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Abstract

Protections of coastal structures and coastal region from the attack of incident
waves are important problems for coastal engineers. To solve these problems
effectively and efficiently, the coastal engineers need more efficient tools for
analyzing impacts of waves on structures in the planning and design of marine
structures. The objective of this study is to develop a numerical model capable of
predicting behavior of the non-breaking and near breaking solitary wave propagating
in the coastal zone and the interactions of wave and coastal structure. The numerical
model used in the study is called the Modified Marker-and-Cell (MODMAC)
method which is a two-dimensional finite difference model. The equations modeled
are the fully nonlinear, time dependent Navier-Stokes equation and the continuity
equation. The wave profile of the propagating wave when interacting with coastal
structure as well as the induced velocity field and the subsurface pressure are
obtained in the whole flow field.

For the numerical analysis, both the Lagrangian and Eulerian methods are
employed to track these massless markers along the free surface. The Eulerian

methods are used in the following applications: (1) propagation of solitary waves in a
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Chapter 1

Introduction

Background

Protections of coastal structures and coastal region from the attack of incident
waves are important problems for coastal engineers. Many environmental factors
have caused coastal disasters, among which are storm surge, beach erosion, extreme
tropical cyclones, winter storm waves, tsunamis, earthquake and land subsidence.
On June 15, 1896, a tsunamis resulting from an earthquake attacked Sanriku, Japan,
and more than 27,000 people died and over 10,000 buildings were destroyed. A
recent earthquake in Turkey on August 17,1999, generated a tsunamis with a
maximum run-up on the coast of 2.5 m. Indeed most of the damages associated with
tsunamis are associated with their run-up at the shoreline. In 1995, the winter storm
waves caused the leeside scour and damaged the Ventura breakwater. In addition,
there was significant shoaling at the navigation channel in Ventura Harbor,
California. The leeside scour and damage of the breakwater is caused by the
rotational flow while the wave overtopping the rock sill. An understanding of wave
actions is of vital importance in the design of many coastline facilities and harbor

structures.
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These coastal engineering problems can’t be completely solved without the help
of physical models or even prototype measurements. However, many coastal
engineering problems associated with waves and currents can be analyzed or
simulated by numerical models with different degree of accuracy. Numerical
models, even though they are only approximations by nature, can have wider
applications for real world coastal engineering problems. The finite difference
method, the boundary element method, and the finite element method are three
categories of numerical models.

Camfield and Street (1968) suggested that, to study the shoaling, breaking and
run-up characteristics of catastrophic ocean waves, it is reasonable to begin by
generating and studying simple finite-amplitude waves such as solitary wave. Such
solitary waves can model many of the characteristics of tsunamis. Using a simple
plane beach, important characteristics of the run-up tongue can be obtained both
analytically and experimentally. (Synolakis,1986; Zelt,1991) In the shallow water
region, the oscillatory waves are gradually transformed to become cnoidal wave
with the limiting case approaching the solitary waves. In this sense the solitary
waves can be considered a limiting case of the oscillatory wave and can be used to
simulate the interaction of the wave and coastal structures. Because of the

availability of a large amount of analytic results and experimental data on this
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the drag and lift forces acting on the half-buried pipes. And the temporal variation
of free surface elevation when the incident wave propagates over the submerged
breakwater or over the sloping beach should be obtained simultaneously. The
numerical model used in the study is called the Modified Marker-and-Cell
(MODMAC) method that is a two-dimensional finite difference method. The
computational process is simplified to solve the Navier-Stokes equations and the
continuity equation. The numerical model was used to compute the wave profile,
the velocity and the pressure. The numerical results for the wave overtopping the
breakwater have been compared with the experimental data by Lee, Zhuang, and
Chang (1993). The numerical solutions for the run-up problems compared with the
experimental and numerical results by Pengzhi Lin (1999) and Ying Li (2000). The
numerical solutions for the half-buried pipes have also been compared with the data

generated for the Orange County Sanitation District in California (1998).
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Chapter 2

Review of Previous Research

Many investigations have been conducted for wave propagations into the coastal
zone as well as wave-structure interaction. In this chapter, some pertinent studies
will be reviewed in its connection to the present investigation. In section 2.1
theoretical model on three classes of problem can be briefly reviewed. The
experimental studies associated with the three classes of problem will be described
in section 2.2. Numerical models used previously and their relevance to the present

study will be presented in section 2.3.

2.1 Theoretical Models:

2.1.1 Solitary Wave Overtopping the Submerged Breakwater:

A linear inviscid model was used by Takano(1960) and Kirby and Dalrymple
(1983). The model is based on a matched eigenfunction expansion technique,
commonly used for studying surface wave propagation over abrupt transitions of

water depth. The motion is governed by Laplace’s equation:

V =Re(-e™'V($ (x,y)), V¢=0in n(xt)<y<H(x), ~o<x<wo
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The linearized free-surface and bottom conditions are:

©p/0y)+a’g '¢=0 ony = 0 at free surface, and

(Cp/on)=0 on y = H(x) at bottom

Ting and Kim (1994) also used this method to obtain the surface wave profiles

and the instantaneous velocity distributions near the submerged rectangular
obstacle. Their results when compared to their experiments (1994) show that the
linear inviscid model can’t predict the rotational flow correctly on the lee side of the
submerged rectangular obstacle. Therefore, it would be necessary to model the

wave overtopping the submerged obstacle by using the viscous flow model.

2.1.2 Solitary Wave Running Up on Vertical Wall or Sloping Beach:
The earlier work on long wave run-up relied on analytical approaches. To
describe the analytical solutions for the solitary wave running up on the vertical
wall, Latione(1960) used the perturbation method to obtain approximate solutions
for the propagation of solitary waves in constant water depth unto vertical wall at
one end of the wave tank. The normalized maximum run-up (R/do) of solitary wave

on the vertical wall obtained by Latione’s approximation is,

2

R/d, =2f1'+f‘;

where H' is the normalized wave height = H/d, and d, is the constant water

depth.
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74, 74,

(ﬁ=30°,% =0.17) (p=45°,% =0.48)

Synolakis analytical solution(1987) 0.4067 1.1311

Lin, and et al. experiment(1999) 0.4306 1.2707

Pengzhi Lin and et al. (1999) employed an experiment, using the particle image
velocimetry (PIV) technique, to investigate the free surface profile and also the
spatial velocity distribution on the sloping beach. Their results show that the vertical
variations of the horizontal velocity component increase linearly from bottom to
free surface. The non-uniform vertical distribution of horizontal velocity component
on the slope revealed that the long wave approximation used by the shallow water

equations may not be adequate.
2.1.3 Wave Passing Over the Submarine Pipeline:

In the analysis of wave acting on the submarine pipelines on the seafloor, the
unburied and buried pipelines are studied in the coastal engineering. The calculation
of the hydrodynamic forces associated with wave action is crucial for the stability
analysis of the pipeline. The vertical and horizontal forces, Fz(t) and Fx(t), for a pipe

with diameter D are usually calculated by the well known Morison equation,

F.(t)=0.5p DCo[UMU () +0.25pD*C,, U(r)

F,(6)=05pDC,U*(®)
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where U(t) and U (r)are the time-dependent total ambient water particle velocity
and acceleration, and C,, C,, and C, are time-invariant drag, inertia, and lift
coefficients. The coefficients of Morison equation have been reported from the
laboratory study of Bryndum et al. (1983), and from the field study by Grace and
Zee (1981) Due to the wake being swept back and forth over the pipe, the wake
effect has been recognized for some time. Verley et al. (1989) developed a new
hydrodynamic force model, called the wake model including wake velocity, for the

prediction of forces on seabed pipelines. The wake model is,

F.(t)=0.5p DC, (U, (U, (€) +0.2502D* (C,, U(t)~C e W (1))
F,(t)=0.50DC, (W2 (?)
U,= wake velocity (W (t) ) + ambient velocity (U(t))

C,w is the added mass coefficient for the wake flow. Verley et al. (1989) employed

an experiment and found that the wake model gave a better prediction of forces than
the Morison equation.

Partial burial is a common configuration of submarine pipelines on the seafloor.
Foda (1985) investigated half-buried marine pipe under the oscillatory loading of
water waves. The hydrodynamic loading on the pipe is based on the assumption of
the potential flow above the seabed. Only the vertical equilibrium of pipeline was

considered under the wave-induced lifting force. Foda et al. (1990) conducted an
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experiment to study the wave-induced force acting on the half-buried marine pipes
and the breakout of this pipe. The Morison equation will be used to curve-fit the
measured drag and lift forces on the exposed surface of the pipe. The best-fit

coefficients of drag C,,, added mass C,,, and lift C, can be obtained.
2.2 Experimental Studies:

2.2.1 Solitary Wave Overtopping the Submerged Breakwater:

The propagation of transient water wave over a submerged obstacle can be
observed by experiments. Early investigators focused on the spatial variations of the
water surface profile, but less concerned with the fluid kinematics near the
submerged obstacle. Lee, Zhuang, and Chang (1993) conducted an experimental
study on the propagation of solitary wave over a submerged obstacle. They found
that (1) the overtopping wave constitutes a jet-like water mass which induces strong
vortex in the vicinity of the shoreward region of the breakwater, (2) the oscillatory
trains occur when the wave propagates over the breakwater. The vortex induces
significant impacts on the shoreward face of the breakwater, and it can also scour
the foundation of the breakwater and may damage the foundation region. Tsai, et al.
(1986) showed that the critical failure areas in structures of caisson are the toe and
the underlying foundation due to the wave-induced scouring, liquefaction and large
stresses in the foundation soil. The oscillatory wave trains modify the frequency

contents of the incident wave, thus the overtopping wave may affect the ship’s

10
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motions within the harbor basin. Ting and Kim’s (1994) conducted laboratory
experiments and found that there existed a region of formation and growth of
separation responding directly to the wave transformation above the submerged
obstacle. The interaction of the separated flow with the wave significantly modified

the transmission process and consumed the wave energy.

2.2.2 Solitary Wave Running Up on Vertical Wall and Sloping
Beach:

Ippen and Kulin (1954) presented the results of an experimental study of the
shoaling and breaking behavior of solitary waves. Camfield and Street (1968)
simulated experimentally the shoaling, breaking and run-up of large amplitude long
waves on a beach. Skjelbreia(1987) presented the velocity measurements in
breaking solitary waves using the Lser Doppler Velocimetry(LDV). Since the LDV
can only measure the time history of velocity at a point, it is difficult to obtain the
global information of the entire flow field under a wave. Nishimura and
Takewaka(1990) employed an imaging technique similar to the Particle Image
Velocimetry(PIV) to measure the velocity field under the solitary waves that break
either in constant water depth or on vertical wall. Pengzhi Lin, et al. (1999)
employed the PIV technique to provide free surface profile and also the spatial
velocity distribution in breaking solitary wave. LDV and PIV fail to measure

velocity in the region where air bubble density becomes large. Therefore no velocity

11
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data in the roller region of a breaking wave can be accurately measured using these
methods.
2.2.3 Wave Passing Over the Submarine Pipeline:

Summer et al. (1990) conducted an experiment and found that pipelines placed on
an erodible bed may bury themselves due to action of waves and currents on the
sediment in the neighborhood of the pipe. Cevik et al. (1999) presented an
experimental investigation to determine the scour depth due to three vortices around
the pipelines on the sloping beach. These pipelines might be destroyed partially or
fully under the wave action and thus they may not be able to perform their
functions.

Foda et al. (1990) conducted an experiment to study the wave-induced force
acting on the half-buried marine pipes and the breakout of this pipe. The Morison
equation was used to curve-fit the measured drag force on the exposed surface of
the pipe. The Sanitation Districts of Orange County (1998) in California
commissioned a large scale experimental investigation of forces acting on two
different depths of the submarine outfall and its rock protection structure. The
laboratory design wave used in the evaluation of forces acting on the pipe was
obtained from U.S. Army Corps of Engineers and the Coast of California Storm and

Tidal Wave Study. The forces were determined based on the velocity and

12
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acceleration of the incident waves propagation in a direction perpendicular to the

longitudinal axis of the outfall.

2.3 Numerical Models:

2.3.1 Solitary Wave Overtopping the Submerged Breakwater:

The early numerical model of ocean waves overtopping the submerged
breakwater was based on inviscid irrotational flow. Kobayashi and Wurjanto (1989)
developed a one-dimensional inviscid numerical model to predict the horizontal
velocity and vertical elevation above the overtopping coastal structure located on
the slope beach to assess the severity of the damage caused by the overtopping
wave. Beji and Battjes(1993) presented a one-dimensional finite difference
numerical model based on a time domain Boussinesq model. They developed an
improved linear dispersion characteristic to solve relatively long waves propagating
over a trapezoid submerged obstacle. The numerical model predicted the surface
elevation of the wave before and after the submerged obstacle, and reproduced the
details of the wave transformations over the submerged obstacle. But the numerical
model, based on the nonviscous assumptions, again can’t predict the flow field in
the vicinity of the submerged breakwater. Zhuang and Lee(1994) developed a
combined two-dimensional numerical model based on Boundary Element Method
consisting of potential flow theory and vorticity stream function formulation. The

vorticity stream function formulation was used in the vicinity of the shoreward

13
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region of the breakwater. In the region away from the separation zone the potential
theory by boundary element method was used. Although this numerical model
successfully simulated the strong the vortex occurring around the submerged
obstacle and the results did compare well with experimental data, the variations of

free surface due to the combined rotational effect still were not investigated.

2.3.2 Solitary Wave Running Up on Vertical Wall or Sloping Beach:

For practical problems with a wide range of wave parameters and complex beach
geometry, numerical approaches are necessary. Hibberd and Peregrine(1979)
obtained a numerical solution based on shallow water wave equation to describe the
behavior of a uniform bore over a sloping beach and the subsequent run-up.
Chubarov and Shokin(1987) presented the numerical model of long wave
propagation, in particular for tsunami waves, in the framework of non-linear
dispersion models of the Boussinesq and Korteweg-De Vries type using finite
difference method. Based on the shallow water equation, which assume uniform
horizontal velocity and hydrostatic pressure, Kobayashi et al.(1989) developed a
numerical model based on the nonlinear shallow water equations to predict the run-
up and overtopping problems. Their solutions have been shown to work well in
simulating wave run-up and swash motions. Zelt(1991) parameterized the wave
breaking with an artificial viscosity term in the momentum equation to obtain the

solutions of run-up of non-breaking and breaking solitary waves on impermeable

14
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beaches. He used a Lagrangian finite element method to solve the Boussinesq
equation. Lemos(1992) developed a numerical model that solved the Reynolds
Averaged Navier-Stokes (RANS) equations for the mean flow and the conventional
k-¢ model for the turbulence field during the wave breaking. Lin and Liu(1998)
presented a numerical model based on the RANS equations coupled with an
improved k-¢ model using the nonlinear algebraic Reynolds stress closure
assumption to study solitary wave run-up and run-down on beaches. Both velocity
distributions of non-breaking and breaking solitary waves on beaches were
investigated. Li(2000) developed a numerical model using the Weighted Essentially
Non-Oscillatory (WENO) employed in gas dynamics to solve the nonlinear shallow
water equations. It was found that the numerical scheme can predict the wave
profile on the slope and maximum run-up very well.

The numerical solution of the Navier-Stokes equation for problems with free
surface is complicated. The new position of the free surface shouid be obtained by
solving a non-linear equation at each time. This problem has been solved by using
finite difference method with a system of massless marker particles whose
movements determine the position of the free surface at any particular time (Welch
et al.(1966)). The numerical model used in the study is called the Modified Marker-
and-Cell (MODMAC) method that is a two-dimensional finite difference method in

solving continuity and Navier-Stokes equations. The method is useful in predicting
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the non-breaking and near breaking solitary wave propagating into the coastal zone.
The numerical model has been found to be convenient in computing the values of
velocities and pressure. The numerical results obtained in the present study on the
wave overtopping over the breakwater will be compared with the experimental data
by Lee, Zhuang, and Chang(1993). The numerical solutions for the run-up problems
will be compared with the experimental and numerical data by Pengzhi Lin (1999)
and Ying Li(2000). The numerical solutions of the wave-induced forces on the half-
buried pipes will be compared with the data of Orange County Sanitation in

California (1998). These computed results will be presented in chapter 4.

16
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Chapter 3

Numerical Model

The present Modified Marker-and-Cell (MODMAC) method is designed for
simulating the unsteady motion of water waves in two space dimensions. In Section
3.1, the original Marker-and-Cell (MAC) method and Modified Marker-and-Cell
(MODMAC) method are presented. In Section 3.2, the governing equations, the
continuity and Navier-Stokes equations are described. The boundary conditions
used in conjunction with the governing equations are presented in Section 3.3; the
initial conditions are presented in Section 3.4. In Section 3.5, the discretised forms
of the governing equations and the boundary conditions are presented.

3.1 Marker and Cell Method

Marker-and-Cell (MAC) method (Harlow and Welch, 1965) is one of the finite
difference techniques that can be used to solve the nonlinear time dependent Navier-
Stokes equations in two space dimensions including a free surface. The method is
characterized by the staggered grid method (Fig. 3-1) in which velocities are
centered at each cell boundaries and the pressures are centered at each cell. Working

with the Poisson equation, which is obtained from momentum and continuity
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equations, the pressure is computed. Substituting the computed pressure into the
momentum equations, the new velocity is computed at each time step. In free
surface flow problems, the massless marker particles, which are advanced by the

local velocity field, move along the free surface to new positions at each time step.

(Fletcher, 1991)

Dy U(i-142,.j) P(.j) U®+1/2,..) P(i+1,j) U(i+B/2,,)

Fig. 3-1 Cell setup and location of variables

The method of computing the free surface positions in the MAC method is based
on the Lagrangian formulation and can become unstable after a large number of
time steps. To smooth out this difficulty, the Eulerian formulation is employed. The
new formulation is an implicit scheme that has been shown to be stable after long
time steps when applied to water waves propagating in the medium of constant

water depth (Chan and Street 1970).

18
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For problem of wave overtopping over a submerged breakwater, the present
model modifies the MAC method with Eulerian formulation. The present model
modifies the MAC method with Lagrangian formulation as well as special velocity
adjustments near the intersection of the free surface and the sloping boundary for
simulation of wave run-up on the sloping beach. The entire flow field is covered
with rectangular mesh of cells, the space increments are 8x and 8y (or dx and dy).
The center of cell is designated by the indices i and j, where i is the column in x
direction and j is the row in y direction of a Cartesian coordinate system. The fluid
velocity components u and v and the pressure p are the dependent variables while
the x and y and time t are independent variables in the problem.

3.2 Governing Equations

The present modified Marker-and-Cell method is designed for simulating the
unsteady motion of water wave overtopping the rectangular breakwater and the run-
up on the sloping beach in two-dimensional spaces. The viscous fluid is assumed
incompressible. The governing equations are defined as follows:

For flow of constant density (incompressible flow), the continuity equation

reduces to

——+——=0 (3.2.1)
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The dimensionless Navier-Stokes equations are simplified as:

ﬁu+u5u+vﬁu__o”p+g L1 a""u+o"2u
ot ox Ay ox ST R\ox: ay) G2

ov v Ov dp 1 (3% %
+ + +R a”x2+ﬁy2 (3.2.3)

where x=x/do, y=y/do are the normalized space variables; u=u/,/gd, , v=v/gd,
are the normalized velocity components in the x and y directions;, p=p/ pgd,, is the
normalized pressure; p is the density of the fluid; g« = g«/g and gy = gy/g are the x, y
components of gravity acceleration; t=¢/ d% is the dimensionless time variable;
do = undisturbed water depth; u is the viscosity and the Reynolds number is defined
as Re=pudo /u.

3.3 Boundary Conditions

Two types of boundary conditions are employed in this study (Figure 3.2.1).

4
J —_— free-slip
/-\ P = pa
t—free-slip no-slip free-slip —p»
Breakwater

no-slip no-slip

Fig. 3.2.1 Sketch of boundary conditions
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First type of boundary conditions are specified at the domain of interest for

computation, the free-slip horizontal solid boundaries are,

Ju op
=0, —=0, nd ——=
(v o"y a ﬁy gy) (3.3.1)

the free-slip vertical solid boundaries are,

ov p
=0, —=0, and ——=g,
(u ox a ox & ) 332

Second type of boundary conditions is employed at the submerged breakwater
surfaces and the bed i.e. the no-slip conditions are specified at the horizontal solid

boundaries are,

ov 7 1 (8%
(R TC B

At the vertical solid boundaries are no slip condition are also specified,

2
(v:O, ?:O, and —a—£=g,+-l—[a uJJ (3.3.9

x Ox R\ 6x*

The boundary conditions at the free surface are defined as the interface between a
liquid and a massless gas. For incompressible fluids with very low viscosity, such as

water, it can be,
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P=pP, (x,t) (3.3.5)
Where P is the applied pressure on the free surface, for the present model P can be
set to zero.

The boundary conditions on the sloping beach are defined as (Figure 3.2.2),

5 x
Vlloﬂ.

Usiop
8y
sloping beach

Figure 3.2.2 boundary condition of sloping beach

Sy

vslope = uslope S x (3.3.6)

where 5x and dy are space increments and %,;,,. is derived from Section 3.5.
Based on equation (3.3.6), the flow field will move along the diagonal of the cells.
3.4 Initial Conditions

Theoretically, the length L of a solitary wave is infinite, so it is desirable to
define a finite, practical length for a solitary wave. The main consideration is that

the initial wave crest should be far enough from any obstacles and vertical walls.
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According to Laitone’s formulas,(Laitone (1960))

%
ZL—=6.9 (%) ’ 34.1)

o

where do is the still water depth and H is the wave height of the solitary wave.
The wave profile (ys) may be calculated from the classical formula of
Boussinesq:

3H ( x-
y,(x)=d, +Hsechzl: a (x dxCRI| (3.4.2)

o o

where x, is the location between the wave crest and left-hand vertical wall.

The wave speed C can be evaluated by the following infinite series Laitone

(1960),

_C -1.*.1 E_. _i E_ 2+
ed.  2\d,) 20ld,) " (3.4.3)

oy oy
u =C+— ; v =- 44
oy ox (3.4.4)
and the stream function is obtained from Laplace’s equation
23
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2 2
0 y2/+a l/:=0
o0x° Jdy

(3.4.5)

3.5 Finite Difference Scheme

The computation region is divided into a number of rectangular cells as shown in
Fig.3-1. The pressures are defined at the center of each cell and that velocity
components are defined at each center point of the cell boundaries. Such an
arrangement is very convenient for solving equations (3.2.2) and (3.2.3).

By incorporating the continuity equation into the convection acceleration terms,

one obtains the following relationship:

ou JSu Jut Suv
u +v = +
ox Jy JIx Iy

v v Buv Hv?
U— 4V —= +
ox Jy ©&x Jy

Equations (3.2.2) and (3.2.3) can be rearranged as follows:

fu Ou* Suv Fp 1 (3% J%u
+ + =— +g + 3 + 3 3.5.1)
ot oJx Oy ox R\dx* Oy

v JOvu Ov? op l(ﬁzv 52v)
+ + = (3.5.2)

=-=4+g + +
ot Jx Oy Sy £ R\Sx* Jy*
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In discretising the equations (3.2.1), (3.5.1), and (3.5.2), the following finite

difference expressions are used:

ox ox

2 ul,, —ul
[au ] =( ‘U—”)M(&x’),
i+lj

Jy oy

2] ()t -))

+0(8 y?),
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|:ﬁ 2 u] +=s-1 i*=j e+l
_ 2 2 2

+0(8 y?),
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(Pi+1j = Pg)
ox

+0(6 x?).

op
ox WL
"”2'1

Equations, (3.5.1), (3.5.2) and (3.2.1) can be approximated by the finite

difference equation for cell (i,j) as follows:

i e ot
u Il‘= u  + 5t*g,+:§;(P;j‘ pl+lj)

i"'i J I‘PE J

. ot
n+l
V =V 1+5t*gy+c_s;'(pij—1’ij+l)

o 1 il
lj+2 ;+2
unll un+ll vn«»ll _vm»ll
i+—j i—j fj+— ij—
Df{*‘l 2 2 + 2 2 — 0
o ox Sy

(3.5.3)

(3.5.4)

(3.5.5)

Variables lacking a superscript are evaluated at the mu time step (the old time) and

Di is the velocity divergence. The u®, v* constitute velocities at the n+1 time step

(the new time).

u, =, +u ] [ul. -2, +u ]
P e ;w...;,,.;l oy ey ) U ey e
g e 7 Ax oy Red¥ Redy

L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(35.6)

26



- |+ - |+

LA %(mL;,%-(m),-*;,% %("m,-,.; sl "H,-,;M”.»,.; i ”,-,-_J

O Y ox Red¥’ Resy’
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In discretising (3.5.6), (3.5.7) the following finite difference expressions are used:

1 1
uv). 1 1=—lu , +u l‘—v +v
( )"5'”3 2( H%j H%ji»l 2( ij+-12- i+lj+§] (3.5.8)

Substituting equations (3.5.3) and (3.5.4) into equation (3.5.5) and requiring Di ja+1

=0 leads the pressure equation:

Pisj=2Pij*+Pinj  Pijn=2Py+ Py
B 5y E=-R, (3.5.9)

or
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1 (pi+lj+pl-114_p’f*l+pij'l +R J

Pij='Z" 5x2 5}’2 i (3.5.10)
where

7= 1 1
5x2 '5y2 (3.5.11)
| w', —u", v

t+—j = ij4¥— ij—
R = 2, 2
YT st ox 5y 3.5.12)

Equation (3.5.9) is called a finite-difference Poisson equation whose corresponding

partial differential equation is

&) (58
=5 | *| 53| =R; 3.5.13
(5x2 ij ayZ ij ! ( )

Near the free surface, the pressure p = pa is applied at the exact location of the
surface and not in a nearby cell center where p is usually defined. Let n1, n2, n3, ns;
P1, P2, P3. P4 be the lengths and pressures of the four segments of the irregular star
depicted in (Fig.3-3). nl is the length of p1 to pij; n2 is p2 to pij; n3 is p3 to pij;
n4 is p4 to pij. By expanding P1, P2, P3, Ps in terms of Taylor series expansions

about the point (i,j), it can be shown that equation (3.5.13) is approximated by
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ng

Fig. 3-3 Interpolation of pressure Pij near the free surface

pl=p,,+m(§';’ );”2’2 (Z;f ].-,- +oln?) (3.5.14)
p;=p, -03(2—5: U*"Tg(i;f : . ~ofn3) (3.5.15)
P4=p,-,-m[gi :,.,-'J; [Z;‘f :U ~ofn?) (3.5.16)
P.=p,,+1, [Z—ilfﬂfzgf j,-,» +o(n3) (3.5.17)

Neglecting ni (i=1,2,3,4) terms of the third or higher order, we eliminate the first
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derivative of Pj terms between (3.5.14) and (3.5.15); (3.5.16) and (3.5.17), thus we

obtain the following expression for second derivation of P.

a:p\) _ 2
(ﬁxz Ju‘-’h’h('h +'l;) [’hpl T Ps "('71 + "3)pif] (3.5.18)

ézpj 2
- = ‘7+ - - ;- 3.5.19
( v7), '72'74(’72'*'74)[”4}’- m.p. (. +n.)p,,] (3.5.19)

Substituting equations (3.5.18) and (3.5.19) into equation (3.5.13), we obtain

-

o = mn.nsn, M3Pr ¥\ Ps NPy +1,P, R (3.5.20
ij 2('72'7‘.{_”‘”3) - (’71+”3] [”2 +”‘T ij .. )
1773 2°7 4

2 2

Equation (3.5.20) will be used at cells near free surface. It is reduced to equation

(3.5.10), when it is applied to interior cells.

Equation (3.5.10) and equation (3.5.20) are solved for pressures P at each time
step by using an iterative technique called Successive Over-Relaxation method.

After pressures P have been obtained and substituted into equations (3.5.3) and

(3.5.4), velocities u,.,,, ;, v, ;,,,,are solved at the new time step.

The free surface particles move to their new locations according to their locally
interpolated values of u and v. Considering the particle k in Fig.3-4, we can find the
velocity component u, for the particle by making a Taylor series expansion about

0. Neglecting the third and higher order terms, we obtain:
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Fig. 3-4 Interpolation of velocity u, at the particle k

2, 2 2
uk=u0+h(éj +l (Qj — hz(a—: +2hl(a u) +I’{a—:‘) e
ox), \ov), 2" o), \amay), \ov*),
» 2 2
h |u,~u [ Yu,—u 1|/ A l
~u, +(5_x 12 3}{5_}* 22 ‘J+§ (E;) (o, +u —2uo)+(-5—y) (uy +u, -MO)J

+l—h— —I-u—u+ —u)
4\ 5x A3y s —Ug Uy —Ug

(3.5.21)
In a similar manner, a formula can be derived to calculate the y-component velocity

v, of the particle k.
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2 2
v, =v+ L Px v — | +2h — o +— ov .
éx y 2 ox ﬁxﬁy oy?
2 2
v, -V 1 Yv,-v,) 1l A !
=V, (é‘x ’2 3)+(6y 22 ')-&-5[(5) (vl+v3 —2v°)+(3;) (v2 +v, -2\’0)]
ALY LY, vy
a\sxpsy)” 7

With u, and v, computed, each free surface particle is advanced by Eulerian method,

(3.5.22)

Let n be the height of the free surface. The kinematics condition at the free surface

is,

Dn
=y 3.5.23
Dt (3.5.23)
which can be expanded to
on on
—_—=V=-Y— 3.5.24
or " Yox (3.5324)

The forward implicit method is used to differentiate equation (3.5.24) as follows,

nl n el
e — M _ Lt 1
5t v — ( A ) (3.5.25)
or
- 3'723*' e 2 5 Nin=MNi+0tv, (3.5.26)
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Fig. 3-5 Outside domain velocity from extrapolation of interior fluid

(3.5.28)

As to the application of conditions at solid boundaries, consider the vertical wall

that constitutes the right-hand boundary and horizontal wall that constitutes the

bottom boundary in Fig. 3-6. Similarly, conditions may be derived for other vertical

and horizontal boundaries.

outside kutside
domaing om ain
fluid domain
Vipie | Vietpir
u-rj|  Pi Pis1j Ui*3r2j
bottom Vij+3r
Vi1 Vit 112
‘ U121} pije1  [Uie172 jo1
X - |outside
wall U122 Pii Uie172 j dom ain wall
—» <+
Vipir
Fig. 3-6 Boundary orientation in relation to the staggered grid
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The finite-difference formula of equation (3.3.1) at the horizontal free-slip boundary

is as follows:
v =0u, =u u, =u,;
i j-ri i+§j*l i+;j i—2j+l i—zj
(3.5.29)
Pij = Pijn —Jygy
Equation (3.3.2) at the vertical free-slip boundary is as follows:
u , =0v =v v =V
l+~ij Nlj+~2- 'J*‘i l#l]-—z U—E
(3.5.30)

pi+lj =pij +6‘xgx

The finite-difference formula of equation (3.3.3) at the horizontal no-slip boundary

is expressed as follows:
U a =0y =y s
272 2 2
U SO =
J 2] 2!
(3.5.31)
VitV
A

. vV ;=2v | +Vv
ij+—= ije— ij—
Pij = Pijm -6ygy - R 2 5}';

Similarly, equation (3.3.4) at the vertical no-slip boundary is expressed as follows:
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Yuld OV =Y
2’2 / I3
vl+ L O;V'_ﬂ = —V’ -1 ;
3/ J =5
(3.5.32)
u =Uu
= =]

- o 1
piﬂj "'pij + xgx+ R,L

As it was mentioned in Section 3.3, the boundary condition on the sloping beach

is specified in equation (3.3.6). The finite-difference formulas of the equation

(3.3.6) and pressure can be depicted as follows:

By . U372 j+1
M1

§x Vijr1/2 fvm o172

sz

ur12j | —jd um12j

V%f‘ll?
slog

ing beach
Uir1/2,p1

Figure 3.7 control volume for u on a sloping boundary

The total influx of the u-momentum is as follow,
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Uiyzj Y Uiaaj
_ J i+3/2j+1
M, =-6 xvi+lj+l/2(

2
u +u 2 V. ., +V u +u
M2 =§){ -1/2j > -+1/2;J _5{ =172 > g+1lzI i-1/2j > i+l/2_])
Uiy2j T Uiyy2j-
M, = ‘sxvy-uz( 2 - (3.5.33)

The area of the control volume is 8x 8y. Therefore, by relating the net inflow of

the u-momentum to its rate of increase, we obtain

U, —U
( J+l/2j6t i+1/2j J(a x6 y)=M1 +M2 +M3 (3.5.34)
It can be further be rearranged as:
. ot
U2y = Uiy +5_x§;(Ml +M, +M;) (3.5.35)

The total .}, on the sloping boundary can be obtained as follows:

n+dl __ _° 5t
u,ql_,-— ui+lj+5t*gx+_‘§;(ptj_pi+lj) (3.5.36)
2 2

It is noted that equation (3.5.36) is derived by substituting equation (3.5.35) into

equation (3.5.3).
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Substitution of equation (3.5.35) into the equation (3.3.6) leads to the computation

of the value v;,, ..,,,. The total v/;,,,, on the sloping boundary is then

. ot
1
Vt':ju/z: Vinjsr2T O * g+ -a—y.(Pij— P1j+1) 3.5.37

The pressure Pjj (Figure 3.8), which lies on the sloping beach, can be derived

from the conservation of mass in the following expression:

P

T

Vij+1/2

pi1j —pui172j P
sloping bxeach

Figure 3.8 sketch of pressure p on sloping boundary

n+l n+l -
%wuay_ﬂmnax-o (3.5.38)

An analog of equation (3.5.36) and (3.5.37) can be used to evaluate u},, and

n+l

Vi by
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1 . ot
uruzj: ui-112j+5t*gx+g(pi-lj-pij) (3.5.39)

1 . ot
Vx’}:l/2="u+1/2+5t*gy"'E(Pu“Puﬂ) (3.5.40)

Substitution of equation (3.5.39) and (3.5.40) into equation (3.5.38) leads to

1 Pi-ij . Piyn
= + +R.
Py=— 1 (5x2 5y Ra) (3.5.41)
sx* &yt
where

1 ui.—l/2j "i;+u2 g 8

. - — — + fa—

By 61[ ox (Sy) (5x oy (3.5.42)

For analyzing the run-up of waves on a sloping beach, the special velocity

adjustment near the intersection of free surface and the sloping boundary is shown

in Figure 3.9.
i,jv1 iv1.,j+1
Z
i i
loping
beach

Figure 3.9 propagation of velocities near the intersection of free surface and
sloping boundary
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If the cell (i,j) is defined as the free surface cell, i.e. the marker particle is inside
the cell, or the cell (i,j) is defined as the full cell, and the cell (i+1,j) is the sloping
boundary, then the following relations are established:

Uiniz,; = Ua,j
Viejoz = Upsz; * Ay 1 Ax (3.5.43)
Eq.(3.5.20), Eq.(3.5.3), and Eq.(3.5.4) are used to compute the pressure and the
values of velocity u, v for various conditions. Substituting velocity u, v into
Eq.(3.5.21) and Eq.(3.5.22), the surface particles are advanced by Eulerian
formulation Eq. (3.5.26) or Lagrangian formulation Eq. (3.5.27). The results of the

numerical model will be presented in Chapter 4.
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Chapter 4

Presentation and Discussion of Modeling Results

Application of the numerical model described in Chapter 3 has been made to a
number of practical problems in coastal engineering. Wherever possible, available
experimental data are used to compare with the results of the computer model. In
Section 4.1, results on wave overtopping a submerged rectangular breakwater are
presented and compared with available experimental data. In Section 4.2, model
results on run-up of a solitary wave on a vertical wall are presented. The model
results are also compared with a number of experiments conducted by previous
investigators. Results on the run-up of solitary wave on sloping beaches with
various beach slopes are presented in Section 4.3. Results of computer simulation
on wave-induced loading on various semi-buried pipes are presented in Section 4.4.
The computed results are also compared with the experimental data obtained by

other investigators.
4.1 Wave Overtopping on the Submerged Rectangular Structure

In order to verify the present numerical model, the present numerical model has

been applied to several breakwater configurations where experiments conducted in
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the laboratory wave tank were available (Lee et al. (1993)). The computational
domain is shown in Fig. 4-1. The initial position of the solitary wave crest is chosen
such that neither the left-hand wall nor the breakwater influenced the wave at the

beginning of the computer simulation.

y
’ p—_
1 H = 0.3 do(or 0.2 do)
L=1.65do
do=9" =
D =0.5do Breakwater
* (x2,y2)=(0.15ds,0.25d
0r0.75do B RAT R REERE TR
> X
x=0 x=16.4do x=18.05do

Fig. 4-1 Solitary wave propagates over breakwater

The undisturbed water depth, do, is nine inches; the breakwater width, L, is 14.85
inches, and the breakwater height, D, is 4 ¥z inches. The wave height, H, of solitary
wave is 30% of the water depth. Variables used in the numerical model are all
dimensionless normalized by the water depth, do. For the present computation, the
water depth, do/do, is one; the breakwater width, L/do, is 1.65; the breakwater height,
D/do, is one-half; the wave height, H/do, is 0.3; Reynolds number, Re, is 80,000; the
time increment, dt(g/do)"0.5, is 0.05; the space increment, dx/do, is 0.05; dy/do, is
0.05; particle space increment, dl/d., is 0.05; the dimensionless time, t, is defined as

t(g/do)"0.5; and the observation points are at (x1/do,yl/de) = (0.15,0.175),
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(x2/do,y2/do) = (0.15,0.25) measured from the bottom and the breakwater shoreward
face.

Fig.4-2 shows the comparisons of particle velocity time history at position
(x1/do,y1/d0)=(0.15,0.175) among the present computer model, the experimental
data (Lee et al.1993), and the combined rotational flow model(Zhuang, 1994). The
ordinate is the normalized velocity w.r.t. the wave celerity (gdo)"0.5( the wave
celerity in water depth do) and the abscissa is normalized time as t(g/do)"0.5. The u
and v velocity history obtained by the present model and the experiment shows that
the time history trend agrees fairly well. It reveals that the horizontal velocity

-changes the direction from positive to negative and the vertical velocity changes
from negative to positive within the time period shown. These kinematic properties
show that the flow at the location (x1/do,y1/do) =(0.15,0.175) first move forward
(shoreward) then downward followed by backward (seaward) and upward motions.
There exists a rotational motion occuring at the shoreward side of the breakwater
when the solitary wave propagates over the breakwater. The present model predicts
this feature of particle movement better than the combined rotational flow model
proposed by Zhuang, (1994).

Fig.4-3 shows comparisons of particle velocity time history at another position
(x2/do,y2/do)=(0.15,0.25) among the present model ,he experiment, and the

combined rotational flow model. The present computer model results agree well
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U vel. at x=0.15 ; y=0.175
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-0.15 -
- present numerical
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O experiment(Lee, et al.
s A 1993
Time t(g/d)*0.5 —o—CRPM.Zhuang,1994)

V vel. at x=0.15; y=0.175

0.25 -

n

[~

<

s

&

~

>

)

(%}

o

> .

40
-0.05 '%' - nresent numericat
model
0.1+ O experiment(Lee, et al.

1993
, Time %(g/d)*0.5 +C.R.F).M.(Zhuang,1994)
|

Fig. 4-2 Comparisoa of velocities of the present model, experimesnt (Lee, et al., 1993), and
combined rotatienzl flew model (C.R.F.M)(Zhuang, 1994) at 1=0.15 and y=0.175, which are

measured from bottom bed and shoreward face of the breakwater. (D/do~0.S, H/do=0.3,
do~0.%in)
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O L}
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P
©.0.05 -
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~
=
2
S 0.1
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@
>
-0.15 -
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Time (g/)40.5 experiment(Lee, et 2
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Fig. 4-3 Comparison of velocities of the preseat model, experiment (Lee, et al., 1993), and
combined rotational flow model (C.R.F.M)(Zhuang, 1994) at 1=0.15 and y=0.2S, which are
measured from bottom bed and shoreward face of the breakwater. (D/do=0.5, H/do=0.3,
do=0.9in)
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with experimental data and appear to fit the experimental data better than the
numerical results predicted by the combined rotational flow model of Zhuang,
(1994). Based on these available data for comparison, the present numerical model
is shown to be capable of predicting the temporal variations of flow field for the
case of solitary wave propagating over a submerged breakwater.

Fig.4-4 and Fig.4-S present a series of photographs at different time sequence
taken during one experimental run of H/do =0.3 solitary wave overtopping on a
submerged breakwater (height=4.5 inches and width=14.85 inches) with water
depth at do=9 inches. The blue dye is injected in the shoreward region of the
breakwater before the wave is generated. The solitary wave propagates from left to
right direction in the pictures. The breakwater can be seen at the lower left corner of
the pictures. It is observed that a strong rotational flow field is generated when the
wave propagates over the breakwater in the vicinity of the shoreward region of the
breakwater. Since it is a transient process, the vortex will grow bigger and bigger
after the wave has passed and moves downstream toward the right and is
disintegrated eventually.

Fig.4-6 presents computer model result when the solitary wave crest is about one
breakwater length away from the submerged breakwater at time T=10.0
(t(g/d0)"0.5=10.0). Fig.4-6(a) shows the variations of the wave surface profile while

the solitary wave is passing over the breakwater. Fig.4-6(b) shows the close-up of
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(B)

\| YN
; N . § ;g \.I ~
Fig. 4-4 Pictures (A) and (B) of an experimental observation of vortex generation for solitary
wave overtopping submerged breakwater. D/do=0.5, H/d0o=0.3, do=0.9in. (Lee, et al., 1993)
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P g 1ogr

v f

\

Fig. 4-5 Pictures (C) and (D) of an experimental observation of vortex generation for solitary
wave overtopping submerged breakwater. D/do=0.5, H/do=0.3. do=0.9in. (Lee, et al., 1993)
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the velocity field in the vicinity of the breakwater. From Fig.4-6 it is seen that flow
separates from both upper edges of the submerged breakwater. This behavior is
caused by the large curvature of the sharp edges because it would take an infinite
pressure gradient across the streamlines to cause the fluid to turn a sharp corner.
This is physically impossible therefore the fluid must separate at the sharp corner.

Fig.4-6 shows that the complete vortex is shed from the shoreward edge of the
submerged obstacle. However, at this time (T=10) the separation region is still small
compared to the submerged obstacle. It can be seen that the flow separation
modifies the fluid kinematics around the shoreward edge of the submerged obstacle,
but it has no effect on the overall flow pattern in the near field.

Fig.4-7 shows that the solitary wave crest is about two breakwater length away
from the submerged breakwater at time T=12.0 (t(g/d0)"0.5=12.0). Fig.4-7(a) shows
the variations of the wave surface profile while the solitary wave is passing over the
breakwater. Fig.4-7(b) is the close-up of the velocity field in the vicinity of the
breakwater. The strong clockwise rotational motion is generated in the vicinity of
the shoreward region of the breakwater. The clockwise vortex appears to be strong
in its right and bottom region. Thus the rotational flow will impact the bottom bed
and could scour the foundation of shoreward side of the breakwater. This rotational
flow could affect the stability of the breakwater. Fig.4-8 shows that the rotational

flow continues to grow at time T=14.0 (t(g/do)"0.5=14.0). The intense clockwise
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vortex appears in the bottom portion and on the breakwater shoreward face. The
rotational flow still scours the bottom bed and impacts shoreward face of the
breakwater. And the clockwise vortex moves upward. The phenomena agree well
with experiments of Lee et al. (1993) as well as the results of Ting et al. (1994). The
oscillatory wave trains are gradually formed behind the solitary wave.

Fig.4-9 shows the further growth of the clockwise rotational motion at time
T=16.0 (t(g/do)"0.5 =16.0), when the solitary wave peak is further away from the
breakwater. The rotational flow moves upward at this time, it is found to be away
from the foundation of the breakwater. Therefore, the foundation of the breakwater
is no longer scoured at this time interval. But the force impacts the upper section of
the breakwater shoreward face. Fig.4-10 shows the upward movement of the
clockwise vortex affecting the water surface at time T=18.0 (t(g/d.)"0.5=18.0). The
oscillatory wave trains are found to be behind the solitary wave. Since the solitary
wave has been away from the submerged breakwater, there is no more energy to
support the clockwise vortex. The clockwise vortex continues to grow but it is
weaken. Fig.4-11 shows that the clockwise vortex significantly affects the water
surface elevation as it moves away from the breakwater at time T=20.0
(t(g/d0)"0.5=20.0). The vortex existed at location sufficiently away from the bottom.
Thus, it is no longer impacting the foundation of breakwater. But the shoreward

corner of the breakwater may experience erosion due to the clockwise vortex. The
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vortex intensity becomes weaker since the crest of the solitary wave moves further
away from the breakwater. The transmitted wave height (=0.28653) indicates a
4.5% reduction in incident wave height because the wave losses the energy due to
the viscous vortex when the solitary wave passes over the submerged breakwater.

Fig.4-12 shows that the reversal wave propagates over the submerged breakwater
from right to left direction at time T=50.0 (t(g/do)"0.5=50.0). As it can be seen from
the figure, the clockwise vortex in the shoreward region disappears. There are two
counterclockwise vortices generated at the seaward region and at the top of
submerged breakwater. The two counterclockwise vortices are weak since the
reversal solitary wave is further away from the breakwater. The processes of the
rotational flow growing in the seaward region of the breakwater are similarly to
ones from Fig.4-6 to Fig.4-11. The transmitted wave height (=0.261) indicates a
13% reduction in incident wave height This result indicates that the breakwater
reduces the wave energy.

The critical failure areas in structures of caisson are the toe and underlying
foundation due to the wave-induced scouring, liquefaction and large stresses in the
foundation soil. (Tsai, et al. 1986) The results based on the Fig.4-6 to Fig.4-12 show
that if the incident wave propagates over the submerged breakwater from the
seaward region to the shoreward region, the shoreward side of the breakwater is

significantly impacted, and the scouring and erasions could occur. Liu, et al.(1999)
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shows that the porous armor layer is effective in reducing the overtopping rate as
well as in preventing the caisson breakwater from the bottom scouring effect. If the
transmitted wave reflects from the right-hand vertical boundary, the seaward side of
the breakwater will suffer the same problems and the breakwater can deteriorate
quickly. In addition, the rotational flow occurring around the breakwater will
consume some energy from the overtopping wave thus reducing the amplitude the
transmitted wave.

Comparisons of u and v velocity time history between the present numerical
model and the experiment at the location (x1/do,yi/do) = (0.15,0.175) for another
breakwater configuration are shown in Fig.4-13. Zhuang (1994) did not provide the
computational result in this case for comparison. For this configuration, the
breakwater height D/do is increased to 0.75, wave height H/do is 0.2, and the time
increment dt(g/do)"0.5 is 0.08, other variables are the same as that shown in Fig.4-2.
The definitions of these variables are previously shown in Fig.4-1. The present
model results agree well with the experimental data and there exists a phenomenon
that rotational motion occurs at the shoreward side of the breakwater when the
solitary wave transmits over the breakwater. The magnitude of the velocities shown
in Fig.4-13 is smaller than that shown in Fig.4-2. However, the trend predicted by
the present computer model fit well with the experimental data even though the

magnitude is small which is the result of the increased breakwater height.
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Fig. 4-13 Comparison of velocities of the present model and experiment (Lee, et al, 1993), at
=0.15 and v=0.175, which are measured from botiom bed amd shoreward face of the
breakwater. (D/do=0.7S, H/do=0.2, do=0.9im)

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig.4-14 shows the velocity distribution at time dimensionless T=10.0
(t(g/d0)"0.5=10.0), as the incident solitary wave propagates over the breakwater.
The clockwise vortex is shed from the shoreward face of breakwater. Fig4-15 shows
that the clockwise vortex continues to grow but it doesn’t reach the bottom bed at
time T=12.0 (t(g/d0)"0.5=12.0), since the height of breakwater is large. In Fig.4-16,
it can be seen that the clockwise vortex expands outward and hardly impacts the
bottom bed at time T=14.0 (t(g/d0)"0.5=14.0). Since the water depth is above the
top of the breakwater is shallow, thus the horizontal velocities is quite large,
creating a large clockwise vortex as the incident wave moves away from the top of
breakwater. At this time, the rotational flow is seen to affect the region near the
water surface.

The figures from Fig.4-17 to Fig.4-19 show the clockwise vortex gradually
moves away from the breakwater and its intensity is gradually weaken. The upward
movement significantly affects the water surface from time T=16.0
(1(2/d0)"0.5=16.0) to T=20.0. The rotational flow hardly reaches the bottom bed. As
discussed earlier in Fig.4-13, the velocities are small at the separation zone at the
location (x1/de,y1/de)=(0.15,0.175). This presents that the rotational flow doesn’t
scour strongly around the foundation of breakwater in this case. Fig.4-20 shows that
the wave reflected from the right boundary propagates over the submerged

breakwater from the right to the left direction at time T=50.0 (t(g/do)"0.5=50.0).
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The clockwise vortex and counterclockwise vortxe in the shoreward region appear
to be very weak. As the reflected wave propagates over the breakwater it is seen that
a counterclockwise vortex is generated in the seaward region. The water depth at
top of the submerged breakwater is shallow, thus incapable of generating a vortex in
this region. However, the horizontal component of the particle velocity is large in
this region. The counterclockwise vortex in the seaward region is fairly weak as the
reflected solitary wave moves further away from the breakwater. The processes of
the counterclockwise rotational flow growing in the seaward region of breakwater
are similarly to those shown from Fig.4-14 to Fig.4-19. The transmitted wave height
(=0.1520) indicates a 24% reduction in wave height. This result indicates that the
breakwater takes away a significant portion of the wave energy.

If the breakwater height D/do is maintained at 0.75, and the wave height H/do is
increased to 0.3, the velocity distribution in the vicinity of breakwater at time
T=14.0 (=t(g/do)"0.5=14.0) and T=16.0 are shown in Fig.4-21. By comparing
Fig.4-16 with Fig.4-21 it is seen that the rotational flow becomes very strong and
could scour the bottom bed when the wave height, H/do, is increased from 0.2 to 0.3.
This result strongly suggests that the danger of the transmitted waves is increased,
when the submergence of the breakwater is shallow and the incident wave

amplitude is large.
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4.2 Run-up of Solitary Wave on Vertical Wall

To examine the normalized maximum run-up height R/do of a solitary wave on a
vertical wall, the propagation of a solitary wave in a rectangular channel and the
run-up on the vertical wall has been calculated. The computational domain is

defined in Fig. 4-22.

/§

=t A

do/do

> x

Figure 4-22: Solitarv wave propagates and runs up a vertical beach

Application of the present numerical model to solve the Navier-Stokes equation
in a Eulerian description has been made for wave run-up on vertical walls. An
analytical approximation for the normalized maximum run-up (R/do) has been
suggested by Laitone’s approximation (1960).

2

% =2H + 1{2 H' : normalized wave height = H /d,

Two solitary waves with normalized wave height H/do at 0.05 and at 0.2 are used
for the present numerical simulation. These two problems use the meshes of 700x40

elements. The Reynolds number Re is computed to 100,000, time increment dt is set

1
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for 0.05, space increment dx at 0.05, dy at 0.05, particle space increment dl is set for
0.01. The water surface profiles obtained from the present numerical model with a
solitary wave climbing up the vertical wall are shown in Fig.4-23 and Fig 4-24.
From Fig.4-23 and Fig.4-24 it is seen that the wave heights at the vertical walls are
greater than twice of the incident wave height as expected. The present numerical
results of normalized maximum run-up are compared with Laitone’s analytical
solution (1960), and the numerical results from Hayashi (1991), Ramaswamy
(1987), Grilli (1994) and Pirooz (1996). The comparisons are shown in Tables 4.1
and 4.2. From Table 4.1 and Table 4.2, the results of present numerical model are
fairly close to the results of other researchers, and are much closer to the analytical
solutions. It should be noted that Grilli solved the run-up problem using potential
flow theory. Pirooz, Hayashi and Ramaswamy employed the Navier-Stokes

equation with a Lagrangian description in their numerical models.

Normalized Amplitude H/do = 0.05
Numerical model dt No. of element R/do ( maximum run-up)
Present study (2001) 0.05 700 0.1015
Pirooz (1996) 0.025 960 0.1028
Hayashi (1991) 001 1920 0.1026
Analytical solution (1960) N/A N/A 0.1012

Table 4.1 Comparison of the maximum run-up for a solitary wave with a
normalized amplitude H/do = 0.05 at the time when the wave climbs on the
vertical wall.
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Normalized Amplitude H/do = 0.2

Numerical model dt No. of element R/do ( maximum run-up)
Present study (2001) 0.05 700 0.4297
Pirooz (1996) 0.025 640 0.4478
Hayashi (1991) 0.01 2048 0.4486
Ramaswamy (1987) 0.02 2048 0.448

Grilli (1994) N/A N/A 0.425
Analytical solution (1960) N/A N/A 0.420

Table 4.2 Comparison of the maximum run-up for a solitary wave with a
normalized amplitude H/do = 0.2 at the time when the wave climbs on the vertical
wall.

Chan and Street (1970) stated that the Eulerian method is more stable than the
Lagrangian method after long time steps for problems of wave propagation in the
constant water depth medium. The method of computing the free surface positions
in the present numerical model is based on the Eulerian method. The pt.'esem
numerical model modifies the free-surface boundary condition. Near the free
surface, the pressure p = ps (pais defined as the applied pressure on the free surface)
is applied at the exact location of the surface and not in a nearby cell center where
pressures are usually defined. Due to these two modifications, it is shown that the
larger time step, At, and fewer mesh elements (when compared with other
numerical models) can be used in the present numerical model. The numerical
results compare well with analytical results. The present model will save

computation time and computer memory when compared with other numerical

models.
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4.3 Run-up of Solitary Wave on Different Sloping Beaches

In this application, the present study employed a different description, using the
Lagrangian method to simulate the free surface problem for a solitary wave
propagating in the rectangular channel and shoaling onto three different sloping
beaches: steep slope (S=1, 0.58) and mild slope (§=0.05). Fig.4-25 provides a

definition sketch used for this application.

/_\IH /

do A‘Ch slope (S)=1, 0.58 or 0.05

Figure 4-25: Solitary wave propagating and running up a sloping beach

In 1997, Grilli, et al. stated that the limit between breaking and non-breaking

solitary waves was determined by the non-dimensional parameter S,, called the
slope parameter and defined as SL% . S is the beach slope, d, is the constant
/]

water depth, and the L, is a characteristic horizontal length scale for the initial

wave. Using Boussinesq’s solitary wave theory, one obtains

L= actannd®
J3H,/d, /4 3
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When this length scale is inserted into the breaking criteria for S,= SL% , one
0

obtains:

S

JH,/d,

Grilli (1997) summarized different type of breaking phenomena as follows:

S, =1.521

(1) §,>0.37, the wave doesn’t break

(2)03< S8, <037 with 5.8< 7 % <9.1, the surging breaking
b
(3)0.025 < S, <0.3 with 1.0< % <5.8, the plunging breaking
b

(4) S,<0.025 with & % <1.0, the spilling breaking
b

In the present model, the incident solitary wave height is set at H /d = 0.48.
Thus, for the slope beach, S = 1 (45°), the value of S, is computed to be 2.195, so
the solitary wave won’t break on this slope. For wave at H /d, = 0.17, with the
slope beach, S = 0.58 (30°), the value of S, is found to be 2.14, so the solitary
wave will not break on this slope. For wave amplitude at H,/d,= 0.28 and with the

slope beach, S = 0.05 (2.88°), the value of S,= 0.144; thus, the solitary wave will
break and the breaker type will be plunging breaker.

4.3.1 Run-up of Solitary Wave on a S = 1 Slope (45°)

77
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This first example of present numerical study on run-up of solitary wave used the

experimental condition of Camfield and Street (1968). The solitary wave, with finite

amplitude H/do = 0.48 and constant depth do = 1, propagates onto a 45°sloping
beach (steep slope). The beach slope is steep, so the solitary wave does not break on
the beach. The present model employs the meshes consisting 300x50 elements and
the Reynolds number, Re = 80,000, time increment dt = 0.05, space increment dx =
0.08, dy = 0.08,(S=tan45°=dy/dx=1), particle space increment dl = 0.01, and
normalized time T = t(g/d)"0.5. The normalized free surface depths in terms of the
normalized distance for the above solitary wave are presented from Fig. 4-26 to Fig.
4-28 at different times. The solid lines are the present numerical results, the dotted
lines are experimental data obtained by Camfield and Street (1968). It is seen from
these figures that the free surface profiles of the present model compared well with
the data of Camfield and Street. The normalized maximum run-up (R/do) in the
present study is 1.2824 and the experimental data in Camfield and Street is 1.27.
Based on these comparisons of free surface profiles and normalized maximum run-
up (R/do), the present numerical model is found to be applicable for simulating run-
up of solitary waves onto steep slope.

4.3.2 Run-up of Solitary Wave on a S = 0.58 Slope (30°)

This present numerical model is also applied to the same experimental conditions

conducted by Lin, et al. (1999). Lin, et al. employed a particle image velocimetry
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(PIV) to measure the free surface profile and the spatial distribution of velocity for
solitary wave run-up on steep beach. The solitary wave, with finite amplitude H/do
at 0.17 and the constant depth do at 0.16 meter, propagates toward a 30°sloping
beach (steep slope). Since the sloping beach for this case is steep, thus, the solitary
wave does not break on the beach. The present model employs the meshes
consisting 300x50 elements and the Reynolds number, Re = 80,000, time increment
dt = 0.05, space increment dx = 0.08, dy = 0.046, (S=tan30° =dy/dx=0.58). Particle
space increment dl is 0.01,and normalized time T is t(g/d)"0.5. The normalized free
surface depths in terms of the normalized distance for the above solitary wave are
presented in Fig. 4-29 and Fig. 4-31 for different values of dimensionless time (T).
Fig.4-30 and Fig4-32 show the velocity field and free surface varied
simultaneously on the sloping beach at different times. It is obvious that the solitary
wave does not break on this steep slope.

Fig.4-29 and Fig.4-30 show the wave climbing up the sloping beach at
normalized time T= 8.5. From Fig.4-30 the fluid particles on the slope are found to
be moving in the direction parallel to the sloping beach. As can be seen from the
computed results the horizontal velocity component in constant water depth region
is nearly uniform throughout the depth (Fig.4-33, x/do=15.4). However, the
horizontal velocity components on the sloping beach region increase linearly from

the bottom to the free surface (Fig.4-33, x/do=16.4, and 17.4). This non-uniform
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VELOCITY FIELD AT TIME = BS
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vertical distribution of horizontal velocity component on the slope shows that the
long wave approximation used by the traditional shallow water wave equations may
not be correct. In Fig 4-33, it is seen that the numerical results of the present model
compares well with the experimental data. It even shows a better comparison with
experimental data than the turbulent model, based on the Reynolds Averaged
Navier-Stokes (RANS) equation, with molecular viscosity being set to zero as
employed by Lin et al (1999).

Fig.4-31 and Fig.4-32 show the velocity distribution at normalized time T=10.3
when the wave almost reaches its highest run-up point, which is about R(run-up
height)/do = 0.454 and is close to the experimental results of R/do = 0.431. In Fig.4-
32, except the very small wedge region where the particles still move upward, the
major portion of flow on the slope has started the rundown process. The horizontal
velocity component in constant water depth is nearly uniform throughout the depth
(Fig.4-34, x/do=15.4), but the horizontal velocity component on the slope increase
linearly from bottom to free surface (Fig.4-34, x/do=16.4).

Based on Fig.4-33 and Fig.4-34, the disagreements of the horizontal velocity
between the RANS turbulent model (Lin, et al, 1999) and experimental
measurements are obvious, but the results of the present model appear to agree
better with the experimental data. The present computer model results suggest that

the shallow water waves approximation may not be valid here and the shallow water
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Fig. 4-33 Selitary wave run-up at T=8.5. Comparisons of vertical varistioa of velocities at
¥/do=15.4. 16.4, and 17.4. The lines are present meodel, the circles are experiment by Lin. et al
(1999). and the squares are numerical results by RANS method. (Lin, et al, 1999)
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(1999), and the squares are numerical results by RANS method. (Lin, et al, 1999)
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wave equation model may produce inaccurate results in simulating long wave run-
up on a steep beach, especially on velocity field computation. From the above
comparisons, it is found that the overall agreement of free surface profiles is good
and the velocity distribution on the slope is reasonable. So the present model also
works well for simulating solitary wave shoaling on steep beaches.

If the sloping beach is viewed as the slope of the dikes or sea walls, to minimize
the effect of extra scouring due to reflection of waves, the slope of sea walls or
dikes should not be more than 1 in 3. This could be one of the reasons that Dutch
dikes mostly have slopes of 1 in 4 or even milder. (Herbich, 1999)

4.3.3 Run-up of Solitary Wave on a S = 0.05 Slope (2.88°)

An experimental setup for the breaking solitary wave study is presented in detail
by Synolakis (1987). For the breaking wave case, only the free surface profile is
available from experiments. The solitary wave, with finite amplitude H/do = 0.28
and the constant depth do region, propagates unto a 2.88°sloping beach. Since the
sloping beach is mild, so the solitary wave will break on the beach. The domain of
simulation for the present study has the meshes 300x160 elements, and the
Reynolds number, Re = 100,000, time increment dt = 0.025, space increment dx =
0.3, dy = 0.015, (S=tan 2.88° =dy/dx=0.05), particle space increment dl = 0.05, and
normalized time T is defined as t(g/d)"0.5. The normalized free surface depths in

terms of the normalized distance for the above solitary wave are presented in Fig.4-
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35, Fig.4-37, and Fig.4-39 for different times. The solid lines present the current
solution, the solid circles are experimental data obtained by Synolakis (1987), and
the dash lines are numerical results obtained by the weighted essentially non-
oscillatory scheme (WENO) employed by Li (2000). Fig. 4-36, Fig.4-38, and Fig.4-
40 show the velocity field and free surface varied simultaneously on the sloping
beach at different times. It is obvious that the solitary wave does break on this mild
slope. The horizontal and vertical velocities obtained by the present model are also
compared with the numerical method called Reynolds Averaged Navier-Stokes
(RANS) by Lin et al. (1999) and are shown from Fig.4-41 to Fig.4-43.

Fig.4-35 and Fig.4-37 show the shoaling of the solitary wave at T = 10 and 15.
The wave shape becomes asymmetric and the amplitude increases because of the
decrease of water depth. Comparing Fig.4-35 with Fig.4-37, one observes that the
further steepening of wave front causes the initiation of wave breaking process.
Fig 4-39 shows the consequent rapid decrease of wave height and the fast change of
surface profile. The velocity distributions of the shoaling process are shown in
Fig.4-36, Fig.4-38, and Fig.4-40. Fig.4-35 and Fig.4-36 show the wave profile and
the velocity field of the solitary wave when it starts to climb the slope. At this time,
the wave profile is almost symmetric and the velocity distribution is similar to that
of solitary wave in constant water depth, i.e, the horizontal velocity is nearly

constant over water depth and the vertical velocity is zero on the bottom and
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Fig. 4-36 The velocity field of a solitary wave with H/do=0.28 running up on a 2 88 stope

from x/do =20 to x/do=40 at non-dimensional time T=10. (a)The ordinate is y/do and the
abscissa is x/do. (b)The ordinate is (¥/do)*10 and the abscissa is x/do.
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Fig. 4-38 The velocity field of a solitary wave with H/do<0.28 running up on a 2.88° siope
from x/do =20 to ¥do=40 at noa-dimensional time T=15. (2)The ordinate is y/do and the
abscissa is x/do. (b)The ordinate is (v/do)*10 and the abscissa is x/do.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



{(000D)YT 3u1A Aq PowIow ONTM JO SRS [BILIAURY Y} 4T $IUY] YSEP ) PUT ‘(LEG1)PBIONAS Jo B)mp
eaauspaada ) AU SO PHOS W) PUV (PO Juead JO SHNSIS YD §) Y| PHOS ML (T=1 WP |SHORUIWP-UOU
i adop g8'7 ® w0 dn Swjuuns g7°gu=0p/H YN NEM Ksuppos ® Jo saqpoad dupRs 33a) Y J0 uosaedwo)) 6e-y B4

opx

4 4 o« > 1] x [ ® o £ 44 oz

o't

Gl=1'lopow) 1oe8M — — —

(000Z'N BWA)OZ=L'ONIM - - - - -
(081 'sprerouigloz=Lweupedm o 0Z 261 =1 920 = OP/H
OZ= 1./ |opotul Jeeesd ———

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

VECTOR FIELD
XmI’n=0.00[°00

Kmoxl=0.l SE+G2

y Vmin=0.0CE+00
L) 3

0.1

vmox=0.10€+01

-

L Ymax=0.13E~+01

T T e

o.o AHHIIHI
1 ] ] 1 1}

00 01 02 03 04 05 06 0.7
—_— X

(b)

VECTOR FIELD
Xmin=0.00€+00

T T T Ymin=0.00E+0C

0.8 0838 1.0

Xmex!=0. 19€+02

Vmin=0.00E+00

0.7 4

0.1

0.0 3%~

vmax=Q0.10€+01

l- Ymax=0.13€+02

Ymin=0.00E+00

i i i 1 T 1 T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
X

i ] t
0.8 0.9 1.0

Fig. 4-40 The velocity field of a solitary wave with H/d0=0.28 running up on a 2.88° slope
from. x/d.o =28 to x/do=40 at non-dimensional time T=20. (a)The ordinate is v/ido and the
abscissa is x/do. (b) The ordinate is (y/do)*10 and the abscissa is x/do.
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increases linearly to the free surface (Fig.4-41). Fig.4-37 and Fig.4-38 show the
wave profile and the velocity field when the wave crest is in the sloping beach, but
before the wave breaks. The wave shape becomes asymmetric. The wave front is
steepening. As a result, the horizontal velocity under the wave front is no longer
constant but increases to the free surface. The vertical motion in front of the wave
crest is also very strong. (Fig4-42, x/do=31.95). At this time frame, Fig.4-37 shows
the discrepancy at the front of the wave surface, so the Fig.4-42 at x/do=31.95
shows the disagreement of the horizontal velocity component between the present
numerical results and numerical results of RANS (Lin, 1999). But the vertical
velocity shows less discrepancy in the comparison, probably because they are less
sensitive to flow field. From the presented results, the present numerical results,
comparing reasonably well with experimental measurements, and are closer to the
experimental data than that by the WENO method (Li, 2000).

In the present model, the numerical results show that there is maximum wave

height H,= 0.3442 and water depth d,=0.1942 happening at T=19. The breaking

index % =1.77 satisfies the condition proposed by Grilli, et al., (1997). Fig.4-
&

39 shows the breaking process occurs between T=19 and T=20. The present
numerical results agree with the laboratory observations that the breaking process
occurs between T=15 and T=20. But the predicted water surface differs from the

experimental measurements, because the horizontal velocities have large
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Fig. 4-41 Solitary wave run-up oa a 2.88° slope at T=10. Comparisons of vertical variation of
velocities at x/do=24.15, 25.95, and 28.05. The wave crest is at /do=26.21. The limes are
present model, and the circles are numerical resuits by Lin, et al (1999)
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Fig. 4-42 Solitary wave run-up on a 2.88° slope at T=15. Comparisons of vertical variation of
velocities at x/do=30.15, 31.95, and 34.05. The wave crest is at ¥/do=31.44. The lines are
present model, and the circles are numerical resuits by Lin, et al (1999)
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discrepancy at wave front at T=15. After wave breaks, Fig.4-40 and 4-43 show the
flow pattern becoming quite different. In the wave front, the particle velocity can
exceed the phase velocity near the free surface, forming a layer possessing a much
larger velocity than the region underneath. This layer is often referred to as the
roller, which is used to generate turbulence and vorticity and is discussed by Lin
and Liu (1998). Fig.4-43 at x/do=36.15 shows that the vertical velocity under the
wave crest is smaller and it is experiencing an opposite process of changing the
direction from the positive to negative. This reduces the pressure underneath.

As the broken wave propagates, the present numerical model will stop. The
present numerical model does not include the Reynolds stress, which may
incorporate the turbulence occurring in the broken wave. But the present model can
simulate the near breaking processes reasonably well. The breaking process
dissipates energy in the form of turbulence and it also reduces the pressure under the
wave crest and increases the pressure under the breaking wave front due to different
features of the vertical acceleration of fluid particles. Therefore, the shallow water
equation model, which assumes the hydrostatic pressure everywhere, may not be

able to simulate the long wave shoaling on the slope, either.

4.4 Wave-induced Loading on a Half-buried Pipe

4.4.1 Hydrodynamic Forces on a Half-buried Pipe Studied by
Foda’s Experiment
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Fig. 4-43 Solitary wave run-up on a 2.88° slope at T=20. Comparisons of vertical variation of
velocities at ¥/do=34.95, and 36.15. The wave crest is at x/do=36.76. The lines are present
model, and the circles are numerical results by Lin, et al (1999)
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The present numerical model has also been applied to compute hydrodynamic
forces on half-buried pipe. The half-buried pipe in the coastal zone is one of
common coastal structures in ocean outfalls for sewage disposals. An experimental
study on the periodic wave passing over the half-buried pipe is presented by Foda

(1990). A layout of the experimental setup is shown in Fig.4-44.

wave
’ water surface
/\\H/==0.152 m 7
pipe
D=0203 m

+ ¢, do=122m

B=061m
sand basin
P e L=156m <— T

Figure 4-44 Definition of the half-buried pipe used by Foda (1990)

The undisturbed water depth do = 1.22 meter, the sand basin length L = 1.56
meter and height B = 0.61 meter, wave height H = 0.152 meter, frequency W = 3.0
second, the diameter of PVC pipe D = 0.203 meter. Variable used in the present
numerical model are dimensionless numbers normalized by the water depth, do, and
redefined as follows. The variables become do=1,L. =128, B=05 H=0.12, W=

8.22, D = 0.16, Reynolds number is computed to be 80,000, time increment dt =
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Fig. 4-45 Comparison of water pressure of the present model and experiment (Foda, 1990) on
exposed half-surface of pipe during one full wave cycle
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equation shown in Fig.4-48 for a half-buried pipe of diameter D are calculated by

the Morison equation,
1 D x D*\du
FD =§CD P (?)u[u[-l—cu p( 2 JE-

where u(t) = the unsteady ambient water velocity near the pipe; D = the pipe

diameter; p = the water density; C, = the drag coefficient; and C,, = the added-

mass coefficient. The ambient water velocity was estimated using Dean’s stream-
function calculation. Over many selected wave cycles, the best-fit values for the
drag coefficient ranged between —0.188 and 0.861, while the added-mass coefficient
ranged from 1.51 to 2.08 (Foda, 1990). It can be seen that the negative maximum
net drag force acts on the half-buried pipe in the seaward direction while the wave
trough passes over the pipe. And the positive maximum net drag force acts on the
half-buried pipe in shoreward direction while the wave crest passes over the pipe.
Based on the results in Fig.4-48, the drag force acts on the half-buried pipe
backward and forward during a wave period. With combination of the lift force and
drag force acting on the pipe, Foda’s experiment showed that the half-buried pipe
would break away from the sand bed.

In the present numerical model, by necessity, the arc of pipe is replaced a series
of the straight line. Thus pressure distribution on exposed pipe has some difference

between the numerical and experimental results, especially when wave crest and
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wave trough pass over the pipe. But the numerical results appear to be reasonable in
explaining the physical phenomena around the pipe. And the maximum net pressure
(drag force) acting on the pipe compares well with the experimental data, with some

time delay.

4.4.2 Hydrodynamic Forces on a Half-buried Pipe Studied by
the Sanitation District of Orange County, CA.

In July 1997, The Sanitation District of Orange County contracted Carollo
engineers to investigate the rock sizes needed to protect the 120-inch outfall that
was designed and constructed in the late 1960s and early 1970s. In addition, the
forces to which the outfall is exposed are studied and computed. The 120-inch
diameter outfall pipeline located at Newport Bay, Orange County is shown in Fig.4-
49. The location 1 and location 2 of the pipeline are chosen for the studies of the
hydrodynamic forces acting on the pipeline. The water depth h is 40.65 ft and 32.65
ft corresponding to high tide and low tide conditions, respectively, at locationl, and
depth h is 47.75 ft corresponding to low tide condition at location 2.

The design waves to be used in the evaluation of the rock protection were
obtained in part from an exhaustive study of extreme waves conducted by the U.S.
Army Corps of Engineers as part of the Coast of California Storm and Tidal Wave
Study. Additional data were obtained from Seymour (1996). These data were
supplemented by storm waves obtained by wave hindcasting procedures conducted

by Pacific Weather Analysis. The waves produced by an offshore storm event
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consist of waves that vary in both height and period. The wave height is defined as

the distance between a wave crest and wave trough. The wave period is defined as

the time interval from one wave crest to the next wave crest.

The significant wave height Hi3 is used to represent the incident wave in this

study. At location 1 and location 2, the variation of the probable maximum wave

height with recurrence interval is presented in Fig.4-50 and Fig.4-51, respectively.

The significant wave height equals to the probable maximum wave height divided

by 2.57 (Sanitation District of Orange County, 1997). The following table shows

the relation between the wave variables and recurrence interval.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recurrence Depth HL/ H y Diameter of pipe | Height of basin
73 do

Interval(year) | do(ft) | () (fUft) D(fty/do(ft) | B(R)/do(ft)

10 40.65| 6.23 | 0.15 0.24 0.12
47.75| 4.28 | 0.09 0.20 0.10

20 40.65| 7.39 | 0.18 0.24 0.12
47.75| 5.84 | 0.12 0.20 0.10

30 4065 9.73 | 0.24 024 0.12
4775} 7.78 | 0.16 0.20 0.10

50 40.65| 10.12| 0.25 0.24 0.12
47.75| 8.56| 0.18 0.20 0.10

90 40.65| 10.50| 0.26 0.24 0.12
4775 12.45| 026 0.20 0.10
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To study the wave hydrodynamic force acting on the 120-inch diameter of the
outfall pipeline, the present study uses two different numerical models to simulate
the case. (1) First model is oscillatory wave passing over the outfall pipeline. The
wave period T = 20 sec. and the wavelength L = 723.57ft are for the water depth at
40.65 ft. For water depth = 47.75 ft, the wavelength L = 784.23ft with wave period

T = 20 sec.. In the report of Sanitation District of Orange County, there is no data of
wavelength for the oscillatory wave. So the wavelength is computed by L =T./gd,

and is used in the oscillatory wave used in the present model. (2) Second model is
solitary wave passing over the outfall pipeline. As a train of waves approaches the
shallow water, it is observed that the crests become higher and the troughs become
flattened. This kind of wave is approaching those represented by the solitary wave.
The solitary wave height is assumed to be the half of the oscillatory wave height in
this model. The variables used in the case of the depth 40.65 ft are dx/do = dy/do =
0.04, dt/(do/g)"0.5 = 0.04, Reynold’s number R = 80,000. The variables used in the
case of the depth 47.75 ft are dx = dy = 0.02, dt/(du/g)"0.5 = 0.02, Reynold’s
number R = 80,000.

The data are presented in Fig.4-52 where the horizontal, vertical, and resultant
force are presented at the two different depths, 40.65 ft and 47.75 ft, as a function of

the recurrence interval. The forces based on the analytical method were determined
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based on the velocity and acceleration in a direction perpendicular to the
longitudinal axis of the pipe. Based on the report’s data, there is angle § between
the incoming wave propagation direction and the outfall pipeline. This is needed to
determine the velocities and accelerations acting in a direction perpendicular to the
pipe.

The data are presented in Fig.4-53 to Fig.4-55 where the drag, lift and resultant
forces are presented for the depth = 40.65ft, and the forces presented in Fig.4-56 to
Fig.4-58 are for the depth = 47.75ft. At location 1 the water depth is 40.65ft, the
angle 6 ranges from 20° to 50° for recurrence interval 10-years to 30-years and
the angle @ ranges from 20° to 30° for recurrence interval 50-years to 100-years.
So the wave forces acting in a direction perpendicular to longitudinal axis of the
pipe are lesser for recurrence interval 10-years to 30-years and are larger for
recurrence interval 50-years to 100-years. But in the present models, the wave is
perpendicular to the pipe. So the forces, recurrence interval from 10-years to 30-
years, have large difference between numerical results of oscillatory, solitary wave
models and report’s data in Fig.4-53 to Fig.4-55. But recurrence interval from 50-
years to 100-years, the numerical results of the solitary wave model compare well

with report’s data than oscillatory wave model does.
At location 2 the water depth is 47.75 ft, the angle 6 is around 0° for recurrence

interval 10-years to 30-years and the angle @ ranges from 0° to 20° for recurrence
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interval 50-years to 100-years. The wave forces acting in a direction perpendicular
to the pipe are larger for recurrence interval 10-years to 30-years and are lesser for
recurrence interval 50-years to 100-years. So the forces, recurrence interval from
50-years to 100-years, have large difference between numerical results of
oscillatory, solitary wave models and report’s data in Fig.4-56 to Fig.4-58.

As a train of waves approaches the shallow water, it is observed that the crests
become higher and the troughs become flattened. This kind of wave is approaching
those represented by the solitary wave. In Fig.4-55, the shallow water depth is
40.65ft, the resultant forces by the solitary wave model are closer to the report’s
data than the ones by oscillatory wave model. But in Fig.4-58, the location 2 is far
away from the shoreline and the water depth is 47.75ft, the resultant forces by the
oscillatory wave model compare well with report’s data than the ones by solitary
wave model. The comparisons show that the solitary wave model is preferred in
shallow water, and the oscillatory wave model would work better in deep water.

In Fig.4-54 and Fig.4-57 the present model and the report of Orange County
Sanitation District show that the maximum vertical force upward at depth 40.65ft
and 47.75ft are about the same and at worst is of the order of 500 Ibs on recurrence
interval 90-years. The weight of the pipe per foot filled with fresh water is
approximately 3331.0 Ibs in the downward direction. Therefore, there is a factor of

safety of almost six times in the vertical force. The drag force at worst is of the
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order of 1200 Ibs on recurrence interval 90-years and if it acts on the midway up
from the half-buried pipe. It can be shown that there is a significant resisting
moment to prevent the pipe from rolling out of the matrix. Therefore, for the wave

conditions investigated, the pipe is considered safe under the actions of the design

waves.
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Chapter §

Conclusion and Recommendation

5.1 Conclusions

The present numerical model, which is based on the Navier-Stokes equation, is a
powerful tool for the investigation of propagation large amplitude wave into the
coastal zone as well as its interaction with marine structures. In the present study,
three sets of comparisons are presented among numerical computations and
experiments for (1) solitary wave overtopping submerged obstacle, (2) solitary
wave shoaling on the slopping and vertical structures, and (3) periodic wave and
solitary wave overtopping the submarine half-buried pipeline. The agreement of the
free surface elevation and velocity distribution is found to be good.

The following major conclusions can be drawn and they are divided into the
categories corresponding to the main areas of this investigation:

5.1.1 Overtopping the Submerged Rectangular Structure

The critical failure areas in structures of caisson are the toe and underlying
foundation due to the wave-induced scouring, liquefaction and large stresses in the

foundation soil. (Tsai, et al. 1986) The present modeling work shows that there are
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rotational flows occurring around the submerged obstacle when the solitary wave
propagates over it. These vortices are found in the vicinities of the submerged
obstacle, the strongest one always occurs in the lee side of the submerged obstacle.
Based on the results obtained, the submerged obstacle is found to impacted severely
by these vortices. These phenomena tend to scour and damage the foundation. To
reduce the damage to keep these obstacles from damage, Liu, et al. (1999) shows
that the porous armor layer is effective in reducing the overtopping rate as well as in
preventing the caisson breakwater from bottom scouring.

The computed rotational flow field and the water surface profile using the present
model compared well with the experimental data. The agreement between the
present model and prior experiments is good for the water particle velocities
obtained for several locations in the vicinities of the submerged obstacle. The
comparison of the numerical results with the Ting and Kim’s (1994) experiment
shows that their inviscid theory (potential theory) would not accurately reproduce

the experimental results at the shoreward region of submerged breakwater.
5.1.2 Run-up of Non-breaking Solitary Wave on Vertical Wall

The present model can simulate the non-breaking wave climbing up the vertical
structure. The maximum run-up height compare well with the analytical solution
and other numerical results by prior investigators. It is seen that the present model

results agree well with the analytical results of Laitone (1960). The agreement is
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much better than any other numerical models. Thus, it is concluded that the

analytical approximation by Laitone (1960)

2

R/d,=2H + ”2

H' : normalized wave height = H /d,

can be used to predict the preliminary result of solitary wave run-up on the vertical

wall.

5.1.3 Run-up of Non-breaking Solitary Wave on Steep Sloping
Beaches

The present model simulated the non-breaking solitary wave shoaling on steep
slopes 45°and 30°. The agreement of the water surface profiles and spatial velocity
distributions between the present model and Camfield and Street’s (1968)
experiment for slope 45°and Lin’s (1999) experiment for slope 30° is very good
during the wave run-up. The discrepancies of maximum run-up between the present
model and experiments, with slopes S = 45°, 30° are only 0.9% and 5%,
respectively.

The vertical variations of the horizontal velocity component on the steep siope
can be very strong. These variations suggest that any shallow water wave
approximation in the sloping beach region is incorrect.

5.1.4 Run-up of Breaking Solitary Wave on a Mild Sloping
Beach
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The present model simulated the solitary wave shoaling on a mild slope (2.88°%)
reasonably well until the solitary wave overturning and breaking taking place. The
free surface elevations and velocities agree well with experimental measurements
before the profile of the wave crest becomes steep. The water surface profile
predicted by the present model agrees better with the experiment than the one by the
WENO numerical method used by Li (2000).

The results of the present model also show that the water surface elevations and
the horizontal velocities are under-predicted slightly when compared with
experiments but the comparisons with experiments are better than the WENO
numerical method (Li, 2000). The present model and the experiment show that there
are two major characteristics as the incident wave shoals in the mild sloping beach,
(1) a narrow peak appears at the leading edge, and (2) an extended triangular
wedge-shaped region forms behind the peak. This is because of the buildup of non-
linear effect causing the wave crest to increase and the slope of the wave front to
become steep. As wave shape is further steeper, the particle velocity near the crest
become too big to be sustainable. Thus wave will break. But the present model will
stop when the wave breaks.

5.1.5 Wave-induced Force on Half-buried Marine Pipeline

One of the advantages of the present model is that it can be used to simulate the

significant practical problem. The present model is used to simulate the periodic and
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solitary wave overtopping the half-buried pipeline. In Fig.4-55 and Fig.4-58, the
comparisons show that the solitary wave model is preferred for application in
shallower water and the oscillatory wave model would work better in deep water
region.

The present computer model when compared with the experimental study
conducted for the Orange County Sanitation District show that the maximum
vertical force upward at depth 40.65ft and 47.75#t are about the same and at worst is
of the order of 500 Ibs for wave height associated with recurrence interval 90 year.
The weight of the pipe per foot filled with fresh water is approximately 3331.0 Ibs
downward. Therefore, there is a factor of safety of almost six times for the lift force
computation. The drag force at worst is of the order of 1200 Ibs for wave associated
with recurrence interval 90 year and if it acts on the midway up from the half-buried
pipe. It can be shown that there is a significant resisting moment to prevent the pipe
rolling out of the matrix. Therefore, the pipe is considered safe from rolling.

5.2 Recommendation for Future Studies

Based on the present investigation, three possible future research directions can

be recommended here:
1. All optical sensing techniques, including laser doppler velocimetry (LDV)
and particle image velocimetry (PIV), fail to measure velocity in the region

where air bubble density becomes large. Therefore no velocity data in the
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roller region of a breaking wave can be accurately measured using these
methods. To obtain more information about the wave breaking and run-up
process, more experimental measurements using digital particle imaging
velocimetry (DPIV) have to be conducted.

2. The present numerical model fail to simulate the broken solitary wave
propagating toward the shoreline. It appears that plunging jet is important to
understand the wave breaking kinematics and the energy dissipation process.
A numerical model, similar to that used by Lin, et al. (1999) solving the
Averaged Navier-Stokes equation and improved & — ¢ equation, might lead
to more accurate results of jet and the maximum run-up of solitary waves.

3. The present model has the potential to be extended to study three-
dimensional problems about the diffractions around the submerged
breakwater, breaking wave run-up on the slopping beach, and the wave

acting on the half-buried pipeline with arbitrary incident angle.
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