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ABSTRACT   
  

The study presented in this dissertation aims at the ground motion assessment of 

various two-dimensional hill models subjected to incident plane SH waves in an 

elastic half-space. The exact, analytic solutions to the boundary-valued problem, 

based on method of wave function expansion in elliptical coordinate are 

presented. These require the technique of angular half-range expansion in 

elliptical coordinate to deal with mixed-boundary condition arisen during 

mathematical implementation of all hill models; the traction-free boundary 

condition at the surface of the elliptical hill and the continuity of displacement and 

stress at the semi-elliptical interface.  

 

In the study we found out that the existence of a hill results in complex pattern of 

surface displacement. Generally for nearly grazing angle, a hill shields the 

propagating waves, resulting in a standing wave pattern in the coming direction 

and the focusing of the amplitude at the far edge of the hill. In addition the 

presence of full-elliptical tunnels resulted in more prominent standing waves, and 

amplitudes of ground motion in the neighborhood of unity or less on the far end 

may be monitored without the abrupt jump at that edge of the. We discovered 

that the presence of a full-elliptical tunnel amplifies maximum displacement by 

30%-70% from corresponding value of reference (inexistence of a tunnel) for the 

horizontal incidence and de-amplifies maximum displacement in the range of 1%-
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15% for the vertical incidence; note that these amplifying and de-amplifying 

effects are dependent on the size of tunnels. The bigger the tunnel is, the 

stronger the effects are. 

 

We also found out that the effect of the semi-elliptical tunnels on ground surface 

motion is dissimilar to the effect of the full-elliptical ones. Since horizontal 

incidences are able to slip underneath semi-tunnels, the weaker standing waves 

on the left side and weaker shadow zones associated with high jumps of the 

displacement amplitude at the far edge of the hill are observed. However, when 

the incident waves are nearly vertical, the stronger shielding effect due to semi-

elliptical tunnels than to full-elliptical ones are detected. It could be said that the 

hinder efficiency of an elliptical tunnel depends on the direction of wave passage; 

the tunnel becomes better obstruction when the incidence is propagating normal 

to its major axis. 
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CHAPTER 1: INTRODUCTION 

1.1 General Introduction 

In boundless media, a wave maintains its path of travel with constant velocity if 

there is no disturbance. However, when a wave encounters an obstacle, its 

propagating path is altered due to the interference between the incident waves 

and those which are emitted by the obstacle acting as a secondary source. The 

emission of these secondary waves from an obstacle is called “scattering”. (Mow 

and Pao, 1971) 

 

In the seventeenth century, the study of scattering effects of obstacles upon the 

wave passage started first in the field of optics and later in fields of 

electromagnetic, seismology and earthquake engineering, respectively. During 

this period, computational methods have been developed and implemented in 

order to deal with mathematical difficulty and physical complication of the 

problems. Researchers have developed two major schemes to examine this 

phenomenon: numerical methods, and analytical methods. 

  

Normally when dealing with sophisticated problems such as arbitrary shape of 

obstacles, geometric irregularities and material nonlinearities, numerical 

schemes such as finite difference, boundary element, or finite element methods 

seem to be a better choice. However, numerically there is a major drawback for 



2 
 

resolving wave scattering problem. A full-scale analysis is a tedious process and 

requires hardware with huge storage even though nowadays computer 

technology is continuously upgrading and becomes more advanced. In addition, 

numerical schemes are restrictive in only a finite domain. Hence, numerous 

procedures such as absorbing boundary (Clayton and Engquist, 1977; Fuyuki 

and Matsumoto, 1980; Emerman and Stephen, 1983), silent boundary (Cohen 

and Jennings, 1983), nesting grids (Wolf and Song, 1996), and infinite element 

using mapping functions (Zienkiewicz and Taylor, 2000) have been implemented 

to account for the reduction of the problem’s scale. Yet, these procedures always 

produce some errors in the solutions (Kawase, 1988; Fu and Bouchon, 2004).  

 

In contrast to numerical schemes, analytical schemes such as the method of 

integral equation, the integral transform, and the method of wave function 

expansion provide more accurate results and offer relatively simple 

implementation. However, the major limitation of the analytical schemes is that 

only linearly-elastic or visco-elastic media with a simple geometric obstacle such 

as circles or ellipses can be solved analytically. In spite of what has just been 

mentioned, analytical solutions provide more physical insight into the problems 

than the numerical schemes by investigating the significance of various physical 

parameters in an economical way and a short time manner. Furthermore, 

analytical solutions offer the best benchmarks to test and verify other 

approximate solutions obtained by numerical schemes. It is noteworthy that both 
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numerical and analytical schemes can generate ‘numerical results’, and need 

numerical processes. 

 

The objective of this study is to investigate the scattering effect of a semi-elliptical 

hill with/without a full-elliptical tunnel or a semi-elliptical tunnel in a two-

dimensional elastic half-space subjected to anti-plane (SH) waves. The exact 

infinite series solutions by the method of wave function expansion are presented 

in this study. The results obtained in the analysis are compared with available 

existing results. Complicated analytical infinite series solutions via the method of 

wave function expansion must be determined and solved numerically on a digital 

computer.  

 

1.2 Literature Reviews  

 

Earthquakes have been severe and terrifying disasters since the early history of 

mankind and the development of civilization. Usual locations of civilization, which 

have been normally located along shores of bodies of water or in alluvial valleys, 

are now known as risk regions susceptible to earthquakes (Milne, 1880). Various 

field measurements have shown that intensity of ground motions are influenced 

by variation of topography and subsurface configuration (Kanai and Suzuki, 

1953; Kanai et al, 1955; Gutenberg, 1957; Kanai et al, 1958; Alcock, 1969; 

Borcherdt, 1970; Hudson, 1972).  
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To be aware of the behavior of ground shaking under the influence of geologic 

and topographic variation, numerous mathematical models and assumptions 

were developed and implemented. The first model was horizontally stratified 

surface layers overlying an elastic half-space which was the prime model for 

various seismologists to study the pattern of wave propagation in the outer 

regions of the Earth; a suitable earth-flattening transformation can provide a 

useful quantitative result even though there is some distortion introduced by 

flattening (Ewing et al, 1957; Biswas and Knopoff, 1970; Hill, 1972). By 

considering the wave equation of shear wave analytically, Kanai (1950) and 

Kanai et al (1953) discovered that soft subsoil was most likely to produce large 

amplitude which was in agreement with the conclusion made by Tsai later in 

1969.  

 

Even though the amplification of ground motion may be explained by the model 

of stratified surface layers of alluvium, other behaviors caused by the variation of 

topography and geology such as focusing of seismic waves and standing waves 

could be better recognized by two-dimensional models. Considering scattering 

wave of SH waves around a semi-cylindrical alluvial valley, Trifunac (1971) was 

able to explain these behaviors analytically; he successfully used the method of 

wave function expansion by the utilization of Bessel functions in polar coordinate 

and obtained a close-form solution. In 1973 Trifunac provided another exact 

solution of scattering of SH waves by a semi-cylindrical canyon, and applied this 
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solution to the realistic case of Pacoima ground motion data in which he 

suggested that the record was not affected by variation topography.  

 

Later in 1974 Wong and Trifunac extended the valley and canyon models to the 

elliptical coordinate. The influence of geometric aspect ratio of canyons and 

valleys on the ground motion could be examined. Moeen-Vaziri and Trifunac 

(1981) studied the vibration of a semi-circular canal with lining and found out that 

a rigid liner is more efficient in transmitting the energy of incident wave to 

medium behind the canal, and subjected to higher stress than a flexible liner. In 

their following paper published in 1985, Moeen-Vaziri and Trifunac extended their 

canal model to arbitrary shape by the utilization of mean square error; they 

started by the utilization of wave expansion in the series of Bessel functions for 

incident wave and assumed sets of linearly independent scattering waves. Later 

in 1988 Moeen-Vaziri and Trifunac applied again the concept of mean square 

error to obtain results for scattering and diffraction of plane P and SV waves by 

two dimensional inhomogeneities.  

 

Lee and Cao (1989) studied the scattering effect of plane SH waves by shallow 

circular canyons. They replaced the horizontal ground surface of the half-space 

by a circular-arc with very large radius and successfully obtained an approximate 

analytical solution by the employment of Graf’s addition formula. Later on, Lee 

and many other researchers employed this approximation method to obtain a set 
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of analytic solutions for P, SV and Rayleigh incident waves to canyon and valley 

models (Cao and Lee, 1989; Cao and Lee, 1990; Todorovska and Lee, 1990; 

Todorovska and Lee, 1991a; Todorovska and Lee, 1991b; Jian-wen et al, 2001). 

In 1994, Yuan and Liao presented an improved analytical solution to a shallow 

circular-arc canyon problem without large arc approximation and later in 1995 to 

a valley problem for incident plane SH waves.  

 

The investigation of scattering effect due to topographic variations before 1990s 

mostly focused on subsurface inhomogeneities even though it has been 

mentioned that structures built on mountains or hills were rocked by the stronger 

ground motions than structures situated on a plain (Milne, 1880; Griffiths and 

Bollinger, 1979). Sánchez-Sesma et al (1982) and Sánchez-Sesma (1985) 

applied Boundary method and Green’s functions respectively to wedge-like hill 

model subjected to SH incident waves. Mostaghel and Nowroozi (1985) treated a 

hill as a linearly elastic shear cantilever beam subjected to ground motion at its 

fixed-support; they found very reasonable approximation for horizontal motion 

having wavelengths somewhat greater than the width of the hill. Later Gilbert and 

Knopoff (1960) successfully utilized perturbation scheme and treated the 

scattered phenomenon as secondary waves generated by localized source or 

body force which is now classified as Bulk (body) scattering (Mow and Pao, 

1971) to get scattering motion from mountain. 
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In 1992 Yuan and Men purposed a closed-form solution to a semi-circular hill 

sitting on a half-space by applying the Fourier expansion to stress/displacement 

auxiliary functions. Later this solution was extended to arbitrary shallow hill case 

in 1996 again by Yuan and Liao. Hayir et al (2001) and Todorovska et al (2001) 

studied the anti plane response of a dike subjected to incident SH waves and 

found that at the vertex of dike the surface amplitude was larger than at the top of 

circular hill; however their analytical result does not agree with work done 

numerically by Sánchez-Sesma et al (1982). Quiu and Liu (2005) revisited the 

same problem as that of Hayir et al (2001), yet utilized conjunction technique to 

obtain the standing wave equation in the hill region which satisfied both wave 

equation and zero-stress condition on the wedges; they also mentioned that 

equation of the standing wave purposed by Hayir et al (2001) can not satisfy 

zero-stress condition on the wedges. Jian-wen et al (2004) extended the auxiliary 

functions technique by Yuan and Men (1996) to get an analytical solution for a 

circular arc hill with circular tunnel subjected to incident SH waves. However as 

mentioned by Yuan and Men (1996) about the accuracies of solution near rims of 

the circular hill, Lee et al (2006) revisited this model and adopted a cosine half-

range expansion to obtain a more accurate analytical solution without any 

overshoot of amplitudes at the rims.  
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1.3 Organization 

The semi-elliptical hill with/without a tunnel models studies in this work are within 

the framework of linear elastodynamic theory in two-dimensional elastic half-

space. The presentation is organized into the following parts: 

(1) In the first part (Chapter II), the wave equation in elliptical coordinate 

and its solution are presented. In addition the derivation of anti-plane 

(SH) waves in elliptical coordinate is demonstrated. Next the series 

expansions of Mathieu functions in an angular half-range domain are 

elaborated herein. 

(2) The second part (Chapter III) deals with the exact solution to 

scattering of plane SH waves by a shallow semi-elliptical hill. The 

interference due to the presence of the hill is investigated. To test 

accuracy of solutions, some numerical results when semi-elliptical 

tends to semi-circular were compared with the existing results 

presented by Lee et al (2006). 

(3) In the third part (Chapter IV), the exact solution to scattering of plane 

SH waves by a deep semi-elliptical hill is presented. Again numerical 

results when semi-elliptical tends to semi-circular were compared with 

the existing results presented by Lee et al (2006) and results 

presented in Chapter III. The effects of frequency of the incident 

waves, incident angle, and the aspect ratio of elliptical hills on ground 

motion are demonstrated and discussed. 
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(4) The fourth part (Chapter V) deals with the exact solution to scattering 

of plane SH waves by a shallow semi-elliptical hill with an elliptical 

concentric tunnel. The interference due to the presence of the elliptical  

concentric tunnel is investigated and compared to the results from 

Chapter IV.   

(5) In the fifth part (Chapter VI), the exact solution to scattering of plane 

SH waves by a deep semi-elliptical hill with an elliptical concentric 

tunnel is presented.  The effects of frequency  of  the  incident  waves,  

incident angle, and the aspect ratios of both elliptical hill and tunnel on 

ground motion are investigated. 

(6) The sixth part (Chapter VII) deals with the exact solution to scattering 

of plane SH waves by a shallow semi-elliptical hill with a semi-elliptical 

tunnel. The scattering due to the presence of the semi-elliptical tunnel 

is studied and compared to the results from Chapter IV and V.   

(7) In the seventh part (Chapter VIII), the exact solution to scattering of 

plane SH waves by a deep semi-elliptical hill with a semi-elliptical 

tunnel is presented. The effect of frequency of the incident waves, 

incident angle, and the presence of the semi-elliptical tunnel on 

ground motion are illustrated and discussed. 

(8) The last part (Chapter IX) gives a summary of the above studies of the 

scattering of anti-plane (SH) waves. Some comparisons among above 

models are discussed and summarized. 
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CHAPTER 2: WAVE EQUATION  
 

2.1 The Wave Equation in Elliptical Coordinate 

To facilitate the geometries presented in this study, it is more convenient to 

describe quantities of interest in the elliptical coordinate (ߩ, ,ߴ  system, which is (ݖ

shown in Figure 2.1; a is a focal length, and x, y axes in the corresponding 

Cartesian coordinate system are along ߴ ൌ 0 and ߨ 2⁄  respectively. Furthermore 

z-axe in both coordinate systems is normal to the paper face. Normally we call ߩ 

the radial coordinate, and ߴ the angular coordinate. The relationship between 

ሺݔ, ,ߩሻ in Cartesian and ሺݕ ݔ ሻ in elliptical coordinate systems areߴ ൌ a cosh ߩ cos  ߴ

and ݕ ൌ a sinh ߩ sin   .ߴ

 

Given a displacement function ݑሺ̃ݎ,  ,ሻ of space and time and ܿ is a wave velocityݐ

the wave equation can be expressed in elliptical coordinate as  

ܿଶଶݑ െ ߲ଶݑ ⁄ଶݐ߲ ൌ 0 (2.1) 

In addition the gradient  and Jacobian J are defined by  

ሺ ሻ ൌ ଵ


ቀడሺ ሻ
డఘ

݁̃ఘ  డሺ ሻ
డణ

݁̃ణቁ  డሺ ሻ
డ௭

݁̃ఘ (2.2) 

ଶܬ ൌ ଵ
ଶ

ሺ݄ܿݏଶߩ െ ሻߴଶݏܿ ൌ ଵ
ଶ

ሺܿߩ2݄ݏ െ  ሻ (2.3)ߴ2ݏܿ

where ݁̃ఘ, ݁̃ణ, ݁̃ఘ are unit vectors in elliptical coordinate. Since a vector may be 

represented by a summation of an irrotational vector field “߶” and rotational 
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vector field “ ෨߰ ൌ ൫߰ఘ, ߰ణ, ߰௭൯T”, then we set the displacement vector 

ݑ ൌ ߶   · ෨߰ (2.4) 

 

Since the problem of interest is two-dimensional anti-plane, any derivatives 

respect to the z-axis or out-of-plane direction become zero. Hence the 

displacement vector becomes 

ݑ ൌ ሺݑ, ,ݒ ሻTݓ ൌ ଵ


ቀడథ
డఘ

 డట
డణ

, డథ
డణ

െ డట
డఘ

, ଵ


ቂ డ
డఘ

ሺܽ߰ܬణሻ  డ
డణ

൫ܽ߰ܬఘ൯ቃቁ
T
 (2.5) 

 

Figure 2.1: Family of Con-focal Ellipses and Hyperbolas 
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The displacement components in radial and angular coordinates of Equation 

(2.5) are coupling since they are function of ߰௭, whereas the anti-plane 

displacements “ݓ”  are  independent  to  previous  two  components,  and  of 

function of ߩ and ߴ.  

 

Hence all models in this study subjected to incident plane SH waves are 

governed by the scalar wave equation 

ܿଶଶݓ െ ߲ଶݓ ⁄ଶݐ߲ ൌ 0 (2.6) 

Since an arbitrary time variation can be represented by Fourier analysis in terms 

of harmonic components, it is possible to consider only the harmonic equation of 

the form 

,ߩሺݓ ,ߴ ሻݐ ൌ ,ߩሺݓ  ሻ݁ఠ௧ (2.7)ߴ

where ݅ ൌ √െ1, ߱ is the harmonic frequency.  

In addition ݓሺߩ,   ሻ satisfies the following Helmholtz equationߴ

ݓଶ  ݇ଶݓ ൌ 0 (2.8) 

where ݇ ൌ ߱ ܿ⁄  is a wave number.  

The solution to Equation (2.8) can be solved by the method of separation of 

variables. So the displacement  ݓሺߩ,   ሻ may be expressed in the formߴ

,ߩሺݓ ሻߴ ൌ ∑ ሻߩሺܪ · ܼሺߴሻ
ୀ  (2.9) 

Later the partial differential equations, Equation (2.8) can be separated into two 

ordinary differential equations as shown in the following page 
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ௗమு
ௗఘమ െ ሺܾ െ ܪሻߩ2ݏܿݍ2 ൌ 0

ௗమு
ௗఘమ െ ሺܾ െ ܪሻߩଶݏܿݍ ൌ 0  

 (2.10) 

ௗమ
ௗణమ  ሺܾ െ ሻܼߴ2݄ݏܿݍ2 ൌ 0 

ௗమ
ௗణమ  ሺܾ െ ሻܼߴଶ݄ݏܿݍ ൌ 0    

 (2.11) 

where 

ݍ  ൌ మమ

ସ
ൌ మఠమ

ସమ   (2.12) 

and b is separation constant or characteristic number. The solutions to Equation 

(2.11) is called the Mathieu functions while the solution to Equation (2.10) is 

called Modified Mathieu functions; Equation (2.10) can be transformed to the 

latter by writing ݅ߴ for ߩ. 

 

Generally for the study of wave scattering, the solutions to angular differential 

equation, Equation (2.11), must be periodic with period either ߨ or  2ߨ. Later ܼ 

could be written as  

ܼ ൌ

ە
ۖ
۔

ۖ
,ߴଶሺ݁ܿۓ ሻݍ ൌ ∑ ଶ௦ܣ

ሺଶሻሺݍሻ ܿߴݏ2ݏ∞
௦ୀ , ܾ ൌ ܾ݁ଶ                        

ܿ݁ଶାଵሺߴ, ሻݍ ൌ ∑ ଶ௦ାଵܣ
ሺଶାଵሻሺݍሻ ܿݏሺ2ݏ  1ሻߴ∞

௦ୀ , ܾ ൌ ܾ݁ଶାଵ

,ߴଶାଵሺ݁ݏ ሻݍ ൌ ∑ ଶ௦ାଵܤ
ሺଶାଵሻሺݍሻ ݊݅ݏሺ2ݏ  1ሻߴ∞

௦ୀ , ܾ ൌ ଶାଵܾ

,ߴଶାଶሺ݁ݏ ሻݍ ൌ ∑ ଶ௦ାଶܤ
ሺଶାଶሻሺݍሻ ݊݅ݏሺ2ݏ  2ሻߴ∞

௦ୀ , ܾ ൌ ଶାଶܾ

 (2.13) 

The first two are known as even Mathieu functions (even angular Mathieu 

functions or elliptical cosine functions) with period ߨ correspondent to the 

characteristic number ܾ݁ଶ and ܾ݁ଶାଵ respectively, whereas the latter are odd 

Mathieu functions (odd angular Mathieu functions or elliptical sine functions) with 
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period 2ߨ correspondent to the characteristic number ܾଶାଶ and ܾଶାଵ 

respectively.  

 

There are many possibilities to find the characteristic number b. However the 

procedure in this study is started by substitution Equation (2.13) into (2.11), 

which leads to a homogeneous linear system of equations for the Fourier 

coefficients ܣଶ௦
ሺଶሻ, ܣଶ௦ାଵ

ሺଶାଵሻ, ܤଶ௦ାଵ
ሺଶାଵሻ, and ܤଶ௦ାଶ

ሺଶାଶሻ. The characteristic number may be 

evaluated by the truncation of the matrix and solving for the Eigen value. More 

details of other methods are available in textbooks by McLachlan (1947), 

Abramowitz and Stegun (1972). In addition the values of  ܣଶ௦
ሺଶሻ, ܣଶ௦ାଵ

ሺଶାଵሻ, ܤଶ௦ାଵ
ሺଶାଵሻ, 

and ܤଶ௦ାଶ
ሺଶାଶሻ depend on the rule of normalization; in this study we set  

 ܿ݁
ଶሺߴ, ଶగߟሻ݀ݍ

 ൌ  ݁ݏ
ଶሺߴ, ଶగߟሻ݀ݍ

 ൌ  (2.14) ߨ

Hence we obtain 

∑ ଶ
ఋೞ

ቂܣଶ௦
ሺଶሻቃ

ଶ
∞
௦ୀ ൌ ∑ ቂܣଶ௦ାଵ

ሺଶାଵሻቃ
ଶ

∞
௦ୀ ൌ ∑ ቂܤଶ௦ାଵ

ሺଶାଵሻቃ
ଶ

∞
௦ୀ ൌ ∑ ቂܤଶ௦ାଶ

ሺଶାଶሻቃ
ଶ

∞
௦ୀ ൌ 1 (2.15) 

where  

௦ߜ ൌ ቄ1  ; ݏ   ൌ 0
2  ; ݏ   ് 0 (2.16) 

 

The solutions to radial differential equation, Equation (2.10), have several forms 

(McLachlan, 1947; Abramowitz and Stegun, 1972; Mechel, 1997). However 

because of their asymptotic behaviors and rates of convergence, the preferable 

forms are in forms of the series of the products of Bessel functions  
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ܪ ൌ

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ଶܿܯۓ

ሺሻሺߩ, ሻݍ ൌ ఋೞ

ଶమೞ
ሺమሻ ∑ ሺെ1ሻା௧ܣଶ௧

ሺଶሻሺݍሻ∞
௧ୀ ·                                                   

        · ቂܬ௧ି௦ሺݓଵሻܼ௧ା௦
ሺሻ ሺݓଶሻ  ଵሻܼ௧ି௦ݓ௧ା௦ሺܬ

ሺሻ ሺݓଶሻቃ

ଶାଵܿܯ
ሺሻ ሺߩ, ሻݍ ൌ ଵ

మೞశభ
ሺమశభሻ ∑ ሺെ1ሻା௧ܣଶ௧ାଵ

ሺଶାଵሻሺݍሻ∞
௧ୀ ·                                          

             · ቂܬ௧ି௦ሺݓଵሻܼ௧ା௦ାଵ
ሺሻ ሺݓଶሻ  ଵሻܼ௧ି௦ݓ௧ା௦ାଵሺܬ

ሺሻ ሺݓଶሻቃ

ଶାଵݏܯ
ሺሻ ሺߩ, ሻݍ ൌ ଵ

మೞశభ
ሺమశభሻ ∑ ሺെ1ሻା௧ܤଶ௧ାଵ

ሺଶାଵሻሺݍሻ ·∞
௧ୀ                                          

              · ቂܬ௧ି௦ሺݓଵሻܼ௧ା௦ାଵ
ሺሻ ሺݓଶሻ െ ଵሻܼ௧ି௦ݓ௧ା௦ାଵሺܬ

ሺሻ ሺݓଶሻቃ

ଶାଶݏܯ
ሺሻ ሺߩ, ሻݍ ൌ ଵ

మೞశమ
ሺమశమሻ ∑ ሺെ1ሻା௧ܤଶ௧ାଶ

ሺଶାଶሻሺݍሻ∞
௧ୀ ·                                         

               · ቂܬ௧ି௦ሺݓଵሻܼ௧ା௦ାଶ
ሺሻ ሺݓଶሻ െ ଵሻܼ௧ି௦ݓ௧ା௦ାଶሺܬ

ሺሻ ሺݓଶሻቃ

(2.17) 

where ߜ௦ is defined earlier, ݓଵ ൌ ඥ݁ݍെݓ ,ߩଶ ൌ ඥߩ݁ݍ, ܼ
ሺଵሻ ൌ , ܼܬ

ሺଶሻ ൌ ܻ, ܼ
ሺଷሻ ൌ

ܪ
ሺଵሻ and ܼ

ሺସሻ ൌ ܪ
ሺଶሻ. The first two are known as even Modified Mathieu functions 

(even Radial Mathieu functions) of the “ith” kind, whereas the latter are odd 

Modified Mathieu functions (odd Radial functions) of the “ith”  kind. Furthermore 

the asymptotical behavior of “ith” Radial Mathieu functions is similar to function 

ܼ
ሺሻ in their series expression. 

 

In order to have a meaningful solution to Helmholtz equation, characteristic 

number b of ܪሺߩሻ must be identical to ܼሺߴ, ,ߴሻ. Then ܿ݁ଶሺݍ ,ߴሻ, ܿ݁ଶାଵሺݍ  ,ሻݍ

,ߴଶାଵሺ݁ݏ ,ߴଶାଶሺ݁ݏ ሻ, andݍ ଶܿܯ ሻ must pair withݍ
ሺሻሺߩ, ଶାଵܿܯ  ,ሻݍ

ሺሻ ሺߩ,  ,ሻݍ

ଶାଵݏܯ
ሺሻ ሺߩ, ଶାଶݏܯ ሻ andݍ

ሺሻ ሺߩ,  .ሻ respectivelyݍ
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2.2 Plane Wave Function in Elliptical Coordinate 

The expansion the plane wave function in a series of product of Mathieu 

functions and Mathieu Modified functions may be carried out by consideration of 

line source as if it is located at large distance from origin. The line source 

function in elliptical cylindrical coordinate can be specified as follows  

ܪ
ሺଵሻሺܴ݇ሻ ൌ 2 ቊ∑ ܿ݁ሺߴԢ, ,ߴሻܿ݁ሺݍ ሻݍ ቊ

ܿܯ
ሺଵሻሺߩ, ܿܯሻݍ

ሺଷሻሺߩԢ, ; ሻݍ ߩ   Ԣߩ
ܿܯ

ሺଵሻሺߩԢ, ܿܯሻݍ
ሺଷሻሺߩ, ; ሻݍ Ԣߩ  ൏ ߩ

       ஶ
ୀ

                               ∑ ,Ԣߴሺ݁ݏ ,ߟሺ݁ݏሻݍ ሻݍ ቊ
ݏܯ

ሺଵሻሺߩ, ݏܯሻݍ
ሺଷሻሺߩԢ, ; ሻݍ ߩ   Ԣߩ

ݏܯ
ሺଵሻሺߩԢ, ݏܯሻݍ

ሺଷሻሺߩ, ; ሻݍ Ԣߩ  ൏ ߩ
ஶ
ୀଵ ቋ

  (2.18) 

It is noteworthy that Equation (2.18) represents the cylindrical line source located 

at ሺߩ′,  ሻ in elliptical coordinate system; see Appendix A for more detail. Next if′ߴ

we set the source point at very large distance from origin in a direction ߛ   to ߨ

the positive x axis, the radial domain of interest is ߩ   Then Equation (2.18) .′ߩ

may be reduced to 

ܪ
ሺଵሻሺܴ݇ሻ ൌ 2ቄ∑ ܿ݁ሺߴԢ, ,ߴሻܿ݁ሺݍ ܿܯሻݍ

ሺଵሻሺߩ, ܿܯሻݍ
ሺଷሻሺߩԢ, ሻ         ஶݍ

ୀ

                              ∑ ,Ԣߴሺ݁ݏ ,ߟሺ݁ݏሻݍ ݏܯሻݍ
ሺଵሻሺߩ, ݏܯሻݍ

ሺଷሻሺߩԢ, ሻஶݍ
ୀଵ ቅ

  (2.19) 

In addition the amplitude of ܴ in Figure A.1 turns out to be ݎᇱ  ݎ cosሺߛ െ  ሻ asߠ

Ԣݎ ب ߛ Ԣ becomesߴ In addition .ݎ   Ԣ may asymptotically equal toݎ݇ and ߨ

ܽ cosh  ᇱ. Since we haveߩ

ܪ
ሺଵሻሺܴ݇ሻ ՜ ඨ

2
ܽߨ cosh Ԣߩ

݁ቀ′ା ୡ୭ୱሺఊିఏሻିగ
ସቁ 
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ܿܯ
ሺଷሻሺߩԢ, ሻݍ ՜ ඨ

2
ܽߨ cosh Ԣߩ

݁ቀ ୡ୭ୱ୦ Ԣିగߩ
ସିగ

ଶ ቁ 

ݏܯ
ሺଷሻሺߩԢ, ሻݍ ՜ ሺെ1ሻ݊ඨ

2
ܽߨ cosh Ԣߩ

݁ቀ ୡ୭ୱ୦ Ԣିగߩ
ସାగ

ଶ ቁ 

together with ܿ݁ሺγ  π, ሻݍ ൌ ሺെ1ሻ݊ܿ݁ሺγ, ሺγ݁ݏ ሻ andݍ  π, ሻݍ ൌ ሺെ1ሻ݊݁ݏሺγ,  ሻݍ

(McLachlan, 1947), Equation (2.19) can be transformed to 

݁ ୡ୭ୱሺఊିఏሻ ൌ 2ቄ∑ ݅ܿ݁ሺߛ, ,ߴሻܿ݁ሺݍ ܿܯሻݍ
ሺଵሻሺߩ, ሻ         ஶݍ

ୀ

                               ∑ ݅݁ݏሺߛ, ,ߟሺ݁ݏሻݍ ݏܯሻݍ
ሺଵሻሺߩ, ሻஶݍ

ୀଵ ቅ
  (2.20) 

 

Figure 2.2: Anti-Plane (SH) Waves in Elastic Full-Space 

 

 

ߛ

ݓ
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The previous equation represents the excitation ݓ, consisting of an infinite train 

of plane SH waves with incident angle ߛ as shown in Figure 2.2, since  

ݓ ൌ ݁ሺ௫௦ఊା௬௦ఊሻ ൌ ݁௦ሺఊିఏሻ (2.21) 

 

2.3 Half-Range Expansion of Angular Mathieu Functions  

Generalized Fourier series: 

If a set of real-valued functions ሼ݃ଵሺߦሻ, ݃ଶሺߦሻ, … , ݃ሺߦሻሽ, when n = 1,2,3,… , is 

defined on an interval ܽ  ߦ  ܾ and is such that the following integral product of 

any pair ݃ሺߦሻ, ݃ሺߦሻ in the set do exist. The prescribed set of functions is said to 

be orthogonal if the product of  

ቀ݃݉ሺߦሻ, ݃݊ሺߦሻቁ ൌ  ݃݉ሺߦሻ݃݊ሺߦሻܾ݀ߦ
ܽ  (2.22)  

for any distinct functions ݃ሺߦሻ and ݃ሺߦሻ over interval ܽ  ߦ  ܾ is always zero. 

(Kreyszig, 1983); the nonzero product of the integral occurs only when ݉ ൌ ݊. 

 

This orthogonal property is very important because any real-valued function ݂ሺߦሻ 

over the prescribed interval may be expressed in terms of ݃ሺߦሻ’s   

݂ሺߦሻ ൌ ∑ ݂݊݃ሺߦሻ∞
݊ൌ1 ൌ ݂1 ଵ݃ሺߦሻ  ݂2݃ଶሺߦሻ    (2.23) ڮ

Employing the orthogonality together with the concept of L2-norm 

ฮ݃݊ฮ ൌ ටቀ݃݊ሺߦሻ, ݃݊ሺߦሻቁ ൌ ට ݃݊ሺߦሻ݃݊ሺߦሻܾ݀ߦ
ܽ  (2.24)  

the constants ݂ can be determined easily. Multiplying Equation (2.23) with ݃ሺߦሻ 

and integrating the product over an interval ܽ  ߦ  ܾ yield 
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݂݊ ൌ
ቀ݂ሺߦሻ,݃݊ሺߦሻቁ

ฮ݃݊ฮ2 ൌ 1

ฮ݃݊ฮ2  ݂ሺߦሻ݃݊ሺߦሻܾ݀ߦ
ܽ  (2.25) 

The series in Equation (2.23) is called a generalized Fourier series while the 

constants ݂, Equation (2.25),  are called the Fourier constants. 

 

Series expansion of Mathieu function in the ranges ሾ, –ൣ ሿ and࣊ ,࣊ ൧ : 

In the angular half-range ሾ0, –ൣ ሿ orߨ ,ߨ 0൧,  either the set of elliptical cosine 

functions ሼܿ݁ሺߴ, ;ሻݍ  ݊ ൌ 0, 1, 2 … ሽ or the set of elliptical sine functions 

ሼ݁ݏሺߴ, ;ሻݍ  ݊ ൌ 1, 2,3 … ሽ forms a complete orthogonal set. However in this study 

we select the set of elliptical cosine functions as the orthogonal set over the 

prescribed ranges. Utilizing the concept of the generalized Fourier series 

demonstrated previously together with the rule of normalization Equation (2.14), 

any function ݂ሺߴሻ over the range ሾ0,  ሿ can have an elliptical cosine seriesߨ

expansion  

݂ሺߴሻ ൌ ∑ ݂ܿ݁ሺߴ, ∞ሻݍ
ୀ   (2.26) 

where   

݂ ൌ ൫ሺణሻ,ሺణ,ሻ൯
ԡԡమ ൌ ଶ

గ  ݂ሺߴሻܿ݁ሺߴ, ሻగݍ
   (2.27) ߴ݀

 

Utilizing Equations (2.26) and (2.27) together with Equation (2.13), ݁ݏሺߴ,  ሻ canݍ

be expanded over the range ሾ0,  ሿ as followsߨ

,ߴሺ݁ݏ ሻݍ ൌ ∑ Ձ
∞
ୀ ܿ݁ሺߴ,  ሻ; (2.28)ݍ

where 
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 Ձ ൌ ସ
గ

∑ ቀ 
మି௦మቁஶ

ୀଵ,௦ୀ
ା௦ ௗௗ

௦ܣ
ሺሻܤ

ሺሻ;  0  ߴ   (2.29)    ߨ

Similarly, over the range ൣ– ,ߨ 0൧ Equation (2.28) is still valid except  

Ձ ൌ െ ସ
గ

∑ ቀ 
మି௦మቁஶ

ୀଵ,௦ୀ
ା௦ ௗௗ

௦ܣ
ሺሻܤ

ሺሻ; െߨ  ߴ  0 (2.30) 

   

Series expansion of Mathieu function in the ranges ቂെ ࣊


, ࣊


ቃ and ቂ࣊


, െ ࣊


ቃ: 

In the angular half-range ሾെߨ 2⁄ , ߨ 2⁄ ሿ or ሾߨ 2⁄ , െ ߨ 2⁄ ሿ,  we select the set of 

elliptical cosine functions of even order and elliptical sine functions of odd order 

ሼܿ݁ଶሺߴ, ,ሻݍ ,ߴଶାଵሺ݁ݏ ;ሻݍ  ݊ ൌ 0, 1, 2, … ሽ to form an complete orthogonal set; the 

set of elliptical cosine functions of odd order and elliptical sine functions of even 

order ሼܿ݁ଶାଵሺߴ, ,ሻݍ ,ߴଶାଶሺ݁ݏ ;ሻݍ  ݊ ൌ 0, 1, 2, … ሽ is also an orthogonal set. Again 

employing the concept of the generalized Fourier series demonstrated previously 

together with the rule of normalization for ܿ݁2݊ and ݁ݏଶାଵ, Equation (2.14), any 

function ݂ሺߴሻ over the range ሾെߨ 2⁄ , ߨ 2⁄ ሿ can be expanded into the series form 

of 

݂ሺߴሻ ൌ ∑ ሾ ଶ݂ܿ݁ଶሺߴ, ሻݍ  ଶ݂ାଵ݁ݏଶାଵሺߴ, ∞ሻሿݍ
ୀ   (2.31) 

where   

ଶ݂ ൌ ൫ሺణሻ,మሺణ,ሻ൯
ԡమԡమ ൌ ଶ

గ  ݂ሺߴሻܿ݁ଶሺߴ, ሻగݍ ଶ⁄
ିగ ଶ⁄  (2.32) ߴ݀

ଶ݂ାଵ ൌ ൫ሺణሻ,௦మశభሺణ,ሻ൯
ԡ௦మశభԡమ ൌ ଶ

గ  ݂ሺߴሻ݁ݏଶାଵሺߴ, ሻగݍ ଶ⁄
ିగ ଶ⁄   (2.33) ߴ݀

 

Employing Equations (2.31), (2.32) and (2.33) together with Equation (2.13) an 
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the orthogonal property between any elliptical cosine and elliptical sine, 

ܿ݁ଶାଵሺߴ, ݉ ሻ forݍ ൌ 0, 1, 2, … can be expressed over the range ሾെߨ 2⁄ , ߨ 2⁄ ሿ as 

follows 

ܿ݁ଶାଵሺߴ, ሻݍ ൌ ∑ ै
ஶ
ୀ ܿ݁ଶሺߴ,  ሻ (2.34)ݍ

where 

ै ൌ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଵ
ቃஶ

௦ୀ ଶାଵܣ
ሺଶାଵሻܣଶ௦

ሺଶሻஶ
ୀ ;  െ ߨ 2⁄  ߴ  ߨ 2⁄  (2.35) 

Similarly, over the range ሾߨ 2⁄ , െ ߨ 2⁄ ሿ Equation (2.34) is still valid except  

ै ൌ െ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଵ
ቃஶ

௦ୀ ଶାଵܣ
ሺଶାଵሻܣଶ௦

ሺଶሻஶ
ୀ ߨ ; 2⁄  ߴ  െ ߨ 2⁄  (2.36) 

Same orthogonal set of functions developed earlier are applicable to ݁ݏଶାଶሺߴ,  ሻݍ

in the prescribed half-ranges; ݁ݏଶାଶሺߴ,  ሻ can be written in the following form asݍ

,ߴଶାଶሺ݁ݏ ሻݍ ൌ ∑ ॉ
ஶ
ୀ ,ߴଶାଵሺ݁ݏ  ሻ (2.37)ݍ

where 

ॉ ൌ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଷ
ቃஶ

௦ୀ ଶାଶܤ
ሺଶାଶሻܤଶ௦ାଵ

ሺଶାଵሻஶ
ୀ ; െ ߨ 2⁄  ߴ  ߨ 2⁄   (2.38) 

and 

ॉ ൌ െ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଷ
ቃஶ

௦ୀ ଶାଶܤ
ሺଶାଶሻܤଶ௦ାଵ

ሺଶାଵሻஶ
ୀ ߨ ; 2⁄  ߴ  െ ߨ 2⁄   (2.39) 

 

It is noteworthy that elliptical sine functions are always orthogonal to elliptical 

cosine functions over the half ranges ሾെߨ 2⁄ , ߨ 2⁄ ሿ and ሾߨ 2⁄ , െ ߨ 2⁄ ሿ, yet ሾെߨ,  ሿߨ

and ሾߨ, െߨሿ. In addition proof of all series expansions of Mathieu functions and 

orthogonal sets are shown in Appendix B and C. 
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CHAPTER 3: SCATTERING OF PLANE (SH) WAVES 
BY A SHALLOW SEMI-ELLIPTICAL HILL 

 

In this Chapter, an exact, analytic solution to the boundary-valued problem of the 

two-dimensional scattering of anti-plane (SH) waves by a shallow semi-elliptical 

hill is presented. It is based on method of wave function expansion in elliptical 

coordinate and elliptical cosine half-range expansion. In addition the comparison 

between our results when semi-elliptical tends to semi-circular and the existing 

solutions of circular hill offered by Lee et al (2006) are demonstrated. Scattering 

effects due to the existence of elliptical hill and angles of wave incidence on 

ground motion are investigated.    

 

3.1 The Shallow Semi-Elliptical Hill Model 

The cross-section of two-dimensional model is shown in Figure 3.1; it represents 

an elastic, isotropic, and homogeneous half-space with a semi-elliptical hill. The 

material properties are given by the rigidity ߤ and the velocity of shear wave ߚ. 

The elliptical coordinate (ߩ,  system is as defined in the figure whereas x and y (ߴ

axes in the corresponding Cartesian coordinate system are along ߴ ൌ 0 and ߨ 2⁄  

respectively. To facilitate the analysis of a shallow hill, we defined the half-space 

by ݕ  0. 
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Figure 3.1: Shallow Semi-Elliptical Hill Model 

 

 

The model consists of the regions ߗ and D. The interior regions ߗ is the full 

elliptical region which has the boundary L along surface of the semi-elliptical hill, 

ߩ ൌ ߨ and െߩ  ߴ  0, and the boundary ܮ between the regions ߗ and D, ߩ ൌ  ߩ

and 0  ߴ   ܮ The exterior region D consists of the half-space bounded by  .ߨ

along interface ߩ ൌ   and the flat surface of the half-space beyond the hillߩ

denoted by Γ  along ߴ ൌ 0 and ߨ.  The half-width and height of the semi-elliptical 

hill are denoted by A and B. In addition ܽ is the focal length. 
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3.2 Series Expansion of Wave Functions  

Incident and Reflected Waves:  

The excitation ݓ consists of infinite trains of plane SH waves, (anti-plane) 

particle moving in z direction only, with frequency ߱ and incident angle ߛ with 

respect to the positive x axis. It satisfies wave equation, Equation (2.6), and can 

be represented in the Cartesian coordinate system by 

ݓ ൌ ݁ሺ௫ݓ ୡ୭ୱ ఊ ି ௬ ୱ୧୬ ఊሻିఠ௧ (3.1) 

where ݓ ൌ amplitude of the incident wave, and ݇ ൌ ݇ఉ ൌ ߱ ⁄ߚ ൌ shear wave 

number. However since the time factor ݁ିఠ௧ representing the steady-state 

harmonic motions exists in the incident and all resulting waves, it will be omitted 

on all subsequent wave expressions from here on.  

 

In the absence of the hill, the incident waves would reflect at the flat surface Γ. 

Later the reflected plane waves ݓ can be expressed as 

ݓ  ൌ ݁ሺ௫ݓ ୡ୭ୱ ఊା ௬ ୱ୧୬ ఊሻ (3.2)  

Far from the hill, the interference of the incident and reflected waves yields the 

free field waves, ݓ ൌ ݓ    can be expressedݓ ,; applying Equation (2.20)ݓ

in elliptical coordinate, to facilitate the geography shown in Figure 3.1, as follows 

ݓ ൌ ݓ  ݓ ൌ ݓ4 ∑ ቂ݅ܿܯ
ሺଵሻሺߩ, ,ߴሻܿ݁ሺݍ ,ߛሻܿ݁ሺݍ ሻቃஶݍ

ୀ  (3.3)  
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where ܿܯ ,ݍ
ሺଵሻሺ·ሻ, and ܿ݁ሺ·ሻ are Mathieu parameter defined by Equation (2.12),  

Modified Mathieu function of the first kind and Mathieu function respectively; the 

expression of both function are given by Equations (2.13) and (2.17). 

 

Scattered and Transmitted Waves:  

After the incident plane waves hit the interface between regions ߗ and D, two 

more plane waves are generated. The first waves are the scattered and 

diffracted outgoing waves ݓ௦ in the exterior region D, whereas the second ones 

are the standing transmitted waves ݓ௧ inside the elliptical region ߗ. Both 

scattered and transmitted waves can be written as an elliptical wave function 

series which takes the form 

௦ݓ ൌ ∑ ቂܣܿܯ
ሺଷሻሺߩ, ,ߴሻܿ݁ሺݍ ∞ሻቃݍ

ୀ ; ߩ     (3.4)ߩ

௧ݓ ൌ ∑ ቂܤܿܯ
ሺଵሻሺߩ, ,ߴሻܿ݁ሺݍ ∞ሻቃݍ

ୀ  ∑ ቂܥݏܯ
ሺଵሻሺߩ, ,ߴሺ݁ݏሻݍ ∞ሻቃݍ

ୀଵ ; ߩ      (3.5)ߩ

where ܣ, ܤ and ܥ are the unknown coefficients of the new waves to be 

determined. Moreover ܿܯ
ሺଷሻሺ·ሻ, ݏܯ

ሺଵሻሺ·ሻ  and ݁ݏሺ·ሻ are even Modified Mathieu 

function of the third kind, odd Modified Mathieu function of the first kind  and odd 

Mathieu function, respectively, while ܿܯ
ሺଵሻሺ·ሻ and ܿ݁ሺ·ሻ are defined previously. 

The scattered waves in the region D ሺߩ  ,ߩ 0  ߴ  ܿܯ ሻ haveߨ
ሺଷሻሺ·ሻ as radial 

wave functions since the asymptotic behavior of this function is of Hankel 

function of the first kind which automatically satisfies Sommerfeld’s far field 
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condition. Furthermore only ܿ݁ሺ·ሻ are used to form angular wave functions 

because they form a complete orthogonal set of functions in the angular domain 

0  ߴ    .see Appendix C for more information ;ߨ

 

Since the radial wave functions of transmitted waves in the interior region ߗ must 

be finite everywhere in the full elliptical region ܿܯ ,ߗ
ሺଵሻሺ·ሻ and ݏܯ

ሺଵሻሺ·ሻ, which 

have asymptotic behavior of Bessel function of the first kind, are used. (Pao and 

Mow, 1973) In addition we utilize both ܿ݁ሺ·ሻ and ݁ݏሺ·ሻ to form a complete 

orthogonal set of functions in the full angular domain of the region ߗ. 

 

Solution of the Problem using Angular Half-range Expansion  

The wave functions of the total displacement, ݓ ൌ ݓ   ௦, in the exteriorݓ

region D and of the transmitted wave, ݓ௧, in the elliptical region ߗ must satisfy 

the Helmholtz equation, Equation (2.8), and the following boundary conditions:  

1. The traction-free boundary condition at the surface of the flat half-space Γ  

ሺߩ  ,ߩ ߴ ൌ 0,  ሻߨ

߬௬௭ห
௬ୀ

ൌ ߬ణ௭|ణୀ,గ ൌ ఓ


డ൫௪ା௪ೞ൯
డణ

ൌ 0 (3.6) 
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2. The traction-free boundary condition at the surface of the elliptical hill L  

ሺߩ ൌ ,ߩ െߨ  ߴ  0ሻ 

߬ఘ௭ห
ఘୀఘబ

ൌ ఓ


డ௪

డఘ
ቚ

ఘୀఘబ
ൌ 0 (3.7) 

3. The continuity of displacement and radial stress at the interface ܮ  

 ሺߩ ൌ ,ߩ 0  ߴ   ሻߨ

ሺݓ  ௦ሻหఘୀఘబݓ
ൌ                           ௧|ఘୀఘబݓ

߬ఘ௭ห
ఘୀఘబ

ൌ ఓ


డ൫௪ା௪ೞ൯
డఘ

ቚ
ఘୀఘబ

ൌ ఓ


డ௪

డఘ
ቚ

ఘୀఘబ

 (3.8) 

 

Since ݓ and ݓ௦ in Equations (3.3) and (3.4) content elliptical cosine functions, 

they automatically satisfy the traction-free boundary condition at the surface of 

the flat half-space Γ, Equation (3.6). Hence to determine the unknown 

coefficients of the scattered and transmitted waves, Equations (3.4) and (3.5), 

boundary conditions of Equations (3.7) and (3.8) are employed.  

 

Here the mathematical difficulty arises since along the circumference of the full 

elliptical region the transmitted waves expressing the displacement motion in the 

full elliptical region must satisfy two disjoint sets of boundary conditions, one set 

for traction-free boundary condition at the surface of the elliptical hill L, െߨ  ߴ 

0 and another set for the continuity of displacement and stress at the interface ܮ, 

0  ߴ   In addition as the transmitted waves compose of both elliptical cosine .ߨ
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and sine, those boundary conditions could not be separately imposed without 

any modification. Later utilizing the orthogonality of angular Mathieu functions in 

the half-range ሾ0, –ൣ ሿ (and similarly inߨ ,ߨ 0൧), ݁ݏሺߴ, ݉ ሻ forݍ ൌ 1, 2, 3 … can be 

expanded as a series of elliptical cosine. Recalling Equation (2.28), the 

transmitted waves ݓ௧ and the corresponding radial stress becomes 

௧ݓ ൌ ∑ ቂܤܿܯ
ሺଵሻሺߩ, ሻݍ ט ∑ Ձܥݏܯ

ሺଵሻሺߩ, ሻஶݍ
ୀଵ ቃܿ݁ሺߴ, ሻஶݍ

ୀ  (3.9) 

߬ఘ௭
௧ ൌ ఓ


∑ ቂܤܿܯ

ሺଵሻᇱሺߩ, ሻݍ ט ∑ Ձܥݏܯ
ሺଵሻᇱሺߩ, ሻஶݍ

ୀଵ ቃܿ݁ሺߴ, ሻஶݍ
ୀ  (3.10) 

where –ve above and +ve below are assigned for െߨ  ߴ  0 and 0  ߴ   ߨ

respectively; Ձ is given by Equation (2.29). Moreover “ ’ ” designates the 

derivative of a function with respect to ߩ from here on. Since all correspondent 

displacement and stress functions are in the form of elliptical cosine series, 

boundary conditions are convenient to apply. 

Applying Equation (3.7), the traction-free along surface L, yields 

ܤ ൌ ଵ

ெ
ሺభሻᇲሺఘబ,ሻ

∑ Ձݏܯ
ሺଵሻᇱሺߩ, ܥሻݍ

ஶ
ୀଵ  (3.11) 

Then applying the continuity of displacement and stress at the interface ܮ yields 

ܿܯ݅ݓ4
ሺଵሻሺߩ, ,ߛሻܿ݁ሺݍ ሻݍ  ܿܯ

ሺଷሻሺߩ,                                                               ܣሻݍ
                                                            ൌ ܿܯ

ሺଵሻሺߩ, ܤሻݍ  ∑ Ձݏܯ
ሺଵሻሺߩ, ܥሻݍ

ஶ
ୀଵ

 (3.12) 

ܿܯ݅ݓ4
ሺଵሻ′ሺߩ, ,ߛሻܿ݁ሺݍ ሻݍ  ܿܯ

ሺଷሻ′ሺߩ,                                                             ܣሻݍ
                                                           ൌ ܿܯ

ሺଵሻᇱሺߩ, ܤሻݍ  ∑ Ձݏܯ
ሺଵሻᇱሺߩ, ܥሻݍ

∞
ୀଵ

 (3.13) 
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There are many schemes to solve for the unknowns. One of them is first to plug 

in Equation (3.11) into Equations (3.12) and (3.13), and later to eliminate ܣ by 

setting 

 
ܣ ൌ ଵ

ெ
ሺయሻሺఘబ,ሻ

൜∑ Ձ ൬ ெ
ሺభሻሺఘబ,ሻ

ெ
ሺభሻᇲሺఘబ,ሻ

൰ ݏܯ
ሺଵሻᇱሺߩ, ሻݍ  ݏܯ

ሺଵሻሺߩ, ሻ൨ݍ         ஶܥ
ୀଵ

                                                                               െ ܿܯ݅ݓ4 
ሺଵሻሺߩ, ,ߛሻܿ݁ሺݍ ሻൠݍ

 (3.14) 

The linear equation of infinite order is formulated and takes the form 

∑ ԧܥ
ஶ
ୀଵ ൌ ݅ݓ4 ܿܯ

ሺଵሻᇱሺߩ, ሻݍ െ ൬ெ
ሺయሻᇲሺఘబ,ሻ

ெ
ሺయሻሺఘబ,ሻ

൰ ܿܯ
ሺଵሻሺߩ, ሻ൨ݍ ܿ݁ሺߛ,   ሻ (3.15)ݍ

where 

ԧ ൌ Ձ݉݊ ൜2ݏܯ
ሺଵሻ′ሺߩ, ሻݍ െ ൬ெ

ሺయሻ′ሺఘబ,ሻ

ெ
ሺయሻሺఘబ,ሻ

൰ ൬ெ
ሺభሻሺఘబ,ሻ

ெ
ሺభሻ′ሺఘబ,ሻ

൰ ݏܯ
ሺଵሻ′ሺߩ, ሻݍ  ݏܯ

ሺଵሻሺߩ,   ሻ൨ൠݍ

Here ܥ’s may be solved by truncation of infinite matrix as shown in Equation 

(3.15). Later ܣ’s and ܤ’s  can be solved by inserting ܥ’s back into Equations 

(3.11) and (3.14).  

 

3.3 Results and Analysis 

To study scattering effects due to locally topographic irregularities, amplitudes of 

ground motions at various points are of importance. Since we may assume the 

infinite train of SH incident wave with unity amplitude, hence in the absence of a 

hill the amplitude of the ground motion is equal to 2. Due to the presence of the 
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hill, the scattered waves interfere with the incident and reflected waves in the 

exterior region D beyond the hill, and the transmitted waves in the interior 

region ߗ; the amplitude of the ground motion different from 2 is expected. Similar 

to previous works by Wong and Trifunac in 1974, we display the results in term of 

the dimensionless parameter ߟ defined as 

ߟ ൌ ଶ
ఒ

ൌ ఠ
గఉ

ൌ ଵݍ ଶ⁄ ቀଶ
గ

ቁ (3.16)  

where ߣ is the wave length and ܽ is the focal length expressed in term of A and 

B, the half-width and height of the hill correspondingly, as follows 

ܽ ൌ 
௦൫௧షభሺ ⁄ ሻ൯

 (3.17)  

In addition in order to study the shape effect of a semi-elliptical hill, the aspect 

ratio R is defined  

 ܴ ൌ 

 (3.18) 

It is noteworthy that the maximum aspect ratio R of a semi-elliptical hill is limited 

to that of semi-circular one.  

 

Comparison with the Previous Work: 

The numerical results when semi-elliptical tends to semi-circular ሺܴ ൌ 0.9999ሻ at 

ߟ ൌ 5 and 10 are compared with the existing results of semi-circular hill (Lee et 

al, 2006). In the general trend, the comparisons between Figures 3.2a and 3.2b 

and Figures 3.3a and 3.3b show that our results agree with results presented by 

Lee et al (2006). Only slight differences, less than 1%, between those do exist as 
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shown by the discrepancy of maximum values of the displacements. The above 

difference may come from the different functions used in each problem, Bessel 

and Hankel functions for the semi-circular hill and Mathieu elliptical sine and 

cosine functions for the semi-elliptical hill. 

 

Figure 3.2: Displacement Amplitudes of Ground Motion at ߟ ൌ 5 

     

(a)  “Almost-Circular” Elliptical Hill     (b) Semi-Circular Hill 

  ሺܴ ൌ 0.9999ሻ                     (Courtesy of Lee et al, 2006)    
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Figure 3.3: Displacement Amplitudes of Ground Motion at ߟ ൌ 10 

   

(a)  “Almost-Circular” Elliptical Hill      (b) Semi-Circular Hill 

  ሺܴ ൌ 0.9999ሻ                     (Courtesy of Lee et al, 2006)    

 

Effects of Height-to-Width Ratio of Elliptical Hills, and of Incident Angle: 

Figures 3.4 to 3.23 illustrate amplitudes of surface displacements for ܴ ൌ 0.1, 

0.3, 0.5, 0.7 and 0.9 which are equivalent to the height-to-width ratios of 0.05, 

0.15, 0.25, 0.35 and 0.45 respectively. Each figure shows three-dimensional 

plots of displacement amplitudes at one of four different incident angles of ߛ ൌ 0°, 

30°, 60° and 90° versus the distance x/A on and around the hill and the 
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dimensionless frequency ߟ in the range of 0.5 to 10. In addition the amplitudes in 

the range of x/A in ሾെ1,1ሿ are those on the elliptical surface of the hill. 

 

Figures 3.4 through 3.7 show the displacement amplitudes for R = 0.1 which are 

slightly different from the uniform half-space amplitudes. In particular when ߟ is 

small, an incident angle is of irrelevance on the displacement amplitudes. This 

confirms the fact that the long waves do not feel any undersized topographic 

irregularity and only minor changes into the uniform half-space amplitudes may 

be introduced. In addition as shown in following Figures 3.8 through 3.23, the 

pattern of surface displacement becomes progressively more complicated when 

an elliptical hill gets steeper. Moreover for nearly grazing angle ሺߛ ൌ 0° and 30°ሻ 

the hill acts like a barrier shielding the propagating waves coming from the left, 

resulting in a standing wave pattern in the front of the hill. Besides that, with ߟ 

larger than 3 we also observed more prominent and more abrupt jumps of the 

displacement amplitudes at the right edge of the hill ሺݔ ܣ ൌ 1⁄ ሻ. This may be due 

to the fact that the right rim reflects the incoming waves back into the elliptical 

hill. Shortly these reflected waves would bounce at the surface of hills, resulting 

in the superimposition of the overall wave propagation and the localized 

concentration at the right rim. It is also notable that for nearly vertical incidences 

ሺ60° and 90°ሻ the similar pattern to the case of semi-circular hill has been 

observed here. Lee et al (2006) mentioned that displacement is large and 

oscillates on the hill surface.  
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Figure 3.4: Displacement Amplitude for ܴ ൌ 0.1 when ߛ ൌ 0°  

 

 

Figure 3.5: Displacement Amplitude for ܴ ൌ 0.1 when ߛ ൌ 30° 
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Figure 3.6: Displacement Amplitude for ܴ ൌ 0.1 when ߛ ൌ 60° 

 

 

Figure 3.7: Displacement Amplitude for ܴ ൌ 0.1 when ߛ ൌ 90° 
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Figure 3.8: Displacement Amplitude for ܴ ൌ 0.3 when ߛ ൌ 0° 

 

 

Figure 3.9: Displacement Amplitude for ܴ ൌ 0.3 when ߛ ൌ 30° 
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Figure 3.10: Displacement Amplitude for ܴ ൌ 0.3 when ߛ ൌ 60° 

  

 

Figure 3.11: Displacement Amplitude for ܴ ൌ 0.3 when ߛ ൌ 90° 
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Figure 3.12: Displacement Amplitude for ܴ ൌ 0.5 when ߛ ൌ 0° 

  

 

Figure 3.13: Displacement Amplitude for ܴ ൌ 0.5 when ߛ ൌ 30° 
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Figure 3.14: Displacement Amplitude for ܴ ൌ 0.5 when ߛ ൌ 60° 

 

 

Figure 3.15: Displacement Amplitude for ܴ ൌ 0.5 when ߛ ൌ 90° 
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Figure 3.16: Displacement Amplitude for ܴ ൌ 0.7 when ߛ ൌ 0° 

  

 

Figure 3.17: Displacement Amplitude for ܴ ൌ 0.7 when ߛ ൌ 30° 
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Figure 3.18: Displacement Amplitude for ܴ ൌ 0.7 when ߛ ൌ 60° 

 

 

Figure 3.19: Displacement Amplitude for ܴ ൌ 0.7 when ߛ ൌ 90° 
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Figure 3.20: Displacement Amplitude for ܴ ൌ 0.9 when ߛ ൌ 0° 

  

 

Figure 3.21: Displacement Amplitude for ܴ ൌ 0.9 when ߛ ൌ 30° 
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Figure 3.22: Displacement Amplitude for ܴ ൌ 0.9 when ߛ ൌ 60° 

 

 

Figure 3.23: Displacement Amplitude for ܴ ൌ 0.9 when ߛ ൌ 90° 
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CHAPTER 4: SCATTERING OF PLANE (SH) WAVES 
BY A DEEP SEMI-ELLIPTICAL HILL 

 

In this Chapter, the ground motion and wave propagation resulted from the 

scattering of anti-plane (SH) waves by a deep semi-elliptical hill on an elastic 

half-space is studied and explained by the closed-form solution, based on 

method of wave function expansion, and the expansion of elliptical sine and 

cosine over the half-range ሾ . Similar to Chaper 3 shallow semi-

elliptical hill, numerical results when semi-elliptical tends to semi-circular are 

compared with the work by Lee et al (2006). The analysis shows the interference 

on ground motion depends on several factors such as frequency of the incident 

waves, incident angle, and the aspect ratio of elliptical hills 

െߨ 2⁄ , ߨ 2⁄ ሿ

velocity of shear wave ߚ. Similar coordinate systems to Chapter 3 are utilized, 

except the half-space which is defined by ݔ  0 in order to facilitate the analysis 

applies is limited to that of semi-circular hill.   

 

4.1 The Deep Semi-Elliptical Hill Model 

The cross-section of two-dimensional model studied in this paper is shown in 

Figure 4.1; it represents an elastic, isotropic, and homogeneous half-space with a 

semi-elliptical hill. Its material properties are given by the rigidity ߤ and the 

of the deep semi-elliptical hill. In addition the lower bound to which our solution 
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Figure 4.1: Deep Semi-Elliptical Hill Model 

 

 

The model consists of the regions ߗ and  The interior regions ߗ is the full 

lliptical region which has the boundary L along surface of the semi-elliptical hill, 

 D.

e

ߩ ൌ ߨ  andߩ 2⁄  ߴ  െ ߨ 2⁄ , and the boundary ܮ between the regions ߗ and D, 

ߩ ൌ ߩ  and െ ߨ 2⁄  ߴ  ߨ 2⁄ .  The exterior region D consists of the half-space 

bounded by ܮ along interface  and the flat surface of the half-space 

beyond the hill denoted by Γ  along ߴ ൌ െߨ 2⁄  and ߨ 2⁄ .  Again the half-width and 

height of the semi-elliptical hi

ߩ ൌ ߩ  

ll are denoted by A and B, and ܽ is the focal length. 
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4.2 Series Expansion of Wave Functions  

Incident and Reflected Waves:  

direction ߨ െ would reflect at the flat surface Γ and therefore generate the ߛ

In the absence of the hill, the plane incident SH waves ݓ travelling in the 

 

reflected plane waves, ݓ, moving with angle ߛ. Later the incident plane waves 

field waves ݓ which 

of Mathieu functions after applying Equation 

ݓ ∑ ଶ ଶ ଶ
ஶ
ୀ



ܿଶ
ሺଵሻሺ·ሻ, ݏܯଶାଵ

ሺଵሻ ሺ·ሻ, ܿ݁ଶሺ·ሻ and ݁ݏଶାଵሺ·ሻ are Mathieu parameter, 

even and odd Modified Mathieu function of the first kind, and even and odd 

Mathieu function respectively; the expression of these functions are given by 

Equations (2.13) and (2.17). It is worth mentioning that shown in Equation (4.1) 

en o  in the first series whereas the odd 

order solely does in the second series since  



 

interfere with the reflected plane waves, and yield the free 

can be expressed by the series 

(2.20).        

ݓ ൌ 4 ቂሺെ1ሻܿܯሺଵሻሺߩ, ሻܿ݁ݍ ሺߴ, ሻܿ݁ݍ ሺߛ,                      ሻቃݍ

   4݅ݓ ∑ ቂሺെ1ሻݏܯଶାଵ
ሺଵሻ ሺߩ, ,ߴଶାଵሺ݁ݏሻݍ ,ߛଶାଵሺ݁ݏሻݍ ሻቃஶݍ

ୀ

  (4.1) 

where ݓ ൌ amplitude of the incident wave.  

In addition ܯ ,ݍ

only ev rder of Mathieu functions appears

ܿ݁ሺߨ െ ,ߛ ሻݍ ൌ ሺെ1ሻ ܿ݁ሺߛ,   ሻݍ

ߨሺ݁ݏ െ ,ߛ ሻݍ ൌ ሺെ1ሻାଵ݁ݏሺߛ,  ሻݍ
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Scattered and Transmitted Waves:  

Two more plane SH waves are generated as the incident plane waves strike the 

crossing point between regions ߗ and D. The first waves are the scattered and 

diffracted outgoing waves ݓ௦ in the exterior region D, whereas the second ones 

are the standing transmitted waves ݓ௧ inside the elliptical region ߗ; they can be 

xpressed in the forms of elliptical wave functions  

ݓ ൌ ∑ ቂܣଶܿܯଶ ሺߩ, ,ߴሻܿ݁ଶሺݍ ሻݍ  ଶାଵݏܯଶାଵܣ
ሺଷሻ ሺߩ, ,ߴଶାଵሺ݁ݏሻݍ ;ሻቃݍ ߩ  ୀߩ (4.2) 

  ୀ   ୀଵ 

where ܣ ܤ ,  and ܥ  are the unknown coefficients of the new plane waves to be 

determined. Moreover ܿܯሺଷሻሺ·ሻ  and ݏܯሺଷሻ ሺ·ሻ are even and odd modified 

previously.  The scattered waves in the region D ሺߩ  ,ߩ െߨ 2⁄  ߴ  ߨ 2⁄ ሻ have 

ଶܿܯ
ሺଷሻሺ·ሻ and ݏܯଶାଵ

ሺଷሻ ሺ·ሻ as radial wave functions since they have asym  

behavior of Hankel function of the first kind which satisfies Sommerfeld’s far field 

condition. Furthermore ܿ݁ଶሺ·ሻ and ݁ݏଶାଵሺ·ሻ are used to form angular wave 

s e  

ߴ  ߨ 2⁄

everywh

e

௦ ሺଷሻஶ

௧ݓ ൌ ∑ ቂܤ ,ߩሺଵሻሺܿܯ ሻܿ݁ݍ ሺߴ, ∞ሻቃݍ  ∑ ቂܥ ,ߩሺଵሻሺݏܯ ݁ݏሻݍ ሺߴ, ሻቃஶݍ ; ߩ  ߩ  (4.3)  

  

ଶ ଶାଵ

Mathieu function of the third kind respectively, while others are defined 

ptotic

function  b cause they form a complete orthogonal set of functions in the 

angular domain െߨ 2⁄  . The transmitted waves in the interior region ߗ 

ሺߩ  ,ߩ 0  ߴ  ܿܯ ሻ haveߨ2
ሺଵሻሺ·ሻ and ݏܯ

ሺଵሻሺ·ሻ as radial wave functions since 

they have asymptotic behavior of Bessel function of the first kind which are finite 

ere in the full elliptical region ߗ (Pao and Mow, 1973). In addition in the 
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full angular domain of the region ߗ, ܿ݁ሺ·ሻ and ݁ݏሺ·ሻ form a complete orthogonal 

set of functions. 

 

The wave functions of the total displacement, ݓ ൌ ݓ   ௦, in the exteriorݓ

region D and of the transmitted wave,  must satisfy ߗ ௧, in the elliptical regionݓ

the Helmholtz equation, Equation 2. d the ing boundary conditions: 

1. The traction-fre

Solution of the Problem using Angular Half-range Expansion  

 

( 8), an follow

e boundary condition at the flat half-space Γ  
ሺߩ  ,ߩ ߴ ൌ െߨ 2⁄ , ߨ 2⁄ ሻ 

߬௬௭ห
௬ୀ

ൌ ߬ణ௭|ణୀିగ ଶ⁄ ,గ ଶ⁄ ൌ ఓ


డ൫௪ା௪ೞ൯
డణ

ൌ 0 (4.4)  

2. The traction-free boundary condition at the surface of the elliptical hill L 

߬ ห ൌ ఓ

ሺߩ ൌ ,ߩ ߨ 2⁄  ߴ  െߨ 2⁄ ሻ 

ఘ௭ ఘୀఘబ 
డ௪

డఘ
ቚ ൌ 0 (4.5)  

3. The continuity of displacement and radial stress at the interface ܮ

కୀకబ

   



߬ఘ௭ห
ఘୀఘబ

ൌ ఓ


ሺߩ ൌ ߩ , െߨ 2⁄  ߴ  ߨ 2⁄ ሻ 

ሺݓ  ௦ሻหఘୀఘబݓ
ൌ                           ௧|ఘୀఘబݓ

డ൫௪ା௪ೞ൯
డఘ

ቚ
ఘୀఘబ

ఓ


ൌ డ௪

డఘ
ቚ

ఘୀఘబ

 (4.6)  

 

Each term of ݓ and ݓ௦, Equations (4.1) and (4.2), contents an elliptical cosine 

function of even order and an elliptical sine function of odd order; hence they 
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automatically satisfy the traction-free boundary condition at the surface of the flat 

half-space Γ, Equation (4.4). 

Boundary conditions of Equations (4.5) and (4.6) are applied to determine the 

unknown coefficients of both scattered and transmitted waves. Similar to

case of shallow elliptical hill, the transmitted waves ݓ௧  in the full elliptical region 

ust satisfy two disjoint sets of boundary conditions, one set for traction-free 

 

 the 

m

boundary condition at the free surface of the elliptical hill L, and another set for 

the continuity of displacement and stress at the interface ܮ. In addition as the 

transmitted waves ݓ௧ contain elliptical cosine and sine of both even and odd 

orders, those boundary conditions could not be separately imposed directly. 

ater utilizing the complete orthogonal set ሼܿ݁ଶሺߴ, ,ሻݍ ,ߴଶାଵሺ݁ݏ ;ሻݍ  ݊ ൌ 0, 1, 2 … ሽ 

in the half-range ሾെߨ 2⁄ , ߨ 2⁄ ሿ (and similarly in ሾߨ 2⁄ , െ ߨ 2⁄ ሿ),  the transmitted 

waves ݓ௧ and the corresponding radial stress becomes 

ሺ1ሻ ሺ1ሻ∞∞

L

ݐݓ ൌ ∑ ቂ2݊ܿܯ2݊ܤ
ሺ1ሻሺߩ, ሻݍ ט  ∑ 2݉1ܿܯ2݉1ܤ݊݉ै

ሺ1ሻ ሺߩ, ∞ሻݍ
݉ൌ0  ቃ∞

݊ൌ0 ܿ݁2݊ሺߴ,                ሻݍ

    ∑ ቂ2݊ܥ12݊ݏܯ1ሺߩ, ሻݍ ט ∑ ॉ݉݊2݉ܥ22݉ݏܯ2ሺߩ, ሻ݉ൌ0ݍ ቃ݊ൌ0 ,ߴ2݊1ሺ݁ݏ ሻݍ
 (4.7) 

ݖߩ߬ ൌ ߤ
ܬܽ ∑ ቂ2݊ܿܯ2݊ܤ

ሺ1ሻԢሺߩ, ሻݍ ט ∑ 2݉1ܿܯ2݉1ܤ݊݉ै
ሺ1ሻԢ ሺߩ, ∞ሻݍ

݉ൌ0 ቃ∞
݊ൌ0 ܿ݁2݊ሺߟ,            ሻݍ

    ܬܽ
ߤ ∑ ቂ2݊ܥ12݊ݏܯ1ሺߩ, ሻݍ ט ∑ ॉ݉݊2݉ܥ22݉ݏܯ2ሺߩ, ሻ݉ൌ0 ቃ݊ൌ0 ,ߴ2݊1ሺ݁ݏ ሻݍ

 (4.8)  

where –ve above and +ve below are assigned for ߨ 2⁄  ߴ  െ ߨ 2⁄  and െ ߨ 2⁄ 

ߴ  ߨ 2⁄ ; ै and ॉ are given by Equations (2.35) and (2.38). As all 

displacement and stress functions of far-field, scattered and transmitted waves 

ሺ1ሻԢ ሺ1ሻԢ ∞∞ݍ
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are in the forms o cosine series with order 2n and of elliptical sine 

series with order 2n+1, boundary conditions are conv

f elliptical 

enient to apply. Similar 

procedure to the case of the shallow semi-elliptical hill is performed, yet two 

linear equations of infinite order are formulated  

∑ ॰ܤଶାଵ
ஶ
ୀ ൌ ሺെ1ሻݓ4 ܿܯଶ

ሺଵሻᇱሺߩ, ሻݍ                                                     

                                െ ൬ெమ
ሺయሻᇲሺఘబ,ሻ

ெమ
ሺయሻሺఘబ,ሻ

൰ ଶܿܯ
ሺଵሻሺߩ, ሻ൨ݍ ܿ݁ଶሺߛ, ሻݍ

 

                         

           
మశభ బ

 (4.9)  

∑ ॱܥଶାଶ
ஶ
ୀ ൌ ݅ሺെ1ሻݓ4 ݏܯଶାଵ

ሺଵሻᇱ ሺߩ, ሻݍ                         

              െ ൬ெ௦మశభ
ሺయሻᇲ ሺఘబ,ሻ

ெ௦ሺయሻ ሺఘ ,ሻ
൰ ଶାଵݏܯ

ሺଵሻ ሺߩ, ሻ൨ݍ ,ߛଶାଵሺ݁ݏ ሻݍ

where 

॰ ൌ ै ൜2ܿܯଶାଵ
ሺଵሻ′ ሺߩ, ሻݍ                                                                                                       

                                   െ ൬ெమ
ሺయሻ′ሺఘబ,ሻ

ெሺయሻሺఘ ,ሻ

  (4.10) 

మ బ
൰ ൬ெమ

ሺభሻሺఘబ,ሻ

ெሺభሻ′ሺఘ ,ሻమ బ
൰ ଶାଵܿܯ

ሺଵሻ′ ሺߩ, ሻݍ  ଶାଵܿܯ
ሺଵሻ ሺߩ, ሻ൨ൠݍ

  

ॱ ൌ ॉ ൜2ݏܯଶାଶ
ሺଵሻ′ ሺߩ, ሻݍ                                                                                                       

                                   െ ൬ெ௦మశభ
ሺయሻ′ ሺఘబ,ሻ

ெ௦మశభ
ሺయሻ ሺఘబ,ሻ

൰ ൬ெ௦మశభ
ሺభሻ ሺఘబ,ሻ

ெ௦మశభ
ሺభሻ′ ሺఘబ,ሻ

൰ ଶାଶݏܯ
ሺଵሻ′ ሺߩ, ሻݍ  ଶାଶݏܯ

ሺଵሻ ሺ
  

Here ܤଶାଵ’s and ܥଶାଵ’s could be calculated first by truncation of the above 

infinite matrices. Later other coefficients are determined through the equations 

ଶܣ ൌ ଵ

ெమ
ሺయሻሺఘబ,ሻ

,ߩ ሻ൨ൠݍ

൜∑ ै ൬ ெమ
ሺభሻሺఘబ,ሻ

ெమ
ሺభሻᇲሺఘబ,ሻ

൰ ଶାଵܿܯ
ሺଵሻᇱ ሺߩ, ሻݍ   ଶାଵܿܯ 

ሺଵሻ ሺߩ, ሻ൨ݍ ଶାଵܤ
ஶ
ୀ                    

                                                                െ ଶܿܯሺെ1ሻݓ4
ሺଵሻሺߩ, , ߛሻܿ݁ଶሺݍ ሻቅݍ
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ଶାଵܣ ൌ ଵ
ெ௦మశభ

ሺయሻ ሺఘబ,ሻ
൜∑ ॉ ൬ெ௦మశభ

ሺభሻ ሺఘబ,ሻ

ெ௦మశభ
ሺభሻᇲ ሺఘబ,ሻ

൰ ଶାଶݏܯ
ሺଵሻᇱ ሺߩ, ሻݍ   ଶାଶݏܯ 

ሺଵሻ ሺߩ, ሻ൨ஶݍ
ୀ        ଶାଶܥ

                                                                                       െ4݅ݓሺെ1ሻݏܯଶାଵ
ሺଵሻ ሺߩ, , ߛଶାଵሺ݁ݏሻݍ ሻቅݍ

  

ଶܤ ൌ ଵ

ெమ
ሺభሻ′ሺఘబ,ሻ

∑ ैܿܯଶାଵ
ሺଵሻ′ ሺߩ, ଶାଵܤሻݍ

∞
ୀ       

ଶାଵܥ ൌ ଵ
ெ௦మశభ

ሺభሻᇲ ሺఘబ,ሻ
∑ ॉݏܯଶାଶ

ሺଵሻᇱ ሺߩ, ଶାଶܥሻݍ
ஶ
ୀ   

 

esu

Amplitudes of ground motions at various points are analyzed. Similar to Chapter 

e 

1, and present the results in term of the dimensionless parameter ߟ which is 

defined as Equation (3.16), except the focal length which is expressed in term of 

and B, the half-width and height of the hill respectively, as follows  

ܿ ൌ 
௦൫௧షభሺ ⁄ ሻ൯

4.3 R lts and Analysis 

3 we assume the excitation consists of an infinite train of SH wave with amplitud

A 

 (4.11) 

Moreover the aspect ratio R, Equation (3.18), is employed to study the shape 

effect of a semi-elliptical hill; the minimum aspect ratio ܴ of a deep semi-elliptical 

hill is limited to that of semi-circular one.  

 

As noted by Wong and Trifunac (1974b), the required number of terms in series 

representation of Mathieu functions increases with increasing |ݕ| and ݍ; for 

utilization of the half-range expansion in the example, increasing ܴ and ߟ. The 

elliptical hill model even requires more number of terms than semi-elliptical 
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canyon/alluvial model, and cause a numerical problem; asymptotic approximation 

for modified Mathieu functions may be needed. In addition the applicable range 

of proposed solution also depends on the availability of program package 

(Mechel, 1997). Hence we restrict and calculate the amplitude of displacement 

only in the range |ݕ ⁄ܣ |  2.0 for all ܴ, even though amplitude of displacement 

may be evaluated while |ݕ ⁄ܣ | in the range up to 4.0 without any numerical 

Comparison with the Previous Work: 

nd tested by modeling a semi-elliptical 

ill for the “Almost-Circular”, ܴ ൌ1.0001. Previously published result for a semi-

The Figures 4.2 and 4.3 illustrated the comparison of displacement amplitude of 

demonstrate identical patterns. However some minor departures are observed 

problem for smaller ܴ with the dimensionless parameter ߟ up to 10. 

 

The proposed solution are implemented a

h

circular hill (Lee et al; 2006) are used for comparison purpose. The 

dimensionless frequency ߟ ൌ 5 and 10 are selected for the evaluation. 

 

ground surface at 4 angles of incidence ߛ for the “almost-circular” elliptical hill 

and Circular hill; however note that we define angle of incidence for both cases 

differently, an angle of incidence measures from the vertical axis for elliptical hill 

while from the horizontal axis for circular hill. A remarkable agreement between 

these results has been observed. Particularly around two sharp edges of hill at 

ݕ ൌ േܣ for elliptical hill and at ݔ ൌ േܽ for circular one, the displacements 
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such as the discrepancies of the displacement at the right rim for the incident 

wave travelling parallel to flat surface, and of maximum values of the 

displacements. These variations possible are explained by the utilization of 

ifferent wave functions in each problem, Angular and Radial Mathieu functions 

nkel, Sine and Cosine functions for the 

Figure 4.2: Displacement Amplitudes of Ground Motion at ߟ ൌ 5 

d

for the semi-elliptical hill and Bessel, Ha

semi-circular hill. 

 

 

(a)  “Almost-Circular” Elliptical Hill    (b) Semi-Circular Hill 

     ሺܴ ൌ 1.0001ሻ                     (Courtesy of Lee et al, 2006)     
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Figure 4.3: Displacement Amplitudes of Ground Motion at ߟ ൌ 10 

  

(a)  “Almost-Circular” Elliptical Hill    (b) Semi-Circular Hill 

     ሺܴ ൌ 0.9999ሻ                     (Courtesy of Lee et al, 2006)    

 

Beside the above comparison with the existing work by Lee et al, 2006, our 

proposed solutions for both shallow and deep semi-elliptical hills demonstrate 

very consistent numerical results as we evaluate Figure 3.2a against 4.2a and 

3.3a against 4.3a; this may confirm the reliability of the angular half-range 

expansions. 
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Effects of Height-to-Width Ratio of Elliptical Hills, and of ent Angle: Incid

Amplitudes of surface displacements for ܴ ൌ 1.1, 1.3, 1.5, 1.7 and 1.9, equivalent 

to height-to-width ratio of 0.55, 0.65, 0.75, 0.85 and 0.95 respectively, are shown 

in Figures 4.4 through 4.23. They are the three-dimensional plots of 

displacement amplitudes at one of four incident angles of ߛ ൌ 0°, 30°, 60° and 

90° versus the distance y/A on and around the hill and the dimensionless 

frequency ߟ in the range of 0.5 to 10. In addition the amplitudes in the range of 

y/A in ሾെ1,1ሿ are those on the elliptical surface of the hill. However it is noted that 

an angle of incidence measures from the vertical axis. 

 

As the aspect ratio ܴ becomes bigger, the surface displacement demonstrates 

more complex pattern, which also depends on the angle of incidence. For nearly 

horizontal angles of incidence ሺߛ ൌ 60° and 90°ሻ, the ground surface in a 

neighborhood of the zenith experiences smaller disturbance. As aspect ratio ܴ 

an nt amplitudes in 

e v ity of unity l ilar 

 shallow semi-elliptical hills, the shielding effect of the 

ሺݕ ܣ ൌ 1⁄ ሻ is also observed for the glazing angles since the right 

d the frequency of incidence become larger, the displaceme

th  icin may possib y occur (for example; R = 1.9 and ߟ  3). Sim

to semi-circular and

incoming waves from the left is noticeable, resulting in a standing wave pattern in 

the front of the hill and minor deviation of the displacement amplitude from the 

uniform half-space amplitude (|ݓ| ൌ 2) in the back of the hill. The sudden jump of 

the displacement amplitude, which normally is the maximum value, at the right 

edge of the hill 
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rim causes the reflection and diffraction of the incoming waves in the elliptical hill, 

ive 

focusing of the amplitude at this edge. While possibly maximum amplitudes of 

surface displacement for the horizontal angles of incidence are about 4, the 

maximum amplitudes of 5 or larger are perhaps monitored for vertical incidence.  

 

 

and the hill becomes a wave trap resulting in the destructive/construct

interferences between the incident, reflected and diffracted waves and the 

 

Figure 4.4: Displacement Amplitude for ܴ ൌ 0.11 when ߛ ൌ 0°  
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Figure 4.5: Displacement Amplitude for ܴ ൌ 1.1 when ߛ ൌ 30° 

 

 

Figure 4.6: Displacement Amplitude for ܴ ൌ 1.1 when ߛ ൌ 60° 
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Figure 4.7: Displacement Amplitude for ܴ ൌ 1.1 when ߛ ൌ 90° 

 

Figure 4.8: Displacement Amplitude fo ܴ ൌ 1.3 when ߛ ൌ 0° 

 

 

 

r 
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Figure 4.9: Displacement Amplitude for ܴ ൌ 1.3 when ߛ ൌ 30° 

  

Figure 4.10: Displacement Amplitude for ܴ ൌ 1.3 when ߛ ൌ 60° 
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Figure 4.11: Displacement Amplitude for ܴ ൌ  when ߛ ൌ   1.3 90°

 

 

Figure 4.12: Displacement Amplitude for ܴ ൌ 1.5 when ߛ ൌ 0° 
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Figure 4.13: Displacement Amplitude fo ܴ ൌ 1.5 when ߛ ൌ 30° 

 

 

Figure 4.14: Displacement Amplitude for ܴ ൌ 1.5 when ߛ ൌ 60° 

 

 

r 
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Figure 4.15: Displacement Amplitude for ܴ ൌ 1.5 when ߛ ൌ 90° 

 

Figure 4.16: Displacement Amplitude for ܴ ൌ 1.7 when ߛ ൌ 0° 
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Figure 4.17: Displacement Amplitude for ܴ ൌ  when ߛ ൌ °1.7 30  

 

 

Figure 4.18: Displacement Amplitude for ܴ ൌ 1.7 when ߛ ൌ 60° 
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Figure 4.19: Displacement Amplitude fo ܴ ൌ 1.7 when ߛ ൌ 90° 

 

 

Figure 4.20: Displacement Amplitude for 1.9 when ߛ ൌ 0° 

 

 

r 

ܴ ൌ



65 
 

Figure 4.21: Displacement Amplitude for ܴ ൌ 1.9 when ߛ ൌ 30° 

 

Figure 4.22: Displacement Amplitude for ܴ ൌ 1.9 when ߛ ൌ 60° 
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1.9 90°

 

Figure 4.23: Displacement Amplitude for ܴ ൌ  when ߛ ൌ  
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CHAPTER 5: SCATTERING OF PLANE (SH) WAVES BY 
A SHALLOW SEMI-ELLIPTICAL HILL   
WITH AN ELLIPTICAL TUNNEL      

 

As a matter of fact, the presence of a tunnel, cave or cavern is very common in 

mountain area. It is necessary to consider their influence to a site in seismic 

regions. In this chapter, an analytic solution to the boundary-valued problem of 

the two-dimensional scattering of anti-plane (SH) waves by a shallow semi-

elliptical hill with a concentric tunnel is presented. Scattering effects due to the 

existence of elliptical tunnel in the hill are studied and compared with the results 

of Chapter 3, the scattering effects due to the shallow semi-elliptical hill.  

 

5.1 The Shallow Semi-Elliptical Hill                                    
with an Elliptical Tunnel Model 

The cross-section of two-dimensional model is shown in Figure 5.1. Similar 

configuration, material properties, and coordinate systems to what we have in 

Chapter 3 are employed here, but with the presence of a concentric tunnel; A, B 

and ܽ are expressed as in Chapter 3, while T is the half-width of the tunnel. The 

model consists of the two regions. The exterior region D consists of and extends 

over the same domain and boundaries as shown in section 3.1, while the 

regions ߗ is the full-elliptical ring which has the outer boundaries ܮ and ܮ and the 

inner boundary ߩ ,ܯ ൌ    .ூߩ
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Figure 5.1: Shallow Semi-Elliptical Hill with an Elliptical Tunnel Model 

 

 
 

 

5.2 Series Expansion of Wave Functions  

Incident and Reflected Waves:  

The same excitation ݓ, consisting of infinite trains of plane SH waves and 

travelling in the direction ߛ to positive x axis, as shown in Chapter 3 is applied. 

Moreover in the free field, no existence of the hill and tunnel, the incident waves 

strike the flat surface Γ and create the reflected plane waves ݓ; their summation 

yields the free field waves which can be expressed in elliptical coordinate as 

Equation (3.3).  
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Scattered and Transmitted Waves:  

The expression of the scattered and diffracted outgoing waves ݓ௦ in the exterior 

region D, Equation (3.4), once more is applicable here, but we need the different 

expression of transmitted waves to Equation (3.5); therefore the transmitted 

waves may take the form 

௧ݓ ൌ ∑ ቂܤܿܯ
ሺଷሻሺߩ, ሻݍ  ܿܯܦ

ሺସሻሺߩ, ,ߴሻቃܿ݁ሺݍ ሻஶݍ
ୀ                                        

           ∑ ቂܥݏܯ
ሺଷሻሺߩ, ሻݍ  ݏܯܧ

ሺସሻሺߩ, ,ߴሺ݁ݏሻቃݍ ሻஶݍ
ୀଵ ூߩ ;  ߩ  ைߩ

 (5.1)  

where ܤ, ܥ, ܦ, and ܧ, beside ܣ in Equation (3.4), are additional unknown 

coefficients to be calculated.  The transmitted waves in the interior region ߗ 

ሺߩை  ߩ  ,ߩ 0  ߴ  ܿܯ ሻ haveߨ2
ሺଷሻሺ·ሻ, ݏܯ

ሺଷሻሺ·ሻ, ܿܯ
ሺସሻሺ·ሻ and ݏܯ

ሺସሻሺ·ሻ as radial 

wave functions since their asymptotic behaviors are Hankel functions of the first 

kind and of second kind, representing outgoing and incoming waves in the full 

elliptical region ߗ (Pao and Mow, 1973). Furthermore both ܿ݁ሺ·ሻ and ݁ݏሺ·ሻ are 

employed since they form a complete orthogonal set of angular domain in the 

region 0 ,ߗ  ߴ   .ߨ2

 

Solution of the Problem using Angular Half-range Expansion  

The wave functions of the total displacement, ݓ ൌ ݓ   ௦, in the exteriorݓ

region D and the transmitted wave, ݓ௧, in the elliptical region ߗ must satisfy the 

Helmholtz equation, Equation (2.8), and the additional boundary condition, 
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beside those in Chapter 3; the traction-free boundary condition at the surface of 

the elliptical tunnel  ሺߩ ൌ ,ூߩ 0  ߴ   ሻߨ2

߬ఘ௭ห
ఘୀఘ

ൌ ఓ


డ௪

డఘ
ቚ

ఘୀఘ
ൌ 0 (5.2) 

Applying the above condition and utilizing orthogonality of elliptical sine and 

cosine functions, therefore we obtain ܤ ൌ െቂܿܯ
ሺଷሻ′ሺߩூ, ሻݍ ܿܯ

ሺସሻ′ሺߩூ, ሻൗݍ ቃܦ  

and ܥ ൌ െቂݏܯ
ሺଷሻ′ሺߩூ, ሻݍ ݏܯ

ሺସሻ′ሺߩூ, ሻൗݍ ቃܧ. Hence unknowns ܦ and ܧ could be 

eliminated and previous Equation (5.1) can be rewritten as  

 
௧ݓ ൌ ∑ ܿܯ

ሺଷሻሺߩ, ሻݍ െ ெ
ሺయሻᇲሺఘ,ሻ

ெ
ሺరሻᇲሺఘ,ሻ

ܿܯ
ሺସሻሺߩ, ሻ൨ݍ ,ߴܿ݁ሺܤ ሻ                                 ஶݍ

ୀ

            ∑ ݏܯ
ሺଷሻሺߩ, ሻݍ െ ெ௦

ሺయሻᇲሺఘ,ሻ

ெ௦
ሺరሻᇲሺఘ,ሻ

ݏܯ
ሺସሻሺߩ, ሻ൨ݍ ,ߴሺ݁ݏܥ ሻஶݍ

ୀଵ ூߩ ;  ߩ  ைߩ

  (5.3)  

Later to determine other unknowns of the wave functions, boundary conditions, 

Equations (3.6) through (3.8), along the interface ߩ ൌ  ை are applied. Again theߩ

transmitted waves ݓ௧ consisting of both elliptical cosine and sine must satisfy 

two disjoint sets of boundary conditions, the continuity of displacement and radial 

stress along the interface ܮ, Equations (3.8). Similar treatment we developed in 

the previous Hill model must be utilized; ݁ݏሺߴ,  ሻ can be expanded as theݍ

elliptical cosine series in the half-ranges. As a result the transmitted waves ݓ௧ 

and the corresponding radial stress become 

௧ݓ ൌ ∑ ܿܯ
ሺଷሻሺߩ, ሻݍ െ ெ

ሺయሻᇲሺఘ,ሻ

ெ
ሺరሻᇲሺఘ,ሻ

ܿܯ
ሺସሻሺߩ, ሻ൨ݍ ,ߴܿ݁ሺܤ ሻஶݍ

ୀ                                    

ט ∑ ∑ Ձ
ஶ
ୀଵ ݏܯ

ሺଷሻሺߩ, ሻݍ െ ெ௦
ሺయሻᇲሺఘ,ሻ

ெ௦
ሺరሻᇲሺఘ,ሻ

ݏܯ
ሺସሻሺߩ, ሻ൨ݍ ,ߴܿ݁ሺܥ ሻஶݍ

ୀ

(5.4)   
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߬ఘ௭
௧ ൌ ఓ


∑ ܿܯ

ሺଷሻᇱሺߩ, ሻݍ െ ெ
ሺయሻᇲሺఘ,ሻ

ெ
ሺరሻᇲሺఘ,ሻ

ܿܯ
ሺସሻᇱሺߩ, ሻ൨ݍ ,ߴܿ݁ሺܤ ሻஶݍ

ୀ                              

ט     ఓ


∑ ∑ Ձ
ஶ
ୀଵ ݏܯ

ሺଷሻᇱሺߩ, ሻݍ െ ெ௦
ሺయሻᇲሺఘ,ሻ

ெ௦
ሺరሻᇲሺఘ,ሻ

ݏܯ
ሺସሻᇱሺߩ, ሻ൨ݍ ,ߴܿ݁ሺܥ ሻஶݍ

ୀ

(5.5)  

where –ve above and +ve below are assigned for െߨ  ߴ  0 and 0  ߴ   ߨ

respectively; Ձ is given by Equation (2.29). Then displacement and stress 

functions of far-field, scattered and transmitted waves are in the form of elliptical 

cosine series, boundary conditions are convenient to apply. These wave 

functions routinely satisfy the traction-free boundary, Equation (3.6).  Applying 

the traction-free at the surface of the elliptical hill, Equation (3.7), yields 

ܤ ൌ
∑ Ձ

ಮ
సభ ቌெ௦

ሺయሻᇲሺఘೀ,ሻି ಾೞ
ሺయሻᇲ൫ഐ,൯

ಾೞ
ሺరሻᇲ൫ഐ,൯

ெ௦
ሺరሻᇲሺఘೀ,ሻቍ

ெ
ሺయሻᇲሺఘೀ,ሻି 

ಾ
ሺయሻᇲ൫ഐ,൯

ಾ
ሺరሻᇲ൫ഐ,൯

ெ
ሺరሻᇲሺఘೀ,ሻ

 (5.6)  

Then applying the continuity of displacement and stress at the interface ܮ yields 
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ܿܯ݅ݓ4
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ቊ
ܿܯ݅ݓ4

ሺଵሻᇱሺߩை, ,ߛሻܿ݁ሺݍ ሻݍ
   ܿܯ

ሺଷሻᇱሺߩை, ܣሻݍ
ቋ ൌ

ە
۔

∑ۓ Ձ
ஶ
ୀଵ ݏܯ

ሺଷሻᇱሺߩ, ሻݍ െ ெ௦
ሺయሻᇲሺఘ,ሻ

ெ௦
ሺరሻᇲሺఘ,ሻ

ݏܯ
ሺସሻᇱሺߩ, ሻ൨ݍ ܥ

  ܿܯ
ሺଷሻᇱሺߩ, ሻݍ െ ெ

ሺయሻᇲሺఘ,ሻ

ெ
ሺరሻᇲሺఘ,ሻ

ܿܯ
ሺସሻᇱሺߩ, ሻ൨ݍ ܤ ۙ

ۘ

ۗ
  (5.8) 

Equations (5.6), (5.7) and (5.8) establish three sets of infinite equations for the 

three sets of unknowns ܣ, ܤ and ܥ. To solve this numerically can be done by 

first plugging ܤ, which is in term of ܥ, from Equation (5.6) into Equations (5.7) 

and (5.8). Next ܣ can be eliminated by setting in term of ܥ, and afterward the 
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infinite linear equation in ܥ would be formulated. By matrix truncation, we can 

solve for some first terms of ܥ. Lastly ܣ and ܤ  could be determined by back 

substitution of ܥ into their relationships. 

 

5.3 Results and Analysis 

Amplitudes of ground motions are analyzed. Similar to Chapters 3 and 4 we 

assume the excitation with amplitude 1, and present the results in term of the 

dimensionless parameters ߟ and R which are defined by Equations (3.16) and 

(3.18); the focal length is also given by Equation (3.17). Furthermore to 

investigate the scattering effect due to the presence of an elliptical tunnel, 

dimensionless parameter ்ߟ is introduced and expressed as 

்ߟ ൌ ଶ்
ఒ

ൌ ்


  (5.9) ߟ

where ܶ is the half-width of the tunnel. For each aspect ratio R, its minimum 

value of ܶ is equal to the focal length;  

ܽ ൌ 
௦൫௧షభሺ ⁄ ሻ൯

 (3.17)  

Due to numerical constraint, we limit ܶ to 0.8ܣ. As a result, 0.6 is the minimum 

aspect ratio ܴ in this chapter. Table 3.1 shows the minimum ratio ܶ ⁄ܣ  for the 

corresponding the aspect ratio ܴ; noted that ܴ less than 0.6 would yield the ratio 

ܶ ⁄ܣ  greater than 0.8. 
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Table 5.1:  The Minimum Ratio ܶ ⁄ܣ  of the Aspect Ratio ܴ 

ܴ Minimum ܶ ⁄ܣ  
0.6 0.8 
0.8 0.6 

0.9999 0.0006 

 

 

Comparison with the Solutions of “Circular” Semi-Elliptical Hill: 

When a concentric tunnel is really tiny in comparison to the hill, wave functions 

derived previously must be in agreement with those of semi-elliptical hill without 

tunnel. Theoretically this can be verified by the consideration of asymptotic 

values of ெ
ሺయሻ′ሺఘ,ሻ

ெ
ሺరሻ′ሺఘ,ሻ

 and ெ௦
ሺయሻ′ሺఘ,ሻ

ெ௦
ሺరሻ′ሺఘ,ሻ

 when ߩூ approaches zero; however this is only 

applicable to R = 0.9999 since the tunnel may be assigned to be so small without 

becoming a slit-like. Since we know that ܿܯ
ሺଵሻ′ሺ0, ሻݍ ൌ ݏܯ 

ሺଵሻ′ሺ0, ሻݍ ൌ 0 (Mechel, 

1997), we obtain  limఘ՜ ெ
ሺయሻ′ሺఘ,ሻ

ெ
ሺరሻ′ሺఘ,ሻ

൨ ൌ lim
ఘ՜

ெ௦
ሺయሻ′ሺఘ,ሻ

ெ௦
ሺరሻ′ሺఘ,ሻ

൨ ൌ െ1 . 
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lim
ఘ՜

ݏܯ
ሺଷሻ′ሺߩ, ሻݍ െ ெ௦

ሺయሻ′ሺఘ,ሻ

ெ௦
ሺరሻ′ሺఘ,ሻ

ݏܯ
ሺସሻ′ሺߩ, ሻ൨ݍ ൌ ݏܯ

ሺଵሻ′ሺߩ,   ሻݍ

After inserting the above asymptotic values back to Equations (5.3) through (5.8), 

we obtain the identical equations to those of the semi-elliptical hill model without 

tunnel. 

 

Figure 5.2: Displacement Amplitudes of Ground Motion at ߟ ൌ 1 

    

(a)  “Circular ” Semi-Elliptical Hill    (b)  Semi-Circular Hill  

with an elliptical tunnel ்ߟ ൌ 0.1 
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The previous Figure (5.2) illustrates the similarity for both semi-elliptical hills with 

and without a concentric tunnel when semi-elliptical tends to semi-circular 

ሺܴ ൌ 0.9999ሻ at ߟ ൌ ்ߟ ;1 ൌ 0.1 is assigned for the case of tunnel.  As expected 

their trends are in agreement with 2% difference at large for the maximum 

values; this validates the fact that the long waves do not feel any undersized 

topographic irregularity. 

 

Figure 5.3: Displacement Amplitude for ܴ ൌ 0.6 at ߟ ൌ 5 

   

(a)  with Tunnel; ܶ ൌ 0.8ܣ       (b)  without Tunnel 
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Effects of Tunnel, and Incident Angle to Semi-Elliptical Hill: 

To study the effect of the existence of an elliptical tunnel, we consider only three 

aspect ratios ܴ; 0.6, 0.8 and 0.9999. In addition per limitation shown in Table 3.1, 

we investigate the effect of the tunnel by assuming ܶ ൌ 0.8ܣ only for ܴ ൌ 0.6 and 

0.8, and ܶ ൌ 0.2ܣ0.5 ,ܣ and 0.8ܣ for ܴ ൌ 0.9999 “circular” elliptical tunnel. Once 

more we consider the effect of incident angle by assuming four different incident 

angles of ߛ ൌ 0°, 30°, 60° and 90° for each case of study.  

 

Figure 5.4: Displacement Amplitude for ܴ ൌ 0.6 at ߟ ൌ 10 

   

(a)  with Tunnel; ܶ ൌ 0.8ܣ        (b)  without Tunnel 
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Figures 5.3 to 5.4 illustrate amplitudes of surface displacements at four 

prescribed incidences versus the distance x/A on and around the hill with the 

dimensionless frequency ߟ ൌ 5 and 10 for the semi-elliptical hill ܴ ൌ 0.6 with an 

elliptical tunnel ܶ ൌ 0.8ܣ; their corresponding plots of surface displacement for 

the semi-elliptical hill without a tunnel are shown on their right-hand side. 

 

Figure 5.5: Displacement Amplitude for ܴ ൌ 0.8 at ߟ ൌ 5 

    

(a)  with Tunnel; ܶ ൌ 0.8ܣ       (b)  without Tunnel 
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We found that the existence of the tunnels has significant effect on the amplitude 

of ground motion. In general the presence of the tunnels makes maximum values 

of the displacement lower; except at ߛ ൌ 0° for ߟ ൌ 5. Their corresponding 

locations are shifted for ߛ ൌ 30° and 60°. The shielding effect of tunnel becomes 

stronger for the surface in its vicinity. An incident angle seems rather irrelevant 

on the displacement amplitudes of points vertically above tunnel; these amplitude 

values are about to or less than 2. 

 

Figure 5.6: Displacement Amplitude for ܴ ൌ 0.8 at ߟ ൌ 10 

   (a)  

with Tunnel; ܶ ൌ 0.8ܣ       (b)  without Tunnel 
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Next let consider the semi-elliptical hill ܴ ൌ 0.8 with the same tunnel-size ratio as 

previous case ܶ ൌ 0.8ܣ. Figures 5.5 and 5.6 illustrate amplitudes of surface 

displacements at four prescribed incident angles with the dimensionless 

frequency ߟ ൌ 5 and 10; again their corresponding plots for the semi-elliptical hill 

without a tunnel are also shown on their right-hand side. Similar tendency to 

previous case of ܴ ൌ 0.6 is spotted. The surface displacements on the hill are 

obviously lower with the existence of the tunnel. 

 

Figure 5.7: Displacement Amplitude for ܴ ൌ 0.9999 with Tunnel ܶ ൌ 0.8ܣ 

    

(a)  ߟ ൌ 5             (b)  ߟ ൌ 10  
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There are two major differences in wave patterns for the slit-like tunnel in 

comparison to elliptical tunnel; it may be considered as the shape effect. First, 

stronger pattern of standing waves is observed for the case of the elliptical tunnel 

with, especially, nearly grazing incidence. Second the slit-like tunnel is more 

effective in shielding the incoming waves in nearly vertical direction; their surface 

displacements are less than ones of the elliptical tunnel. 

 

Figure 5.8: Displacement Amplitude for ܴ ൌ 0.9999 with Tunnel ܶ ൌ 0.2ܣ 

    

(a)  ߟ ൌ 5             (b)  ߟ ൌ 10  
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To further elaborate the shape effect of tunnel, we may compare Figure 5.7, the 

surface displacements due to “circular” elliptical tunnel with the same tunnel-size 

ratio ܶ ൌ 0.8ܣ, with Figures 5.3 through 5.6. For ߛ ൌ 0°, the circular-like tunnel 

creates stronger shadow zone on the right-side of the hill; their amplitudes are in 

the neighborhood of unity or less. Still this tunnel is less efficient in shielding the 

vertical waves than other tunnels as expected; their maximum surface 

displacements are higher than other cases. 

 

Figure 5.9: Displacement Amplitude for ܴ ൌ 0.9999 with Tunnel ܶ ൌ 0.5ܣ 

   

(a)  ߟ ൌ 5               (b)  ߟ ൌ 10  
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To study the influence of tunnel-size, we consider only “circular” semi-elliptical hill 

with a “circular” elliptical tunnel due to the limitation of the formulation previously 

mentioned. After evaluating Figures 5.8 and 5.9 of “circular” tunnels ܶ ൌ 0.2ܣ 

and 0.5ܣ against the above figure, it may be said that for nearly horizontal angle 

the standing waves on the left-side become more prominent as the tunnel is 

getting larger. In addition for vertical angle, the maximum value of surface 

displacement is noticeably less when the elliptical obstacle gets bigger. Besides 

that, the surface displacements on both sides of the hill become progressively 

more fluctuated as the obstacle become larger apparently for all angles.  

 

Figures 5.10 through 5.29 show three-dimensional plots of surface 

displacements for ܴ ൌ 0.6, 0.8, and 0.9999, equivalent to the height-to-width 

ratios of 0.3, 0.4, and 0.4999 respectively; the values of ܶ for particular ܴ are as 

at the beginning of this section.  Each figure illustrates the plots at four incident 

angles, ߛ ൌ 0°, 30°, 60° and 90°, versus the distance x/A on and around the hill 

and the dimensionless frequency ߟ in the range of 0.5 to 10; the amplitudes in 

the range of x/A in ሾെ1,1ሿ are those on the elliptical surface of the hill. 

 

Figures 5.10 through 5.17 show that the presence of a tunnel and direction of 

incident waves have great effect on surface displacement. For nearly horizontal 

angles, the local jump of surface displacement in the neighborhood of the right 

edge  of  the hill  ሺݔ ܣ ൌ 1⁄ ሻ  common  for  all  cases  of  semi-elliptical  hill  is  not 
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Figure 5.10: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 5.11: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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detected due to shadow zone formed by a tunnel; surface displacement on a hill 

is typically in vicinity of 2 or less with the exception of some particular values of ߟ. 

This phenomenon may be explained by the fact that a tunnel easily reflects some 

input waves back and forth with the hill surface. For nearly vertical angles of 

incidence, in general surface displacement is greatly hindered by a tunnel. 

 

Clearly, Figures 5.18 through 5.29 also validate what we have mentioned earlier 

about the shape and size effects of tunnels; moreover pattern of all surface 

displacement turn out to be increasingly more complicated when the incident 

waves become shorter.  

 

Figure 5.12: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 



85 
 

Figure 5.13: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  

 

 

Figure 5.14: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  
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Figure 5.15: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  

  

 

Figure 5.16: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 60°   
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Figure 5.17: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  

 

 

Figure 5.18: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  
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Figure 5.19: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  

 

 

Figure 5.20: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  
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Figure 5.21: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  

 

 

Figure 5.22: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  
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Figure 5.23: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 30°  

 

 

Figure 5.24: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 60° 
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Figure 5.25: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 90° 

 

 

Figure 5.26: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  
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Figure 5.27: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  

 

 

Figure 5.28: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  
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Figure 5.29: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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CHAPTER 6: SCATTERING OF PLANE (SH) WAVES BY 
A DEEP SEMI-ELLIPTICAL HILL WITH  
AN ELLIPTICAL TUNNEL      

 

In this chapter, an analytic solution to the boundary-valued problem of the two-

dimensional scattering of anti-plane (SH) waves by a deep semi-elliptical hill with 

a concentric tunnel is presented. Scattering effects due to the existence of 

elliptical tunnel in the hill are studied and compared with the results of Chapter 4, 

the scattering effects due to the presence of deep semi-elliptical hill.  

 

6.1 The Deep Semi-Elliptical Hill                                    
with an Elliptical Tunnel Model 

The cross-section of two-dimensional model is shown in Figure 6.1; identical 

configuration, material properties, and coordinate systems to what we have in 

Chapter 4 are employed here, but with the presence of a concentric tunnel; A, B 

and ܽ are expressed as in Chapter 4, while T is the half-width of the tunnel. The 

model consists of the two regions. The exterior region D expands over the similar 

domain and boundaries to section 4.1, while the regions ߗ is the complete 

elliptical ring which has the outer boundaries ܮ and ܮ and the inner boundary ܯ, 

ߩ ൌ    .ூߩ
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Figure 6.1: Deep Semi-Elliptical Hill with an Elliptical Tunnel Model 

 
 

 

6.2 Series Expansion of Wave Functions  

Incident and Reflected Waves:  

The same excitation ݓ and reflected waves, infinite trains of plane SH waves 

travelling in the directions ߨ െ  to positive x axis, as shown in Chapter 4 ߛ and ߛ

are applied. Moreover in the free field, no existence of the hill and tunnel, their 

summation yields the free field waves which can be expressed as Equation (4.1) 

in elliptical coordinate system. 
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Scattered and Transmitted Waves:  

The expression of the scattered and diffracted outgoing waves ݓ௦ in the exterior 

region D, Equation (4.2), is valid here. Even though we utilize different model to 

one of Chapter 5, identical expression of transmitted waves to Equation (5.1) is 

applicable too since we require asymptotic behaviors of Hankel functions of the 

first kind and of second kind, representing outgoing and incoming waves in the 

full elliptical region ߗ. In addition to form the complete orthogonal set of angular 

domain in the region ߗ, both elliptical cosine and sine functions must be 

employed. 

 

Solution of the Problem using Angular Half-range Expansion  

The total displacement ݓ ൌ ݓ   ௦ in the exterior region D and the transmittedݓ

displacement ݓ௧ in the ring region ߗ must satisfy the Helmholtz equation, 

Equation (2.8), and the extra boundary condition, the traction-free boundary 

condition at the inner surface of the elliptical tunnel, Equation (4.2), in addition to 

Equations (4.4) through (4.6) in Chapter 4. After applying this traction-free 

boundary condition at the inner surface and orthogonality of elliptical sine and 

cosine functions, unknowns ܦ and ܧ could be eliminated and same expression 

of the transmitted wave function as Equation (5.3) has been reached. 
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Other unknowns of the wave functions can be obtained after applying boundary 

conditions along the interface ߩ ൌ  ை, Equations (4.4) through (4.6). Again theߩ

transmitted waves ݓ௧ consisting of both elliptical cosine and sine must satisfy 

two disjoint sets of boundary conditions, the continuity of displacement and radial 

stress along the interface ܮ, Equations (4.6). The expansion technique we 

developed in the Hill model must be utilized; ܿ݁ଶାଵሺߴ, ,ߴଶାଶሺ݁ݏ ሻ andݍ  ሻ mustݍ

be expanded as the series of elliptical cosine functions of odd order and elliptical 

sine functions of even order ሼܿ݁ଶାଵሺߴ, ,ሻݍ ,ߴଶାଶሺ݁ݏ ;ሻݍ  ݊ ൌ 0, 1, 2, … ሽ in the half-

range ሾെߨ 2⁄ , ߨ 2⁄ ሿ (and similarly in ሾߨ 2⁄ , െ ߨ 2⁄ ሿ). As a result the transmitted 

waves ݓ௧ and the corresponding radial stress become 

௧ݓ ൌ ∑ ܿܯଶ
ሺଷሻሺߩ, ሻݍ െ ெమ

ሺయሻᇲሺఘ,ሻ

ெమ
ሺరሻᇲሺఘ,ሻ

ଶܿܯ
ሺସሻሺߩ, ሻ൨ݍ ,ߴଶܿ݁ଶሺܤ ሻ                             ஶݍ

ୀ

ט ∑ ै ܿܯଶାଵ
ሺଷሻ ሺߩ, ሻݍ െ ெమశభ

ሺయሻᇲ ሺఘ,ሻ

ெమశభ
ሺరሻᇲ ሺఘ,ሻ

ଶାଵܿܯ
ሺସሻ ሺߩ, ሻ൨ݍ ,ߴଶାଵܿ݁ଶሺܤ ሻஶݍ

,ୀ

 ∑ ݏܯଶାଵ
ሺଷሻ ሺߩ, ሻݍ െ ெ௦మశభ

ሺయሻᇲ ሺఘ,ሻ

ெ௦మశభ
ሺరሻᇲ ሺఘ,ሻ

ଶାଵݏܯ
ሺସሻ ሺߩ, ሻ൨ݍ ,ߴଶାଵሺ݁ݏଶାଵܥ ሻஶݍ

ୀ               

ט    ∑ ॉ ݏܯଶାଶ
ሺଷሻ ሺߩ, ሻݍ െ ெ௦మశమ

ሺయሻᇲ ሺఘ,ሻ

ெ௦మశమ
ሺరሻᇲ ሺఘ,ሻ

ଶାଶݏܯ
ሺସሻ ሺߩ, ሻ൨ݍ ,ߴଶାଵሺ݁ݏଶାଶܥ ሻஶݍ

,ୀ

  (6.1) 

߬ఘ௭ ൌ ఓ


∑ ܿܯଶ
ሺଷሻᇱሺߩ, ሻݍ െ ெమ
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ט  ఓ
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ெమశభ
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ଶାଵܿܯ
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 ఓ


∑ ݏܯଶାଵ
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ሺయሻᇲ ሺఘ,ሻ

ெ௦మశభ
ሺరሻᇲ ሺఘ,ሻ

ଶାଵݏܯ
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ט    ఓ


∑ ॉ ݏܯଶାଶ
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ெ௦మశమ
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ሺସሻᇱ ሺߩ, ሻ൨ݍ ,ߴଶାଵሺ݁ݏଶାଶܥ ሻஶݍ

,ୀ

(6.2) 

where –ve above and +ve below are assigned for ߨ 2⁄  ߴ  െ ߨ 2⁄  and െ ߨ 2⁄ 

ߴ  ߨ 2⁄ ; ै and ॉ are given by Equations (2.35) and (2.38). As all 



98 
 

displacement and stress functions of far-field, scattered and transmitted waves 

are the series of elliptical cosine series with order 2n and of elliptical sine series 

with order 2n+1, these wave functions customarily satisfy the traction-free 

boundary, Equation (4.4), and other conditions can be applied by utilization of 

orthogonality of elliptical cosine and sine functions. Applying the traction-free 

condition at the surface of the elliptical hill, Equation (4.5), yields 

ଶܤ ൌ
∑ ैమశభቌெమశభ

ሺయሻᇲ ሺఘೀ,ሻ ି 
ಾమశభ

ሺయሻᇲ ൫ഐ,൯

ಾమశభ
ሺరሻᇲ ൫ഐ,൯

ெమశభ
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ಾమ
ሺయሻᇲ൫ഐ,൯

ಾమ
ሺరሻᇲ൫ഐ,൯

ெమ
ሺరሻᇲሺఘೀ,ሻ

  (6.3)  

ଶାଵܥ ൌ
∑ ॉమశమቌெ௦మశమ
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  (6.4)  

Then applying the continuity of displacement and stress at the interface ܮ yields  

ቊ
ଶܿܯሺെ1ሻݓ4

ሺଵሻሺߩை, ,ߛሻܿ݁ଶሺݍ ሻݍ
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ە
۔
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Equations (6.3), (6.5) and (6.6) establish three sets of infinite equations for the 

three sets of unknowns ܣଶ, ܤଶ and ܤଶାଵ, where Equations (6.4), (6.7) and 

(6.8) found other three sets for ܣଶାଵ, ܥଶ and ܥଶାଶ; on each set we have three 

groups of unknown, we can solve them by doing matrix truncation. Similar 

procedure to Chapter 5 can apply here. 

 

6.3 Results and Analysis 

Assuming the excitation with unity amplitude, the influence of tunnel and incident 

angle on ground surface are investigated and the results are presented in term of 

the dimensionless parameters ்ߟ ,ߟ, and R prescribed by Equations (3.16), 

(3.18) and (5.9) respectively. We restrict values of ܴ to 1.00002, 1.2, 1.4, and 

1.6, which are equivalent the height-to-width ratios of 0.50001, 0.6, 0.7, and 0.8 

respectively. We also restrict values of ܶ, width of tunnel, to 0.2ܣ0.5 ,ܣ and 0.8ܣ; 

these apply to every value of R.  

 

Comparison with the Solutions of “Circular” Elliptical Case: 

If, in comparison to the hill, a tunnel is really small and wave length of input 

waves is comparably long, the above wave functions must be identical to those 

of semi-elliptical hill without tunnel; however this is applicable to R = 1.00002 

since  the  tunnel  could  be  assigned  to  be  so  small  without  becoming a line.  
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Applying asymptotic values of ெ
ሺయሻ′ሺఘ,ሻ

ெ
ሺరሻ′ሺఘ,ሻ

 and ெ௦
ሺయሻ′ሺఘ,ሻ

ெ௦
ሺరሻ′ሺఘ,ሻ

 when ߩூ approaches zero, 

we obtain the identical equations to those of the semi-elliptical hill model without 

tunnel in Chapter 4.  

 

Figure 6.2: Displacement Amplitudes of Ground Motion at ߟ ൌ 1 

    

(a)  “Circular” Semi-Elliptical Hill      (b) “Circular” Semi-Elliptical Hill    

with an elliptical tunnel ்ߟ ൌ 0.1 
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The prior Figure 6.2 demonstrates the resemblance for both semi-elliptical hills 

with and without an elliptical tunnel when ܴ ൌ 1.00002 at ߟ ൌ 1 and ்ߟ ൌ 0.1 for 

the tunnel.  We found out that the derived results are remarkably in harmonic not 

only to the reference, semi-circular, but also to results shown in Figure 5.2a; less 

than 3% difference for the maximum values.    

 

Figure 6.3: Displacement Amplitudes for ܴ ൌ 1.00002 with Tunnel ܶ ൌ 0.2ܣ 

    

(a)  ߟ ൌ 5                  (b)  ߟ ൌ 10  
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Figures 6.3 through 6.5 are the plots of surface displacement for “circular” semi-

elliptical hill with “circular” elliptical tunnel ܶ ൌ 0.2ܣ0.5 ,ܣ and 0.8ܣ respectively; 

on each plot there are 2 subplots for  ߟ ൌ 5 and 10 at four incidence ߛ ൌ 0°, 30°, 

60° and 90°.  The formulation developed in this chapter gives exceptionally 

consistent results in comparison to Figures 5.7, 5.8 and 5.9. 

 

Figure 6.4: Displacement Amplitudes for ܴ ൌ 1.00002 with Tunnel ܶ ൌ 0.5ܣ 

    

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  
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Figure 6.5: Displacement Amplitudes for ܴ ൌ 1.00002 with Tunnel ܶ ൌ 0.8ܣ 

     

(a)  ߟ ൌ 5               (b) ߟ ൌ 10  

 

Effects of Tunnel, and Incident Angle to Semi-Elliptical Hill: 

Figures 6.6 to 6.11 illustrate amplitudes of surface displacements at four 

prescribed incidences versus the distance y/A on and around the hill with the 

dimensionless frequency ߟ ൌ 5 and 10 for the semi-elliptical hill ܴ ൌ 1.2, 1.4 and 

1.6 with an elliptical tunnel ܶ ൌ 0.5ܣ; their corresponding plots of surface 

displacement for the semi-elliptical hill without a tunnel are shown on their right-

hand side. It can be seen that the presence of the tunnel significantly distorts the 
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amplitude of ground motion in comparison to the reference, semi-elliptical hill 

without tunnel. In contrast to semi-elliptical hill which their locations of maximum 

surface displacement may located close to the right-edge of the hill, the tunnel 

causes the reflection and makes the location of maximum amplitude of surface 

displacement always in the left half or front of the hill. Please note that for vertical 

incidence the response is symmetric; consequently there are corresponding 

points of maximum amplitude on both sides of the hill.   

 

Figure 6.6: Displacement Amplitude for ܴ ൌ 1.2 at ߟ ൌ 5 

       

(a)  with Tunnel; ܶ ൌ 0.5ܣ       (b)  without Tunnel 
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Generally when the angle of incidence is nearly parallel to the flat surface tunnels 

turn to be barricades blocking the coming wave passages and creating shadow 

zone on the right-side of the hill; amplitude of ground displacement is always less 

than one. Furthermore the strong oscillation is observed on the left-side of the 

hill; while in the case of semi-elliptical hill this amplitude of ground motion is 

always in the range of 2.5 or less, the existence of tunnels greatly affects the 

displacement in the front of the hill and results in the amplitude greater than 3.    

 

Figure 6.7: Displacement Amplitude for ܴ ൌ 1.2 at ߟ ൌ 10 

      

(a)  with Tunnel; ܶ ൌ 0.5ܣ       (b)  without Tunnel 
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Figure 6.8: Displacement Amplitude for ܴ ൌ 1.4 at ߟ ൌ 5 

      

(a)  with Tunnel; ܶ ൌ 0.5ܣ       (b)  without Tunnel 

 

On another hand tunnels become less efficient obstacles when the angle of 

incidence is nearly vertical. Even though a location of maximum displacement 

amplitude is different from its corresponding reference in the case of inexistence 

of a tunnel, visibly a maximum amplitude value of ground displacement is 

insignificant disturbed by tunnel; the presence of a tunnel amplifies maximum 

displacement by 30%-70% from corresponding value of reference for the 

horizontal incidence, while de-amplifies maximum displacement in the range of 
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1%-15% for the vertical incidence. It can be said that the hinder efficiency of an 

elliptical tunnel depends on the direction of wave passage; the tunnel becomes 

better obstruction when the incident wave is perpendicular to its major axis. 

Moreover the surface displacements on both sides of the hill are more fluctuated 

than the reference.  

 

Figure 6.9: Displacement Amplitude for ܴ ൌ 1.4 at ߟ ൌ 10 

     

(a)  with Tunnel; ܶ ൌ 0.5ܣ       (b)  without Tunnel 
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Figure 6.10: Displacement Amplitude for ܴ ൌ 1.6 at ߟ ൌ 5 

     

(a)  with Tunnel; ܶ ൌ 0.5ܣ       (b)  without Tunnel 

 

To study the influence of tunnel-size, we consider only ܴ ൌ 1.6 with three sizes of 

tunnel, ܶ ൌ 0.2ܣ0.5 ,ܣ and 0.8ܣ. Due to the formulation of the problem, we may 

see this as the width effect; the height of tunnel is very comparable. After 

evaluating Figures 6.12 and 6.13 ܶ ൌ 0.2ܣ and 0.8ܣ respectively against Figures 

6.10 and 6.11, it may be said that the high oscillation of wave passage is 

inconsequent to the size of tunnel for nearly grazing angles; furthermore the 

maximum values of surface displacement are different less than 12 percents. In 
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addition the shadow zone on the left-side of the hill seems independent to the 

change of width at least in the distance of interest, 1  ݕ ⁄ܣ   3; maximum 

surface displacements are less than one at all times. 

 

Figure 6.11: Displacement Amplitude for ܴ ൌ 1.6 at ߟ ൌ 10 

     

(a)  with Tunnel; ܶ ൌ 0.5ܣ       (b)  without Tunnel 
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Figure 6.12: Displacement Amplitude for ܴ ൌ 1.6 with Tunnel ܶ ൌ 0.2ܣ 

    

(a)  ߟ ൌ 5               (b)  ߟ ൌ 10  

     

Contrastingly the size of tunnel, or in this case its width, does really matter when 

the incidence wave is in vertical direction. The maximum values of surface 

displacement become smaller when the width of tunnel gets larger. In addition 

we also found that the wave length plays important role in the size effect since 

the maximum value of displacement is greater affected by the increasing width 

for ߟ ൌ 5 than ߟ ൌ 10. 
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Figure 6.13: Displacement Amplitude for ܴ ൌ 1.6 with Tunnel ܶ ൌ 0.8ܣ 

    

(a)  ߟ ൌ 5               (b)  ߟ ൌ 10  

 

Figures 6.14 through 6.49 show three-dimensional plots of surface 

displacements for ܴ ൌ 1.2, 1.4 and 1.6, equivalent to the height-to-width ratios of 

0.6, 0.7 and 0.8 respectively; three values of ܶ are assigned.  Each figure 

illustrates the plots at four incident angles, ߛ ൌ 0°, 30°, 60° and 90°, versus the 

distance y/A on and around the hill and the dimensionless frequency ߟ in the 

range of 0.5 to 10; the amplitudes in the range of y/A in ሾെ1,1ሿ are those on the 

elliptical surface of the hill. 
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Figure 6.14: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  

 

 

Figure 6.15: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  
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Figure 6.16: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  

 

 

Figure 6.17: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  
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Figure 6.18: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  

 

 

Figure 6.19: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 30°  
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Figure 6.20: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 60°    

 

 

Figure 6.21: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 90°    
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Figure 6.22: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 6.23: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 6.24: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 6.25: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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Figure 6.26: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  

 

 

Figure 6.27: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  
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Figure 6.28: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  

 

 

Figure 6.29: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  
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Figure 6.30: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  

 

 

Figure 6.31: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 30°   
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Figure 6.32: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 60°    

 

 

Figure 6.33: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 90°    
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Figure 6.34: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 6.35: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 6.36: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 6.37: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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Figure 6.38: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  

 

 

Figure 6.39: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  
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Figure 6.40: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  

 

 

Figure 6.41: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  
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Figure 6.42: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  

 

 

Figure 6.43: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 30°   
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Figure 6.44: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 60°    

 

 

Figure 6.45: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 90°    
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Figure 6.46: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 6.47: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 6.48: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 6.49: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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Considering all three-dimensional plots, wave pattern of surface displacement 

becomes visibly more intricate when the incident waves become shorter. In 

addition for the tunnel ܶ ൌ  with nearly grazing angles, we observed quite ܣ0.8

interesting behavior. The surface displacement of points on a hill, which seems to 

be smaller while the dimensionless frequency ߟ gets larger, suddenly jumps at ߟ 

equal to 5 and again diminishes gradually as ߟ becomes bigger.    
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CHAPTER 7: SCATTERING OF PLANE (SH) WAVES BY 
A SHALLOW SEMI-ELLIPTICAL HILL  
WITH A SEMI-ELLIPTICAL TUNNEL     

 

In this chapter, an analytic solution to the boundary-valued problem of the two-

dimensional scattering of anti-plane (SH) waves by a shallow semi-elliptical hill 

with a semi-elliptical tunnel is presented. Scattering effects due to the existence 

of semi-elliptical tunnel in the hill are studied and compared with the results of 

Chapter 5, the scattering effects due to the shallow semi-elliptical hill with an 

elliptical tunnel.  

 

7.1 The Shallow Semi-Elliptical Hill                                    
with a Semi-Elliptical Tunnel Model 

The cross-section of two-dimensional model is shown in Figure 7.1. Similar 

configuration, material properties, and coordinate systems to what we have in 

Chapters 3 and 5 are employed here, but with the presence of a semi-elliptical 

tunnel; A, B and ܽ are expressed as in Chapter 3, while T is again the half-width 

of the tunnel. Due to the configuration of a semi-elliptical tunnel, the model 

consists of the three regions. Similar to sections 3.1 and 5.1, the exterior region 

D consists of and extends over the same domain and boundaries, where the ring 

region ߗ has the outer boundaries ܮ and ܮ and the inner boundaries ܯ and ܯ. 

The last region ߎ is semi-elliptical and bounded by boundaries ܯ and Γ. 
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Figure 7.1: Shallow Semi-Elliptical Hill with a Semi-Elliptical Tunnel Model 

 
 

 

7.2 Series Expansion of Wave Functions  

Incident and Reflected Waves:  

The excitation ݓ consists of infinite trains of plane SH waves and travelling in 

the direction ߛ to positive x axis. In the free field without the existence of the hill 

and tunnel, the incident waves strike the flat surface Γ and create the reflected 

plane waves ݓ; their interference yields the free field waves which can be 

expressed in elliptical coordinate as Equation (3.3). 
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Scattered and Transmitted Waves:  

The scattered waves ݓ௦ in the exterior region D and the transmitted waves ݓΩ
௧  

the ring region ߗ are given by Equations (3.4) and (5.1) respectively. In addition 

the new transmitted waves in the semi-elliptical region ߎ may take the same form 

as Wong and Trifunac (1974a) used in their valley model. 

ஈݓ
௧ ൌ ∑ ܿܯܨ

ሺଵሻሺߩ, ,ߴሻܿ݁ሺݍ ሻஶݍ
ୀ   (7.1)  

where ܨ, in addition to ܣ, ܤ, ܥ, ܦ, and ܧ, in Equations (3.4) and (5.1), is 

unknown coefficient to be calculated. The transmitted waves in the semi-elliptical 

region ߎ have ܿܯ
ሺଵሻሺ·ሻ as radial wave functions since their asymptotic behaviors 

are Bessel functions of the first kind, representing standing waves in the semi- 

elliptical region ߗ (Pao and Mow, 1973). Furthermore only ܿ݁ሺ·ሻ forms a 

complete orthogonal set of angular domain, 0  ߴ   It is noteworthy that the .ߨ

transmitted waves ݓஈ
௧ , Equation (7.1), in the semi-elliptical region ߎ automatically 

satisfies the traction free on the flat surface Γ. 

 

Solution of the Problem using Angular Half-range Expansion  

The wave functions ݓ ൌ ݓ  Ωݓ ,௦ in the exterior region Dݓ
௧  in the elliptical 

region ߗ and ݓΠ
ݐ  in the semi-elliptical region ߎ must satisfy the Helmholtz 

equation, Equation (2.8), and the additional boundary conditions, beside those in 

Chapter 3; the traction-free boundary condition at the surface of the elliptical 
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tunnel  ሺߩ ൌ ,ூߩ ߨ  ߴ  0ሻ and the continuity of displacement and radial stress at 

the interface ܯ. 

߬ఘ௭ห
ఘୀఘ

ൌ ఓ


డ௪

డఘ
ቚ

ఘୀఘ
ൌ 0; ߨ  ߴ  0 (7.2) 

Ωݓ
௧ |ఘୀఘI ൌ ஈݓ

௧ |ఘୀఘI                                

߬ఘ௭ห
ఘୀఘI

ൌ ఓ


డ௪Ω


డఘ
ቚ

ఘୀఘI
ൌ ఓ


డ௪ಀ



డఘ
ቚ

ఘୀఘI

; 0  ߴ   (7.3) ߨ

Here same difficulty comes up since, along the circumferences ߩ ൌ ߩ O andߩ ൌ

Ωݓ I, the transmitted wavesߩ
௧  expressing the displacement motion in the full 

elliptical region once more must satisfy two disjoint sets of boundary conditions; 

for example Equations (7.2) and (7.3).  

 

Hence we must utilize the orthogonality of angular Mathieu functions in the half-

range. Without any intricacy, the transmitted waves ݓΩ
௧  and their radial stresses 

may be expressed as follows 

Ωݓ
௧ ൌ ∑ ቂܤܿܯ

ሺଷሻሺߩ, ሻݍ ט ∑ Ձܥݏܯ
ሺଷሻሺߩ, ሻஶݍ

ୀଵ ቃܿ݁ሺߴ, ሻஶݍ
ୀ                   

  ∑ ቂܦܿܯ
ሺସሻሺߩ, ሻݍ ט ∑ Ձܧݏܯ

ሺସሻሺߩ, ሻஶݍ
ୀଵ ቃܿ݁ሺߴ, ሻஶݍ

ୀ

 (7.4)  

߬ఘ௭
Ω ൌ ∑ ቂܤܿܯ

ሺଷሻᇱሺߩ, ሻݍ ט ∑ Ձܥݏܯ
ሺଷሻᇱሺߩ, ሻஶݍ

ୀଵ ቃܿ݁ሺߴ, ሻஶݍ
ୀ                   

  ∑ ቂܦܿܯ
ሺସሻᇱሺߩ, ሻݍ ט ∑ Ձܧݏܯ

ሺସሻᇱሺߩ, ሻஶݍ
ୀଵ ቃܿ݁ሺߴ, ሻஶݍ

ୀ

 (7.5)  

Again, –ve above and +ve below are assigned for െߨ  ߴ  0 and 0  ߴ   ߨ

respectively,  and Ձ is given by Equation (2.29).  Then all displacement and 

stress functions are convenient to be applied since they are in the form of 

elliptical cosine series. 
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Applying all boundary conditions along both circumferences of the elliptical ring 

region ߗ, we establish six sets of infinite equations for the six sets of unknowns; 

 .ܨ  throughܣ

ቊ
ܿܯܤ

ሺଷሻᇱሺߩை, ሻݍ െ ∑ Ձܥݏܯ
ሺଷሻᇱሺߩை, ሻஶݍ

ୀଵ        
ܦܿܯ

ሺସሻᇱሺߩை, ሻݍ െ ∑ Ձܧݏܯ
ሺସሻᇱሺߩை, ሻஶݍ

ୀଵ
ቋ ൌ 0  (7.6)  

ቊ
ܿܯܤ

ሺଷሻሺߩை, ሻݍ  ∑ Ձܥݏܯ
ሺଷሻሺߩை, ሻ     ஶݍ

ୀଵ

 ܦܿܯ
ሺସሻሺߩை, ሻݍ  ∑ Ձܧݏܯ

ሺସሻሺߩை, ሻஶݍ
ୀଵ

ቋ ൌ ቊ
ܿܯ݅ݓ4

ሺଵሻሺߩை, ,ߛሻܿ݁ሺݍ ሻݍ
ܣܿܯ

ሺଷሻሺߩை, ሻݍ
ቋ   (7.7)  

ቊ
ܿܯܤ

ሺଷሻᇱሺߩை, ሻݍ  ∑ Ձܥݏܯ
ሺଷሻᇱሺߩை, ሻ     ஶݍ

ୀଵ

 ܦܿܯ
ሺସሻᇱሺߩை, ሻݍ  ∑ Ձܧݏܯ

ሺସሻᇱሺߩை, ሻஶݍ
ୀଵ

ቋ ൌ ቊ
ܿܯ݅ݓ4

ሺଵሻᇱሺߩை, ,ߛሻܿ݁ሺݍ ሻݍ
ܣܿܯ

ሺଷሻᇱሺߩை, ሻݍ
ቋ   (7.8)  

ቊ
ܿܯܤ

ሺଷሻᇱሺߩூ, ሻݍ െ ∑ Ձܥݏܯ
ሺଷሻᇱሺߩூ, ሻஶݍ

ୀଵ        
ܦܿܯ

ሺସሻᇱሺߩூ, ሻݍ െ ∑ Ձܧݏܯ
ሺସሻᇱሺߩூ, ሻஶݍ

ୀଵ
ቋ ൌ 0  (7.9)  

ቊ
ܿܯܤ

ሺଷሻሺߩூ, ሻݍ  ∑ Ձܥݏܯ
ሺଷሻሺߩூ, ሻ     ஶݍ

ୀଵ

 ܦܿܯ
ሺସሻሺߩூ, ሻݍ  ∑ Ձܧݏܯ

ሺସሻሺߩூ, ሻஶݍ
ୀଵ

ቋ ൌ ݊ܿܯ݊ܨ
ሺ1ሻሺߩூ,   ሻ   (7.10)ݍ

ቊ
ܿܯܤ

ሺଷሻᇱሺߩூ, ሻݍ  ∑ Ձܥݏܯ
ሺଷሻᇱሺߩூ, ሻ     ஶݍ

ୀଵ

 ܦܿܯ
ሺସሻᇱሺߩூ, ሻݍ  ∑ Ձܧݏܯ

ሺସሻᇱሺߩூ, ሻஶݍ
ୀଵ

ቋ ൌ ݊ܿܯ݊ܨ
ሺଵሻᇱሺߩூ,   ሻ   (7.11)ݍ

The system of Equations (7.6) through (7.11) can be solved numerically by 

matrix truncation. Due to the ill-condition of the matrix, the above system is 

solved by using subroutine LAPACK and the SVD, Singular Matrix 

Decomposition, provided by MATLAB. However the number of terms must be 

large enough to satisfy the required accuracy; in this case we test the accuracy 

of the sum by comparing the series n-term with (n+1)-terms and check if the 

maximum displacements at the same point are within 1%-difference.   
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7.3 Results and Analysis 

Amplitudes of ground motions are analyzed. Similar to previous chapters we 

assume the excitation with amplitude 1, and present the results in term of the 

dimensionless parameters ߟ, R and ்ߟ which are defined by Equations (3.16), 

(3.18) and (5.9). Furthermore to investigate the scattering effect due to the 

presence of a semi-elliptical tunnel, again for each aspect ratio R its minimum 

value of ܶ is equal to the focal length ܽ which is governed by Equation (3.17). 

Since we limit ܶ to 0.80.6 ,ܣ is the minimum aspect ratio ܴ in this chapter; the 

minimum ratio ܶ ⁄ܣ  of the aspect ratio ܴ ൌ 0.6, 0.8 and 0.999 in Table 3.1 are 

applicable. 

 

Comparison with the Solutions of “Circular” Semi-Elliptical Hill: 

When a tunnel is really small in comparison to the hill, ground surface 

displacements obtained from the above equations must be in agreement with 

those of semi-elliptical hill without tunnel. Comparison-wise this is only applicable 

to R = 0.9999 since we could make the tunnel so small without becoming a slit-

like. The following Figure (7.2) shows the similarity for both semi-elliptical hills 

with and without a semi-elliptical tunnel when semi-elliptical tends to semi-

circular ሺܴ ൌ 0.9999ሻ at ߟ ൌ ்ߟ ;1 ൌ 0.1 is assigned for the case of tunnel.  In 

general their trends are in harmony with 2% difference at large for the maximum 

values, except at incident angle 60°.  

 



137 
 

Figure 7.2: Displacement Amplitudes of Ground Motion at ߟ ൌ 1 

    

(a)  “Circular ” Semi-Elliptical Hill     (b)  Semi-Circular Hill  

with a semi-elliptical tunnel ்ߟ ൌ 0.1 

           

Effects of Tunnel, and Incident Angle to Semi-Elliptical Hill: 

To study the effect of the existence of an elliptical tunnel, we consider only three 

aspect ratios ܴ; 0.6, 0.8 and 0.9999. Furthermore we consider the effect of 

incident angle by assuming four different incident angles of ߛ ൌ 0°, 30°, 60° and 

90° for each case of study.  
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Figure 7.3: Displacement Amplitude for ܴ ൌ 0.6 and ܶ ൌ 0.8ܣ at ߟ ൌ 5 

   

(a)  Semi-Elliptical Tunnel      (b)  Elliptical Tunnel 

 

Figures 7.3 and 7.4 show amplitudes of surface displacements at four prescribed 

incidences with the dimensionless frequency ߟ ൌ 5 and 10 for the semi-elliptical 

hill ܴ ൌ 0.6 with semi-elliptical and elliptical tunnels ܶ ൌ 0.8ܣ. We found out that 

our solutions derived in this Chapter are reliable. Even though at particular angle 

the maximum value may be about 4% difference, but their overall patterns are 

almost indistinguishable since both tunnels are slit-like.   
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Figure 7.4: Displacement Amplitude for ܴ ൌ 0.6 and ܶ ൌ 0.8ܣ at ߟ ൌ 10 

     

(a)  Semi-Elliptical Tunnel      (b)  Elliptical Tunnel 

 

The presence of the semi-elliptical tunnel influences the wave patterns and 

especially the maximum value of ground surface motion and its location. 

Considering Figure 7.5 and 7.6 together with Figures 5.5 through 5.7, we found 

that for nearly grazing angle, the maximum values of ground surface motion in 

the case of semi-elliptical tunnel are comparable or higher than of elliptical one; 

In contrast to the elliptical tunnel the locations of the maximum value are always 

located on the hill, not on the front of the hill. The similar shielding effect to the 
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full-elliptical tunnel has been detected here too for semi-elliptical tunnel, but less 

effective. Moreover we also observed abrupt jumps of the displacement 

amplitudes at the right edge of the hill ሺݔ ܣ ൌ 1⁄ ሻ, which we have rarely seen 

while investigating the effect of elliptical tunnel.   Besides the existence of semi-

elliptical tunnel create more shielding effect which results in the smaller value of 

the maximum displacements while the incidence waves approach the hill in 

vertical directions.   

 

Figure 7.5: Displacement Amplitude for ܴ ൌ 0.8 with Tunnel; ܶ ൌ 0.8ܣ 

   

(a)  ߟ ൌ 5             (b)  ߟ ൌ 10  
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Figure 7.6: Displacement Amplitude for ܴ ൌ 0.9999 with Tunnel ܶ ൌ 0.8ܣ 

    

(a)  ߟ ൌ 5             (b)  ߟ ൌ 10  

 

To study the influence of tunnel-size, again we consider only “circular” semi-

elliptical hill with a “circular” semi-elliptical tunnel. After evaluating Figures 7.7 

and 7.8 of “semi-circular” tunnels ܶ ൌ 0.2ܣ and 0.5ܣ against the above figure, it 

may be said that for nearly horizontal angle standing waves on the left-side 

seems bigger as the tunnel is getting larger. Nevertheless the shielding effect 

seems irrelevant to the size of the tunnel; the displacements on the right-handed 

of the hill are approximately greater than unity.  
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Similar to the full-elliptical tunnel, for vertical angle of incidence the maximum 

value of surface displacement is noticeably less when the elliptical obstacle gets 

bigger. Furthermore it can confirm that the semi-elliptical tunnels are more 

effective in shielding the vertical incident waves than the elliptical ones. Besides 

that, the fluctuation of surface displacements on both sides of the hill, which have 

been noticed with the existence of elliptical tunnels, is insignificant in this case of 

semi-elliptical tunnel.   

 

Figure 7.7: Displacement Amplitude for ܴ ൌ 0.9999 with Tunnel ܶ ൌ 0.2ܣ 

   

(a)  ߟ ൌ 5             (b)  ߟ ൌ 10  
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Figure 7.8: Displacement Amplitude for ܴ ൌ 0.9999 with Tunnel ܶ ൌ 0.5ܣ 

   

(a)  ߟ ൌ 5               (b)  ߟ ൌ 10  

 

Figures 7.9 through 7.28 show three-dimensional plots of surface displacements 

for ܴ ൌ 0.6, 0.8, and 0.9999, equivalent to the height-to-width ratios of 0.3, 0.4, 

and 0.4999 respectively; the values of ܶ for particular ܴ are as at the beginning 

of this section.  Each figure illustrates the plots at four incident angles, ߛ ൌ 0°, 

30°, 60° and 90°, versus the distance x/A on and around the hill and the 

dimensionless frequency ߟ in the range of 0.5 to 10; the amplitudes in the range 

of x/A in ሾെ1,1ሿ are those on the elliptical surface of the hill. 
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Figure 7.9: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 7.10: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 7.11: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 7.12: Displacement Amplitude for ܴ ൌ 0.6, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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Figure 7.13: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 7.14: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 7.15: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 60°   

 

 

Figure 7.16: Displacement Amplitude for ܴ ൌ 0.8, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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Figure 7.17: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  

 

 

Figure 7.18: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  
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Figure 7.19: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  

 

 

Figure 7.20: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  
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Figure 7.21: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  

  

 

Figure 7.22: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 30°  
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Figure 7.23: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 60° 

 

 

Figure 7.24: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.5 ൌ 90° 
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Figure 7.25: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 7.26: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 7.27: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 7.28: Displacement Amplitude for ܴ ൌ 0.9999, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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Obviously, Figures 7.9 through 7.12 back up what we have mentioned earlier 

about the validity of the equation we developed in this Chapter 7; they are almost 

identical to plots in Chapter 5. In addition Figures 7.9 through 7.28 again could 

validate what we have seen earlier about the shape, size effects of tunnels and 

their shielding efficiency. Once more pattern of all surface displacement turn out 

to be increasingly more complicated when the incident waves become shorter.  
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CHAPTER 8: SCATTERING OF PLANE (SH) WAVES BY 
A DEEP SEMI-ELLIPTICAL HILL WITH 
A SEMI-ELLIPTICAL TUNNEL   
    

The wave expansion method together with half-range expansion of elliptical 

cosine and elliptical sine is applied to study the response of the two-dimensional 

deep semi-elliptical hill with a semi-elliptical tunnel. The solution as a function of 

incidence angle and wave frequency is presented. In addition scattering effects 

due to the presence of semi-elliptical tunnel in the hill are examined and 

compared to the scattering effects due to the existence of a full-elliptical tunnel.  

 

8.1 The Deep Semi-Elliptical Hill                                    
with a Semi-Elliptical Tunnel Model 

The two-dimensional model of a deep semi-elliptical hill with a semi-elliptical 

tunnel is shown in Figure 8.1; similar configuration, material properties, and 

coordinate systems to Chapters 4 and 6 are utilized. Parameters A, B and ܽ are 

expressed as in Chapter 4, while T is again the half-width of the tunnel. Due to 

the existence of semi-concentric tunnel, the model consists of the three regions. 

Similar to sections 4.1 and 6.1, the exterior region D extends over the same 

domain and have the same boundaries, where the ring region ߗ has the outer 

boundaries ܮ and ܮ and the inner boundaries ܯ and ܯ. The last region ߎ is 

semi-elliptical and bounded by boundaries ܯ and Γ. 
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Figure 8.1: Deep Semi-Elliptical Hill with a Semi-Elliptical Tunnel Model 

 
 

 

8.2 Series Expansion of Wave Functions  

Incident and Reflected Waves:  

The excitation ݓ consists of infinite trains of plane SH waves and travelling in 

the direction ߨ െ  to positive x axis. Without hill and tunnel, the incident waves  ߛ

strike the flat surface and yield the reflected plane waves ݓ in the free field; their 

summation called the free field waves can be expressed in elliptical coordinate 

as Equation (4.1). 



157 
 

 Scattered and Transmitted Waves:  

The scattered waves ݓ௦ in the exterior region D and the transmitted waves ݓΩ
௧  

the ring region ߗ are given by Equations (4.2) and (5.1) respectively. In addition 

the new transmitted waves in the semi-elliptical region ߎ may take the same form 

as Wong and Trifunac (1974a) used in their valley model. 

ஈݓ
௧ ൌ ∑ ଶܿܯଶܨ

ሺଵሻሺߩ, ,ߴሻܿ݁ଶሺݍ ሻஶݍ
ୀ  ∑ ଶାଵݏܯଶାଵܨ

ሺଵሻ ሺߩ, ,ߴଶାଵሺ݁ݏሻݍ ሻஶݍ
ୀ   (8.1)  

where ܨ, in addition to unknowns ܣ, ܤ, ܥ, ܦ, and ܧ, in Equations (4.2) and 

(5.1), is another unknown coefficient to be determined. The transmitted waves in 

the semi-elliptical region ߎ have ܿܯଶ
ሺଵሻሺ·ሻ and ݏܯଶାଵ

ሺଵሻ ሺ·ሻ as radial wave functions 

since their asymptotic behaviors are Bessel functions of the first kind, 

representing standing waves in the semi-elliptical region ߗ (Pao and Mow, 1973). 

Furthermore ܿ݁ଶሺ·ሻ and ݁ݏଶାଵሺ·ሻ form a complete orthogonal set of angular 

domain in the half-range ሾെߨ 2⁄ , ߨ 2⁄ ሿ (and similarly in ሾߨ 2⁄ , െ ߨ 2⁄ ሿ). It is 

noteworthy that the transmitted waves ݓஈ
௧ , Equation (8.1), in the semi-elliptical 

region ߎ automatically satisfies the traction free on the flat surface Γ. 

 

Solution of the Problem using Angular Half-range Expansion  

The wave functions ݓ ൌ ݓ  Ωݓ ,௦ in the exterior region Dݓ
௧  in the elliptical 

region ߗ and ݓΠ
ݐ  in the semi-elliptical region ߎ must satisfy the Helmholtz 

equation, Equation (2.8), and the additional boundary conditions, beside those in 
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Chapter 4; the traction-free boundary condition at the surface of the elliptical 

tunnel  ሺߩ ൌ ,ூߩ ߨ  ߴ  0ሻ and the continuity of displacement and radial stress at 

the interface ܯ. 

߬ఘ௭ห
ఘୀఘ

ൌ ఓ


డ௪

డఘ
ቚ

ఘୀఘ
ൌ 0; െ గ

ଶ
 ߴ  గ

ଶ
 (8.2) 

Ωݓ
௧ |ఘୀఘI ൌ ஈݓ

௧ |ఘୀఘI                                

߬ఘ௭ห
ఘୀఘI

ൌ ఓ


డ௪Ω


డఘ
ቚ

ఘୀఘI
ൌ ఓ


డ௪ಀ



డఘ
ቚ

ఘୀఘI

;  గ
ଶ

 ߴ  െ గ
ଶ
 (8.3) 

Mathematically the transmitted waves ݓΩ
௧  expressing the displacement motion in 

the full elliptical region must satisfy two disjoint sets along the circumferences 

ߩ ൌ ߩ O andߩ ൌ  I. Hence we must utilize the orthogonality of angular Mathieuߩ

functions in the half-range we developed in Chapter 4; then the transmitted 

waves ݓΩ
௧  and their radial stresses may be expressed as follows 

௧ݓ ൌ ∑ ቂܿܯଶ
ሺଷሻሺߩ, ଶܤሻݍ ט ∑ ैܿܯଶାଵ

ሺଷሻ ሺߩ, ଶାଵܤሻݍ
ஶ
ୀ ቃܿ݁ଶሺߴ, ሻ              ஶݍ

ୀ

       ∑ ቂݏܯଶାଵ
ሺଷሻ ሺߩ, ଶାଵܥሻݍ ט ∑ ॉܯsଶାଶ

ሺଷሻ ሺߩ, ଶାଶܥሻݍ
ஶ
ୀ ቃ݁ݏଶାଵሺߴ, ሻஶݍ

ୀ

 ∑ ቂܿܯଶ
ሺସሻሺߩ, ଶܦሻݍ ט ∑ ैܿܯଶାଵ

ሺସሻ ሺߩ, ଶାଵܦሻݍ
ஶ
ୀ ቃܿ݁ଶሺߴ, ሻஶݍ

ୀ     

         ∑ ቂݏܯଶାଵ
ሺସሻ ሺߩ, ଶାଵܧሻݍ ט ∑ ॉݏܯଶାଶ

ሺସሻ ሺߩ, ଶାଶܧሻݍ
ஶ
ୀ ቃ݁ݏଶାଵሺߴ, ሻ ஶݍ

ୀ  

 (8.4) 

߬ఘ௭ ൌ ఓ


∑ ቂܿܯଶ
ሺଷሻᇱሺߩ, ଶܤሻݍ ט ∑ ैܿܯଶାଵ

ሺଷሻᇱ ሺߩ, ଶାଵܤሻݍ
ஶ
ୀ ቃܿ݁ଶሺߴ, ሻ          ஶݍ

ୀ

       ఓ


∑ ቂݏܯଶାଵ
ሺଷሻᇱ ሺߩ, ଶାଵܥሻݍ ט ∑ ॉܯsଶାଶ

ሺଷሻᇱ ሺߩ, ଶାଶܥሻݍ
ஶ
ୀ ቃ݁ݏଶାଵሺߴ, ሻஶݍ

ୀ

      ఓ


∑ ቂܿܯଶ
ሺସሻᇱሺߩ, ଶܦሻݍ ט ∑ ैܿܯଶାଵ

ሺସሻᇱ ሺߩ, ଶାଵܦሻݍ
ஶ
ୀ ቃܿ݁ଶሺߴ, ሻஶݍ

ୀ         

        ఓ


∑ ቂݏܯଶାଵ
ሺସሻᇱ ሺߩ, ଶାଵܧሻݍ ט ∑ ॉݏܯଶାଶ

ሺସሻᇱ ሺߩ, ଶାଶܧሻݍ
ஶ
ୀ ቃ݁ݏଶାଵሺߴ, ሻ ஶݍ

ୀ

(8.5) 

where –ve above and +ve below are assigned for ߨ 2⁄  ߴ  െ ߨ 2⁄  and െ ߨ 2⁄ 

ߴ  ߨ 2⁄ ; ै and ॉ are given by Equations (2.35) and (2.38).  Then all 
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displacement and stress functions are convenient to be applied since they are in 

the forms of elliptical cosine series with order 2n and of elliptical sine series with 

order 2n+1. Applying all boundary conditions along both circumferences of the 

elliptical ring region ߗ, we establish two groups of six infinite-equation sets.  

The first set is: 

ቊ
ଶܿܯଶܤ

ሺଷሻᇱሺߩை, ሻݍ െ ∑ ैܤଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺଷሻᇱ ሺߩை,     ሻݍ
ܦଶܿܯଶ

ሺସሻᇱሺߩை, ሻݍ െ ∑ ैܦଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺସሻᇱ ሺߩை, ሻݍ
ቋ ൌ 0  (8.6) 

ቊ
ଶܿܯଶܤ

ሺଷሻሺߩை, ሻݍ  ∑ ैܤଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺଷሻ ሺߩை,    ሻݍ
ܦଶܿܯଶ

ሺସሻሺߩை, ሻݍ  ∑ ैܦଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺସሻ ሺߩை, ሻݍ
ቋ ൌ ቊ

ଶܿܯሺെ1ሻݓ4
ሺଵሻሺߩை, ,ߛሻܿ݁ଶሺݍ ሻݍ

ܣଶܿܯଶ
ሺଷሻሺߩை, ሻݍ

ቋ (8.7) 

ቊ
ଶܿܯଶܤ

ሺଷሻᇱሺߩை, ሻݍ  ∑ ैܤଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺଷሻᇱ ሺߩை,    ሻݍ
ܦଶܿܯଶ

ሺସሻᇱሺߩை, ሻݍ  ∑ ैܦଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺସሻᇱ ሺߩை, ሻݍ
ቋ ൌ ቊ

ଶܿܯሺെ1ሻݓ4
ሺଵሻᇱሺߩை, ,ߛሻܿ݁ଶሺݍ ሻݍ

ܣଶܿܯଶ
ሺଷሻᇱሺߩை, ሻݍ

ቋ (8.8) 

ቊ
ଶܿܯଶܤ

ሺଷሻᇱሺߩூ, ሻݍ െ ∑ ैܤଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺଷሻᇱ ሺߩூ,         ሻݍ
  ܦଶܿܯଶ

ሺସሻᇱሺߩூ, ሻݍ െ ∑ ैܦଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺସሻᇱ ሺߩூ, ሻݍ
ቋ ൌ 0  (8.9)  

ቊ
ଶܿܯଶܤ

ሺଷሻሺߩூ, ሻݍ  ∑ ैܤଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺଷሻ ሺߩூ,    ሻݍ
ܦଶܿܯଶ

ሺସሻሺߩூ, ሻݍ  ∑ ैܦଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺସሻ ሺߩூ, ሻݍ
ቋ ൌ ଶܿܯଶܨ

ሺଵሻሺߩூ,  ሻ   (8.10)ݍ

ቊ
ଶܿܯଶܤ

ሺଷሻᇱሺߩூ, ሻݍ  ∑ ैܤଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺଷሻᇱ ሺߩூ,    ሻݍ
ܦଶܿܯଶ

ሺସሻᇱሺߩூ, ሻݍ  ∑ ैܦଶାଵ
ஶ
ୀ ଶାଵܿܯ

ሺସሻᇱ ሺߩூ, ሻݍ
ቋ ൌ ଶܿܯଶܨ

ሺଵሻᇱሺߩூ,  ሻ   (8.11)ݍ

 

In addition the latter set is: 

ቊ
ଶାଵݏܯଶାଵܥ

ሺଷሻᇱ ሺߩை, ሻݍ െ ∑ ॉܥଶାଶܯsଶାଶ
ሺଷሻᇱ ሺߩை, ሻ    ஶݍ

ୀ

ܧଶାଵݏܯଶାଵ
ሺସሻᇱ ሺߩை, ሻݍ െ ∑ ॉܧଶାଶ

ஶ
ୀ ଶାଶݏܯ

ሺସሻᇱ ሺߩை, ሻݍ
ቋ ൌ 0  (8.12) 

ቊ
ଶାଵݏܯଶାଵܥ

ሺଷሻ ሺߩை, ሻݍ  ∑ ॉܥଶାଶܯsଶାଶ
ሺଷሻ ሺߩை, ሻ    ஶݍ

ୀ

ܧଶାଵݏܯଶାଵ
ሺସሻ ሺߩை, ሻݍ  ∑ ॉܧଶାଶ

ஶ
ୀ ଶାଶݏܯ

ሺସሻ ሺߩை, ሻݍ
ቋ ൌ ቊ

ଶݏܯiሺെ1ሻݓ4
ሺଵሻሺߩை, ,ߛଶሺ݁ݏሻݍ ሻݍ

ܣଶାଵݏܯଶାଵ
ሺଷሻ ሺߩை, ሻݍ

ቋ   (8.13) 

ቊ
ଶାଵݏܯଶାଵܥ

ሺଷሻᇱ ሺߩை, ሻݍ  ∑ ॉܥଶାଶܯsଶାଶ
ሺଷሻᇱ ሺߩை, ሻ    ஶݍ

ୀ

ܧଶାଵݏܯଶାଵ
ሺସሻᇱ ሺߩை, ሻݍ  ∑ ॉܧଶାଶ

ஶ
ୀ ଶାଶݏܯ

ሺସሻᇱ ሺߩை, ሻݍ
ቋ ൌ ቊ

ଶݏܯiሺെ1ሻݓ4
ሺଵሻሺߩை, ,ߛଶሺ݁ݏሻݍ ሻݍ

ܣଶାଵݏܯଶାଵ
ሺଷሻᇱ ሺߩை, ሻݍ

ቋ   (8.14) 
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ቊ
ଶାଵݏܯଶାଵܥ

ሺଷሻᇱ ሺߩூ, ሻݍ െ ∑ ॉܥଶାଶܯsଶାଶ
ሺଷሻᇱ ሺߩூ, ሻ      ஶݍ

ୀ

  ܧଶାଵݏܯଶାଵ
ሺସሻᇱ ሺߩூ, ሻݍ െ ∑ ॉܧଶାଶ

ஶ
ୀ ଶାଶݏܯ

ሺସሻᇱ ሺߩூ, ሻݍ
ቋ ൌ 0  (8.15) 

ቊ
ଶାଵݏܯଶାଵܥ

ሺଷሻ ሺߩூ, ሻݍ  ∑ ॉܥଶାଶܯsଶାଶ
ሺଷሻ ሺߩூ, ሻ      ஶݍ

ୀ

  ܧଶାଵݏܯଶାଵ
ሺସሻ ሺߩூ, ሻݍ  ∑ ॉܧଶାଶ

ஶ
ୀ ଶାଶݏܯ

ሺସሻ ሺߩூ, ሻݍ
ቋ ൌ ଶାଵݏܯଶାଵܨ

ሺଵሻ ሺߩூ,  ሻ   (8.16)ݍ

ቊ
ଶାଵݏܯଶାଵܥ

ሺଷሻᇱ ሺߩூ, ሻݍ  ∑ ॉܥଶାଶܯsଶାଶ
ሺଷሻᇱ ሺߩூ, ሻ      ஶݍ

ୀ

  ܧଶାଵݏܯଶାଵ
ሺସሻᇱ ሺߩூ, ሻݍ  ∑ ॉܧଶାଶ

ஶ
ୀ ଶାଶݏܯ

ሺସሻᇱ ሺߩூ, ሻݍ
ቋ ൌ ଶାଵݏܯଶାଵܨ

ሺଵሻᇱ ሺߩூ,  ሻ   (8.17)ݍ

 

Equations (8.6) through (8.11) and Equations (8.12) through (8.17) form infinite 

linear equations which could be solved numerically by matrix truncation. Again 

the above systems are solved by using subroutine LAPACK and the SVD 

provided by MATLAB. Moreover the same scheme as usage in previous chapters 

is implemented here to test accuracy. 

 

8.3 Results and Analysis 

The amplitudes of ground surface displacements given by the proposed solutions 

are evaluated for the different values of the dimensionless parameters ߟ, R and 

 which are again given by Equations (3.16), (4.10) and (5.9); values of ܴ are ்ߟ

limited to 1.00002, 1.2, 1.4, and 1.6. For each value of R we limit values of ܶ to 

  .Furthermore the amplitude of incidence is assumed to unity .ܣand 0.8 ܣ0.5 ,ܣ0.2
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Comparison with the Solutions of Shallow “Circular” Semi-Elliptical Hill: 

Figures 8.2 through 8.4 show the plots of surface displacement for “almost-

circular” semi-elliptical hill with “almost-circular” semi-elliptical tunnel ܶ ൌ 0.2ܣ, 

ߟ  respectively; on each plot there are 2 subplots for ܣand 0.8 ܣ0.5 ൌ 5 and 10 at 

four incidence ߛ ൌ 0°, 30°, 60° and 90°.  These plots are substantially in 

agreement with plots of shallow case, Figures 7.6 through 7.8; this authenticates 

the formulation we develop in this chapter. 

 

Figure 8.2: Displacement Amplitudes for ܴ ൌ 1.00002 with Tunnel ܶ ൌ 0.2ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  
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Figure 8.3: Displacement Amplitudes for ܴ ൌ 1.00002 with Tunnel ܶ ൌ 0.5ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  

         

Effects of Tunnel, and Incident Angle to Semi-Elliptical Hill: 

Figures 8.5 to 8.7 illustrate surface displacements at four prescribed incidences 

versus the distance y/A on and around the hill with the dimensionless frequency 

ߟ ൌ 5 and 10 for the semi-elliptical hill ܴ ൌ 1.2, 1.4 and 1.6 with semi-elliptical 

tunnels ܶ ൌ 0.5ܣ. In general the locations of the maximum value are always on 

the hill which is similar to the shallow case.  
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Figure 8.4: Displacement Amplitudes for ܴ ൌ 1.00002 with Tunnel ܶ ൌ 0.8ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  

 

In comparison to Figures 6.6 through 6.11, semi-elliptical tunnels disfigure 

patterns of ground motion in different way. When incidence waves are in 

horizontal direction, they are able to slip underneath semi-tunnels. Hence the 

presence of semi-elliptical tunnels yields less shielding effect or weaker shadow 

zone on the right end of the hill than the existence of full elliptical tunnel. The 

amplitudes of ground displacement are always greater than unity for all points 

located along the free surface on the right end of the hill. 
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Figure 8.5: Displacement Amplitudes for ܴ ൌ 1.2 with Tunnel ܶ ൌ 0.5ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  

 

There is interesting point to be mentioned. At 30° angle of incidence, we found 

out that the maximum amplitude of surface displacement always on the right-half 

of the hill which is similar to the case of full-elliptical tunnel. Moreover when the 

dimensionless parameter ߟ equals to 5, the presence of semi-elliptical tunnel 

yields the same effect as of full-elliptical tunnel; the discrepancy of their 

maximum amplitudes of surface displacement is within 5%, except ܴ ൌ 1.6.  
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Figure 8.6: Displacement Amplitudes for ܴ ൌ 1.4 with Tunnel ܶ ൌ 0.5ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  

 

When the incident waves are nearly vertical for dimensionless parameters ߟ ൌ 5, 

we noticed the stronger shielding effect due to semi-elliptical tunnels than to full-

elliptical ones, like to the shallow case. In addition we can confirm that the there 

is no major fluctuation of surface displacements on both sides of the hill, which 

have been noticed with the existence of full-elliptical tunnels. These previous 

trends could be monitored for dimensionless parameters ߟ ൌ 10, except again 

ܴ ൌ 1.6. 
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Figure 8.7: Displacement Amplitudes for ܴ ൌ 1.6 with Tunnel ܶ ൌ 0.5ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  

 

To study the influence of tunnel-size, we consider only ܴ ൌ 1.6 with three sizes of 

tunnel, ܶ ൌ 0.2ܣ0.5 ,ܣ and 0.8ܣ. Due to the formulation of the deep case, this 

may be seen as the width effect since the height of tunnel is very comparable. 

After evaluating Figures 8.8 and 8.9, ܶ ൌ 0.2ܣ and 0.8ܣ respectively, together 

with Figure 8.7, it may be said that semi-tunnels yield identical effects when the 

angle of incidence is nearly horizontal. The maximum values of surface 

displacement are inconsiderably relevant to the size of tunnel since their 
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differences are less than 10 percents. In addition maximum surface 

displacements are in vicinity of one at all times. On another hand size of tunnel is 

of importance when the angle of incidence is nearly vertical. As expected, the 

wider tunnel provides the stronger shielding effect. The presence of tunnel with 

ܶ ൌ 0.8ܣ de-amplifies maximum displacement by 20%-50% from corresponding 

values with ܶ ൌ 0.2ܣ. Again this confirms the hinder efficiency depends on the 

direction of wave passage. 

   

Figure 8.8: Displacement Amplitudes for ܴ ൌ 1.6 with Tunnel ܶ ൌ 0.2ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  
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Figure 8.9: Displacement Amplitudes for ܴ ൌ 1.6 with Tunnel ܶ ൌ 0.8ܣ 

   

(a)  ߟ ൌ 5             (b) ߟ ൌ 10  

 

Figures 8.10 through 8.45 show three-dimensional plots of surface 

displacements for ܴ ൌ 1.2, 1.4, and 1.6, equivalent to the height-to-width ratios of 

0.6, 0.7, and 0.8 respectively; the values of ܶ for particular ܴ are as at the 

beginning of this section.  Each figure illustrates the plots at four incident angles, 

ߛ ൌ 0°, 30°, 60° and 90°, versus the distance y/A on and around the hill and the 

dimensionless frequency ߟ in the range of 0.5 to 10; the amplitudes in the range 

of y/A in ሾെ1,1ሿ are those on the elliptical surface of the hill. 
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Figure 8.10: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  

 

 

Figure 8.11: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  
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Figure 8.12: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  

 

 

Figure 8.13: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  
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Figure 8.14: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  

 

 

Figure 8.15: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 30°   
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Figure 8.16: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 60°    

 

 

Figure 8.17: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.5 ൌ 90°    
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Figure 8.18: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 8.19: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 8.20: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 8.21: Displacement Amplitude for ܴ ൌ 1.2, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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Figure 8.22: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  

 

 

Figure 8.23: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  
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Figure 8.24: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  

 

 

Figure 8.25: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  
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Figure 8.26: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  

 

 

Figure 8.27: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 30°   
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Figure 8.28: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 60°    

 

 

Figure 8.29: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.5 ൌ 90°    
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Figure 8.30: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 8.31: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 8.32: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 8.33: Displacement Amplitude for ܴ ൌ 1.4, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  

 

 



181 
 

Figure 8.34: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 0°  

 

 

Figure 8.35: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 30°  
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Figure 8.36: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 60°  

 

 

Figure 8.37: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.2 ൌ 90°  
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Figure 8.38: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 0°  

 

 

Figure 8.39: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 30°   
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Figure 8.40: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 60°    

 

 

Figure 8.41: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.5 ൌ 90°    
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Figure 8.42: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 0°  

 

 

Figure 8.43: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 30°  
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Figure 8.44: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 60°  

 

 

Figure 8.45: Displacement Amplitude for ܴ ൌ 1.6, ܶ ൌ ߛ when ܣ0.8 ൌ 90°  
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After observing previous three-dimensional plots, we found out the identical 

characteristics to results shown in previous chapters. Surface displacements are 

getting more complex as the incident waves become shorter. Moreover 

considering the semi-elliptical tunnel ܶ ൌ  with nearly grazing angles, again ܣ0.8

similar behaviors to the full-elliptical tunnel are monitored; the surface 

displacement of points on a hill, which seems to be smaller while the 

dimensionless frequency ߟ gets larger, rapidly rises at ߟ equal to 5 and again 

lessens continuously as ߟ becomes larger.    
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CHAPTER 9: SUMMARY      

Various two-dimensional hill models subjected to incident plane SH wave have 

been investigated so far within the framework of linear elasto-dynamic theory. 

Solutions are based on the analytical approach called the method of wave 

function expansions. As geometric boundaries are either linear or elliptical, wave 

function expansion in form of Mathieu functions provides mathematical simplicity 

to be implemented and meet the requirements of analytical expression for free or 

continuity boundary conditions. Moreover similar wave functions were 

reappeared in several models such as the scattered and transmitted waves.  

 

In contrast to canyon and valley models  (Wong and Trifunac, 1974a;b) 

conventional approach suggested by Pao and Mow (1973) is not able to solve for 

unknowns arisen during mathematical implementation of the hill model since it 

involves the consideration of a mixed boundary conditions; the traction-free 

boundary condition at the surface of the elliptical hill and the continuity of 

displacement and stress at the semi-elliptical interface. However by the utilization 

of the angular half-range expansion technique, all correspondent displacement 

and stress functions are in the proper form and boundary conditions are 

convenient to apply by utilizing the orthogonality of angular Mathieu functions; 

implementation of shallow semi-elliptical hill requires the half-range expansion of 

elliptical sine as a series of elliptical cosine, whereas of deep semi-elliptical hill 
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engages the half-range expansion of Odd elliptical cosine as a series of Even 

elliptical cosine and the half-range expansion of Even elliptical sine as a series of 

Odd elliptical sine. 

 

The existence of a hill results in complex pattern of surface displacement which 

becomes progressively more complicated as an semi-elliptical hill gets steeper. 

Moreover for nearly grazing angle ሺߛ ൌ 0° and 30°ሻ the hill acts like a barrier 

shielding the propagating waves coming from the left, resulting in a standing 

wave pattern in the front of the hill and the focusing of the amplitude at the right 

edge of the hill, ݔ ܣ ൌ 1⁄  or ݕ ܣ ൌ 1⁄ . While possibly maximum amplitudes of 

surface displacement for the horizontal angles of incidence are about 4, the 

maximum amplitudes of 5 or larger are perhaps monitored for vertical incidence.  

 

The presence of the concentric tunnels has significant effect on the amplitude of 

ground motion. In general the presence of the tunnels lessens maximum values 

of ground displacement. The shielding effect of tunnel becomes much stronger 

and the standing waves on the left-side become more prominent as the tunnel is 

getting larger; amplitudes of ground motion in the neighborhood of unity or less 

may be monitored without the abrupt jump at the right edge when the incoming 

waves is nearly horizontal. Normally the presence of a concentric tunnel 

amplifies maximum displacement by 30%-70% from corresponding value of 

reference (inexistence of a tunnel) for the horizontal incidence, while de-amplifies 



190 
 

maximum displacement in the range of 1%-15% for the vertical incidence. It 

could be said that the hinder efficiency of an elliptical tunnel depends on the 

direction of wave passage; the tunnel becomes better obstruction when the 

incident wave is perpendicular to its major axis. 

 

The interference of the semi-elliptical tunnel on ground surface motion is different 

from of full-elliptical one. For nearly grazing angle, incident waves are able to slip 

underneath semi-tunnels. The weaker standing wave on the left side and weaker 

shadow zone on the right end of the hill are observed; the associated high jumps 

of the displacement amplitude at the right edge of the hill are also detected. 

However there is interesting point to be mentioned. At 30° angle of incidence with 

the dimensionless parameter ߟ equals to 5, the presence of semi-elliptical tunnel 

yields the same effect as of full-elliptical tunnel; the discrepancy of their 

maximum amplitudes of surface displacement is within 5%, except ܴ ൌ 1.6. 

When the incident waves are nearly vertical, we noticed the stronger shielding 

effect due to semi-elliptical tunnels than to full-elliptical ones. Furthermore bigger 

tunnel provides the stronger shielding effect. The presence of tunnel with ܶ ൌ 

 de-amplifies maximum displacement by 20%-50% from corresponding ܣ0.8

values with ܶ ൌ 0.2ܣ.  

 

Even though in the frame work of this study we dealt with only incident plane SH 

wave, the mathematical techniques may be successfully applied to various 
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incident P- or SV-wave. Normally P or SV-waves, which are coupling by their 

nature when reflected or refracted at free surface or interface between two 

different mediums, involve more complex boundary conditions.  
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APPENDIX A: GREEN’S FUNCTIONS 

Green’s function is very useful mathematics which helps us to expand the line 

source and plane waves into a series of functions. Green’s function is the 

solution of the inhomogeneous Helmholtz equation with a unit point source at rԢ. 
                       

;ݎሺܩଶ rԢሻ  ݇ଶܩሺݎ; rԢሻ ൌ െ4ߜߨሺݎ െ rԢሻ (A.1) 

For any orthogonal curvilinear coordinate system Green’s function can be 

expressed as follows (Morse and Feshbach, 1953) 

;ݎ൫̃ܩ ݎ̃ ′൯ ൌ െ4ߨ ቀ భ
మయ

ቁ ଶߦ൫ߩ
′ , ଷߦ

′ ൯ ∑ ഥܹ൫ߦଶ
′ , ଷߦ

′ ൯ ܹ൫ߦଶ , ଷߦ ൯                       

· ଵ
∆ሺ௬భ,௬మሻ ቊ

ଵߦଵ൫ݕ ൯ݕଶ൫ߦଵ
′ ൯; ߦଵ  ଵߦ

′

ଵߦଵ൫ݕ
′ ൯ݕଶ൫ߦଵ ൯; ߦଵ

′ ൏ ଵߦ

 (A.2) 

where ݄ is a scale factor, ∆ሺݕଵ,  ଶ toݕ ଵ andݕ ଶሻ is the Wronskian of solutionsݕ

homogeneous Helmholtz equation, ߪ is a weight function, and ܹ is a complete 

set of Eigen functions satisfying orthonormal condition  

 ഥܹ൫ߦଶ , ଷߦ ൯ ܹ൫ߦଶ , ଷߦ ൯ߪ൫ߦଶ , ଷߦ ൯݀ߦଶ݀ߦଷ ൌ   (A.3)ߜ

 

In circular cylindrical coordinate system (see Figure A.1), the source is located at 

ሺݎԢ, ,ݎԢሻ while the observation point is located at ሺߠ ଵߦ ሻ. Then we haveߠ ൌ

,ݎ ଶߦ  ൌ ,ߠ ଷߦ  ൌ ,ݖ  ݄ଵ ൌ ݄ଷ ൌ 1, and ݄ଶ ൌ  In addition without further proof we .ݎ

can define the complete set of Eigenfunctions as ݁ఏ ⁄ߨ2√  with ߪ ൌ 1. The 

solutions to homogeneous Helmholtz may be ones of Bessel or Hankel functions; 

the boundary conditions determine which functions are to be employed. Since at 
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ݎ ൌ 0 function must be finite, and at ݎ′ ൌ 0 function must be singular due to the 

diverging behavior of source, ݕଵ ൌ ଶݕ ሻ andݎሺ݇ܬ ൌ ܪ
ሺଵሻሺ݇ݎሻ. Hence Equation 

(A.3) becomes  

;ݎሺܩ rԢሻ ൌ ቀିଶ


ቁ ∑ ሺܿߠ݊ ݏᇱ െ ᇱሻߠ݊ ݊݅ݏ݅ ሺܿߠ݊ ݏ                      ሻߠ݊ ݊݅ݏ݅

                            · ଵ
∆ሺ௬భ,௬మሻ ቊ

ܪ ሻݎሺ݇ܬ
ሺଵሻሺ݇ݎԢሻ ; ݎ   Ԣݎ

ܪԢሻݎሺ݇ܬ
ሺଵሻሺ݇ݎሻ  ; ᇱݎ  ൏ ݎ

 (A.4)  

Since the Wronskian must also be satisfied for each term of asymptotic series. 

By utilizing the asymptotic behavior of Bessel function and Hankel function of the 

first kind (Watson, 1995) 

݈݅݉
՜ஶ

ܬ ሺ݇ݎሻ=ට ଶ
గ

ݏܿ ቀ݇ݎ െ గ
ସ

െ గ
ଶ

ቁ

݈݅݉
՜ஶ

ܪ
ሺଵሻሺ݇ݎሻ=ට ଶ

గ
ݔ݁ ቀ݇ݎ െ గ

ସ
െ గ

ଶ
ቁ
  (A.5) 

the Wronskian asymptotically becomes 2݅ ⁄ݎߨ . Green’s function becomes 

;ݎሺܩ rԢሻ ൌ ݅ߨ ∑ ݁൫ఏିఏᇲ൯
 ቊ

ܪ ሻݎሺ݇ܬ
ሺଵሻሺ݇ݎԢሻ ; ݎ   Ԣݎ

ܪԢሻݎሺ݇ܬ
ሺଵሻሺ݇ݎሻ  ; ᇱݎ  ൏ ݎ

 (A.6)  

Next Green’s function may be expressed as follows  

;ݎሺܩ rԢሻ ൌ ܪ݅ߨ
ሺଵሻሺܴ݇ሻ (A.7)  

where ݎ,   .Ԣ and ܴ are shown below in the following figureݎ

Comparing Equations (A.6) with (A.7), an expansion of Hankel function of the 

first kind with zero order becomes  

ܪ
ሺଵሻሺܴ݇ሻ ൌ ∑ ݁൫ఏିఏᇲ൯

 ቊ
ܪ ሻݎሺ݇ܬ

ሺଵሻሺ݇ݎԢሻ ; ݎ   Ԣݎ
ܪԢሻݎሺ݇ܬ

ሺଵሻሺ݇ݎሻ  ; ᇱݎ  ൏ ݎ
  (A.8)  
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Figure A.1: Line Source in x-y Plane  

 

 

Equation (A.8) can verify easily as we let ݎ′ ՜ 0; only Bessel function of order 

zero in the series exists and equals unity. In addition this equation can be 

considered as one form of Graf’s addition formula. (Graff, 1975) 

 

In elliptical cylindrical coordinate system (see Figures 2.1 and A.1), the source is 

located at ሺߩԢ, ,ߩԢሻ while the observation point is located at ሺߴ  ሻ.  Next we haveߴ

ଵߦ ൌ ,ߩ ଶߦ  ൌ ,ߴ ଷߦ  ൌ ,ݖ  ݄ଵ ൌ ݄ଶ ൌ ܽඥ݄݊݅ݏଶߩ  and ݄ଷ ,ߴଶ݊݅ݏ ൌ 1. The 

appropriate Eigenfunctions that we can utilize in this case must be in the form of 

ܿ݁ሺߴ, ,ߴሺ݁ݏ ሻ andݍ  ሻ. However Equation (A.3) must be satisfied in order toݍ

implement Equation (A.2). Then the normalized factor for those Mathieu 

functions become ߨ as Equation (2.13). Later the complete set of Eigenfunctions 

is ൛ܿ݁ሺߴ, ሻݍ ⁄,ߨ√ ,ߴሺ݁ݏ  ሻݍ ⁄ߨ√ ൟ.  
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Analogically to circular case, we can take 

ଵݕ ൌ ቊ
ܿܯ

ሺଵሻሺߩ, ሻݍ
ݏܯ

ሺଵሻሺߩ, ሻݍ

ଶݕ ൌ ቊ
ܿܯ

ሺଷሻሺߩ, ሻݍ
ݏܯ

ሺଷሻሺߩ, ሻݍ

 (A.9)  

Similar to previous section, the Wronskian must also be satisfied for each term of 

asymptotic series. By utilizing the asymptotic behavior of Modified Mathiue 

functions (Mow and Pao, 1971; Mechel, 1997) as follows 
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   (A.10)  

the Wronskian asymptotically becomes 2݅ ⁄ߨ . Hence Green’s function becomes 

;ݎሺܩ rԢሻ ൌ ݅ߨ2 ቊ∑ ܿ݁ሺߴ′, ,ߴሻܿ݁ሺݍ ሻݍ ቊ
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          ∞

ୀ

                          ∑ ,′ߴሺ݁ݏ ,ߟሺ݁ݏሻݍ ሻݍ ቊ
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 (A.11) 

Later we can transform the line source function into elliptical cylindrical 

coordinate as follows 

ܪ
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                               ∑ ,′ߴሺ݁ݏ ,ߟሺ݁ݏሻݍ ሻݍ ቊ
ݏܯ

ሺଵሻሺߩ, ݏܯሻݍ
ሺଷሻሺߩ′, ; ሻݍ ߩ   ′ߩ

ݏܯ
ሺଵሻሺߩ′, ݏܯሻݍ

ሺଷሻሺߩ, ; ሻݍ ′ߩ  ൏ ߩ
∞
ୀଵ ቋ

 (A.12) 
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APPENDIX B: IDENTITIES OF TRIGONOMETRIC  
 AND ANGULAR-MATHIEU INTEGRALS 

Given ߝ ൌ ቄ1  ;   ݉ ൌ 0
2  ;   ݉  0  and  ߜ ൌ ቄ1  ;   ݊ ൌ ݉

0  ;   ݊ ് ݉, then identities of trigonometric and 

angular-Mathieu integrals can be proved as follows 

 

(B.1)   sin గߠ݉
 cos ߠ݊ ߠ݀ ൌ ଶ

మିమ when ݉  ݊ ൌ odd 

 sin గߠ݉
 cos ߠ݊ ߠ݀ ൌ  ሾୱ୧୬ሺାሻఏା ୱ୧୬ሺିሻఏሿ

ଶ
గ

  ߠ݀  

              ൌ െ ଵ
ଶ

ቂ௦ሺାሻఏ
ା

 ௦ሺିሻఏ
ି

ቃቚ


గ
     

           ൌ ଶ
మିమ      

 

(B.2)  cosሺ2݉  1ሻߠగ ଶ⁄
–గ ଶ⁄ cos ߠ2݊ ߠ݀ ൌ ሺିଵሻష

ଶିଶାଵ
 ሺିଵሻశ

ଶାଶାଵ
 when ݉, ݊ ൌ 0,1,2, … 

 cosሺ2݉  1ሻߠగ ଶ⁄
ିగ ଶ⁄ cos ߠ2݊ ߠ݀ ൌ  ሾୡ୭ୱሺଶିଶାଵሻఏା ୡ୭ୱሺଶାଶାଵሻఏሿ

ଶ
గ ଶ⁄

ିగ ଶ⁄   ߠ݀

                    ൌ  ሾcosሺ2݉ െ 2݊  1ሻߠ  cosሺ2݉  2݊  1ሻߠሿగ ଶ⁄
    ߠ݀

                      ൌ ቀ௦ሺଶିଶାଵሻఏ
ଶିଶାଵ

 ௦ሺଶାଶାଵሻఏ
ଶାଶାଵ

ቁቚ


గ ଶ⁄
      

                  ൌ ሺିଵሻష

ଶିଶାଵ
 ሺିଵሻశ

ଶାଶାଵ
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(B.3)  sinሺ2݉  2ሻߠగ ଶ⁄
ିగ ଶ⁄ sinሺ2݊  1ሻߠ ߠ݀ ൌ ሺିଵሻష

ଶିଶାଵ
 ሺିଵሻశ

ଶାଶାଷ
  when ݉, ݊ ൌ 0,1,2, … 

 sinሺ2݉  2ሻߠగ ଶ⁄
ିగ ଶ⁄ sinሺ2݊  1ሻߠ ߠ݀ ൌ  ሾୡ୭ୱሺଶିଶାଵሻఏି ୡ୭ୱሺଶାଶାଷሻఏሿ

ଶ
గ ଶ⁄

ିగ ଶ⁄   ߠ݀

                      ൌ  ሾcosሺ2݉ െ 2݊  1ሻߠ െ cosሺ2݉  2݊  3ሻߠሿగ ଶ⁄
  ߠ݀

                          ൌ ቀ௦ሺଶିଶାଵሻఏ
ଶିଶାଵ

െ ௦ሺଶାଶାଷሻఏ
ଶାଶାଷ

ቁቚ


గ ଶ⁄
 

                        ൌ ሺିଵሻష

ଶିଶାଵ
 ሺିଵሻశ

ଶାଶାଷ
 

 

(B.4)   ܿ݁ሺߴ, ,ߴሻܿ݁ሺݍ ሻగݍ
 ߴ݀ ൌ గ

ଶ
,݉  whenߜ ݊ ൌ 0,1,2, …  

Since ܿ݁ሺߴ, ,ߴሻܿ݁ሺݍ  ሻ is even function, then it is symmetric about 0; we obtainݍ

 ܿ݁ሺߴ, ,ߴሻܿ݁ሺݍ ሻగݍ
 ߴ݀ ൌ ଵ

ଶ  ܿ݁ሺߴ, ,ߴሻܿ݁ሺݍ ሻగݍ
ିగ   ;ߴ݀

      ൌ ଵ
ଶ  ܿ݁ሺߴԢ, ,Ԣߴሻܿ݁ሺݍ ሻଶగݍ

 ᇱߴ ;Ԣߴ݀ ൌ ߴ   ߨ

      ൌ గ
ଶ

 ߜ

 

(B.5)   ,ߴሺ݁ݏ ,ߴሺ݁ݏሻݍ ሻగݍ
 ߴ݀ ൌ గ

ଶ
,݉  whenߜ ݊ ൌ 1,2,3, …  

Since ݁ݏሺߴ, ,ߴሺ݁ݏሻݍ  ሻ is even function, then it is symmetric about 0; we obtainݍ

 ,ߴሺ݁ݏ ,ߴሺ݁ݏሻݍ ሻగݍ
 ߴ݀ ൌ ଵ

ଶ  ,ߴሺ݁ݏ ,ߴሺ݁ݏሻݍ ሻగݍ
ିగ    ߴ݀

     ൌ ଵ
ଶ  ,Ԣߴሺ݁ݏ ,Ԣߴሺ݁ݏሻݍ ሻଶగݍ

 ᇱߴ ;Ԣߴ݀ ൌ ߴ   ߨ

     ൌ గ
ଶ

 ߜ
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(B.6)   ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ గ
ଶ

,݉  whenߜ ݊ ൌ 0,1,2, …  

Since ܿ݁ଶሺߟ, ߨ ሻ is symmetric about 0 andݍ 2⁄  (McLachlan, 1974), hence 

 ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ 2  ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻݍ
ഏ
మ

    ߴ݀

    ൌ  ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻగݍ ଶ⁄
 ߴ݀   ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻగݍ ଶ⁄

   ߴ݀

      ൌ  ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻగݍ ଶ⁄
 ߴ݀   ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻగݍ

గ ଶ⁄   ߴ݀

    ൌ  ܿ݁ଶሺߟ, ,ߟሻܿ݁ଶሺݍ ሻగݍ
 ߟ݀ ൌ గ

ଶ
       ߜ

 

(B.7)   ܿ݁ଶାଵሺߴ, ,ߴሻܿ݁ଶାଵሺݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ గ
ଶ

,݉  whenߜ ݊ ൌ 0,1,2, …  

ܿ݁ଶାଵሺߟ, ߨ ሻ is symmetric about 0, yet anti-symmetric aboutݍ 2⁄  (McLachlan, 

1974); hence the above product becomes symmetric about both 0, and ߨ 2⁄  

 ܿ݁ଶାଵሺߴ, ,ߴሻܿ݁ଶାଵሺݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ 2  ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻݍ
ഏ
మ

   ߴ݀

 ൌ  ܿ݁ଶାଵሺߴ, ,ߴሻܿ݁ଶାଵሺݍ ሻగݍ ଶ⁄
 ߴ݀   ܿ݁ଶାଵሺߴ, ,ߴሻܿ݁ଶାଵሺݍ ሻగݍ ଶ⁄

   ߴ݀

   ൌ  ܿ݁ଶାଵሺߴ, ,ߴሻܿ݁ଶାଵሺݍ ሻగݍ ଶ⁄
 ߴ݀   ܿ݁ଶାଵሺߴ, ,ߴሻܿ݁ଶାଵሺݍ ሻగݍ

గ ଶ⁄       ߴ݀

           ൌ න ܿ݁ଶାଵሺߟ, ,ߟሻܿ݁ଶାଵሺݍ ሻݍ
గ


ߟ݀ ൌ

ߨ
2  ߜ

    



205 
 

(B.8)   ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ గ
ଶ

,݉  whenߜ ݊ ൌ 0,1,2, …  

Since ݁ݏଶାଵሺߴ, ߨ ሻ is symmetricݍ 2⁄  and ݁ݏଶାଵሺߴ, ,ߴଶାଵሺ݁ݏሻݍ  ሻ is an evenݍ

function (McLachlan, 1974), therefore 

 ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ 2  ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻݍ
ഏ
మ

        ߴ݀

     ൌ  ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻగݍ ଶ⁄
 ߴ݀   ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻగݍ ଶ⁄

     ߴ݀

   ൌ  ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻగݍ ଶ⁄
 ߴ݀   ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻగݍ

గ ଶ⁄   ߴ݀

 ൌ  ,ߟଶାଵሺ݁ݏ ,ߟଶାଵሺ݁ݏሻݍ ሻగݍ
 ߟ݀ ൌ గ

ଶ
  ߜ

 

(B.9)   ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ గ
ଶ

,݉  whenߜ ݊ ൌ 0,1,2, …  

,ߟଶାଶሺ݁ݏ ,ߟଶାଶሺ݁ݏ ሻ andݍ ߨ ሻ are anti-symmetric about both 0 andݍ 2⁄ . Then 

,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ߨ ሻ is symmetric about 0 andݍ 2⁄ ; therefore 

 ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻݍ
ഏ
మ

ିഏ
మ

ߴ݀ ൌ 2  ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻݍ
ഏ
మ

    ߴ݀

     ൌ  ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻగݍ ଶ⁄
 ߴ݀   ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻగݍ ଶ⁄

  ߴ݀

    ൌ  ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻగݍ ଶ⁄
 ߴ݀   ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻగݍ

గ ଶ⁄       ߴ݀

 ൌ  ,ߟଶାଶሺ݁ݏ ,ߟଶାଶሺ݁ݏሻݍ ሻగݍ
 ߟ݀ ൌ గ

ଶ
  ߜ
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(B.10)  ܿ݁ଶሺߴ, ,ߴଶାଵሺ݁ݏሻݍ ሻᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥݍ
ௗௗ ௨௧

ഏ
మ

ିഏ
మ

ߴ݀ ൌ 0 when ݉, ݊ ൌ 0,1,2, … 

Integral of odd function over ቂെ గ
ଶ

, గ
ଶ

ቃ or ቂగ
ଶ

, െ గ
ଶ

ቃ is equal to zero.  

 

(B.11)  ܿ݁ଶାଵሺߴ, ,ߴଶାଶሺ݁ݏሻݍ ሻᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥݍ
ௗௗ ௨௧

ഏ
మ

ିഏ
మ

ߴ݀ ൌ 0 

Integral of odd function over ቂെ గ
ଶ

, గ
ଶ

ቃ or ቂగ
ଶ

, െ గ
ଶ

ቃ is equal to zero.  
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APPENDIX C: HALF-RANGE EXPANSION OF 
                          ANGULAR MATHIEU FUNCTIONS   

Given ߝ ൌ ቄ1  ;   ݉ ൌ 0
2  ;   ݉  0   and   ߜ ൌ ቄ1  ;   ݊ ൌ ݉

0  ;   ݊ ് ݉, then the series expansion of 

Mathieu function can be proved as follows 

 

(C.1) Expansion of the Mathieu functions over the range ሾ0, –ൣ ሿ andߨ ,ߨ 0൧ 

Either ሼܿ݁ሺߴ, ;ሻݍ ݊ ൌ 0,1,2, … ሽ or ሼ݁ݏሺߴ, ;ሻݍ ݊ ൌ 1,2,3, . . ሽ can form a complete 

orthogonal set of functions over the prescribed ranges. 

 

The expansion of ݁ݏሺߴ, ,ߴሻ in terms of ܿ݁ሺݍ  :ሻݍ

,ߴሺ݁ݏ ሻݍ ൌ ∑ Ձ
ஶ
ୀ ܿ݁ሺߴ,  ሻ  (C.1)ݍ

Multiplying Equation (C.1) by ܿ݁ሺߴ, ,ሻ and integrating over ሾ0ݍ   ሿ yieldߨ

 ,ߴሺ݁ݏ ሻగݍ
 ܿ݁ሺߴ, ߴሻ݀ݍ ൌ ∑ Ձ

∞
ୀ  ܿ݁ሺߴ, ,ߴሻܿ݁ሺݍ ሻగݍ

   ߴ݀

Hence we may set 

Ձ ൌ  ௦ሺణ,ሻഏ
బ ሺణ,ሻௗణ

ԡሺణ,ሻԡమ ൌ ଶ
గ  ,ߴሺ݁ݏ ሻగݍ

 ܿ݁ሺߴ,  (C.2)  ߴሻ݀ݍ

Next let expand ݁ݏሺߴ, ,ߴሻ and ܿ݁ሺݍ  ;ሻ by their Fourier form, Equation (2.13)ݍ

therefore  

Ձ ൌ ଶ
గ

∑ ∑ ௦ܣ
ሺሻܤ

ሺሻஶ
ୀଵ

ஶ
௦ୀ  cos ߴݏ sin గߴݎ

   ߴ݀
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As shown in (B.1) of Appendix B, the above equation becomes 

Ձ ൌ ସ
గ

∑ ቀ 
మି௦మቁ ௦ܣ

ሺሻܤ
ሺሻ;ஶ

ୀଵ,௦ୀ
ା௦ୀௗௗ

0  ߴ   (C.3) ߨ

Later the expansion of ݁ݏሺߴ, –ൣ ሻ overݍ ,ߨ 0൧ may follow the same procedure.  

Equation (C.1) is still valid, except 

Ձ ൌ െ ସ
గ

∑ ቀ 
మି௦మቁ ௦ܣ

ሺሻܤ
ሺሻ;ஶ

ୀଵ,௦ୀ
ା௦ୀௗௗ

െ ߨ  ߴ  0 (C.4) 

because of  ݂ሺߴሻ
 ߴ݀ ൌ െ  ݂ሺߴሻ

  ߴ݀

 

The expansion of ܿ݁ሺߴ, ,ߴሺ݁ݏ ሻ in terms ofݍ  :ሻݍ

ܿ݁ሺߴ, ሻݍ ൌ ∑ ु
ஶ
ୀଵ ,ߴሺ݁ݏ  ሻ  (C.5)ݍ

Multiplying Equation (C.4) by ݁ݏሺߴ, ,ሻ and integrating over ሾ0ݍ   ሿ yieldߨ

 ܿ݁ሺߴ, ሻగݍ
 ,ߴሺ݁ݏ ߴሻ݀ݍ ൌ ∑ ु

∞
ୀଵ  ,ߴሺ݁ݏ ,ߴሺ݁ݏሻݍ ሻగݍ

   ߴ݀

Hence 

ु ൌ  ሺణ,ሻഏ
బ ௦ሺణ,ሻௗణ

ԡ௦ሺణ,ሻԡమ ൌ ଶ
గ  ܿ݁ሺߴ, ሻగݍ

 ,ߴሺ݁ݏ   (C.6)  ߴሻ݀ݍ

The integrands, except indices being switched, of Equations (C.2) and (C.6) are 

similar. Then without elaboration, Equation (C.6) becomes  

ु ൌ ସ
గ

∑ ቀ 
మି௦మቁ ௦ܣ

ሺሻܤ
ሺሻ;ஶ

ୀଵ,௦ୀ
ା௦ୀௗௗ

0  ߴ   (C.7)  ߨ

ु ൌ െ ସ
గ

∑ ቀ 
మି௦మቁ ௦ܣ

ሺሻܤ
ሺሻ;ஶ

ୀଵ,௦ୀ
ା௦ୀௗௗ

െ ߨ  ߴ  0  (C.8) 
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(C.2) Expansion of the Mathieu functions over the range ቂെ గ
ଶ

, గ
ଶ

ቃ and ቂగ
ଶ

, െ గ
ଶ

ቃ 

Any angular function ݂ሺߴ, ሻ over the half-ranges ቂെݍ గ
ଶ

, గ
ଶ

ቃ and ቂగ
ଶ

, െ గ
ଶ

ቃ may be 

expressed in a series expansion by the sets of ሼܿ݁ଶሺߴ, ,ሻݍ ,ߴଶାଵሺ݁ݏ ;ሻݍ ݊ ൌ

0,1,2, … ሽ or ሼܿ݁ଶାଵሺߴ, ,ሻݍ ,ߴଶାଶሺ݁ݏ ;ሻݍ ݊ ൌ 0,1,2, … ሽ since they are the complete 

orthogonal sets over the prescribed ranges. 

 

The expansion of ܿ݁ଶାଵሺߴ, ,ߴሻ in terms of ܿ݁ଶሺݍ  :ሻݍ

ܿ݁ଶାଵሺߴ, ሻݍ ൌ ∑ ै
ஶ
ୀ ܿ݁ଶሺߴ,  ሻ  (C.9)ݍ

Multiplying Equation (C.9) by ܿ݁ଶሺߴ, ሻ and integrating over ቂെݍ గ
ଶ

, గ
ଶ

ቃ yield  

 ܿ݁ଶାଵሺߴ, ሻݍ
ഏ
మ

ିഏ
మ

ܿ݁ଶሺߴ, ߴሻ݀ݍ ൌ ∑ ै
∞
ୀ  ܿ݁ଶሺߴ, ,ߴሻܿ݁ଶሺݍ ሻݍ

ഏ
మ

ିഏ
మ

  ߴ݀

Hence we may set         

ै ൌ
 మశభሺణ,ሻ

ഏ
మ

షഏ
మ

మሺణ,ሻௗణ

ԡమሺణ,ሻԡమ ൌ ଶ
గ  ܿ݁ଶାଵሺߴ, ሻݍ

ഏ
మ

ିഏ
మ

ܿ݁ଶሺߴ,  (C.10)  ߴሻ݀ݍ

Next let expand ܿ݁ଶାଵሺߴ, ,ߴሻ and ܿ݁ଶሺݍ  ;ሻ by their Fourier form, Equation (2.13)ݍ

therefore  

ै ൌ 2
ߨ

∑ ∑ 1ݎ2ܣ
ሺ2݉1ሻ2ܣs

ሺ2݊ሻ∞
ൌ1ݎ

∞
ൌ0ݏ  cosሺ2ݎ  1ሻߴ sin గߴݏ2 ଶ⁄

ିగ ଶ⁄   ߴ݀

As shown in (B.2) of Appendix B, the above equation becomes 

ै ൌ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଵ
ቃஶ

௦ୀ ଶାଵܣ
ሺଶାଵሻܣଶ௦

ሺଶሻ;ஶ
ୀ െ ߨ 2⁄  ߴ  ߨ 2⁄  (C.11)    
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Later the expansion of ܿ݁ଶାଵሺߴ, ߨሻ over ሾݍ 2⁄ , െ ߨ 2⁄ ሿ may follow the same 

procedure.  Equation (C.9) is still valid, except 

ै ൌ െ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଵ
ቃஶ

௦ୀ ଶାଵܣ
ሺଶାଵሻܣଶ௦

ሺଶሻ;ஶ
ୀ ߨ 2⁄  ߴ  െߨ 2⁄  (C.12)    

because of  ݂ሺߴሻ
 ߴ݀ ൌ െ  ݂ሺߴሻ

  ߴ݀

 

The expansion of ݁ݏଶାଶሺߴ, ,ߴଶାଵሺ݁ݏ ሻ in terms ofݍ  :ሻݍ

,ߴଶାଶሺ݁ݏ ሻݍ ൌ ∑ ॉ
ஶ
ୀ ,ߴଶାଵሺ݁ݏ  ሻ  (C.13)ݍ

Multiplying Equation (C.13) by ݁ݏଶାଵሺߴ, ሻ and integrating over ቂെݍ గ
ଶ

, గ
ଶ

ቃ yield  

 ,ߴଶାଶሺ݁ݏ ሻݍ
ഏ
మ

ିഏ
మ

,ߴଶାଵሺ݁ݏ ߴሻ݀ݍ ൌ ∑ ॉ݉݊
∞
ୀ  ,ߴଶାଵሺ݁ݏ ,ߴଶାଵሺ݁ݏሻݍ ሻݍ

ഏ
మ

ିഏ
మ

  ߴ݀

Hence we may set         

ॉ ൌ
 ௦మశమሺణ,ሻ

ഏ
మ

షഏ
మ

௦మశభሺణ,ሻௗణ

ԡ௦మశభሺణ,ሻԡమ ൌ ଶ
గ  ,ߴଶାଶሺ݁ݏ ሻݍ

ഏ
మ

ିഏ
మ

,ߴଶାଵሺ݁ݏ  (C.14)  ߴሻ݀ݍ

Next let expand ݁ݏଶାଶሺߴ, ,ߴଶାଵሺ݁ݏ ሻ andݍ  ሻ by their Fourier form, Equationݍ

(2.13); therefore  

ॉ ൌ ଶ
గ

∑ ∑ ଶାଶܤ
ሺଶାଶሻܤଶୱାଵ

ሺଶାଵሻஶ
ୀଵ

ஶ
௦ୀ  sinሺ2ݎ  2ሻߴ sinሺ2ݎ  1ሻߨߴ 2⁄

െߨ 2⁄   ߴ݀

As shown in (B.3) of Appendix B, the above equation becomes 

ॉ ൌ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଷ
ቃஶ

௦ୀ ଶାଶܤ
ሺଶାଶሻܤଶ௦ାଵ

ሺଶାଵሻ;ஶ
ୀ െ ߨ 2⁄  ߴ  ߨ 2⁄  (C.15)    
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Later the expansion of ݁ݏଶାଶሺߴ, ߨሻ over ሾݍ 2⁄ , െߨ 2⁄ ሿ may follow the same 

procedure.  Equation (C.13) is still valid, except 

ॉ ൌ െ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଷ
ቃஶ

௦ୀ ଶାଶܤ
ሺଶାଶሻܤଶ௦ାଵ

ሺଶାଵሻ;ஶ
ୀ ߨ 2⁄  ߴ  െ ߨ 2⁄  (C.16)    

 

The expansion of ܿ݁ଶሺߴ, ,ߴሻ in terms of ܿ݁ଶାଵሺݍ  :ሻݍ

ܿ݁ଶሺߴ, ሻݍ ൌ ∑ ॓
ஶ
ୀ ܿ݁ଶାଵሺߴ,  ሻ  (C.17)ݍ

Multiplying Equation (C.17) by ܿ݁ଶାଵሺߴ, ሻ and integrating over ቂെݍ గ
ଶ

, గ
ଶ

ቃ yield  

 ܿ݁ଶሺߴ, ሻݍ
ഏ
మ

ିഏ
మ

ܿ݁ଶାଵሺߴ, ߴሻ݀ݍ ൌ ∑ ॓݉݊
∞
ୀ  ܿ݁ଶାଵሺߴ, ,ߴሻܿ݁ଶାଵሺݍ ሻݍ

ഏ
మ

ିഏ
మ

  ߴ݀

Hence we may set         

॓ ൌ
 మሺణ,ሻ

ഏ
మ

షഏ
మ

మశభሺణ,ሻௗణ

ԡమశభሺణ,ሻԡమ ൌ ଶ
గ  ܿ݁ଶሺߴ, ሻݍ

ഏ
మ

ିഏ
మ

ܿ݁ଶାଵሺߴ,  (C.18)  ߴሻ݀ݍ

The integrands, except indices being switched, of Equations (C.10) and (C.18) 

are similar. Then without elaboration, Equation (C.18) becomes  

॓ ൌ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଵ
ቃஶ

௦ୀ ଶାଵܣ
ሺଶାଵሻܣଶ௦

ሺଶሻ;ஶ
ୀ െ ߨ 2⁄  ߴ  ߨ 2⁄  (C.19)    

॓ ൌ െ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଵ
ቃஶ

௦ୀ ଶାଵܣ
ሺଶାଵሻܣଶ௦

ሺଶሻ;ஶ
ୀ ߨ 2⁄  ߴ  െߨ 2⁄  (C.20)    

 

The expansion of ݁ݏଶାଵሺߴ, ,ߴଶାଶሺ݁ݏ ሻ in terms ofݍ  :ሻݍ

,ߴଶାଵሺ݁ݏ ሻݍ ൌ ∑ Խ
ஶ
ୀ ,ߴଶାଶሺ݁ݏ  ሻ  (C.21)ݍ
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Multiplying Equation (C.21) by ݁ݏଶାଶሺߴ, ሻ and integrating over ቂെݍ గ
ଶ

, గ
ଶ

ቃ yield  

 ,ߴଶାଵሺ݁ݏ ሻݍ
ഏ
మ

ିഏ
మ

,ߴଶାଶሺ݁ݏ ߴሻ݀ݍ ൌ ∑ Խ݉݊
∞
ୀ  ,ߴଶାଶሺ݁ݏ ,ߴଶାଶሺ݁ݏሻݍ ሻݍ

ഏ
మ

ିഏ
మ

  ߴ݀

Hence we may set         

Խ ൌ
 ௦మశభሺణ,ሻ

ഏ
మ

షഏ
మ

௦మశమሺణ,ሻௗణ

ԡ௦మశమሺణ,ሻԡమ ൌ ଶ
గ  ,ߴଶାଵሺ݁ݏ ሻݍ

ഏ
మ

ିഏ
మ

,ߴଶାଶሺ݁ݏ  (C.22)  ߴሻ݀ݍ

The integrands, except indices being switched, of Equations (C.14) and (C.22) 

are similar. Then without elaboration, Equation (C.22) becomes  

Խ ൌ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଷ
ቃஶ

௦ୀ ଶାଶܤ
ሺଶାଶሻܤଶ௦ାଵ

ሺଶାଵሻ;ஶ
ୀ െ ߨ 2⁄  ߴ  ߨ 2⁄  (C.23)    

Խ ൌ െ ଶ
గ

∑ ∑ ቂ ሺିଵሻೝషೞ

ଶିଶ௦ାଵ
 ሺିଵሻೝశೞ

ଶାଶ௦ାଷ
ቃஶ

௦ୀ ଶାଶܤ
ሺଶାଶሻܤଶ௦ାଵ

ሺଶାଵሻ;ஶ
ୀ ߨ 2⁄  ߴ  െ ߨ 2⁄  (C.24)    
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