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Abstract

The primary thrusts of this dissertation are to develop and test a new quadrilateral layered

membrane element with drilling degrees of freedom (DOF) and a quadrilateral thin flat

layered shell element for the nonlinear analysis of reinforced concrete walls. The drilling

degrees of freedom refers to the incorporation of the in-plane rotation as a degree of

freedom at each node of the element. The membrane element consists of a quadrilateral

element with a total of 12 DOF, 3 per node, 2 displacements and 1 in-plane rotation, and

uses a blended field interpolation for the displacements over the element. This formulation

is an extension of the one developed by Xia et al. [151] in 2009. The shell element is created

by the combination of the membrane element developed in this dissertation and a Discrete

Kirchhoff Quadrilateral Element (DKQ, 12 DOF), formulated by Batoz and Tahar [11]

1982, to model the out of plane bending behavior of the element. The modeling of the

section of the membrane and the shell element consists of a layered system of fully bonded,

smeared steel reinforcement and smeared orthotropic concrete material with the rotating

angle formulation. The layered section for the shell includes the coupling membrane and

bending effects. These elements are implemented on a finite element framework using the

object oriented programing language under MATLAB [62].The framework or MATLAB

toolbox for Finite Elements developed for this dissertation allows to incorporate, develop

and test new elements, materials, sections and analysis algorithms in a easy and quick

xiii



manner. The proposed elements are evaluated using experimental results that are available

in the literature. It is shown that the new elements are in excellent agreement with the

experimental results for the different load configuration, monotonic and cyclic loading, and

they are able to predict the failure modes for the different wall configurations analyzed in

this dissertation.
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Chapter 1

Introduction

1.1 Background and Motivation

Reinforced Concrete Walls are a fundamental part of the lateral resisting force systems

against the lateral forces of earthquake and wind loads in tall and mid-rise multi-story

buildings. In addition, in some cases, the walls are also used to carry the vertical loads

produced by both, dead and live loads over the buildings. Wall and wall-frame systems

provide the necessary strength and stiffness to satisfy the demands produced by strong

ground motions and have exhibited a good performance in recent earthquakes with rare

occurrences of complete collapse of these structures. For this reason and also for the small

lateral drift that is developed by this system, it has also been employed for tall buildings.

The design and modeling of reinforced concrete wall elements has been an extensive

area of research. This is not only due to the complex behavior of the material, but also due

to the behavior of the wall as a structural element. The behavior of these walls change

depending on the different possible configuration (sizes, shape), and disposition of the

different components of the walls (reinforcement, aggregate size, confining of the concrete),

and also their location as part of the structural system. This has been shown in past
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research the studies of Paulay and Priestley [114], and Panagiotou [108]. Different types of

models have been studied, using micro and macro elements, to try to represent the different

characteristics of the reinforced concrete walls. These studies include concrete loss of

stiffness after cracking, open and closing of cracks, tension-stiffening of the concrete, bond-

slip between the reinforcing steel and concrete, influence of confinement on the maximum

capacity of the concrete, and yielding and hardening of the steel.

Currently, the nonlinear modeling of the behavior of a wall structure is done with an-

alytical models that assume only in-plane behavior, such as multi-component-in-parallel-

model or multi-vertical-line-element model ([103, 144, 144]), membrane elements (Modified

Compression Theory by Palermo and Vecchio [106] or Softened Membrane Model by Hsu

and Zhu [58]). Commonly for 3D structures the elements have the bending and mem-

brane action decoupled. These models tend to show good agreement with experimental

data that typically considers isolated elements, whereas, the behavior of the actual walls

are configuration dependent. However, a more complex behavior for structural walls have

been observed in the wall buildings during the Chile Earthquake February 27, 2010. It is

clearly indicated that when wall elements are interconnected forming Tee or Channel walls

or even more complex configurations when are combined with beams and slabs, the out-

of-plane behavior begins to play a role in the overall behavior of the structures due to the

complex interrelation of the different elements. This behavior is described by the reports

of the Reconnaissance team of the Los Angeles Tall Building Structural Design Council

([22, 99, 120, 154]) and the ERRI Reconnaissance team,[98] after the Chile Earthquake.

This behavior is not captured by the previous simplified models that do not easily allow

direct connection to the walls and other elements like beams or walls in other directions.

2



Nevertheless, the current standard for modeling the elastic behavior of reinforced con-

crete wall systems is done with the shell element that combines a membrane element with

a plate element. Therefore, allowing the model to have the in-plane and out-of-plane

behavior of the elements and also the analysis of the interrelation of the different compo-

nents. For nonlinear analysis this type of element that includes in-plane and out-of-plane

behavior has been left aside because they were considered very computationally expensive.

With the recents advancements in computer capability and the use of frameworks such as

OpenSees [82], it becomes of interest to explore theses types of elements for the modeling

of the complex behavior of wall structures.

Two main areas that need to be considered to be able to model Reinforced Concrete

Walls using finite elements are the development of an element that represents specifically

the behavior of the wall structures, and a nonlinear constitutive material model that

represent the concrete and reinforcing steel bars in the walls [157]. The development of

the specific element for wall, in this dissertation, is dealing by the use of a blended field

interpolation for the displacement. This allows the use of an element with drilling degrees

of freedom for the analysis two dimensional wall structures. Moreover, this will allow

the element to have the capability to connect directly with beams because the element

have rotations DOF, at difference of the typically membrane elements proposed before.

In addition, for 3D structures the coupling of the membrane action (in-plane) and plate

action (out-plane) by the combination of the membrane element proposed here with a

plate element is considered using the Discrete Kirchhoff Quadrilateral Element (DKQ)

formulated by Batoz and Tahar [11] , and the use of a layered section. For the nonlinear

3



constitutive material, a smeared crack rotating angle concrete model with tangent stiffness

matrix formulation is used.

1.2 Objectives and Scope

The objectives of this dissertation are to develop and test a new nonlinear quadrilateral

layered membrane element with drilling degrees of freedom and a nonlinear quadrilateral

thin flat layered shell element. This element incorporates the coupling of in-plane flexural,

axial and shear behavior for single wall models using membrane elements, and the flexural,

axial and shear behavior of complex 3D, reinforced concrete wall systems using the pro-

posed layered shell element. The drilling degrees of freedom refers to the incorporation of

a degree of freedom that represent the rotation in the plane of the element. The modeling

of the section by the membrane and shell element consists of a layered system that is fully

bonded between the layers. The constitutive material used at each layer corresponds to a

smeared crack orthotropic rotating angle concrete material with a tangent stiffness matrix

formulation. In addition, it is developed in a finite element framework using the object

oriented programing language under MATLAB, to implement the elements formulated in

this dissertation.

In Chapter 2, a brief literature review of the current nonlinear element used to model

wall structures will be presented.

In Chapter 3, the theory that will be used to implement the layered membrane and shell

element will be studied and discussed. The quadrilateral membrane element will be formed

by the use of a blended field interpolation for the displacement with 12-DOF (3-DOF at

each node, two displacements and a rotational degree of freedom). This formulation is

4



an extension of the formulation developed by Xia et al. [151] in 2009. Meanwhile, the

quadrilateral shell element will be formed by the combination of the membrane element

formulated in this dissertation and a 4-node 12-DOF quadrilateral plate bending element,

the Discrete Kirchhoff Quadrilateral Element (DKQ) formulated by Batoz and Tahar

[11] . The modeling of the section for the membrane and shell element will consist of a

layered system, that is fully bonded. In addition, the section model includes the coupled

membrane and bending effects for the shell element.

In Chapter 4, the constitutive material that will be used for the implementation of

the smeared steel reinforcement and orthotropic concrete material with the rotating angle

and tangent stiffness formulation for the modeling of the in plane behavior of each layer is

presented. This constitutive material is based on the fundamental principals of mechanics

of materials, satisfying stress equilibrium and strain compatibility, using an average stress

and strain. In addition, the parameters used to account for the softening, enhancement

or damage of the concrete under multi-axial load states (biaxial compression, tension-

compression, cycling loads) are reviewed.

In Chapter 5, a brief review of the current object oriented frameworks for finite ele-

ments, and the theory selected and diagrams of the developed finite element framework

using the object oriented programing language under MATLAB are presented. In addi-

tion, the solution algorithm implemented in the framework that will be used to solve the

pushover and cycling models is also discussed.

In Chapter 6, the evaluation and verification of the proposed membrane and shell

element is presented. For this the analytical results obtained with the proposed elements
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are compared to experimental results available in the literature for monotonic and cyclic

loading.

In Chapter 7, a summary of the work performed during this dissertation and sugges-

tions for future research are presented.
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Chapter 2

Review of Literature of Reinforced Concrete Wall Element

Models

Wall elements are effective in providing resistance and stiffness to lateral loads produced

by wind and earthquake. Wall structures are typically used alone for mid and low rise

buildings to control the lateral strength demands and deformation requirements, in parallel

with frame systems in mid to high rise buildings. This is because the core wall helps to

control the lateral shearing deformation (inter-story drift). Although, the construction

and design of walls using current codes is a relatively simple procedure, the wall elements

behave differently depending of their configuration (size wall, height/length ratio, steel

reinforcement), under multi loading conditions. This implies that the behavior of the

walls depends upon the interrelation and coupling of the combination of flexural, shear,

and axial deformation over their cross section at different levels. In addition, complex

mechanisms such as the rigid body rotation for the bond slippage of the reinforcement

at the bottom, effects of the confinement, dowel action for the reinforcement, cracking,

aggregate interlock, creep, tension stiffening also modify the behavior of the walls. This

has been shown by different researchers ([20, 41, 103, 114]).
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For Example, walls used in mid to high rise buildings exhibit mainly a flexural behav-

ior, with the deformation concentrated at the level of larger moment, typically near to the

ground level. This failure is characterized by horizontal cracks at the edges of the wall.

Instead, in low rise buildings where the walls behave primary in shear, diagonal cracks are

produced. However, this main behavior occurs typically in isolated walls, once the walls

are combine with other elements or other walls in the building the behavior can change

producing different failures such as pure compression with crushing of the walls, combi-

nation of failure between flexural and shear, where the failure is produced before reaching

the maximum capacity of the wall in pure flexural or pure shear behavior is attained. Due

to this complex behavior of the wall a large amount of research and experiments have

been developed in the past decades, with the idea of providing enough data to represent

the walls and develop analytical models that can accurately predict the behavior and im-

portant material characteristics of these walls, such as concrete stiffening, cracking, bond

slippage and neutral axial migration.

The analytical model can be separated into two groups: macroscopic models and

microscopic models based on finite element models [144]. The macroscopic model are

based on predicting the overall behavior of a wall element with the use of simplified

assumptions and idealizations [144]. This is done typically by lumping a system of springs

where each spring has an independent hysteric curve that represents a part of the behavior

of the wall. To model more complex structures, these macro models are typically stacked

one over the other, using the assumption that each element is one floor. These models

are simple and efficient to understand and incorporate in structural nonlinear programs.

However, in some cases they are difficult to use due to the amount of coefficients necessary
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to calculate from experimental results. These models also tend to be problem based [144],

which mean only work for certain cases. Instead, the microscopic model are based on

a more theoretical background of material mechanics, in which the structure is divided

into a series of elements, and over each element the respective constitutive representation

of the reinforced concrete material is imposed in a stress-strain space or other possible

mixed representation and the equilibrium equation are satisfied in a average sense with a

integration over each finite element. These models provide a better definition of the local

response, and a more refined representation of the response of the wall structures and tend

to be not problem specific, which is important to be able to represent a variety of problem

with the same procedure. However, their principal drawbacks are that these elements

sometimes rely in the definition of the constitutive laws which tend to be very difficult

to implement in nonlinear finite element programs, and also they are very computational

costly ([41, 103, 144])

To continue, a brief review of the different analytical models (macroscopic and micro-

scopic models) that have been used to model wall elements will be presented.

2.1 Macroscopic Models

2.1.1 Equivalent Beam Models

A simple approach to model the nonlinear behavior of a wall element is the use of a line

element (beam or beam-column model). If this approach is used to model a building, the

line is located at the center line of the wall and it is connected to the rest of the structure

by rigid links. In early models, the line element was modeled using an elastic beam with
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concentrated plastic hinges. These hinges were represented by nonlinear rotational springs,

located at the end of the elastic beam [144]. Different types of hysteric rules can be used

for the moment-rotation relationship of each nonlinear spring. In addition, the inclusion

of another nonlinear rotational spring at the end of the rigid link can be used to take into

account the fixed-end rotation at any connection interface [144].

Some modification has been done to this model to incorporate other behavior observed

on the walls, Takayanagi and Schnobrich [129] in 1976, introduced additional inelastic

shear-based rotational springs at the end of each line to model shear deformation, and

Soleimani et al. [127] in 1979 incorporated spreading inelastic behavior by using a rep-

resentation of multiply springs in the beam element. Keshavarzian and Schnobrich [71]

incorporate an axial load effect and variation of the inelastic zone, Otani et al. [104] in

1985 and Roufaiel and Meyer [121] incorporate the bond slippage effects, and Ariatizabal-

Ochoa [6] in 1983 incorporated additional inelastic shear behavior. In addition, it has

also been tried to use representations of spread plasticity over the length developed for

beam-column elements with force formulation and a fiber section formulation for walls like

the work done by Martinelli and Filippou [89] in 2009.

The principal drawback of this type of model is the fact that it cannot model some

interaction effects in the connection of the wall with other elements, and also the shifting of

the neutral axis of the wall section, except for the fiber section formulation. The rotation

of the wall due to bond slip effects cannot be reproduced because this model assumes that

the rotation occurs at the centroidal axis of the wall ([41, 103, 144]).
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2.1.2 Truss Type Model

Another approach to model the wall is the use of a truss analogy. This means, to represent

the wall as a equivalent truss structure [144]. In this model the structure is represented as a

series of inelastic truss elements that only resist tension and compression loads. Commonly

in this model the concrete is represented by the elements that are subjected to compression

and the steel or some kind of steel-concrete combination is represented by the elements

in tension, in an effort to capture the mechanical behavior of the wall. Hiraishi [52] in

1983 used this representation with non-prismatic elasto-plastic truss members to analyze

the behavior of the walls used in a tests conducted in the US-Japan Cooperative Research

Program. This non-prismatical truss member was used to account for the variation of the

stress along the height of the boundary elements. In this representation, two vertical edge

elements where used to resist the moment over the wall, the diagonal element used to carry

the shear loads, and the horizontal elements to complete the truss analogy. This model

agreed with the experimental data which was used to compare the element. Panagiotou

et al. [109] in 2012 used this approach to model the behavior of RC walls under cycling

loads. The model proposed by Panagiotou et al. [109] including tension stiffening in

the horizontal direction, takes into consideration the mesh size effect for the concrete

constitutive material model, and instead of using a single truss or panel per wall, the

model is subdivided in a minimum of nine sub panels. This new variation of a truss model

approach agreed with the experimental data.

Some of the difficulties of this model are the definition of the truss members and their

mechanical properties, which are represented by hysteric rules and also selection of the

equivalent truss system, which depend of the crack patterns during the load history [144].
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This type of analogy is currently used to study and design deep beams (strut and tie

model).

2.1.3 Combined Model

In 1997, Eimani [41] proposed a macro model in which the wall is discretized in a series

of subelements. The elastic part of the wall is represented by an elastic panel element,

that is used to represent the in plane behavior. The cracked segment or plastic zone is

assembled by a series of inelastic springs. Each spring in the element is derived from

the known material behavior. This was done for the purpose of eliminating part of the

complete dependency of the experimental data to defined the spring hysteretic rules and

plastic crack area. The crack area was assembled by two system of springs at each edge,

that work to account for axial and flexural load. Meanwhile, the web of the wall is

represented by a non-prismatic beam-type element to enforce the coupling of shear and

flexural deformation using a flexibility matrix approach. Each of the spring systems at

the edge were represented by two subsets of springs; one subset was a single spring which

represents the inelastic behavior of the concrete, and the other subset of springs consist

of two springs working in series to account for the bond-slippage and non linear effect of

the steel.

2.1.4 Fiber - Base Model

This type of element are characterized by the combination of several axial, shear, and

rotational springs working together; some in parallel and others in series to represent the

global response of the reinforced concrete wall element. One of the first attempt for this
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type of element was the Three-Vertical-Line (TVL) proposed by Kabeyesawa et al. [66] in

1982 , this model was based on the results of experiments done on a 7 story, wall building

test case. The TVL element consists of two axial springs located at the boundary of

the wall, and a central spring system, connected together to an infinitely rigid beam at

the top and bottom. The central spring system consists of a horizontal, a vertical and a

rotational spring concentrated at the base of the wall. The rotational and horizontal spring

are modeled with an origin-oriented-hysteresis model, and the axial spring is represented

with an axial-stiffness hysteretic model. This model produced an improved representation

of some of the key features of the wall elements, and showed good agreement with the

experimental data. However, it is difficult to implement because the use of complex and

experimental based hysteretic rules that in the majority of the cases are peculiar to the

problem being considered. Also it does not account for the coupling between flexural,

axial and shear behavior [103].

This model was later modified by Vulcano and Bertero [144] in 1987, changing the

complicated axial-stiffness, hysteretic rule in the TVL by a simple idealization of two

axial element working in series. The top spring represent the axial stiffness of the part

of the boundary element in which the bond is still active, and the bottom part consist

of two spring working in series one representing the steel (bilinear model) and the other

the concrete (compression behavior only) to represent the behavior of the cracked wall

where the bond has vanished. The lambda value in the figure was adjusted to account for

the extent of bond deterioration, meaning the separation between cracked and uncracked

concrete. It also includes shear degradation. This new model is known as the TVLM

(TVLModified). This model can represent yield hardening, concrete cracking, degradation
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of bond between concrete and steel, but continues lacking the coupling behavior of the

moment-axial and shear effects.

The model was further modified in 1987 by Charney [28], and by Vulcano et al. [145] in

1988. These new modifications were done by simply replacing the rotational center spring

by a series of axial linear element through the length of the transverse cross section. With

this modification, the model is able to incorporate the coupling axial-flexural effect, and

better represent the migration of the neutral axis over the cross section, Also, it included a

better representation for the hysteretic rules for the axial elements, and for the steel. This

model known as the Multi-Vertical-Line Element Model (MVL Model or MVLM) showed

good agreement with the test data, but still lacked the coupling between flexural and shear

components, and also presented the same problem as the TVLM, which is sensitivity to

the non-dimensional lambda factor. In 1990, Fajfar and Fischinger [43] proposed further

modifications to the system of springs in the TVLM.

Kabeyasawa and Milev [65] in 1997 proposed a variation of the TVL , by replacing

the center system of springs by a panel element, in order to get a better prediction of the

behavior of the reinforced concrete wall to reversed cycling and monotonic loads, and to

account for some coupling between the shear and axial component. The element showed

overall good agreement with the experimental data but the contribution of deformation for

the flexural and shear component showed some error relative to the experimental results,

and still lacks the capability of accounting for the coupling behavior of shear and flexure.

After a series of experiments conducted to investigate the interaction and coupling

between flexural and shear deformation on slender RC walls by Massone and Wallace

[91] in 2004, it was shown that the flexural yielding affect and the shear deformation in
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slender walls are dominated by bending. In an attempt to include this behavior and the

shear-flexural coupling Orakcal et al. [103] in 2006 and Massone [90] in 2006, modified

the Multi-Vertical-Linear element. The modification consisted of replacing the uncoupled

central spring for a series of vertical springs (uniaxial elements) over the cross section

of the wall, which means, that each fiber or axial element is represented as a reinforced

concrete panel with in-plane behavior. For the constitutive law of the panel, it used a

rotating angle concrete model based on the rotating angle softened-truss model (RA-STM)

proposed by Pang and Hsu [110] in 1995 with a more refined concrete constitutive stress-

strain model, which was calibrated with the experimental data from Massone and Wallace

[91] in 2004. This model resulted in a reasonably good agreement with the experimental

data for slender walls but it underestimated the shear deformations and overestimated the

flexural behavior on the walls. However, the error in results of the model vs experimental

results increased for squat walls, where the shear behavior is predominant.

Xiaolei et al. [152] extended the MVL element model to account for 3D effects when

used in the modeling of I T or L type of Walls. The model increased the number of axial

elements to account for the variation of strain on the flange of the I T or L walls and also

additional horizontal springs are used in each direction of the element to include shear in

both directions.

2.2 Microscopic Models

The microscopic models are based on the finite element method (FEM), and theory of

continuum mechanics. In this methodology the wall elements are divided into simpler

elements which are interconnected by their nodal points, and the element mechanical
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response is represented by equations that are a function of a finite number of degrees

of freedom (DOF) at each node. The finite element method has been applied to the

representation of the nonlinear behavior of wall systems since the method was formulated.

However, in the early days the FEM was limited to represent the behavior of isolated

walls because of the increase in the computational cost when modeling more complex wall

structures, as mentioned by Vulcano and Bertero [144]

The microscopic model for reinforced concrete walls can be grouped into three main

categories group: membrane elements that are used for 2D models and shell and 3D

solid brick elements for 3D models. The principal difference between the models pro-

posed through the years within the three different groups are the use of different material

constitutive representations that define the stress-strain relation of the concrete and the

reinforcing steel bars inside of each element. The principal constitutive laws for model-

ing the behavior of reinforced concrete structures can be classified as non-linear material

models, fracture mechanics models, orthotropic models, plasticity model, hypo-elastic ma-

terials models, microplane models and nonlocal continuum mechanics models [7, 157]. A

more detailed review of these constitutive laws will be presented in Chapter 4. In the

following section a brief review of the microscopic model will be presented.

2.2.1 Membrane Elements

This type of model is characterized by the representation of the wall by plane membrane

elements. This element only has in-plane behavior, that can be represented by a plane

stress behavior, typically with two DOF per node (2 displacements). This type of model

is typically used for two types of representation to incorporate the steel inside of the wall.
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One assumes the steel as a smeared material which means distributed homogenously over

the area of the element in the direction of the bars. The second approach is using a truss

type element to represent the steel bar, the main drawbacks of this second representation

is that the mesh of the element needs to coincede with the position of the bar in the wall

and the need of elaborate connecting elements between the bar and the membrane element

to account for bond slippage, if it is considered. One of the first of these elements to be

used in FEM formulation for the representation of the nonlinear behavior of a shear panel

was Cervenka and Gerstle (1970, 1971,1972) [29]. Cervenka [24] used a quad element with

four nodes and two DOF per node (one horizontal and one vertical displacement) , with

a Mises Yield condition for modeling the concrete. Since this time different researchers

have used this type of element or variation with a larger number of nodes in the elements

(higher element), but with only two DOF per node. The main difference is the constitutive

material laws used in the analysis for the representation of the reinforced concrete. Com-

monly, the constitutive laws used to model the material behavior are non-linear material

models, fracture mechanics models, orthotropic models, plasticity models, hypo-elastic

material models, microplane models and nonlocal continuum mechanics models. [7, 157].

Between all the constitutive laws used to represent the concrete in the plane stress

condition, the orthotropic models are one of the more widely used by many researchers to

represent reinforced concrete structures like walls [157]. Some of this model are: Darwin

and Pecknold [39] (1977), Cervenka [25] (1985), Vecchio and Collins [140] (1986), Izumo

et al. [64] (1991), Shin et al. [124] (1991), Bolander and Wight [21] (1991), Hsu [54] (1991),

Belarbi and Hsu [17] (1995), Pang and Hsu [110] (1995), Pang and Hsu [111] (1996), Ayoub

and Filippou [7] (1998), Vecchio [137] (2000), Vecchio [138] (2001), Palermo and Vecchio
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[106] (2003) , Foster and Marti [49] (2003), Mansour and Hsu [86] (2005), Mansour and

Hsu [87] (2005), Zhong [157] (2005). For other types of constitutive laws good references

are the reviews done by Chen [29] and Maekawa et al. [84]. This type of model generally

give good results when compared with the experimental data. However this type of model

has the drawback that the element can not be easily used in combination with beams

for the fact that only 2 displacement degrees of freedom are used at the nodes, and no

rotation is allowed.

Kwan [76] in 1993 and Kwan and Cheung [77] in 1994 used a variation of the model

develop by Sisodiya and Cheung [125] in 1971 initially for bridge analysis, and also used

by Cheung [30] in 1983, in an attempt to incorporate a rotational degree of freedom to

the membrane element for the analysis of reinforced concrete walls. This model was used

to ensure compatibility between the walls and the beams that are connected together.

The initial model was represented by a bilinear representation for the vertical deformation

in the plane element and a cubic representation in ”y” and a linear function in ”x” for

the horizontal displacement. The variation included by Kwan was done by assuming a

constant horizontal displacement at each level through the cross section of the element.

This model is found to be helpful for modeling the analyses of shear-core wall buildings,

but it has a major drawback in that it returns only the average of the bending moment

within the elements and it overestimates the shear stress.

2.2.2 Shell Elements

Another type of representation is the shell element, which combines in-plane and out-

plane behavior of the wall. This is one of the most complete representations, because it
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can represent the interrelation of the wall elements with the different components of the

building. Not many of this type of the element has been developed with the principal

purpose of analysis of reinforced concrete walls, principally because for single walls, the

out of plane behavior of the wall can be neglected, and the increase of more DOF in the

element make it more computational expensive. However, for the modeling of realistic

interrelation of walls with the beams and the slabs, it is necessary to incorporate out of

plane behavior.

Typical FEM programs like ABAQUS [51] or ADINA [3] have already implemented

some shell elements, and commonly assign a nonlinear material property that is available

in the program, such as plasticity laws or damage cracking material used to model soils,

or some simple concrete material property that could represent the nonlinear reinforced

concrete behavior over the structure.

Only a few attempts of specific shell elements to model reinforced concrete wall or

slabs have been developed. From these efforts the principal approach for the modeling of

RC with shell elements is with the use of layers, as has been done by Oñate [101] in 1992,

Polak and Vecchio [115] in 1993, Miao et al. [95] in 2006, Zhang et al. [155] in 2007, Zhang

et al. [156] in 2007. In this approach the wall section is divided into layers that represent

the different components of the wall, such as unconfined concrete (cover), reinforced steel

bars and the confined concrete, over the thickness. Each layer is assumed to behave in

a plane stress state, and the same type of material constitutive laws used for membrane

elements can be used for the layered shell element.

Oñate [101] in 1992 presented a formulation for the layered shell elements that can be

applied to different types of structures. This shell was based on flat elements assembled
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with the combination of a membrane with two DOF per node (using bilinear displacement

interpolation), and a plate element based on Reissner-Mindlin thick plate theory. The ma-

terial was assumed to be smeared concrete and smeared steel. For the concrete it was used

as a damage constitutive model. In addition a modification of the shear strain definition

was used to avoid shear locking. This element gave good agreement with experimental

results, however, it lacks the in-plane rotation.

Polak and Vecchio [116] developed a shell layered element with the use of a 9-node Het-

erosis type degenerate, isoparametric element with 42 dof in total that included shear de-

formation. For materials, the authors used the modified compression field theory (MCFT)

formulate by Vecchio and Collins [140] in 1986. They used a reduced integration for the

shear strain energy term to obtain a satisfactory result for thin shells. This element agreed

with the experimental data and could represent the simple bending and membrane prob-

lems. The principal problem of this element was the number of DOF needed to be used,

and also the lack of a in-plane rotational DOF.

Miao et al. [95] in 2006, developed a shell element that used a smeared approach for the

steel reinforcement and a microplane model developed by Bazant for the concrete. This

study concluded that the multi-layer shell element can correctly simulate the coupled in-

plane and out-of-plane bending failure of tall walls and the coupled in-plane bending-shear

failure of short walls.

2.2.3 Brick Elements

This type of model is characterized by the representation of the walls by 3D solid brick

elements, with 3 DOF per node (displacements in the principal directions). This type of
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model is principally used for the study of simple and isolated walls because of the compu-

tational cost and the complexity to generate the model. Typically for this approach the

steel is represented as truss-type elements that are simply connected to the brick element

at the node positions. For this reason the mesh of this structures tends to be very complex,

unless an embedded constraint is used to connect the line element with the solid element.

Commonly, for the representation of the concrete, the plasticity material or orthotropic

material models are used, and the researchers use more robust and sophisticated FEM

programs like ABAQUS [51] or ADINA [3].

Some examples of this approach to represent the behavior of wall structures can be

found in the literature, like the work done by Khatri [72] in 1998. In this study the

software program ADINA [3] was used to model the nonlinear behavior of a 14 story

building, with an 8-node solid ”brick” element to model the concrete and a truss-type

element to represent the steel. For the material: a Von-Mises constitutive law for the steel

and a concrete material model already implemented in ADINA was used.

A more recent study using this type of approach was done by Gulec et al. [70] in 2009,

in this study the authors used ABAQUS [51] to model squat RC walls and compared

the results with the experimental tests. The steel was considered fully bonded with the

concrete, and used the embedded elements constraint found in ABAQUS [51]. Also an

elasto-plastic hysteresis rule with isotropic hardening was used for the steel. The concrete

used the Concrete Damaged Plasticity constitutive law already implemented inside of the

FEM program in conjunction with the brick element. During this study it was concluded

that the behavior of the walls was significantly affected by the dilatation angle that controls
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the volumetric component of the plastic strain, and the results were sufficiently accurate

to represent the experimental data.

This type of representation commonly gives good agreement with the experimental

data and allows a more inside view of the phenomena happening in the concrete. Also, it

allows directly to account for the coupling of the different deformations in the structure

because they are based on continuum mechanics equation. The main difficulty of this

approach is in the complexity of the definition of the constitutive laws due to the number

of factors required. In addition, the difficulty to define the mesh of the structures, and

the required computational time that needs to be used to perform the analysis.

2.3 Summary

In this chapter the standard models used to study the nonlinear behavior of shear wall

structures have been reviewed. For simplicity and computational cost the macro models

stand out. However, this tends to be limited to the cases or problems from which the

experimental data was used to create the model. In addition, they typically do not take

into account the coupling effect of the different deformations, or multi-load cases. Also,

these models are difficult to be used to study the interrelation of walls with other elements

in buildings.

The other type of model, the microscopic model, presents a more theoretical back-

ground and tends to be more flexible to model different structures. Among the microscopic

models, the membrane element with the use of smeared orthotopic constitutive material

laws is the most common for modeling 2D structures. However, they only include the
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in-plane effects over the walls, and typically use only two degrees of freedom per node,

and due to this are difficult to connect with other elements like beams.

In the case of 3D structures regarding the two types of representation, the solid brick

elements have the problem of computational cost and the level of difficulty to create the

wall structure model. Instead, the shell elements allow model the complete interrelation

of simple and complex wall structures and buildings. It is seen that layered shell elements

should be the best option to model walls. The shell element has the advantage of incor-

porating the interrelation of all the different elements in a building in a simple but robust

manner, and also incorporate all the coupling effects of the deformations inside each wall,

thus allowing it to model complex behaviors of wall structures and buildings.
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Chapter 3

Finite Element Formulation

Wall structures, like wall buildings, nuclear reactors, water tanks and shell roofs are com-

monly used in civil engineering. However the designers typically simplify the structures

or assume elastic materials, and use techniques like the Finite Element Method (FEM) to

analyze the structure and predict the structural response under different load conditions.

Unfortunately, for the analysis of nonlinear, complex reinforced concrete wall structures,

the typical approach is represented by two options. The first option is to use macro-

scopic elements like those presented in the last chapter or the implemented elements in

Perform3D or SAP2000 [38] or to use models with membrane elements with only 2 DOF

per node. But these models start to be difficult to used when the designer or engineer

is trying to determine the interrelation inside of complex structures, due to the connec-

tion with slabs, beams and walls in different orientations, or when more refined meshes

are required. The second option is used in FEM packages like ABAQUS [51] or ADINA

[3] that have implemented some shell elements or 3D solid brick elements, and assign to

these elements a nonlinear material available, such as plasticity laws or damage cracking
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material used to model soils, or some simple concrete material available in this software

that could represent the nonlinear reinforced concrete behavior over the structure.

The FEM has been used extensively in the analysis of wall or shell type reinforced

concrete structures, mainly in the analysis of curved structures, slabs and shear panels

(e.g Cervera et al. [26] in 1987, Polak and Vecchio [115] in 1993, Loo and Guan [81] in

1997, Ayoub and Filippou [7] in 1998 , Kim et al. [73] in 2005, Zhang et al. [155] in 2007,

Zhang et al. [156] in 2007). The use of shell elements for the complete modeling of wall

buildings for the analysis of nonlinear response of these structure has been excluded or

ignored because the nonlinear multi axial material properties and the complex interface

and interconnection of elements was typically ignored or treated in an approximate man-

ner. However, with the computational capabilities available today, it is interesting to try

to use these more robust elements to study the behavior of wall structures that can be

modeled with shell elements.

The more frequently used elements to model shells are : flat shell elements, degenerated

three-dimensional elements and curved shell elements. A large number of research has been

done around these types of elements over the last decades with the motivation to develop

efficient and simple shell elements [100]. Between these three types of elements, the flat

shell elements are very attractive because they are simple but robust, and also have a low

computational cost. In addition, flat shell elements have the ability to model the effects

of stretching and bending behavior in building structures and folded shell structures.

However, the poor performance of some flat shell elements to model RC structures is due

to the exclusion of coupling between membrane and bending action, and the inadequate

modeling of the membrane behavior. This is clearly pointed by Zhang et al. [156] in 2007,
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when he expressed that an accurate and robust flat shell element should ideally have the

following characteristics:

a. Membrane and bending effects must be included.

b. Avoidance of possible singularity in the stiffness matrix.

c. Nodes must have the usual 6-DOF.

d. Freedom from locking for membrane and shear behavior.

e. Application for non-linear material properties and large deformations.

For this reason, it is necessary first to develop a quadrilateral membrane element with

a rotational DOF at each node using a layered section formulation, that satisfies that

the rotational DOF is the strain representation of the true rotation
(

Ω = 1
2

(
∂v
∂x

− ∂u
∂y

))

,

which allows the connection of beams and other element directly to the membrane and

shell element without any extra difficulty. The formulation for the quadrilateral membrane

element is an extension of the formulation developed by Xia et al. [151] in 2009. This new

quadrilateral membrane element will be used as the base to develop the formulation of the

quadrilateral layered shell element, for the in-plane behavior of the shell. The Discrete

Kirchhoff Quadrilateral Element (DKQ) formulated by Batoz and Tahar [11] in 1982 will

be used to model out-of-plane bending of the shell. The modeling of the section of the

membrane and shell element consists of a layered system that is fully bonded between the

layers. It also includes the coupled membrane and bending effects for the shell element.

In the next section of this chapter, the finite element formulation for the quadrilateral

layered membrane and the quadrilateral layered shell adopted in this study and also the

displacement interpolation used for the elements are studied and reviewed.
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3.1 Quadrilateral Layered Membrane Element with Rotational

DOF Formulation

Membranes are in a state of plane stress, in which only in-plane behavior is considered,

this means σz = τzx = τzy = 0, Fig. 3.1. The finite element formulation for this type of

elements using a displacement-based approach is well known and can be found in any book

of finite elements. Typically the formulation for this type of element is developed from the

concept of virtual work, and is used to determinate the stiffness matrix and the resisting

force of the plane element, which are necessary to implement the element in a nonlinear

finite element framework. This section shows the derivation of the displacement-based

finite element method (stiffness matrix, and resisting force) for plane stress elements under

small strains. For this a combination of the formulations presented in Bathe [9] (1996),

Cook et al. [35] (2002), and Chen [29] (2007) are used with additional modifications to

include the layered section.

The principle of virtual works for a membrane in plane stress state can be written as

δWinternal = δWexternal (3.1)

Figure 3.1: In-Plane Stresses
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with the internal virtual work defined as:

δWinternal =

∫

V

{δε}T {σ} dV (3.2)

where {σ} is the vector of stresses in the membrane, and {δε} is the virtual vector of

strains, which is produced by the virtual displacements {δu}.

With the external virtual work defined as:

δWexternal =

∫

V

{δu}T {Fbody} dV +

∫

A

{δu}T {T} dA+

∫

S

{δu}T {tedge} dS (3.3)

where {Fbody} is the body force over the membrane, and {T} the external forces over

the surface of the membrane and {tedge} the external forces over the edge of the membrane

Now following the displacement-based approach for finite elements, the interpolation

of the displacement (horizontal and vertical) over the element at the middle plane can be

defined as:

{u} =







u

v







= [Ψ (x, y)] {U} (3.4)

where [Ψ (x, y)] are the shape functions that represent the interpolation over the el-

ement and {U} is the displacement of the degrees of freedom at each node. Since this

formulation is using small strain theory, the kinematic or strain-displacement relationship

is represented by:
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εx

εy

γxy







=







∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x







=











∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x











︸ ︷︷ ︸

[∂]







u

v







=











1 0 0 0

0 0 0 1

0 1 1 0











︸ ︷︷ ︸

[A]







∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y







(3.5)

Using Eq. 3.4 and Eq. 3.5 , the strain at each point over the element can be written as

{ε} = [B (x, y)] {U} where [B (x, y)] = [∂] [Ψ (x, y)] (3.6)

Replacing everything back in the virtual work for the membrane (Eq. 3.1), and includ-

ing also initial stresses for the general case as proposed by Cook et al. [35] in 2002, the

following is obtained:

{δU}T










∫

V

[Ψ]T {Fbody} dV +

∫

A

[Ψ]T {T} dA+

∫

S

[Ψ]T {tedge} dS

︸ ︷︷ ︸

FExternal

−
∫

V

[B]T {σ} dV −
∫

V

[B]T {σ0} dV

︸ ︷︷ ︸

−R










= 0 (3.7)

where FExternal is the external force over the system, and R is the resistant internal force

of the membrane that is a function of the displacement at the nodes.
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Now, in order to implement this in a nonlinear material implementation, e.g. using

Newton-Raphson method, it is necessary to determine two expressions, the tangent stiff-

ness matrix and the resistant internal force of the membrane at each iteration. From

virtual work, the residual equation for the system at each iteration is obtained as:

Residual
(
U i
)
= Fexternal −Ri (3.8)

Now linearize the Residual
(
U i +∆U i

)
using a Taylor expansion, and excluding high

order terms:

Residual
(
U i +∆U i

)
= Residual

(
U i
)
+
∂Residual

(
U i
)

∂U
∆U i (3.9)

Performing the derivative over the Residual equation, and performing the integration

over the thickness results in:

∂Residual
(
U i
)

∂U
= − ∂

∂U





∫

V

[B]T {σ} dV



 = −
∫

V

[B]T
∂ {σ}
∂ {U}dV

= −
∫

V

[B]T
∂ {σ}
∂ {ε} [B] dV = −

∫

A

[B]T
(
∫ t

2

− t
2

∂ {σ}
∂ {ε} dz

)

︸ ︷︷ ︸

[Dtangent]

[B] dA (3.10)

Using this, the tangent stiffness of the membrane is defined as

Kt =

∫

A

[B]T [Dtangent] [B] dA (3.11)
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Figure 3.2: A typical rectangular layered membrane section

where the material tangent matrix [Dtangent], can be expressed in discrete manner

using the expression applied by Zhang et al. [155] and Zhang et al. [156] in 2007, Fig. 3.2,

to include concrete and steel layers over the thickness, but only for the membrane part:

[DTangent] =

∫ t
2

− t
2

[D] dz =

Nc∑

i=1

[Dci ] (zi+1 − zi) +

Ns∑

j=1

[
Dsj

]
tsj (3.12)

where the matrices [Dci ] and
[
Dsj

]
are the plane stress material stiffness tangent of

the ith concrete layer and jth steel layer, respectively. Nc and Ns are the number of layers

of concrete and steel respectively, and zi is the location of the top and bottom part of

each layer. In addition, tsj is the thickness of the section for the jth steel layer.
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Defining the internal resisting force R for the membrane from Eq. 3.7, and performing

the integration over the thickness the following is obtained, and assuming zero initial

stress:

R =

∫

A

[B]T
(
∫ t

2

− t
2

{σ} dz
)

︸ ︷︷ ︸

{σ̂}

dA =

∫

A

[B]T







nx

ny

nxy







dA (3.13)

where, the vector stress {σ̂} can also be calculated using a discrete manner as:

nx =

∫ t
2

− t
2

σxdz =

Nc∑

i=1

σcxi
(zi+1 − zi) +

Ns∑

j=1

σsxj
tsj (3.14a)

ny =

∫ t
2

− t
2

σydz =
Nc∑

i=1

σcyi (zi+1 − zi) +
Ns∑

j=1

σsyj tsj (3.14b)

nxy =

∫ t
2

− t
2

τxydz =

Nc∑

i=1

τ cxyi (zi+1 − zi) +

Ns∑

j=1

τ sxyj tsj (3.14c)

where {σci } is the in-plane stresses at ith concrete layer, and
{

σsj

}

is the in-plane stresses

at jth steel layer, and zi+1 and zi are the locations of the top and bottom part of the ith

concrete layer, respectively.

Using the definition for the matrix tangent stiffness and the internal resisting force R,

Eq. 3.9 is rewritten for the iteration procedure as:

Kt∆U
i = Fexternal −Ri (3.15)

Despite the fact that the element formulation is straight forward, searching for an

optimal representation of the membrane element that includes rotation as a degree of
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freedom is still an area of constant research. These types of elements are very attrac-

tive, because they can be combined with a bending plate directly to form shell elements.

Allman [4] in 1984 was the first to develop a simple triangular element with 3 DOF per

node that produced good results. This element was based on a quadratic displacement

with vertex connectors. In 1986, Cook [34] directly extended this formulation to be used

in quadrilateral elements, however it was observed to produce shear locking for nearly

incompressible materials and it also produced spurious modes. The spurious mode can be

simply suppressed by fixing one of the rotational DOF of the model. Macneal and Harder

[83] in 1988, took the extended Allman-type element done by Cook and simplified it, to be

able to add the element to a finite element program and also include some modifications

like least square smoothing of the strains calculated from the displacement to improve the

formulation. Although, this element is simple to formulate it has the drawback that the

rotational DOF used to defined the displacement interpolation is not the true rotation

derived from mechanics Ω = 1
2

(
∂v
∂x

− ∂u
∂y

)

.

Following the Allman element type and its variations, other researchers have been

successful in developing this type of quadrilateral element (e.g Bergan and Felippa [19]

in 1985, Hughes and Brezzi [59] in 1989). However these approaches tend to be either

very complex or to come from mixed formulations that make it difficult to be combined

with bending elements. Ibrahimbegovic et al. [60] in 1990, used a variational approach

to obtain the membrane element with rotational DOF. The element was based on an

independent rotational field interpolation and an Allman type quadrilateral element for the

displacement over the element. It was found that a penalty method appears to naturally

ensure that the rotational DOF are the true rotation over the element.
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b

a

Figure 3.3: Element develop by Xia et al. [151] in 2009

Another option to develop an element with rotational degrees of freedom, is to use

a combination of interpolation functions that satisfied the restraints of the element. In

this case the restriction that needs to be satisfied is that the rotation degree of freedom

returns the true rotation derived from mechanics Ω = 1
2

(
∂v
∂x

− ∂u
∂y

)

. Some elements using

this approach have been proposed by Xia et al. [151] (2009), Sisodiya and Cheung [125]

(1971), Abu Ghazaleh [1] (1966).

In 1966, Abu Ghazaleh [1] proposed a quadrilateral membrane type element with

rotational degrees of freedom at each node, using a combination of cubic (beam type

displacement and rotation interpolations) and linear interpolations (damping functions)

for the horizontal and vertical displacement, and studied the accuracy of the proposed

element. Sisodiya and Cheung [125] in 1971 used a bilinear representation for the vertical

displacement and a cubic interpolation in y and a linear interpolation in x for the horizontal

displacement. Sisodiya and Cheung [125] in 1971 used this interpolation to model panels

and study bridges. It was later used by Kwan [76] in 1993 and by Kwan and Cheung [77]

in 1994 with some simplifications to model walls. Xia et al. [151] in 2009, reported that

Zeng in 1981 proposed a finite belt method that consisted of simple use of linear and cubic

functions to represent the shape function on plates and some type of beams. Xia et al.

[151] used this finite belt approach to develop a rectangular plane element with rotational
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degrees of freedom, which is based on the same horizontal displacement as Sisodiya et al

[125] in 1971, but for the vertical it used a cubic function in x and a linear interpolation in

y, see Fig. 3.3, which is something similar to the approach proposed by Abu Ghazaleh [1] in

(1966). With this selection of interpolation, the rotational DOF at each node represented

the true rotation for small deformation. However, this representation was only present for

rectangular elements.

In the next subsection, the displacement interpolation used to define the membrane

with rotational degrees of freedom used in this dissertation will be presented. This new

formulation is an extension of the formulation developed by Xia et al. [151] in 2009, to

be used in a general finite element framework using natural coordinates. In addition, it

will analyze the effect on the true rotation if the element is assumed to be different from

rectangular.

3.1.1 Blended Displacement Interpolation

In this section, the extension of the 4 node rectangular element developed by Xia et al. [151]

in 2009, using the finite belt method, see Fig. 3.3, to be used in a general finite element

framework using natural coordinates is developed. The element proposed by Xia et al.

[151] starts with a cubic interpolation in y and a linear interpolation in x for the horizontal

displacement, and in the vertical displacement direction it uses a cubic interpolation in x

and a linear interpolation in y.

To develop the element using natural coordinates, first it is necessary to represent

the geometry of the element using natural coordinates, this is done with the bilinear

representation:
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X (ξ, η) =

4∑

i=1

ψi (ξ, η)xi (3.16)

Y (ξ, η) =

4∑

i=1

ψi (ξ, η) yi (3.17)

where xi and yi are the coordinates of the corner nodes and ψi (ξ, η) are the shape func-

tions, which are defined as:

ψi (ξ, η) =
1

4
(1 + ξiξ) (1 + ηiη) i = 1, 2, 3, 4 (3.18)

where ξi =

[

−1 1 1 −1

]

and ηi =

[

−1 −1 1 1

]

for i = 1, 2, 3, 4 are the coor-

dinates of the nodes in the natural coordinate system.

Using this, the relation between the derivatives in the two spaces (Jacobian [J ]) can

be calculated as:







∂
∂ξ

∂
∂η







=







∂X(ξ,η)
∂ξ

∂Y (ξ,η)
∂ξ

∂X(ξ,η)
∂η

∂Y (ξ,η)
∂η







︸ ︷︷ ︸

[J ]







∂
∂x

∂
∂y







(3.19)

and







∂
∂x

∂
∂y







=
1

|J |







∂Y (ξ,η)
∂η

−∂Y (ξ,η)
∂ξ

−∂X(ξ,η)
∂η

∂X(ξ,η)
∂ξ







︸ ︷︷ ︸

[J ]−1







∂
∂ξ

∂
∂η







(3.20)
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Figure 3.4: Blended Interpolation for the Horizontal Displacement

Now, it is possible to define the displacement interpolation or field interpolation using

natural coordinates. First, an analysis of the field interpolation used to define the hor-

izontal displacement u over the element is presented, see Fig. 3.4. This interpolation is

assembled for the combination of a linear shape function in ξ:

M1 (ξ) =
1

2
(1− ξ) M2 (ξ) =

1

2
(1 + ξ) (3.21)

and a cubic interpolation in η , for this is used for the hermitian interpolation:

N1 (η) =
1

2
− 3

4
η +

η3

4
(3.22)

N2 (η) =
1

4
− η

4
− η2

4
+
η3

4
(3.23)

N3 (η) =
1

2
+

3

4
η − η3

4
(3.24)

N4 (η) = −1

4
− η

4
+
η2

4
+
η3

4
(3.25)

Now the displacement u (ξ, η) can be written as:
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u (ξ, η) =







M1 (ξ)

M2 (ξ)







T







N1 (η) N2 (η) 0 0 0 0 N3 (η) N4 (η)

0 0 N1 (η) −N2 (η) N3 (η) −N4 (η) 0 0






{Uu} (3.26)

or

u (ξ, η) =

[

M1 (ξ)N1 (η) −M1 (ξ)N2 (η) M2 (ξ)N1 (η) −M2 (ξ)N2 (η)

M2 (ξ)N3 (η) −M2 (ξ)N4 (η) M1 (ξ)N3 (η) −M1 (ξ)N4 (η)

]

{Uu} (3.27)

where

{Uu} =

{

u1 θu1 u2 θu2 u3 θu3 u4 θu4

}T

(3.28)

Defining the rotation θui i = 1, 2, 3, 4 as function of the rotational DOF at each node

as:

θu1 =
y4 − y1

2
θ1 (3.29a)

θu2 =
y3 − y2

2
θ2 (3.29b)

θu3 =
y3 − y2

2
θ3 (3.29c)

θu4 =
y4 − y1

2
θ4 (3.29d)
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Figure 3.5: Blended interpolation for the vertical displacement

Now, the same procedure is used for the vertical field displacement (Fig. 3.5). This

means, it is assembled for the combination of a linear shape function in η:

M1 (η) =
1

2
(1− η) M2 (η) =

1

2
(1 + η) (3.30)

and a cubic interpolation in ξ , for this is used for the hermitian interpolation:

N1 (ξ) =
1

2
− 3

4
ξ +

ξ3

4
(3.31)

N2 (ξ) =
1

4
− ξ

4
− ξ2

4
+
ξ3

4
(3.32)

N3 (ξ) =
1

2
+

3

4
ξ − ξ3

4
(3.33)

N4 (ξ) = −1

4
− ξ

4
+
ξ2

4
+
ξ3

4
(3.34)

Now the displacement v (ξ, η) can be written as:
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v (ξ, η) =







M1 (η)

M2 (η)







T







N1 (ξ) N2 (ξ) N3 (ξ) N4 (ξ) 0 0 0 0

0 0 0 0 N3 (ξ) N4 (ξ) N1 (ξ) N2 (ξ)






{Uv} (3.35)

or

v (ξ, η) =

[

M1 (η)N1 (ξ) M1 (η)N2 (ξ) M1 (η)N3 (ξ) M1 (η)N3 (ξ)

M2 (η)N3 (ξ) M2 (η)N4 (ξ) M2 (η)N1 (ξ) M2 (η)N2 (ξ)

]

{Uv} (3.36)

where

{Uv} =

{

v1 θv1 v2 θv2 v3 θv3 v4 θv4

}T

(3.37)

Define the rotation θvi i = 1, 2, 3, 4 as function of the rotational DOF at each node as:

θv1 =
x2 − x1

2
θ1 (3.38a)

θv2 =
x2 − x1

2
θ2 (3.38b)

θv3 =
x3 − x4

2
θ3 (3.38c)

θv4 =
x3 − x4

2
θ4 (3.38d)
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Now, assemble the u and v displacement to form the displacement interpolation for

the element:







u (ξ, η)

v (ξ, η)







=







M1 (ξ)N1 (η) 0 −M1 (ξ)N2 (η) 0

0 M1 (η)N1 (ξ) 0 M1 (η)N2 (ξ)

M2 (ξ)N1 (η) 0 −M2 (ξ)N2 (η) 0

0 M1 (η)N3 (ξ) 0 M1 (η)N3 (ξ)

M2 (ξ)N3 (η) 0 −M2 (ξ)N4 (η) 0

0 M2 (η)N3 (ξ) 0 M2 (η)N4 (ξ)

M1 (ξ)N3 (η) 0 −M1 (ξ)N4 (η) 0

0 M2 (η)N1 (ξ) 0 M2 (η)N2 (ξ)







{Uuv} =

[

MN (ξ, η)

]

{Uuv}

(3.39)

where

{Uuv} =

{

u1 v1 θu1 θv1 u2 v2 θu2 θv2 u3 v3 θu3 θv3 u4 v4 θu4 θv4

}T

However, the relation between the rotation is known and can be written in matrix

form as:
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u1

v1

θu1

θv1

u2

v2

θu2

θv2

u3

v3

θu3

θv3

u4

v4

θu4

θv4







=

































































1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 y4−y1
2 0 0 0 0 0 0 0 0 0

0 0 x2−x1

2 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 y3−y2
2 0 0 0 0 0 0

0 0 0 0 0 x2−x1

2 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 y3−y2
2 0 0 0

0 0 0 0 0 0 0 0 x3−x4

2 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 y4−y1
2

0 0 0 0 0 0 0 0 0 0 0 x3−x4

2

































































︸ ︷︷ ︸

[Tr]







u1

v1

θ1

u2

v2

θ2

u3

v3

θ3

u4

v4

θ4







(3.40)

which reduces the displacement to:







u (ξ, η)

v (ξ, η)







=

[

MN (ξ, η)

] [

Tr

]

︸ ︷︷ ︸

[Ψ(ξ,η)]

{U} = [Ψ (ξ, η)] {U} (3.41)
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where [Ψ (ξ, η)] is the field interpolation function, and {U} is the displacement at the

nodes:

{U} =

{

u1 v1 θ1 u2 v2 θ2 u3 v3 θ3 u4 v4 θ4

}T

(3.42)

Now, it is possible to define the kinematic matrix [B], in Eq. 3.6 as:

[B] =











1 0 0 0

0 0 0 1

0 1 1 0

















[J ]−1 [0]

[0] [J ]−1





















∂MN1,i

∂ξ

∂MN1,i

∂η

∂MN2,i

∂ξ

∂MN2,i

∂η















[

Tr

]

(3.43)

Using some algebraic manipulation, it is possible to define the true rotation for a

distorted element defined by Fig. 3.6. For example the true rotation for the node 1 (

Ω (−1,−1) ) is defined by the Eq. 3.44. If the element shape is rectangular, it is found

that the rotation at the nodes are the true rotations Ω = 1
2

(
∂v
∂x

− ∂u
∂y

)

. However, if the

Figure 3.6: Distorted Blended element
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Figure 3.7: Factors to determinate variation with respect to the true rotation Ω =
1
2

(
∂v
∂x

− ∂u
∂y

)

element shape is distorted, the rotation at the node and the true rotation start to diverge

one from the other.

Ω (−1,−1) =
dx4

a

2
(
dx2

a
− dx4

a
dy2
b

+ dx2

a
dy4
b

+
(

1 + dy4
b

))

︸ ︷︷ ︸

f1

(
u2 − u1

b

)

+
dy2
b

2
(
dx2

a
− dx4

a
dy2
b

+ dx2

a
dy4
b

+
(

1 + dy4
b

))

︸ ︷︷ ︸

f2

(
v1 − v4
a

)

+

(

1 + dx2

a

)(

1 + dy4
b

)

(
dx2

a
− dx4

a
dy2
b

+ dx2

a
dy4
b

+
(

1 + dy4
b

))

︸ ︷︷ ︸

f3

θ1

(3.44)

From the Fig. 3.7, it can be observed that the true rotation is similarly influenced by

the three factors, with a rapid increase for highly distorted elements, around 40 percent of

the dimension of the element. However, for small distorted elements it is observed that the

factors f1, f2 and f3 have small variations and do not modify the true rotation much. But

typically for wall structures, and in the test used in this dissertation, a meshing procedure

is used that creates only rectangular elements without any distortion.

44



3.2 Quadrilateral Thin Flat Layered Shell Formulation

As a continuation, the formulation for a thin flat quadrilateral shell element for small

deformation is presented. In addition, it is incorporated into the formulation for the use

of a layered section for the shell element to account for the variation of material through

the section. Similar to the quadrilateral layered membrane formulation, the finite element

formulation for this type of element is developed from the concept of virtual work, and

is used to determinate the stiffness matrix and the resisting force of the shell element,

which are necessary to implement the element in a nonlinear finite element framework. A

continuation is shown for the derivation of the displacement-based finite element method

(stiffness matrix, and resisting force) for a thin flat shell element under small strains using

a similar formulation presented before in combination with the formulation developed by

Oñate [101] in 1992 with some modifications.

The principle of virtual works for shell element in the local coordinate system x′ − y′

can be written as

δWinternal = δWexternal (3.45)

Flat Shell Element

Middle plane

Global axes

Local axes

A

A

0

A

A

0

Figure 3.8: Shell Element definitions
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with the internal virtual work defined as

δWinternal =

∫

A

{
δε̂′
}T {

σ̂′
}
dA (3.46)

where {σ̂′} is the vector of stresses in the shell, and {δε̂′} is the virtual vector of strains,

which are produced by the virtual displacements {δu′} in the local coordinate system

and also with the external virtual work defined as

δWexternal =

∫

V

{
δu′
}T {Fbody} dV +

∫

A

{
δu′
}T {T} dA+

∫
{
δu′
}T {tedge} dS (3.47)

where {Fbody} is the body force over the shell, {T} is the external forces over the surface

of the shell and {tedge} is the external forces over the edge of the shell.

Now following the displacement-based approach for finite elements, the interpolation

of the displacement over the element at the middle plane of the section can be defined as:

u′
(
x′, y′, z′

)
= u′m

(
x′, y′

)
+ z′θy′

v′
(
x′, y′, z′

)
= v′m

(
x′, y′

)
− z′θx′

w′
(
x′, y′, z′

)
= w′

b

(
x′, y′

)

(3.48)

where u′m (x′, y′) and v′m (x′, y′) are in-plane displacement (membrane displacements) and

θx, θy and w′
b (x

′, y′) are the rotations out of plane and the transversal displacement

(flexural component), respectively. Assuming that the shell is in a state of plane stresses

(σz′ = 0) over the thickness, it is possible to reduce the strain vector to:
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{
ε′
}
=







εx′

εy′

γx′y′

· · · · · ·

γx′z′

γy′z′







=







∂u′

∂x′

∂v′

∂y′

∂u′

∂y′
+ ∂v′

∂x′

· · · · · ·

∂u′

∂z′
+ ∂w′

∂x′

∂v′

∂z′
+ ∂w′

∂y′







=







∂u′

m

∂x′

∂v′m
∂y′

∂u′

m

∂y′
+ ∂v′m

∂x′

· · · · · ·

0

0







+







z′
∂θy′

∂x′

−z′ ∂θx′
∂y′

z′
(
∂θy′

∂y′
− ∂θx′

∂x′

)

· · · · · ·

∂w′

b

∂x′ + θy′

∂w′

b

∂y′
− θx′







(3.49)

or rewritten as:

{
ε′
}
=







ε′m

· · · · · ·

0







+







z′ε′b

· · · · · ·

ε′s







(3.50)

where:

ε′m =

[

∂u′

m

∂x′

∂v′m
∂y′

∂u′

m

∂y′
+ ∂v′m

∂x′

]T

(3.51a)

ε′b =

[

∂θy′

∂x′ −∂θx′
∂y′

(
∂θy′

∂y′
− ∂θx′

∂x′

)
]T

(3.51b)

ε′s =

[

∂w′

b

∂x′ + θy′
∂w′

b

∂y′
− θx′

]T

(3.51c)

However, for a thin shell the bending can be defined by the Kirchhoff theory, where

the shearing strain (ε′s) is neglected (≈ 0), which means, −∂w′

b

∂x′ = θy′ and
∂w′

b

∂y′
= θx′ , and

the strain vector can be redefined as:
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{
ε′
}
=







εx′

εy′

γx′y′







=

{

ε′m

}

+ z′
{

ε′b

}

=











1 0 0 z 0 0

0 1 0 0 z 0

0 0 1 0 0 z











︸ ︷︷ ︸

[At]







ε′m

· · ·

ε′b







︸ ︷︷ ︸

{ε̂′}

= [At]
{
ε̂′
}

(3.52)

where, ε′m is the membrane strain at the middle plane of the shell, and ε′b is the curvature

of the shell due to bending at the middle plane of the shell which are defined as:

ε′m =

[

∂u′

m

∂x′

∂v′m
∂y′

∂u′

m

∂y′
+ ∂v′m

∂x′

]T

(3.53a)

ε′b =

[

∂θy′

∂x′ −∂θx′
∂y′

(
∂θy′

∂y′
− ∂θx′

∂x′

)
]T

=

[

−∂2w′

b

∂x′2
−∂2w′

b

∂y′2
−2

∂2w′

b

∂x′∂y′

]T

(3.53b)

The stress vector ({σ̂′}) for a thin shell element is defined as :

{
σ̂′
}
=







σ̂′m

· · ·

σ̂′b







=







nx′

ny′

nx′y′

· · ·

mx′

mx′y′

mx′y′







=

∫ t
2

− t
2







σx′

σy′

τx′y′

· · ·

z′σx′

z′σy′

z′τx′y′







dz′ =

∫ t
2

− t
2

[At]
T







σx′

σy′

τx′y′







dz′ (3.54)

with the sign convention as defined in the Fig. 3.9.
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Figure 3.9: Sign Convention for local resulting of stress for the Shell Element

In addition, for the case of a layered section, the stress vector can be expressed in

discrete manner using the expression applied by Zhang et al. [155] and Zhang et al. [156]

in 2007, Fig. 3.10 to include concrete and steel layers over the thickness as:

nx′ =

∫ t
2

− t
2

σ′xdz
′ =

Nc∑

i=1

σcx′

i

(
z′i+1 − z′i

)
+

Ns∑

j=1

σsx′

j
tsj (3.55a)

ny′ =

∫ t
2

− t
2

σ′ydz
′ =

Nc∑

i=1

σcy′i

(
z′i+1 − z′i

)
+

Ns∑

j=1

σsy′j
tsj (3.55b)

nx′y′ =

∫ t
2

− t
2

τx′y′dz
′ =

Nc∑

i=1

τ cx′y′i

(
z′i+1 − z′i

)
+

Ns∑

j=1

τ sx′y′j
tsj (3.55c)

mx′ =

∫ t
2

− t
2

z′σ′xdz
′ =

1

2

Nc∑

i=1

σcx′

i

(

z′i+1
2 − z′i

2
)

+
Ns∑

j=1

z′jσ
s
x′

j
tsj (3.55d)

my′ =

∫ t
2

− t
2

z′σ′ydz
′ =

1

2

Nc∑

i=1

σcy′i

(

z′i+1
2 − z′i

2
)

+

Ns∑

j=1

z′jσ
s
y′j
tsj (3.55e)

mx′y′ =

∫ t
2

− t
2

z′τx′y′dz
′ =

1

2

Nc∑

i=1

τ cx′y′i

(

z′i+1
2 − z′i

2
)

+
Ns∑

j=1

z′jτ
s
x′y′j

tsj (3.55f)

where {σci } is the in-plane stresses at ith concrete layer, and
{

σsj

}

is the in-plane stresses

at jth steel layer, and zi+1 and zi are the locations of the top and bottom part of ith

concrete layer, respectively, and zj the middle position of the jth steel layer. Nc and Ns
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Figure 3.10: A typical rectangular layered shell section

are the number of layers of concrete and steel, respectively. In addition, tsj is the thickness

of the section for the jth steel layer.

A displacement interpolation over the element, for the membrane and bending, can be

expressed as {u′} = [Ψ (x′, y′)] {U ′}, where [Ψ (x′, y′)] are the shape functions that define

the interpolation for the membrane and bending and {U ′} are the displacements of the

DOF at each node. The strain vector can be written as:

{
ε̂′
}
=







ε′m

· · ·

ε′b







=
[
B
(
x′, y′

)] {
U ′
}
=











Bm (x′, y′)

· · ·

Bb (x
′, y′)











{
U ′
}

(3.56)

where [B (x′, y′)] is the kinematic matrix that relates the strain and the displacement for

the membrane ([Bm (x′, y′)]) and for the bending ([Bb (x
′, y′)]).
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Replacing everything back into the virtual work expression for the shell (Eq. 3.45), the

following is obtained:

{
δU ′
}T










∫

V

[Ψ]T {Fbody} dV +

∫

A

[Ψ]T {T} dA+

∫

S

[Ψ]T {tedge} dS

︸ ︷︷ ︸

FExternal

−
∫

A

[B]T
{
σ̂′
}
dA

︸ ︷︷ ︸

−R










= 0 (3.57)

where FExternal is the external force over the system, and R is the resistant internal force

of the shell that is a function of the displacements at the nodes.

Now, implementing this in a nonlinear material implementation, e.g. using the Newton-

Raphson method, it is necessary to determine two expressions, the tangent stiffness matrix

and the resistant internal force of the shell at each iteration. The residual equation for

the system at each iteration is obtained using virtual work.

Residual
(
U ′i
)
= Fexternal −Ri (3.58)

Linearize the Residual
(

U ′i +∆U ′i
)

using a taylor expansion, excluding higher order

terms:

Residual
(

U ′i +∆U ′i
)

= Residual
(

U ′i
)

+
∂Residual

(

U ′i
)

∂U ′i
∆U ′i (3.59)
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and performing the derivative over the Residual equation, this becomes:

∂Residual
(

U ′i
)

∂U ′i
= − ∂

∂U ′i





∫

A

[B]T
{
σ̂′
}
dA





= −
∫

A

[B]T
∂ {σ̂′}
∂
{
U ′i
}dA = −

∫

A

[B]T
∂ {σ̂′}
∂ {ε̂′}
︸ ︷︷ ︸

[D̂′

tangent]

[B] dA (3.60)

Using this, the stiffness tangent of the shell is defined as

Kt =

∫

A

[B]T
[

D̂′
tangent

]

[B] dA (3.61)

where the section tangent matrix
[

D̂′
tangent

]

, is defined as

[

D̂′
tangent

]

=

∫ t
2

− t
2

[At]
T ∂ {σ′}
∂ {ε′} [At] dz

′

=

∫ t
2

− t
2







[D′] z′ [D′]

z′ [D′] z′2 [D′]






dz′ =







[

D̂′
m

] [

D̂′
mb

]

[

D̂′
mb

] [

D̂′
b

]







(3.62)

and [D′] is the plane stress material stiffness tangent, and
[

D̂′
m

]

is the stiffness tangent of

the membrane portion,
[

D̂′
mb

]

is the stiffness tangent that relates the coupling between

the membrane and bending, and
[

D̂′
b

]

is the stiffness tangent of the bending portion. In

addition,
[

D̂′
tangent

]

can be formulated in discrete manner using the expression applied by
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Zhang et al. [155] and Zhang et al. [156] in 2007, Fig. 3.10 to include concrete and steel

layers over the thickness as:

[
D′

m

]
=

∫ t
2

− t
2

[
D′
]
dz′ =

Nc∑

i=1

[
D′

ci

] (
z′i+1 − z′i

)
+

Ns∑

j=1

[

D′
sj

]

tsj (3.63a)

[
D′

b

]
=

∫ t
2

− t
2

z′
2 [
D′
]
dz′ =

1

3

Nc∑

i=1

[
D′

ci

] (

z′i+1
3 − z′i

3
)

+

Ns∑

j=1

[

D′
sj

]

tsjz
′
j
2

(3.63b)

[
D′

mb

]
=

∫ t
2

− t
2

z′
[
D′
]
dz′ =

1

2

Nc∑

i=1

[
D′

ci

] (

z′i+1
2 − z′i

2
)

+
Ns∑

j=1

[

D′
sj

]

tsjz
′
j (3.63c)

where the matrices
[
D′

ci

]
and

[

D′
sj

]

are the plane stress material tangent stiffness of the

ith concrete layer and jth steel layer, respectively. Nc and Ns are the number of layers of

concrete and steel, respectively, and zi+1 and zi are the locations of the top and bottom

part of the ith layer, respectively. In addition, tsj is the thickness of the section for the

jth steel layer.

Define the internal resisting force R for the shell, from Eq. 3.57 as:

R =

∫

A

[B]T
{
σ̂′
}
dA =

∫

A

[B]T







nx′

ny′

nx′y′

· · ·

mx′

mx′y′

mx′y′







dA (3.64)

where, the vector stress {σ̂} is defined by the Eq. 3.55.
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Using the definition for the matrix tangent stiffness and the internal resisting force R,

Eq. 3.59 is rewritten for the iteration procedure as:

Kt∆U
′i = Fexternal −Ri (3.65)

The displacement interpolation for the membrane was already presented, the only

missing piece in the formulation is the definition of the displacement interpolation and the

Kinematic matrix ([Bb (x
′, y′)]) for the bending behavior of the shell. Different theories

can be used to define the bending behavior of a plate structure. The principal ones are

Kirchhoff theory for thin plates, and the Mindlin-Reissner theory for moderatly thick

plates. In this dissertation only the Kirchhoff theory for thin plates will be presented.

The Kirchhoff thin plate theory is based on the following assumptions [128]:

a. Straight lines normal to the midsurface remain straight after deformation.

b. Straight lines normal to the mid-surface remain normal to the mid-surface after

deformation.

c. The thickness of the plate does not change during a deformation.

Different approaches have been used to define the field interpolation for the bending

displacement. The direct one is the use of a polynomial representation. However, for

the quadrilateral element with 12 DOF based on Kirchhoff theory an exact one cannot

be found, because the polynomial representation is incomplete, and the slope at adjacent

edges is discontinuous, but for rectangular elements the results are relatively good [128].

However, quadrilateral shapes do not work for all the cases. Some representations can
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cause singularities in the stiffness matrix [11]. Hermitian interpolation are also used to

represent the thin plate bending, but this representation lacks twist modes, and for this

the convergence is not always guaranteed [128].

Other approaches use hybrid stress formulation, mixed formulation, or start from the

Mindlin-Reissner theory and modify the element to satiesfied the Kirchhoff assumptions.

One of the most successful and simple to implement is the so-called discrete Krichhoff

technique, demostrated for quadrilateral element by Batoz and Tahar [11] in 1982. This

element, known as the discrete Kirchhoff quadrilateral element (DKQ) , starts from an

8-node serendipity Mindlin-Reissner theory element and imposes that the Kirchhoff kine-

matical boundary conditions need to be satisfied at some points. This is done by explicitly

coupling the rotation and vertical deformation by enforced zero transverse shear strain at

certain locations, which produce a reduction to a 12 DOF element with four corner nodes

[35]. This element gives excellent results for the analysis of thin plate elements and has

been implemented in different FEM softwares.

In the next subsection, the theory used to formulated the displacement interpolation

of the DKQ element will be presented.

3.2.1 Discrete Kirchhoff quadrilateral Element (DKQ) Interpolation

The DKQ was formulated by Batoz and Tahar [11], this formulation initially used inde-

pendent interpolations for the deflection and the rotation out of plane in each direction,

and afterwards introduces Kirchhoff hypothesis at discrete points over the edge of the

element. This is done to relate the vertical displacements with the rotations. For the

rotational DOF the 8-node serendipity isoparametric element [11] is used.
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(a) Degrees of freedom per node (b)Geometry

Figure 3.11: Discrete Kirchhoff Quadrilateral Element

The formulation presented here follows the formulation developed by Batoz and Tahar

[11] in 1982. The rotational interpolation used is the 8-node serendipity element:

βx (ξ, η) =
8∑

i=1

ψi (ξ, η)βxi
(3.66)

βy (ξ, η) =

8∑

i=1

ψi (ξ, η)βyi (3.67)

where:

ψi (ξ, η) = −1

4
(1 + ξiξ) (1 + ηiη) (1− ξiξ − ηiη) i = 1, 2, 3, 4 (3.68a)

ψk (ξ, η) =
1

2

(
1− ξ2

)
(1 + ηkη) k = 5, 7 (3.68b)

ψk (ξ, η) =
1

2
(1 + ξkξ)

(
1− η2

)
k = 6, 8 (3.68c)

and ξi and ηi are the natural coordinates of the nodes for the serendipity element.

The Kirchhoff assumptions are enforced at the nodes as follows:
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a. at corner:







βxi
+ ∂w

∂x
|
i

βyi +
∂w
∂y

|
i







=







0

0







i = 1, 2, 3, 4 (3.69)

b. at mid-nodes:

βsk +
∂w

∂s

∣
∣
∣
k

= 0 k = 5, 6, 7, 8 (3.70)

It is assumed that the transversal displacement w along the edge is represented by a

cubic interpolation (w (s) = a0 + a1s + a2s
2 + a33) where the boundary conditions at the

ends are the displacements, and its derivative with respect to s (rotations) are evaluated

at the ends of the edges. Now, evaluating the variation of w (s) with respect to s at the

middle point of the edge, sk =
Lij

2 , where Lij is defined in Eq. 3.73, is obtained:

∂w

∂s

∣
∣
∣
k
= − 3

2Lij
(wi − wj)−

1

4

(
∂w

∂s

∣
∣
∣
i
+
∂w

∂s

∣
∣
∣
j

)

(3.71)

where k = 5, 6, 7, 8 with the relation for (k, i, j) as (5, 1, 2) , (6, 2, 3) , (7, 3, 4) , (8, 4, 1). And

if it is assumed that the normal rotation to the edge is linear:

βnk
=

1

2
(βni

+ βnj) = −1

2

(
∂w

∂n

∣
∣
∣
i
+
∂w

∂n

∣
∣
∣
j

)

(3.72)

where k = 5, 6, 7, 8 with the relation (k, i, j) as (5, 1, 2) , (6, 2, 3) , (7, 3, 4) , (8, 4, 1)
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A characteristic of this element is that no displacement interpolation is defined inside

of the element [11]. Using the past assumptions it is indicated that the Kirchhoff hypothe-

ses are satisfied over the entire boundary of the element, the transverse shear energy is

neglected, and finally convergence to the theory of thin plates is retrieved.

Now, the following relations are needed to finish the transformation:

Lij =
√

x2ij + y2ij (3.73a)

xij = xi − xj sin(αij) =
xij
Lij

(3.73b)

yij = yi − yj cos(αij) = − yij
Lij

(3.73c)







βx

βy







=







cos(α) − sin(α)

sin(α) cos(α)













βn

βs







(3.74)

and using ∂w
∂x

∣
∣
∣
i
= −θyi and ∂w

∂y

∣
∣
∣
i
= θxi, see Fig. 3.11, the following relation is obtained:







∂w
∂s

∂w
∂n







=







cos(α) sin(α)

sin(α) − cos(α)













θx

θy







(3.75)

Now, it is possible to construct the transformation from the 16-DOF to the 12-DOF

plate element. The initial interpolation of βx and βy are:

βx (ξ, η) =
8∑

i=1

ψi (ξ, η)βxi
= −

4∑

i=1

ψi (ξ, η)
∂w

∂x

∣
∣
∣
i
+

8∑

k=5

ψk (ξ, η)βxk
(3.76)
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βy (ξ, η) =

8∑

i=1

ψi (ξ, η)βyi = −
4∑

i=1

ψi (ξ, η)
∂w

∂y

∣
∣
∣
i
+

8∑

k=5

ψk (ξ, η)βyk (3.77)

using the Eq. 3.74 and Eq. 3.70 into Eq. 3.76 and Eq. 3.77:

βx (ξ, η) = −
4∑

i=1

ψi (ξ, η)
∂w

∂x

∣
∣
∣
i
+

8∑

k=5

ψk (ξ, η)
(

cos(αij)βnk
− sin(αij)βsk

)

= −
4∑

i=1

ψi (ξ, η)
∂w

∂x

∣
∣
∣
i
+

8∑

k=5

ψk (ξ, η)

(

cos(αij)βnk
+ sin(αij)

∂w

∂s

∣
∣
∣
k

)
(3.78)

βy (ξ, η) = −
4∑

i=1

ψi (ξ, η)
∂w

∂y

∣
∣
∣
i
+

8∑

k=5

ψk (ξ, η)
(

sin(αij)βnk
+ cos(αij)βsk

)

= −
4∑

i=1

ψi (ξ, η)
∂w

∂y

∣
∣
∣
i
+

8∑

k=5

ψk (ξ, η)

(

sin(αij)βnk
− cos(αij)

∂w

∂s

∣
∣
∣
k

)
(3.79)

and replacing Eq. 3.71 and Eq. 3.72 into Eq. 3.78 and Eq. 3.79:

βx (ξ, η) = −
4∑

i=1

ψi (ξ, η)
∂w

∂x

∣
∣
∣
i
− 1

2

8∑

k=5

ψk (ξ, η) cos(αij)

(
∂w

∂n

∣
∣
∣
i
+
∂w

∂n

∣
∣
∣
j

)

−
8∑

k=5

ψk (ξ, η) sin(αij)

(
3

2Lij
(wi − wj) +

1

4

(
∂w

∂s

∣
∣
∣
i
+
∂w

∂s

∣
∣
∣
j

))
(3.80)

βy (ξ, η) = −
4∑

i=1

ψi (ξ, η)
∂w

∂y

∣
∣
∣
i
− 1

2

8∑

k=5

ψk (ξ, η) sin(αij)

(
∂w

∂n

∣
∣
∣
i
+
∂w

∂n

∣
∣
∣
j

)

+

8∑

k=5

ψk (ξ, η) cos(αij)

(
3

2Lij
(wi − wj) +

1

4

(
∂w

∂s

∣
∣
∣
i
+
∂w

∂s

∣
∣
∣
j

))
(3.81)
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And using the Eq. 3.75 and the relation ∂w
∂x

∣
∣
∣
i
= −θyi and ∂w

∂y

∣
∣
∣
i
= θxi

, ones obtains:

βx (ξ, η) =
4∑

i=1

ψi (ξ, η) θyi −
1

2

8∑

k=5

ψk (ξ, η) cos(αij)
(

sin(αij)θxi
− cos(αij)θyi

+sin(αij)θxj
− cos(αij)θyj

)

−
8∑

k=5

ψk (ξ, η) sin(αij)

((
3

2Lij
(wi − wj)

)

+
1

4

(
cos(αij)θxi

+ sin(αij)θyi + cos(αij)θxj
+ sin(αij)θyj

)

)

(3.82)

βy (ξ, η) = −
4∑

i=1

ψi (ξ, η) θxi
− 1

2

8∑

k=5

ψk (ξ, η) sin(αij)
(

sin(αij)θxi
− cos(αij)θyi

+sin(αij)θxj
− cos(αij)θyj

)

+
8∑

k=5

ψk (ξ, η) cos(αij)

((
3

2Lij
(wi − wj)

)

+
1

4

(
cos(αij)θxi

+ sin(αij)θyi + cos(αij)θxj
+ sin(αij)θyj

)

)

(3.83)

Introducing the definition from Eq. 3.73, and reordering the parameters, the equations

for βx and βy can be rewritten as:

βx (ξ, η) =
4∑

i=1

ψi (ξ, η) θyi

+
8∑

k=5

ψk (ξ, η)

(

ak
3

2
(wi − wj) + bk

(
θxi

+ θxj

)
− ck

(
θyi + θyj

)

) (3.84)

βy (ξ, η) = −
4∑

i=1

ψi (ξ, η) θxi

+
8∑

k=5

ψk (ξ, η)

(

dk
3

2
(wi − wj) + ek

(
θxi

+ θxj

)
− bk

(
θyi + θyj

)

) (3.85)
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where

ak = −xij
L2
ij

(3.86a)

bk =
3

4

xijyij
L2
ij

(3.86b)

ck =

(
1
4x

2
ij − 1

2y
2
ij

)

L2
ij

(3.86c)

dk = − yij
L2
ij

(3.86d)

ek =

(

−1
2x

2
ij +

1
4y

2
ij

)

L2
ij

(3.86e)

and k = 5, 6, 7, 8 with the relation (k, i, j) as (5, 1, 2) , (6, 2, 3) , (7, 3, 4) , (8, 4, 1)

This established the following relation in terms of the 3 DOF per node:

βx (ξ, η) = [Ψx (ξ, η)] {U} (3.87)

βy (ξ, η) = [Ψy (ξ, η)] {U} (3.88)

where:

{U} =

{

w1 θx1
θy1 · · · w4 θx4

θy4

}T

(3.89)

and

[Ψx (ξ, η)] =

[

Ψx
1 (ξ, η) · · · Ψx

12 (ξ, η)

]

(3.90)

[Ψy (ξ, η)] =

[

Ψy
1 (ξ, η) · · · Ψy

12 (ξ, η)

]

(3.91)
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These are defined as:

Ψx
3(i−1)+1 (ξ, η) =

3

2
(arψr (ξ, η)− asψs (ξ, η)) (3.92a)

Ψx
3(i−1)+2 (ξ, η) = brψr (ξ, η) + bsψs (ξ, η) (3.92b)

Ψx
3(i−1)+3 (ξ, η) = ψi (ξ, η)− crψr (ξ, η)− csψs (ξ, η) (3.92c)

Ψy

3(i−1)+1 (ξ, η) =
3

2
(drψr (ξ, η)− dsψs (ξ, η)) (3.92d)

Ψy

3(i−1)+2 (ξ, η) = −ψi (ξ, η) + erψr (ξ, η) + esψs (ξ, η) (3.92e)

Ψy

3(i−1)+3 (ξ, η) = −brψr (ξ, η)− bsψs (ξ, η) (3.92f)

and i = 1, 2, 3, 4 with the relation (i, r, s) as (1, 5, 8) , (2, 6, 5) , (3, 7, 6) , (4, 8, 7).

Using the relation established in Eq. 3.87 and Eq. 3.88, the relation of curvature of

the plate and the displacements at the nodes can be determinate as:

{εb} =







∂θy
∂x

−∂θx
∂y

(
∂θy
∂y

− ∂θx
∂x

)







=







∂βx

∂x

∂βy

∂y

(
∂βx

∂y
+

∂βy

∂x

)







=











1 0 0 0

0 0 0 1

0 1 1 0











︸ ︷︷ ︸

[A]







∂βx

∂x

∂βx

∂y

∂βy

∂x

∂βy

∂y







= [Bb (x, y)] {U}

(3.93)

where the matrix [Bb], is the Kinematic matrix used in the Eq. 3.56, and this matrix can

be defined as Eq. 3.94 using the inverse of the Jacobian that defines the transformation

from the natural coordinate system where the serendipity element is defined and the local

coordinate system of the element, like the Jacobian defined in Eq. 3.69:
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[Bb] = [A]
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∂η
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1 0 0 0

0 0 0 1

0 1 1 0
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i
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i

∂η

∂Ψy
i

∂ξ

∂Ψy
i

∂η















(3.94)

3.3 Summary

The FEM has been used extensively in the analysis of wall type reinforced concrete struc-

tures, including curved structures and slabs and shear panels (e.g Cervera et al [26] 1987,

Polak et al. [115] 1993, Loo et al. 1997 [81], Ayoub et al. [7] in 1998 , Kim et al. [73] 2005

,Zhang et al 2007 [155],Zhang et al 2007 [156]). However, the use of shell elements for the

complete modeling of complex structures for the analysis of their nonlinear response has

been ignored, due to the computational cost and also because the interaction of different

interconnections inside of the structure has been neglected. But with the computational

capabilities available today it is interesting to try to use these more robust elements to

study the behavior of wall structures that can be modeled with shell elements for 3D or

membrane elements that consider a rotational DOF at each node, known as drilling DOF,

for 2D structures.

In this chapter, the extension of the 4-node membrane element with drilling degrees

of freedom proposed by Xia et al. [151] to be used in a general nonlinear finite element

framework with a natural coordinate system was reviewed, described and developed. Also

described was the DKQ element formulated by Batoz and Tahar [11], to model plate

bending elements. These two elements were combined to present the theoretical framework
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to develop the formulation for a thin flat quadrilateral layered shell element with 24 DOF

(6 DOF per node) which will be used to model the response of structural walls using the

finite element method. These selected element models balance accuracy, simplicity and

computational cost.
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Chapter 4

Material Constitutive Models

Extensive research has been done to capture the behavior of concrete, and the steel bars

inside of the concrete. The main characteristic of concrete is the formation of cracks,

when it experiences difference states of stress. This characteristic makes it difficult to

develop rational constitutive material models, since the cracks produce new stress-free

surfaces or complex interlocking effects, which cause redistribution of stresses and changes

in the stiffness of the material [118]. In addition, the nonlinear behavior of the concrete

is dependent on the stress (tension or compression) in the direction of action, and also on

the stresses in different directions (multi-axial effect). The response is also modified due

to the degradation and deterioration of stiffness for the unloading and reloading in cyclic

loadings. However, the concrete model in the plane stress state has to be able to at least

include tension stiffening (residual average tension stress in the concrete post cracking),

softening (reduction of the compression resistance of the concrete in one direction due to

the tension strain in the perpendicular direction) [90], hysteretic behavior, enhancement

due to biaxial compression, enhancement due to confinement (increasing of the concrete

compression resistant due to confinement of the concrete with stirrups, cross ties and
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Figure 4.1: Uniaxial behavior of concrete

hoops), and degradation of the concrete (reduction of the compression resistance of the

concrete under cyclic or reversal loads), which are key features that has been extensively

research and mention in the literature, like in Vecchio and Collins [140] in 1986, Mander

et al. [85] in 1986, Park [113] in 1994, Chen [29] in 2007 , Mansour and Hsu [87] in 2005,

Powanusorn [118] in 2003.

Commonly, two different approaches can be taken to model concrete. One is a discrete

crack approach in which every time that a crack in the analysis is formed, the model is

updated at the crack. For example, in the finite element method a disassociation between

the element where the crack appears is used to describe the crack. Although the discrete

approach is more realistic, it is more complex and difficult to implement for the reason

that an adaptive mesh must be considered, and a complex model needs to be considered

to take into account the interlock at the cracks, and the other effects that happen at the

cracks [118]. The other approach is the smeared crack approach which is based on the

assumption that different cracks and variation of stress due to the crack over an area, can

be modeled using the average stress-strain relation of concrete in that zone, and when

a crack occurs the properties of the smeared material are modified to account for it, see
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Stress in Steel Bars Stress in Concrete

Figure 4.2: Variation of the stress in the Concrete and Steel bars between cracks

Fig. 4.2. The smeared approach is the current standard, because it is robust and efficiently

captures the complex behavior of the concrete under different loadings.

In the case of reinforcing steel, a discrete and smeared approach can also be used. In

the discrete approach the steel bars are modeled as linear element (truss members), that

work only in the direction of the line element. However, this type of model in some cases

produces a complex mesh in order to connect the elements that represent the concrete

and the bar elements, and it also, needs some complex laws at the connection nodes to

be able to model bond-slippage. In addition, the variations of stress over the bar that

are produced in the bars embedded in the concrete are difficult to model. Instead, the

smeared approach is based on the assumption that the steel bars are considered as a layer

of homogenous material at certain positions inside the reinforced concrete element and

the variation of stresses due to the crack over an area can be modeled using the average
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stress-strain of steel in that zone, see Fig. 4.2. Commonly it is considered that the smeared

steel works only in the direction of the bars, since the bars are typically in a uniaxial state

of stress, and this allows the use of a uniaxial elasto-plastic constitutive model, including

Bauschinger effects. However, other more complex models may be proposed for the steel

to capture the degradation, the bond-slippage phenomenon that happens between the

concrete and the steel, and the buckling of the longitudinal steel bars. This typically

has been done by the use of factors or modification and inclusion of complex rules to the

equations that define the steel model and account for the change of the response (Kunnath

et al. [74]).

In this chapter, the different smeared constitutive models used for concrete are re-

viewed, and in particular the orthotropic models. Also, the smeared concrete model,

which is used to represent the material law at each layer in the section on the elements

for this study, is presented. In addition, the smeared steel model used to represent the

behavior of the reinforcing steel embedded in concrete is reviewed.

4.1 Constitutive Model for Concrete

4.1.1 Review of Literature

The smeared models are very attractive because they allow the representation of the overall

stiffness and strength characteristic of the cracked concrete without dealing directly with

the principal difficulty of discrete concrete models such as crack width and crack spacing,

since they use an average stress and strain representation [157]. The smeared concrete

model can be classified depending on the hypothesis used to create the model. The
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most common are the microplane model, non-local model, plasticity model, continnum

damage model, endochronic model, nonlinear elastic model, and orthotropic model [118].

However, the plasticity and orthotropic models are the most commonly used and with

more variations that have been developed by researchers. These different models were

summarized by Powanusorn [118] in 2003. Also, in 1987, Willam et al. [149] provided a

review of the issues of the smeared crack models, and analyses of the rotating crack, fixed

crack and plasticity models. An overview of the models reviewed by Powanusorn [118] in

2003 is presented with additional information found in the literature.

The microplane model was developed by Bazant and Oh [13] in 1985. This model is

based on the assumption that the material properties are represented by the relation of

the components of stress and strain on planes of different orientation which represent the

microstructure of the material. This relation is derived using the principle of virtual work

to express that the stress at a particular point in the element is calculated as the volume

average of traction vectors on all the microplanes [14]. After this first approach, Bazant

et al. [14] in 1996, Bazant et al. [15] in 2000, and Bazant and Caner [12] in 2005 have been

refining the model to be able to incorporate the cyclic behavior, softening and other key

features of the concrete.

The nonlocal models are based on the assumption that the behavior of the strain-

stress state at a point is not limited to the history of that point. This means, to represent

the behavior of a point it is necessary to know the conditions of other points around the

position of study. This approach is used because concrete are heterogeneous material, with

complex interrelation between the different elements that conform to the microstructure

of the concrete [118].
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The plasticity models are typically based on plasticity theory, which tries to determine

the response of the material by dividing the deformation into two parts, an elastic part and

a plastic part. The behavior of the material is defined by a yield criterion, that is defined

when a material starts to have plastic deformation, and a flow condition or plastic potential

surface that defines the increment in plastic strain. This potential surface or flow rule can

be associative or non-associative. The yield criteria used to represent concrete are the

Mohr-Column, Drucker-Prager, Prandtl-Ruess (J2) and Willam-Warnke [29]. This type

of material representation is typically used to model metal and soil. A thorough review

of this type of model for concrete was done by Chen [29] in 1992 and republished in 2007.

Some more new platicity plastic-damage models to represent concrete directly are the

work of Lee and Fenves [79] in 2001, that developed a plastic-damage model using the

spectral decomposition form of the stress in a return-mapping formulation, and the model

was compared against experimental data from a beam with an initial notch. Also, another

new plasticity model is the plastic-damage model proposed by Cicekli et al. [31] in 2007,

that used an anisotropic damage with two damage criteria (one for compression and one

for tension) and a plasticity yield criterion. The model of Cicekli et al. [31] in 2007 also

takes into consideration the recovery of stiffness by the opening and closing of cracks,

and it was implemented in ABAQUS [51] using the user subroutine UMAT. The model

returns good agreement with tests on plain concrete for uniaxial tests done by Karsan and

Jirsa [67] in 1969 and biaxial tension and compression tests done by Kupfer et al. [75] in

1969. Also, other work was done by Wolf [150] in 2008 that proposed a plasticity model

to directly take into account the effect of confinement in the concrete. This type of model

is used to represent any type of loading case, but its drawbacks are: very computationally
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costly, complex to implement, and generally requires a large number of constants. These

constants need to be found from experimental data.

The nonlinear elastic material models are more simple and direct to use, because they

try to represent the material behavior with elastic models. Two representations of this

material are typically used: the hypoelastic and the hyperelastic material [29]. For the

hyperelastic material, the representation is done in the total stress-strain relation proposed

by Evans and Pister [42] in 1966. Instead, the hypoeleastic model can be described in

terms of the incremented strain-stres relation proposed by Truesdell [134] in 1955. This

type of model is typically used to model only the static loading case.

The orthotropic concrete material models are based on the assumption made by Darwin

and Pecknold [40] in 1974 and Darwin and Pecknold [39] in 1977. This assumption is that

the behavior of the material in biaxial stress can be represented by an equivalent uniaxial

strain-stress relation at the principal axis of orthotropy. Since then, many researchers

have expanded and refined this model, and the equivalent uniaxial strain-stress relations

to better represent the behavior of concrete and its key characteristics. In addition, it has

been expanded to developed 3D representations of concrete material models, like the work

done by Vecchio and Selby [142] in 1991.

4.1.1.1 Orthotropic Model for Concrete

Since Darwin and Pecknold [40] in 1974 and [39] 1977, many researchers have been using

the assumption that the biaxial stress can be represented by an equivalent uniaxial strain-

stress relation at the principal axis of orthotropy to represent the behavior of concrete.

In this type of model, a subclasification between rotating angle or fixed angle models can
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be defined. In the rotating angle model, the orthotropic direction of the material always

follows the direction of the principal axis of stress or strain. This approach, which gives

good results, has the problem that the contribution of concrete at the crack can not be

predicted [157]. In the fixed angle, the axes of orthotropy follows the principal axis of

stress until the first crack is formed, and at that moment the angle of the orthotropic

direction is fixed. This method has the disadvantage that an empirical equation needs

to be used to represent the concrete contribution ( shear contribution ”V c”) at the crack

angle. This type of model sometimes tends to overestimate the experimental data ([7, 36]).

The modeling of reinforced concrete material in biaxial stress using the orthotropic

model has been in constant development. However, two different researcher groups, the

group from the University of Toronto and the group from the University of Houston, have

been constantly conducting analytical and experimental studies to develop the reinforced

concrete constitutive models [118].

The models from the group at the University of Toronto are based on the smeared crack

approach. The first attempt was done by Collins [32] in 1978, and Vecchio and Collins

[139] in 1982, developing the Compression Field Theory (CFT), to represent monotonic

loading. This model used the following assumptions:

• The principal directions of stress and strain are equal.

• The tension in the concrete after cracking can be neglected.

• The stress-strain relation can be represented by average stress-strain.

• The constitutive model for concrete in compression can be represented with a uni-

axial model.
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• Steel is considered as smeared and only acts in its orientation. The constitutive

model used for steel was a perfectly elastic-plastic material (Bilinear).

• The Poisson ratio is neglected after cracking.

This model gave reasonably good results predicting the failure load, but it can not

represent the shear stiffness of the experiment, and the deformation was overestimated.

In 1986, Vecchio and Collins [140], after a large amount of experiment, refined the CFT and

produced the Modified Compression Field Theory (MCFT). This modification was done by

the incorporation of the tension behavior of the concrete after cracking, and the addition

of a parameter to account for softening when concrete is submitted to compression-tension

stresses in the principal axes of stress. In addition, a check for the crack is introduced,

which uses an estimation of the crack width to predict the shear at the crack and verifies

that the stress in the steel at the crack surface is not larger than the capacity of the

bar passing the crack. In 1990, Vecchio [135] implemented the MCFT in a FEM code

using a secant stiffness matrix approach. This modified model was able to predict the

experimental data in an accurate manner. In 1991, Vecchio and Selby [142] extended the

MCFT to a 3D representation of concrete and also changed the steel representation for a

trilinear stress-strain relationship.

Vecchio [136] in 1992 suggested an additional modification to the (MCFT). In this

refined model, a factor was introduced to account for the increase of the peak capacity of

concrete for a state of biaxial compression load. Also, for this case the Poisson ratio was

not neglected and a residual Poisson ratio was determinate. In 1993, Polak and Vecchio

[115] extended the model to be used in shell elements with shear deformation. However,
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the Poisson ratio was considered to be zero after cracking of the concrete, and a trilinear

relation of stress-strain was used for this model.

In 2000 ([137]) and 2001 ([138]), Vecchio developed the Disturbed Stress Field Model

(DSFM), which is a combination of a rotation crack and a fixed-crack model. This model

is an extension of the MCFT [140], which differs from the MCFT in that the angle of the

principal axis is rotated and the principal axis of strain and stress no longer coincide. For

this reason improved treatment of the shear at the crack surface was used. The reason for

this new model was to improve the modeling of panels with low shear reinforcing steel, or

panels that have different amounts of reinforcing steel in each direction. This model was

checked against the results of a series of RC panels testing in the University of Toronto

and deep beams. Good agreement with the results were obtained. Typically no more

than 10◦ of difference between the principal axis of stress and strain were obtained for the

different cases of study.

Palermo [105] in 2002 and Palermo and Vecchio [106] 2003, and Palermo and Vecchio

[107] 2004, expanded the MCFT to be used in cyclic loading cases. The element was

based on the assumptions of the MCFT, and the DSFM which can be extended using the

same method. The new model incorporated reloading and unloading curves, degradation

in the reloading curve, and improvement in the plastic offset. Also, a Ramberg-Osgood

formulation was included to describe the steel stress-strain behavior. This formulation also

used a secant approach for the implementation. This new model was compared against

experimental data done on squat walls, and slender walls, and showed good agreement

with the experimental data. In 2007, Aquino and Erdem [5] implemented the MCFT using
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a tangent stiffness approach, but tested the model only against a shear panel, under static

load cases.

The group from the University of Houston, also has been developing concrete models

based on the smeared crack approach. Their models are commonly based on the experi-

mental data obtained from the experiments carried out in the universal panel tester, which

is located at the University of Houston. The conceptual model proposed by Hsu [53] in

1988, is the first attempt done in the University of Houston. This model was based on

the same equilibrium equations and compatibility equations as the CFT. The conceptual

model was used to analyze elements subjected to torsion and shear. The first official con-

stitutive model was the Rotating-Angle, Softened Truss Model (RA-STM) ([17, 55, 110]).

This model used the following assumptions:

• The principal directions of stress and strain are equal.

• The tension in the concrete after cracking is taken into account.

• The stress-strain relation can be represented by average stress-strain.

• The constitutive model for concrete in compression can be represented with a uni-

axial model with the two principal strain components.

• Steel was consider also smeared and only acts in its orientation. The constitutive

model of the steel was based on the averaged stress-strain relation of steel bars

embedded in concrete.

• The Poisson ratio is neglected after cracking.
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With these assumptions, this model was able to correctly use the equilibrium and

compatibility equations based on continuous materials. The use of a new average stress-

strain relation for steel was introduced because in the experimental data done by Tamai

et al. [130] in 1988, it was observed that the behavior of reinforcing steel inside the concrete

presented some different behavior compared to bare steel. This was corroborated later by

Belarbi and Hsu [17] in 1995. This RA-STM showed good agreement with the experimental

data done in the universal panel tester.

In 1996, Pang and Hsu [111], and in 1997, Hsu and Zhang [57] developed the Fixed-

Angle Softened Truss Model (FA-STM). This model emerged from the concern that the

rotating-angle model did not represent the shear contribution of the concrete on the ori-

entation of the crack. Inclusion of this effect requires that a fixed angle needed to be used,

because after a crack is formed the principal axis of stresses needs to be maintained fixed.

Representation of the shear contribution of concrete at the crack orientation requires a

complex relation. In this model the constitutive relationship of concrete is represented in

terms of the principal direction of stress over the element. The equilibrium and compat-

ibility equations are then used to iterate until convergence is found. In 2001, Zhu et al.

[160] extended the FA-STM by simply incorporating a rational derivation of the shear

modulus that simplified the equation proposed previously. The new model was imple-

mented by Wang and Hsu [146] in 2001, and the result of this model agreed well with

the experimental results of beams, framed shear walls and panels. In addition, FA-STM

assumes that the crack is oriented perpendicular to the principal direction of tensile stress

in the element [157].
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The RA-STM and the FA-STM represented correctly the peak behavior of the elements

considered. However, these models were not able to represent the post-peak behavior of

the element, because the Poisson effect was ignored after cracking of the concrete [157].

To study the effect of Poisson Ratio on the two principal normal directions, a series of 12

panels were tested. This study showed that the Poisson effect can be represented by two

Hsu/Zhu ratios defined as “the Poisson ratios of cracked reinforced concrete based on the

smeared crack concept,” this mean, the Hsu/Zhu ratios are the Poisson ratios of concrete

after cracking. These ratios were expressed as ν12 = 0.2 + 850εsf if εsf 6 0.002 and 1.9

otherwise. This case is needed to calculate the tensile strain produced by a perpendicular

strain in compression. A value of zero to calculate the strain in compression produced

by a perpendicular tensile strain is recomended [158, 159]. This was used to modify the

FA-STM, and in 2002, Hsu and Zhu [58] develop the Softened Membrane Model (SMM).

This model was able to reproduce the complete monotonic behavior of the experimental

data.

In 2005, Mansour and Hsu ([86], [87]) developed an extension of the SMM to incor-

porate in the model the cycling constitutive laws. This model is known as the Cyclic

Softened Membrane Model (CSMM). This model was based on the same assumptions of

the SMM, but the value of the Hsu/Zhu ratio was modified from 1.9 to 1. This model

is able to accurately represent the behavior of a panel in monotonic and reversal loading

behavior. This model was able to represent the peak load capacity of the section , and the

post-peak behavior. In addition, it is able to incorporate the softening of concrete, the

tension stiffening and the effect of poison ratio in the constitutive model of the concrete.

In the next section, a detailed review of this model will be done. In 2005 Zhong [157] and
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in 2008, Mo et al. [97] presented the implementation of the CSMM model in the OpenSees

Framework [82], using a tangent stiffness approach.

Other researchers have also attempted to represent the behavior of concrete using

biaxial stresses for monotonic and cycling loading cases. This was summarized by Zhong

[157] in 2005. A resume of these other models and additional models and information

found in the literature is presented next.

Cervenka [25] in 1985 proposed a smeared cracked model using the fixed-angle formu-

lation, where the cracks form perpendicular to the direction of the principal direction of

tension stress, and after the crack is formed the compression resistance of the concrete

is in the direction parallel to the cracks, also included was the tension stiffening in the

direction normal to the cracks, and the shear stiffness at the orientation of the cracks, to

account for the dowel action effects and aggregate interlocking. This model was tested

against the experimental panels done in the University of Toronto by Vecchio and Collins

[139].

Balakrishnan and Murray [8] in 1988, used a rotating angle orthotropic model to

predict monotonic behavior of shear panels and deep beams. This model used a new

constitutive law at the principal axis of orthotropy and the Poisson ratio was assumed

to be zero after cracking. In 1991, Shin et al. [124] used a smeared concrete model

to predict the behavior of wall elements, cyclic behavior was included in the material

behavior. In 1994, Park [112] developed an orthotropic crack model to represent the

behavior of planar structures for monotonic and cyclic load cases. The model consists of

a two dimensional tension stiffening curve that considers the evaluation of the cracking

process, and a tension and compression damage surfaces in two-dimensional strain field.
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This defines the boundary between loading and unloading, and an equivalent uniaxial

stress-strain curve in concrete was used for compression and tension.

In 1995, Sittipunt and Wood [126] developed a FEM based on a 4 node plane stress

element and a smeared, fixed crack model. This included hysteresis behavior, tension

stiffening, degradation of the concrete, compression softening for the concrete, and a truss

element to model the reinforced steel bars. A smeared fixed angle was used to consider

aggregate interlock, dowel effects and degradation for cycling loads.

In 1998, Ayoub and Filippou [7] used an othotropic rotating angle model to predict the

behavior of concrete in biaxial state of stress, using a combination of the model proposed

by Vecchio [136] in 1992 and the model by Balakrishnan and Murray [8] in 1988. The

Poisson ratio was assumed to be zero in the direction of tension after cracking and the

Poisson ratio in the principal direction of compression strain follows an equation that

is a function of the compression strain. This model gave good results compared with

the experimental data. In 1998, Kaufmann [69] proposed the cracked membrane model

(CMM); this model was a combination between the MCFT [140] and a new stress-strain

relation for the tension behavior of the concrete. This tension model incorporates stiffening

with the use of a stepped, rigid-perfectly plastic concrete-steel bond-slip model.

Ile and Reymouard [61] in 2000 developed a smeared fixed crack model to represent the

cyclic behavior of reinforced concrete structures subjected to biaxial stress. Experiments

done with wall elements were used to verify the model Zhong [157]. In 2001, Belletti et al.

[18] developed a fixed crack model with a stress-strain relation that takes into account the

softening coefficient proposed by Pang and Hsu [110] in 1995, and the effect of aggregate

interlock, dowel effects and concrete-steel bond. It was used with the results of the panels
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tested at the University of Toronto and the University of Houston to evaluate the new

material model. The result of the new model agreed well with the experimental data.

Powanusorn [118] in 2003 developed a smeared rotating crack model from the com-

bination of the MCFT [139] and the RA-STM [17]. It was assumed that the directions

of principal stress and strain coincide, principal stresses can be represented as a function

of the principal strains, the steel is perfectly bonded to the concrete, and the effect of

Poisson ratio after cracking was used. In addition, the new model incorporated the ef-

fect of confinement with the use of the Willam and Warnke [148] failure criterion. This

new constitutive model was used to study RC Bent Caps. This model presented some

discrepancies with experimental data.

In 2003, Foster and Marti [49] extended the CMM model [69] to eliminate the assump-

tion that the principal axis of stress coincided with the principal axis of strains, and also

incorporated the cyclic behavior of concrete. The tension stiffening effect was modeled

using a stepped, rigid steel bond relationship, and a trilinear constitutive model was used

for the steel. This constitutive model was used with a 4-node plane stress element. To

verify the results, a set of experiments done on shear wall elements were used. The element

gave good results compared with the experimental data.

4.1.2 Formulation of the Concrete Constitutive Model

A constitutive model to represent the plane stress behavior of concrete, which will be

used to model the behavior of each concrete layer in the formulation developed in the

last chapter, is proposed. This plane stress concrete material is based on a smeared crack

approach using the orthotropic model with the axes of orthotropy represented by the
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equivalent uniaxial average stress-strain relation. The axes of orthotropy are assumed

to coincide with the principal axes of total strain, and using a tangent stiffness-based

approach for nonlinear finite element implementation. In addition, this concrete model

incorporates characteristics from the models of the University of Houston’s Group (CSMM

presented by Zhong [157] in 2005), the models from the University of Toronto’s Group,

(expanded MCFT developed by Palermo [105] in 2002, and Palermo and Vecchio [106] in

2003 and the concrete model by Vecchio [136] in 1992), and other additional models to

consider the influence of biaxial compression or tension-compression (softening) in the axes

of orthotropy. Also included was the enhancement due to confinement, and accounting

for damage in the material during cycling loads.

The approach selected for the model is the known rotating crack model. This was

selected because this type of model produced excellent agreement with the experimental

data as is mentioned by Ayoub and Filippou [7] in 1998. In addition, the selection of the

different features for the model presented here are selected to be able to use a layered

section approach developed in the last chapter, and also to obtain a numerically stable,

reliable and efficient constitutive material. The basic assumption used to formulate the

concrete material were the following:

• The principal directions of strain and stress coincide.

• The stress-strain relation can be represented by the average stress-strain.

• The constitutive model for concrete in each of the the principal directions of stress

can be represented with a uniaxial concrete model.

• The Poisson ratio is neglected after cracking.
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Using these assumptions, and the derivations given in Appendix A, which shows the

complete derivation of the transformation of the strain and stress between coordinate

system and the derivation of the principal direction of strain, the biaxial strain (ε11 and

ε22) in the principal directions of strain can be determine as:

ε11 =
1

2
(εxx + εyy) +

1

2

√

(εxx − εyy)
2 + (γxy)

2 (4.1a)

ε22 =
1

2
(εxx + εyy)−

1

2

√

(εxx − εyy)
2 + (γxy)

2 (4.1b)

or in matrix form 





ε11

ε22

γ12







= [Tstrain(θpd)]







εxx

εyy

γxy







(4.2)

using the strain transformation matrix, and recalling that for principal strain γ12 = 0:

[Tstrain(θ)] =











cos2(θ) sin2(θ) sin(θ) cos(θ)

sin2(θ) cos2(θ) − sin(θ) cos(θ)

−2 sin(θ) cos(θ) 2 sin(θ) cos(θ) cos2(θ)− sin2(θ)











(4.3)

and the angle of the principal direction of strain is defined by

θpd =
1

2
arctan

(
γxy

(εxx − εyy)

)

(4.4)

where ({εx−y} =

{

εxx εyy γxy

}T

) are the strain components in the local coordinate

system (x− y) of the concrete layer.
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Figure 4.3: Principal Direction of Strain

Now, it is required to transform from biaxial to uniaxial strains to be able to use this

result in the uniaxial stress-strain relation for each axes of orthotropy, and the poison ratio

(ν12, ν21) is used for this. This transformation has been studied and discussed extensively

by the University of Houston’s Group and the University of Toronto’s Group in the ref-

erences reviewed before. The reader is referred to these for more information. Using the

transformation presented in Zhong [157] in 2005, but with the Poisson ratio proposed by

Vecchio [136] in 1992, the relation of the biaxial strain and uniaxial strain result in the

following set of equations

ε̄1 =
1

1− ν12ν21
ε1 +

ν12
1− ν12ν21

ε2 (4.5a)

ε̄2 =
ν21

1− ν12ν21
ε1 +

1

1− ν12ν21
ε2 (4.5b)

or writing the equations in matrix form







ε̄11

ε̄22

γ̄12







= [V ]







ε11

ε22

γ12







(4.6)
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where

[V ] =











1
1−ν12ν21

ν12
1−ν12ν21

0

ν21
1−ν12ν21

1
1−ν12ν21

0

0 0 1











(4.7)

and

νij =







0.2 if εj >
εc0
2

0.2

(

1 + 1.5

(
2εj
εc0

− 1

)2
)

≯ 0.5 if
εc0
2 > εj

(4.8)

in addition, to obtain a stable solution, the values of Poisson ratios (ν12, ν21) after cracking

are neglected (consider equal to zero).

Using the uniaxial strain ε̄11 and ε̄22 and recalling that γ̄12 = γ12 = 0, the stress in

the concrete in the direction of orthotropy or principal direction of stress can be defined

as a function of this uniaxial strains as σ11 (ε̄11, ε̄22) and σ22 (ε̄11, ε̄22), and due to the

assumption that the principal direction of strain and stress coincide, it is possible to

determine the stress in the local coordinate x− y using the transformation (Appendix A)

defined by the angle θpd, as:







σcxx

σcyy

τ cxy







= [Tstress(−θpd)]







σc11

σc22

0







= [Tstrain(θpd)]
T







σc11

σc22

0







(4.9)

84



with the stress transformation matrix

[Tstress(θ)] =











cos2(θ) sin2(θ) 2 sin(θ) cos(θ)

sin2(θ) cos2(θ) −2 sin(θ) cos(θ)

− sin(θ) cos(θ) sin(θ) cos(θ) cos2(θ)− sin2(θ)











(4.10)

Now, using the definitions for strain and stress presented before, the tangent material

constitutive matrix for the concrete layer in the local coordinate system (x − y) can be

defined as:

[
Dc

x−y

]
=
∂σx−y

∂εx−y
=

∂







σxx

σyy

τxy







∂







εxx

εyy

γxy







= [Tstrain(θpd)]
T
[
Dc

1−2

]
[V ] [Tstrain(θpd)] (4.11)

where
[
Dc

1−2

]
is the material tangent matrix for the concrete layer in the principal direction

of strain (or stress), and can be defined as proposed by Crisfield and Wills [36] in 1989:

[
Dc

1−2

]
=











∂σ11

∂ε11

∂σ11

∂ε22
0

∂σ22

∂ε11

∂σ22

∂ε22
0

0 0 σ11−σ22

2(ε11−ε22)











(4.12)
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For simplicity and stability ∂σ11

∂ε22
and ∂σ22

∂ε11
, will be neglected which reduces Eq. 4.12 to:

[
Dc

1−2

]
=











∂σ11

∂ε11
0 0

0 ∂σ22

∂ε22
0

0 0 σ11−σ22

2(ε11−ε22)











(4.13)

As was mentioned in the assumptions, the behavior of the concrete in the principal

directions of stress, which coincide with the principal directions of strain, are defined by

average uniaxial stress-strain relations. In this study the average uniaxial stress-strain

relations are represented by uniaxial concrete material models, which will be reviewed

next. Two uniaxial concrete materials were selected to represent the average uniaxial

stress-strain relations for the principal directions of stress for this smeared rotating angle

model. These two material models are those proposed by Massone [90] in 2006 for static

load and after extended to include hysteretic rules, also developed by Massone on OpenSees

[82], as the uniaxial concrete material “Concrete06” in OpenSees [82], and the second

model is a simplified Chang-Mander model proposed by Waugh [147] in 2009. In addition,

in the next chapters, it will be referred to as “the smeared plane stress concrete model with

Thorenfeldt’s curve” when a plane stress concrete model using the uniaxial material model

proposed by Massone [90] in 2006 is used, and it will be referred to as “the smeared plane

stress concrete model with Chang-Mander Model” when a plane stress concrete model

using the simplified Chang Mander Model proposed by Waugh [147] in 2009 is used.
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4.1.2.1 Uniaxial Concrete Models using Thorenfeldt Curve

This uniaxial concrete model was proposed by Massone [90] in 2006 for static load and after

extended to include hysteretic rules, also done by Massone and developed on OpenSees

[82], under the name of “Concrete06”. The following is a representation of the main

characteristic, rules and equations that define the Model proposed by Massone [82, 90].

The envelope of the model is composed for two different equations, one used for the

compression envelope, see Fig. 4.4, and the other for the tension envelope, see Fig. 4.5.

The compression envelope is defined by the curve proposed by Thorenfeldt et al. [133] in

1987, which is similar to the equation defined by Popovics [117] in 1973. The Thorenfeldt

base curve was later calibrated for Collins and Porasz [33] in 1989, see Fig. 4.4, and has

been used for shell and membranes by Polak and Vecchio [115] in 1993, and Vecchio and

Collins [141] in 1993, and in MVLM by Orakcal et al. [103] and Massone [90] in 2006. It

can be defined as:

σc(εc) = f ′c

n

(
εc
εc0

)

n− 1 +

(
εc
εc0

)nk
(4.14)

where f ′c is the peak resistant stress of the concrete in compression, εc0 is the strain at

the peak resistant stress of the concrete in compression, and n and k are the parameters

calibrated by Collins and Porasz [33] in 1989 for the use with high-strength concrete:

n = 0.8 +
f ′c (MPa)

17
= 0.8 + 0.41f ′c (ksi) (4.15a)

k =







1 if 0 6 εc 6 εc0

0.67 +
f ′c (MPa)

62
= 0.67 +

f ′c (ksi)

9
if εc > εc0

(4.15b)
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Figure 4.4: Constitutive Model for Concrete in Compression using Thorenfeldt base curve

Carreira and Kuang-Han [23] in 1985, proposed the calibration for the parameters for

concrete with lower compressive resistant stress as:

n = 1.55 +

(
f ′c (MPa)

32.4

)3

= 1.55 +

(
f ′c (ksi)

4.7

)3

(ksi) (4.16a)

k = 1 (4.16b)

The tension envelope used by Massone [90] is the one proposed by Belarbi and Hsu

[16] in 1994, which is based on the equation used by Tamai et al. [130] in 1988. Belarbi

and Hsu [16] proposed this model from the results of testing 17 reinforced concrete panels

under pure tension. The tension envelope is divided in two section (Eq. 4.17), see Fig. 4.5,

pre-peak or pre-cracking and post-peak or post-cracking. Before the cracking a linear

interpolation is selected, and for post cracking, a descending branch is selected to include
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Figure 4.5: Constitutive Model for Concrete in Tension using the Belarbi and Hsu [16]
equation

the tension stiffening observed in the average stress-strain relation of the concrete in

tension (Eq. 4.17).

σc(εc) =







(
fcr
εcr

)

εc if εc 6 εcr

fcr

(
εcr
εc

)b

if εc > εcr

(4.17)

where, b is a parameter that defines the descending branch of the envelope in tension, fcr

is the peak of resistant stress of the concrete in tension, and εcr is the strain at the peak

of resistant stress of the concrete in tension. Belarbi and Hsu [16] in 1994 proposed the

value of b = 0.4, and the other parameters as:

fcr = 0.31
√

f ′c (MPa) [MPa] or fcr = 0.118
√

f ′c (ksi) [ksi] (4.18a)

εcr = 0.00008 (4.18b)

Massone extended this model to include hysteretic rules, see Fig. 4.6, on OpenSees [82].

The hysteretic rules proposed used a linear representation of unloading and reloading in
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Figure 4.6: Hysteretic Rules for the Concrete Model

compression, connected between them, also, with a linear equation with the slope equal

to the initial stiffness of the concrete (Ec0). The slope of the unloading path in the

compression zone was selected to be 0.071Ec0 , which is the same value proposed by Palermo

and Vecchio [106] in 2003. The expression in Eq. 4.19 was selected to determinate the

plastic strain (εcp) of the concrete at each full unloading, which is the unrecovered strain

deformation in the material:

εcp = εcm

(

1− e
−
(

εcm
εc0

)

αc

)

(4.19)

where εcm is the maximum previous compression strain recorded in the material, and αc

is a parameter that determines the amount of plastic strain in the concrete, and a value

of αc = 0.32 was used for the analysis in this study.
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For the unloading and reloading rules in tension, linear paths that have the slope equal

to the previous unloading stiffness of the concrete in tension, (Fig. 4.6), were selected and

defined using a plastic strain determinate from:

εtp = εtm

(

1− e
−

(

εtm
εcr

)

αt

)

(4.20)

where εcm is the maximum previous tension strain recorded in the material, and αt is

a parameter that determines the amount of plastic strain in the concrete. A value of

αt = 0.08 was used for the analysis in this study. In addition, Massone considered a

shifting of the origin of the tension envelope, see Fig. 4.6, to produce a more accurate

model, reduce pinching, and be able to model the gap closure with a linear path.

4.1.2.2 Uniaxial Concrete Model using a Simplified Chang-Mander Model

This second model is a simplified version done by Waugh [147] in 2009 of the Chang-

Mander model proposed by Chang and Mander [27] in 1994 for the representation of the

cyclic behavior of the unconfined and confined concrete. The simplifications introduced

by Chang and Mander [27] to the model were done to produce a more efficient and stable

model. However, this model, instead of the model using the Thorenfeldt curve, is based on

the uniaxial behavior observed in concrete, and is typically used to represent the concrete

stress-strain relationship for a fiber section in beams, columns and beam-columns. A

review of the simplified Chang-Mander model presented by Waugh [147] in 2009, that was

also implemented on OpenSees [82], under the name of “Concrete07 - Chang & Manders

1994 Concrete Model” by Waugh follows.
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Figure 4.7: Compression Envelope Curves of the Simplified Chang-Mander Concrete
Model

This uniaxial concrete model uses the same equation type for the representation of

the envelope of the concrete in compression and in tension (Fig. 4.8). The envelope uses

Tsai’s equation that was defined in non-dimensional form and used by Waugh [147] as:

y(x) =
nx

D(x)
(4.21)

z(x) =
1− xr

[D(x)]2
(4.22)

where

D(x) =







1 +

(

n− r

r − 1

)

x+
xr

r − 1
if r 6= 1

1 + (n− 1 + ln(x))x if r = 1

(4.23)

and n and r are parameters that control the shape of the curve.
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The non-dimensional parameters for compression are defined as:

x− =
εc
εc0

(4.24a)

y− =
σc
f ′c

(4.24b)

n− =
Ecεc0
f ′c

(4.24c)

and the non dimensional value of the spalling strain as

x−sp = x−cr −
y(x−cr)

n−z(x−cr)
(4.25)

where f ′c is the peak resistant stress of the concrete in compression, εc0 is the strain at

the peak resistant stress of the concrete in compression, Ec is the initial Young’s Modulus

of the concrete, x−cr is the critical strain in non-dimensional form, and x−sp is the spalling

strain in non-dimensional form. Using these parameters, the values σc and Et that define

the envelope curve in concrete can be calculated as

σc(x
−) =







f ′cy(x
−) if x− 6 x−cr

f ′c

(

y(x−cr) + n−z(x−cr) (x
− − x−cr)

)

if x−cr < x− 6 x−sp

0 if x− > x−sp

(4.26)

E−
t (x

−) =







Ecz(x
−) if x− 6 x−cr

Ecz(x
−
cr) if x−cr < x− 6 x−sp

0 if x− > x−sp

(4.27)
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Figure 4.8: Tension Envelope Curves of the Simplified Chang-Mander Concrete Model

In tension, the non-dimensional parameters are defined as:

x+ =
∣
∣
∣
εc − ε0
εcr

∣
∣
∣ (4.28a)

y+ =
σc
fcr

(4.28b)

n+ =
Ecεcr
fcr

(4.28c)

and the non dimensional value of the spalling strain as

x+sp = x+cr −
y(x+cr)

n+z(x+cr)
(4.29)

where fcr is the peak resistant stress of the concrete in tension, εcr is the strain at the

peak resistant stress of the concrete in tension, Ec is the initial Young’s Modulus of the

concrete, x+cr is the critical strain in non-dimensional form, and x+sp is the spalling strain

in non-dimensional form. Using this parameters the values of σc (stress in the concrete)
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and Et (tangent stiffness of the concrete) that define the envelope curve in concrete can

be calculated as

σc(x
+) =







fcry(x
+) if x+ 6 x+cr

fcr

(

y(x+cr) + n+z(x+cr) (x
+ − x+cr)

)

if x+cr < x+ 6 x+sp

0 if x+ > x+sp

(4.30)

E+
t (x

+) =







Ecz(x
+) if x+ 6 x+cr

Ecz(x
+
cr) if x+cr < x+ 6 x+sp

0 if x− > x+sp

(4.31)

The parameter r defines the descending branch of the Tsai’s curve, and can be defined

for unconfined concrete as

r =
f ′c (MPa)

5.2
− 1.9 =

f ′c (ksi)

0.75
− 1.9 (4.32)

and for confined concrete as

r =
n

n− 1
(4.33)

The simplified Chang-Mander model incorporates a number of 15 rules to represent

the complete and partial loading, unloading and reloading behavior of the concrete for

pre-cracking and post-cracking concrete behavior, see Fig. 4.9. These rules are extensively

detailed and presented by Waugh [147] in 2009. In addition, the model focus is in the

representation of the gap closing and opening due to the cracks [147]. In this study, this
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Figure 4.9: Hysteretic rules for the Simplified Chang-Mander Concrete Model proposed
by Waugh [147] in 2009

model was only used for the analysis of monotonic load cases, due to some numerical

instabilities produced when cycling or reversed loads where analyzed.

4.1.2.3 Biaxial Strength Coefficients

This section presents the functions of the coefficients that are used to account for com-

pression softening, enhancement due to biaxial compression, and the damage due to cyclic

or reversal load in a concrete material in a biaxial state of stress. This behavior has been

extensively observed and mentioned in the literature (e.g, Vecchio and Collins [140] in

1986, Belarbi and Hsu [17] in 1995, Ayoub and Filippou [7] in 1998, Mansour et al. [88] in

2001, Powanusorn [118] in 2003, Palermo and Vecchio [106] in 2003 ,Zhong [157] in 2005,

Massone [90] in 2006). Different equations to account for this behavior have been devel-

oped. Typically, these account for the behavior of the peak resistant stress of the concrete

in compression (f ′c) which is modified by a factor, and also the strain at the peak resistant

stress of the concrete in compression (εc0) which is modified sometimes. However, in this
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Figure 4.10: Compression Softening Effect

study only a modification to f ′c will be applied, as was suggested by Massone [90], and

because Vecchio and Collins [141] in 1993 observed that more sophisticated models only

result in marginally better solutions [90]. In addition, the modification of only the f ′c is

selected to retain a stable and efficient numerical solution.

Compression softening effect (βsf
′
c) is the reduction of the compression resistance of

the concrete in one direction due to tension strain in the perpendicular direction. It is

modeled with the use of the coefficient proposed by Belarbi and Hsu [17] in 1995, and

defined as

βs =
k√

1 + kσεtension
(4.34)

where εtension is the tension strain in concrete, and k and kσ are two parameters that define

the reduction factor. The factor kσ was defined as 250 for sequential loading and 400 for

proportional loading [17], and k was defined as 0.9 by Belarbi and Hsu [17]. However,

it was observed during this study that a value of 1 for k results in more stable solutions

without much loss of accuracy.

97



Enhancement of the compression strength (βef
′
c) is the increase of the peak resistant

stress f ′c in the concrete which can be produced by the following two factors, biaxial

compression stress state, as was mention by Kupfer et al. [75] in 1969 and Vecchio [136]

in 1992, or by the confinement produced by stirrups, cross ties and hoops in the concrete,

as is studied by Mander et al. [85] in 1988. The enhanced compression strength due to

biaxial compression is considered using equation (Eq. 4.35) proposed by Vecchio [136] in

1992.

βeij = 1 + 0.92

(
σcj
f ′c

)

− 0.76

(
σcj
f ′c

)2

(4.35)

where i is the direction enhanced, j is the direction normal to i, σcj is the stress in the

direction normal to i, and f ′c is the peak of resistant stress of the concrete in compression.

Damage due to cyclic or reversal load (βdf
′
c) is the deterioration of the compression

strength of the concrete under the loading and unloading process in the cyclic load. This

effect was studied by Palermo and Vecchio [106] in 2003, who proposed an equation for the

deterioration in compression and in tension which is a function of the difference between

the maximum and minimum strain that occurs during the reversed loading. In this study

only the damage in compression is used. The equation proposed by Palermo and Vecchio

[106] can be written as:

βd =
1

1 + α1

(
εrec
εc0

)α2
(4.36)

where εc0 is the strain at the the peak of resistant stress of the concrete in compression,

the parameter α1 is equal to 0.5 for pre-cracking and 0.6 for post-cracking in compression,
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α2 is equal to 0.1 for pre-cracking and 0.175 for post-cracking in compression, and εrec is

defined as

εrec = εmax − εmin (4.37)

with εmax the maximum strain recorded in the cyclic loading, and εmin the minimum

strain recorded in the cyclic loading.

In addition, in this study an additional factor is used to account for the enhancement

due to confinement (βconf ). This factor is applied over the compression peak strength of

the concrete (f ′c) as βconff
′
c at the beginning of the analysis, and it is maintained constant

during the rest of the analysis. This factor can be done using the sophisticated equation

proposed by Mander et al. [85] in 1988 or a more simple coefficient like the use by Orakcal

et al. [103] in 2006 and defined as

βconf = 1 +
ρsfy
f ′c

(4.38)

where ρs is the ratio between the volume of transverse steel and the volume of core concrete

measured from the outside of the stirrups, fy is the yielding strength of the transverse

steel, and f ′c is the peak resistant stress of the concrete in compression. In this study,

Eq. 4.38 is mainly used to determinate the coefficient of enhancement due to confinement.

4.2 Constitutive Model for Steel

In this section, the smeared steel constitutive material used to represent the horizontal and

vertical reinforcement steel layers in the membrane and shell element is presented. In this

approach, it is assumed that the steel bars are consider as a layer of homogenous material
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at certain positions inside the reinforced concrete element, and the variation stress due to

the crack over an area can be modeled using the average stress-strain of steel in that zone,

see Fig. 4.2. In addition, it is assumed that the smeared steel works only in the direction

of the bar, since the bars are typically in a uniaxial state of stress, and this allows the use

of a uniaxial constitutive model. This smeared steel material assumes:

• Steel was considered smeared and only acts in its orientation.

• The stress-strain relation can be represented by the average stress-strain relation of

steel bars embedded in the concrete.

• Concrete and smeared steel are consider fully bonded.

• The Poisson ratio is neglected after cracking.

Using these assumptions and the assumption for concrete, and an approach similar to

that proposed by Zhong [157] in 2005, the uniaxial strain in the orientation of steel can

be represented by

{

εs

}

= [Tstrain(θs − θpd)] [V ] [Tstrain(θpd)]







εxx

εyy

εxy







(4.39)

where [Tstrain(θ)] is the strain transformation defined by Eq. 4.3, θs is the angle that defines

the orientation of the steel layer with respect to the local coordinate system (x − y), see

Fig. 4.11, θpd is the orientation of the principal direction of strain defined by Eq. 4.4,

and [V ] is the Poisson ratio matrix defined by Eq. 4.7. Since the steel is considered as a
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Figure 4.11: Steel Layer Orientation

uniaxial material, the only component needed is the strain for the direction of the steel,

which is the component εs1 . This strain is used to determinate the stress (fs(εs1)) and the

stiffness tangent

(

Es(εs1) =
∂fs
∂εs

)

in the direction of action of the smeared steel from the

average uniaxial stress-strain relations, which will be presented later. Using these values

the stiffness tangent of the layer in the plane stress state for the coordinate system (x−y)

can be determinate as:

[
Ds

x−y

]
= [Tstrain(θs)]

T [Ds] [Tstrain(θs − θpd)] [V ] [Tstrain(θpd)] (4.40)

or for simplicity without consider the Poisson ratio as:

[
Ds

x−y

]
= [Tstrain(θs)]

T [Ds] [Tstrain(θs)] (4.41)

where

[Ds] =











ρEs
t 0 0

0 0 0

0 0 0











(4.42)

with ρ being the ratio of reinforced steel in the layer, and Es
t is the tangent stiffness of

the smeared steel.
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Modified Steel Stress for
Embedded Steel Bar in Concrete

(Tamai et al. 1988,
Belarbi and Hsu, 1994)
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Figure 4.12: Stress-Strain relation of embedded steel bar in concrete and bare steel Bar

For the resistant stress of the smeared steel layer, the in-plane stress state for the

coordinate system (x− y) can be determinate as:







σsxx

σsyy

τ sxy







= [Tstress(−θs)]







ρfs

0

0







= [Tstrain(θs)]
T







ρfs

0

0







(4.43)

with the stress transformation matrix defined by Eq. 4.10.

In this study, as was mentioned before, the action of the smeared steel in its orientation

is modeled using average uniaxial stress-strain relations. Different steel materials have

been implemented to determinate the unaxial stress-strain relation of the steel bar inside

of the concrete. Commonly, it is assumed in models that the behavior of the steel bar

without concrete and with concrete are the same. However, Tamai et al. [130] in 1988

observed during a set of experimental data done over reinforced concrete prisms, that the

behavior of reinforcing steel inside of the concrete presented some difference in behavior

when compared to the bare steel. This was corroborated later by Belarbi and Hsu [17] in
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1995. In Fig. 4.12, it is shown that the behavior of steel reinforcing bar embedded in the

concrete is modified from the bare steel bar, with a reduction on the position of yielding

point. This variation of the behavior in the steel is attributed to the consideration of the

stress in the steel as a function of the average strain in concrete. This means that while

in the crack the steel could already have started to yield, in between the cracks the stress

of the steel will be less [16], see Fig. 4.2.

The average uniaxial stress-strain relations are represented by uniaxial steel material

models with a reduction of the position of the yielding point to consider the effect observed

and study by Belarbi and Hsu [17] in 1995. Two uniaxial steel materials were selected to

model the behavior of the smeared steel in the orientation of the reinforcement. These

two material model are the one proposed by Mansour et al. [88] in 2001, and the well

known Menegotto and Pinto model in 1973 [94], and later modified by Filippou et al. [48]

in 1983. The following is a review of these two models.

4.2.1 Uniaxial Mild Steel Bar Embedded in Concrete Model

This model was proposed by Mansour et al. [88] in 2001 to represent the cyclic behavior of

the stress-strain relationships for steel bars embedded in concrete. It considers two main

features; the envelope curve in tension can be expressed by a bilinear relation proposed by

Belarbi and Hsu [16] in 1994, and the reloading and unloading portion of the curves can be

modeled using a form of the Ramberg-Osgood equation. Mansour et al. [88] in 2001 found

that the Ramberg-Osgood type of expression proposed by Yokko and Nakamura [153] in

1977 can be used to best describe the behavior of steel and includes the Bauschinger effects.
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Figure 4.13: Constitutive Model for Embedded Steel Bars Model

The following is a review of the equations that define this cyclic stress-strain relationship

of mild steel bars embedded in concrete proposed by Mansour et al. [88].

The model is divided in four rules, see Fig. 4.13. The two first rules define the envelope

of the average stress-strain relationship, and are defined by a bilinear relation proposed

by Belarbi and Hsu [16] in 1994. Rule 1 defines the elastic behavior of the steel prior to

yielding as:

fs(εs) = Esεs if − εy 6 εs 6 εn (4.44)

and Rule 2 defines the yielding of the steel bar embedded in concrete as

fs(εs) =







fy

(

(0.91− 2B) + (0.02 + 0.25B)
εs
εy

)

if εs > εn

−fy if εs < −εy
(4.45)
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where fs is the average stress of the embedded steel bar, εs is the average strain of the

embedded steel bar, fy is the yielding strength of the bare steel bar, εy is the yielding

strain of the bare steel bar, Es is the initial Young’s Modulus for the elastic steel bar,

εn =

[(
(0.91− 2B)

(0.98− 0.25B)

)

εy

]

is the average yielding strain of the embedded steel bar, and

parameter B is defined as

B =
1

ρ

(
fcr
fy

)1.5

(4.46)

where ρ is the ratio of reinforcement steel ( ρmin = 0.25%), and fcr is the peak resistant

stress of the concrete in tension.

Rules 3 and 4 define the unloading and reloading of the embedded steel bars, and are

represented by the Ramberg-Osgood type of equation defined as

εs − εi =
fs − fi
Es

(

1 +A−R
∣
∣
∣
fs − fi
fy

∣
∣
∣

R−1
)

(4.47)

where fi and εi are the stress and strain of the steel bar at the load reversal point, the

parameters A and R are represented by A = 1.9k−0.1
p and R = 10k−0.2

p , which were

determined from the experimental data by Mansour et al. [88] in 2001, and kp is the ratio

of plastic strain defined as
εp
εn

=
(εi − εn)

εn
and εp is the plastic strain.

The difficulty of this Ramberg-Osgood type of equation is that the rules need to use

an iterative approach to find the stress as a function of the strain. In this study a Newton-

Raphson method was used to do the iterative procedure to determinate the stress in Rules

3 and 4. This iterative process can produce an increase in the computational time during

the stress determination at each steel layer, for cyclic analysis.
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Figure 4.14: Constitutive Model for Menegotto and Pinto Steel model

4.2.2 Uniaxial Menegotto and Pinto Steel Model

This model corresponds to the well known Menegotto and Pinto model of 1973 [94], and

afterwards was modified by Filippou et al. [48] in 1983 to include isotropic hardening,

using a shifting of the yielding stress asymptote. This model is computationally efficient

and can represent very well the behavior of the steel observed experimentally [103]. The

following is a review of the model definition done by Filippou et al. [48] in 1983 and

Orakcal et al. [103] in 2006.

The stress-strain relationship of this model is defined by Eq. 4.48 that represents a

curve transition between two asymptotes defined by two straight line. The first line has a

slope equal to Es, which is the initial Young’s Modulus for the elastic steel, and the other

has a slope equal to E1 = bEs, where the b is the strain-hardening ratio (Fig. 4.14), and

allows the incorporation of the Bauschinger effects in the material model.
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f∗s (ε
∗
s) = bε∗s +

(1− b) ε∗s
(

1 + (ε∗s)
R
) 1

R

(4.48)

where

ε∗s =
εs − εr
ε0 − εr

(4.49)

and

f∗s =
fs − fr
f0 − fr

(4.50)

with fr and εr are the stress and strain at the last position of strain reversal, which

is the origin for the straight line that defines the asymptote with slope Es, and f0 and ε0

are the stress and strain point where the two asymptotes intercept, see Fig. 4.14. The R

parameter defines the form of the transition curve, and can be expressed as:

R = R0 −
a1ξ

a2 + ξ
(4.51)

where R0 is the value for the first loading or the monotonic loading and the parameters

a1 and a2 define the variation of R during the cyclic loading. These parameters are

determinated experimentally, and in this study are assumed to be R0 = 18, a1 = 16.2,

and a2 = 0.15. The parameter ξ is defined as

ξ =
∣
∣
∣
εm − ε0
εy

∣
∣
∣ (4.52)
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where εy is the yielding strain of the bare steel, and εm is the minimum or maximum strain

from the previous strain reversal, depending on wether the current strain is decreasing or

increasing.

In order to used this uniaxial model in an average stress-strain relationships, the values

of faveragey and baverage need to determinate as

faveragey = (0.91− 2B) fy (4.53a)

baverage = (0.02 + 0.25B) b (4.53b)

In theses uniaxial models, it is assumed that the steel and the concrete are fully

bonded, and the bond slippage is approximated by incorporation in the average stress-

strain relationship. In addition, theses model do not incorporate some of the characteristics

observed for the embedded steel, such as the degradation, cycling fatigue, or buckling

failure of the steel bars.

4.3 Summary

In this chapter, many published models for the material constitutive laws to represent the

behavior of concrete were reviewed. Of the models available, the smeared cracked concrete

model, which is based on the assumption that different cracks over an area can be modeled

using the average stress-strain relation of concrete in that zone, are the preferable concrete

models to use. Among the smeared cracked models, the othotropic models stand out for

their accuracy and simplicity, and they these are robust enough to represent the material

behavior of concrete.
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In addition, it was concluded that in order to work with a layered section approach, a

separate constitutive model for the smeared concrete layer and the smeared steel layer are

necessary. These constitutive models are presented separately, which is different from the

more advanced orthotropic model like the Softened Membrane Model (SMM) and Cyclic

Softened Membrane Model (CSMM) [17, 55, 57, 58, 86, 87, 110, 157]. The constitutive

model used to represent the plane stress behavior of concrete is based on the smeared

crack approach using the orthotropic model with the equivalent uniaxial average stress-

strain relations in the axes of orthotropy. The axes of orthotropy are assumed to coincide

with the principal axes of total strain, and this model is developed in a tangent stiffness-

based approach in order to be used in a general nonlinear finite element program. In

addition, this concrete model incorporates characteristics from the models of the University

of Houston’s Group, like the CSMM presented by Zhong [157] in 2005 and the models from

the University of Toronto’s Group, like the expanded MCFT developed by Palermo [105]

in 2002, and Palermo and Vecchio [106] in 2003 and the concrete model by Vecchio [136]

in 1992, and other additional models to consider the influence of biaxial compression or

tension-compression (softening) in the axes of orthotropy, and also to account for damage

in the material during cycling loads and enhancement due to confinement. The selection

of the different features for the model presented were done to be able to use the layered

section approach developed in the last chapter, and also to obtain a numerically stable,

reliable and efficient constitutive material.

The behavior of the concrete in the principal directions of stress, which coincide with

the principal directions of strain, are defined by average uniaxial stress-strain relations. In

this study the average uniaxial stress-strain relations are represented by uniaxial concrete
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material models. Two uniaxial concrete materials were selected to represent the average

uniaxial stress-strain relations for the principal directions of stress for this smeared rotating

angle concrete model. The two material models are: the one proposed by Massone [90]

in 2006 for static load and after extended to include hysteretic rules, also developed by

Massone on OpenSees [82], as the uniaxial concrete material “Concrete06” in OpenSees

[82]. The second model is a simplified Chang-Mander model proposed by Waugh [147]

in 2009. In addition, in the next chapters, the first model is referred to as the proposed

smeared plane stress concrete model with Thorenfeldt’s curve when the smeared rotating

angle concrete model is used with the uniaxial material model proposed by Massone [90]

in 2006. And it will be referred to as the proposed smeared plane plane stress concrete

model with Chang-Mander Model when the smeared rotating angle concrete model using

the simplify Chang Mander Model proposed by Waugh [147] in 2009 is used.

In addition, in this chapter the smeared steel constitutive material used to represent

the horizontal and vertical reinforcement steel layers in the membrane and shell element

was presented. In this approach, it is assumed that the steel bars are considered as a

layer of homogenous material at certain positions inside the reinforced concrete element

and the variation stress due to cracking over an area can be modeled using the average

stress-strain of steel in that zone. In addition, it will be assumed that the smeared steel

works only in the direction of the bar since to the bars are typically in a uniaxial state of

stress, and this allows the use of a uniaxial constitutive model. Two uniaxial steel material

models are used in this study, the one proposed by Mansour et al. [88] in 2001 knowns

as the Mild Steel Bar Embedded in Concrete Model, and the well known Menegotto and

Pinto Steel model proposed by Menegotto and Pinto [94] in 1973.
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Chapter 5

Finite Element Implementation

The finite elements method is the most common approach used today to study the response

of linear and nonlinear steel or reinforced concrete structures such as frames, walls, frame-

wall buildings, or single elements. This is true not only in research, but also in design

offices where the use of finite element software, like SAP2000 and ETABS [38], for the linear

analysis of stresses and demands over structures due to static and dynamic loads are almost

a standard. The finite element is a very powerful method because it allows one to take into

account the geometric behavior and the nonlinear constitutive relationships of structures

[122], and especially the complex behavior of the nonlinear constitutive relationship of

concrete and the embedded steel bars in concrete [157]. Previously, nonlinear analysis of

complex structures using finite elements was a very complex endeavor and computationally

expensive. However, today it is becoming possible to use this analysis approach due to the

recent advancements in computer capability and the application of more stable, and easier

implementation of open source algorithms and finite element codes, as was also mentioned

by Zhong [157].
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The finite element analysis programs are typically structured in five steps: (1) building

of the structural model (nodes, elements, loads, boundaries conditions), which are related

to the geometry of the model, (2) definition of the constitutive material law that defines

the behavior of each element, (3) assembly of the system of equations that define the type

of analysis performed over the structure, (4) solving of the linear or nonlinear system of

equations, and (5) recording of the results of the analysis or visualization of the results

[122, 157].

Two type of approaches are used to develop finite elements programs, the procedural

and the object-oriented approach [93, 122]. In the procedural approach the program

is represented by the assemblage of a set of subroutines or functions that act over the

variables stored globally, to solve the system of equations. This approach is difficult

to modify or to reuse the code, because of the dependence of the functions on the global

variables [122, 123], and a deep knowledge of the structure of the code are needed to be able

to extend the libraries to new materials, elements, and algorithm [93]. In the literature,

the majority of the available finite element softwares available use this type of approach

because they are faster, and more straightforward to program, like DRAIN [143] and

FEAP [131]. The Object-Oriented approach for finite elements involves the abstraction

of the components used in the analysis, which where reviewed in the five steps above, and

representing theses abstractions as a collections of objects communicating and interacting

between them. This approach allows the maintainability and extensibility necessary for

expansion of finite element packages [93]. In addition, this type of approach is one of

the most used programming paradigms for the development of software, frameworks and

operating systems, due to their main characteristics such as abstraction, polymorphism,
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encapsulation, messaging, inheritance and modularity [78]. The most used and important

implementation of this approach for nonlinear structural analysis is OpenSees [82]. From

these two approaches, the object-oriented is the optimal to produce modular and reusable

finite element software.

Typically, to perform nonlinear analysis of structures, researchers are limited to the

use of some of the commercial finite element software or programs, like SAP2000 and Per-

form3D [38], that are limited to some type of nonlinear analysis, elements, or constitutive

material laws. In addition, theses programs are commonly black boxes, which cannot be

modified or expanded by the user. Other options are the use of more flexible programs

with extensive libraries of elements and materials like ADINA [3], or ABAQUS [51]. In

addition, ABAQUS allows the incorporation of new material laws through the use of the

UMAT subroutine. In non-commercial programs, the options are the use of open source

programs like FEAP [131], and OpenSees [82], or other packages available in the literature

by simply using the extensive libraries that are available in the precompiled binary of the

programs. If the researchers need to modify or extended the packages, the user needs a

more deep knowledge of various programing languages, due to the required compilations

of different libraries used in the programs to perform the analysis. However, these are the

more powerful and faster options for nonlinear analyses. In other cases, the researchers can

use a more friendly but powerful programming environment like Python [50] or MATLAB

[62] to develop their own routines to implement new algorithms, elements, and materials.

However, theses routine are specific for the problem being studied and may be difficult to

reuse. An open source framework for the linear and nonlinear analysis of structures under

static and dynamic loads that use the object-oriented approach in MATLAB [62], which
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allows easy reuse of the code, and quick implementation and testing of new algorithms,

solution strategies, elements, and material laws, has not been developed before. Only some

approaches like FEDEASLab [46] that use procedural methodology and a structure-data

approach for the management of the elements, nodes, loads, and results, or other libraries,

in which the base of the program is an external package or software that is connected to

MATLAB [62]. Other option is the use of more simple procedural functions for the finite

element analysis that have been implemented and available in the literature.

In the next sections of this chapter an overview of the Object-Oriented approaches used

for Finite Elements is presented, and in particular the approach proposed by McKenna

[93], which has been extended to OpenSees [82]. Also, a review of the finite element toolbox

available for MATLAB [62] is briefly discussed. The abstractions of the components for

finite element and structural analysis proposed by McKenna [93] in 1997 and extended in

OpenSees [82] are used to develop the proposed Object-Oriented Finite Element Toolbox

for MATLAB [62]. This proposed toolbox uses the object oriented programing language

under MATLAB [62]. In additional, the nonlinear analysis algorithm used in this study

will be reviewed.

5.1 Object-Oriented Approaches for Finite Elements

The object-oriented approach for finite elements, as was mentioned before, involves the

abstraction of the components used in the analysis, and representing theses abstractions

as a collections of objects communicating and interacting between them. In order to

determinate these objects, as Fenves [44] mentioned in 1990, three steps need to be done:

first, selection of the classes (identifying patterns and defining the different classes of
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objects necessary to be used to represent the finite element method), second, specification

of the classes (defining the methods or operations that each of the classes can perform to

solve the finite element analysis), and third, implementation of the classes (selection of

the properties or variables encapsulated by each object and the specific operations that

are programmed in each method or member functions).

The object-oriented programming paradigm is a form of programming in which the

programs are organized around the objects, and the program can be represented as a

collection of these objects interacting between each other [78]. The object is composed of

properties or variables that are typically private, which means only the object has access

to them, and methods or functions that operate over the data or properties in the object.

The methods or member functions are the preferred form of communication between the

objects, and recovery of information from them. Classes are the implementation in a

programming language of the objects with similar properties and methods [93], and a

class can be thought of as the template for a type of object in a program.

The object-oriented programming style has been proven to produce a balance between

maintainability, extensibility, and reusability necessary for software development. This

is due to the characteristic of the object-oriented programing approach that are abstrac-

tion (separation of the implementation from the behavior), encapsulation (the data or

variables, and specific algorithm are enclosed in the object definition only), messaging

(the interface between different objects is through messages or calling of the methods or

member functions defined in each object), inheritance (subclass inherited the properties

and methods from the super classes) and modularity (each portion of a program can be

grouped in a set of classes or a single classes, which allows that future modification can be
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applied only to the necessary classes, or if a portion of the program that does something

special, it can be reused easily in other implementations) [78, 93].

Implementations of finite elements using the object oriented representation have been

developed and studied by different researches in the past years. A complete literature

review of this topic was done by McKenna [93] in 1997, and also a brief review was done

by Scott [122] in 2004. McKenna [93] in 1997 grouped the necessary classes to use in a

finite element into four groups, and performed a review of the different implementations

proposed in the literature using these groups. The groups are: (1) Modeling classes (classes

used to create the model for an specific problem), (2) Finite Element Model classes ( classes

used to represent the model like nodes, elements, constraints, loads), (3) Analysis classes

(classes used to perform the type of analysis, such as linear or nonlinear and static or

dynamics, using different the solution algorithms, and iterative methods), (4) Numerical

classes (classes used to manage the numerical calculations and operations in the solution

strategies). McKenna [93] in 1997, extended the finite element model classes available in

the literature and proposed a new abstraction of the analysis algorithm. McKenna [93]

also proposed additional abstractions for the implementation of the finite element using

parallel computing. The work of McKenna [93] in 1997 was used as the base for the

development of the Open System for Earthquake Engineering Simulation called OpenSees

[82] framework. This framework also includes additional extensions done by Scott [122]

in 2004, to use geometric transformation in the beam-columns elements, some nonlinear

uniaxial materials, and sensitivity analysis for beam-column elements. OpenSees [82] is the

most well known open source implementation of the object-oriented approach for nonlinear

structural analysis and simulation using finite elements used by structural and geotechnical
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Figure 5.1: Main Abstractions in OpenSees [82] Framework

engineers in earthquake engineering. The following is an overview of the abstraction and

class definitions done and presented by McKenna [93] in 1997 and extended and presented

in OpenSees and it’s user manuals [82].

OpenSees [82] is a framework developed primarily under the object-oriented pro-

gramming language of C++, and has additional libraries written in C and Fortran [82].

OpenSees is defined with the concept that super classes, like elements, materials, con-

straints, loads, solutions algorithm, etc, are abstract classes that define the methods or

member functions necessary to create the interface of the class in the framework, and the

subclasses of theses abstract classes define the implementation for each of the components

[92]. This structure allows for the implementation of new elements and materials, solution

algorithm, numerical solutions, and only needs to define the member function defined in

the interface of their abstract classes, and with this, the new subclasses can be incorpo-

rated in the framework without any change in the existing code [157]. This promotes the

interchangeability and modularity necessary in finite elements.

OpenSees [82] is divided into four main abstractions or types of objects, see Fig. 5.1,

Model Builder, Domain, Analysis and Recorder. The Model Builder Class is responsible

for the creation of the objects that represent the model (nodes, elements, constrains, load

patterns, loads) of a specific problem, and adding them to the Domain Object. The
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Domain Class is an object that stores the components of the model and provides the

methods to add and remove, access, update the state, commit the state, and obtain

information of the components in the Domain, and finally connect the model components

with the Analysis and the Recorder object.

The components of the Domain defined by McKenna [93] in 1997 and OpenSees [82] are

mainly: nodes, elements, constraints, and loads. Each of this components are subclasses

of a domain component (DomainComponent) class, that is a subclass of a TaggedObject

and MovableObject which provide part of the interface that allows the finite element anal-

ysis to occur in parallel or distributed computers or clusters [122]. The Element class is

an abstract class that defines the interface of the different types of elements (subclasses)

created in the framework. In addition, its provide the interface to obtain the stiffness,

mass, damping, and resisting force of the element, and commits, updates the state of

the element at the current step of the analysis. The element is typically composed by a

section or material objects and in some cases of a geometric transformation objects. The

Node class is the abstract representation of a point or node in the model of the structure,

which stores the coordinates of the node, and the current values of the state of the node,

like displacement, and unbalance loads. The Constraint class, is divided into single point

constraints (SP Constraint) and multi-point constraints (MP Constraint), depending on

whether the constraint involves only one node or multiple nodes. In OpenSees [82] the

Constraint class does not enforce the constraints, it only stores the data with the informa-

tion of the constraint and the state of the constraint at the current step. The Load Class

is divided into NodeLoad and ElementLoad, depending on whether the load acts over a
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Node or an Element Class, and also provides the interface to apply the load over the nodes

and elements, and store the information necessary to apply the load at the current step.

The Analysis Class, proposed by McKenna [93] in 1997, is the abstract representation

of the solution procedure for the finite element analysis that can be static or dynamic. This

means, it is responsible to check the components of the analysis, create the necessary links

between the objects, inform to the objects in the analysis that the model has changed,

and perform the analysis. It is typically formed by the following classes: AnalysisModel,

SolutionAlghorithm, Integrator, ConstraintHandler, DOF Numberer, SystemOfEqn, and

ConvergenceTest. The AnalysisModel class is a container class that permits storage of the

objects that handle the Nodes and the Element objects during the analysis, DOF Group

and FE Element, respectively. Theses objects are responsible for keeping the information

of the DOF associated with their objects (Nodes, and Elements), enforce the constraints,

and add the unbalance loads to the system of equation for the nodes and the stiffness,

mass, and damping, and resisting force for the elements. The SolutionAlgorithm class is

responsible for performing the specific solution procedure by invoking the methods of the

other components of the analysis class. Examples of this in OpenSees [82] are, Newton-

Raphson, Newton-Rahpson with Line Search, and Accelerated Newton. The Integrator

Class is responsible to set, update, and add the contribution of the different components

of the AnalysisModel to the System of Equation. Examples of this class in OpenSees

[82] are the Load control, Displacement control or ArchLength for static analysis and the

Wilson-θ, Newmark, Huilbert-Hugues-Taylor (HHT) methods for the dynamic analysis.

The ConstraintHandler class is responsible for establishing the constraints, and creating

the DOF Group and FE Element objects. The DOF Numberer class is responsible for
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defining the numbering of the DOF in the system of Equations. The SystemOfEqn class

is responsible for storing the system of equation, and solve numerically the system of the

equation with the specified Solver Class. The ConvergenceTest class is responsible for

determining if the iterative solution algorithm selected has converged to a solution within

the error desired.

The Recorder Class in OpenSees [82] is responsible for recording or storing in a text

file, in the data bases, or other types of files, and also monitoring the state of each of the

components in the Domain object during each step in the analysis.

5.2 Finite Elements Toolbox for MATLAB

MATLAB [62] is a user-friendly and very powerful software and programming environment

that is extensively used in the research and academic community because it allows a quick

development and testing of new algorithms, theories, data analyses, and visualization.

In addition, it allows the use of the vast libraries of mathematical algorithm, functions

and toolboxes, like linear algebra, optimization, digital signal processing, neural network,

curve fitting, statistics, control system, and many other available in the software, without

any difficulty during the development of routines or programs. In addition, MATLAB [62]

can be classified as an interpretative or scripting language, that allows developing routines

or programs using both procedural and object-oriented programming.

In the following section, the different options available for performing finite element

analyses under MATLAB [62] and reviewed, and following that the proposed object ori-

ented finite element toolbox for Matlab using the object oriented programing language
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under MATLAB [62] and the abstraction for finite element proposed by McKenna [93]

and extended in OpenSees [82] is presented.

5.2.1 Review of Finite Element Toolbox for MATLAB

A need for a powerful toolbox or framework that will be easy to use, extend, maintain,

and modularize for the nonlinear structural analysis or finite element analysis under MAT-

LAB is a constant issue in the research community. Typically, as was mentioned before,

researchers develop their own routines to implement new algorithms, elements, and mate-

rials in a procedural programming approach. These routines typically are specific for the

problem being studied and are difficult to reuse or modify due to the dependence on global

data. Other options are the use of routines, typically focused on linear analysis, like the

ones proposed in the books by Ferreira [45] in 2009 or Kattan [68] in 2008. Or use other

noncommercial options, such as FEDEASLab toolbox [46] which is focused on nonlinear

structural analysis. Among the options reviewed for structural analysis using MATLAB

[62], FEDEASLab [46], which uses a procedural methodology, is the preferable option.

FEDEASLab [46] is a toolbox developed mainly by Prof. Filippou and his students at the

Univeristy of California, Berkeley, since 1998 and is inspired by FEAP [131], but adapted

to MATLAB [46]. A brief review of the FEDEASLab toolbox presented by Filippou and

Constantinides [47] in 2004 and in FEDEASLab’s webpage [46] follows.

FEDEASLab toolbox ([46],[47]) is an intuitive, versatile and powerful toolbox used

for the linear and nonlinear analysis of structures under static and dynamic loads, that

was developed using a procedural programming style. Its structure is based on a series
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of functions grouped by different categories, like general, geometry, utilities, output, ele-

ment library, section library, material library, and solution library that works over a global

data. This global data is divided into five basic data structure objects and one optional.

The five data structures are: Model (keeps the model geometry and DOF numbers), El-

emData (represents the information with the properties of the each element, like type

element, section, material, geometric transformation), Loading (stores the information of

the loads over the nodes and elements and the load histories, and the enforced displace-

ments that will be applied during the analysis), State (stores the response of the structure,

like displacement, velocity, acceleration in the nodes, stiffness, mass, damping matrix, and

response in the elements), SolStrat (stores the static or dynamic parameters used in the

solution procedure), and the optional structure data is the Post (stores the information

necessary for post-processing of the analysis). In addition, FEDEASLab allows the post-

processing and visualization of the results of the analysis. It has mainly element libraries

for beam-columns elements, with different approaches, like lumped plasticity, nonlinear

hinges, spread plasticity, fiber sections, and different type of analysis, like second order, P-

δ, and corotational. Also, FEDEASLab allows the use of different solution strategies, for

static (load control, arc-length, and others) and dynamic analysis (Newmark, Wilson-θ,

and others) [47]. Even though this is a procedural approach, it presents an easy structure

that can be understood quickly, and allows an easy implementation of new elements of

type beam-column if the users wants. However, this toolbox is distributed through p-code

file type, this type of file distribution for MATLAB [62] does not allow review of the code

in the functions, which is necessary for making modifications. In addition, an important
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factor could be the computational cost used to pass the data structure to the different

functions during the analysis for large models.

5.2.2 Proposed Object-Oriented Finite Elements Toolbox for MATLAB

Due to the options available for the finite element analysis using MATLAB [62], and the

conclusions of past studies showing that the object-oriented programming paradigm is

the most flexible, modular and easy to expand and maintain approach to develop finite

elements frameworks, it was decided for this study to develop a Finite Element Toolbox

using the object oriented programing language under MATLAB [62], without the need to

couple MATLAB [62] to external software or libraries. This allows a seamless transporta-

bility of the framework or Toolbox between the version of MATLAB [62] for the different

operative systems, which creates a user-friendly but powerful framework that is easy to

use, expand, maintain, and understand by researchers with different levels of knowledge

in programming languages.

First, it is important to present some of the symbolic notations and nomenclature

used in the object oriented programming language under MATLAB (Fig. 5.2). The main

nomenclature, mention in the references [62, 78], which are common to different object-

oriented programming language are:

1. is-a: the is-a relationship indicates that a class is a subclass of another, which means

the object or class is a decedent of a super class.

2. has-a (aggregation): the has-a aggregation relationship indicates that a class has

as property other objects, but they are not owned by the object and can live outside

of the object.
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Class Name

Properties

    has is 
(aggregation)

is a

Class A

Class B

Class

Class A

Class B

Figure 5.2: Class Diagram Notation used in MATLAB [62]

3. has-a (composition): the has-a composition relationship indicates that a class has

as property other objects that are owned by the object, and cannot live outside of

the object.

The Classes in MATLAB are written in m-file type, following a certain structure,

(heading of the class, properties, methods and events), see Fig. 5.3. The heading indicates

that the file contains a class definition, and which is the type of class, and the attributes

of the class, and if the new class is a subclass of others. The properties are the variables

encapsulated by the object, and their attributes indicate if the variables are public, private,

etc. The methods define the different functions that act over the properties in the object,

and return the information requested to the objects or add data to the object. The class

can be divide in value classes or handle classes. The difference is that the constructor of a

value class returns an instance of the class and relates that instance with the variable, and

124



classdef (attribute - name = expression, ...) ClassName SuperClass 

properties (attribute - name = expression, ...)

end

methods (attribute - name = expression, ...)

end

....

....

events (attribute - name = expression, ...)

end

....

end

Figure 5.3: MATLAB’s Class Definition structure

if the variable is reassigned the variable creates a copy of the original object, and if the

object is passed to a function the function makes a copy of the variable, and the variable

outside of the function is not modified by the code inside of the function. Instead, in the

handle class, the constructor returns a handler of the object, this mean that when it is

reassign or passed to a function the program is only passing the reference to the actual

object and no copy of the object is done [62]. Due to this difference, in this study all the

classes used are subclass of the handle class, this allows the data to maintain uniqueness,

and the programs run faster because less information is sent between callings of methods

and functions.

The Toolbox proposed here follows the abstractions of the components for finite ele-

ment and structural analysis proposed by McKenna [93] in 1997 and extended in OpenSees

[82]. Due to these abstractions produced a more flexible and modular, and reusable frame-

work. However, some modifications are included to adapt the abstractions to MATLAB

[62]. The following is a review of the final abstractions used in this proposed Toolbox to

define the finite element analysis that was implemented and used for the analysis presented
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Model Analysis

ModelResponseRecorder ModelGraphicHandler

Figure 5.4: Main Abstractions in the proposed Toolbox

in the next chapter in this study. In addition, in this study the proposed Object-Oriented

Finite Elements Toolbox will be referred to as either indistinguishable the Toolbox or

Framework

This Toolbox is divided into four main abstractions or types of objects: Model, Anal-

ysis, ModelResponseRecorder and ModelGraphicHandler, see Fig. 5.4. The Model Class

is a container object that holds the ModelComponent objects , like Node, Element, Con-

straints, LoadPatterns, and provides the methods to add, remove, access, update the state,

commit the state, and obtain information of the components in the Model, and connect

the ModelComponents objects with the Analysis, the ModelResponseRecorder and the

ModelGraphicHandler object. This Model class is similar to the abstraction proposed by

McKenna [93] in 1997 and extended in OpenSees [82] for the Domain Class, only with

changes to some of the names and some methods or member functions, to include the

ModelResponseRecorder and ModelGraphicHandler.

The components stored in the Model, see Fig. 5.5, as mentioned before, are: Nodes,

Elements, Constrains, LoadPatterns, Loads. Each of these components are subclasses of

a ModelComponent, that is a subclass of a TagObject and ClassTagObject. These model
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CoordTranformation FieldInterpolationSection

Profile Material

QuadratureRule

NodeLoad ElementLoad TimeSeriesSP Constraint

Figure 5.5: Model abstraction in the proposed Toolbox

component class are similar to the abstraction proposed by McKenna [93] in 1997 and

extended in OpenSees [82] with minimal modifications.

The Element class is an abstract class that defines the interface of the different types

of elements (subclasses) created in the framework, and provides the interface to obtain the

stiffness, mass, damping, and resisting force of the element, commit, and update the state

of the element at the current step of the analysis. The element is composed of a Section

object, and has a set of Nodes that define the geometry of the element, in some cases it also

has a geometric transformation object, see Fig. 5.5. Similar to the abstraction proposed

by McKenna [93] in 1997 and extended in OpenSees [82] with minimal modifications. The

Section object is also a subclass of the ModelComponent class, and is composed of a profile

object and one or more Material Objects, which are also ModelComponent Objects.

The Node class is the abstract representation of a point or a node in the model of the

structure, which stores the coordinates of the node, and the current values of the state of
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the node such as displacement, and unbalanced loads. Similar to the abstraction proposed

by McKenna [93] in 1997 with minimal modifications.

The Constraint class, can be classified in single point constraint (SP Constraint) or

multi point constraint (MP Constraint) depending on whether only one node or multiple

nodes are involved. Similar to OpenSees [82] the Constraint class does not enforce the

constraint,and it only stores the data with the information of the constraint and the state

at the current step of the constraint.

The LoadPatterns Class is the abstract representation of the load pattern applied to

a structure in finite element, and it is implemented as a container class that stores the

Load Objects, such as Node Loads, Element Loads, or Earthquake Loads. These objects

are also subclasses of the ModelComponent class. In addition, as in OpenSees [82], this

class also could store constraints if these depended on the load history, and also store the

information necessary to apply the load at the current step (load histories), and provides

the interface to apply the load over the nodes and elements.

The Analysis Class is the abstract representation of the solution procedure for the

finite element analysis that can be static or dynamic, and is responsible to check the

components of the analysis, create the necessary links between the objects, inform to the

objects that the model change, and perform the analysis. Also, It is typically formed by

the following classes: AnalysisModel, SolutionAlghorithm, Integrator, ConstraintHandler,

DOFNumberer, SystemOfEq, and ConvergenceTest, see Fig. 5.6. Each of this compo-

nents of the analysis are subclasses of a AnalysisComponent, that is a subclass of the

ClassTagObject. The main subclasses of the Analysis class are the StaticAnalysis class

and a DynamicAnalysis Class. The Analysis class and their components are similar to
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AnalysisModel ConstraintHandler DOFNumberer SolutionAlgorithm Integrator

Analysis

SystemOfEq

NodeHandler ElementHandler

Figure 5.6: Analysis abstraction in the proposed Toolbox

the abstractions proposed by McKenna [93] in 1997 and extended in OpenSees [82], with

minimal modification in the names and minimal changes in the methods in the classes to

be able to adapt the classes to MATLAB [62]. These analysis components are reviewed

next.

The AnalysisModel class is a container class that storage the object that handle the

Nodes and the Element objects during the Analysis, NodeHandler and ElementHandler,

respectively. These objects are subclasses of an AnalyisModelComponent class. The

NodeHandler and ElementHandler are responsible for keeping the information of the DOF

associated to the objects that these classes handle in the Model Object, and enforce the

constraints, add the unbalance loads to the system of equation for the Nodes and the

stiffness, mass, damping matrix, and resisting force vectors for the elements.

The SolutionAlgorithm class performs the specific solution procedure by invoking the

methods of the other components of the analysis class. The Newton-Raphson, Modified

Newton-Raphson, and Linear method have been implemented until now in this toolbox.
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The Integrator Class is responsible to set, update, and add the contribution of the

different components of the AnalysisModel to the System of Equation, which means it

forms the system of equations of the analysis. The methods programmed so far in this

toolbox are the Load control, Displacement control, and Arch Length for static analysis,

and the Wilson-θ, Newmark, Huilbert-Hugues-Taylor (HHT) , Central Difference methods

for dynamic analysis.

The ConstraintHandler is responsible to establish the constraints, and create the Node-

Handler and ElementHandler objects.

The DOFNumberer class is responsible for defining the numbering of the DOF in the

system of Equations.

The SystemOfEq class is responsible to store the system of equation, and solve numer-

ically the system of the equation with the use of the mathematical libraries in MATLAB

[62]. This toolbox includes until now a LinearSystemOfEq class that has as subclass the

full general linear system of equation (FullGenLinearSystemOfEq), and Sparse General

Linear system of equation (SparceGenLinearSystemOfEq).

The ConvergenceTest class is responsible to determinate if the iterative solution algo-

rithm selected has converged to a solution below the error desired.

The ModelResponseRecorder Class is the abstract representation of the storage of the

result and state of the different components in the Model Object. It is implemented as

a container class that stores and saves to a file the response recorded from the model

components, using the response recorder of the model components. It is also connected to

ModelGraphicHandler objects to provide the recorded information for the visualization in

130
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NodeLoadResponseRecorder ElementLoadResponseRecorderSectionResponseRecorder

Figure 5.7: Model response recorder abstractions in the proposed Toolbox

the post-processing part. These response recorder components are subclasses of the Mod-

elComponentResponseRecorder class, and each of this component is related with one com-

ponent in the Model Objects. The components in the ModelResponseRecorder object are:

NodeResponseRecorder, ElementResponseRecorder, ConstrainResponseRecorder, Load-

ResponseRecorder, SectionResponseRecorder, MaterialResponseRecorder, see Fig. 5.7.

Each ModelComponentResponseRecorder object is responsible for the storing and record-

ing the state of the corresponding ModelComponent.

The ModelGraphicHandler Class is the abstract representation of the visualization

of the Model Object and their result during the analysis. The ModelGraphicHandler

Class is implemented as a container class that stores the graphics handlers of the model

components, and the axes handles, which are the canvas where the model are drawn or

visualized. In addition, it is in charge of orchestrating the visualization or drawing of

the model, their components and the results at each step of the analysis in the axes

of a figure in MATLAB [62]. These components are subclass of the ModelComponent-

GraphicHandler class, and each of these components are related with one component in
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Figure 5.8: Model Graphics abstractions in the proposed Toolbox [92]

the Model Objects. These graphic handler components stored in the ModelGraphicHan-

dler object are: NodeGraphicHandler, ElementGraphicHandler, ConstrainGraphicHan-

dler, LoadGraphicHandler, LoadPatternGraphicHandler, see Fig. 5.8. Each of the Mod-

elComponentGraphicHandler objects is responsible for the implementation of the visual-

ization of the model component that handles graphically, and their resulting storage in

the ModelResponseRecorder object. In addition, ModelComponentGraphicHandler has a

different set of PencilGraphic objects that define the color and format used to draw the

model components

5.3 Incremental Iterative Solution Algorithm

The nonlinear analysis of reinforced concrete wall structures is a highly nonlinear system.

This type of analysis needs the implementation of an incremental iterative solution al-

gorithm to solve the linearized nonlinear system of equations, which is created from the

assembly of the current stiffness matrix and the unbalanced load in the structure. A sim-

ple incremental approach is not used because it may lead to an excessive accumulation of

132



errors [157]. Sinces the analysis in this study can be consider as quasi-static, incremental

iterative solutions using a Newton-Raphson with load-control or a Newton-Raphson with

displacement-control solution strategy can be used. A nonlinear quasi-static analysis for

monotonic or cyclic load refers to the fact that the application of the loads do not produce

any dynamic effects in the analysis, because the loading process is performed at a slow

rate [103].

Different Newton-Raphson strategies can be used, like Full Newton-Raphson (the stiff-

ness tangent of the system is update at each iteration) or Modified Newton-Raphson (the

stiffness matrix of the system is updated only at the beginning of each step). However, it

was decided to use the Full Newton-Raphson because it produces a faster convergence rate

(less number of iterations), but with a computational cost due to the continuous updating

of the stiffness matrix for the structure. The main difference between a load control and

a displacement control approach is that in the load control only the load value over the

system is manage at each step, which means the load is considered as the independent

variable. In the displacement control approach, a dominant displacement in the system

is controlled, and at each step and during each iteration the force applied and the incre-

ment displacement in the rest of the system is controlled by a set of parameters until it

converges on the equilibrium solution. The following section presents the Displacement

Control Iterative Algorithm used in this study. The Load-Control Iterative Algorithm is

presented for the sake of completeness of the presentation.
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Figure 5.9: Full Newton-Raphson with Load-Control Iterative Algorithm

5.3.1 Load-Control Iterative Algorithm

This increment iterative algorithm is the most common solution used to perform nonlinear

analysis, because it is obtained directly from the implementation of the Newton-Raphson

methods. It is based on application of the load over the system in steps defined by a load

parameter λ, as λ = 0.1, . . . , 1, and at every time step the new load step is applied in

an iterative procedure is done until convergence is obtained, see Fig. 5.9. This method

relies only on the stiffness tangent to continuously search for the equilibrium solution of

the residual equation at each step [122].

This can be expressed in mathematical form using the residual equation obtained from

virtual work for a structural system at each iteration as:

Residual
(
U ′i
)
= λFexternal −Ri (5.1)
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where Fexternal is the total final load that will be applied to the system, λ is the factor

that controls the increment of the load in the system, and Ri is the resisting force of the

structural system.

Linearizing the Residual
(

U ′i +∆U ′i
)

using a Taylor expansion and excluding high

order terms:

Residual
(

U ′i +∆U ′i
)

= Residual
(

U ′i
)

+
∂Residual

(

U ′i
)

∂U ′i
∆U ′i (5.2)

and performing the derivative over the Residual equation, one finds the stiffness tangent

of the system:

∂Residual
(

U ′i
)

∂U ′i
= − ∂Ri

∂U ′i
︸ ︷︷ ︸

Ki
t

(5.3)

and substituting Eq. 5.3 into Eq. 5.2, the iterative increment solution can be written as

Eq. 5.4 because it is assumed that the residual Residual
(

U ′i +∆U ′i
)

will be zero for the

equilibrium solution

Ki
t∆U

i = λFexternal −Ri (5.4)

A drawback of this incremental iterative algorithm is that it cannot be used and does

not converge in the case of softening or snap-through or load limit point, or when the

stiffness matrix become nearly to singular. This failure in the analysis does not indicate

that the structure has collapsed, only that the solution method is not able to converge to

a solution, as was mention by [7] in 1998 and Zhong [157] in 2005.
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5.3.2 Displacement-Control Iterative Algorithm

Different researchers have proposed different methods, like arch-length by Riks [119] in

1972 or variations of this as was done by Crisfield [37] in 1981 or the Displacement Control

Iterative Algorithm proposed by Batoz and Dhatt [10] in 1979, to overcome the disadvan-

tages of the Load Control Iterative Algorithm. And these methods allow modelling of the

complete load-dispalcement curve for complex nonlinear analysis that has softening, re-

duction of force due to cracking, snap-through, post-buckling, or local limits [157]. These

methods typically control the displacement of one DOF over the structure, that is used

as the independent variable [10], and iterate until convergence is reached. The following

presents the algorithm proposed by Batoz and Dhatt [10] in 1979. In addition, here it

is also followed the presentation of this iterative procedure done by Zhong [157] in 2005,

with some modification and a constant displacement increment.

The increment displacement can be separated into two parts:

∆u = ∆uu +∆λ∆uref (5.5)

where ∆uu is the increment displacement produced by the unbalanced load, ∆uref is

the increment displacement produced by a reference load, and ∆λ is the parameter that

controls the load increment applied to the system.

Also, it is necessary to define a vector with only zeros, except the nth DOF that

will be used to control the displacement increment between steps, and it is used as the

136



independent variable. In the vector at the nth DOF is assigned the value of 1 (Eq. 5.6),

to be able to use a matrix approach to represent the algorithm.

Γn =

{

0 · · · 0 1 0 · · · · · · 0

}

(5.6)

Now, it is possible to define the increment displacement using a first order approxima-

tion as:

∆uiu =
(
Ki

t

)−1
P i
u (5.7a)

∆uiref =
(
Ki

t

)−1
Pref (5.7b)

where, Ki
t is the tangent stiffness at the ith iteration, P i

u is the unbalanced load at the

ith iteration, and Pref is a reference load over the entire structure determinate at the

beginning of the analysis, and that can be updated as the model changes.

Using the equations presented before the increment displacement for the nth DOF can

be expressed as:

Γn ·∆u = Γn ·∆uu +∆λΓn ·∆uref (5.8)

For the first iteration a displacement of ∆un for the nth DOF is imposed, and assuming

that a perfect convergence was achieved at the end of the last increment step, one obtains

the ∆λ necessary at the initial iteration as:

∆λ1 =
∆un

Γn ·∆uref
(5.9)
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which results in that the initial increment displacement for the system at the first iteration

as:

∆u1 = ∆λ1∆uref (5.10)

and the new load applied to the system is described by

λ1NewStep = λLastStep +∆λ1 (5.11)

where λLastStep is the load factor at the end of the iteration of the previous step and for

the initial iteration of the current step the load in the system is:

P 1 = λ1NewStepPref (5.12)

Now for any other ith iteration the displacement at the nth DOF must be maintained

constant, which results in Eq. 5.8 being rewritten as:

Γn ·∆ui = Γn ·∆uiu +∆λiΓn ·∆uiref = 0 (5.13)

and using this one finds the next ∆λ (Eq. 5.12) necessary to proceed with the iteration

as:

∆λi = − Γn ·∆uiu
Γn ·∆uiref

(5.14)

where ∆uiu = ∆ui−1, and this results in the next increment displacement for the whole

system as:

∆ui = ∆uiu +∆λ∆uiref (5.15)
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and the new load applied to the system is described by:

λiNewStep = λi−1
NewStep +∆λi (5.16)

and

P i = λiNewStepPref (5.17)

This increment iterative algorithm just presented, a full Newton-Raphson with a in-

cremental iterative displacement-control, is the selected solution strategy to perform the

analysis in this study. It also allows modeling of the softening behavior of the concrete,

and limit points that can occurs in analysis. This means the algorithm allows one to

obtain the complete load-displacement curve for wall structures. In addition, this algo-

rithm is selected because the experimental tests used to compare the accuracy of the

proposed wall model are based typically on drift-controlled (monotonic and reversed or

cyclic) experiments.

5.3.3 Convergence Criteria

Convergence criteria are necessary to determinate if an analysis has arrived at an equi-

librium solution with the precision prescribed by the criteria tolerance. This is very

important for iterative solution strategies, because these criteria determinate the end of

the iteration process. Realistic criteria need to be used and evaluated at the end of each

iteration to determine is the solution has converged or is diverging [9]. Different methods

can be used to define the convergence criteria, this can be based on the nodal unbalanced
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force, the displacement increment, the energy increment, or maximum component dis-

placements. Typical convergence criteria that can be used in iterative solution algorithms

for finite element can be found in different references or books on finite elements, such as

[9, 103, 157].

Some example of the convergence criteria that can be used are:

Force Criterion:
‖P i

u‖
‖P 0

u‖
< Tolerance (5.18)

where P i
u is the unbalance load at the ith iteration, and P 0

u is the unbalance load at the

initial iteration for the current step.

Increment Displacement Criterion:
‖∆U i‖
‖∆U0‖ < Tolerance (5.19)

where ∆U i is the increment displacement at the ith iteration, and ∆U0 is the increment

displacement at the initial iteration for the current step.

Energy Criterion:
‖
(
∆U i

)T
P i
u‖

‖∆(∆U0)T P 0
u‖

< Tolerance (5.20)

where ∆U i is the increment displacement, and P i
u is the unbalanced load at the ith itera-

tion, and ∆U0 is the increment displacement and P 0
u is the unbalanced load at the initial

iteration

Maximum Increment Displacement Criterion: max
k

|∆U
i
k

∆U0
k

| < Tolerance (5.21)
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where ∆U i
k is the increment displacement at the ith iteration for the kth DOF, and ∆U0

is the increment displacement at the initial iteration for the kth DOF for the current step.

In this study, the Increment Displacement Criteria and the Maximum Increment Dis-

placement Criteria are used as the convergence criteria for determining when the iteration

solution must stop.

5.4 Summary

The finite element programs are typically structured in five steps: (1) building of the

structural model, which are related to the geometry of the model, (2) definition of the

constitutive material laws that define the behavior of each element, (3) assembly of the

system of equation that define the type of analysis performed on the structure, (4) solving

of the linear or nonlinear system of the equation, and (5) recording of the results of the

analysis or visualization of the results [122, 157]. With this basic conceptualization of

the finite element (FE) in mind, two approaches can be used to develop FE programs ,

a procedural and the object-oriented approach. In the procedural approach the program

is represented by the assembling of a set of subroutine or functions that act over the

variables stored globally, to solve the system of equations. Instead, the Object-Oriented

approach for finite elements involves the abstraction of the components used in the anal-

ysis, which were reviewed in the five steps above, and representing these abstractions as a

collections of objects communicating and interacting between them. This approach allows

a maintainability and extensibility necessary for finite element programs [93].

From the options for finite element using object oriented programming it was con-

cluded that the abstractions proposed by McKenna [93] and which has been extend to
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OpenSees [82], which is the most important framework used nowadays in the simulation

of large models on earthquake engineering, are the best representation for developing a

Object-Oriented Finite Element Toolbox for MATLAB [62]. This toolbox was done using

the object oriented programing language under MATLAB [62]. The abstractions of the

components for finite element and structural analysis proposed by McKenna [93] in 1997

and extended in OpenSees [82] were presented in this chapter, and also their extension for

the developing of the proposed Finite Element Toolbox under MATLAB [62] used in this

study.

MATLAB [62] was selected, because it is a user friendly, and very powerful software

and programming environment, which is extensively used in the research and academic

community, due to it allows a quick development and testing of new algorithms, theories,

data analysis, and visualizations. Also, because there is a need for a powerful toolbox

or framework in the research community that is easy to use, extend (developing of new

elements, algorithms and analysis procedures, new materials), maintain, and modularize

for the nonlinear structural analysis or finite element analysis under MATLAB [62] was

required.

In addition, the nonlinear analysis algorithm, Full Newton-Raphson with an incremen-

tal iterative displacement-control, which is used to perform the analysis in this study, was

reviewed. This solution strategy was selected, because it allows modelling of the soften-

ing behavior of concrete and limit points that can occur in the analysis. This mean, the

algorithm allows to obtain the complete load-displacement curve for the wall structures.
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Chapter 6

Evaluation and Verification of Analytical Results

Evaluation and verification of the new analytical model developed in this work against

benchmarks or experimental results are a crucial step before the use of the model for

numerical simulations of more complex structures in order to demonstrate the accuracy,

applicability, limitations and usefulness of the new analytical models. In the case of rein-

forced concrete walls, which behave different under different load conditions and different

configurations (single walls, coupled walls, wall sizes), a set of experiment results with

different type of walls configurations and load conditions need to be used to verify the

new analytical models.

The evaluation of the accuracy, applicability, and usefulness of the nonlinear layered

quadrilateral membrane and shell element with drilling degrees of freedom proposed, and

the constitutive model defined in the previous chapters in this study is presented in this

chapter. In order to do this, a set of experimental results for reinforced concrete wall

elements under monotonic and reversed load available in the literature, which are used

as benchmarks for other models, are compared against the analytical model using the

proposed elements.
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The experiments results used in this dissertation are selected after a thorough revision

of the available experimental results found in the literature. The experimental results can

be divided into monotonic loading and reversed loading. For monotonic load this work

uses one of the experimental results of the tests of a shear wall done by Cervenka and

Gerstle and presented in Cervenka [24] in 1971, and the experiment results of the tests of

two types of walls done by Lefas et al. [80] in 1990. For reversal or cyclic loading this work

uses the experimental results of the tests of two rectangular single walls and two T-shaped

cross section walls with slabs at four different levels done by Thomsen and Wallace [132]

in 1995.

6.1 Monotonic Loading

The following section presents the evaluation and verification of nonlinear layered quadri-

lateral membrane elements with drilling degrees of freedom proposed using experimental

test results under monotonic loads.

6.1.1 Reinforced Concrete Shear Wall - Cervenka and Gerstle

Cervenka [24] in 1970 presented the results for a series of tests using reinforced concrete

shear panels. These panels were built and loaded in groups of two bounded by thickened

ribs at each side of the panel that form a deep beam (Fig. 6.1). The loading was done at

the middle of the deep beam specimen (center rib), which was simply supported at the

end, as is shown in Fig. 6.1. The panel were 760 [mm] (30 [in]) height and 760 [mm] (30

[in]) wide with a thickness of 51 [mm] (2 [in]) or 76 [mm] (3 [in]), and also, the panels

were reinforced with orthogonal reinforcement (Horizontal and Vertical) at the center of
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Figure 6.1: Geometry and Reinforcement Details of the RC Shear Panel W2

section of each panel (Fig. 6.1). Beside the difference in the thickness of the specimens,

the panels were built with different amounts of steel assigned at each direction, some with

lightly reinforced ratios and other with more heavily reinforced ratios and with variation

of steel ratios in the orthogonal directions.

For the validation of the proposed analytical model, the reinforced concrete shear panel

W2 was selected, which has been used as benchmarks before by other authors ([40], [135],

[7]). This test was selected, because the specimen has a variation of ratio of horizontal

steel over the height of the model, and constant ratio of steel in the vertical direction

(Fig. 6.1), which make the model an interesting case study.

The geometry of the panel W2 is 76 [mm] (3 [in]) thick, and 760 [mm] (30 [in]) wide

by 760 [mm] (30 [in]) height, and has a thickened ribs of 300 [mm] (11.75 [in]) by 102

145



[mm] (4 [in]), as is shown in Fig. 6.1. The horizontal reinforcement ratio in the panel is

0.92% in the top portion of the panel and 1.83% in the lower 150 [mm] of the panel, and

the vertical reinforcement is constant over the length of the panel and is equal to 0.92%.

For the horizontal and vertical reinforcement bars No3 were used, with a cross section

area of 70 [mm2] (0.11 [in2]) and a yielding strength of fy = 353 [MPa] (51.2 [ksi]) and a

young modulus of Es = 190000 [MPa] (27300 [ksi]) found from tensile tests of bare bars

[24]. The concrete used in the specimens was specified to have a compression strength

of (4 [ksi]) at the 28-day using cylinder test. The concrete used in the panel W2 return

a compression strength of f ′c = 26.8 [MPa] (3.88 [ksi]) at the 15-day, and a compression

strain (εc0) between -0.002 and -0.003 [mm/mm] [24]. The tension strength of the concrete

(fcr) in the model was consider equal to 0.31
√

f ′c[MPa] (0.118
√

f ′c[ksi]), and the tension

strain εcr at the maximum tension strength equal to 0.00008 [mm/mm]. In addition, for

the Simplify Chang-Mander model, the initial young modulus for the concrete Ec equal

to 8200|f ′c[MPa]| 38 was used.

The analytical model of the panel was represented using only half of the specimen (only

one panel), due to the symmetry of the specimen in geometry and loading. In addition,

the test was model using a mesh of 150 [mm] by 150 [mm] (Fig. 6.2). and it was used a 3 by

3 gauss integration in each element for the analysis of the panel, and a layered section, in

order to model the concrete and the steel over the thickness of the panel. For the modeling

of steel the smeared steel approach defined in the previous chapter was used with the use

of the uniaxial mild steel bar embedded in concrete model. The other uniaxial steel model

was not used for the analysis of the panel W2, because the uniaxial Menegotto-Pinto steel

model was adjusted to return the same envelope that the model used here. This is, the
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Figure 6.3: Deformation of the Analytical Model of the RC Shear Panel W2 at P ≈ 114
[KN] (Scale Factor of 10)
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Figure 6.4: Load-Deformation of the Response of the RC Shear Panel W2
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(a) Smeared Steel model using the uniaxial mild steel bar embedded in concrete model

Figure 6.5: Load-Deformation of the Response of the RC Shear Panel W2 with the plane
stress concrete model with Thorenfeldt’s curve and the smeared steel model using the
uniaxial mild steel bar embedded in concrete model and a quadrilateral layered membrane
element without drilling degrees of freedom

(a) Strains

(b) Stresses

Figure 6.6: Strains and Stresses in the Model of the RC Shear Panel W2 at P ≈ 114 [KN]
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Crushing in Compression Crack in Tension 

(a) Experiment Results W2 (Cervenka [24]) (b) Analytical Model

Figure 6.7: Crack Patterns observed in the RC Shear Panel W2 at P ≈ 114 [KN]

two models will produce very similar results without significant variation. For concrete

the plane stress concrete model with Thorenfeldt’s curve and the plane stress concrete

model with Chang-Mander model proposed before were both used in order to compare

the results of the proposed quadrilateral membrane element.

In addition, the analytical model was analyzed without considering any biaxial strength

coefficients and again considering the biaxial strength coefficients (softening, and enhance-

ment) to investigate the influence of these factors, and these are compared against the

Load-Displacement response obtained from the experimental results, see Fig. 6.4. In the

figures, it is observed that the biaxial strength coefficients allow a closer representation of

the response of the analytical model when it is compared to the experimental results of the

deformation of the right bottom corner of the specimen. Also it is observed that the enve-

lope using the Thorenfeldt Curve better represents the results of the experimental results

than the model using the Simplified Chang-Mander Model. In Figure 6.5 is shown the

response of the analytical model with the use of quadrilateral membrane elements without
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drilling degrees of freedom and the same factors and parameters used in the model with

drilling degrees of freedom, if it is compared this figure with Fig. 6.4 is observed that the

element without drilling degrees of freedom underestimate the response of the panel when

the biaxial strength coefficients are used. The deformation obtained for the model using

the biaxial strength coefficients and the plane stress concrete model with Thorenfeldt’s

curve for a load value of P ≈ 114 [KN] with a scale factor of 10 are shown in Figure 6.3.

In addition, Figure 6.6 shows the stress and strain distribution for the same analytical

model for a load equal to P = 114 [KN], which is the model that better represents the

experiments results. Also, in Figure 6.7 the crack patterns obtained in the analytical

model and during the experiment are compared, which shows an excellent agreement.

6.1.2 Reinforced Concrete Walls - Lefas, Kotsovos and Ambraseys

Lefas et al. [80] in 1990 presented the results for a series of thirteen walls submitted to

constant vertical load and monotonic load applied horizontally at the top of the wall

specimen until failure of the wall was reached. The test program was done with the

purpose of studying the influence of the axial load, height-to-width ratio, concrete strength

and ratio of steel in the response of the walls with rectangular cross section [80]. The

wall speciments were divided in two types, Type-I Wall and Type-II Wall, depending of

their geometry (height-to-width ratio). The Type-I Walls correspond to specimens with

a height-to-width ratio of h/l = 1 ( 750 [mm] wide x 750 [mm] high) and a thickness of

70 [mm] for the rectangular cross section (Fig. 6.8). The Type-II Walls correspond to

specimens with a height-to-width ratio of h/l = 2 ( 650 [mm] wide x 1300 [mm] high) and

a thickness of 65 [mm] for the rectangular cross section (Fig. 6.8). In addition, all the
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Figure 6.8: Geometry and Reinforcement Details of Type-I and Type-II Walls tested by
Lefas et al. [80] in 1990

walls where built with a thicker beam at the top and bottom of the walls, to allow the

transfer of the loads and anchor the vertical bars at the top of the wall, to act as a rigid

foundation, and provide anchorage of the vertical bars at the bottom of the wall. These

beams were cast complete with the walls.

Almost all the specimens of the both type of walls were designed following the ACI318-

83 [2], with the exception of two specimens. Three different sizes of steel bar were used as

reinforcement in the walls, see Table 6.1 for values provided in the article by Lefas et al.

[80] in 1990. Two of these bars were high-tensile deformed steel bar with a diameter of 8

and 6 [mm]. The bar of 8 [mm] diameter was used for the vertical reinforcement, which

was spaced every 60 [mm] for the Type-I wall, and 62 [mm] for the Type-II wall. The bar
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Table 6.1: Properties of the Renforcement Steel Bars

Type
Yield Strength Ultimate Strength
(fy) [MPa] (fu) [MPa]

8 [mm] High-Tensile Bar 470 565

6 [mm] High-Tensile Bar 520 610

4 [mm] Mild Steel Bar 420 490

of 6 [mm] diameter was used for the horizontal reinforcement, which was spaced every 80

[mm] for the Type-I wall, and 115 [mm] for the Type-II wall. The third size of bar, a mild

steel bar with a diameter of 4 [mm], was used to build the stirrups, which provided the

necessary confinement to the boundary elements or ends of the walls.

The ratio of reinforcement steel for each orientation of the specimens used in this study

to compare the results are presented in Table 6.2, as it was reported by Lefas et al. [80].

In this study 3 specimens for the Type-I wall and 3 specimens for the Type-II wall

are used to compare the analytical results agains the experimental results, and only the

information with respect to these groups of specimens will be mentioned here. The con-

crete used in the different wall specimens were prepared to obtain two target levels of

concrete strength ,45 [MPa] (6.53[ksi]) and 30 [MPa] (4.35 [ksi]), however, different values

of concrete strength were obtained. In Table 6.2 the cube strength of the concrete and the

ratio of reinforcement steel at each orientation for the specimens used in this study and

provided by [80] in 1990 are presented. These values are used to generate the model, but

using a transformation of cube strength to cylinder strength, which typically is defined as

f ′c = αf ′c cube with α a factor determinate from experimental data. This value is between

0.77 for low strength concrete to 0.95 for high strength concrete [96]. Also, the tension

strength of the concrete (fcr) defined as 0.31
√

f ′c[MPa] (0.118
√

f ′c[Ksi]), and the tension
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Table 6.2: Properties of the Wall Specimens

Type Specimen
Steel Ratio Cube Axial Load

ρhor ρver ρflex ρs Strength Fv ν = Fv

blf ′

c[%] [%] [%] [%] f ′c cube [MPa] [KN]

I
SW11 1.10 2.40 3.10 1.20 52.3 0 0.0
SW12 1.10 2.40 3.10 1.20 53.6 230 0.1
SW16 1.10 2.40 3.10 1.20 51.7 460 0.2

II
SW22 0.80 2.50 3.30 0.90 50.6 182 0.1
SW23 0.80 2.50 3.30 0.90 47.8 343 0.2
SW24 01.80 2.50 3.30 0.90 48.3 0 0.0

strain εcr at the maximum tension strength equal to 0.00008 [mm/mm] were used in the

model. To match the results, it was necessary to use a value of strain for the peak resistant

strength of concrete between -0.003 to -0.0055 [mm/mm] for the different specimens. In

addition, for the Simplify Chang-Mander model, the initial young modulus for concrete

Ec equal to αc

√

f ′c[MPa] with αc equal to 3875, as is used by [56], for modeling unconfined

concrete and confined concrete was also used in this model. And for steel, a value of 1%

for the hardening ratio and a value of Es =200000 [MPa] for the young modulus of the

steel were used.

The test program follows the protocol described next. Each wall was first loaded

vertically until it reached the level of axial load assigned (ν = Fv

blf ′

c
= 0 or 0.1 or 0.2) to

the specimens tested. After that the value of the vertical load was held constant until the

end of the testing. The next step was the application of the horizontal load at the top

of the wall, and the load was applied incrementally and monotonically at a speed of 0.04

[KN/sec]. In Figure 6.9 is shown the testing setting used by Lefas et al. [80] in 1990.

The analytical model of the Type-I and Type-II walls were performed using a mesh

between 120 [mm] to 150 [mm] (Fig. 6.10), and a 3 by 3 gauss integration in each element
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Figure 6.9: Schematic of Testing Setting used by Lefas et al. [80] in 1990

for the analysis of the walls and a layered section was used, in order to model the concrete

and the steel over the thickness of the panel. For the modeling of steel the smeared steel

approach defined in the previous chapter was used with the use of the uniaxial mild steel

bar embedded in concrete model, and the uniaxial Menegotto-Pinto steel model. These two

models were used to demonstrate that both models produce very similar results without

significant variation. For concrete the plane stress concrete model with Thorenfeldt’s

curve and the plane stress concrete model with Chang-Mander model proposed before

were both used for the Type-I walls. However, due to some numerical instability produced

during the analysis of the Type-II walls using the plane stress concrete model with the

simplify uniaxial Chang and Mander concrete model, the plane stress concrete model with

Thorenfeldt’s curve was the only model used for the Type-II walls.

In addition, as for the previous analysis, the analytical model was analyzed without

considering any biaxial strength coefficients but using the enhanced coefficient due to
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Figure 6.10: Analytical Model for Type-I and Type-II Walls

confinement at the boundary elements of the wall. Another analysis was performed con-

sidering the biaxial strength coefficients (softening, and enhancement) and the enhanced

coefficient due to confinement at the boundary elements of the wall. This was done in

order to investigate the influence of these factors, and these are compared against the

Load-Displacement response of the top of the wall obtained from the experimental re-

sults, see Fig. 6.11, Fig. 6.12, Fig. 6.13, and Fig. 6.14. In these figures, it is observed

that the biaxial strength coefficients allow a better representation of the response of the

analytical model when it is compared to the experimental results of the Top deformation

of the wall, and the model without the biaxial strength overestimates the resistance of the

wall, which is expected due to the fact that softening of the concrete is not considered.
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Figure 6.11: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve and the smeared steel model using the uniaxial mild steel
bar embedded in concrete model versus Experiment Results for Type-I Walls
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Figure 6.12: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve and the smeared steel model using the uniaxial Menegotto-
Pinto steel model versus Experiment Results for Type-I Walls
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Figure 6.13: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Chang-Mander Model and the smeared steel model using the uniaxial mild
steel bar embedded in concrete model versus Experiment Results for Type-I Walls

Also, it is observed a closer representation of the experimental results with the model us-

ing the quadrilateral layered membrane element with drilling degrees of freedom then the

model with quadrilateral layered membrane elements without drilling degrees of freedom.

The models do not present significant difference for the two different types of steels for

monotonic loading, which was expected. Also, it is observed that the envelope using the

Thorenfeldt Curve represents the results of the experiments much better than the model

using the Simplified Chang-Mander Model for the Type-I wall.

159



0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

Displacement [mm]

 

 

 

0 [KN] (SW11)

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

Displacement [mm]

F
or

ce
 [
K

N
]

 

 

−230 [KN] (SW12) −460 [KN] (SW12)

F
or

ce
 [
K

N
]

Without Biaxial Strength Coef. With Biaxial Strength Coef.

Experiment [Lefas et al. 1990] Analytical Model

Figure 6.14: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve and the smeared steel model using the uniaxial mild
steel bar embedded in concrete modelversus Experiment Results for Type-I Walls and a
quadrilateral layered membrane element without drilling degrees of freedom
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Figure 6.15: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve and the smeared steel model using the uniaxial mild steel
bar embedded in concrete model versus Experiment Results for Type-II Walls
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Figure 6.16: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve and the smeared steel model using the uniaxial Menegotto-
Pinto steel model versus Experiment Results for Type-II Walls
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Figure 6.17: Deformation of the Analytical Model of the Type-I and Type-II Walls (Scale
Factor of 10)

Crushing in Compression Crack in Tension 

(a) Experiment Results SW12 (Mirror Image) [80] (b) Analytical Model

Figure 6.18: Crack Patterns observed in the Specimen SW12 of the Type-I wall at the
end of the analysis vs the observed at the end of the experimental testing
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(a) Strains

(b) Stresses

Figure 6.19: Strains and Stresses in the Model of the Specimen SW12 of the Type-I Wall
at the maximum displacement
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Crushing in Compression Crack in Tension 

(a) Experiment SW26 (ν = 0.0) (Mirror Image) [80] (b) Analytical Model SW24

Figure 6.20: Crack Patterns observed in the Specimen SW24 of the Type-I wall at the
end of the analysis vs the observed at the end of the experimental testing for the SW26
that represent the failure observed by Lefas et al. [80] in 1990 for the Type-II Walls
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(a) Strains

(b) Stresses

Figure 6.21: Strains and Stresses in the Model of the Specimen SW24 of the Type-II Wall
at the maximum displacement
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In Figure 6.17 the maximum deformation obtained for the analytical models, Type-I

wall Specimen SW12 and Type-II wall Specimen SW23, is shown using the biaxial strength

coefficients and the plane stress concrete model with Thorenfeldt’s curve with a scale factor

of 10. Also, in Figure 6.18 the crack patterns obtained in the analytical model and during

the experiment are compared for the specimen SW12 of the Type-I wall, which shows an

excellent agreement. Also, Figure 6.19 shows the strain and stress for the specimen SW12

of the Type-I wall at the point of maximum deformation. In addition, for completeness

the crack patterns for a specimen of the Type-II walls (SW24) is shown in Fig. 6.20, and

the strain and stress for the specimen SW24 is shown in Fig. 6.21

6.2 Reversal or Cyclic Loading

In this section the evaluation and verification of the proposed nonlinear layered quadri-

lateral membrane and shell elements with drilling degrees of freedom using experimental

results of tests under reversal loads is presented. The test selected corresponds to the

test program done by Thomsen and Wallace [132], and from this program two rectangular

wall specimen (RW1 and RW2) of 1219 [mm] (48 [in]) long and two other specimens with

T-shaped cross sections (TW1 and TW2) with a web of 1120 [mm] (44 [in]) and a flange

of 1219 [mm] (48 [in]) will be used. These specimens where designed to represent approx-

imately a one quarter-scale experimental model of a real wall designed by the Uniform

Building Code of 1994 (UBC) [63] with additional boundary detailing in the reinforcement

for the bottom part of the wall (the last 1220 mm or 48 [in] of the wall). The specimen

walls were 3658 [mm] (144 [in]) tall with a thickness of 102 [mm] (4 [in]) over the entire

cross section for the four specimens. In addition, T shaped walls had slabs at the level of
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Figure 6.22: Three-Dimensional View of the Rectangular and T-Shaped Wall Specimen
used by Thomsen and Wallace [132] in 1995

each floor ( 914.5 [mm] or 36 in). These specimens were built with a thicker and heav-

ily reinforced pedestal or bottom beam to provide anchorage to the vertical bars at the

bottom of the wall and act as a rigid foundation. The pedestal for the rectangular walls

were 690 [mm] (27 [in]) deep and 410 [mm] wide and 1930 [mm] (76 [in]) long and for the

T-Shaped wall the pedestal was also 690 [mm] (27 [in]) deep, but the web portion of the

wall was 610 [mm] wide and 1677 [mm] long and the flange portion of the pedestal was

410 [mm] (16 [in]) wide and 1524 [mm] long. The specimens where built in five steps, each

of the steps correspond to a level of the specimen (Pedesta or foundation, Level 1, 2, 3,

and 4 ) as was reported by Thomsen and Wallace [132].
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Table 6.3: Properties of the Renforcement Steel Bars

Type
Yield Strength Areab
(fy) [MPa] [mm2]

No 3 - 9.53 [mm] Bar 414 71

No 2 - 6.35 [mm] Bar 448 32

3/16 in - 4.75 [mm] smooth wire ∽448 17.72

The specimens used three sizes of steel reinforced. A deformed No. 3 bar (db = 9.53

[mm]) was used as longitudinal bars at the boundary elements in the walls. The other was

a deformed No. 2 bar (db = 6.35 [mm]) used for the two curtains of distributed horizontal

and vertical bars. The third bar used was a 3/16 in or 4.75 mm smooth wire, which was

annealed to reduce its yielding strength from its original level to the that required for the

specimens. This wire steel was used to build the transverse reinforcement or stirrups at

the boundary portions of the walls.

In Table 6.3 the properties for the steel bars provided in the report by Thomsen and

Wallace [132] are presented.

The concrete used in the different wall specimens and at different levels of the wall

were mixed to obtain a target value of concrete strength of 27.6 [MPa] (4 [ksi]). However,

a different values of concrete strength were obtained for the different cylindrical tests

performed to the concrete mixed at the day of the specimen was tested. The value range

between 28.7 to 58.4 [MPa] (4.16 to 8.46 [ksi]) with an average value for the concrete

resistant strength of 37.7 [Mpa] (5.47ksi]) for the concrete used in the first level of the

difference specimens, as it was reported by Thomsen and Wallace [132] or more detailed

value of an average of 32.8 [MPa] (4.76 [ksi]) for the specimen RW1 and TW1 and of 42.8

[MPa] (6.2 [ksi]) for the RW2 and TW2 [103].

169



69
0 

[m
m

]
36

58
 [
m

m
]

30
5
 [
m

m
]

Pedestal

Specimen

Hydraulic Actuator

Reaction Wall

Load Cell

Load Transfer Element
Hydraulic Jacks

Load Cells

Post-tensioning Cables

Tie-Downs

Clip Angles

Figure 6.23: Schematic of Testing Setting used by Thomsen and Wallace [132] in 1995
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The wall specimens were tested at the Structural Engineering Research Laboratory

(SERL) at Clarkson University (Fig. 6.23, each wall was mounted over the testing position

and held firmly in position using eight high-strength steel tie-down, which passed through

the entire height of the pedestal. For the transfer of the vertical load and the horizontal

load to the wall specimens, a steel element built with two back to back channel section

(C-12x68) was used. The load transfer element was connected to the wall using clip angles

and threaded rods of 25 [mm] (1 [in]) ( 6 for the rectangular walls, and 9 for the T-Walls),

these rods were cast directly into the wall at the building stage of the specimens. The

axial load was applied using hydraulic jacks mounted at the top of the steel element using

post-tensioning cables connected to the pedestal at the bottom of the walls. The post-

tensing cable were tensioned monotonically until the axial load over the wall was equal

to ∽ 0.10Agf
′
c, after which the value of axial load was maintained constant for the rest

of the test. The Horizontal cyclic loads were applied using hydraulic actuators of 556

KN (125 [Kips]) mounted against a reaction walls, and located at 4600 [mm] (180 [in])

from the strong floor. The actuator was connected to the steel load transfer using a ping

connection. In addition, the testing set up used an out of plane support to avoid twisting

of the wall and out-of-plane restraint, this support was a steel truss located at the top of

the wall as was reported by Thomsen and Wallace [132]. A diverse number of instruments

were used to measure loads, deformation and strain over the difference portions (Steel,

Concrete) of the specimens. For a complete description of this the reader is referred to

the report done by Thomsen and Wallace [132] in 1995.

After the axial load was applied monotonically over the specimen, a cycling procedure

was used. This cycling was done using displacement control, and two complete cycles of
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each level of drift were performed. The initial drift level was approximately 0.1%, and

after reaching 0.25%. In the next step the displacement was incremented progressively

until it reached 1.0% of deformation, using an increment of 0.25%. After reaching 1.0%

drift the level was incremented using steps of 0.5% until failure. However for the specimens

RW2 and TW2 after reachind 1.5% of drift, two additioned levels of 1.0% and 1.5% were

performed again, see Fig. 6.27 and Fig. 6.33, and afterwards was continued with increments

of 0.5% until it reached a 2.5% or 3% of lateral drift.

In this study the analysis to the two rectangular walls (RW1 and RW2) was performed,

as well as the two T-Shaped Walls (Tw1 and TW2) and the analytical results were com-

pared agains the experimental results. The values of peak strength of concrete provided

by Thomsen and Wallace [132] are used to generate the model. Also, the model uses

the tension strength of the concrete (fcr) defined as 0.31
√

f ′c[MPa] (0.118
√

f ′c[Ksi]), and

the tension strain εcr at the maximum tension strength equal to 0.00008 [mm/mm]. In

addition, in order to match the results it was necessary to use a value of strain for the

peak resistant strength at concrete between -0.0055 to -0.0065 [mm/mm] for the different

specimens. And for steel a value of 1% was used for the hardening ratio and a value of

Es =200000 [MPa] for the Young’s modulus of the steel.

The analytical model of the specimen walls were developed using a mesh of 170 [mm]

(Fig. 6.26), and a 3 by 3 gauss integration was used in each element for the analysis of

the walls and a layered section, in order to model the concrete and the steel over the

thickness of the panel. For the modeling of steel the smeared steel approach defined in

the previous chapter was used with the use of the uniaxial mild steel bar embedded in

concrete model, and the uniaxial Menegotto-Pinto steel model. These two models were
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used to compared the variation between the Menegotto-Pinto and the Ramberg-Osgood

equation models under reversal loads. For concrete the plane stress concrete model with

Thorenfeldt’s curve only was used, due to some numerical instability produced during the

analysis of the specimens walls using the plane stress concrete model with the simplified

uniaxial Chang and Mander concrete model. In addition, in the model is included the

bi-axial strength coefficient for damage due to cycling in the material,

The following are the analytical results for the rectangular wall and the walls with

T-Shaped cross section, under reversed loads.

6.2.1 Reinforced Concrete Rectangular Wall - Thomsen and Wallace

The RW1 and RW2 specimen walls are modeled using the proposed layered quadrilateral

membrane element with drilling degrees of freedom. The steel ratio used in each location in

the wall was calculated from the reinforcement details provided in the report by Thomsen

and Wallace [132] in 1995. In Figure 6.24 and Figure 6.25 are shown the reinforcement

details of the rectangular wall specimen.

The mesh used for the two models are the same as shown in Figure 6.26. The model

was analyzed using the displacement control solution algorithm, with pseudo constant in-

cremental step, which means, if the analysis has not reached convergence for an increment

of displacement, the increment is reduced until the initial increment has passed, and after

this the analysis continues with the increment displacement defined at the beginning, until

the solution does not converge for a certain number of iterations or reaches the end of the

testing procedure.
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Figure 6.24: Reinforcement Details for Specimen Wall RW1 used by Thomsen and Wallace
[132] in 1995
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Figure 6.25: Reinforcement Details for Specimen Wall RW2 used by Thomsen and Wallace
[132] in 1995
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Figure 6.27: Lateral Drift Procedure used by Thomsen and Wallace [132] in 1995 for Wall
Specimens: RW1 and RW2
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(b) Smeared Steel model using the uniaxial Menegotto-Pinto steel model

Figure 6.28: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve vs Experiment Results for RW1
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(a) Smeared Steel model using the uniaxial mild steel bar embedded in concrete model
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(b) Smeared Steel model using the uniaxial Menegotto-Pinto steel model

Figure 6.29: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve vs Experiment Results for RW2
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(a) ∆uTop
= 24.5 [mm]

(b) ∆uTop
= 84.5 [mm]

Figure 6.30: Deformation, Crack Pattern, Strain and Stress of the RW2 Analytical Model
with the plane stress concrete model with Thorenfeldt’s curve and the smeared steel model
using the uniaxial Menegotto-Pinto steel model
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In Figure 6.28 and Figure 6.29 are shown the comparison of the response for the

analytical model against the experimental results of the load applied to the wall versus

the deformation of the top of the wall for the two wall RW1 and RW2 using a damage

coefficient (α1) of 0.15 in Eq. 4.36. It is observed that for both models the use of the

Smeared Steel model using the uniaxial Menegotto-Pinto steel model returns the better

agreement with the experimental data. Also, it is shown in Fig. 6.28 that the analytical

model is able to capture the failure of the experimental model for the case RW1, at the

maximum displacement of approximately 80 [mm].

6.2.2 Reinforced Concrete Wall with T-Shaped Cross Section - Thomsen

and Wallace

TheTW1 and TW2 specimen walls are modeled using the proposed layered quadrilateral

shell element with drilling degrees of freedom. These two wall specimens are very good

benchmarks for the use of Reinforced Concrete Shell elements, because they combine inter-

action between walls in different directions and interaction with the slabs. The steel ratio

used in each location in the wall was calculated from the reinforcement details provided

in the report by Thomsen and Wallace [132] in 1995. In Figure 6.31 and Figure 6.32 are

shown the reinforcement details of the rectangular wall specimen. In addition, due to the

lack of information in the slabs reinforcement and dimension, the slabs in this analysis

where modeled using elastic material, but with a reduced section to account for cracking

in these elements.
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Figure 6.31: Reinforcement Details for Specimen Wall TW1 used by Thomsen and Wallace
[132] in 1995
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Figure 6.33: Lateral Drift Procedure used by Thomsen and Wallace [132] in 1995 for Wall
Specimens: TW1 and TW2

The mesh used for the two models are the same as shown in Figure 6.34. The model

was analyzed using the displacement control solution algorithm, with pseudo constant in-

crement step, which means that, if the analysis has not reach convergence for an increment

displacement, the increment is reduced until the initial increment is passed, and after this

the analysis continues with the increment displacement defined at the beginning, until the

solution does not converge for a certain number of iterations or reaches the end of the

testing procedure.
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(a) TW1 (b) TW2

Figure 6.34: Analytical Model for T-Shaped Walls Specimens (TW)
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(a) Smeared Steel model using the uniaxial mild steel bar embedded in concrete model
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(b) Smeared Steel model using the uniaxial Menegotto-Pinto steel model

Figure 6.35: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve vs Experiment Results for TW1
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(b) Smeared Steel model using the uniaxial Menegotto-Pinto steel model

Figure 6.36: Load-Displacement Curve of Analytical Model with the plane stress concrete
model with Thorenfeldt’s curve vs Experiment Results for TW2
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(a) ∆uTop
= -65 [mm]

(b) ∆uTop
= 85 [mm]

Figure 6.37: Deformation, Crack Pattern, Strain and Stress of the TW2 Analytical Model
with the plane stress concrete model with Thorenfeldt’s curve and the smeared steel model
using the uniaxial Menegotto-Pinto steel model
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In Figure 6.35 and Figure 6.36 are shown the comparison of the response for the

analytical model against the experimental results of load applied to the wall versus the

deformation of the top of the wall for the two walls TW1 and TW2 using a damage

coefficient (α1) of 0.12 in Eq. 4.36. It is observed that for both models the use of the

Smeared Steel model using the uniaxial Menegotto-Pinto steel model returns a better

agreement with the experimental data. For the TW2 which has a more ductile behavior

the model is able to capture the maximum capacity of the wall, however some difference is

observed in the portion of the curve, when the flange is in tension, see Figure 6.36. Also,

it is shown in Fig. 6.35 that the model is able to capture the failure of the model for the

case of TW1, but fails in the capture of the maximum displacement, this could be due

to the holding of the wall specimens in the testing setting. In addition, in Fig. 6.37 is is

shown the deformation observed in the model, the crack pattern, and strains in the model,

from this figure is observed the variation of strains through the flange of the model.

6.3 Summary

This chapter considers the evaluation of the accuracy, applicability, and usefulness of

the proposed nonlinear layered quadrilateral membrane and shell elements with drilling

degrees of freedom using the constitutive model defined in the previous chapters. For

the verification of the analytical model a set of experiment results for reinforced concrete

wall elements under monotonic and reversed load, that are available in the literature, are

compared against the analytical model using the proposed element. Some of the selected

test results have also been used as benchmarks by other authors.
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The experimental results can be divided into monotonic loading, and reversed loading.

For monotonic loading, two different experiments were used. The first set of experiments

used considered one of the experimental results from the shear wall tests conducted by

Cervenka and Gerstle and presented in Cervenka [24] in 1970. The second set of tests

considered the experimental results from tests of two types of walls done by Lefas et al.

[80] in 1990. For reversal or cyclic loading results of the tests of two rectangular single

walls and two T-shaped cross section walls with slabs at four different levels done by

Thomsen and Wallace [132] in 1995 are considered.

In the comparison, it is observed that the analytical model, using the nonlinear layered

quadrilateral membrane element with drilling degrees of freedom proposed, is able to

predict shear behavior in the wall elements, bending and axial coupling behavior for the

slender walls, and shear type behavior (Axial Shear coupling) for the squat walls. Also, the

model accurately represents the crack patterns observed in the experiments, and predicts

the failure modes of the walls. For reversed load in the rectangular walls, the analytical

model using the Menegotto-Pinto model, is the model that best predicts the results of the

experimental test. It is able to match the failure type observed for the RW1 wall, and the

ductile behavior for the better confined rectangular wall RW2.

The nonlinear layered thin flat quadrilateral shell element with drilling degrees of

freedom proposed in this study only used for the modeling of reversed load for two wall

specimens with T-Shaped cross sections, tested by Thomsen and Wallace [132]. It is

observed from the results that this model provides a close match to the behavior of the

T-Wall when the flange is in compression and the web is in tension. For the portion

when the flange is in tension and the web is in compression the model only gives a good
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representation of representing the behavior and capacity of the T-Shaped wall (TW1

and TW2). However, this model returns better agreement than the proposed analytical

models using the MVLM [102, 103], which is the standard model used today to analyze

wall elements. In addition, the analytical model for TW1 is able to represent the failure

type and capacity of the wall for a T-shaped wall with the same boundary element at the

end of the web and the flanges.
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Chapter 7

Summary and Conclusions

The main objective of this study was to develop and test a new nonlinear quadrilateral

layered membrane element with drilling degrees of freedom and a quadrilateral thin flat

layered shell element. These elements were selected because they incorporate the coupling

of in-plane flexural, axial and shear behavior for two dimensional wall systems, and the

flexural, axial and shear behavior of complex three dimensional reinforced concrete wall

systems. The drilling degrees of freedom refer to the incorporation of a degree of freedom

that represents the rotation in the plane of the element. In order to develop these elements,

this study was divided into five areas, a review of literature of wall element models,

a finite element formulation of the proposed elements, a review and definitions of the

constitutive material laws to be used in the analysis, the finite element implementation,

and the validation and verification of the new proposed elements, which were analysis in

each of the chapters of this dissertation. The following is a summary of each of these

areas.

In Chapter 2, the standard models used to study the nonlinear behavior of shear wall

structures are reviewed. For simplicity and computational cost the macro models stand
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out. These are based on predicting the overall behavior of a wall element with the use of

simplified assumptions and idealizations [144]. However, this tends to be limited to the

cases or problems from which the experimental data was used to create the model. The

other type of model, the microscopic model, presented a more theoretical background and

then was shown to be more flexible for modeling different structures. Considering this

microscopic model, the membrane element used with the smeared orthotopic constitutive

material laws is the most commonly used for the modeling of two dimensional structures.

However, these models only include the in-plane effects over the walls, and are typically

used with 2 degrees of freedom per node. Due to these limitations, they are difficult to

connect with other elements such as beams. In the case of three dimensional structures the

shell elements stand out over the rest, because, they permit the modeling of the complete

interrelation of simple and complex wall structures and buildings. It was also concluded

that layered shells should be the best option to model complex three dimensional walls,

and the quadrilateral membrane element with drilling degrees of freedom to model two

dimensional modes. The shell takes the advantage of incorporating the interrelation of all

the different elements in a building in a simple and robust manner, and also incorporates

all the coupling effect of the deformation inside of each wall. This allows the modeling of

complex behavior of the wall structures and buildings.

In Chapter 3, the finite element formulation for the proposed elements are presented.

First the finite element formulation for a nonlinear layered membrane element with drilling

degrees of freedom was studied, and for the field interpolation the extension proposed in

this dissertation of the 4-node membrane element with drilling degrees of freedom proposed

by Xia et al. [151] was used. The proposed field interpolation, to be used in a general
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finite element framework using natural coordinates, called blended interpolation, used a

cubic interpolation in y and a linear interpolation in x for the horizontal displacement,

and for the vertical displacement direction it used a cubic interpolation in x and a linear

interpolation in y. The DKQ formulated by Batoz and Tahar [11], to model plate bending

elements is also described. These two elements were combined to represent the theoretical

framework for developing the formulation of a quadrilateral thin flat layered shell element

with 24 DOF (6 DOF per node) which will be used to model the response of structure

walls using the finite element method. These selected models balance accuracy, simplicity

and computational cost.

In Chapter 4, the large amount of literature available for the material constitutive

laws to represent the behavior of concrete was reviewed. Of the models available, it was

determined that the smeared cracked concrete model, which is based in the assumption

that different cracks over an area can be modeled using the average stress-strain relation

of concrete in that zone, are the preferable concrete models to use. Between the smeared

cracked models, the othotropic models stand out for their accuracy and simplicity, and

which are robust enough to represent the material behavior of concrete. Also, it was

concluded that in order to work with a layered section approach, separate constitutive

models for smeared concrete layer and smeared steel layer are necessary. The constitutive

model used to represent the plane stress behavior of concrete is based on the smeared crack

approach using the orthotropic model with the equivalent uniaxial average stress-strain

relations in the axes of orthotropy. The axes of orthotropy are assumed to coincide with

the principal axes of total strain, and this model is developed in a tangent stiffness-based

approach for nonlinear finite elements. In addition, this concrete model incorporates
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biaxial strength coefficients to consider the influence of biaxial compression or tension-

compression (softening) in the axes of orthotropy, and also to account for damage in the

material during cyclic loading and enhancement due to confinement. The selection of the

different features for the model presented before were done to be able to use a layered

section approach developed in the last chapter, and also to obtain a numerically stable,

reliable and efficient constitutive material behavior.

The behavior of the concrete in the principal direction of stress, which coincides with

the principal direction of strain, is defined by average uniaxial stress-strain relations. Two

uniaxial concrete materials were selected to represent the average uniaxial stress-strain

relations over the principal direction of stress for this smeared rotating angle concrete

model. These two material models are: the one proposed by Massone [90] in 2006 for

static load and later expanded to include hysteretic rules, also developed by Massone

on OpenSees [82]. The second model is a simplified Chang-Mander model proposed by

Waugh [147] in 2009. However, the second uniaxial concrete model was only used to model

monotonic tests, because some numerical instability was reached during the analysis of

cyclic loads.

In addition, in Chapter 4 the smeared steel constitutive material used to represent the

horizontal and vertical reinforcement steel layer in the membrane and shell element was

presented. In this approach, it is assumed that the steel bars are considered as a layer of

homogenous material at certain positions inside of the reinforced concrete element and the

variation in stress due to the crack over an area can be modeled using the average stress-

strain of steel in that zone. In addition, it was considered that the smeared steel works

only in the direction of the bar, due to the fact that the bars are typically in a uniaxial
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state of stress, and this allows the use of a uniaxial constitutive model. Two uniaxial steel

material models were used in this study, the one proposed by Mansour et al. [88] in 2001,

the Mild Steel Bar Embedded in Concrete Model, and the well known Menegotto and

Pinto Steel models proposed by [94] in 1973.

In Chapter 5, a summary of the finite implementation used in this study is presented.

For this study, it was decided to develop an Object Oriented Finite Element Toolbox under

MATLAB using the object oriented programming language in MATLAB [62]. Because of

a need for a powerful toolbox or framework that will be easy to use, extend, maintain for

the Nonlinear Structural Analysis or Finite Element Analysis under MATLAB [62] was

required. The abstractions of the components for finite element and structural analysis

proposed by McKenna [93] in 1997 and extended in OpenSees [82] are used to develop the

proposed Object-Oriented Finite Element Toolbox for MATLAB [62], and some modifi-

cation and extension to the abstraction proposed by McKenna [93] in 1997 were done in

order to implement the toolbox.

In addition, in Chapter 5 the nonlinear analysis algorithms were reviewed and the

Full Newton-Raphson with an incremental iterative displacement-control was the selected

solution strategy to perform the analysis in this study.

In Chapter 6 an evaluation of the accuracy, applicability, and usefulness of the pro-

posed nonlinear quadrilateral layered membrane with drilling degrees of freedom and the

nonlinear quadrilateral thin flat layered shell element, and the constitutive model defined

in the previous chapters in this study was performed. For the verification of the analytical

model a set of experimental results for reinforced concrete wall elements under monotonic
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and reversed load that are available in the literature, and which have been used as bench-

marks for other models, were compared against the analytical model using the proposed

element. For monotonic loading, two different result of experiments were used. The first

comparison used the experimental results of one of the shear wall tests done by Cervenka

and Gerstle and presented in Cervenka [24] in 1970. The second set of comparison con-

sidered the experimental results of the test program of two types of walls done by Lefas

et al. [80] in 1990. For reversal or cyclic loading, results of the tests of two rectangular

single walls and two T-shaped cross section walls with slabs at four different levels done by

Thomsen and Wallace [132] in 1995 were used. Excellent agreement was obtained between

the analytical model and the experiment results.

It is important to mention again that the Object Oriente Finite Element Toolbox under

MATLAB was used integrally to analysis the models, and produce the different figures of

the results of the models presented in this dissertation. This toolbox, as was expected,

allows a fast programming and debugging of the new elements and material definitions

presented in the chapters before, and also present a extensibility to include difference

type of analysis, procedures and post processing views within the timing necessaries in

academic and research applications. All the analysis were running in a regular personal

computer, with a Intel Core i5 of 2.8 GHz and 12 Gb in RAM. For the monotonic loading

test cases, the model need only a few minutes to finish the analysis. However for the cyclic

loading test cases, the analysis took a day for the RW1 case and a day and a half for RW2

case. For the T-Shaped walls the model took around two days for the TW1 case and three

days for the TW2 case. A more detailed comparison between the running time of a model
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using this toolbox and a procedural approach or other compiled program need to be done

to evaluate the speed of the program.

The nonlinear quadrilateral layered membrane element with drilling degrees of free-

dom, presents a good agreement with the test results, allowing it to model the different

types of failure and behavior of the different type of walls (squat and slender), as shear

behavior, axial bending coupling, influence of the multi axial load conditions, and the cy-

cling behavior of rectangular walls with different ratios of steel. For monotonic load and

reversed load the smeared plane stress concrete model with the Thorenfeldt’s curve returns

the better and more stable results for the analytical model. However a value of average

strain (εco) for the peak strength of concrete (f ′c) of around 0.035 to 0.055 [mm/mm] was

needed to use with this model to match the experimental results. This value could be

attributed to the use of an average stress-strain relations instead of the uniaxial relation-

ship. In addition, the other model using the simplified Chang Mander Model produces

some instability for reversed loads, a possible reason of the instability could be due to the

complex rules used to define the unloading and reloading paths in the material model,

which were defined to model the behavior of uniaxial concrete and no biaxial behavior of

concrete.

For the monotonic load tests, both smeared steel material with different uniaxial steel

model return very similar results without any significant difference. This was expected,

because the two models were calibrated to have the same envelope at tension, which ac-

counts for the behavior of steel bars embedded in concrete. Also, the model using the

biaxial strength return a better correlation with the experimental data. An overestima-

tion of the response of the walls is obtained if the softening due to tension-compression is
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not considerer. This is the case for the model without biaxial strength coefficients. The

difference is more apparent between the model with and without biaxial strength coeffi-

cients for models that undergo larger values of biaxial tension and compression, like for

squat walls.

In the model RW1 and RW2, it was observed that the model using the smeared plane

stress concrete model with Thorenfeldt’s curve including a damage factor for cycling and

the use of the Menegotto and Pinto model are in excellent agreement with the experimental

results. And for the model RW1, the analytical analysis determine the exact failure load

and displacement as the experiment. For the analytical model using the other type of steel,

the mild steel bar embedded in concrete model, it was only obtained good and adequate

agreement with the experimental results. This could be attributed to how the steel pass

from the unloading and reloading zone to the bilinear envelops of the material.

The nonlinear quadrilateral layered thin flat shell element with drilling degrees of

freedom proposed in this study, was only used for the modeling of reversed load, for two

walls specimens with T-Shaped cross sections, tested by Thomsen and Wallace [132]. It

is observed from the results that the model perfectly predicts the behavior of the T-Wall

when the flange is in compression and the web is in tension. Instead, for the portion when

the flange is in tension and the web is in compression the model is able to adequately

represent the behavior and capacity of the T-Shaped wall. However this model return

better agreement than the proposed analytical models used and calibrated with this test

by Orakcal et al. [103] and Orakcal and Wallace [102] in 2006, which use the standard type

of element (MVLM ) used today for the modeling of walls. Even so, the model did not

capture perfectly the behavior of the T-Shaped wall when the flange is in compression,
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the model is able to determine for test TW1 the failure type, capacity and the cycling

level where failure happens. As mentioned this new model allows the modeling of the

distribution and variation of strain over the length of the web and the flange, and it

could allow to study the movement of the neutral axis and the real stress distribution

over the elements. This is because there is no restriction of plane sections remaining

plane for models like beams or MVLM or fiber elements. In addition, the model takes

into consideration the interrelation of the different components in the wall without the

necessity of coming up with fictitious springs or effective areas in the flange.

7.1 Future work and Recommendations

The quadrilateral membrane element with drilling degrees of freedom to large deformation

will be extended. This is already undergoing. For this purpose the use of the Total

Lagrangian approach was selected.

A more detailed hysteric rule for the average stress-strain concrete will be proposed,

but retaining the envelope defined by the Thorenfeldt’s curve.

Walls under earthquake load to study the behavior of the proposed element and con-

crete and steel materials will be analyzed.

The analysis of more complex structures or small buildings under monotonic, cycling

and earthquake load using the nonlinear quadrilateral thin flat shell element with drilling

degrees of freedom need to be performed to study its applicability to complete real build-

ings.

The strain (εco) for the peak resistant stress of concrete under compression necessary

to use in plane stress concrete materials need to be studied in more detailed.
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Curve of fragilities using this model to compare the result to real walls and extend the

fragilities curves available today to different type or dimension of walls will be developed.

The damage coefficients in the concrete to include cyclic fatigue will be studied better.

The inclusion of more complex constitutive laws for the steel that account for cycling

fatigue and buckling of the bars need to be studied.
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Appendix A

Tensor Transformation

A continuation is reviewed the transformation for strain and stress components from one

coordinate system to another.

A.1 Strain Transformation

The strain components ({ε1−2} =

{

ε11 ε22
1
2γ12

}T

) under plane stress state are a

second order tensor, due to this the transformation from the global coordinate system

(x − y) to a local coordinate system (1 − 2) rotated by an angle θ can be defined by the

transformation

[ε1−2] = [R(θ)] [εx−y] [R(θ)]
T (A.1)

where

[R(θ)] =







cos(θ) sin(θ)

− sin(θ) cos(θ)







(A.2)
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and

[ε1−2] =







ε11
1
2γ12

1
2γ21 ε22







and [εx−y] =







εxx
1
2γxy

1
2γyx εyy







(A.3)

but, ε12 = ε21 and γxy = εyx, which allows the transformation to be written as







ε11

ε22

1
2γ12







=











cos2(θ) sin2(θ) 2 sin(θ) cos(θ)

sin2(θ) cos2(θ) −2 sin(θ) cos(θ)

− sin(θ) cos(θ) sin(θ) cos(θ) cos2(θ)− sin2(θ)

















εxx

εyy

1
2γxy







(A.4)

However, to use this transformation inside of a finite element approach, it is convenient

to rewrite the relation as







ε11

ε22

γ12







=











1 0 0

0 1 0

0 0 2





















cos2(θ) sin2(θ) 2 sin(θ) cos(θ)

sin2(θ) cos2(θ) −2 sin(θ) cos(θ)

− sin(θ) cos(θ) sin(θ) cos(θ) cos2(θ)− sin2(θ)





















1 0 0

0 1 0

0 0 1
2

















εxx

εyy

γxy







=











cos2(θ) sin2(θ) sin(θ) cos(θ)

sin2(θ) cos2(θ) − sin(θ) cos(θ)

−2 sin(θ) cos(θ) 2 sin(θ) cos(θ) cos2(θ)− sin2(θ)











︸ ︷︷ ︸

[Tstrain(θ)]







εxx

εyy

γxy







(A.5)

= [Tstrain(θ)]







εxx

εyy

γxy
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This result in the strain transformation matrix

[Tstrain(θ)] =











cos2(θ) sin2(θ) sin(θ) cos(θ)

sin2(θ) cos2(θ) − sin(θ) cos(θ)

−2 sin(θ) cos(θ) 2 sin(θ) cos(θ) cos2(θ)− sin2(θ)











(A.6)

and it can be prove directly that [Tstrain (θ)]
−1 = [Tstrain (−θ)]. Using this relation, the

transformation from the principal direction of strain, defined by the angle θpd, to the

system of coordinate x− y can be defined as:







εxx

εyy

γxy







=











cos2(θpd) sin2(θpd)

sin2(θpd) cos2(θpd)

2 sin(θpd) cos(θpd) −2 sin(θpd) cos(θpd)

















ε11

ε22







(A.7)

A.1.1 Principal Direction of Strains

Using the Eq. A.5 , and knowing that principal direction of strain happens when ε12 = 0,

we can obtain the transformation from the system of coordinates x − y to the principal

direction system defined by the angle θpd:







ε11

ε22

0







= [Tstrain(θpd)]







εxx

εyy

γxy







(A.8)
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and using the trigonometric relations:

cos2(θ) =
1

2
(1 + cos(2θ)) (A.9a)

sin2(θ) =
1

2
(1− cos(2θ)) (A.9b)

sin(θ) cos(θ) =
1

2
sin(2θ) (A.9c)

the last equation of the system of equation in Eq. A.8 can be rewrite as

0 = (εxx − εyy) sin(2θ) + γxy cos(2θ) (A.10)

that result in:

tan(2θpd) =
sin(2θ)

cos(2θ)
=

γxy
(εxx − εyy)

(A.11)

Eq. A.11 is used to calculate θpd = 1
2arctan

(
γxy

(εxx − εyy)

)

, which is the angle that

define the direction of the principal directions of strain. Now, defining the relations:

cos(2θ) =
(εxx − εyy)

√

(εxx − εyy)
2 + (γxy)

2
(A.12a)

sin(2θ) =
γxy

√

(εxx − εyy)
2 + (γxy)

2
(A.12b)

The two Equation that define ε11 and ε22 from Eq. A.8 can be reduced to:

ε11 =
1

2
(εxx + εyy) +

1

2

√

(εxx − εyy)
2 + (γxy)

2 (A.13a)

ε22 =
1

2
(εxx + εyy)−

1

2

√

(εxx − εyy)
2 + (γxy)

2 (A.13b)

216



A.2 Stress Transformation

The stress components ({σ1−2} =

{

σ11 σ22 τ12

}T

) under a plane stress state are a

second order tensor, due to this the transformation from the global coordinate system

(x − y) to a local coordinate system (1 − 2) rotated by an angle θ can be defined by the

transformation

[σ1−2] = [R(θ)] [σx−y] [R(θ)]
T (A.14)

where

[R(θ)] =







cos(θ) sin(θ)

− sin(θ) cos(θ)







(A.15)

and

[σ1−2] =







σ11 τ12

τ21 σ22







and [σx−y] =







σxx τxy

τyx σyy







(A.16)

but, τ12 = τ21 and τxy = τyx, which allows the transformation to be written as







σ11

σ22

τ12







=











cos2(θ) sin2(θ) 2 sin(θ) cos(θ)

sin2(θ) cos2(θ) −2 sin(θ) cos(θ)

− sin(θ) cos(θ) sin(θ) cos(θ) cos2(θ)− sin2(θ)











︸ ︷︷ ︸

[Tstress(θ)]







σxx

σyy

τxy







(A.17)
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This result in the stress transformation matrix

[Tstress(θ)] =











cos2(θ) sin2(θ) 2 sin(θ) cos(θ)

sin2(θ) cos2(θ) −2 sin(θ) cos(θ)

− sin(θ) cos(θ) sin(θ) cos(θ) cos2(θ)− sin2(θ)











(A.18)

and it can be prove directly that [Tstress(θ)]
−1 = [Tstress(−θ)] = [Tstrain(θ)]

T . Using these

relation, the transformation from the principal direction of stress, defined by the angle

θpd, to the system of coordinate x− y can be defined as:







σxx

σyy

τxy







=











cos2(θpd) sin2(θpd)

sin2(θpd) cos2(θpd)

sin(θpd) cos(θpd) − sin(θpd) cos(θpd)

















σ11

σ22







(A.19)
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