order and unmodeled dynamics effect identi-

fication. Many researchers use the same ROM to generate simulation data and to perform

identification (this author included), which is not ideal and can often obscure shortcomings

of a particular method. It is precisely because this practice creates a one-to-one inverse

problem that it should be avoided.

Specifically within substructure identification, it is important to separate an analysis

model from the simulation model. This is accomplished by using a higher-order model to

generate data and then performing substructure analysis using a lower-order model. In

addition, this can be accomplished in the laboratory using a physical model that is not

unduly restrained to the dynamics of the analysis model.

Another important consideration is how physical limitations and other implementation

issues affect the assumptions prerequisite to an identification model. For instance, many

researchers consider a structure that is subject to ambient vibrations but then allow their

simulations to use high SNRs, stationary noise, and zero unmodeled disturbances. In

a more extreme example, some researchers assume noise-free full-state measurement.
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These assumptions can easily violate physical realities, even with generous measurement

conditions.

To this end, substructure identification can overcome unmodeled disturbances by

considering a small area for analysis. In such a case, disturbances outside the analysis

area will not directly effect identification. However, it is still necessary to ask important

questions about the excitation including: What minimum levels are required to generate

measurable response and how much noise is likely to be present?

The final consideration, and arguably the most important for damage detection, is the

level of statistical confidence in identified features. Many researchers neglect to present a

statistical test for determining the confidence of identified features. This test is necessary

to create a hypothesis testing framework to offer a damage diagnosis. Furthermore, it is

necessary to analyze the performance of the hypothesis test through a range of normal

operating conditions and damage scenarios to determine the level of Type I and II error1

for a given identification regime.

Substructure identification’s damage detection performance is characterized by intro-

ducing damage to a substructure and then identifying both that substructure and adjacent

undamaged substructures. By comparing these results to an undamaged baseline, it is

possible to evaluate if statistically significant damage has been detected and localized

correctly.

In conclusion, substructure identification, as currently studied, needs to move away

from a system identification paradigm and approach damage detection as a statistical

1Type I and II errors are colloquially known as false positives and false negatives, respectively.
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hypothesis test. This will enable consideration of a variety of implementation issues that

will speed the adoption of important SHM methods.
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Chapter 3

Testbed Structure

This chapter describes a testbed structure that will be used throughout this document in

various simulations. A uniform testbed allows for consistent demonstration of different

techniques and a controlled comparison of different methods. Moreover, the focus of later

sections will not be interrupted with a description of the testbed structure.1

During the first reading of this chapter, it may not be clear why certain details are

included. Many of the details are specified as a result of previous studies or motivated

by theoretical and numerical results. It is the author’s hope that any unclear description

here will be ameliorated by further discussion in later chapters. When possible, specific

references will be made to cross-reference default parameters in this chapter with their

corresponding theoretical development and numerical use in later chapters.

In Section 3.1, the testbed structure will be introduced and parameter uncertainty

will be analyzed. Modal properties will be computed. The structure will be subject

to base excitation and the input signal will be characterized. Finally, the numerical

implementation is described.

1Other simulations and experimental structures will be considered in later chapters.
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In Section 3.2, the response measurements will be detailed. In this study, acceleration is

the only measured response; its characteristics will be described. Practical implementation

issues, including signal to noise ratio (SNR), are explained.

Finally, Section 3.3 concludes with a list of simulation parameters that govern signal

processing. This section contains default values and a description for each.

3.1 Structure

The testbed structure is a uniform chain structure with linear stiffness and damping and

discrete lumped mass. This model is commonly chosen for structural analysis for its

simplicity and general applicability. Moreover, it is often used to analyze civil structures

that behave as a shear building. A schematic is shown in Figure 3.1.

In this study, the stiffness and damping parameters are introduced as mass-normalized

quantities and chosen such that the natural frequencies and damping ratios are within

the range of common civil structures. The story-level normalized stiffness parameter

is 1833 s−2 and the normalized damping parameter is 8.53 s−1, corresponding to an

interstory natural frequency of 6.81 Hz and damping ratio of 10%. The selected damping

is toward the higher end of the range of commonly encountered damping ratios for civil

structures because better numerical performance is found in simulation. The normalized

mass parameter is unity. Using these parameters, the first five natural frequencies and

mode shapes are shown in Figure 3.2.

The excitation is taken as ground motion and is modeled as filtered white noise. The

particular filter used is a 5th order low-pass butterworth filter with a 20 Hz cutoff frequency.

For each simulation, 10 minutes of a filtered white noise time history is used as the input
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Figure 3.1: Testbed structure showing the lumped mass model with identified floor
highlighted.

signal to a state-space model of the structure; the acceleration response is found using

the MATLAB command lsim. When only a particular substructure is being identified, the

output is restricted to those adjacent floor-levels to provide extra computational efficiency.

For each simulation, the true structural parameters are used to generate the time

histories. The only exception is when a particular damage case is being simulated, in

which case the damaged parameters are used to generate the time history. During analysis,

an a priori guess of the parameters is used to start deterministic optimization. In this case,

uncertainty is included by assuming a uniform random variable, with a 2% bias error and

a 10% range, for the stiffness of the story being identified. By including a bias in the initial

guess, it is easy to determine if the optimizer is simply converging to the initial conditions.
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Figure 3.2: The first five natural frequencies [Hz] with modal damping ratios [%] and
mode shapes for the testbed structure.

Likewise, the stiffness and damping parameters of the story above the identified story

(needed for identifying a particular story) are modeled as Gaussian random variables

with zero mean error and 5% coefficient of variation. In the first case, the uncertainty is

included by sampling from these distributions for each simulation.

As shown in Figure 3.1, the third floor is the one to be identified, which will be taken

as the primary testbed. This story is chosen because it has middling performance in

substructure identification and is not one of the boundary cases. This provides a good

approximation of the performance when only one floor will be simulated. The substructure

is shown by itself in Figure 3.3, which illustrates that only three measured responses are

needed for analysis.
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Figure 3.3: Substructure with labeled parameters and acceleration response.

3.2 Response

The measured response is the floor-level horizontal absolute acceleration as provided by

accelerometers. To simulate limitations encountered in the field, the acceleration response

is polluted with additive white noise. The level of noise added is given by the signal

to noise ratio (SNR), which is the ratio of the noise-free signal magnitude to the noise

magnitude. In this study, SNR is defined in terms of the standard deviation of the signals,

SNR =
σu

σn
(3.1)

where σu is the standard deviation of the noise-free signal u and σn is the standard

deviation of the noise n such that the measured signal is û = u + n. SNR is often described

in decibels, defined herein as 20 log10 σu/σn.
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For each simulation, the acceleration response is generated as described previously

and then polluted with additive white noise generated from a sampled Gaussian distribu-

tion and scaled to achieve the appropriate SNR. The same SNR is used for all measured

responses in a simulation. Different absolute noise magnitude is used on different re-

sponses due to the differing levels of response magnitude throughout the structure. This

assumption changes slightly in Chapter 7; details are described there.

In this study, the default SNR is 30 dB which is roughly equivalent to noise magnitude

that is 3% of the signal’s magnitude. This value is selected to match published noise

levels of commonly used wireless sensor platforms (Rice, 2010) and assumes that the

base excitation has a peak ground acceleration (PGA) of approximately 0.1 m/s2. This

excitation can be provided by ambient sources or supplemented with a small mechanical

shaker installed at the ground level.

3.3 Signal Processing

Prior to analysis, the simulated response signals need to be processed. This step relies on

several different parameters governed by the selected data processing procedure. Specific

techniques are described in Section 4.3.2; the parameters are listed here.

• Frequency Range (0.8ω0,i to 1.2ω0,i):

The frequency range determines which frequency values will be used for nonlinear

regression. The range is selected so that there is sufficient magnitude in the response

of the model function HMOD and is limited so as to not include spurious noise at

frequencies of low response. The default value is 0.8–1.2 of the substructure natural
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frequency, ω0,i =
√

ki/mi. The number of frequency points in this range is called

the statistical degrees of freedom.

• Number of Ensemble Records (M = 42):

The number of ensemble records is dictated by the time duration, NFFT, signal

overlap, and sample rate. A large number of ensemble records ensures that the FRF

estimate converges.

• NFFT (NFFT=212):

The number of points used in the discrete Fourier transform (DFT), along with the

sample rate, determines the frequency resolution of the estimated FRFs. A power of

2 is used to achieve the computational performance gain while using the fast Fourier

transform (FFT) algorithm.

• Sample Rate (1/Ts=100 Hz):

The sample rate is the frequency at which data points are collected in the time

history. 100 Hz is chosen to conservatively keep the entire frequency bandwidth of

the structure below the Nyquist frequency.

• SNR (30 dB):

The SNR is defined in Section 3.2.

• Signal Overlap (ρ=67%):

The signal overlap is the fraction of overlap of time domain data between neighbor-

ing ensembles. Antoni and Schoukens (2007) provide the optimal selection of signal

overlap.
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• Statistical Degrees of Freedom (N = 112):

The statistical degrees of freedom are determined by the frequency range and NFFT.

The default value is 112, which is the number of different points considered in

each regression. A large number of points ensures convergence and provides for

decreased statistical curvature.

• Time Duration (10 minutes):

The time duration determines how much data is collected for each simulation.

Combined with the sample rate, this specification dictates that 60,000 data points

will be generated for each time history.

• Window Function (w(t) = sin(πt/NFFTTs)):

The half-range sine function is used to window signals while constructing an en-

semble. Antoni and Schoukens (2007) provide the optimal selection of window

function.

3.4 Monte Carlo Simulation

This study uses Monte Carlo simulation (MCS) to develop statistically significant identifi-

cation performance statistics. Unfortunately, the distribution of the identified parameter

(in this study, the story stiffness) is not known a priori. Therefore, it is necessary to perform

many independent identification experiments to determine the performance. In this study,

10,000 independent experiments will be used to determine the distribution and statistics

of the identified parameters. This section will describe the confidence levels that can be

ascribed to statistics associated with the simulation.
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Figure 3.4: Identified stiffness parameter distribution shown as a histogram and QQ-plot
for 10,000 samples. The identified parameter is the third story stiffness of the testbed
structure and is normalized by the true value.

After performing 10,000 independent identification experiments, the distribution of

the identified parameter is shown in Figure 3.4. By inspection, it is clear that the identified

parameter assumes a Gaussian distribution. This is confirmed by the Lilliefors test which

accepts the null hypothesis that the distribution is Gaussian (Lilliefors, 1967).

Now that the identified parameter distribution is confirmed to be Gaussian, confidence

intervals of the sample mean and variance can be developed. For a Gaussian random

variable with unknown mean and variance, the sample mean is an unbiased estimator of

the mean and the sample distribution is given by Student’s T distribution (Leon-Garcia,

2007). The confidence interval of the sample mean Xn is,

CIα(Xn) :=
[

Xn − tα/2,n−1σ̂n/
√

n, Xn + tα/2,n−1σ̂n/
√

n
]
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where α is the confidence level, σ̂n is the sample standard deviation, and n is the number

of independent experiments. In this study, the sample mean confidence interval was

routinely below a hundreth of one percent of the estimated sample mean.

The sample variance distribution σ̂2
n of a Gaussian random variable of unknown mean

and variance is a χ2 random variable (Leon-Garcia, 2007). The confidence interval is,

CIα(σ̂
2
n) :=

[

(n − 1)σ̂2
n

χ2
α/2,n−1

,
(n − 1)σ̂2

n

χ2
1−α/2,n−1

]

In this study, the sample variance confidence interval was routinely less than 3% of the

estimated sample variance. This implies that the sample standard deviation confidence

interval will be below 1.5% of the estimated sample standard deviation.

By using a large number of independent identification experiments, statistical signfi-

cant results are found for the mean and variance of each identified parameter.
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Part I

Theoretical Developments
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Chapter 4

Substructure Identification Estimator

This chapter describes the development of a substructure identification estimator. The esti-

mator contains two components, a model function and a function of estimated quantities.

The first section will describe the development of these two functions. The second section

will describe various nonlinear function estimation procedures to estimate the first two

statistical moments of the function of estimated quantities. The third section will demon-

strate how substructure identification can be used for decentralized processing within a

network of smart sensors. The final section will develop an error prediction function to

predict which structure–substructure combinations will admit higher identification error.

4.1 Estimator Formulation

This section describes the formulation of a substructure identification estimator. The

estimator is characterized by a model function and a function of estimated quantities

that map the identification parameters and estimated quantities, respectively. These

two functions are selected based on the reduced order model (ROM) and equation of

motion (EOM) that govern the structure’s dynamics. The substructure estimator is not
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uniquely defined and can be formed in different configurations. This section will describe

how a substructure estimator is derived and give an example for the shear building

testbed.

First, ROMs are discussed including three different ways to form a ROM for a given

structure. Second, the model function is introduced and a selection for the testbed problem

is provided. Third, the EOM is presented within the context of a ROM. Fourth, the

substructure estimator is formed for the shear building testbed. Finally, a discussion of

the various properties of substructure identification estimators is provided.

4.1.1 Reduced Order Model

Substructure identification relies on a reduced order model (ROM) describing a portion

of a structural system. If the structure is continuous, the ROM can be considered as a

coarse finite element model. For a discrete structure, the ROM is simply the elements

of a portion of the structure. Once the ROM is developed, substructure identification

works by isolating a portion of the structure to identify the stiffness of that substructure.

This stiffness value is then used to infer damage in a long term monitoring program or

post-event evaluation.

There are three basic methods to form a ROM and the accompanying substructure

representation: component mode synthesis (CMS), static condensation, or a direct finite

element model. These three methods create a ROM representation of the structure that

characterizes the dynamics of the structure and then, define the behavior of each DOF in

terms of a small set of adjacent DOFs. These methods can often result in the same ROM

and should be chosen by the analyst to simplify the procedure.
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The first method discussed is CMS. Much of what guides substructure identification

was developed by early pioneers in CMS who developed techniques to model a portion of

the structure independent of the global structure. Craig and Bampton (1968) introduced a

refinement of CMS that allows the analyst to describe a substructure in terms of its normal

modes and constraint modes (formed by its connectivity to the rest of the structure). Their

analysis computed the modes of the substructure and then reduced the order of these

modes to form reduced-order stiffness and mass matrices. The reduced order matrices

were re-combined to form global stiffness and mass matrices. They found that the global

modes computed from the ROM had excellent agreement with the full-order structural

model. This method can be used to compute a reduced set of substructure modes that

can be identified using only the internal and interface DOFs. The identified modes can be

tracked for damage detection or monitoring. Moreover, the results of Craig and Bampton

(1968) show that, when taken as a whole, the ROM is an adequate representation of the

global dynamics of the structure.

The second method discussed herein is static condensation (Chopra, 2001). Static

condensation works by removing mass-less DOFs from the model. This is accomplished

by partitioning the mass and stiffness matrices and then solving for the mass-less DOFs

in terms of the DOFs with mass. These are then combined to form a new reduced

stiffness matrix. Structural models rarely contain mass-less DOFs, which means that the

static condensation process needs to be started by first removing the mass from a set of

DOFs. This is accomplished using engineering judgment to lump the mass from adjacent

DOFs into one resultant DOF. Using the ROM generated from static condensation for
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substructure identification is straight-forward as each mass-containing DOF can be treated

as an independent substructure.

The final method, herein, is using a coarse finite element model to describe the struc-

ture. This method works well on continuous structures such as plates and beams because

it simply forms a finite element model with a small number of elements rather than a large

set. The same stiffness relationships are used to describe the connectivity; a single node

can be analyzed as a substructure.

As stated previously, these methods do not need to be used in exclusion to one

another and often give the same results. CMS is best suited to complicated structures

with non-uniform structural components whereas static condensation and coarse finite

element models are best suited for regular structures with uniform structural components.

Regardless of the method used, the primary importance is to generate a low order model

that can be broken up into substructures.

4.1.2 Model Function

The model function, HMOD, is a reduced order representation of the local behavior of

the substructure. As such, the model function is dependent on the ROM selected for the

identified structure. The only requirement for HMOD is that it contains the identification

parameter(s), which is often taken to be the substructure stiffness (including in this study).

However, this not a unique selection and could just as easily be a natural frequency

or non-physical parameter. The model function choice will dictate what identification

parameter is used for damage detection.
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A natural choice for HMOD is a SDOF oscillator with unknown parameters because

it simplifies and removes unwanted dynamics. This is not a unique selection but it has

been found to have significant benefit when compared to other model functions. For

instance, an estimator linear in its parameters is possible but not advantageous because it

is an unstable system which amplifies noise effects. Thus, it is beneficial to select a model

function that will reduce the order but maximize response for greater detectability.

For the shear building testbed, HMOD is a SDOF oscillator with acceleration output

given by the transfer function,

HMOD(s) =
1

1 + ci
mis

+ ki

mis2

(4.1)

This model function contains the story-level stiffness ki, which will be used for damage

detection. The story-level damping parameter ci is also identified though it will not

be used for damage detection and is treated as a nuisance regression parameter. The

story-level mass mi is assumed to be known a priori, though the identification could be

performed by identifying mass normalized stiffness and damping parameters.

4.1.3 Equation of Motion

The next step in forming an estimator for substructure identification is to find an EOM.

The EOM can be found using either Newton’s 2nd law or Lagrangian mechanics. All that

is necessary is the connectivity of the adjacent DOFs. For simple structures with obvious

discretizations, Newtonian mechanics is a natural choice. However, for more complicated

structures, Lagrangian mechanics can ease analysis.
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It is assumed that each discrete mass is connected by linear stiffness and linear viscous

damping between adjacent DOFs. A linear model is an approximation of the structure.

It is reasonable because SHM often relies on the low levels of ambient excitation that

generate a linear response in most civil structures. Furthermore, nonlinear damage often

results in linear stiffness loss such as a plastic hinge decreasing the lateral stiffness of the

frame.

The EOM of the ith floor of a shear building is,

mi ẍi + ci(ẋi − ẋi−1) + ki(xi − xi−1) + ci+1(ẋi − ẋi+1) + ki+1(xi − xi+1) = 0 (4.2)

where xi is the displacement of the floor level with respect to an inertial reference frame

and over-dots represent the velocity and acceleration, ẋi and ẍi, respectively. In (4.2), there

are story level parameters from the story to be identified (mi, ci, and ki) and previous story

parameters (ci+1 and ki+1).

4.1.4 Shear Building Substructure Estimator

Once the model function is selected, it is necessary to manipulate the EOM to generate an

equation that contains the model function. To do this, take the Laplace transform of the

EOM and then algebraically manipulate the transformed equation to isolate the chosen

model on one side of the equation.
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With the shear building model function in mind (4.1), start by taking the Laplace

transform of (4.2). Initial conditions can be neglected because signal processing will use a

tapered window function. The resulting equation is:

miẌi(s) + ci(Ẋi(s)− Ẋi−1(s)) + ki(Xi(s)− Xi−1(s))

+ ci+1(Ẋi(s)− Ẋi+1(s)) + ki+1(Xi(s)− Xi+1(s)) = 0 (4.3)

where Xi(s) is the Laplace transform of xi(t). Re-write the displacement and velocity in

terms of the acceleration and add −miẌi−1(s) to both sides of (4.3). Further algebraic

manipulation results in:

1

1 + ci
mis

+ ki

mis2

=
Ẍi(s)− Ẍi−1(s)

−Ẍi−1(s) + (Ẍi+1(s)− Ẍi(s))
(

ci+1

mis
+ ki+1

mis2

) (4.4)

The final step is to rewrite the Laplace transform of the response variables in terms

of their transfer functions. In this example, ground motion üg is taken as the excitation

(though the excitation could take other forms). As long as the excitation is not directly

applied to the substructure being identified, the analysis will simplify as follows in Section

4.3.1.

The Laplace transform of the absolute acceleration response at the ith floor level relative

to the ground is given by transfer function Hẍi ,üg(s). Thus, (4.4) becomes:

1

1 + ci
mis

+ ki

mis2

=
Hẍi ,üg(s)− Hẍi−1,üg(s)

−Hẍi−1,üg(s) + (Hẍi+1,üg(s)− Hẍi ,üg(s))
(

ci+1

mis
+ ki+1

mis2

) (4.5)
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By examining (4.5), a substructure identification estimator has been successfully con-

structed. On the left side is the model function HMOD(s); on the right side is a function

that maps the measured response and a priori parameters. This function will be denoted

the function of estimated quantities, HEST(s).

4.1.5 Discussion

The two components of a substructure identification estimator are a model function

HMOD and a function of estimated quantities HEST. These functions map the identification

parameters and the estimated quantities (measured responses and a priori parameters),

respectively. The functions describing a substructure identification estimator are based

on the selected ROM of the structure but are not uniquely determined. Therefore, it is

necessary for the analyst to use judgment to determine the best estimator for a given

application.

A useful property of the substructure identification estimator is that it simplifies

higher order dynamics of the structure. By selecting a SDOF oscillator to describe the

local behavior, the complicated dynamics of the response can be simplified to that of a

SDOF system. This is visually demonstrated in Figure 4.1, which shows the inherent

simplification of substructure identification within the testbed problem.

A second useful property of a properly constructed substructure identification estima-

tor is that it results in a decentralized algorithm. A decentralized algorithm is an estimator

that relies only on local response measurements. The substructure estimator given in

(4.4) requires acceleration measurements from the story at, below, and above the story to
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Hẍi−1üg
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Markers are shown in the frequency range where substructure identification takes place.
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be identified. This enables implementation in a decentralized network of smart sensors

which will be described in Section 4.3.

Finally, substructure identification can provide a means to identify the full structure.

If the structure has minimal connectivity between DOFs (i.e., a chain structure), then

each stiffness element of the structure can be identified using the previous element’s

stiffness to determine HEST. For a shear building, the top story is identified using the

free surface boundary condition and then, each story is identified using the previous

story’s identified stiffness and damping parameters. In such a way, the entire structure is

identified consistent with the ROM.

4.2 Nonlinear Function Estimation

Before the derived substructure identification estimator can be used in nonlinear regres-

sion, the observed data vector must be estimated using HEST as defined in (4.5). HEST

is a nonlinear function of the transfer functions of the responses and the previous story

parameters. In practice, the computation will use estimates of the FRFs and previous story

parameters, which are themselves random variables. Thus, the observed data vector will

be an estimate of a nonlinear function of random variables provided by HEST.

This section will describe three techniques to find the observed data vector estimate:

linear approximation, the unscented transformation, and Monte Carlo simulation. The

section first describes the input random variables and their statistical properties. Then,

each method of nonlinear function estimation is presented. Finally, the three methods are

compared and a discussion of best practice is provided.

46



4.2.1 Input Random Variables

The input random variables are the FRFs and previous story parameters used in HEST.

The individual input random variables can be represented together in vector notation as

z = [Hẍi−1,üg , Hẍi ,üg , Hẍi+1,üg , ki+1, ci+1]
T. This section describes the statistical properties

of z.

The FRFs in z are estimated using Welch’s method as described in Section 4.3.2. As

a result of using Welch’s method, the FRF estimates are random variables distributed as

circularly symmetric Gaussian random variables at a particular frequency value (Pintelon

and Schoukens, 2001). Likewise, the estimates of the previous story parameters are

assumed to be Gaussian random variables so that z(jω) is a Gaussian random vector at a

particular frequency value ω. The input random variable is a Gaussian random vector

at each frequency value with mean and covariance given by µz(jω) and Kz(jω). Each

random variable of the input random vector is statistically independent so that Kz(jω) is

diagonal.

4.2.2 Linear Approximation

To find the linear approximation for HEST(z), represent the function as a Taylor series

around its expected value µz. This series can be truncated to present an approximation of
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the original function. In this study, a first order approximation is applied by neglecting

the terms of the Taylor series of second and higher order. Thus, HEST(z) becomes

HEST(z) =
∞

∑
i=0

1

i!

∂i HEST(z)

∂zi

∣

∣

∣

z=µz

(z − µz)
i

≈ HEST(µz) +
∂HEST(z)

∂z

∣

∣

∣

z=µz

(z − µz)

≈ HEST(µz) + hH

EST(z − µz)

(4.6)

where hH

EST is the Jacobian evaluated at z = µz, of HEST(z) with respect to z. Note that the

notation of (4.6) implies tensor multiplication for higher order terms.

The first and second statistical moments of (4.6) can be approximated as:

E [HEST(z)] ≈ E

[

HEST(µz) + hH

EST(z − µz)
]

≈ HEST(µz)

(4.7)

E
[

(HEST(z)− E [HEST(z)])
2
]

≈ E

[

(

HEST(µz) + hH

EST(z − µz)− HEST(µz)
)2

]

≈ E

[

hH

EST(z − µz)(z − µz)
H

hEST

]

≈ hH

ESTKzhEST

(4.8)

where Kz = E

[

(z − µz)(z − µz)
H
]

is the covariance matrix of the input random variables

and (·)H denotes the complex conjugate transpose. Using (4.7) and (4.8), the mean and

covariance of HEST is found. The performance of this method is discussed in Section 4.2.5.
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4.2.3 Unscented Transformation

The unscented transformation (UT) is used as a sub-optimal estimator of a nonlinear

function of random variables. It was originally developed by Julier and Uhlmann (2004)

to linearize Kalman filter equations for nonlinear systems. They describe the underlying

assumption of the UT as:

The UT is founded on the intuition that it is easier to approximate a proba-
bility distribution than it is to approximate an arbitrary nonlinear function or
transformation.

They continue by describing a transformation that propagates a set of sigma points

through the nonlinear function. Then the statistics of the output distribution is estimated

as a weighted combination of these sigma points. The process is described (Julier and

Uhlmann, 2004) as:

1. Form a set of sigma points that capture the first two statistical moments of the input

random variables.

2. Instantiate each point through the nonlinear function to yield the set of transformed

sigma points.

3. The mean of the output is computed as the weighted average of the transformed

points.

4. The covariance of the output is computed as the weighted outer product of the

transformed points.

In addition to nonlinear Kalman filtering, Julier and Uhlmann (2004) show that the UT is

well-suited to the radar tracking problem of polar to Cartesian coordinate conversion.
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Herein, the UT is used to compute the statistics of HEST using guidelines developed in

Merwe (2004) for implementation. The performance of this method is discussed below.

4.2.4 Monte Carlo Simulation

Monte Carlo simulation (MCS) is used to compare the performance of nonlinear function

estimation. This procedure works by generating realizations of the input random vector z

and then computing the observed data vector directly using HEST. Then, the computed

points are used directly to compute the first two statistical moments of the output E [HEST]

and E
[

(HEST − E [HEST])
2
]

.

4.2.5 Comparison

The statistics of the nonlinear function computed using linear approximation and UT are

compared with those computed from MCS. The linear approximation is computed using

both a theoretical and numerical Jacobian. The first and second statistical moments of

HEST computed with these methods are compared graphically in Figure 4.2 where HEST is

estimated and the predicted covariance ellipses are shown for each method.

It is clearly demonstrated that the linear approximation methods and UT have strong

agreement in their predicted mean and covariance. The mean value forms the estimate

of ĤEST and shows strong agreement with MCS and the true value. Unfortunately, the

estimated covariance is an order of magnitude larger that the covariance computed using

Monte Carlo methods. By using a large number of Monte Carlo samples (106), statistically

significant differences are found. Moreover, MCS is able to better reconstruct the output

distribution and should be treated as closely resembling the actual distribution. This result
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is confirmed in Section 5.2.2 where the over-predicted covariance results in meaningless

confidence regions in spite of accurate estimates.

This result demonstrates that the distribution of HEST, the nonlinear function of es-

timated quantities, is not easily estimated and likely non-Gaussian. Both the linear

approximation and the UT are unable to construct meaningful estimates of the covari-

ance. Therefore, it is necessary to use regression techniques that do not require second

moment information or use a priori information about the estimates covariance. This will

be discussed further in Chapter 5.

4.3 Decentralized Processing

The substructure identification method is ideal for implementation in a decentralized

system. The algorithm itself relies on measured time histories from adjacent floor levels.

This trait can be exploited for implementation within a network of wireless smart sensors.

This section will describe some of the benefits of decentralized processing. First, the

decentralized substructure identification estimator is derived. Next, FRF estimation is

described. Then, two possible network topologies are described. Finally, the potential for

data reduction is quantified.

4.3.1 Decentralized Substructure Estimator

As derived, the substructure identification estimator relies on deterministic transfer func-

tions from excitation input to floor-level acceleration response Hẍi ,üg(s). This information

relies on measured input signals that may be difficult to achieve in practice. For the

testbed structure, this is achievable by measuring the ground motion but this precludes
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decentralized identification. However, the substructure estimator can be modified to

be written in terms of FRFs between adjacent floor levels. This quantity can be easily

estimated with the measured acceleration response from nearby floor-levels.

The first step is to rewrite (4.5) in terms of the FRFs by evaluating the transfer func-

tion along the imaginary axis, Hẍi ,üg(s)|s=jω = Hẍi ,üg(jω). Then, using the relationship

Hẍi ,ẍi−1
(jω) = Hẍi ,üg(jω)/Hẍi−1,üg(jω), rewrite (4.5) in terms of the interstory FRFs. Note

that, by choosing which floor level is the input, (4.5) can be written in different ways. For

a chain structure, the three ways are:

H
(ẍi−1)
EST (Hẍi ,ẍi−1

, Hẍi+1,ẍi−1
, ki+1, ci+1, ω) =

1 − Hẍi ,ẍi−1

1 + (Hẍi+1,ẍi−1
− Hẍi ,ẍi−1

)
(

jci+1

miω
+ ki+1

miω2

) (4.9a)

H
(ẍi)
EST(Hẍi−1,ẍi

, Hẍi+1,ẍi
, ki+1, ci+1, ω) =

Hẍi−1,ẍi
− 1

Hẍi−1,ẍi
+ (Hẍi+1,ẍi

− 1)
(

jci+1

miω
+ ki+1

miω2

) (4.9b)

H
(ẍi+1)
EST (Hẍi−1,ẍi+1

, Hẍi ,ẍi+1
, ki+1, ci+1, ω) =

Hẍi−1,ẍi+1
− Hẍi ,ẍi+1

Hẍi−1,ẍi+1
+ (1 − Hẍi ,ẍi+1

)
(

jci+1

miω
+ ki+1

miω2

) (4.9c)

where H
(ẍi)
EST is HEST with the ith floor chosen as the input.

By formulating the FRF substructure estimator in three separate ways, the estimator

can be implemented to use the most accurate formulation at each frequency value. This

is implemented by selecting the signal with the highest power at a particular frequency,

which corresponds to higher SNR resulting in improved estimator performance.

4.3.2 Frequency Response Function Estimation

A wide body of signal processing literature is available and will be used to find optimal

signal processing techniques to characterize the FRF estimate. SHM is a challenging
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signal processing environment that lacks many of the ideal conditions found in the

laboratory. Among the challenges are low SNR and random excitation sources with

poor statistical properties including non-Gaussian signals, non-stationary signals, and

others. To overcome these difficulties, long time records are collected and combined using

ensemble averaging. For FRF estimation, this process, called Welch’s method (Welch,

1967), is performed by splitting the input and output signals into ensembles of equal

length sections, multiplying each section by a window function, taking the DFT, and then,

combining the DFTs in the frequency domain. To estimate Ĥẍi ,ẍi−1
(jω), the FRF from ẍi−1

to ẍi, the following steps are performed (Pintelon and Schoukens, 2001):

1. Section the signals into an ensemble of equal length sections.

˜̈x
(m)
i (t) =























ẍi(t + m(1 − ρ)T), 0 ≤ t ≤ T

0, otherwise

(4.10)

where T equals the section time length, ρ is the overlap, and m equals the ensemble

record index.

2. Consider discrete time points and multiply each section by the window function.

ẍ
(m)
i [n] = w(nTs) ˜̈x

(m)
i (nTs) for n = 0, 1, 2, ..., NFFT − 1 (4.11)

where Ts is the sampling time, w(t) is the window function, and NFFT = T/Ts is the

number of samples in each section, which is also the number of DFT points used.
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3. Take the discrete Fourier transform of each ensemble record.

Ẍ
(m)
i [k] =

NFFT−1

∑
n=0

ẍ
(m)
i [n]e−j2πnk/NFFT for k = 0, 1, 2, ..., NFFT − 1 (4.12)

4. Combine the ensemble to form the FRF estimate.

Ĥẍi ,ẍi−1
(jωk) =

M

∑
m=1

(

Ẍ
(m)
i−1 [k]

)∗
Ẍ

(m)
i [k]

(

Ẍ
(m)
i−1 [k]

)∗
Ẍ

(m)
i−1 [k]

(4.13)

where (·)∗ denotes the complex conjugate and ωk = 2πk/NFFT.

Ĥẍi ,ẍi−1
(jωk) is a biased estimator of the FRF and as a result of the Central Limit Theo-

rem, is distributed as a circular symmetric complex Gaussian random variable when a

sufficiently large number of ensemble sections are used. Antoni and Schoukens (2007) per-

formed a detailed study to find the best performing window function for FRF estimation.

They found that a half-range sine window function with 67% overlap has the lowest bias

and error variance for FRF estimates using Welch’s method. Herein, these parameters are

used as best practice when computing FRF estimates.

In this study, methods of FRF estimation are implemented with custom MATLAB

functions using the fft command. This suite of functions outperforms the cpsd command

in computational speed by exploiting the limited frequency range of interest.

4.3.3 Network Topologies

Wireless smart sensors have the capability to revolutionize civil SHM. By removing the

cabling requirement, wireless sensors offer a flexible, economic solution to instrument a
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(a) Single Tier (b) Two Tier

Figure 4.3: Network topology showing typical sensor nodes in light blue and master
nodes in darker blue.

civil structure. Moreover, by including a processor on the sensor board, data processing

can be performed in a decentralized manner.

Substructure identification is ideally suited for a decentralized implementation in

a network of wireless smart sensors. This section will describe two possible network

topologies. In the following section, the potential data transmission reduction will be

computed for these two topologies. It is assumed herein that a network of wireless sensors

are available such that at least one sensor is installed per floor and acceleration is the

measured response.
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There are two types of network topologies considered: a fully decentralized network

and a two-tier network.

1. The fully decentralized network (single-tier) works by having each sensor commu-

nicate with its directly adjacent neighbors and performs substructure identification

locally. This means that the identification for a particular story is performed by the

sensor at that story using data from its adjacent neighbors.

2. A two-tier network topology is proposed. Each sensor node is equipped with a low-

power, short-range radio used to communicate with nearby nodes. Additionally, on

every third floor, the sensor node is replaced with a local master node that has a high-

power, long-range radio so that each of the local master nodes can communicate

with each other and the user. Alternatively, the network could be arranged so that

the local master nodes communicate via a multi-hop network path through the

various sensor nodes. See Lynch and Loh (2006) for a summary of the different

available network configurations and a discussion of their relative merits.

4.3.4 Data Reduction

In addition to decentralizing the analysis, the substructure identification method has great

potential for data reduction, which can provide dramatic power-saving to wireless smart

sensors. This is accomplished in two basic steps. First, each time history is transformed

to find its FFT, retaining only the points near the substructure’s natural frequency used

for nonlinear regression. Second, by using a two-tier network topology, repeated data

transfers are minimized and the total amount of data transmitted can be further reduced.
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The first step is performed at the local sensor node. The local sensor node performs

data acquisition, ensembling, windowing, and FFT computation. Then a reduced set of

FFT points are transmitted for each ensemble. By utilizing a two-tier network, repeated

data transfers are eliminated. The local master sensor node aggregates the FFT points,

uses them to estimate the relevant FRFs for each substructure, and computes the nonlinear

transformation for each substructure. Nonlinear regression is performed to estimate the

stiffness and damping parameters for each substructure. These estimates are transmitted

to the user who can perform a hypothesis test to determine if the structure is damaged at

a particular floor level.

Table 4.1 shows the amount of data reduction possible for the two network topologies.

The two-tier network requires only 37% of the total data transmission of the single tier

network topology. Moreover, when compared to a fully centralized algorithm that uses

the entire time history, the decentralized algorithm reduces the amount of transmitted

data by an order of magnitude and with zero fidelity loss.

By designating a local master node every third floor, the total amount of data trans-

ferred is reduced by a third. This is a result of adjacent floors requiring access to the

same time histories. If this arrangement is not ideal for a particular implementation, the

network can be setup as a single tier and the substructure identification is performed

locally at each node with zero performance loss and slightly more data transmitted.

In this study, the amount of data transmitted for each network topology is computed

using the standard signal processing parameters given in Chapter 3. As such, each sensor

will need to transmit 42 ensemble records with 112 FFT points to two different sensors.

Each FFT point is a complex number which is represented by two 16-bit floating point
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Table 4.1: Network transmission for various wireless smart sensor network topologies in
kilobytes (Tx=transmit, Rx=receive).

Data transfer [KB] per node
Sensor Node Local Master

Tx Rx Tx Rx Total Tx [KB]

Centralized Network 117.2 3515.6
Single-Tier Network 36.8 36.8 349.1
Two-Tier Network 36.8 73.5 220.5

numbers. For the centralized topology, the entire time history will be sent to a central

server, which means that 60,000 16-bit floating point numbers will be transmitted by each

sensor. Depending on the testbed, the amount of data transmitted by each sensor will

change but the relative transmission reduction will stay similar.

4.4 Estimator Error Prediction

This section describes an error prediction procedure to determine which structure–substructure

combinations result in increased identification error. Previous work by Zhang and Johnson

(2012a) show that decreased interstory acceleration response in a particular frequency

range predicts which stories result in increased identification error. Therefore, the proce-

dure is based on a weighted integral of the interstory response.

This study argues that the identification error of a substructure estimator is related to

the weighted integral of the numerator of HEST where the weight function is HMOD. For

the shear building estimator, the performance prediction function Pi is

Pi =
∫ ωu

ωl

∣

∣W(jω)
[

Hẍi ,üg(jω)− Hẍi+1,üg(jω)
]∣

∣ dω (4.14)
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Figure 4.4: Bar plot of various prediction functions for the testbed structure normalized
by the weight function.

where W(jω) = HMOD(jω); the limits of integration ωu and ωl are the end points of the

identification bandwidth as described in Section 3.3; and i is the story to be identified.

Zhang and Johnson (2012a) use a different performance function to characterize identi-

fication performance. The weighting function is a notch band-pass filter that selects the

substructure natural frequency ω0 =
√

ki/mi. Likewise, a unity weighting function can

be used instead of either of the two weighting functions.

The performance predictions are compared for each of these weighting functions in

Figure 4.4. It is clear that all three different weighting functions make the same predictions.

Specifically, the eighth story is predicted to have the greatest identification error because

it has the lowest interstory acceleration response.
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Chapter 5

Nonlinear Regression

The model function of the substructure estimator is a nonlinear function of the parameters

and is equivalent to the transfer function of a SDOF oscillator. To estimate the parameters,

nonlinear regression is performed. By assuming a standard regression structure, the

problem can be written as

yn = η(ωn, θ) + εn (5.1)

where the equation is indexed on n = 1, 2, . . . , N, the set of observations (the statistical

degrees of freedom). The error, εn, is a random variable that is a combination of the

measurement noise, FRF estimation error, and nonlinear function estimation error. It is

assumed that εn is adequately represented by a Gaussian random variable with equivalent

first and second statistical moments. θ is a Nθ × 1 vector containing the parameter values

to be identified, ωn is the frequency of observation n, η(ωn, θ) = HMOD(jωn) is the model

function, and yn = HEST(jωn) is the corresponding estimate of the nonlinear function of

estimated quantities.

By casting the regression problem in a general nonlinear regression form such as (5.1), a

wide body of statistical literature can be leveraged to find an efficient solution. This chapter,
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first describes the optimal estimate using least squares (LS) and maximum likelihood (ML)

estimation. Second, confidence regions are constructed using several different methods.

Third, statistical curvature is presented as a prediction of hypothesis testing performance.

Fourth, a LS error analysis is presented and compared with a previous error analysis.

5.1 Estimation

This section develops two techniques for optimal estimation, LS and ML estimation. LS

estimation finds an optimal estimate by minimizing the sum of the squares of residuals.

ML estimation finds the optimal estimate that maximizes the likelihood function. The

identification performance of these two methods is compared.

5.1.1 Least Squares Estimation

The least squares estimate (LSE) is given by minimizing the sum of the squares of residuals.

By assuming the errors are zero-mean, independent and identically distributed (i.i.d.)

as circularly symmetric complex Gaussian random variables, the LSE is a maximum

likelihood estimate (MLE) (Mendel, 1995). This assumption allows the complex valued

functions to be represented succinctly by the squared norm of the residual because the

real and imaginary components are independent and, thus, decomposed.

S(θ) =
N

∑
n=1

|η(ωn, θ)− yn|2 (5.2)

where the LSE is the value of θ that minimizes S(θ).
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Figure 5.1: Least square estimator surface for third-story parameter estimation in the
testbed structure.

There are many benefits of using LS. First, the particular distribution of the error

is not needed. Therefore, only the estimate of the nonlinear function is needed and as

such, the optimal estimate can be used yn = HEST(µz). Second, the LSE is unbiased

and efficient. Third, assuming a small set of parameter values close to the actual values,

LS optimization is convex. The estimator surface is shown in Figure 5.1 for the testbed

problem (i.e., estimating third-story parameters in the testbed structure).

LS has two major drawbacks. First, the assumption that errors εn are circular is

false because, at various frequency values, the correlation between real and imaginary

components is non-zero. Second, the assumption that errors are identically distributed is
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false because larger error variance is found at frequency values with comparatively higher

system response.

Another concern is the heteroskedasticity encountered during substructure identifica-

tion. This behavior is the result of the model function having higher system response near

the substructure natural frequency. This behavior is unavoidable and its implications will

be further discussed in Section 6.4.1.

5.1.2 Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) is found by maximizing the log-likelihood

function. This requires knowledge of the underlying probability distribution. It is assumed

herein, that the error is distributed as a complex Gaussian random variable or can be

approximated by the second-moment statistics equivalent to a complex Gaussian random

variable. This assumption is distinct from the assumptions required for LS because the

circular symmetry and identical distribution requirements are released. It is still assumed

that errors are independent from one frequency point to another, which is reasonable and

consistent with standard Fourier transform theory. Using these assumptions, the MLE is

found by minimizing the log-likelihood function.

L(θ) =
N

∑
n=1

[

(ℜ{η(ωn, θ)− yn}
σℜ

n

)2

− 2ρn

(ℜ{η(ωn, θ)− yn}
σℜ

n

)(ℑ{η(ωn, θ)− yn}
σℑ

n

)

+

(ℑ{η(ωn, θ)− yn}
σℑ

n

)2
]

(5.3)
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Figure 5.2: Maximum likelihood estimator surface for third-story parameter estimation in
the testbed structure.

Here σℜ
n and σℑ

n are the standard deviations of the error, at a particular frequency value ωn

in the real and imaginary directions, respectively. Likewise, ρn is the correlation coefficient

between the real and imaginary components of the error at ωn. η(ωn, θ) and yn are, as

previously defined.

The major benefit of the MLE over LSE is that it removes much of the observed het-

eroskedasticity by de-weighting at frequency values of high system response that are

found to have proportionally higher error variance. Additionally, ML estimation is theoret-

ically more sound in that correlation effects between the real and imaginary components
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are included. However, this was found to have minimal effect on the performance of the

estimators.

The major drawback is that the MLE requires second-moment statistics of the error

distribution, which cannot be computed directly using the optimal estimate of the nonlin-

ear function. Therefore, to use ML, it is necessary to use the sub-optimal estimate of the

nonlinear function or use a priori knowledge of error distribution.

5.1.3 Comparison

The two estimates are compared using the testbed structure. The the mean and standard

deviation of the identified stiffness is shown in Table 5.1. The MLE demonstrates slightly

decreased error variance and modest bias error in most stories. Both estimates admit

suitable performance.

While the LSE is susceptible to heteroskedasticity, the MLE is largely resistant because

the locations of high system response carry similarly high levels of variance, which are

used to de-weight that sample. This property is a suitable explanation for the decreased

error variance observed in the identification results.

5.2 Confidence Regions

The cornerstone of successful damage detection is uncertainty quantification. The most

user friendly description is through confidence regions that allow the user to specify a

desired level of confidence and determine if damage has occurred. A confidence region is

the set of parameter values that can be expected to contain the real parameter value to a
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Table 5.1: Substructure identification statistics of testbed structure for LS and ML estimates.

LSE MLE
Mean Std Mean Std

Story [%] [%] [%] [%]
1 −1.15 0.07 −1.36 0.06
2 −0.01 0.11 −0.02 0.08
3 −0.00 0.12 −0.03 0.11
4 −0.02 0.17 −0.05 0.14
5 −0.11 0.28 −0.08 0.19
6 −0.05 0.22 −0.03 0.19
7 −0.01 0.29 0.10 0.25
8 −0.41 0.80 −0.40 0.49
9 −0.16 0.32 −0.05 0.26
10 0.08 0.20 0.03 0.17

specific probability conditioned on the data observed. The confidence region is a function

of the data defined CRα := RN 7→ RNθ such that1

Pr {θ ∈ CRα(y)} = 1 − α (5.4)

where θ is the true parameter value; y is the observed data vector as defined in (5.1); and

α is the specified level of confidence.

A Nθ-dimensional confidence region can be projected onto a particular parameter’s

axis to generate a confidence interval. The interval (or set of intervals) is a function defined

CIl,α := RN 7→ R such that,

Pr {θl ∈ CIl,α(y)} = 1 − α (5.5)

1Here the confidence region is defined as real function while the model function and data vector are
complex-valued. Under the assumption that the real and imaginary components are independent, the
complex-valued vector CN is decomposed into a real-valued vector R2N . This assumption is met in this
study.
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where θl is the entry of θ that is being tested.

Once the confidence region for a particular realization is constructed, the analyst

can perform damage detection using substructure identification. If the nominal value

of the stiffness of a particular story is contained within the computed confidence region,

it is reasonable to conclude that the structure is undamaged at that story. This is imple-

mented within a hypothesis testing framework where the null hypothesis is taken as the

undamaged case.

The damage detection performance of a hypothesis test can be evaluated through MCS.

For each realization, the confidence region is computed and it is recorded whether the

nominal parameter is contained in the region. The statistical coverage is defined as the

percentage of realizations in which the null hypothesis (undamaged case) is returned. For

a properly constructed confidence region and an undamaged structure, it is expected that

the coverage should be 100(1 − α)%.

This section will describe two methods of creating confidence regions. The first

confidence region uses a linear approximation based on the LSE to construct elliptic

confidence regions. The second confidence region uses the likelihood function (5.3) to

construct the ML confidence region. The section concludes with a direct comparison of

the two methods evaluated by their observed coverage.

5.2.1 Linear Confidence Region

A linear confidence region is constructed using a linear approximation of the nonlinear

model function. This approximation is equivalent to assuming that the solution locus is

planar and that the coordinate grid is linear throughout the confidence region (Donaldson
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and Schnabel, 1987). Under these assumptions, the confidence region is an ellipse that is

defined,

CRα =
{

θ := (θ− θ̂)
T

V̂−1(θ− θ̂) ≤ Nθ F1−α/2
Nθ , N−Nθ

}

(5.6)

where θ̂ is the LSE; V̂ is the estimated error covariance matrix; and F1−α/2
Nθ , N−Nθ

is a specific

value of the Fisher distribution.

The only value in (5.6) that is not previously given is the estimated error covariance

matrix. This quantity can be computed using the linear approximation in two ways. The

first method of estimating V computes the error covariance matrix by using the Jacobian

of the model function; this is equivalent to using the expected Fisher Information matrix

E [FIM]. The second method uses the Hessian of the estimation functional (S(θ) for LSE

and L(θ) for MLE) with respect to the identified parameters and is equivalent to using the

observed Fisher Information matrix F̂IM (Donaldson and Schnabel, 1987). The equations

are shown below:

V̂e = σ̂2
(

JMOD(θ̂)J
H

MOD(θ̂)
)−1

= σ̂2 (E [FIM])−1 (5.7)

V̂o = σ̂2H(θ̂)
−1

= σ̂2
(

F̂IM
)−1

(5.8)

where JHMOD(θ̂) is the Jacobian of the model function η(θ) evaluated at θ = θ̂ (i.e.,

[J∗MOD](l,n) = ∂HMOD(jωn)/∂θl |θ=θ̂); H(θ̂) is the Hessian of S(θ̂) or L(θ) evaluated at

θ = θ̂; and σ̂2 is the residual variance σ̂2 = S(θ̂)/(N − Nθ).
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Using the estimated error variance V̂, a hypothesis test is constructed as,

H0 : (θ− θ̂)
T

V̂−1(θ− θ̂) ≤ Nθ F1−α/2
Nθ , N−Nθ

(undamaged)

H1 : (θ− θ̂)
T

V̂−1(θ− θ̂) > Nθ F1−α/2
Nθ , N−Nθ

(damaged)

(5.9)

where θ is the true parameter value and H0 is the null hypothesis that the identified

parameter θ indicates that the identified story is undamaged.

Since the linear confidence region is an ellipse, it is easy to construct a single confidence

interval for a given parameter entry. This confidence interval, based on Student’s T

distribution, assumes that the parameter is estimated from a series of normally distributed

data points. This value is multiplied by the standard deviation V̂l,l of the estimated

parameter θ̂l . The confidence interval is the set of points satisfying:

CIl,α =

{

θl :=
∣

∣θl − θ̂l

∣

∣ ≤
√

V̂l,lt
1−α/2
N

}

(5.10)

where θ̂l is the identified parameter; t1−α/2
N is the realization of Student’s T distribution;

and V̂l,l is the estimated error variance of the identified parameter.

As written, (5.10) provides a confidence interval for one of the identified parameters,

which can be repeated for every identified parameter of interest. This can be used in

a hypothesis testing framework to determine if a specific parameter is damaged. The

hypothesis test is defined,

H0 :
∣

∣θl − θ̂l

∣

∣ ≤
√

V̂l,lt
1−α/2
N (undamaged)

H1 :
∣

∣θl − θ̂l

∣

∣ >

√

V̂l,lt
1−α/2
N (damaged)

(5.11)
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where H0 is the null hypothesis that the identified parameter θl is undamaged.

In this section, the vector-based hypothesis test given by (5.9) will be used because it

offers a more direct comparison to the ML confidence region. However, in later chapters,

the hypothesis test given by (5.11) will be used to determine if the stiffness has changed.

This choice allows for a more direct detection of stiffness changes that forms the basis of

the damage detection framework.

This subsection concludes by noting that two different methods of estimating the error

covariance matrix are developed. These two methods use the same assumptions and data

to construct different estimates. When the model function is linear these two methods

simplify to the same linear solution. Moreover, Marsili-Libelli et al. (2003) used these two

methods as an outlier rejection mechanism when the two predicted error variances from

(5.7) and (5.8) were not similar. They found that they were able to reject estimates where

the deterministic optimizer did not converge to the correct value.

5.2.2 Maximum Likelihood Confidence Regions

The ML method sidesteps any direct estimate of variance and instead relies on a properly

specified log-likelihood function (5.3). Using this equation, contours of equal likelihood

can be constructed for various realizations of θ. Moreover, the various contours have

additional meaning because the likelihood function is stochastically weighted to reflect

the overall variance of the estimate. Therefore, the confidence region can be computed

to a specific confidence level by comparing the likelihood ratio to the F-distribution
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Table 5.2: Statistical coverage of identified story stiffness for various types of confidence
intervals with a 95% confidence level. Statistical coverage is the percentage of undamaged
hypothesis results.

LSE MLE
Story Ve Vo Vo ML

1 0.00 0.00 0.00 0.00
2 91.73 71.38 81.97 81.72
3 94.02 75.75 78.67 78.20
4 94.16 76.19 80.25 79.71
5 89.83 68.41 75.12 74.63
6 92.77 73.21 51.19 50.21
7 94.09 76.06 66.94 65.91
8 89.15 67.41 28.92 27.61
9 92.45 72.60 47.10 45.83
10 88.51 65.47 87.73 87.67

(Donaldson and Schnabel, 1987). The α confidence region for the identified parameter

vector θ̂ is defined as

CRα =
{

θ : L(θ̂)− L(θ) < σ̂2F1−α/2
Nθ , N−Nθ

}

(5.12)

This confidence region is non-elliptic and can be visualized as the level curve along the

likelihood surface. Therefore, it is computationally expensive to compute a particular

confidence region using the ML method. Fortunately, (5.12) can be used in a hypothesis

testing framework, which requires only two function evaluations of (5.3) and is very

computationally efficient. The hypothesis test is

H0 : L(θ̂)− L(θ) ≤ σ̂2F1−α/2
Nθ , N−Nθ

(undamaged)

H1 : L(θ̂)− L(θ) > σ̂2F1−α/2
Nθ , N−Nθ

(damaged)

(5.13)

where H0 is the null hypothesis that the identified parameter vector θ is undamaged.
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5.2.3 Comparison

The linear confidence region defined in (5.6) is compared to the ML confidence region

defined in (5.12). The linear confidence region is generated using two different estimates of

the error covariance matrix and the LSE. Likewise, the MLE is used for a linear confidence

region and the ML confidence region. The statistical coverage is computed for these

different combinations and are compared in Table 5.2.

The results show that the linear confidence interval computed using the expected

Fisher Information matrix (“LSE Ve”) outperforms the other methods with observed

coverage approaching the nominal value, 95%, at most stories. In all of the methods, the

first story is detected as damaged as a result of the bias error for each estimate (see Table

5.1). This could be overcome in practice by using the biased value of the stiffness but is

not performed in this study for consistency.

5.3 Statistical Curvature

Whenever a nonlinear model function is used in regression, it is important to check the

validity of linearizing assumptions. While nonlinear estimators can be formulated without

linear assumptions, much of their performance and confidence region computations rely

on a local linear model. Therefore, it is important to characterize the levels of non-linearity.

The first work to characterize the amount of non-linearity in a model equation was

performed by Beale (1960), who developed a measure of non-linearity that could be used

to reject certain model equations. Later, Bates and Watts (1980) developed two measures of

non-linearity that could be related to Beale’s measure but were rigorously derived using
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differential geometry. These two measures determine the magnitude of curvature in the

solution locus and predict problems with a linear assumption.

The first curvature measure is the relative intrinsic curvature that represents deviation

from the planar assumption in the solution locus. The second measure is the relative

parameter-effects curvature that represents a deviation from the uniform coordinate as-

sumption. These two measures are computed by noting that the model function maps the

N-dimensional space to an Nθ-dimensional subspace. When the surface is not locally pla-

nar at the estimated point, intrinsic curvature is increased. Likewise, when the coordinate

grid that locates different parameter values deviates from an orthogonal coordinate sys-

tem, parameter-effects curvature is increased. Note, the uniform coordinate assumption

can be violated by expansion/compression, arcing, and/or fanning of the coordinate grid

(Bates and Watts, 2007).

In the specific model described herein, relative intrinsic curvature and parameter-

effects curvature were observed to be small. This indicates that confidence intervals can

be created using a linear approximation.

5.3.1 Derivation

The derivation of the maximum intrinsic curvature ΓN and the maximum parameter

effects curvature2 ΓT follows from Bates and Watts (1980).

First, using the notation of the LS regression, write the sum of the squares as the norm

of the error.

S(θ) =
N

∑
n=1

|η(ωn, θ)− yn|2 = ‖y − η(θ)‖2
2 (5.14)

2The maximum curvature ΓT is a scalar value and should not be confused with the transpose operation

(·)T.
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where ηn(θ) = η(ωn, θ). The solution locus η(θ) is a Nθ-dimensional surface projected onto

the N dimensional sample space where Nθ is the number of parameters to be estimated

(i.e., η(θ) is RNθ → RN). In general, y is not a point on the solution locus and the LSE θ̂ is

the parameter value where the solution locus is closest to y.

The uncertainty of a particular estimate is described by the behavior of the solution

locus in the neighborhood of the estimate. The most common description in statistical

literature is linear confidence regions and intervals. To compute these, a linear approxima-

tion of the solution locus is used, which is equivalent to a tangent plane representation

evaluated at the estimate θ̂. The geometric effect of using this approximation is to assume

that the solution locus is planar and the coordinates are uniform.

The two curvature measures developed by Bates and Watts (1980) evaluate the devia-

tions from the planar and uniform coordinates assumptions. They do this by measuring

the curvature of the solution locus, which is simply the “acceleration” of the surface

divided by the “velocity” of the surface properly normalized. Specifically, the velocity

and acceleration can be computed in terms of a lifted line.

An arbitrary straight line in the parameter space, through a particular point θ0, can be

expressed using a geometric parameter b as

θ(b) = θ0 + bh (5.15)

where h is any non-zero vector of dimension Nθ . This generates a lifted line on the solution

locus, ηh(b)

ηh(b) = η(θ0 + bh) (5.16)
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Using the lifted line representation in (5.16), the velocity and acceleration of the

solution locus can be computed in direction h and at a particular point θ0 (i.e., at b = 0).

η̇h =
dηh

db

∣

∣

∣

b=0
= V.h (5.17)

η̈h =
d2ηh

db2

∣

∣

∣

b=0
where η̈h,n =

d2ηh,n

db2

∣

∣

∣

b=0
= hT{V..}nh (5.18)

where V. is an N × Nθ matrix whose ith column is ∂η/∂θi|θ=θ0
(i.e., the Jacobaian of η(θ))

and V.. is an Nθ × Nθ array of N dimensional vectors where {V..}n is the Hessian of ηn(θ).3

Additionally, the acceleration can be decomposed into three components with geomet-

ric significance.

η̈h = η̈N
h + η̈G

h + η̈P
h (5.19)

where η̈N
h is the change of direction of η̇h normal to the tangent plane; η̈G

h is the change of

direction of η̇h parallel to the tangent plane; and η̈P
h is the change of speed of the moving

point and hence determines whether the point moves uniformly across the solution locus

(Bates and Watts, 1980).

Using this decomposition of the acceleration, the curvature in a particular direction

can be defined. As such, the normal curvature KN
h in direction h is

KN
h =

‖η̈N
h ‖

‖η̇h‖2
(5.20)

3V. and V.. are geometric derivative-like terms that are used to determine the curvature. Subscripted dots
representing the derivative are used to not confuse with the standard over-dot notation of time derivatives.
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and the parameter effects curvature KT
h in direction h is

KT
h =

‖η̈G
h + η̈P

h‖
‖η̇h‖2

(5.21)

If the curvatures KN
h and KT

h are large relative to the curvature of the confidence

region, 1/
√

ρF(Nθ , N, α), then the confidence region is not adequately representing the

uncertainty of the identified parameters. Moreover, the curvature is strictly non-negative

and is only zero when the model function is linear in the parameters. Bates and Watts

(1980) propose that models with maximum curvature less than half of the confidence

region curvature should reasonably admit the linear approximation.

As derived, the curvatures, KN
h and KT

h, only compute the curvature in a particular

direction h. Thus, an exhaustive search of the parameter space is required to fully un-

derstand deviations from the linear approximation. To overcome this limitation, Bates

and Watts (1980) developed a procedure to calculate the maximum intrinsic curvature

and maximum parameter-effects curvature, ΓN and ΓT, respectively. Bates and Watts find

that this formulation is most effective at signaling potential problems with a particular

model function. The implementation follows from the derivation and utilizes a parameter

transformation involving the QR factorization of V. along with a recursive procedure.

Interested readers are referred to Bates and Watts (1980, 2007).

5.3.2 Shear Building Example

The curvature methods derived in the previous section can be computed for a particular

model function. In the context of substructure identification, this applies to HMOD. By
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computing the curvature measures and comparing them to the curvature of the confidence

region, the analyst can determine whether linear confidence regions are appropriate.

In this section, the curvature measures will be computed, as described previously, for

the shear building. In order to compute the curvature measures, the complex-valued

function needs to be represented as two independent real-valued functions. This represen-

tation is consistent with the assumptions made for LS estimation. Thus, the parameter

vector is θ = [ki, ci]
T and the model function is

η(θ) = [ℜ {η(ω1, θ)}, ℑ {η(ω1, θ)}, . . . , ℜ {η(ωN , θ)}, ℑ {η(ωN , θ)}]T (5.22)

where η(ωn, θ) = HMOD(jωn)|θ so that the model function η(θ) contains, interleaved, the

real and imaginary components of HMOD(jωn).

Using this structure, the curvature measures are computed for different levels of

frequency domain discretization. This discretization is controlled by the number of FFT

points used NFFT. In addition to changing the discretization, the model function can be

re-parameterized. For comparison, two more parameterizations are considered in addition

to HMOD given in (4.1). The three parameterizations considered are as follows,

HMOD : [ki, ci]
T 7→ 1

1 + ci/s + ki/s2
(5.23a)

HMOD : [ω0, ζ0]
T 7→ 1

1 + 2ζ0ω0/s + ω2
0/s2

(5.23b)

HMOD : [ki, ci, mi]
T 7→ 1

mi + ci/s + ki/s2
(5.23c)
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Table 5.3: Statistical curvature measures and coverage for various model functions and
coverage for the third story of the testbed structure.

θ NFFT ΓN ΓT F–coverage t–coverage

[ki, ci]
T 28

0.4726 0.3846 0.9909 0.8630

[ki, ci]
T 212

0.0857 0.0683 0.9280 0.9043

[ω0, ζ0]
T 212

0.0879 0.0683 0.9322 0.9080

[ki, ci, mi]
T 212

0.1029 0.0883 0.9469 0.9571

where ki, ci, mi are the mass-normalized stiffness, damping, and mass story parame-

ters, respectively. ω0 and ζ0 are the substructure natural frequency and damping ratio,

respectively. Additionally, (5.23c) over-parameterizes HMOD by introducing mi. This

parameterization is presented for academic purposes and does not represent a true identi-

fication of the system.

The computed curvature measures are reported in Table 5.3. It is clear that as NFFT

is increased, the maximum curvature decreases. Moreover, the curvature measure is

much smaller than the confidence region curvature for the standard simulation properties

(NFFT = 212) and acceptable for roughly 210 or larger (NFFT = 28 is right at the border).

This ensures that the linear confidence regions are suitable for HMOD. As discussed above,

a maximum curvature less than half the confidence region is considered by Bates and

Watts (1980) to be acceptable. For this choice of model function, HMOD, this condition is

met for all levels of discretization considered. This is important as complete time histories

are often not available and coarser discretizations must sometimes be used.
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5.4 Error Analysis

Using the LSE developed in Section 5.1, a linear error analysis can be performed. This

analysis provides a performance measure of a particular structure–substructure estimator

and is used to motivate controlled substructure identification and develop optimal sensor

placements.

The first step in developing an analytical representation for substructure error analysis

is to find the error for a general LS problem. This will be discussed in Section 5.4.1.

Following this, the error analysis will be applied to the shear building example and results

will be summarized (Section 5.4.2).

5.4.1 Least Square Error Analysis

The error analysis will be developed for a LSE by computing the expected value of the

sum of the squares under FRF estimation uncertainty. Start by simplifying the notation of

(5.2) and using vector notation.

S(θ) =
N

∑
n=1

|HMOD(jωn, θ)− HEST(jωn)|2

= ‖η− y‖2
2

= (η− y)H(η− y)

= ηHη− ηHy − yHη+ yHy

(5.24)
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where ηn = HMOD(jωn, θ) and yn = HEST(jωn). Next, take the expected value of (5.24)

and decompose the random vector of estimated quantities into the sum of its mean vector

µy with a zero-mean random variable ε.

E [S(θ)] = E

[

ηHη− ηHy − yHη+ yHy
]

= E

[

ηHη− ηH(µy + ε)− (µy + ε)Hη+ (µy + ε)H(µy + ε)
]

= ηHη− ηHµy − µy
Hη+ µy

Hµy + E

[

εHε
]

= (η− µy)
H(η− µy) + E

[

εHε
]

(5.25)

When the model function parameters θ are exactly identified, η− µy = 0. Moreover,

the remaining expectation term is simply the trace of the covariance matrix Ky of the

function of estimated quantities. Thus, (5.25) becomes

E
[

S(θ̃)
]

= E

[

εHε
]

= tr
{

Ky

}

(5.26)

where θ̃ is the true value of θ. This assumption is appropriate when the identified

parameters are close to the true value and results in η − µy = 0. If this condition is not

met, there will be an additional bias term. In this section, only uncertainty contributions

from estimated quantities are considered and the bias effects of mis-identified parameters

will be ignored.
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Using the results of Section 4.2 and (4.8), the expected value of the sum of the squares

is approximately the sum of the variance of the function of estimated quantities at each

frequency value using a linear approximation for the function.

E
[

S(θ̃)
]

= tr
{

Ky

}

≈
N

∑
n=1

(h
(n)
EST)

H

K
(n)
z h

(n)
EST (5.27)

where (h
(n)
EST)

H

is the Jacobian of HEST(jωn; z) with respect to the input random vector z.

Likewise, K
(n)
z is the covariance matrix of the input random vector at the frequency ωn.

Input random vector z is a vector that contains the estimated FRFs and a priori parameters

for a particular substructure. In the common example of a chain structure, this would be

the FRF of the floor level below, at, and above the story being identified along with the

stiffness and damping parameters of the story above.

By assuming that the input random vector is comprised of independent circular

complex Gaussian random variables, K
(n)
z becomes a diagonal matrix and (5.27) can be

further simplified

E
[

S(θ̃)
]

≈
N

∑
n=1

M

∑
m=1

|{hEST}m(jωn)|2 σ2
zm
(jωn) (5.28)

where {h
(n)
EST}m is the mth element of Jacobian (h

(n)
EST)

H

, and σ2
zm
(jωn) is the (m, m) element

of K
(n)
z .

The expression in (5.28) is useful for evaluating a particular realization of sensor data

but is not immediately useful for control or experiment design. However, by assuming

that the FRF uncertainty is a result of sensor noise with constant magnitude within

the analysis bandwidth σ2
zm
(jωn) ≈ αm|Hxm,u(jωn)|2. This approximation is valid at
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Figure 5.3: Jacobian of HEST evaluated at various frequencies for the third story of a 10

story shear building where {hEST}i =
∂HEST
∂Hẍi ,üg

frequencies with sufficient response and deteriorates at frequencies of zero response.

Violating this assumption has minimal effect on the analysis because low response implies

low levels of uncertainty relative to the total analysis. This particular representation of

FRF uncertainty is advocated by Pintelon and Schoukens (2001) and means that αm can be

held constant while various structural configurations or control designs can be compared.

5.4.2 Error Analysis for Shear Building

Using the result of the previous section, an approximate error analysis for a shear building

structure is performed. This results in a function that predicts the level of uncertainty for a
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particular substructure within a given building. This will be used to compute the relative

floor identification uncertainty to predict which floors will perform worse in substructure

identification.

Start by writing the error function Ei with the FRF uncertainty included as σ2
zm
(jωn) ≈

α2
m|Hẍm,u(jωn)|2.

Ei = E [Si(θ)] =
N

∑
n=1

i+1

∑
m=i−1

α2
m |{hEST}m(jωn)|2 |Hẍm,üg(jωn)|2 (5.29)

where αm is a scalar, related to the SNR, and i is the story-level being identified which im-

plies that the input random vector is zn = [Hẍi−1,u(jωn), Hẍi ,u(jωn), Hẍi+1,u(jωn)]
T. Thus,

the expected error in identification accuracy is determined by the product of the squared

magnitude of the Jacobian and each FRF of floor acceleration. Moreover, the magnitude

of the Jacobian is the same for each floor level (which is likely a result of the uniform

structure assumption). Moreover, the ith floor acceleration is 180◦ out of phase with the

floors below and above, as can be observed in Figure 5.3.

Figure 5.4 and Table 5.4 show the relative identification uncertainty computed using

(5.29) and compared against the identification uncertainty metric used in Zhang and

Johnson (2012b), defined as:

EZ
i = α

∫ ωN

ω1

∣

∣

∣

∣

∣

W(jω)
1

H(ẍi−ẍi−1),üg
(jω)

∣

∣

∣

∣

∣

2

dω

+ (1 − α)
∫ ωN

ω1

∣

∣

∣

∣

∣

W(jω)
H(ẍi+1−ẍi),üg

(jω)

H(ẍi−ẍi−1),üg
(jω)

∣

∣

∣

∣

∣

2

dω (5.30)
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Table 5.4: Substructure identification expected error predictions normalized by magnitude
for both uncertainty prediction functions and the observed sum of the squares error.

E
[

S(θ̂)i

]

Ei EZ
i

Story Observed DeVore Zhang

1 0.0576 0.0234 0.1781
2 0.0170 0.0262 0.2029
3 0.0248 0.0230 0.1982
4 0.0536 0.0566 0.2348
5 0.1082 0.0844 0.3128
6 0.0846 0.0287 0.2519
7 0.1568 0.0978 0.2717
8 0.9551 0.9882 0.6374
9 0.1810 0.0321 0.2921
10 0.0672 0.0003 0.3255

Inner Product: 0.9819 0.8125

where EZ
i is the predicted error for the ith story; α is a scalar used to weight the effects of

different types of error (in this study α = 0.8); and the weighting function is

W(jω) =
−ki/miω

2

1 − jci/miω − ki/miω2

As the predictions do not have a physical meaning, the results are normalized so that

the magnitude of the vector describing the entire structure is equal to unity. Then, the

inner product is found between the predictions and the observed. The results indicate that

the normalized error prediction made with (5.29) better predicts the observed error than

the error prediction made with (5.30). It should be noted that the prediction is dominated

by the eighth story which provides most of the magnitude.
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Figure 5.4: Substructure identification expected error predictions normalized for both
uncertainty prediction functions and the observed sum of the squares error.
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5.5 Best Practice

In this study, best practice represents a nonlinear LS estimator (5.2) with linear confidence

intervals, denoted “LSE Ve” in Table 5.2. This combination represents the best trade-off

between performance and efficiency: it is both computationally efficient and out-performs

other methods by achieving statistical converge closest to the value observed in MCS.

The LS estimator has greater computational efficiency than the ML estimator because

it does not use estimated variance information. To compute the estimated variance, the

Jacobian of HEST needs to be evaluated and multiplied with the FRF covariance matrix at

each frequency value. These extra function evaluations and matrix multiplications result

in the LS estimator being more computationally efficient than the ML estimator.

The LS estimator has identification performance comparable to that of the ML esti-

mator but out-performs in the computation of confidence intervals. The identification

performance is very similar for the two estimators as evidenced by the results of Table

5.2. This indicates that the simplifying distribution assumptions (i.e., i.i.d. circular sym-

metry) made for the LSE are valid and that the performance is comparable to the MLE.

However, the LSE using the linear confidence interval computed with the expected Fisher

Information out-performs all other estimates and is comparable to the predication using

MCS variance. This conclusion is founded on the superior statistical coverage.

In addition to the LS estimator, performance can be improved through a proper selec-

tion of optimization algorithm. This study used a gradient-based optimization provided

by the MATLAB command fmincon. This command uses the trust-region-reflective algo-

rithm, which uses a gradient to iterate towards the optimal solution. This method admits
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satisfactory performance when appropriate bounds are selected for identified parameters

(±50%) and measurement noise is low (SNR > 20 dB) with good statistical properties.

When the SNR is low or the measurement noise violates Gaussian distribution require-

ments, the LS estimator often admits local minima and will not converge to the global

optimum. In this case, a gradient-free method is used: the Coliny Adaptive-Pattern Search

method implemented in DAKOTA (Adams et al., 2010). This method searches along a

coordinate grid and avoids local minima better than other methods. However, it does

suffer from dramatically increased computational cost due to the increased number of

function evaluations and I/O operations between MATLAB and DAKOTA.

In conclusion, it is recommended to use a LS estimator in combination with linear

confidence intervals using the expected Fisher Information which is computed from the

Jacobian of the ROM. Optimization is best provided by MATLAB directly when regular

conditions are met. In cases of high noise, or other issues causing local minima, DAKOTA

is recommended using a gradient-free method.
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Part II

Numerical Simulations
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Chapter 6

Statistical Performance

This chapter will describe the simulation results for substructure identification subject to

two sources of uncertainty. The first source of uncertainty considered is bias error in the

previous story stiffness and the second source is additive measurement noise. Following,

a damage detection scenario is simulated and substructure identification is used to detect

and localize damage in the testbed structure.

To create statistically significant results, MCS is used where each scenario uses 10,000

independent simulations. Each simulation consists of a generated realization of accelera-

tion time history that is polluted with a realization of measurement noise; data processing

using the substructure estimator as discussed in Chapter 4 and nonlinear regression as

described in Chapter 5.

This chapter provides the basis for evaluating the performance of a real-world im-

plementation of substructure identification. The bias error represents any initial error

in the estimate of the nominal ROM. The measurement noise can establish the trade-off
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Table 6.1: Identified stiffness statistics for various levels of previous story bias. The
stiffness is reported as a percentage of the actual stiffness value and each time history
includes measurement noise with 30 dB SNR.

−10% Bias −5% Bias 0% Bias 5% Bias 10% Bias
Story Mean STD Mean STD Mean STD Mean STD Mean STD

1 −5.73 0.07 −3.30 0.07 −1.15 0.07 0.76 0.08 2.51 0.09
2 −5.52 0.10 −2.68 0.10 −0.01 0.11 2.36 0.12 4.31 0.14
3 −4.89 0.10 −2.56 0.11 −0.00 0.12 2.82 0.14 5.88 0.17
4 −2.75 0.15 −1.31 0.16 −0.02 0.17 1.16 0.19 2.29 0.22
5 −6.76 0.25 −3.18 0.26 −0.11 0.28 2.32 0.31 4.09 0.45
6 −6.58 0.17 −3.45 0.19 −0.04 0.22 3.67 0.26 7.71 0.33
7 −0.28 0.23 −0.13 0.26 −0.01 0.29 0.09 0.33 0.20 0.38
8 −11.45 0.87 −4.38 0.76 −0.42 0.79 1.93 2.58 −8.68 24.01
9 −8.80 0.26 −4.57 0.28 −0.16 0.32 4.50 0.38 9.47 0.46
10 0.08 0.20 0.08 0.20 0.08 0.20 0.08 0.20 0.08 0.20

between more sensitive (and more expensive) sensor systems. Finally, the damage detec-

tion scenario investigates the effect of error propagation from one story’s identification to

another.

6.1 Bias Error

The first source of uncertainty considered is bias error in the previous story stiffness ki+1.

This error enters the substructure estimator as a deterministic error in the computation of

HEST. Different levels of bias error are considered ranging from −10% to 10%. The results

of MCS are displayed in Table 6.1 and rendered graphically in Figure 6.1.

From these results, three findings emerge. First, previous story bias error has a

consistent effect on bias error in the identified stiffness parameter and generally admits

smaller bias error than the input. A notable exception is the ninth story, which has roughly

the same identification bias error as the input. The seventh story stiffness identification
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Figure 6.1: Box plot of identified stiffness parameter for various levels of previous story
bias error. The quantiles shown are 2.5%, 25%, 50%, 75%, and 97.5%.

is the least sensitive and the eighth story is the most sensitive to previous story bias

error. Second, different stories are more sensitive to previous story bias error. Third, it is

noted that the identification error variance is mostly resistant to previous story bias error.

However, the eighth story finds a significant increase for the case of 10% bias that is the

result of improper identification as HEST is no longer the same form as HMOD. This is seen

visually in Figure 6.2, which shows the mean of HEST and the standard deviation of the

residual.
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Figure 6.2: Plot showing the mean of HEST and the standard deviation of the residual, as a
function of frequency, for various levels of bias, for the eighth story.

These results should be considered valid for the case of small bias errors within the

range considered. For larger bias error in previous story stiffness, identification is often

unsuccessful with HEST taking a form different from the model function, HMOD. This

behavior is seen in the edge cases (±10% bias) of the eighth story identification (see Figure

6.2). This indicates that care needs to be taken to ensure that reasonable estimates of the

previous story stiffness be used.

6.2 Measurement Noise

The second source of uncertainty considered is additive measurement noise. This error

enters the substructure estimator through errors in the component FRF estimates which,
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Table 6.2: Identified stiffness statistics for various SNR levels. The stiffness is reported as a
percentage of the actual stiffness value.

10 dB 20 dB 30 dB 40 dB
Mean STD Mean STD Mean STD Mean STD

1 −2.10 0.94 −1.25 0.23 −1.15 0.07 −1.14 0.02
2 −1.84 1.77 −0.16 0.34 −0.01 0.11 0.01 0.03
3 −0.44 2.16 −0.03 0.38 −0.00 0.12 0.00 0.04
4 −4.66 15.65 −0.27 0.62 −0.02 0.17 −0.00 0.05
5 −20.20 6.59 −1.11 1.11 −0.11 0.27 −0.01 0.09
6 −3.83 2.65 −0.40 0.68 −0.05 0.22 −0.00 0.07
7 −27.77 41.10 −0.80 1.96 −0.01 0.29 0.00 0.09
8 −48.52 5.37 −8.45 5.17 −0.41 0.79 −0.04 0.23
9 −32.78 20.33 −1.30 1.34 −0.16 0.32 −0.02 0.10
10 0.37 6.61 0.71 0.70 0.08 0.20 0.01 0.06

in turn, create errors in the estimation of HEST. While some level of measurement noise

is included in each simulation in this study (default SNR of 30 dB), varying levels of

measurement noise will be simulated in this section to better understand the effects. The

magnitude of measurement noise is characterized by the SNR as defined in Chapter 3.

In this study, four different SNR levels are considered: 10, 20, 30, and 40 dB. The

results of the study, documented in Table 6.2 and Figure 6.3, present four general findings.

First, for low levels of noise (SNR of 30 and 40 dB), the identification bias remains small.

For larger levels of noise (SNR of 10 and 20 dB), significant bias is introduced. Second,

the standard deviation of the identified stiffness varies logrithmically with the level of

measurement noise. As the noise is increased by an order of magnitude, from SNR of 40

to 20 dB, the standard deviation of identified stiffness increases by roughly an order of

magnitude in nearly every story. Third, different stories admit different performance, with

the eighth story presenting the worst performance. Fourth, as the measurement noise is
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Figure 6.3: Box plot of identified stiffness parameter for various levels of SNR. The
quantiles shown are 2.5%, 25%, 50%, 75%, and 97.5%.

decreased, substructure identification tends to be an unbiased estimator of stiffness with

the single exception of the first story.

6.3 Damage Detection

In this study, damage detection is performed using the mean stiffness and damping

parameters (ki and ci) computed from Monte Carlo simulation as a baseline. These values

are used to provide a more realistic representation of the intrinsic parameter uncertainty for

identification and damage detection. Specifically, the MCS bias is used as the undamaged
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Table 6.3: Damage Scenarios

D0 Undamaged Structure

D1 5% Stiffness loss in Third Story

D2 5% Stiffness loss in Third Story and 5% Stiffness loss in Eighth Story

value, which can be thought of as a “burn-in” process where the baseline performance is

determined.

Three different damage scenarios are investigated. The specifics of each damage

scenario are shown in Table 6.3. For each trial, the top story is identified first and then,

the identified stiffness value is tested using the confidence interval hypothesis test in

(5.11) to predict damage. If damage is predicted, the identified value is used to compute

the parameters of the story below; if no damage is predicted, the mean value for the

undamaged structure is used (under the assumption that the undamaged structure has

been well-characterized by many periodic tests). Then, the story beneath is identified and

the process is iteratively performed until every story is identified and tested for damage.

The results for each damage scenario are shown in Table 6.4 where the statistical coverage

(i.e., percentages of null hypothesis for each floor) is shown. Likewise, the box plot of

identified stiffness is shown in Figure 6.4.

The results show that there is Type I error (false positives) and minimal Type II

error (false negatives). The Type I error varies between 5% and 12%, which is slightly

conservative but in general agreement with the 95% confidence intervals.1 The Type II

error is less than a fraction of a percent and statistically negligible. The trade-off between

Type I and II error can be adjusted in an ad hoc manner by changing the critical point in

hypothesis test (5.9). Figure 6.4 shows a large gap between damaged and undamaged

1We expect to see at least 5% error for a properly constructed confidence region/interval.
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Table 6.4: Statistical coverage for each damage case expressed as a percentage (the
percentage of null hypothesis results). Story levels that experience damage are shown in
bold.

Story D0 D1 D2

1 95.06 94.72 93.94
2 89.93 90.69 90.72
3 87.41 0.00 0.00

4 92.00 92.49 91.73
5 88.57 88.41 87.79
6 89.83 89.85 90.65
7 92.79 92.21 92.38
8 89.16 89.25 0.03

9 92.88 93.76 92.91
10 91.65 91.34 91.36

boxes of identified stiffness, which indicates that it would be possible to create an ad hoc

hypothesis test with perfect damage detection performance.

6.4 Discussion

The results of this study are interpreted in terms of the estimator performance and its

suitability for damage detection. Results will be interpreted with close attention paid to

the default case of zero bias and 30 dB SNR.

6.4.1 Estimator Performance

The substructure identification estimator is found to be a generally unbiased and efficient

estimator for the story-level stiffness. This conclusion is supported by decreasing error

variance and vanishing bias as the measurement noise is decreased. A single exception

is the first story which converges to a biased estimate. The author does not have a
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Figure 6.4: Box plot of identified stiffness parameter for different damage scenarios. The
quantiles shown are 2.5%, 25%, 50%, 75%, and 97.5%.

satisfactory explanation for this behavior but notes that it consistently effects the first story

in structures of varying numbers of stories.

The error prediction measure, introduced in Section 4.4, successfully predicts the best

and worst performing stories as measured by identification error variance. The prediction

measure finds that the lowest performing story should be the eighth story, which indeed

has the highest error variance. Likewise, the first floor is predicted to have the highest

performance, which identically has the lowest error variance.
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Heteroskedasticity is encountered in substructure identification because the residual

variance is not identically distributed. This behavior is the result of the substructure

estimator having higher system response at frequency values near the interstory natural

frequency. This behavior can be directly observed in Figure 6.5 for the third story. The

observed heteroskedasticity (i.e., non-uniform residual variance by frequency) is expected

and does not have a large effect on identification performance. However, it does con-

tribute to error in the computation of confidence intervals. Thus, heteroskedasticity is

the leading explanation for the difference in statistical coverage for different confidence

intervals. While the presence of heteroskedasticity increases Type I error, it is the author’s

opinion that the performance of expected Fisher Information confidence interval (com-

puted with V̂e) is sufficient and does not warrant more intrusive measures to remove

heteroskedasticity.

Finally, the discussion of damping has been ignored and performance results have

focused on stiffness. This choice was deliberate as damping remains difficult to identify in

lightly damped structures. This result is encountered in this study and, as such, damping

is treated as a nuisance regression parameter that is included to ensure proper stiffness

identification. This decision results in no loss of generality because damage detection is

wholly determined by stiffness within the scope of this study. Furthermore, by using the

identified stiffness parameter in a confidence interval hypothesis test, poor identification

of the damping parameter is excluded.
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Figure 6.5: Plot showing the mean of HEST and the standard deviation of the residual, as a
function of frequency, for various levels of SNR, for the third story.

6.4.2 Damage Detection Regime

Substructure identification is robust to common sources of uncertainty. The first source of

uncertainty considered herein was bias error in the previous story stiffness. Substructure

identification performed consistently within a small range of bias error. Moreover, error

variance does not increase with previous story bias error. This is especially important in

the context of damage detection as precision is valued over accuracy. Stated differently,

as long as the same baseline is used, low error variance enables damage detection in the

presence of initial bias error.

The second source of uncertainty considered herein was measurement noise. This

represents a common uncertainty source in SHM applications and substructure identifi-

cation performed sufficiently within moderate levels of measurement noise (20–30 dB).
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Moreover, because substructure identification is an efficient estimator, its error variance

can be decreased by using better sensors with higher SNR.

Within the specific context of damage detection, substructure identification satisfac-

torily detects and localizes damage. This occurs with minimal Type I error and nearly

nonexistent Type II error. Furthermore, false positives can be minimized for a specific

application by adjusting the critical point of the hypothesis test.

Substructure identification presents itself as an improvement over typical modal meth-

ods in the context of damage detection. First, substructure identification decreases model

complexity by identifying only a subset of the structure’s dynamics. Second, substruc-

ture identification is a decentralized algorithm that only requires local measurement of

vibration response. This allows for implementation in a wireless network of smart sensors.

Third, substructure identification provides inherent damage localization by considering

only one area of the structure at a time.
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Chapter 7

Controlled Substructure Identification

Substructure identification of a shear building results in varying levels of identification

performance for different substructure–structure combinations. Previously, it was demon-

strated that the identification of a single story in a uniform shear building can admit

different levels of identification performance as measured by identification root mean

square error (RMSE) (DeVore and Johnson, 2011; Zhang and Johnson, 2012a). This be-

havior is predicted by low levels of interstory acceleration response at the story to be

identified. This finding motivates research to find ways to temporarily increase the inter-

story acceleration response during identification to improve identification performance

(Zhang and Johnson, 2012b).

This chapter describes the development and simulation of a feedback control regulator

that is designed to improve substructure identification performance of a single story. The

controller is designed as full state feedback control law using nonlinear optimization.

The controller is then combined with an optimal state estimator to form the feedback

regulator. The regulator takes measured acceleration signals as inputs and returns a

control force as an output. The control force is realized by a control device with static unity
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Figure 7.1: Block diagram of system with regulator.

gain. Acceleration time histories are generated and used for substructure identification

to determine the identification performance. A simple block diagram of the controlled

system is shown in Figure 7.1.

First, this chapter describes several norms useful for multi-objective control design.

Second, the uncontrolled system is presented as a linear operator with a state space

representation. Third, the control design procedure is described and the performance of

several different controllers is compared. Next, an observer is designed for control with

various measurement scenarios and the identification performance is described. Finally,

the implementation using object oriented programming (OOP) is described.

7.1 Mathematical Preliminaries

This section defines the underlying assumptions and describes several useful mathematical

properties for control design. The building is treated as a linear operator, which is

consistent with the assumptions of low excitation levels. Multi-objective control design

requires several signal and operator norms, which are defined herein using a state space

representation.
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The input signal u is a measurable function from the L2 Lebsegue space defined

on a suitable measure space (Ω,F, λ) with the 2-norm ‖·‖2 defining the topology. The

measure space is taken as a probability space so that u is understood to be a vector-valued,

zero-mean, Gaussian random process. The L2 signal norm is given by

‖u‖2
2 =

∫

Ω
uHu dλ = tr

{

E

[

uuH

]}

= tr {Ku}

where λ is the probability measure; (·)H implies the complex conjugate transpose; E [·]

is the expectation operator; and Ku is the covariance matrix of the zero-mean, Gaussian

random process u.

A linear operator representing the building’s dynamics can be introduced. The opera-

tor T maps the input signal to the output signal and is defined as T : L2 7→ L2. Thus, an

output signal is defined by y = T u. Without loss of generality, T can be represented as

a multiple input, multiple output (MIMO), linear time-invariant (LTI) system with state

space representation

T :=















ẋ = Ax +Bu

y = Cx +Du

where u is the vector-valued input signal, x is the state vector, and y is the vector-valued

output signal. A is the state transition matrix, B is the input matrix, C is the output

matrix, and D is the feedthrough matrix. T also has an intrepretation as a transfer function

defined as T(s) = C(sI −A)−1B+D.
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Figure 7.2: Block diagram of uncontrolled system.

The collection of linear operators T is a Hilbert space H2 with an operator norm defined

as,

‖T‖2
2 =

1

2π

∫ ∞

−∞
tr
{

TH(jω)T(jω)
}

dω

where (·)H is the complex conjugate transponse of a matrix.

It is not difficult to show that when D = 0, ‖T‖2
2 = tr

{

CXcC
T

}

where Xc is the

controllability grammian and is the postitive definite solution to the Lyapunov equation

AXc + XcA
T +BB

T = 0 (7.1)

Equivalently, the operator norm can computed in terms of the observability grammian.

The interested reader is referred to Burl (1999).

The H∞ norm of the linear operator can be defined as,

‖T‖∞ = max
ω

σmax

[

T(jω)
]

where σmax(·) is the maximum singular value of the matrix. This norm can provide a

bound on the system gain which is useful for describing disturbance rejection.
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7.2 Uncontrolled System

The uncontrolled structure is a 10 story, uniform shear building with properties given in

Chapter 3. The input signal is band limited, white noise excitation applied to the structure

as ground acceleration üg. The output signals are the acceleration at each floor including

the ground excitation such that y = [üg, ẍ1, . . . , ẍNDOF
]T. The measured output signals

are polluted with measurement noise vector v.

A linear operator, Tu, corresponding to the uncontrolled structure is defined as,

Tu :=















ẋ = Ax + Güg

y = Cx + Hüg + v

(7.2)

with the state space matrices defined as,

A :=









0NDOF×NDOF
INDOF×NDOF

−M̆−1K̆ −M̆−1C̆









2NDOF×2NDOF

G :=









0NDOF×1

−1NDOF×1









2NDOF×1

C :=









01×NDOF
01×NDOF

−M̆−1K̆ −M̆−1C̆









(NDOF+1)×2NDOF

H :=









1

0NDOF×1









(NDOF+1)×1

where M̆ is the diagonal mass matrix; K̆ and C̆ are the positive definite stiffness and

damping matrices; and NDOF is the number of stories. A block diagram of the system is

shown in Figure 7.2.
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Figure 7.3: Block diagram of controlled system.

Measurement noise is additive Gaussian white noise provided by v. The noise is

assumed to be zero-mean, statistically independent, and applied to each output channel.

The noise covariance matrix is

Kv = E

[

vvT

]

=
‖üg‖2

2

(SNR)2
I(NDOF+1)×(NDOF+1)

where ‖üg‖2 is the standard deviation of the input ground acceleration, taken in this study

to be 0.1 m/s2, and SNR is the signal to noise ratio, taken in this study to be 30 dB.

7.3 Controlled System

A full state feedback controller is designed for the testbed and its performance is discussed

within this section. First, the operator is defined for a full state controller allowing for a

consistent description. Next, the control design problem is defined in terms of the poles

of the closed loop system. Following, linear constraints on the search space are used

to meet stability and damping targets while nonlinear constraints are used to ensure

realistic performance. Finally, the performance of several different feedback control laws
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are compared using Monte Carlo simulation to determine the substructure identification

performance. Furthermore, the damage detection performance is demonstrated using a

direct comparison between undamaged and damaged scenarios.

7.3.1 Full State Feedback Controller

A full state feedback controller is defined by multiplying a feedback gain matrix K by

the state vector and applying the resulting signal as a control force uc = −Kx. Through

convention, feedback control is applied as negative feedback and that convention is

respected within this work. The block diagram of the controlled system is shown in Figure

7.3.

Using the feedback gain matrix, the controlled system can be defined as a linear

operator

Tc :=















ẋ = (A − BK)x + Güg

y = (C − DK)x + Hüg + v

(7.3)

Without loss of generality, the control force state space matrices can be defined for a shear

building with an ideal AMD installed on the roof. Thus, the control input matrix B and

control feedthrough matrix D are defined,

B :=









0(2NDOF−1)×1

−1/mNDOF









2NDOF×1

D :=









0NDOF×1

−1/mNDOF









(NDOF+1)×1

where mNDOF
is the mass of the top floor of the building and NDOF is the number of stories.

The other state space matrices are the same as defined in the previous section.

108



7.3.2 Control Design

The control gain matrix is designed using nonlinear optimization subject to linear and

nonlinear constraints. A nonlinear objective functional is calculated for each sample point

and the optimization algorithm continues until a local minimum is encountered. This

section describes the objective functional and search space while the succeeding sections

describe the constraints.

The objective functional is selected to increase the interstory acceleration response of

the closed loop system within the identification bandwidth. Therefore, the functional J

takes the form,

J :=
∫ ωu

ωl

∣

∣W(jω)
[

Tc
i (jω)− Tc

i−1(jω)
]∣

∣ dω (7.4)

where W(jω) is the weighting function taken to be the model function HMOD; ωl and ωu

are the lower and upper bounds of the identification frequency bandwidth, respectively;

and Tc
i (jω) is the transfer function of the closed loop operator for a specific control gain

evaluated at the frequency ω for the ith floor acceleration output. J is understood to be

the weighted integral of the interstory acceleration response, the same as provided in

Section 4.4.

With the state space matrices known, J can vary with different choices of K. Previous

studies (Zhang and Johnson, 2012b) used the various entries of the control gain matrix

as the search space. In this study, the closed loop poles are used as the search space so

that J is understood to be a functional mapping of the search space to a positive real value

J : R2NDOF 7→ R+. The search space has a one-to-one correspondence with the various
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control gain entries while providing unique computational benefits by specifying some

constraints as linear constraints. This will be discussed further in the next section.

The uncontrolled system is stable and lightly damped implying that each pole has

a conjugate pair. Using the closed loop poles, the parameter space can be represented

as the real component and the absolute value of the imaginary component of the pole.

Therefore, for each pole and its conjugate, (pi, pi
∗) → (ai, bi) where ai = ℜ {pi} and

bi = | ℑ {pi} |. Thus, a NDOF building will have a 2NDOF dimensional vector as the design

space, q ∈ R2NDOF such that q = [a1, . . . , aNDOF
, b1, . . . , bNDOF

]T.

For each evaluation of the objective function, q is used to compute a full-state feedback

controller K with the specified closed loop poles. Then, the closed loop operator is found

and used to compute the weighted integral of the interstory acceleration response at a

given floor. This value is used by the optimization algorithm to maximize response. If q is

from an infeasible set, K will be returned as a matrix of zeros.

The initial condition for optimization, q0, is selected to be the uncontrolled poles of

the structure. This is found to have a stabilizing effect on control design and yields a

consistent controller. Previously, a randomized set of poles grouped around the interstory

natural frequency was used. However, the randomized poles would often be from an

infeasible set which prevents the optimization algrothim from converging.

The final solution q f is found by,

q f = arg min
q

−J(q)

subject to: Mq + m ≤ 0

cNL(q) ≤ 0

(7.5)
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where M and m define the linear constraints and cNL(·) is a function that defines the

nonlinear constraints. By minimizing the negative of the objective functional, the interstory

acceleration response is increased in the frequency band where W(jω) is large and the

identification performance should be improved.

7.3.3 Linear Constraints

Two linear constraints are included in the control design. For each closed loop pole of the

system pi specified by (ai, bi), the following linear constraints are applied.

ai ≤ σc (7.6a)

ai + ζcbi ≤ 0 (7.6b)
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where σc is the pole constraint and ζc is the minimum damping ratio for each pole. The

first constraint ensures that the closed loop system is stable and achieves a minimum level

of settling time for each pole. The second constraint ensures that the damping of each

mode is greater than ζc. These constraints on pole location are shown in Figure 7.4.

The linear constraint inequalities expressed in (7.6) can be constructed in a form

suitable for the optimization problem defined in (7.5). For a given realization of q, the

linear constraints are satisfied if Mq + m ≤ 0 with M and m defined as

M :=









INDOF×NDOF
0NDOF×NDOF

INDOF×NDOF
ζcINDOF×NDOF









m :=









−σc1NDOF×1

0NDOF×1









For each closed loop pole, (ai, bi) = (−ζiωi, ωi

√

1 − ζ2
i ), the inequality in (7.6b)

implies that

−ζiωi + ζcωi

√

1 − ζ2
i ≤ 0

ζcωi

√

1 − ζ2
i ≤ ζiωi

ζc ≤ ζi
√

1 − ζ2
i

where the natural frequency and damping ratio of each pole is ωi and ζi, respectively. Thus,

ζi is greater than ζc but is an unconservative bound for an underdamped system because

√

1 − ζ2
i < 1. For damping constraint values used herein, the difference is approximately

2% of the constraint value. Therefore, a damping constraint safety factor of 1.05 would be

sufficient to ensure minimum damping levels, though a safety factor is not used in this

study.
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7.3.4 Nonlinear Constraints

To further constrain the control design, nonlinear constraints are used. Three different

nonlinear constraints are considered: control force RMS, H2 constraint, and H∞ constraint.

The first two constraints can be broadly understood as energy constraints and the last

constraint is a disturbance rejection constraint. The three constraints are described herein.

7.3.4.1 Control Force Constraint

The control force constraint ensures that, given an input ground acceleration signal of

certain energy, the control force energy will not exceed a certain level. This constraint

does not provide an upper bound to the control force commanded, which can result in a

saturated control force signal in practice.

The energy of the control force is determined by finding a solution to the L2 norm of

the control force signal ‖uc‖2. This is given by multiplying the control force gain matrix

by the controllability grammian. Thus,

‖uc‖2
2 = KXcKT ≤ f c

where the controllability grammian Xc is found by solving the Lyapunov equation given

in (7.1) using the state space matrices of Tc and f c is the force constraint.

In this study, ‖uc‖2 is computed when the building is subjected to a white noise ground

acceleration signal RMS of 0.1 m/sec2 (i.e., ‖üg‖2 = 0.1 m/s2). The control force norm is

expressed as a percentage of the total weight of the building; the default constraint is 2%.
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7.3.4.2 System Energy Constraint

The system energy constraint ensures that the controller does not unduly amplify the

output energy. This constraint is understood as a H2 constraint and requires that the

2-norm of the operator be below a certain threshold. The constraint is given by,

‖Tc‖2 =
√

tr {CXcCT} ≤ hc
2

where hc
2 is the system energy constraint.

This constraint is applied to the output acceleration signals of the building only and

omits the ground acceleration (yi for i = 2, . . . , NDOF + 1). This is purposeful because the

H2 norm of an operator is infinite for a linear operator with non-zero feedthrough (i.e.,

D 6= 0). By removing the ground acceleration from the output vector, the operator 2-norm

can be found. Moreover, this better reflects the physical nature of the system.

7.3.4.3 Disturbance Rejection Constraint

The disturbance rejection constraint ensures that a bounded input will provide a bounded

output below a certain threshold. This constraint is understood as a H∞ constraint applied

such that ‖Tc‖∞ ≤ hc
∞. Here, hc

∞ is the constraint, which is implemented by the MATLAB

command norm for the H∞ case.

7.3.5 Comparison

Different controllers can be developed by specifying different constraints for the linear

and nonlinear constraints developed previously. In this study, several controllers are
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Table 7.1: Design specifications of various controllers as specified by various constraints.
Note: the force constraint is specified as a percentage of the total weight of the structure.

σc ζc f c hc
2 hc

∞

Name [rad/s] [%] [%] [dB] [dB]

CT00 −5.0 10 2 40 40
CT01 −5.0 10 5 40 40
CT02 −5.0 10 2 20 40
CT03 −5.0 10 2 40 20
CT04 −5.0 10 2 40 30
CT05 −5.0 10 – – –
CT06 −5.0 5 2 40 40
CT07 −2.0 10 2 40 40

Table 7.2: Design results of various controllers compared to the uncontrolled case. Note:
the force constraint is specified as a percentage of the total weight of the structure.

J maxi σi mini ζi ‖uc‖2 ‖Tc‖2 ‖Tc‖∞ maxi ‖δi‖2 maxi ‖ẍi‖2

Name [·] [rad/s] [%] [%] [dB] [dB] [mm] [m/sec2]

UNC 0.30 −0.10 1.49 0.00 30.31 39.78 4.82 1.40
CT00 1.82 −5.10 11.63 1.91 27.26 18.01 1.02 1.31
CT01 13.40 −5.00 10.17 5.00 39.66 33.79 2.26 4.47
CT02 0.41 −4.71 14.23 1.89 21.22 12.12 1.56 0.46
CT03 3.29 −5.40 10.43 1.93 28.67 19.88 1.45 1.27
CT04 4.57 −5.00 10.19 2.00 30.53 24.10 1.25 1.49
CT05 – −5.00 9.95 – 101.11 98.25 – –
CT06 4.26 −5.04 10.34 1.98 30.09 22.73 1.49 1.46
CT07 4.93 −2.00 9.97 2.00 31.38 25.81 1.59 1.73

compared; their constraint specfications are provided in Table 7.1. The default controller

CT00 represents a reasonable selection of constraints likely encountered in practice. The

other controllers are deviations from this default scenario to elucidate the effects of the

constraints on control design.

Using the constraint specfications provided in Table 7.1, each controller is designed

using the procedure described in Section 7.3.2. Then, the control design results are

tablulated in Table 7.2. This table includes the various constraint norms and also shows

the maximum interstory deflection δi and maximum story acceleration ẍi norms. The
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results of the control design can be visualized in Figures 7.5 and 7.6. These figures show

the interstory acceleration response of the eighth story, which is the story response that is

to be increased.

The control design provides several interesting results. First, CT02 is infeasible be-

cause ‖Tc‖2 violates the constraint of 20 dB. Second, the damping constraint provides an

unconservative bound that is reflected in some of the controllers reporting poles with the

damping constraint slightly violated. Third, CT00 and CT06 satisfy each other’s design

constraints but admit different control gain matrices. This means that the optimization

proceedure is non-convex and will admit local minima.

An exception to the design of the controllers is CT05, which is a controller designed

with linear constraints only. This design is unlikely to be implemented due to its extremely

large system energy amplification and control force requirements. It should only be

regarded as an interesting academic exercise of control design with linear constraints and

not as a feasible controller.

The controllers are further evaluated by determining their substructure identification

performance. MCS is used with 10,000 samples and the eighth story stiffness is identified

using time histories generated using the various controllers. A damage scenario is pro-

vided that evaluates the damage detection performance and demonstrates the controller

robustness. The results are summarized and compared against the uncontrolled system in

Table 7.3.
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Figure 7.5: Eighth story interstory acceleration response for various controllers defined in
Table 7.1. The center of the identification bandwidth is shown as a dashed line.
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Figure 7.6: Eighth story interstory acceleration response for various controllers defined in
Table 7.1. The center of the identification bandwidth is shown as a dashed line.
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The results of substructure identification show that the controllers generally have

significantly better identification performance as indicated by decreased bias error and de-

creased variance. The results match the performance prediction provided by the weighted

integral J of interstory acceleration response.

Four of the controllers do not have values for the identification statistics for the

damage scenario because the system was unstable. This behavior was caused because the

controlled system was not robust to uncertainties in the stiffness parameter. The most

aggressive controllers (larger control gain) generally were the least robust controllers to

stiffness changes. Thus, there appears to be a (not unexpected) trade-off between control

authority and system robustness.

CT00, CT03, and CT07 have comparable levels of identification performance and are

a significant improvement over the uncontrolled system. CT00 is selected as the default

because it has a smaller control gain than CT03 and has its maximum pole further in the

left half plane than CT07. These two properties indicate that CT00 will be more stable

under varying damage scenarios and will admit better observer performance.
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Table 7.3: Statistics of substructure identification of the eighth story stiffness presented as
percentage of the nominal stiffness value. The damaged case corresponds to a decrease in
stiffness of 5%.

Undamaged Damaged
Mean STD Mean STD

UNC −0.29 0.61 −5.33 0.55
CT00 −0.01 0.07 −5.01 0.05
CT01 −0.00 0.01 – –
CT02 −0.41 0.32 −5.35 0.31
CT03 0.01 0.04 −5.00 0.03
CT04 0.00 0.03 – –
CT05 −0.00 0.00 – –
CT06 0.00 0.03 – –
CT07 0.00 0.03 −5.00 0.03
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Figure 7.7: Block diagram of observed system.

7.4 Observed System

The control law designed in the previous section requires full state measurement, which is

unlikely encountered in practice. Therefore, an observer is used to estimate the states of the

system using measured responses. This section will describe the design and performance

of the observed system for various observers. Different observers are created by changing

which sensor channels are measured. First, an observer gain matrix is designed using the

Kalman filter. Second, various observers are used in conjuction with CT00 to determine

the substructure identification performance.
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7.4.1 Observer Design

An observer is designed to estimate the states of the system for feedback control from

a measured subset ỹ = [yi1 , yi2 , . . . ]T of the acceleration responses. The observer is

characterized by an observer gain matrix L. Taken together, the observer and control gain

matrices form the feedback control regulator that is shown in Figure 7.1. The resulting

system operator is defined as,

To :=



























































ẋ
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(7.7)

where (xT, x̂T)
T

is the augmented state vector including the estimated state vector x̂ and

Ĩ contains the rows of an identity matrix corresponding to the measured accelerations

defined by [Ĩ]k,l = δik ,l using the Kronecker delta. The block diagram is shown in Figure 7.7.

The observer is designed using the Kalman filter which provides the optimal estimate

of the state variable (Mendel, 1995). The design is implemented using the MATLAB

command kalman. This command takes as input, the uncontrolled system expressed as

a state space model, the input ground acceleration RMS (‖üg‖2 = 0.1 m/sec2), and the

sensor noise covariance matrix Kv. The output gives the observer gain matrix L. Once

the observer gain matrix is designed, the observed system operator To is constructed as

defined in (7.7).
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Often, it is not feasible that each sensor is available for state estimation, so this study

will design observers with incomplete sensor measurement. This is accomplished by

restricting the measured sensors such that the rows of C, D, and H are selected corre-

sponding to the measured sensors using Ĩ. Then the observer is designed as described.

7.4.2 Comparison

In this study, several observers are compared using different sets of sensors. The first

scenario OB00 is of full acceleration measurement, which serves as the default case. The

subsequent scenarios use different sets of sensors measured. The various performance

norms are shown in Table 7.4. Likewise, the eighth story interstory acceleration response

is shown in Figure 7.8 for the various observers. Substructure identification performance

is demonstrated for each observer in Table 7.5.

The results show that substructure identification is successful under each of the ob-

servers. The first three observers exhibit performance that is nearly identical to the full

state feedback controller. OB03 and OB04 do not measure the input ground motion

and subsequently introduce additional dynamics into the system. OB03 has slightly

worse identification performance and OB04 has slightly better identification performance

compared to CT00. This behavior is predicted by the weighted integral J of interstory

acceleration response.
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Table 7.4: Design results of various observers. The first columns refer to which story-level
acceleration sensors are used with zero corresponding to the ground acceleration.

Obs. Vec. J maxi σi mini ζi ‖uc‖2 ‖H‖2 ‖H‖∞

Name [·] [rad/s] [%] [%] [dB] [dB]

UNC – 0.30 −0.10 1.49 0.00 30.31 39.78
CT00 full state 1.82 −5.10 11.63 1.91 27.26 18.01
OB00 full accel. 1.82 −4.36 11.63 1.91 27.26 18.06
OB01 [0,7,8,9,10] 1.82 −4.26 11.63 1.91 27.26 18.06
OB02 [0,10] 1.82 −3.52 11.00 1.91 27.26 18.05
OB03 [7,8,9,10] 1.54 −5.10 11.27 1.56 26.28 18.29
OB04 [10] 2.27 −5.10 11.63 1.63 26.62 17.57

Table 7.5: Statistics of controlled identification with observers of the eighth story parame-
ters presented as percentages.

Undamaged Damaged
Mean STD Mean STD

UNC −0.29 0.61 −5.33 0.55
CT00 −0.01 0.07 −5.01 0.05
OB00 −0.01 0.07 −5.01 0.06
OB01 −0.00 0.07 −5.00 0.05
OB02 −0.01 0.07 −5.01 0.06
OB03 0.23 0.09 −4.83 0.07
OB04 0.00 0.05 −5.00 0.04
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Figure 7.8: Eighth Story Interstory Acceleration Response for various observers.
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7.5 Implementation

The simulations are implemented using object oriented programming (OOP) within

MATLAB. This implementation abstracts the various operators into different classes which

provides several benefits: modularity, inheritance, and security. To understand this study’s

implementation, a brief description of OOP is provided along with the unique benefits to

this study. Finally, a description of the workflow for the simulation is provided. The class

diagram describing the particular implementation is given in Figure 7.9.

OOP is a paradigm that seeks to abstract data types into objects with predefined

properties and methods. The form of the data stored within an object is specified in a class

file. Also included within the class file is a series of methods that can operate on the data

stored within an object. Methods can also incorporate outside data input while providing

output. Class inheritance can be provided where a subclass inherits the properties and

methods of a superclass.

Within this study each different operator (Tu, Tc, and To) is implemented as its own

class. Starting with the uncontrolled operator, an object is defined and then used for the

input for the next operator. Each subsequent operator adds another layer of properties and

methods. This abstraction improves modularity within the code by separating methods

and properties that are entirely contained within a certain object. As such, modularity

improves code maintanence.

The second unique benefit to OOP, within this study, is that inheritance promotes

code reuse. The substructure identification and time history simulation code is contained

within the FRFSubID class. This means that the properties and methods are not duplicated

in different simulations which provides robust code. Furthermore, the subclasses that
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inherit FRFSubID implement an interface defined by LinearSystem that allows proper

behavior.

Another unique benefit of OOP is code security. Different properties can be marked as

private or protected, which means that their value cannot be changed by the user or even

by another method (if properly specified). This helps protect against bugs in projects with

a large codebase. In this study, various properties are marked as protected or private for

this reason (refer to Figure 7.9 for details).

A unique benefit to MATLAB’s implementation of OOP is that properties can be defined

as dependent. A dependent property is one whose value is calculated each time that it is

called. This behavior is exploited for properties that are dependent on the stiffness of the

building (A and C). The stiffness can be changed at will by modifying a public property

kdamage. This allows for simulation of damage after the controller and/or observer was

designed for the undamaged case.

The basic workflow of the simulation is to construct a ShearBuilding object. Then,

a ControlledShearBuilding object is constructed using the previous object as input

along with certain control specifications. Finally, an ObservedControlledShearBuilding

object is constructed using the previous object as input along with specifications of which

channels are measured. After each object is constructed, substructure identification

is simulated by calling the identify story method, which simulates a time history

(create time history), computes the reduced order model (compute ROM FRF), and then,

finally identifies the stiffness (identify ROM).

In this implementation, great care was taken to improve the efficiency of the code.

This enabled the author to run more Monte Carlo simulations and improve control design.
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Code efficiency was improved by loading data into memory and using anonymous

functions. This was achieved through various methods including identify story and

control design. A noticable improvement in execution and optimization time was

observed from previous work.
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ClassName

⊕ Public Property : Type
⊖ Private Property : Type
⊗ Protected Property : Type
⊙ Dependent Property : Type

Method

<<interface>>

LinearSystem

sys : State Space
Kv : (NDOF + 1)× (NDOF + 1)

FRFSubID

⊕ SNR : Double
⊕ WW : Double
⊕ IDn : Double

identify story
compute ROM FRF
identify ROM
frequency vector
create time history
create random ground motion

ShearBuilding

⊙ sys : State Space
⊙ A : 2NDOF × 2NDOF

⊗ G : 2NDOF × 1
⊙ C : (NDOF + 1)× NDOF

⊗ H : (NDOF + 1)× 1
⊖ ki : 1 × NDOF

⊖ ci : 1 × NDOF

⊖ mi : 1 × NDOF

⊙ Kv : (NDOF + 1)× (NDOF + 1)
⊕ kdamage : 1 × NDOF

⊙ NDOF : Integer

ShearBuilding
total weight
display system results
operator uncontrolled
compute performance

ControlledShearBuilding

⊙ sys : State Space
⊗ B : 2NDOF × 1
⊗ D : (NDOF + 1)× 1
⊗ K : 1 × 2NDOF

⊗ force constraint : Double
⊗ pole constraint : Double
⊗ damping constraint : Double
⊗ H 2 constraint : Double
⊗ H inf constraint : Double
⊖ q f : 2NDOF × 1

ControlledShearBuilding
operator controlled
design controller
inital poles
linear constraints
nonlinear constraints
display system results

ObservedControlledShearBuilding

⊙ sys : State Space
⊗ B : 2NDOF × 1
⊗ D : (NDOF + 1)× 1
⊗ K : 1 × 2NDOF

⊗ L : NOBS × 2NDOF

⊗ obs vec : 1 × NOBS

ObservedControlledShearBuilding
operator observed
design observer
kalman
reg
display system results

Figure 7.9: Class diagram of implemented methods.
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Part III

Experimental Results
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Chapter 8

Bench Scale Structure

Experimental testing of substructure identification is performed on a bench scale, two story,

flexible structure at the University of Southern California. This experiment is designed

to validate controlled substructure identification using a passive control scenario. This

chapter is organized to first describe the experimental apparatus, including the structure,

shake table, and sensors, used in the experiment. Next, the experimental procedure

is developed where different structural configurations are described. Finally, results

are presented that find that substructure identification precision can be increased using

structural control.

8.1 Experimental Apparatus

The proposed experiment is implemented at bench scale with two basic components: a

Quanser shaking table and a two story flexible structure. The shake table is capable of

producing a maximum acceleration of 2.5 g with a 25 lb payload. The table is commanded

by a control computer that performs both feedback control and data acquisition at 1000 Hz.

Using the control computer, an arbitrary table acceleration time history can be achieved,
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in which constant acceleration response of the table is observed within the bandwidth of

the structure (2–8 Hz). The shake table with the structure installed is shown in Figure 8.1.

Figure 8.1: Bench scale structure and shake table.

The two story structure is specifically designed to deform in a manner consistent

with a 2DOF shear building. Seismic mass is provided by Plexiglas plates installed at

each story level. In addition, these plates provide a rigid floor connection that ensures

that the structure behaves as a shear building. Lateral stiffness is provided by thin sheet

metal plates and linear spring braces. The sheet metal provides exceptional out of plane
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Table 8.1: Nominal story parameters for bench scale structure

ki 572 N/m

ci 0.29 N/(m/s)

mi 0.934 kg

ω0,i 3.94 Hz

stiffness while giving very little in plane stiffness. Linear springs are installed in a ×-brace

configuration for each story. These springs are configurable and can be changed to alter

the dynamics of the structure.

Before conducting substructure identification, the equivalent mass, damping, and stiff-

ness parameters for a characteristic story are identified. First, the structure is disassembled

and the components are weighed to determine their mass. The mass matrix is assembled

using lumped mass consistent with a 2-DOF ROM. Then, the stiffness is identified by

assembling the components into a single story structure and subjecting the resulting

structure to swept sine excitation. The frequency of maximum response is extracted and

used to compute the stiffness parameter using the measured mass. Finally, the damping

parameter is found by displacing the one story structure and measuring the free vibration

response. The log decrement method is used to compute the damping parameter using

the average of five periods. The identified SDOF values, shown in Table 8.1, are assumed

to be the same as the 2-DOF parameters.

It is noted that the structure has very low levels of damping, with equivalent modal

damping less than 1%. This implies that it will be difficult to accurately identify the

damping parameter. Therefore, only the stiffness parameter will be estimated in the

subsequent substructure identification tests. During these tests, the damping parameter is
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Figure 8.2: Bench scale performance index for various control strategies

treated as a nuisance regression term and allowed to vary between 0.5% and 1.5%. In most

identification runs, the damping parameter converged to either the lower or upper bound.

While these values present a starting point for control design, they should not be

accepted as the true values. It is noted that when the structure was reassembled to the

two story configuration, the first story appeared to be softer, with apparent stiffness lower

than identified and given in Table 8.1. This is attributed to the second story mass adding a

compressive load to the first floor side walls, creating P-δ effects that reduce the first story

stiffness.
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8.2 Control Design

The error analysis results of Section 5.4 motivates controlled substructure identification

where the identification accuracy is improved via structural control. Zhang and Johnson

(2012b) develop an error analysis, discussed in Section 5.4.2. Here, the error analysis from

Zhang and Johnson (2012b) is used to improve the identification accuracy for the bench

scale structure.

In this study, simply achievable passive control strategies are used, which limits

possible control strategies. This selection was made to reduce the complexity of the

experiment and because other control strategies were unavailable. Moreover, because it

is beneficial to not directly apply control forces to the substructure being identified, the

possible control strategies are further restricted to changing the mass of the second story

to improve first story identification and changing the mass or stiffness of the first story to

improve second story identification.

To test the relative improvement that the control strategies give, a performance function

is created. This function seeks to minimize the identification error as given by Zhang

and Johnson (2012b). Moreover, the identification error does not have a meaning in an

absolute sense so it is necessary to consider the relative improvement to some baseline

structure. The selected baseline is the structure identified in the previous section.

The governing performance function is

EZ
i (L) = α

∫ ωN

ω1

∣

∣

∣

∣

∣

W(jω)
1

H(ẍi−ẍi−1),üg
(jω)

∣

∣

∣

∣

∣

2

dω

+ (1 − α)
∫ ωN

ω1

∣

∣

∣

∣

∣

W(jω)
H(ẍi+1−ẍi),üg

(jω)

H(ẍi−ẍi−1),üg
(jω)

∣

∣

∣

∣

∣

2

dω (8.1)
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where i is the story-level being identified, L is a matrix representing the control strategy

applied, W(jω) = ω2
0,iω

2/[ω2 − 2 ∗ ζiω0,i jω − ω2
0,iω

2]2 is a weighting function that is

sharply peaked at the interstory natural frequency ω0,i =
√

ki/mi, Hẍi−ẍi−1,üg(jωn) is the

FRF from the base motion to the lower interstory acceleration at i and Hẍi+1−ẍi ,üg(jωn) is

the FRF from the base motion to the upper interstory acceleration at i. Note that smaller

values of EZ
i (L) predict less identification error.

The performance index is computed for various structural configurations and then

compared to the baseline structure. The value that minimizes EZ
i (L) for a particular L will

provide the best performance. The performance for various structural configurations is

shown in Figure 8.2. From this figure, it is clear that increasing first story stiffness will

improve second story identification and decreasing the second story mass will improve

first story identification. Therefore, these two control strategies will be implemented.

8.3 Experimental Procedure

Using the results of the previous section, an experimental procedure is designed to test

the hypothesis that identification accuracy can be improved by a specifically designed

control system. Physically, this is implemented by designing an uncontrolled structure

that allows for removal of second story mass and addition of first story stiffness. Thus,

the three structural configurations become:

1. Uncontrolled Structure:

The nominal structure is used with an additional mass installed on the roof, which

results in the second story mass being 65% larger than that of the nominal structure.
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2. Control Structure I:

The additional mass on the second floor is removed resulting in the nominal struc-

ture, which should improve first story identification accuracy.

3. Control Structure II

The additional second floor mass is in the structure like the “uncontrolled” structure

but additional braces are installed in the first story resulting in the first story stiffness

being 180% larger than nominal.

The particular values were selected based on available materials and do not represent the

optimal selection. The effects of the two control strategies are shown in Figures 8.3 and

8.4. These figures show that the low interstory acceleration response is increased in both

control cases, which will decrease EZ
i as the interstory acceleration is in the denominator

of (8.1).

Each of the structural configurations are tested with ten independent trials. Each of

the stiffness and damping parameters are estimated for the uncontrolled configuration

but only the first story parameters are estimated for the first control structure and only the

second story parameters for the second control structure. This is because the parameters

of the other floor changed as a result of the control strategy. This is an important point

because the identification of the entire structure would require multiple tests with different

configurations. This would be difficult to achieve with purely passive methods; rather,

active or semi-active methods would better suited.

For each trial, the structure is subjected to band limited white noise base excitation.

The cutoff frequencies are selected to include the bandwidth of the structure (2–8 Hz).
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Figure 8.3: Bench scale structure first inter-story acceleration FRF for first control case.

The acceleration responses are recorded for thirty minutes at 1000 Hz and are later down-

sampled to 100 Hz for the analysis.

Substructure identification is performed by batch processing the data. First, the time

histories are arranged in an ensemble with the use of a half-range sine window function

and 67% overlap. Then, the cross-power spectral density functions (CPSDs) are estimated

using Welch’s method with a 212 point FFT, selecting the shake table command signal

as the reference signal. The command signal is used because it has minimal noise and is

highly correlated with the response signals. Finally, the estimated CPSDs are combined

and non-linear regression is performed using a LS estimator, consistent with Zhang and

Johnson (2012c). The optimal estimate is found with the Coliny Adaptive Pattern Search
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Figure 8.4: Bench scale structure second inter-story acceleration FRF for second control
case.

method using DAKOTA, which is a coordinate-based gradient-free optimization method.

This method is found to outperform gradient-based optimization methods due to its

robustness against local minima that are more prevalent in physical systems such as this.

8.4 Results

The identified stiffness and damping values are shown visually in Figure 8.5 and statistics

are recorded in Table 8.2. By inspecting Figure 8.5 and looking at the inter-quartile

range in Table 8.2, the two control structures exhibit tighter grouping in the estimated

parameters which indicates improved identification precision. There is an observed

139



480 500 520 540 560 580 600 620
Identified Stiffness [N/m]

th
e
 1

s
t  s

to
ry

 p
a
ra

m
e
te

r

 

 

480 500 520 540 560 580 600 620
Identified Stiffness [N/m]

th
e
 2

n
d
 s

to
ry

 p
a
ra

m
e
te

r

 

 

Uncontrolled

Controlled

Uncontrolled

Controlled

Figure 8.5: Identified stiffness parameters for bench scale experiment. The width of the
box shows the IQR and the middle line shows the median.

bias from the nominal values (Table 8.1) which is not troublesome because the overall

bias is low and there is no prima facie reason to believe the swept-sine estimates are

more accurate than the substructure estimates. Further, from an information theoretic

perspective, the substructure estimates should be more accurate because they utilize more

data (information).

Table 8.2: Identified stiffness statistics for bench scale experiment

First Story Second Story
Median IQR Median IQR
[N/m] [N/m] [N/m] [N/m]

Uncontrolled 528.04 19.40 545.66 11.23
Control 01 537.45 4.48 n/a n/a
Control 02 n/a n/a 559.58 5.22
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Regardless of the level of bias error, the most important statistic in evaluating a damage

detection method is the error variance. These results clearly indicate that the variance

is decreased when a control strategy is applied. On the strength of this observation,

controlled substructure identification is confirmed effective for this structure.

While passive control methods are simple to implement, they do not represent a

feasible full scale solution. Further research is needed to consider active and semi-active

control devices, which are more reasonable implementations for controlled substructure

identification. However, this particular structure exhibits undesirable dynamic properties

due to its extreme flexibility. Moreover, the associated active control device, a second

floor mounted AMD, does not have a controlled response with sufficient authority and

bandwidth to implement a secondary control law designed to improve identification

accuracy.

In conclusion, controlled identification was found to improve identification precision

as evidenced by a decreased variance. This was achieved through passive control im-

plemented by changing structural parameters of the story not being currently identified.

While this does not represent a feasible full scale control strategy, it does motivate future

work on more feasible control strategies like active and semi-active control devices. How-

ever, due to the undesirable dynamics and poor performance of the associated AMD, it is

recommended to perform future studies on a different structure.
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Chapter 9

University of Connecticut Structure

Experimental testing of substructure identification is performed on a four story steel

structure in the Advanced Hazards Mitigation Laboratory at the University of Connecticut

in partnership with Professor Richard Christenson, Dr. Zhaoshuo Jiang, and Mr. Gannon

Stromquist-LeVoir. The preliminary aspects of this work were published in DeVore et al.

(2011, 2012). This experiment is designed to validate the methods presented in Chapter 4

and find the limitations within a damage detection context.

This chapter is organized to first describe the experimental apparatus including the

structure, shake table, and sensors used in the experiment. Second, an identification

error prediction is provided. Third, the experimental procedure is developed where

different damage scenarios are described. Fourth, results are presented that compare

the effectiveness of substructure identification to other global identification methods.

Finally, a brief numerical study is performed to demonstrate the potential identifiction

performance improvement using an active control device.
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9.1 Experimental Apparatus

The experimental apparatus is selected to evaluate substructure identification using a

shear building estimator. As such, it is important to design the structure to exhibit behavior

similar to an idealized shear building. Furthermore, the input excitation and response

measurements should be similar to real-world conditions encountered during SHM.

This section will describe the different components of the experimental apparatus and

will compare the selected components to real-world situations. The section is organized to

first describe the building used as the testbed structure. Next, the shake table used for

base excitation is described and the input ground motion is characterized. Finally, the

sensors used to measure the response are described and their performance is documented.

9.1.1 Structure

The structure is designed as a uniform four story, single bay moment frame structure that

is symmetric in both plan directions. The structure is formed by supporting steel floor

plates by four threaded rod columns at the corners along the perimeter. At each floor

level, nuts with lock washers are attached on the top and bottom and tightened to enforce

clamped connections. This design ensures that the columns independently behave as

fixed-fixed columns at each floor. The floor plate stiffness is much higher than the column

stiffness, resulting in a structure that behaves like an ideal shear building.

The structure is 3.65 m (12 ft.) tall and the columns are continuous 0.0254 m (1 in.)

diameter steel threaded rods. At each floor level, two 0.6096 m × 0.6096 m × 0.0127 m

(2 ft. × 2 ft. × 1/2 in.) solid steel plates are clamped together to form a single floor.

The clamping force is provided by a single nut and lock washer installed on the top and
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Figure 9.1: University of Connecticut medium-scale structure
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Table 9.1: Nominal Story Parameters for Four Story Structure

ki 256.5 kN/m

ci 87.2 N/(m/s)

mi 88.6 kg

ω0,i 8.56 Hz

bottom of each floor and each column. The lock washers ensure that a consistent clamping

force is provided and that each column connection behaves rigidly. The columns are

attached directly to the shake table and clamped with nuts and lock washers to provide a

rigid connection.

The floor levels are uniformly distributed, which gives a nominal story height of

0.9144 m (3 ft.). Moreover, because the columns are rigidly connected at each floor level,

the continuous threaded rod can be treated as four independent fixed-fixed columns in

each story. This allows easy computation of the equivalent story stiffness ki and the use of

a 4-DOF ROM. Damping is assumed to be proportional to stiffness and lightly damped at

approximately 1%. Likewise, the mass of the floor plates (74.1 kg), is much larger than

the mass of the columns (14.5 kg) so the mass can be treated as lumped at each floor level.

Using nominal dimensions and common values of steel material parameters (Young’s

modulus 200 GPa and density 7850 kg/m3), the nominal story parameters are calculated

and shown in Table 9.1.

9.1.2 Shake Table

The shake table is a 3 ton, uniaxial, 2 m × 2 m, Shore Western shake table with a 20 Hz

bandwidth. It is used in displacement control to provide band-limited white noise base

excitation to the structure. The command signal is generated by a Simulink model that
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Figure 9.2: PSD of Shake Table Acceleration

pre-filters the signal to achieve a nominally flat shake table acceleration response across

the structure’s bandwidth. In practice this was difficult to achieve as the shake table is

commanded in displacement control. The PSD of the shake table acceleration is shown in

Figure 9.2.

From Figure 9.2, the magnitude of the shake table acceleration is within 15 dB through-

out the bandwidth of the structure. Also, the minimum magnitude is at approximately

5 Hz, which is near the observed interstory natural frequency. Thus, the minimum oc-

curs near the frequency value that is predicted to cause the most error in substructure

identification. This is an unavoidable result of the pre-filtering and can be interpreted as

providing a conservative bound on the performance of substructure identification.

The power of the excitation can be charactorized by the standard deviation σüg of

the shake table acceleration1 and the peak ground acceleration (PGA). For each of the

experiments, the acceleration signal was filtered with a second order Butterworth low-pass

1This is equivalent to the root mean square of a zero mean signal.
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Figure 9.3: Picture of installed accelerometer

filter with cutoff at 20 Hz. The average ground acceleration standard deviation σüg was

0.0356 m/s2 and the average PGA was 0.2270 m/s2. This corresponds to a moderate

earthquake and is approximately equal to 4.0–5.0 moment magnitude.

9.1.3 Sensors

To measure the response of the structure, accelerometers are installed on each floor

including the ground floor. PCB capacitive accelerometers are installed along the plan

centerline of each floor in the direction of excitation. The accelerometers installed on the

structure have a maximum range of 20 g and the accelerometer installed on the shake

table has a range of 3 g. The acceleration time histories are collected by a Data Physics

Data Acquistion system sampled at 256 Hz for 512 seconds. Once the time histories are

collected, they are post-processed by subtracting the mean and scaling the signal into

engineering units.

To determine the performance of the accelerometers, a noise analysis is performed. A

full set of time histories are collected while the structure remains motionless. Using this

147



Table 9.2: Accelerometer signal to noise ratios.

üg ẍ1 ẍ2 ẍ3 ẍ4

SNR [dB] 44.14 15.19 26.76 39.29 42.99
NSR [%] 0.62 17.39 4.59 1.09 0.71

record, the SNR can be computed. In this study, the SNR is defined as the RMS response at

each floor divided by the RMS of the quiescent time history. In practice, this is computed

using the standard deviation, which is equivalent to the RMS of a zero-mean signal. Thus,

the SNR is

SNRi =
σẍi

σ
ẍ
(q)
i

(9.1)

where σẍi
is the standard deviation of the ith acceleration response and σ

ẍ
(q)
i

is the standard

deviation of the corresponding quiescent response.

The computed SNR of each accelerometer, along with its inverse, the noise to signal

ratio (NSR), is shown in Table 9.2. From this table, accelerometers on the ground, third and

fourth floors have good performance with a SNR of approximately 40 dB. However, the

accelerometers on the first and second floor have much worse performance. It is unclear

why these two accelerometers had lower SNR than the other accelerometers though it was

not found to substantially effect the results.

9.2 Error Analysis

An error analysis consistent with Section 5.4 using the nominal parameters (Table 9.1)

is performed to determine the expected identification error for each floor. The results

shown in Figure 9.4 demonstrate that the second story has several orders of magnitude
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Figure 9.4: Bar plot of predicted error for four story structure using a logarithmic scale.
The particular value does not have physical meaning or units, so one floor’s performance
should be interpreted in relation to the others.

higher expected error than the other stories. As discussed previously, high expected error

indicates that there will be problems with identification at this story level.

To overcome the high expected error in the second story identification, it is necessary

to use a control device. In the next two sections, structural control is not implemented;

however, it is a source of interest for future work for which preliminary studies are

reported in Section 9.5.

9.3 Experimental Procedure

To successfully investigate the performance of substructure identification, an experimental

procedure is selected to detect small changes in stiffness within a controlled setting. Care

was taken to perform each of the tests identically and only make minor changes that are

the subject of the experiment. This section will describe the common practice within each
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test, including the excitation, response collection, and signal processing. Also discussed

are the different damage scenarios and how they differ from one another.

During each test, the structure is excited by base motion provided by the shake table.

The shake table motion is gradually ramped up to a consistent level and then the structure

is allowed to vibrate and achieve a stationary response. Because the displacement is small,

the structure’s response remains linear and elastic throughout the test. Once the response

is visually observed to be stationary, the DAQ system is started and a full 512 second

time history is collected while the structure vibrates under continued excitation. After

the time history is fully collected, the shake table motion is ramped down to zero and the

structure’s motion is allowed to decay. Only when the structure is completely motionless

is another test initiated. This ensures that no spurious motion is incoporated into the

collected time histories.

Following a test, the collected data is processed in a consistent, automatic manner.

The signals are processed to remove any bias and scaled to express the signals in phys-

ical engineering units. Then, the signals are sent to a series of functions that compute

the component FRFs consistently. The long time histories are broken into overlapping

segments of 67% overlap with a half-range sine window function to create an ensemble

of 94 segments. The ensemble is transformed with a 212 point DFT and combined to

find the component FRFs using Welch’s method. Then the FRFs are combined using

the substructure estimator to identify the story level stiffness and damping parameters

using nonlinear regression. If it is observed that nonlinear regression is unsuccessful, the

analyst will re-try the regression, possibly with a different initial estimate. In practice, the

identification was usually successfully and the author only re-ran the regression in the
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Table 9.3: Damage Scenarios

D0 Undamaged Nominal Structure

D1 Two Nuts Loosened on Second Story Column

D2 Two Nuts Loosened on Third Story Column

D3 Two Nuts Loosened on Fourth Story Column

initial identification steps before the initial guess and parameter bounds were set. In no

case was the data re-processed.

The initial guess is found using the nominal story parameters in Table 9.1. It is observed

that these nominal parameters over-predict the stiffness of the structure by over-estimating

the stiffness parameter and under-estimating the mass parameter. Therefore, after suc-

cessful identification of the undamaged case, the stiffness and damping parameters are

updated with the identified values. Because the substructure estimator is formulated in

terms of mass-normalized values, the mass ratio from one floor to another is the only

information about the mass that is needed. Moreover, because the structure is uniform, the

mass ratio is identically one and the stiffness and damping parameters can be discussed

as mass-normalized.

After computing the stiffness and damping parameters for the undamaged structure,

the structure can be modified to simulate damage. The damage pattern selected is the

softening of one story by loosening the nuts clamping the floor plate. For instance, for

damage case 2, denoted D2, the third story stiffness is decreased by loosening the nuts

on the top of the second floor. This changes the boundary condition of the base of the

third story column from fully restrained to partially restrained. This results in decreased

stiffness of the third floor that is observed in the results. For each of the damage cases,

exactly two nuts are loosened to maintain symmetry in the direction of motion and
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Figure 9.5: Damage detection results showing the mass-normalized identified stiffness
value k̂i/mi with 95% confidence interval.

to minimize the amount of stiffness loss. The different damage scenarios are listed in

Table 9.3.

9.4 Results

The collected data will be analyzed using substructure identification and compared to

the global natural frequencies. This comparision will serve to demonstrate the benefits

of substructure identification including decentralized computation, damage localization,
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Figure 9.6: Substructure identification for undamaged case D0.

and damage sensitivity. This section will present the identification results in a damage

detection context.

Using the procedure detailed in Section 9.3, the stiffness and damping parameters

of the entire structure are estimated using substructure identification. Figures 9.6, 9.7,

9.8 and 9.9 show the results of the identification for each story at each damage scenario.

Additionally, Figure 9.5 shows the identified normalized stiffness value for each story

grouped by damage scenario. Moreover, the 95% confidence interval is computed and

plotted as an error bar. Each damage scenario represents an independent test and the error

bars are predicted using one realization.

The most important identification is the baseline or undamaged case (D0). This

scenario serves as the comparision against which damage can be inferred. In Figure 9.6, it
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Figure 9.7: Substructure identification for second story damage case D1.

is clear that the first, third, and fourth stories are successfully identified. However, the

second story is improperly identified and HEST does not have the same form as HMOD.

This behavior is predicted by the error analysis. This same story will exhibit difficulties in

analysis for each damage scenario.

The first damage scenario considered is D1, which corresponds to damage in the

second story. As expected, the second story is not successfully identified, so damage

cannot be detected. However, this scenario is an excellent test to see if the other stories are

effected by damage. Neither the first, third nor fourth stories exhibit much deviation from

the undamaged values. This is easy to see in Figure 9.5 where the identified values are

close to each other and have small error bars. This result demonstrates that substructure

identification is resistant to Type II error (false positives).
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Figure 9.8: Substructure identification for third story damage case D2.

The second damage scenario D2 corresponds to damage in the third story. By examin-

ing Figure 9.5, it is clear that the third story stiffness is identified as 25% smaller than the

undamaged case and it has a small error bar. Therefore, damage is detected in the third

story with statistical significance. Moreover, the fourth story stiffness is confidently identi-

fied near its undamaged value; so, it is resistant to Type II error. However, the first story

shows some difficulties as evidenced by the large error bar and the mis-identified value

shown in Figure 9.8. This result shows that something occured to introduce uncertainty

into the first story identification. Interestingly, significant levels of torsional vibration

were noted for this damage scenario alone. It is hypothesized that the particular global

dynamics of this structural configuration couples with one of the torsion modes of the

structure. This introduced out-of-plane motion that resulted in an improper identification
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Figure 9.9: Substructure identification for fourth story damage case D3.

of the first story. The torsion was only noticed visually and was not measured due to

limited sensor availability.

The final damage scenario D3 considered damage to the fourth story. Consistent with

the previous results, damage is detected in the fourth story where the stiffness is decreased

by 25%. Likewise, the first and third stories remain undamaged and the second story is

improperly identified.

The results of these four scenarios indicate that substructure identification is effective

at detecting local damage. Moreover, the identification is sensitive to damage occuring at

the story level while remaining insensitive to damage in other stories. This indicates that

substructure identification is able to minimize Type II error while still detecting damage.

Moreover, Type I error (false positives) is minimized through the use of a linear confidence
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interval. This interval will be large when a story level is improperly identified and can be

used to reject false positives.

These results also indicate two problems with substructure identification of this struc-

ture. First, substructure identification is unable to identify the second story parameters.

This is the result of low interstory acceleration response, as predicted by the error analysis,

and the low levels of damping in the structure (ζ < 0.01). This result should not serve to

exclude substructure identification but rather motivate the use of controlled substructure

identification to overcome this deficiency by using a control device to temporarily change

the structure’s response. The second problem raised by the results is improper identifica-

tion of the first story in the second damage case (D2). As stated previously, this is likely a

result of the coupled torsion response; additional sensors could be used to remove the

torsional component of the response. Likewise, the first floor accelerometer suffers from

the highest levels of noise, so it is susceptible to spurious response.

The results of substructure identification can be compared to global identification

methods. The most simple frequency-domain global identification method tracks the

global natural frequencies. Using the acceleration time histories, the FRFs Hẍi üg of input

ground acceleration to output response are computed. Then, using the fourth floor FRF

Hẍ4üg , the natural frequencies are identifed by picking the peak magnitude response,

Table 9.4: Global natural frequencies of the structure by damage scenario in Hz.

ω1 ω2 ω3 ω4

D0 2.06 6.25 10.25 12.81
D1 1.75 6.00 10.12 12.62
D2 1.88 6.12 9.62 12.81
D3 2.00 5.50 10.06 12.75
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Table 9.5: Identified substructure mass-normalized stiffness parameters (ki/mi) with 95%
confidence intervals. Damaged stories are shown in bold.

k1/m1 k2/m2 k3/m3 k4/m4

D0
1637

N/A
1394 1604

(1630,1643) (1388,1400) (1596,1612)

D1
1611

N/A
1417 1658

(1603,1619) (1414,1420) (1651,1664)

D2
1521

N/A
1073 1681

(1473,1570) (1069,1078) (1672,1689)

D3
1635

N/A
1538 1234

(1631,1640) (1527,1549) (1224,1244)

recorded in Table 9.4, for each damage scenario. Damage detection is performed by noting

a decrease in one or more of the natural frequencies. Damage is detected in scenario D1

by a decrease of 15% in the first natural frequency. For the second damage scenario, a

decrease of 9% is noted in the first natural frequency. Finally, in the third damage scenario,

damage is detected by a decrease of 12% in the second natural frequency.

By comparing the damage sensitivities, the the performance of the two damage de-

tection methods can be compared. With the exception of D1, substructure identification

is over twice as sensitive to damage as the global natural frequency. Additionally, sub-

structure identification provides damage localization whereas global natural frequencies

cannot provide damage localization without additional modal information. In the first

damage scenario D1, global natural frequencies out-perform substructure identification

because the substructure identification method is incapable of identifying the second story

parameters.
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Table 9.6: Design specifications of various controllers as specified by various constraints.
Note: the force constraint is specified as a percentage of the total weight of the structure.

σc ζc f c hc
2 hc

∞

Name [rad/s] [%] [%] [dB] [dB]

CT00 −5.0 10 2 40 40
CT01 −5.0 10 2 20 40
CT02 −5.0 10 2 40 20
CT03 −5.0 5 2 40 40

9.5 Preliminary Study of Active Control

Using the results of the previous sections, a preliminary study of controlled substructure

identification can be performed on a ROM of the structure. The second story was not

experimentally identified by substructure identification so the controller will be designed

to improve substructure identification of the second story. A suite of controllers will be

designed and tested with different sensor configurations using the procedure detailed in

Chapter 7. Then, the performance of controlled substructure identification in undamaged

and damaged configurations will be determined using MCS.

This study will design a controller for an AMD installed on the top floor. It is as-

sumed that the secondary controller of the AMD has high-authority and that the control

system has a static gain. This assumption is unlikely to be true in practice, but further

considerations are outside the scope of this study.

The controller will be designed by following the control design procedure in Sec-

tion 7.3.2 using only the controllers with the most restrictive constraints. These controllers

are specified in Table 9.6. This selection is purposeful because the low damping encoun-

tered in the structure will likely decrease the robustness of high gain controllers. By

restricting the design space to restrictive constraints, high gain controllers are avoided.
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Figure 9.10: Second story interstory acceleration response for various controllers defined
in Table 9.6. The center of the identification bandwidth is shown as a dashed line.

After designing the controllers, the system performance of the closed loop system is

shown in Table 9.7. Likewise, the second story interstory acceleration response is shown in

Figure 9.10. The figure shows a modest increase in the second story interstory acceleration

response, which is reflected in the first column of Table 9.7. An interesting side-effect of

the controller is that the overall system response is decreased and the stability is increased

when compared to the uncontrolled system.

To determine the substructure identification performance of the controllers, MCS is

used. 10,000 independent experiments of the undamaged and damaged scenarios. The

damage scenario is selected to be D1 with 25% stiffness loss applied to the second story.

The second story stiffness is identified and the statistics are shown in Table 9.8.
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Table 9.7: Design results of various controllers compared to the uncontrolled case. Note:
the force constraint is specified as a percentage of the total weight of the structure.

J maxi σi mini ζi ‖uc‖2 ‖Tc‖2 ‖Tc‖∞ maxi ‖δi‖2 maxi ‖ẍi‖2

Name [·] [rad/s] [%] [%] [dB] [dB] [mm] [m/sec2]

UNC 0.92 −0.06 0.34 0.00 37.19 48.78 5.23 4.61
CT00 1.10 −5.00 9.95 2.00 23.57 13.99 0.67 0.84
CT01 1.02 −4.92 9.84 3.82 24.19 11.97 0.83 1.14
CT02 1.10 −5.00 9.95 2.00 23.57 13.99 0.67 0.84
CT03 1.12 −5.00 6.16 2.00 23.93 14.01 0.65 0.89

Table 9.8: Statistics of substructure identification of the second story stiffness presented as
percentage of the nominal stiffness value. The damaged case corresponds to a decrease in
stiffness of 5%.

Undamaged Damaged
Mean STD Mean STD

UNC −0.69 12.08 −26.04 5.83
CT00 −0.89 7.61 −25.16 2.11
CT01 −0.72 7.18 – –
CT02 −0.85 7.37 −25.18 2.34
CT03 −0.97 7.27 −25.30 3.08

The results show three findings. First, controlled substructure identification is effective

at decreasing the error variance of second story stiffnees identification. The improvement

is approximately a two-fold decrease. Second, the bias is slightly increased for the un-

damaged scenario. Third, CT01 results in an unstable system for the damaged scenario

indicating the controller’s lack of robustness.

CT00 is selected as the controller and its performance is tested in a variety of different

sensor configurations. These configurations and the system performance is shown in

Table 9.9. The second story interstory acceleration response is shown in Figure 9.11. The

results show that the different configurations have similar amplification of the second

story interstory acceleration response.
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Table 9.9: Design results of various observers. The first columns refer to which story-level
acceleration sensors are used with zero corresponding to the ground acceleration.

Obs. Vec. J maxi σi mini ζi ‖uc‖2 ‖H‖2 ‖H‖∞

Name [·] [rad/s] [%] [%] [dB] [dB]

UNC – 0.92 −0.06 0.34 0.00 37.19 48.78
CT00 full state 1.10 −5.00 9.95 2.00 23.57 13.99
OB00 full accel. 1.10 −5.00 5.60 2.00 23.56 13.99
OB01 [0,3,4] 1.10 −3.68 3.60 2.00 23.56 13.99
OB02 [0,4] 1.10 −2.17 2.14 2.00 23.56 13.99
OB03 [3,4] 1.00 −5.00 9.95 1.77 23.22 14.07
OB04 [4] 0.93 −5.00 8.80 1.70 23.62 14.32
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Figure 9.11: Second Story Interstory Acceleration Response for various observers.
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Table 9.10: Statistics of controlled identification with observers of the second story param-
eters presented as percentages.

Undamaged Damaged
Mean STD Mean STD

UNC −0.69 12.08 −26.04 5.83
CT00 −0.89 7.61 −25.16 2.11
OB00 −0.70 7.04 −25.18 2.33
OB01 −0.78 7.32 −25.14 2.12
OB02 −1.06 7.95 −25.18 2.37
OB03 −1.43 8.91 −24.96 2.06
OB04 −1.13 8.27 −25.43 3.71

Once the observers are designed, substructure identification performance is deter-

mined for the undamaged and damaged scenarios. The results are summarized in Table

9.10. The results present two findings. First, sensor configurations including the ground

acceleration are able to provide identification performance comparable to the full state

controller. This will likely result in successful identification of the second story stiffness.

Second, sensor configurations excluding the ground acceleration have worse identification

performance and see an increase in bias and error variance. The author is uncertain as to

whether the second story stiffness will be successfully identified.

9.6 Findings

Substructure identification is performed on a four story steel structure. Damage is suc-

cessfully detected with statistical significance for most scenarios. Moreover, damage

is successfully localized to the damage location in each successful identification. This

serves to confirm substructure identification for damage detection in a shear building.

Furthermore, substructure identification is found to be more sensitive to damage than

global modal measures. Error analysis predicts that the second story will not be properly
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identified. This behavior is indeed observed: in no cases is the second story successfully

identified. This result motivates future work to use a structural control device to improve

identification accuracy.
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Chapter 10

Conclusions

This study has developed a generalized procedure for substructure identification, in-

cluding tools to analyze and predict a particular estimator’s performance. This was

accomplished within the context of damage detection with appropriate examples and

simulations performed to demonstrate performance. Experimental verification was per-

formed and found to confirm theoretical and simulated results. This was accomplished in

three parts.

First, a generalized procedure was developed with guidelines for forming a ROM and

substructure estimator. Practical concerns surrounding FRF estimation were described and

best practice outlined. An extensive study of nonlinear regression techniques including

confidence intervals/regions was presented. It was found that a LSE combined with

a Jacobian based linear confidence interval provides the best statistical performance.

Following, the statistical curvature was derived and computed for a shear structure

estimator to demonstrate its satisfactory performance. Finally, an error analysis was

derived for the LSE; this error analysis allows for control design and optimal sensor

placement.
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Next, numerical simulation was used to demonstrate the performance of the sub-

structure estimator. First, uncertainty propagation was described through Monte Carlo

simulation. Continuing, Monte Carlo simulation was used to detect small changes in

stiffness and was shown to properly locate damage with good Type I/II error performance.

Then, a control design procedure was used to develop a controller for an AMD to

temporarily improve the substructure identification performance of a particular substruc-

ture. Various controllers designed using different constraints were compared and their

substructure identification performance was characterized through MCS. Then, a con-

troller was tested using various realistic sensor configurations. Controlled substructure

identification was found to have a dramatic positive effect on substructure identification

performance.

Finally, experimental verification was provided through two studies. The first study

utilized a bench-scale, two-story structure subject to white noise base excitation. This

study found that passive control methods can improve identification accuracy by altering

the global dynamics of the structure. The second study clearly demonstrated the damage

detection potential of substructure identification. It was possible to detect a small amount

of damage simulated by releasing the boundary conditions of one story level of a 12 ft,

four-story, steel structure. This damage was not only detected but localized to the correct

story level in all but one case: the second-floor identification, which was predicted by the

identification error analysis to fail. This positive confirmation of the identification error

analysis motivates future controlled substructure identification described in Section 9.5.
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Chapter 11

Future Work

Future work is required to extend the developed controlled substructure identification

techniques to physical systems. The next step is to perform active control experiments

using the University of Connecticut structure. Realistic controllers were developed and

their performance described in Section 9.5. Section 11.1 will desribe the necessary next

steps.

Controlled substructure identification can be further extended to semi-active control

devices. To do this, an alternative design procedure will be needed that can parameterize

and optimize the inherently nonlinear system. Section 11.2 will describe these steps

further.

This study focused entirely on ROMs that admitted only translational DOFs. This

results in ROMs that behave as a shear beam/building. Future work will be needed to

investigate ROMs admitting rotational DOFs to investigate other structures that have

more complicated deformations. For example, a moment frame structure can be analyzed

such as a welded steel moment frame (WSMF) and bridge structures. Sections 11.3 and

11.4 will describe future research avenues.
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11.1 University of Connecticut Active Control Experiment

A second round of testing will be performed at the University of Connecticut to demon-

strate the effectiveness of controlled substructure identification. This experiment will

use the control design procedure described in Chapter 7. However, there will be several

unique issues that need to be overcome.

First, the low levels of damping (ζ0,i ≈ 1%) makes substructure identification difficult

because the response is highly peaked resulting in fewer frequency points being utilized.

This reduces the effective number of statistical degrees of freedom, which introduces

greater error variance. Additionally, the low damping makes any controller susceptible to

structural parameter uncertainty and decreases the overall robustness of the controller.

This means that controllers performing well for the undamaged case can become unstable

with small changes in stiffness (damage). The robustness of the proposed controller will

need to be studied explicitly.

Second, any control device will admit control system dynamics that can affect the

closed loop performance. Substructure identification requires higher frequency band-

width, which may be attenuated by some control system dynamics. Physical implemen-

tations will need to determine if control system dynamics will effect the closed loop

performance and, if so, find ways to design around these limitations. A potential path

forward is to include control system dyanmics in the computation of the objective function

so that the control gain matrix is designed incorporating the control system dynamics.

Third, control structure interaction (CSI) can decrease the authority of a controller if

feedback dynamics between the control device and structure are not accounted for (Dyke

et al., 1995). This will be of special concern for substructure identification controllers

168



because they are specifically designed to apply control forces at the poles and zeros of a

structure. Therefore, in addition to designing for the control system dynamics, special

care will need to diagnose and overcome any CSI that is encountered.

Section 9.5 describes the performance of several possible controllers to be applied

to the University of Connecticut structure. The selected controller is then tested using

a variety of sensor configurations and shown to improve substructure identification. A

successful active control experiment will utilize this study as the starting point to test

for the described issues above. After diagnosing and compensating for any issues, the

controller should be implemented in the experimental testbed to determine if second

story damage can be detected. Successful damage detection will prove the viability and

effectiveness of controlled substructure identification in this configuration.

11.2 Semi-Active Controlled Substructure Identification

Semi-active control devices such as magnetorheological (MR) dampers are commonly

used in civil structural control applications. These devices offer greater adaptability than

similar passive devices while remaining inherently stable and using less energy than active

devices. Because of the widespread utility of semi-active devices, controlled substructure

identification should be investigated using semi-active control devices.

Control design using a semi-active device requires modifications from the active

control design presented in Chapter 7. First, the closed loop system is nonlinear because

of the semi-active control device. This means that the objective functional can not be

computed directly. Modifications will be needed to determine an alternative. Second,

the closed loop poles of the system cannot be used as the search space. The control gain

169



matrix will need to be used directly as the search space. As a result of these complications

and others, it is likely that semi-active control design for substructure identification will

be highly non-convex.

Semi-active control does offer a unique benefit to controlled substructure identification.

The closed loop system of a semi-active controller is inherently stable because the control

device can only dissipate energy. Therefore, active controllers that would otherwise result

in an unstable system can be used in a semi-active system that will remain stable.

Future work will be necessary to find ways of computing the objective functional for

various controllers. Finding the optimal controller will require non-convex optimization

that may be computationally expensive. Future work will need to find ways to efficiently

cover the search space.

11.3 Damage Detection in a Welded Steel Moment Frame

Using a WSMF as the testbed structure, damage will be simulated by the presence of

a plastic hinge. This corresponds to observed damage behavior in WSMFs constructed

before the 1994 Northridge earthquake. This will be accomplished through the use of a

nonlinear finite element model (FEM). The specifics are described herein.

Prior to the Northridge earthquake, WSMFs were constructed with moment connection

details that contained a welded backing bar which was left in place. Research following

the earthquake (Kim et al., 2003) demonstrates that these connections are at risk of brittle

fracture in the flange welds. This results in a 22–44% decrease of plastic moment capacity.

The post-fracture behavior of the joint will be simulated by a nonlinear FEM. This will

be used to generate acceleration time-histories for damage detection. These time histories
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will be analyzed in the same way as a shear building using a similar estimator to the one

developed in Chapter 4. The frame structure estimator will need to incorporate rotational

DOFs which requires additional terms.

It is necessary to develop a ROM; for this example, static condensation is used. The

full-order FEM is reduced to a 3DOF chain structure. This is accomplished by lumping

the story mass at one point and reducing the stiffness matrix using static condensation.

Then, the substructure estimator is developed and its damage detection performance can

be found using MCS.

11.4 Continuous Beam Estimator for Bridge Structures

The final major research thrust is to develop an estimator appropriate for bridges. This

represents an area of substructure identification research that has not been explored. To

successfully develop a continuous beam estimator, two obstacles need to be overcome.

First, Bernoulli beams require both displacements and rotations. Displacements can

be accommodated with measured accelerations, however, rotations cannot be easily

measured. Therefore, rotations will need to be estimated via a dense set of acceleration

measurements. Alternatively, the beam can be instrumented such that the acceleration

sensors are placed at rotation nodes so that they will have minimal response in the

identification frequency bandwidth.

The second obstacle is interface forces. A successful estimator requires that the equa-

tion of motion for the element consider be balanced. This requires that the interface force

be measured, which requires prior identification that is difficult to initiate in an unmea-

sured structure. However, this may be overcome by using two overlapping elements with
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a common interface. The interface forces will be estimated using each element and then

set equal to each other. The optimization variable is the stiffness, EI, which can be found

by minimizing the difference between the interface forces. It will be important to develop

a technique to locate the most effective amount of overlap between the two elements. This

will be accomplished using the expected identification error for continuous structures

following a similar procedure to the one in Section 4.4.

Once an appropriate beam estimator is developed, numerical simulation will be

used to demonstrate its validity. Special care will be taken to detect and localize damage.

Furthermore, simulation will be used to demonstrate an optimal sensor placement strategy

as found through the minimization of the expected identification error. This will be taken

as the analogue to controlled identification in a shear building.

Finally, using in situ bridge measurements, substructure identification will be per-

formed on a physical bridge. The bridge to be identified is currently monitored through

a joint research project between the University of Connecticut and the Connecticut De-

partment of Transportation. Using data collected from the bridge, the stiffness will be

identified by using a ROM, which will be computed with the accelerometer sensor location

and plan drawings. Several independent identifications will be performed over several

days to compute the identification variance, which will be statistically controlled via

measured environmental conditions. This will demonstrate the viability of substructure

identification for long-term bridge monitoring.
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