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Abstract 

 

This thesis presents an investigation of the effects of water saturation on the effective 

excitation and system response during building-foundation-soil interaction, using a 

simple theoretical model.  The model consists of a shear wall supported by a rigid 

circular foundation embedded in a homogenous and isotropic poroelastic half-space.  The 

half-space is fully saturated by a compressible and viscous fluid, and is excited by in-

plane wave motion, consisting of plane P and SV waves, or of surface Rayleigh waves. 

Partial saturation is also considered but in a simplified way.  The motion in the soil is 

described by Biot’s theory of wave propagation in fluid saturated porous media.  

According to this theory, two P-waves (one fast and the other one slow) and one S-wave 

exist in the medium, which are represent by wave potentials.  Helmholtz decomposition 

and wave function expansion are used to represent the motion in the soil, and a closed 

form solution of the problem is derived in the frequency domain.  Numerical results are 

presented for the free-field motion, foundation input motion, complex foundation 

stiffness matrix, and the foundation and building response to incident plane fast P and SV 

waves, as function of the many model parameters.  The presented analysis, which is 

linear, is of interest for understanding and interpreting the effects of water saturation on 

the response of the ground and structures to small amplitude (e.g. ambient noise) and to 

some degree earthquake excitation.  An attempt is presented to use this model to explain 

the observed variation of the apparent frequencies of vibration of Millikan library in 

Pasadena, California, with heavy rainfall.   
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Chapter 1: Introduction 

1.1 Objective and organization of this thesis 

This thesis work presents an analysis of a simple linear model of building-foundation-

soil interaction in poroelastic soil excited by in-plane excitation.  The objective of this 

study is to gain insight into the effects of the water saturation on both the response of the 

soil and of the building and its foundation.  Understanding of the effects of water 

saturation of soils on the seismic response of soils and structures is useful for interpreting 

observed and predicting the features of response of structures and soils to earthquake, 

ambient, and forced vibration excitation.  It is noted here that, as the model is linear, it 

cannot represent true nonlinear response of soils and structures to strong earthquake 

shaking (e.g. soil yielding and liquefaction), but can be helpful in understanding the early 

smaller amplitude response leading to pore pressure buildup and nonlinear response.  

The study is carried out using a simple two-dimensional (2D) model in which the soil 

is represented by a poroelastic half-space, and the structure is a shear wall supported by a 

cylindrical embedded foundation. Such a soil-structure interaction model has been 

considered first for semi-circular foundation embedded in elastic half-space and vertically 

incident SH waves by Luco (1969). This model was later generalized to obliquely 

incident SH waves by Trifunac (1972), to semi-elliptical foundations by Wong and 

Trifunac (1974), and to P, SV and Rayleigh wave excitation by Todorovska and Trifunac 

(1990) and Todorovska (1993a,b).   Todorovska and Al Rjoub (2006a,b) considered such 

a model in which the seepage force was ignored, and the half-space was fully saturated.  

In this thesis work, the effects of the seepage force are included, and also of partial 
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saturation, and the emphasis of the analysis is on how the seepage force and the degree of 

saturation affect the system response.  Also, the free field motion is studied in grater 

detail.   

The remaining part of this chapter presents literature review on wave propagation 

and soil-structure interaction in poroelastic soils. Chapter 2 presents the problem and 

method of solution.  Chapter 3 presents numerical results for:  (1) the wave velocities in 

the soil as function of soil permeability, relative stiffness of the skeleton, frequency and 

degree of saturation; (2) foundation complex stiffness matrix; (3) the free-field motion 

due to incident plane fast P and SV waves; (4) the foundation input motion; (5) the 

system response; and (6) shift of the apparent frequency of a model of the NS response of 

Millikan library in Pasadena, California, and comparison with its observed frequency 

shift during heavy rainfall and recovery days following the rainfall.  Finally, Chapter 4 

presents a summary and the conclusions.   

1.2 Literature Review on Wave Propagation in Porous Media    

The theory of wave propagation in a fully saturated poroelastic medium by a viscous 

compressible fluid was postulated by Maurice Biot in a series of papers (Biot, 1956a,b; 

1962). While in elastic (one phase) medium two waves exist – one dilatational (P) and 

one rotational (S) wave, Biot’s theory predicted the existence of an additional P-wave in 

a porielastic (two phase) medium, which is a result of the relative motion of the fluid with 

respect to the solid.   This second P-wave, referred to as the “slow” P wave, is much 

slower and is much more attenuated and dispersed than the “true” P wave also referred to 

as the “fast” P wave.  The existence of the slow P-wave was experimentally confirmed 
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many years later, in the 1980s (Berrymann, 1980). The theory presented in Biot (1956a) 

is applicable to lower frequencies for which the flow of the fluid in the pores is 

Poiseuille.  Biot (1956b) presents an extension of that theory to higher frequencies, 

beyond the critical frequency for which the Poiseuille assumption stops to be valid, but 

still small enough so that the related wavelengths are still much larger than the size of the 

pores.  Biot (1962) presents an extension to anisotropic media, and media with solid 

dissipation, and other relaxation effects. 

The remaining part of this section reviews literature on wave propagation in a 

homogeneous or layered poroelastic half-space for incident body and surface waves.   

This problem is of interest for the work in this thesis because wave motions in such a 

medium are usually used to represents the “free-field” seismic motions exciting structures 

on the ground surface or buried at some depth.     

The effects of boundaries on wave propagation in fully saturated poroelastic media 

were studied by Deresiewicz and coworkers in the 1960s by considering plane body and 

surface waves incident onto a traction free poroelastic half-space. Deresiewicz (1960) 

considered incident P and SV waves onto a half-space saturated with a nondissipative 

liquid, Deresiewicz (1961) considered Love waves in a half-space saturated with a 

viscous liquid, and Deresiewicz and Rice (1962) considered incident plane P and SV 

waves onto a half-space saturated by a viscous fluid.   

Incident plane body waves onto a half-space were considered also by other 

investigators, with emphasis on different applications (porous rock and soils). For 

example, Sharma and Gogna (1991) considered incident fast P-wave onto a half-space 
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and showed results for water saturated sandstone.   Lin et al. (2001, 2005) considered 

reflection of plane P and SV waves in water saturated porous half-space (assuming 

invicid fluid) for a wide range of skeleton stiffness, from very stiff (porous rock) to very 

soft (soft soil), for a range of values of Poisson’s ratio and porosity, and for both drained 

and undrained hydraulic boundary condition on the half-space surface.  They also 

discussed the range of validity of Biot’s theory for different types of soils, and showed 

results for the amplitudes of the surface displacements, strains, rotations, and stresses, 

and examined the effect of the saturation, and various parameters of the mixture on these 

quantities. They found that, for undrained (sealed) half-space surface, the peak 

amplitudes of these characteristics of are smaller than the amplitudes for the elastic case. 

For a drained (open) half-space surface, they found that these peak amplitudes are smaller 

than for the elastic case, with the exception of the peak rotations.  Ciarleta and Subatyan 

(2003) also studied the refection of plane waves in a fluid saturated poroelastic half-space 

but for the general case of a viscous fluid. Their study showed that the refection 

coefficients and the vibration amplitude in the saturated half-space are smaller than those 

in an elastic half-space.     

Liu et al. (2002) studied stress wave propagation in transversely isotropic fluid-

saturated porous medium for plane waves and for surface Rayleigh waves, in particular 

the effects of the fluid viscosity and the anisotropy of the solid skeleton.  Their study 

showed that the fluid viscosity resulted in Rayleigh waves with frequency dependent 

phase velocity.    
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Degrande et al. (1998) studied harmonic and transient wave propagation in multi-

layered dry, saturated and unsaturated isotropic poroelastic media, but for small fraction 

of gas in the fluid and ignoring the effects of the capillary forces. They examined the 

effect of moving ground water table and partial saturation on wave propagation in a 

poroelastic layered half-space, and found that air bubbles in the top layer of a saturated 

half-space affect the P-wave propagation.   Partial saturation was considered in a similar 

way by Yang (2000, 2001, 2002) and Yang and Sato (2000a,b) for incident plane waves 

in a poroelastic half-space and onto a boundary between two bonded half-spaces, the 

lower one being elastic and the upper one being partially saturated poroelastic.  Further, 

Yang and Sato (2000c) showed that partial saturation in the soil near the surface may 

explain the significant amplification of the vertical motion observed by a borehole array 

at Port Island, Kobe, during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake, while the 

opposite effect was observed for the horizontal motions.  In their earlier work, the same 

authors studied the effects of the flow condition and viscous coupling (i.e. the effect of 

the seepage force) on reflection of waves from an interface between two half-spaces, the 

lower one being elastic and the upper one being fully saturated poroelastic (Yung and 

Sato, 1998; Yang, 1999).  

 In contrast to the previously mentioned work dealing with partial saturation, which 

used a modified theory for a two phase medium, Carcione et al. (2004) simulated wave 

propagation in partially saturated porous rock including capillarity pressure effects.  

Their model is based on a Biot type theory for a three-phase medium, which predicted the 

existence of a second slow wave.  
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Other recent work on wave propagation in fluid saturated poroelastic media includes 

that of: Liu and Liu (2004), who analyzed the propagation of Rayleigh waves in 

orthotropic fluid-saturated porous media; Sharma (2004), who studied the propagation of 

plane harmonic waves in an anisotropic fluid-saturated porous solid; Vashishth and 

Khurana (2004), who studied the wave propagation in a multilayered anisotropic 

poroelastic medium; Jinting et al. (2004), who studied the refection and refraction of 

waves in a multi-layered medium composed of ideal fluid, porous medium, and 

underlying elastic solid, and subjected to incident P wave.  Other recent work also 

includes Edelman (2004a,b), who studied the existence of surface waves along the 

interface between vacuum and porous medium in the low frequency range.  Finally, Liu 

et al. (2005) used the generalized characteristic theory to analyze the stress wave 

propagation in anisotropic, in particular orthotropic, fluid-saturated porous media. 

1.3 Literature Review on Soil Structure Interaction in Porous 

Media  

This section presents a literature review of soil-structure interaction in poroelastic 

soils.  Review of other work on this topic that does not involve poroelasticity is out of the 

scope of this thesis.  

Halpern and Christiano (1986) present compliance matrices for vertical and rocking 

motion of a square rigid plate baring on a water-saturated poroelastic half-space for water 

saturated coarse grained sands (with porosity 0.48, and shear modulus of the skeleton 20 

times smaller than the bulk modulus of water). Their results indicate smaller (in absolute 

value) real and imaginary parts of the compliance (i.e. stiffer soil) for saturated soil as 
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compared to dry soils for both vertical and rocking motions.  They also studied the stress 

distribution along the contact surface carried separately by the solid and by the fluid, and 

concluded that the magnitude of either one of the component stresses can be grater than 

the total stress predicted by an equivalent undrained elastic solid model (elastic solid with 

Poisson ratio 0.5).   

Kassir and Xu (1988) studied interaction of a rigid pervious strip foundation bonded 

to a poroelastic half-space for horizontal, vertical, and rocking motions. They concluded 

that the influence of the fluid is substantial, and is more pronounced for vertical and 

rocking motions.  Kassir et al. (1989) studied impedances for vertical motion of circular 

footings on a poroelstic half-space.  They concluded that, for dense sand, the presence of 

ground water affects the magnitude and character of the influence functions and should 

be included in dynamic analysis of surface structures to dynamic loading. 

Philippacopoulos (1989) present dynamic stiffness for vertical motion of a rigid disk 

foundation on a layered poroelastic half-space saturated up to certain depth below the 

disk.  He concludes “the effect due to saturation on the impedance function is generally 

not significant. Specifically, at low dimensionless frequency (i.e. less than 3) this effect is 

practically negligible, while at higher dimensionless frequency  (i.e. between 3 and 6), 

the departure from the dry case was about 30%.”  In the discussion of his results, he 

states, “the effect of the pore fluid is to generally reduce the stiffness and increase the 

damping (compared to the dry case). Furthermore, these effects are more pronounced at 

higher dimensionless frequency and at lower saturation depth-to radius ratio. On the other 

hand, at low frequencies, the results from both saturated and dry cases agree very well.”  
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This was explained by the fact that “the water has sufficient time to drain and thus avoids 

carrying stresses imposed by the skeleton.”  It is not clear from the discussion to what 

degree the predicted effects are due to the “layer” effect created by the impedance 

contrast at the water table level at depth, as compared to the fluid motion.  

Bougacha and Tassoulas (1991a,b) developed a finite element technique to solve the 

dynamic response of a gravity dam. The sediment is modeled as two-phase medium. It is 

found that the partially saturated sediment leads to a significant decrease in the system 

fundamental frequency more than fully saturated sediment. 

Bougacha et al. (1993a,b) present a computational model and results for dynamic 

stiffnesses for rigid strip and circular foundations on fluid filled poroelastic stratum over 

a rigid base for horizontal, vertical, rocking and torsional motion, and propose how to 

estimate the equivalent properties of an elastic soil.  They show results for porosity 0.3, 

Poisson ratio 1/3, and shear modulus of the skeleton such that it results in shear wave 

velocity of 152 m/s. For torsional loading, they state that the results for a circular disk 

obtained for the two-phase medium and the equivalent solid are identical, and explain 

that by the fact that the torsional loading for circular footings transmits only shear waves 

into the stratum.  They conclude that the seepage forces introduce substantial damping at 

low frequencies in the case of vertical excitation, while their effect on the rocking, and 

especially on the torsional stiffness and damping coefficients were relatively minor.  

Rajapakse and Senjuntichai (1995) present a soil-structure interaction model for rigid 

strip foundation on a layered half-space, and show results for foundation response to unit 
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vertical and horizontal loads, and vertical impedance for a layered model. They also show 

results for the pore pressure distribution with depth.  

Kassir et al. (1996) present the impedances of   surface circular footing on a 

poroelastic half-space, for rocking and horizontal motions.  They conclude that for 

rocking motion, the presence of pore fluid significantly affects the impedance (both in 

magnitude and sign), while the influence is marginal for horizontal motion.   

Dargush and Chopra (1996) consider circular footings on a half-space or a layer over 

bedrock, for horizontal, vertical, rocking and torsional motion.  Their results show that 

for surface footing on half-space, and for vertical motions, the compliance is larger for 

dry soil than for poroelastic saturated soil, but the difference is small for small 

frequencies and high permeability. For low permeability, the compliance is similar for 

poroelastic and for undrained solid.  For surface footing on layered medium, they note a 

significant influence of the soil layer resonance.   

Japon et al. (1997) show probably the most comprehensive set of results that shed 

light on the effects of the pore water on the foundation stiffness for surface foundations.  

They show impedances for strip foundations resting on a half-space, or on a stratum over 

rigid or compliant bedrock, for smooth or welded contact, and for horizontal, vertical, 

and rocking motions.  Their results show that the seepage forces stiffen the foundation 

and increase the damping.  For a half-space soil model, their results show that the type of 

contact condition is only important for the real part of vertical stiffness, which is larger 

for a welded contact and for an impervious foundation.  Further, the seepage forces 

produce an effect of increased stiffness for the whole range of frequencies, and their 
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effect is more pronounced on the imaginary part (i.e. the radiation damping).  The added 

density (from the coupling mass term) produces increase in stiffness, noticeable only 

when there are no seepage forces.   For soil represented as a layer, the vertical and 

rocking stiffness tend to the half-space values as the layer depth grows. At smaller 

frequencies, the foundation stiffness for a layer is larger than that for a half-space, but the 

difference is small for depth of layer to half width of foundation > 4.   Further, the 

foundation stiffness for a layer is oscillatory about the half-space solution, with 

increasing frequency and decreasing amplitudes of the oscillations as the depth of layer 

increases.  For vertical motions, the oscillations are related to resonance of the fast P 

waves in the layer, while for horizontal motions – to the resonance of the SH waves in the 

layer.  Further, they show that the effect of the seepage forces is much more important for 

a stratum than for half-space, and finally, that the position of the resonant peaks may 

change substantially with the dissipation coefficient b.   

Zeng and Rajapakse (1999) studied vertical vibrations of a circular disk on a half-

space, and noted an increase in stiffness and radiation damping due to the poroelastic 

effects.   

Bo and Hua (1999) present compliances for a circular rigid disk on a half-space for 

vertical motions.  They conclude that the difference in compliance between pervious and 

impervious foundation decreases with increasing seepage forces.  Similarly, Jin and Liu 

(2000a,b) show such compliances for horizontal and for rocking motions.  For the 

horizontal motions, they conclude that the permeability of the medium has an important 

effect on horizontal vibrations, and that there is a difference between the compliances for 
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elastic and for saturated half-space.  The conclusion for the rocking motions is that the 

difference in compliance between poroelasic and elastic half-space is < 18% and can be 

neglected.  However, these three studies show results for a very limited set of parameters. 

Senjuntichai et al. (2006) show impedances for axi-symmetric embedded 

foundations in a half-space for vertical motions. They study the effects of foundation 

depth, soil permeability, and foundation shape. Their results show that for cylindrical 

shape, both the stiffness and the damping increase with increasing foundation depth.  

Further, there is a notable dependence of the foundation stiffness on the hydraulic 

boundary condition especially at higher frequencies and for short cylinders, but this effect 

is much smaller for smaller permeability.  



 

Chapter 2: Theoretical Model  

2.1 The Soil-Structure Interaction Model 

The simple two-dimensional soil-structure interaction model is shown in Fig. 2.1.1. 

The structure is represented as a shear beam supported by a circular rigid foundation 

embedded in a homogeneous and isotropic poroelastic half-space. The center of 

curvature of the foundation is at some point  along the z-axis, in general above point 

O.  The shear beam has height H, width W, and mass per unit length 

1O

bm . The foundation 

has width 2a, depth h, and mass per unit length .  The response of the foundation is 

described by the horizontal and vertical displacements of point ,  and V , and the 

rotation angle 

fndm

O ∆

ϕ  (positive clockwise).  The building moves as a rigid body, with 

translations  and V , and rotation ∆ ϕ , and also deflects due to elastic deformation (Fig. 

2.1.1). The horizontal displacement at the top of the building due to its elastic 

deformation is 
rel
bu . The shear wave velocity in the building is , which implies first 

mode fixed-base frequency 

,bSV

1 ,b /(4 )Sf V H= . The damping in the building is neglected. 

The motion in the half-space is described by the linearized theory of wave 

propagation in fluid saturated poroelastic media as described by Biot (1956a).  The two-

phase medium is composed of a solid skeleton, formed by the grains, and fluid occupying 

completely all voids in the skeleton.  The properties of this mixture are defined by the 

shear modulus and Poisson’s ratio of the skeleton sµ  and sν , the bulk modulus of the 
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fluid fK , the porosity , the mass density of the grains n̂ grρ  comprising the skeleton, and 

the density of the fluid fρ , both defined per unit volume of pure grain material and pure  

 

 

 

Fig. 2.1.1 The model 
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fluid.  This implies shear wave velocity of the dry mixture ,dry grˆ/[(1 ) ]S sV nµ ρ= − .  The 

skeleton and the foundation are perfectly bonded to each other.  The motion of the fluid 

along the contact surface relative to that of the solid is constrained by the drainage 

condition.  It is assumed in this thesis work that the foundation can be either completely 

permeable, allowing for free drainage of the pore fluid, or completely impermeable.  

These conditions would affect the foundation complex stiffness matrix, and the 

foundation driving forces.  The half-space surface can also be either perfectly sealed or 

unsealed, and this would affect the free-field motion (Lin et al., 2001, 2005). 

A closed form solution is obtained by: (1) expanding the scattered waves (a 

perturbation to the free-field motion caused by the presence of the foundation) in a series 

of outgoing cylindrical waves (represented by Hankel functions in space), (2) expressing 

the coefficients of this expansion in terms of the (known) coefficients of expansion of the 

free-field motion and the (unknown) motion of the rigid foundation through the 

continuity of displacements at the contact surface, and (3) solving for the motion of the 

foundation from the dynamic equilibrium conditions.   In this process, the zero-stress 

condition on the half-space surface, which is automatically satisfied by the free-field 

motion, is relaxed for the scattered waves, as in Todorovska and Al Rjoub (2006a).  The 

zero stress condition for the scattered waves can be imposed numerically along finite 

length of the half-space surface adjacent to the foundation, by some point collocation or a 

weighted residual method, for example.  In the interest of simplicity, and in view of all 

the other simplifications in this model (e.g., the restriction of the shape of the foundation, 

the assumption that it is absolutely rigid, the assumption of perfect bond at the contact 

14 
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5

surface, and finally – the assumption of liner constitutive relations and small 

displacements, and of homogeneous and isotropic soil), it was decided to relax this 

condition.  De Barros and Luco (1995) compared foundation impedances for a semi-

circular foundation in an elastic half-space, when the zero-stress boundary condition is 

imposed on the scattered waves, and when it is relaxed.   Their results show that for 

horizontal and vertical motions the difference is small (the approximate solution 

overestimates slightly the damping and the vertical stiffness, while it underestimated 

slightly the horizontal stiffness at smaller frequencies and overestimates it slightly for 

higher frequencies).  The difference is also small for the coupling terms (between 

horizontal motion and rocking).  The difference is the largest for the rocking motions at 

low frequencies, especially for the damping coefficient. The approximate solution 

overestimates the rocking stiffness and underestimates the damping at all frequencies in 

the range 0 / Sa a Vω= < , but the difference becomes progressively smaller as the 

frequency increases.  At 0 0.5a = , the rocking stiffness is overestimated by as much as 

about 28%, and the damping coefficient is underestimated by as much as 38%, but the 

shapes of the functions are similar, and the difference rapidly decreases with frequency, 

especially for the damping coefficient.  However, it turns out that the rocking stiffness is 

not noticeably affected by the fluid in the pores, as shown in the companion paper, and 

therefore the conclusions of this study are not likely to be affected by this approximation. 

 



 

2.2 Wave Propagation in Fluid Saturated Poroelastic Medium 

The motion in the soil is assumed to be governed by Biot’s theory of wave 

propagation in a fully saturated poroelastic medium (1956a), which was postulated based 

on the assumption that the motion of the solid matrix is a wave motion, while that of the 

fluid relative to the solid is a diffusion process described by Darcy’s law.   Biot (1956a) 

made the following assumptions:  

1. The Reynolds number is less than 2000, which implies that the relative motion of 

the fluid in the pores is laminar flow. 

2. The size of the unit element of the solid-fluid mixture is much smaller than the 

wavelength of the motions considered.  

3. The size of the unit element of the mixture is large compared to the size of the 

pores. 

Then the motion of the solid and that of the fluid is described by the following two 

coupled equations of motion  

( ) ( ) ( )

[ ] ( ) ( )

2
2

11 122

2

11 122

ˆgrad

ˆgrad

u e Q u U b
t

Qe R u U b u U
t t

µ λ µ ε ρ ρ

ε ρ ρ

∂ ∂
⎡ ⎤∇ + + + = + + −⎣ ⎦ ∂ ∂

∂ ∂
+ = + − −

∂ ∂

� �� �

� �� �

u U
t
�

                            (2.2.1) 

where 

u�  = displacement vector for the solid-skeleton 

U� = displacement vector for the pore fluid 

( )e div u= �      
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( )div Uε = �  

11 12 22, ,ρ ρ ρ = dynamic mass coefficients 

b̂  = coefficient of dissipation 

The coefficient of dissipation  depends on the permeability of the skeleton and on 

the viscosity of the fluid via the relation 

b̂

2 ˆˆ ˆ
ˆ

b n
k

µ
=  

where 

n̂ = porosity 

µ̂ = absolute viscosity in units Pa s=kg/(m s)⋅ ⋅  

k̂ = intrinsic permeability (depends only on the properties of the skeleton) in units  2m

Hence, ˆ /b ω  has units of mass density. 

Helmholtz decomposition to the displacement vector gives 

( ) ( )grad curlu φ ψ= + ��                                                                                        (2.2.2a) 

( ) ( )grad curlU = Φ + Ψ� �                                                                                     (2.2.2b) 

where φ  and are the P-wave potentials, and Φ ψ  and Ψ are the S-wave potentials for the 

solid and fluid, respectively.   Substitution of eqns (2.2.2a,b) into eqn (2.2.1) leads to the 

following two sets of equations for the P-wave and S-wave potentials 
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( ) ( )

( ) ( )

2
2 2

11 122

2
2 2

11 122

ˆ

ˆ

P Q b
t

Q R b
t t

φ ρ φ ρ

φ ρ φ ρ

∂ ∂
∇ + ∇ Φ = + Φ + −Φ

∂ ∂
∂ ∂

∇ + ∇ Φ = + Φ − −Φ
∂ ∂

t
φ

φ
                                               (2.2.3)  

and  

( ) ( )

( ) ( )

2
2

11 122

2

11 122

ˆ

ˆ0

b
t

b
t t

µ ψ ρ ψ ρ ψ

ρ ψ ρ ψ

∂ ∂
∇ = + Ψ + −Ψ

∂ ∂
∂ ∂

= + Ψ − −Ψ
∂ ∂

� �� � �

� �� �

t
                                                           (2.2.4) 

2.3 Solution for P-waves 

For harmonic wave motion, the potentials can be represented as 

( )

1

i kx t
c e

ωφ += , (

2

i kx t
c e

)ω+Φ =                                                                                  (2.2.5) 

( )

3

i kx t
c e

ωψ += , (

4

i kx t
c e

)ω+Ψ =                                                                                 (2.2.6) 

Substitution of eqn (2.2.5) into eqn (2.2.3) leads to the following fourth order differential 

equation for the P-wave potential in the solid  

4 2 0A B Cφ φ− + =                                                             (2.2.7a)                            

where 

2
A PR Q= −                 (2.2.7b) 

11 22 122 (
ib

2 )B R P Q P R Qρ ρ ρ
ω

= + − − + +             (2.2.7c) 

2

11 22 12 11 22 12( 2
ib

C )ρ ρ ρ ρ ρ ρ
ω

= − − + +             (2.2.7d) 

Further, eqn  (2.2.7) can be decomposed into the following two equations 

( )2 2

, 0j jkα φ∇ + = ,   j=1,2                                                                                        (2.2.8) 
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where  

,

,

j

j

k
V

α
α

ω
=  , j=1,2               (2.2.9a) 

and 

( )
, 1

2 2

2

4
j

A
V

B B AC
α =

−∓
 ,   j=1,2            (2.2.9b) 

are  the wave numbers and wave velocities of two distinct P-waves (fast and slow) in the 

solid.                          

The wave potential for the fluid can be obtained after substituting eqn (2.2.5) into 

eqn (2.2.3), which gives 

1 2 1 1 2 2f fφ φΦ = Φ +Φ = +                                                                                    (2.2.10) 

where 

2

, 11 12

12 22

( / )( )

( / )( )

j

j

A V R Q ib Q R
f

R Q ib Q R

α ρ ρ ω
ρ ρ ω
− + + +

=
− + +

    ,    j=1,2                                      (2.2.11) 

2.3.1 Solutions for S-waves 
 

Substitutin of eqn (2.2.6) into eqn (2.2.2) leads to the following differential equation 

for the S-wave potential of the motion of the skeleton  

( )2 2 0kβ ψ∇ + =                                                                                                   (2.2.12) 

where  

k
V

β
β

ω
=            (2.2.13a) 
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and  

22

2

11 22 12 11 22 12

( / )

( 2 )*

ib
V

ib
β

µ ρ ω
/ρ ρ ρ ρ ρ ρ ω

−
=

− − + +
                 (2.2.13b) 

are the wave number and wave velocity of the shear waves in the skeleton. 

The wave potential for the fluid can be obtained as 

3fψΨ =                                                                                                              (2.2.14) 

where 

12
3

22

( /

( /

ib
f

ib

)

)

ρ ω
ρ ω

+
= −

−
                                                                                           (2.2.15)                                 

2.3.2 Material Constants for the Mixture 
 

The material constants of mixtures can be determined experimentally (Biot and 

Willis, 1957), or can be derived from the properties of the components.  In the 

dimensionless analysis in this work, the set of input parameters consists of the porosity 

, the Poisson’s ratio of the skeleton n̂ sν , the ratio of the bulk modulus of the fluid and 

the shear modulus of the skeleton /fK sµ , and the ratio of the mass density of the fluid 

and that of the grains /f grρ ρ  (both per unit volume of “pure” material).   

The elastic moduli of the mixture µ , λ , R  and  are computed using a 

simplification (for 

Q

R  and ) of the formulae proposed by Biot and Willis (1957) based 

on the assumption that the compressibility of the mixture is much smaller than that of the 

solid skeleton and of the fluid, and can be neglected, which is a common assumption in 

soil mechanics (Lin et al., 2005) 

Q
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( )

2 /

ˆ1

ˆ

s

s

f

f

Q R

Q n K

R nK

µ µ

λ λ

=

= +

= −

=

                                                                                                          (2.2.16) 

where  

2

1 2

s
s s

s

v

v
λ µ=

−
= Lamé constant for the skeleton 

For computation of the mass coefficients, 11ρ , 22ρ  and 12ρ , the following relations 

proposed by Berryman (1980) are used (as in Lin et al., 2005) 

( )

( )

11 gr 12

22 f 12

12 f

ˆ1

ˆ

ˆ 1

n

n

n α

ρ ρ ρ

ρ ρ ρ
ρ τ ρ

= − −

= −

= − −

                                                                                                 (2.2.17) 

where 

ˆ1
1

ˆ
r

n

n
ατ τ −
= + ≥1=  dynamic tortuosity                                                                (2.2.18a) 

Tortuosity is a dimensionless macroscopic parameter characterizing the resistance to 

flow of a fluid in porous medium, in particular the effect that, on microscopic scale, the 

paths of the fluid particles deviate from a straight line.  It depends on the porosity, , as 

well as on the shape of the pores, through the parameter 

n̂

rτ .  It has values 1 ατ≤ < ∞ .  As 

 (pure fluid) ˆ 1n → 1ατ → , and as  (pure solid) ˆ 0n → ατ →∞ .  For pores formed by 

spherical grains, as assumed in this work, 1/ 2rτ = , and 
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1 1
1

ˆ2 n
ατ

⎛= +⎜
⎝ ⎠

⎞
⎟                                                                                                          (2.2.18b) 

It can be seen from eqn (2.2.17) that the dynamic mass coefficients represent physically 

mass densities, per unit volume of the mixture.  If the coupling term 12ρ  is neglected, 

then 11ρ  and 22ρ  represent the mass densities of the solid and fluid phases per unit 

volume of the mixture. 

2.3.3  Approximate Treatment of Partial Saturation  
 

Partially saturated soil represents a three-phase medium (mixture of solid, fluid and 

gas).  So far there is no generally accepted theory for wave propagation in such soil 

medium.  In this work, a simplified approach is followed, in which is the theory for a 

two-phase medium is used, but with reduced bulk modulus of the fluid, as in Yang 

(2001).  Let  be the degree of saturation.  The relative proportions of the constituent 

volumes are defined as  

rS

 /V tn V V=�                   (2.2.19a) 

/r WS V V= V                                                                                                   (2.2.19b) 

where n
�

 is the porosity of the soil, and  and  are respectively the volumes of 

pores, pore water and the total volume. 

,V WV V tV

In this study, a high degree of saturation is considered > 90%, assuming the 

embedded air in the pore water is in the form of bubbles uniformly distributed through 

the fluid. In this case, the bulk modulus of fluid fK can be written as
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11f
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K
S

K P

=
−

+
                                                                                                   (2.2.20) 

Where  is the bulk modulus of pore water and  is the absolute fluid pressure. WK aP
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2.4 The Soil-Structure Interaction Problem 

2.4.1 Representation of the Scattered Waves 
 

The scattered waves are represented by a triplet of potentials, 1
Rφ , 2

Rφ , and Rψ , each 

expanded in Fourier-Bessel series with period 2π , representing outgoing cylindrical 

waves with origin at point   (see Fig.  2.3.1 showing an excavation in the soil where 

the foundation is embedded) 

1O
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                                                (2.3.1) 

 

 

Fig. 2.4.1 The excavation and forces acting on the soil. 
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The radial and tangential components of the displacements of the skeleton due to 

these waves are  
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    (2.3.2a) 

and the same components of the displacement of the fluid are 
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(2.3.2b) 

The radial and tangential components of the stresses in the skeleton due to these waves 

are   
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 (2.3.3a) 

and the stress in the fluid is 
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                                                                                           (2.3.5) 

( )nJ ⋅   and   are the Bessel functions of first and second kind, and ( )nY ⋅ (1) ( )nH ⋅  and 

 are the Hankel functions of the first and second kind, and 
(2) ( )nH ⋅ jf  is as defined in eqn 

(2.2.1).   
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where  

( ) / , 1, 2j jS Q f R jµ= + =                                                                                 (2.3.7) 

2.4.2 Boundary Conditions at the Contact Surface 
 

The motion of the rigid foundation for incident monochromatic waves is harmonic, 

and can be written as   

0

0

0

e i t

V V

a a

ω

ϕ ϕ

−

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪∆ = ∆⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

                                                                                              (2.3.8) 

Along the contact surface 1 0 0: ,r b θ θ θΣ = − ≤ ≤ 1
0 sin ( / )a bθ −=,  (Fig. 2.3.1), the 

displacements of the skeleton are constrained by the displacements of the foundation, and 

the motion of the fluid is constrained by the drainage condition.   Perfect bond between 
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the skeleton and the foundation, and perfectly sealed contact (i.e. no drainage of the pore 

fluid) imply  

( ) ( )

1 1
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1 1 1 1
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⎧ ⎫

⎩ ⎭

   (2.3.9a) 

Where the matrix on the right-hand side is the foundation influence matrix.  

Similarly, perfect bond between the skeleton and the foundation, and unsealed contact 

(i.e. free drainage of the pore fluid) imply 

1 1

1 1

1 1 1 0

1 1 1 0

0

cos sin ( / )sin

sin cos / ( / ) cos e

0 0 0

ff R

r r

i t

u u d a V
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as s

ω
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θ θ θ
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ϕ
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Σ Σ

⎧ ⎫ ⎧ ⎫ ⎡ ⎤
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⎧ ⎫

⎩ ⎭

                (2.3.9b) 

The application of these conditions enables expressing the unknown coefficients of 

expansion of the scattered waves in terms of the known free-field displacements, and the 

displacements of the foundation.  However, this requires expansion of the free-field 

displacements at  in Fourier series of 1r b= 1θ  with period 2π .  This can be done by 

expanding the potentials in Fourier-Bessel series, and then computing the displacements, 

similarly as for the scattered waves, but such series converge only for the plane waves, 

and diverge for the surface waves (Lee and Cao, 1989).  Hence, for the surface waves, we 

expand the displacements at 1r b=  in Finite Fourier series of 1θ , up to , which is 

the truncation index for the expansion of the scattered and plane free-field waves (Lee 

n N=
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and Cao, 1989).   Let us assume that such expansions are available, with nA
i
 and  

being the Fourier coefficients for the symmetric and anti-symmetric terms. Then  

nB
i
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                 (2.3.10a) 

and  
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                                                    (2.3.10b) 

For the scattered waves 
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(2.3.11a) 

where 

( ,3) ( ,3) (3)rel f

ij ij ijD D D= −                                                                                              (2.3.11b) 

and 
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                     (2.3.11c) 

After substitution for the appropriate expansions in eqn’s (2.3.11a) and (2.3.11b), 

and matching the terms multiplying the same basis functions (due to the orthogonality of 

Fourier series), the coefficients of expansion of the scattered field can be expressed in 

terms of the coefficients of expansion of the free-field motion and the displacements of 

the foundation.   Then for sealed boundary 
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                 (2.3.12a) 

and for an unsealed boundary 
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where  
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2.4.3 Integral of Stresses along the Contact Surface 
 

Next we compute vertical and horizontal forces ( )s

zf  and ( )s

xf , and moment about O , 

( )

0

sM , which result from all stresses in the soil along the contact surface , and have 

signs as shown in Fig. 2.3.1.   We also introduce a generalized force vector notation for 

Σ



 

this triplet of forces and moment { }0, , /
T

z xf f M a=F  and refer to it as the force, and 

generalized displacement vector { }, ,
T

V aϕ= ∆∆  and refer to it as the displacement.  For 

harmonic excitation,  is also harmonic and can be written as ∆

0
i t

e
ω−=∆ ∆                                                                                                              (2.3.15) 

where  is its complex amplitude. 0∆

The resultant force vector, ( )s
F , is the sum of the force vectors due to the free-field 

motion and due to the scattered waves, 
( )s

ffF  and ( )s

RF , and can be computed as follows 
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     (2.3.16) 

Eqn (2.36) holds for both sealed and unsealed conditions. We note however that, for 

an unsealed boundary, the total stress in the pore fluid, 
ff

s s
R+ , is actually zero on the 

boundary, as preset by the drainage condition (see eqn (2.29b)).   

Similarly as in Section 2.3.1, we expand the stresses of the free-field motion along 

the contact surface in Fourier series of 1θ  with period 2π  
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(2.3.17) 

and substitute in eqn (2.3.16).  Then, for the forces due to the free-field motion we get 
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                     (2.3.19) 

Some of the terms of matrices ( )L n
+⎡ ⎤⎣ ⎦  and ( )L n

−⎡ ⎤⎣ ⎦  are automatically zero (when 

the integrand is an odd function), and the nonzero ones can be evaluated analytically, 

which gives 
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                                             (2.3.20) 

The expressions for the integrals 1( )I n , 4 ( )I n , and 5( )I n  are given in Appendix.  

Similarly, for the forces from the scattered waves we get 
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where 
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Further, substituting in eqn (2.3.16) for the coefficients of expansion of the scattered 

waves from eqn (2.3.12a,b) it follows that for a sealed boundary 
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(2.3.23) 

It is seen that ( )s

RF  depends both on the displacements from the free-field motion and 

that of the foundation, and can be written as  

( ) ( ) ( )

R scat

s s

∆= +F F F s

s

)n ⎤⎦

                                                                                                        (2.3.24) 

where 

( ) ( )2s
Kµ∆ ⎡ ⎤= ⎣ ⎦F ∆                                                                                                     (2.3.25) 

with 
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For an unsealed boundary 
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and 
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                          (2.3.29) 

Then the integral of all stresses in the soil along the contact surface is 

( ) ( ) ( ) ( )

ff scat

( ) ( )

driv

s s s

s s

∆

∆

= + +

= +

F F F F

F F

s

                                                                                       (2.3.30) 

where 

( ) ( ) ( )

driv ff scat

s s= +F F F s                                                                                                 (2.3.31) 
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The interpretation of these forces and of matrix ( )s
K⎡ ⎤⎣ ⎦  is as follows. ( )s

∆F  defined by 

eqn (2.3.25) is an external force required to move the foundation by displacement  

when there is no free-field motion, and the matrix elating them, , is the 

foundation stiffness matrix.  This matrix is complex, with its real part representing the 

stiffness of the foundation, and its imaginary part the radiation damping.  

∆

( )2 s
Kµ ⎡⎣ ⎤⎦

( )

driv

s
F  defined by 

eqn (2.3.31) is the external force required to hold the foundation in place when it is 

subjected to the action of the free-field waves.  Its reaction is the force with which the 

free-field motion effectively drives the foundation, and is the generalized foundation 

driving force.   It is different from force ( )

ff

s
F , which is the integral of the stresses of the 

free-field motion, because of the scattering of waves from the foundation.   

 

2.4.4 Dynamic Equilibrium of the Foundation 
 

The only remaining unknown is the foundation displacement vector, , which can 

be determined from the dynamic equilibrium condition for the foundation.   Fig.  2.3.2 

shows a free-body diagram of the foundation, which is subjected to the forces from the 

building, , and the forces from the soil, 

∆

( )b
F

( ) ( ) ( )
driv 2s s s

Kµ ⎡ ⎤= + ⎣ ⎦F F ∆ .   

For small amplitudes of the response, the forces from the building can be represented 

in terms of the displacement vector, ∆ , as follows (Todorovska, 1993b)
  

[ ]( ) 2b
b bm Mω=F ∆

                                                        
(2.3.32)                                          
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Fig. 2.4.2 Dynamic equilibrium of the foundation. 

 

where [ b ]M  is a dimensionless matrix that depends on the building model and 

characteristics.  For a shear beam model, and neglecting the effect of the gravity forces, 

its entries are 
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                          (2.3.33) 

 37



 

In eqns (2.3.32) and (2.3.33),  is the mass per unit length of the beam, and bm H  and 

are its height and width, and  and W ,S bV ,P bV  are its S and P wave velocities. The 

dynamic equilibrium of forces acting onto the foundation implies  

[ ] [ ]2 (s) ( ) 2
fnd fnd b bdriv 2 s

m M K m Mω µ ω⎡ ⎤− − + =⎣ ⎦∆ F ∆ 0∆                                      (2.3.34) 

where  is the mass of the foundation, fndm [ ]fndM  is the foundation dimensionless mass 

matrix  

[ ]fnd

2
fnd,0 fnd

1 0 0

0 1 0

0 0 /( )

M

I m a

⎡ ⎤
⎢ ⎥

= ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥                                                                          (2.3.35) 

where   

( )
2

2fnd 31
fnd,0 0 0 0 02 2

0 0 0

cos sin cos
sin cos

b m
I θ θ θ

θ θ θ
⎡ ⎤= + −⎣ ⎦−

θ                                  (2.3.36) 

is the mass moment of inertia of the foundation relative to point O, and   is the mass 

per unit length of the foundation.  Finally, one can solve for  by inverting a 

fndm

∆ 3 3×  

matrix 

[ ] [ ]
1

2 2
( ) (s)fnd b

fnd b driv2
2 2

sm m
M M K

ω ω
µ

µ µ

−
⎡ ⎤

⎡ ⎤= + −⎢ ⎣ ⎦⎢ ⎥⎣ ⎦
∆ F⎥                                        (2.3.37) 

For the purpose of brevity, and without loss of generality, the dynamic moments of the 

gravity forces were neglected in the above derivations.  The expressions including these 

moments can be found in Todorovska (1993a,b). 
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2.5 The Free-Field Motion 

This section deals with the representation of the free-field motion for incident plane 

P-wave, incident plane SV-wave, and for a Rayleigh wave in a fully saturated porous 

half-space, considering the effects of the seepage force (which leads to complex valued 

and frequency dependent wave velocity in the mixture).   The coefficients of the reflected 

waves of the P- and S-wave potentials of the Rayleigh waves are derived for open 

(permeable) and sealed (impermeable) hydraulic condition on the half-space boundary, 

for which the zero stress condition on the half-space surface is Deresiewicz (1960) 
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        open (permeable) boundary                     (2.4.1)     

and 

0

0
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0
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u U

τ σ
τ

+

=

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨
⎪ ⎪ ⎪− ⎩ ⎭⎩ ⎭

⎬
⎪

    sealed (impermeable) boundary                                            (2.4.2) 

 

For incident plane waves (P and SV), the derivation presented in this section, which 

is for the genral dissipative case, follows Deresiewicz and Rice (1962).  For the Rayleigh 

waves, and nondissipative case, the derivation follows Lin et al. (2005).   

  

 

 

39



 

2.5.1 The Free Field Motion due to Incident P-Wave 
 

Let the excitation consist of a plane fast P-wave incident onto the half-space free 

surface (Fig. 2.4.1), represented by its potential   

])cossin(exp[ tizxi
i ωγγκφ α −−=                                   (2.4.3)         

Its interaction with the free surface will generate a triplet of reflected waves, consisting of 

a fast and slow P-wave and an S-wave, represented by their wave potentials  

])cossin(exp[1 tizxikK ffff

r

f ωθθϕ αα −+=                                                        (2.4.4a) 

])cossin(exp[1 tizxikK ssss

r

s ωθθϕ αα −+=                                                           (2.4.4b) 

])cossin(exp[2 tizxikKr ωθθψ βββ −+=                                                             (2.4.4c)  
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Fig. 2.5.1 Fluid-saturated porous half-space subjected to incident P-wave. 



 

where  

fk  the complex wave number of the fast plane P-wave 

sk  the complex wave number of the slow plane P-wave 

βk the complex wave number of the shear plane wave 

We recall that the wave numbers are in general complex, when the dissipation forces due 

to the seepage force are considered.   These wave numbers can be written in terms of 

their real and imaginary parts as  
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kij kr
k iη η= − ,   , ,j f s β=         (2.4.5) 

To ensure dissipation at infinity 
ki

η  in eqn (2.4.3) should be positive.  In this work, the 

angles of incident wave and of the reflected waves are taken as in H. Deresiewicz and 

Rice (1962) 

( ) ( ) ( )

sin
arc tan

sgn

k kr k
j k k

lr l li l l

kp q n

η θθ
η η

=
−

                                                                           (2.4.6) 

where  

k

j
θ  is the reflection angle, 

k
θ the incident angle, and ,and 

kr li
η η are the real and imaginary 

parts of the wave numbers. 

( )

2 2
sink kr li ki lr

l

lr li

n k

η η η η θ
η η

−
=

+
                                                                                           (2.4.7) 

The reflection angle sine and cosine for the case of l k≠ can be written as 

( ) ( ) ( )

1sin k k

l l
m in= + k

l
                                                                                                     (2.4.8) 
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l l l l
p iq n=                                                                                         (2.4.9) 
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l
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⎬
⎪
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,                                                         (2.4.11) 

( ) ( )2 2
( ) ( ) ( )1k k

l lK m n= − +                (2.4.12a) 

and  

( ) ( ) ( )2k k

l l
L m n=                                                              (2.4.12b) 

To determine the reflection coefficients both boundary conditions at the free surface are 

taken (open boundary and sealed boundary condition): 

For open (permeable) half-space surface, the zero stress condition implies  
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                                                        (2.4.13) 

and for sealed (impermeable) half-space surface 
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              (2.4.14) 

where 

)sin2( 2

1

2

1,11 ff MkG αα θ−−=           (2.4.15a) 



 

)sin2( 2

2

2

2,11 ss MkG αα θ−−=                 (2.4.15b) 

ββ θ2sin
2

12 kG =                 (2.4.15c) 

ffkG αα θ2sin
2

1,21 −=                 (2.4.15d) 

sskG αα θ2sin
2

2,21 −=                 (2.4.15e) 

ββ θ2cos
2

22 kG −=                 (2.4.15f) 

ffikG αα θcos1,41 =                 (2.4.15g) 

ssikG αα θcos2,41 =                 (2.4.15h) 

ββ θsin42 ikG −=                 (2.4.15i) 

1

2

1,61 SkG fα−=                 (2.4.15j) 

2

2

2,61 SkG sα−=                (2.4.15k) 

2.5.2 The Free Field Motion due to Incident SV-Wave 
 

Similarly as for the fast incident P-wave, an incident SV wave can be represented by 

its potential  

exp[ ( sin cos ) ]i
i x z i tαψ κ γ γ= − ω−                                                                          (2.4.16)    

and the interaction with the free-surface will generate the reflected fast and slow P-wave  

and an SV-wave, represented by their potentials   

])cossin(exp[1 tizxikK ffff

r

f ωθθϕ αα −+=                                                          (2.4.17) 

])cossin(exp[1 tizxikK ssss

r

s ωθθϕ αα −+=                                                             (2.4.18) 
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])cossin(exp[2 tizxikKr ωθθψ βββ −+=                                                               (2.4.19) 

The critical angle for the fast P-wave is  

1sin / 2
cr

P Q Rθ µ−= + +                                                                                         (2.4.20) 

The zero stress condition for open (permeable) half-space surface implies 
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                                                            (2.4.21) 

and for sealed (impermeable) half-space surface it implies 
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                  (2.4.22) 

2.5.3 The Free Field Motion due to Rayleigh-Wave 
 

A Rayleigh in the half-space propagating in the positive x- direction can be 

represented by its potentials  

( )1 fb y i kx t

f f
c e e

ωφ − −=  

( )1s
i kx tb y

s s
c e e

ωφ −−=                                                                                                       (2.4.23)                         

( )2
i kx tb y

De e
ωψ −−=  

where 

2

1 2
1f

f

c
b k

Vα

= −                       (2.4.24a) 
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2

1 2
1

s

s

c
b k

Vα

= −                  (2.4.24b) 

2

2 2
1

c
b k

Vβ

= −                  (2.4.24c) 

 

The zero stress condition for open (permeable) half-space surface implies 

11,1 11,2 12 1

21,1 21,2 22 1

61,1 61,2

0

0

0 0

f

s

G G G b

G G G b

G G D

∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗

⎡ ⎤− ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

                                                                 (2.4.25) 

and for sealed (impermeable) half-space surface it implies 
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where 
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f
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2 2
2 2

11,2 2
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s

k c M
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2
2
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G ik
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2
2

21,1 2
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f
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G ik

Vα
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G ik
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k c
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1
61,1 2
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S k c
G
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2 2

2
61,2 2

s

S k c
G

Vα
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For a nontrivial solution, the determinate of the matrices in eqns (2.4.25) and (2.4.26) 

have to be equal to zero, which gives for open (permeable) half-space surface 

( ) ( ) ( )

( )

2 2 2 2 2 2 2 2

2 1 1 2 1 2 2 1

2 2 2 2
4 2 2 2 2

1 2 2 1 2 12 2 2 2
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+ − − − − + − − 0=
    

                                                                                                                              (4.2.28) 

and for sealed (impermeable) half-space surface  
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Equations (2.4.28) and (2.4.29) are the characteristic equations the solution of which 

gives the allowable phase velocities of Rayleigh waves, , for both conditions.  Then by 

substituting the corresponding velocity in eqns (4.2.25) and (4.2.26), the coefficients of 

the wave potentials can be determined.   

c
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2.5.4 Displacements and Stresses due to the Free-Filed Motion 

2.5.4.1 Rectangular Coordinates 

 

Once the amplitude coefficients of the wave potentials have been determined, the 

displacements and stresses in the half-space can be computed.  For a given triplet of 

potentials, the displacements and stresses in rectangular coordinates can be computed 

using the following relationships 
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where 

f sC ,C  and D are the known coefficients of the wave potentials. 

31,1G i∗∗ = k

k

 

31,2G i∗∗ =  

32 2G b
∗∗ =  

41,1 1 f
G b∗∗ =  

41,2 1s
G b∗∗ =  

42G i
∗∗ = − k  



 

2.5.4.2 Cylindrical Coordinates and Series Expansion along the 

Contact Surface 

 

To match the displacements and stresses along the contact surface, they have to be 

represented in Fourier-Bessel series.  For the plane waves, the representation can be done 

easily after expansion of the corresponding wave potentials in Fourier-Bessel series using 

the addition theorem.  For surface waves, however, these series diverge, and the addition 

theorem cannot be used.  This problem can be avoided by computing the displacements 

and stresses along the contact surface, 1r b= , and then expanding them in finite Fourier 

series of 1θ , as proposed by Lee and Cao (1989).   

The derivations for the inhomogeneous waves are greatly simplified by representing 

them as plane waves but for a complex reflection angles.  These angles are   

2
f fiα α

πθ φ= −   

2
s siα α

πθ φ= −                                                                                                              (2.4.32) 

2
iβ β

πθ φ= −  

where 
fαφ , 

sαφ , βφ  are real quantities such that  

cosh /
f f

V cα αφ =  

cosh /
s s

V cα αφ =  

cosh /V cβ βφ =  
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Then the potentials in terms of these complex angles are  



 

( )( )1 11
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s s
C e e α αθ θ ωφ − −=                                                                                         (2.4.33) 

( )( )1 12
cosik r i tb d

De e
β βθ θ ωψ − −

=  

Displacements and stresses can be computed in cylindrical coordinates from the 

potentials using the following relationships  

1
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This gives for the displacements along the canyon rim 1r b=  and for 0 0θ θ θ− ≤ ≤   
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for the solid,  
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for the fluid.  Similarly, the stresses acting on the solid and on the fluid along the canyon 

rim are 
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and 
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where 

( )1 1 1cosf f f fA b d ik rα αθ θ= + −  

( )1 1 1cos
s s s

A b d ik rα α s
θ θ= + −  

( )2 1 1cosA b d ik rβ β βθ θ= + −  

 

 51



 

Chapter 3: Numerical Results and Analysis 

 

This chapter presents numerical results for: the wave velocities, free-field motion, 

foundation input motion, foundation stiffness and damping, and system response in the 

form of a parametric study, with the objective of understanding the effects of the many 

model parameters.  The following Chapter 6 shows results for a model with properties 

similar to those for Millikan library, attempting to explain the observed effects. 

The results were computed using a FORTRAN computer program SSI_POROUS 

(Todorovska and Al Rjoub, 2006a), which was generalized to work for a dissipative 

medium (i.e. for a mixture that has finite permeability and is saturated with viscous 

fluid), and for partially saturated soils. This generalization required computation of 

Bessel functions of complex arguments, and subroutines from Zhang and Jin (1996) were 

used. The computer program was written in terms of dimensionless parameters, defined 

using as reference: length a , material modulus sµ , and mass density grρ .   Then, the 

system response is a function of the following dimensionless parameters: stiffness of the 

fluid relative to the skeleton, defined through the ratio /f sK µ  and the Poisson’s ratio sν ; 

mass density of the skeleton relative to the fluid, defined through the ratio gr / fρ ρ  and 

the porosity ; mass of the building relative to the mass of the foundation, and mass of 

the foundation relative to the mass of the replaced soil, through the ratios 

n̂

b fnd/m m  and 

, where, fnd gr/m m gr fnd grm A ρ=

)

 is the mass of the excavated soil (per unit length) if there 

were no voids, and  is the area of the foundation; the flexibility of the building 

relative to that of the soil, through the ratio 

fndA

ref ,b( ) /( SV H V aε =  
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[ ],b ref( ) / / ( ) /SH V a Vω ω⎡ ⎤= ⎣ ⎦  = ratio of the number of wavelength in the shear beam in 

length H and the number of reference wavelengths in the soil in length a; dimensionless 

frequency ref/( )a Vη ω π= , where ref gr/sV µ ρ=  is a reference velocity; foundation 

shape, through the ratio ; and on the type, amplitude and angle of the incident waves.   /h a

3.1 Soil Constitutive Properties and Waves Velocities 

The wave velocities in the soil and the frequency of motion are fundamental for 

significance of the effects of the soil-structure interaction.  When the effects of the 

seepage force are considered, the wave velocities depend themselves on the degree of 

dissipation and also on frequency.  Hence, the analysis begins with understanding how 

the wave velocities depend on frequency and on the soil permeability (for fixed value of 

viscosity of the fluid), which will help later on, interpret the results for the foundation 

stiffness and damping.    

3.1.1  Input Model Parameters 
 

The following range of the input parameters was considered in the analysis. The pore 

fluid in this study is water, which has mass density  kg/m310wρ = 3 
and bulk modulus 

 Pa, giving bulk wave velocity 92.2 10wK = × /w wK ρ =1,483 m/s.  For full saturation, 

f wK K=  and f wρ ρ= .  For the mass density of the material of which the grain is made 

value  was used.  The ratio 3
gr 2.7 10  kg/mρ = × 3 / fKµ , where f wK K=  describes the 

stiffness of the skeleton, which is varied so that / fKµ = 0.01, 0.1, 1, and 10.  The value 

/ fKµ = 0.01 corresponds to soft soil, / fKµ = 0.1 to stiff soil, and / fKµ = 1 and 10 to 
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porous rock (Lin et al., 2001). Only one value of Poisson ratio is considered, sν =0.3, and 

two values of porosity, n
�

=0.3 and 0.4, which are representative for soils.   The 

dissipation depends on the ratio ˆˆ / kµ , where µ̂  is the absolute viscosity of the fluid, and 

 is the intrinsic permeability of the skeleton.  The absolute viscosity of water at about 

25 C is 

k̂

° ˆwµ = -30.89 10× Pa s⋅  (1 Pa s⋅ =1 ).  In this work, a rounded value 

 is used. The intrinsic permeability of the skeleton depends on the 

type of geologic material.  Pervious consolidated geo materials, such as highly fractured 

rock, and pervious unconsolidated geo materials such as well-sorted gravel and well-

sorted sand and gravel, have intrinsic permeability  in the range 10 .  

Semi-pervious consolidated geo materials, such as oil reservoir rocks and fresh 

sandstone, and semi-pervious unconsolidated geo materials, such as very find sand, silt, 

loess and loam, have  in the range 

2N s/m

3ˆ ˆ 10wµ µ −= = 2N s/m

k̂ 6 1010− −− 2m

k̂ 11 1410 10− −− 2m  (Bear, 1972).   Geo materials with 

 in the range  are considered to be impervious.  In this work, results are 

shown for , and also for the case when the effects of the dissipative force 

are neglected, and the wave velocities are real values (this case is referred to as the “no 

seepage force” or the “ ” case).  For dry soil (pores filled with air), the following 

values are taken: 

k̂ 15 1910 10− − 2m−

−12 6ˆ10 10k− ≤ ≤

k̂ →∞

gr / fρ ρ =0.001 and /fK sµ =0.001, and the dry shear wave velocity is 

computed as ,dry grˆ/[(1 ) ]S sV nµ ρ= − .   Another variable of the model is the frequency 

of motion.    
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The upper bound of frequency is constrained by the requirements that: (1) the flow of 

the fluid in the pores is laminar, and (2) the wavelengths are much larger than the size of 

the pores.  The first requirement implies frequency bound 
2

ˆ

4
tf

d

πν
= , where d is the 

diameter of the pores, and ν̂  is the kinematic viscosity, which is related to the dynamic 

viscosity µ̂  and fluid density fρ  by ˆ ˆ / fν µ ρ= (Biot, 1956a).   This implies maximum 

frequencies  Hz for 10,000tf = 0.01d =  mm (silt), 100tf =  Hz for  mm (sands), 

and  Hz for  mm (coarse sands to gravel).   We consider frequencies not 

larger than 100 Hz in presenting results for the wave velocities and free-field motions, 

and dimensionless frequency 

0.1d =

10tf = 1d =

5η ≤ , where ref ref/( ) (2 ) /a V a f Vη ω π= = , and 

, and  is the characteristic dimension for the wave scattering problem and 

radiation problem.  Then for the softest soils considered (

ref S,dryV V= 2a

/ fKµ =0.01), for which the 

smallest wave velocity is of the order of 100 m/s, and for =24 m, which is the value 

used for the case study (Millikan library), the maximum value of 

2a

5η =  implies highest 

frequency  Hz, which is low enough for the flow to be laminar. 20f =

3.1.2 Wave Velocities for Full Saturation as Function of the Model 

Parameters 
 

For very small 
ˆ ˆ1

ˆ

n

k

µ
ω

, which has dimension of mass density, the seepage force is much 

smaller than the inertial forces, and its effects are negligible (see eqns (2.2.7c,d)). In that 

case, the wave velocities are real valued, do not depend on frequency, and are used in this 
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section as reference in showing how much the wave velocities change as result of the 

seepage force.  Table 3.1.1 shows these frequency independent velocities for different 

combinations of all other input parameters.  The S and P –wave velocity of the dry solid 

is also shown, used as reference in studying the effects of saturation.   

Table 3.1.1 Wave velocities for fully saturated soil for the case of no seepage force. 

/ fKµ  sν  n
�

 S,dryV  

[m/s] 

P,dryV  

[m/s] 

SV  

[m/s] 

PfV  

[m/s] 

PsV  

[m/s] 

0.01 0.3 0.3 107.9 201.9 103.6 1,922.4 101.5

0.1 0.3 0.3 314.2 638.5 327.5 1,986.8 310.7

1.0 0.3 0.3 1,078.9 2,018.9 1,033.6 2,620.5 745.0

10.0 0.3 0.3 3,411.8 6,384.6 3,274.7 6,344.7 973.0

0.01 0.3 0.4 116.5 218.1 110.8 1,763.5 131.8

0.1 0.3 0.4 368.5 689.5 350.4 1,831.1 401.5

1.0 0.3 0.4 1,165.3 2,180.4 1,108.2 2,561.0 907.7

10.0 0.3 0.4 3,685.1 6,894.9 3,504.4 6,697.9 1,097.5

 

 

Figure 3.1.1 shows the variation of the normalized wave velocities with inverse 

permeability , which is proportional to the seepage force.  In this one and all other 

figures, , , the wave velocities are normalized by their respective value for no 

seepage force (

1/ K

ˆK k≡ ˆn n≡

ˆ ˆ1

ˆ

n

k

µ
ω

=0, see Table 3.1.1), and the real parts of the wave velocities are 

shown on the left hand side, and the imaginary parts are shown on the right hand.   In this 

figure, the different curves correspond to different values of / fKµ , and the porosity is 
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ˆ 0.4n = .  Parts a) and b) differ in that in part a) all the results are for same absolute 

frequency, set to 1f =  Hz, while in part b), all the results are for same relative 

frequency, which is the dimensionless frequency set to ,dry/( )Sa Vη ω π=  set to 1η = , 

where the reference length a =12 m.  Because  is different for each ,drySV / fKµ  (see 

Table 3.1.1), the absolute frequency is different for the different values of / fKµ , 

having values f = 3.76, 11.9, 37.6 and 118.9 Hz for / fKµ = 0.01, 0.1, 1 and 10.  Part b) 

is shown because the effects of scattering and radiation depend on the dimensionless 

frequency rather than on the absolute frequency.   The results in Fig. 3.1.1 show that the 

velocities vary significantly only within a band of values of permeability. Outside this 

band, they rapidly approach their asymptotic values, which are real valued.   The velocity 

of the fast P-wave is affected little by the seepage force, decreasing only by up to about 

5%.  The velocity of the slow P-wave is affected most by the seepage force, decreasing to 

zero for very large seepage force.  The velocity of the S-waves reduces by up to about 

40% of its value for zero seepage force.  A comparison of the results in parts a) and b) 

shows that, for fixed permeability and absolute frequency f , the change of the wave 

velocities with permeability does not depend on the relative stiffness of the skeleton, 

although their absolute values are very much dependent on the relative stiffness of the 

skeleton (see Table 3.1.1).   For fixed relative frequency, ,dry/( )Sa Vη ω π= , the change 

of the wave velocities is similar but occurs within a different range of values of 1/ .   

The change starts to become significant for smaller permeability for materials with stiffer 

skeleton.

K
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Fig. 3.1.1 Normalized wave velocities of the mixture versus inverse permeability for 

different values of / fKµ , and for porosity n̂ =  0.4.  In part a), the absolute frequency is 

set to 1f =  Hz, and in part b) the relative frequency is set to ,dry/( )Sa Vη ω π= =1, where 

the reference length 12 m.   a =
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Figure 3.1.2 also shows the variation of the normalized wave velocities with inverse 

permeability , but the different curves correspond to different values of frequency 

, 1, 10 and 100 Hz.  In part a), 

1/ K

0.1f = / fKµ =0.1 (stiff soil), in part b) / fKµ =0.01 

(soft soil), and in both parts the porosity is n̂ =  0.4.  It can be seen from this figure that, 

for smaller frequencies of motion, the seepage force starts to affect the wave velocities at 

smaller 1/ , i.e. at higher permeability. This trend is as expected, because the effect of 

the seepage force is through the combination 

K

ˆˆ ˆ /( )n kµ ω . 

Fig. 3.1.3 shows the normalized wave velocities versus frequency f  in Hz on a 

logarithmic scale for different values of inverse permeability 1/ .  As in Fig. 3.1.2, in 

part a), 

K

/ fKµ =0.1 (stiff soil), in part b) / fKµ =0.01 (soft soil), and in both parts the 

porosity is  0.4.  It can be seen that the trend of the variation of the normalized wave 

velocities with increasing frequency is the same as the trend with increasing permeability 

(see Fig. 3.1.2), which is due to the fact that in Biot’s theory, the effect of the seepage 

force is through the ratio 

n̂ =

ˆˆ ˆ /( )n kµ ω .   
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Fig. 3.1.2 Normalized wave velocities of the mixture versus inverse permeability for 

different values of frequency, 0.1f = , 1, 10 and 100 Hz.  The porosity is , and ˆ 0.4n =

f/Kµ =0.1 (part a) and 0.01 (part b). 
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Fig. 3.1-3 Normalized wave velocities versus frequency for different values of 

permeability.  The porosity is ˆ 0.4n = , and f/Kµ =0.1 (part a) and 0.01 (part b). 
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3.1.3  The Effect of Partial Saturation on the Wave Velocities  
 

This section illustrates the variation of the wave velocities of the mixture as function 

of the degree of saturation, accounted for as described in Section 2.2.3.  Fig. 3.1.4 shows 

the variation of the adjusted bulk modulus of the fluid, f wK K≤ , plotted on a 

logarithmic scale, as function of the fraction of air in the pores, 1 , where  is the 

saturation (ratio of the volume of the pore water and the volume of the pores).  The 

different curves correspond to different values of the absolute pore pressure (  in eqn 

(2.2.20)), which takes values 0.2, 0.6 and 1 MPa.  It can be seen that the modified bulk 

modulus reduces rapidly as the saturation becomes partial even for very small fraction of 

air.  Fig. 3.1.5 shows the variation of the modulus of the (complex) velocities of the fast 

and slow P-wave versus 1 , for porosity 

rS− rS

aP

rS− ˆ 0.4n = , and / 0.01wKµ =  (soft soil).  It can 

be seen that both wave velocities decrease rapidly with increasing fraction of air content, 

the velocity of the fast P-wave approaching the P-was velocity in the dry solid (about 200 

m/s, see Table 3.1.1), and the velocity of the slow P-wave approaching zero.   In this 

model, which is used only for very high degrees of saturation ( ), the effects of 

the saturation on the mass densities is ignored, and hence, the shear wave velocity does 

not depend on the degree of saturation. 

90%rS >
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Fig. 3.1.4 Modified bulk modulus of the pore fluid versus fraction of air, 1 rS− . 

 

Fig. 3.1.5 Modified velocities of fast and slow P-waves versus fraction of air, 1 rS− , 

for porosity  and ˆ 0.4n = / 0.01wKµ =  (soft soil).
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3.2 Foundation Complex Stiffness Matrix 

This section shows results for the real and imaginary part of the foundation 

impedance matrix, where the real part describes the foundation stiffness, and the 

imaginary part is related to the damping due to radiation of energy from a vibrating 

foundation.  Section 3.2.1 shows results for fully saturated soils, and Section 3.2.2 for 

partially saturated soils.   In all figures, the Poisson’s ratio is 0.3ν = , the porosity is 

, and the dimensionless frequency is defined with respect to the shear wave 

velocity of the dry solid, 

ˆ 0.4n =

,s dry

a

V

ωη
π

= , which is independent of the state of saturation.   

Results are shown only for “stiff” and “soft” soils, i.e. for / 0.1
f

Kµ =  and 0.01, because 

the effects of the pore water are more significant for solids with relatively soft skeleton.   

3.2.1 Foundation Complex Stiffness Matrix for Fully Saturated Soils 
 

Figure 3.2.1 shows results for / 0.1
f

Kµ = , for different values of permeability.  Part 

a) shows results for permeable (open) foundation-soil interface, and part b) for 

impermeable (sealed) interface.  It is noted here that the hydraulic condition on the half-

space surface does not affect the results, as the effect of the free surface on the scattered 

waves from the foundation was neglected in the development of the model. In each part, 

the plots on the left show the real part and those on the right show the imaginary part of 

the corresponding foundation stiffness matrix coefficient, and the three rows of plots 

show respectively  (horizontal and vertical stiffness which are equal for this 

model for a semi-circular foundation),  (rocking stiffness), and  (coupling term 

11 22= K K

33K 23K
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Fig. 3.2.1 Foundation dynamic stiffness coefficients for different values of skeleton 

permeability, and for porosity ˆ 0.4n =  and / 0fK .1µ = .  Pat a) shows results for 

permeable (open), and part b) for impermeable (sealed) contact surface. 
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 Fig. 3.2.2 Foundation dynamic stiffness coefficients for different values of skeleton 

permeability, and for porosity ˆ 0.4n =  and / 0.fK 01µ = .  Pat a) shows results for 

permeable (open), and part b) for impermeable (sealed) contact surface. 
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between horizontal and rocking motions). Similarly, Fig. 3.2.2 shows results for 

/ 0.
f

Kµ =  (soft soil).  The results are discussed in what follows. 

A noted in Todorovska and Al Rjoub (2006b) the effect of saturation for this shape 

of embedded foundation is such that it affects significantly both the horizontal and the 

vertical stiffness, while the effect on the rocking and coupling stiffness coefficients is 

very small. This can be explained by the fact that the rocking motion of the foundation 

results only in shear deformations in the soil and motion of soil tangent to the contact 

surface, which does not cause flow of fluid perpendicular to the foundation-soil interface 

(hence pressure from the fluid onto the foundation).  What is different in this thesis from 

the study in Todorovska and Al Rjoub (2006b) is that the effects of the seepage force are 

considered, which, as noted in Section 3.1 lead to complex valued wave velocities in the 

soil, and also the effects of partial saturation. Hence, in this thesis work, the emphasis is 

on analyzing the effects of finite permeability and partial saturation.   

Todorovska and Al Rjoub (2006b) explained the trend of the effect of the pore water 

as increasing the stiffness of the foundation for small frequencies for which the water 

moves in phase with the solid, but the effects reverses for high enough frequency, when 

the pore water moves in the opposite direction of the solid, and it reduces the foundation 

stiffness.  For very stiff skeleton (e.g. rock) the effect is very small, while for some very 

soft soils, the window of frequencies where there would be an increase of stiffness may 

be very small for the increase to be noticeable.   The presence of a dissipative force is 

expected to increase the dynamic stiffness of the foundation. Figures 3.2.1 and 3.2.2 

shows that the horizontal and vertical stiffness (real part of ) do increase with 11 22= K K



 

decreasing permeability (i.e. with increasing seepage force), but only up to a certain value 

of permeability.  For smaller permeability than that value, the foundation stiffness 

decreases with further decrease of permeability, but only for smaller η , and for large 

enough η  it exceeds the stiffness for larger values of permeability. This change in the 

trend can be explained by the dependency of the wave velocities both on frequency and 

permeability.   

To observe better and explain these effects, the next four figures, 3.2.3 through 3.2.6, 

show in part a) enlarged plots of  versus 11 22= K K η  from Figs 3.2.1 and 3.2.2, and in part 

b) they show the variation of the wave velocities with dimensionless frequency η .  

Again, the real parts of both complex stiffness coefficients and velocities are shown on 

the left hand side, and the imaginary parts are shown on the right hand side. Figures 2.2.3 

and 2.2.4 show results for / 0.1
f

Kµ = , respectively for permeable and impermeable soil-

foundation interface.  Figures 2.2.5 and 2.2.6 show the same cases and quantities but for 

/ 0.
f

K 01µ = .  It can be seen from these figures that, for fixed frequency, the wave 

velocities are larger for more permeable materials.  For given permeability, the wave 

velocities increase with increasing η , and their value and rate of the increase are different 

in different frequency intervals.  For higher permeability, the wave velocities reach their 

high frequency asymptote, which is their value for zero seepage force. Hence, for 

saturated realistic soils (with finite permeability and nonzero viscosity) and for the 

frequencies of interest in earthquake engineering, the variation of the foundation stiffness 

with frequency is governed by two competing mechanisms, one through the flow of fluid 
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through the pores which affects the wave velocities, and the other one via the associated 

wave phenomena (scattering and diffraction), which depend on the relative size of the 

foundation and the wavelength of the incident waves.   

A comparison of the foundation stiffness for different hydraulic condition at the 

interface shows that, for smaller η , when the pore water moves in phase or nearly in 

phase with the skeleton, it’s the stiffening is larger for an impermeable foundation than 

for permeable one.  For the foundation damping it is the opposite – the damping is larger 

a permeable foundation, and it is larger for less permeable soils.  The foundation 

damping is also larger for softer soils than for stiff soil. 
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Fig. 3.2.3 Comparison of variations of horizontal/vertical foundation complex 

stiffness (part a)) and  variations of the complex wave velocities (part b)) with 

dimensionless frequency eta for different values of permeability, for porosity ˆ 0.4n =  

and / 0fK .1µ = , and for p ermeable (open)  contact surface. 
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Fig. 3.2.4 Same as Fig. 3.2.3 but for impermeable (sealed) contact surface. 
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Fig. 3.2.5 Comparison of variations of horizontal/vertical foundation complex 

stiffness (part a)) and variations of the complex wave velocities (part b)) with 

dimensionless frequency eta for different values of permeability, for porosity ˆ 0.4n =  

and / 0.fK 01µ = , and for permeable (open) contact surface. 
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Fig. 3.2.6 Same as Fig. 3.2.5 but for impermeable (sealed) contact surface. 

 

 73



 

3.2.2 Foundation Complex Stiffness Matrix for Partially Saturated 

Soils 
 

Figures 3.2.7 and 3.2.8 show results for partially saturated stiff and soft soil 

respectively ( / 0.1
f

Kµ =  and 0.01).  The different curves correspond to dry soil, fully 

saturated soil and partially saturated soil with saturation 99rS = % and 90%.  It can be 

seen that the results for the partially saturate soils are very close to those for dry soil even 

for such high saturation ratios.  
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Fig. 3.2.7 Effect of degree of saturation on the foundation complex stiffness for 

porosity  and ˆ 0.4n = / 0.1wKµ = , and for permeable (open, part a)) and 

impermeable (sealed, part b)) contact surface.   
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Fig. 3.2.8 Same as Fig. 3.2.7 but for ˆ 0.4n =  and / 0.01wKµ = . 
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3.3 Free-Field Motion 

Free-field motion is the motion of the half-space not affected by the presence of 

structures.  It is of interest for the problem analyzed in this thesis because it represents the 

excitation of the soil-structure system.  This motion is modified by the scattering of 

waves from the soil-foundation interface, and radiation of waves by the vibrating 

foundation.  Its modification due to scattering only is referred to as foundation input 

motion, which asymptotically approaches the free-field motion for wavelengths much 

longer than the size of the foundation.  Hence, understanding of the free-field motion 

helps understand the foundation input motion.   In what follows, results are shown for the 

free-field motion on the surface of a porous half-space that is fully or partially saturated, 

and due to incident plane fast P-wave and incident plane SV-wave. Incident slow P-wave 

is not considered because it attenuates very fast, and hence is not likely to be a carrier of 

any significant energy from the earthquake source.  Locally generated slow P-waves, 

however, are considered.  The results are presented in the form of the magnitudes of the 

(complex) coefficients of the reflected waves from the half-space surface, and the 

magnitudes of the (complex) horizontal and vertical displacements on the surface of the 

half-space.   In all the results presented in this section, the Poisson’s ratio is 0.3ν =  and 

the porosity is . ˆ 0.4n =

 77



 

3.3.1 Incident Plane Fast P-wave   

3.3.1.1 Incident P-wave and Fully Saturated Soil 

 

Figures 3.3.1.1 and 3.3.1.2 show variations of the reflection coefficients’ amplitudes 

(left) and surface displacement amplitudes (right) due to an incident plane fast P-wave 

with unit displacement amplitude, versus the angle of incidence, for different values of 

permeability ,  and 6ˆ 10k −= 810− 1010− 2m .  The case when the effects of the seepage force 

are neglected is also shown, as the case , as well as the dry soil case.  These two 

figures differ in the stiffness of the skeleton.  In Fig. 3.3.1.1 

k̂ →∞

/ 0fK .1µ =  (stiff soil) and 

in Fig. 3.3.1.2 / 0.fK 01µ =  (soft soil).  Parts a) and b) differ in the hydraulic boundary 

condition at the surface.  Part a) corresponds to a permeable half-space and part b) to an 

impermeable half-space.   The frequency is set to 1f =  Hz.     

The results in Figs 3.3.1.1 and 3.3.1.2 show that, at 1f =  Hz, the horizontal 

displacements of the saturated soil decrease with decreasing permeability, are affected 

very little by the type of hydraulic boundary conditions, and are always and significantly 

smaller than those of the dry soil.  The vertical displacements for permeable half-space 

are practically not affected by the saturation for all values of permeability considered.  

For impermeable half-space, vertical displacements are larger for saturated soil, and 

decrease with decreasing permeability, approaching the dry soil displacements.  The 

difference is the largest for vertical incidence.  
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Figs 3.3.1.3 and 3.3.1.4 also show variations of the reflection coefficients’ amplitudes 

and surface displacement amplitudes due to an incident plane fast P-wave with unit 

displacement amplitude, versus the angle of incidence, but for different values 
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of frequency , 1, 10 and 100 Hz.  The case when there is no seepage force is also 

shown.  In both figures, 

0.1f =

/ 0.fKµ =  (soft soil), and they differ only in the value of 

permeability.  In Fig. 3.3.1.3 7 2ˆ 10 mk
−=  and in Fig. 3.3.1.4 .   Figure 

3.3.1.3 shows that, for (larger) permeability of 

10 2ˆ 10 mk
−=

7 2ˆ 10 mk
−= , the horizontal surface 

displacements are the smallest for 0.1f = , and they approach their values for no seepage 

force as the frequency increases.  Figure 3.3.1.4 shows that, for less permeable soils, with 

permeability of , the horizontal displacements are considerably smaller for 

the cases with finite permeability, then for the “no seepage force” case, even for 

10 2ˆ 10 mk
−=

100f =  

Hz.   The vertical displacements, for permeable half-space, vary insignificantly with 

frequency (for the range considered) and are practically the same as for the “no seepage 

force” case even for the less permeable soil ( 10 2ˆ 10 mk
−= ). 

 

 

 

 

 

 

 



 

 

Fig. 3.3.1.1 Free-field motion due to unit displacement plane fast P-wave versus 

incident angle, for different values of permeability. a) Permeable, b) impermeable 

half-space. Left: amplitudes of the reflection coefficients. Right: amplitudes of the 

surface displacements. The input parameters are: porosity ˆ 0.4n = , / 0.1
f

Kµ = , and 

the frequency is set to 1f =  Hz.   
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Fig. 3.3.1.2 Same as Fig. 3.3.1.1 but for   / 0.01
f

Kµ = . 
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Fig. 3.3.1.3 Free-field motion due to unit displacement plane fast P-wave versus 

incident angle, for different values of frequency.  a) Permeable, b) impermeable half-

space. The input parameters are: porosity ˆ 0.4n = , / 0.01
f

Kµ = , and permeability 

. 7 2ˆ 10 mk
−=
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Fig.  3.3.1.4 Same as Fig. 3.3.1.3 but for   permeability . 10 2ˆ 10 mk
−=
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3.3.1.2  Incident P-wave and Partially Saturated Soil 

 

Similarly as the previous figures, Figs 3.3.1.5 and 3.3.1.6 show variations of the 

reflection coefficients’ amplitudes (left) and surface displacement amplitudes (right) due 

to an incident plane fast P-wave with unit displacement amplitude, versus the angle of 

incidence, for different values of saturation 100
r

S = , 99 and 90%. The effects of the 

seepage force are neglected, and hence, the results are not dependent on frequency.  

These two figures differ only in the stiffness of the skeleton.  In Fig. 3.3.1.5 / 0fK .1µ =  

(stiff soil) and in Fig. 3.3.1.6 / 0.fK 01µ =  (soft soil).  Parts a) and b) differ in the 

hydraulic boundary condition at the surface.  Part a) corresponds to a permeable half-

space and part b) to an impermeable half-space.   Fig. 3.3.1.5 shows that, for stiff soil, the  

horizontal displacements are very similar for 90 and 99% saturation, and are significantly 

larger than for 100% saturation, for both permeable and impermeable half-space.  The 

vertical displacements, for permeable half-space are practically the same for all three 

levels of saturation, but for impermeable half-space are significantly larger for 100% 

saturation than for the partial saturation, the difference being the largest for vertical 

incidence.   Fig. 3.3.1.6 shows that, for stiff soil, as far as the effect of the degree of 

saturation is concerned, the results differ from those for stiff soil only in that the 

horizontal motions are much more sensitive to the degree of saturation, being almost an 

order of magnitude larger for 90% saturation than for 100% saturation. 
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Fig.  3.3.1.5 Free-field motion due to unit displacement plane fast P-wave versus incident 

angle, for different levels of saturation.  a) Permeable, b) impermeable half-space. The 

input parameters are: porosity ˆ 0.4n = , / 0.1
f

Kµ = , and frequency 1f =  Hz.  The 

effects of the seepage force are neglected. 
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Fig.  3.3.1.6  Same as Fig. 3.3.1.5 but for / 0.01
f

Kµ = . 
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3.3.2  Incident Plane SV-wave   

3.3.2.1 Incident SV-wave and Fully Saturated Soil 

 

Figures 3.3.2.1 through 3.3.2.4 show results for the free-field motion due to an 

incident plane SV-wave onto a half-space for the same parameters as Figs 3.3.1.1 through 

3.3.1.4.  It can be seen that for vertical incidence, the horizontal displacement on the 

surface always approaches 2, and the vertical displacement approaches zero.  As the 

incident angle approaches 90 , both the vertical and horizontal displacements approach 

zero.  For  incidence, and for permeable half-space, the horizontal displacements are 

always zero, while for impermeable half-space, they are not necessarily zero but are 

small.  It can be seen that the surface displacements for incident SV wave are not very 

sensitive to the hydraulic boundary condition. A comparison with the results for incident 

P-wave shows that, for incident SV-wave, both the horizontal and vertical surface 

displacements are more sensitive to the variations of permeability and frequency, i.e. are 

affected more by the seepage force, than for incident P-wave.  For frequency set to 

D

45D

1f =  

Hz, the maximum displacement amplitudes (over all incident angles) are significantly 

larger for larger seepage force than for “no seepage force” (see Figs 3.3.2.1 and 3.3.2.2), 

but as the frequency increases, they decrease and approach the values for “no seepage 

force”.  A comparison of the fully saturated and dry soil cases shows that the maximum 

horizontal displacements (over all incident angles) are larger for the dry soil, while the 

vertical displacements are larger for the saturated soil, and for smaller permeability. 
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Fig.  3.3.2.1Free-field motion due to unit displacement plane SV-wave versus incident 

angle, for different values of permeability. a) Permeable, b) impermeable half-space. 

Left: amplitudes of the reflection coefficients. Right: amplitudes of the surface 

displacements. The input parameters are: porosity ˆ 0.4n = , / 0.1
f

Kµ = , and the 

frequency is set to 1f =  Hz.   
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Fig.  3.3.2.2 Same as Fig. 3.3.2.1 but for / 0.01
f

Kµ = . 
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Fig.  3.3.2.3 Free-field motion due to unit displacement plane SV-wave versus incident 

angle, for different values of frequency.  a) Permeable, b) impermeable half-space. The 

input parameters are: porosity ˆ 0.4n = , / 0.01
f

Kµ = , and permeability . 7 2ˆ 10 mk
−=
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Fig.  3.3.2.4 Same as Fig. 3.3.2.3 but for   permeability . 10 2ˆ 10 mk
−=
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3.3.2.2  Incident SV-wave and Partially Saturated Soil 

 

Figs 3.3.2.5 and 3.3.2.6 show results for the free-field motion due to an incident SV-

wave for partial saturation, also for the same soil properties as in Figs 3.3.1.5 and 3.3.1.6.  

It can be seen from these results that the vertical displacements are not very sensitive to 

the degree of saturation, but the maximum (over all incident angles) horizontal 

amplitudes are much larger for the partially saturated soils than for the fully saturated 

soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig.  3.3.2.5 Free-field motion due to unit displacement plane SV-wave versus incident 

angle, for different levels of saturation.  a) Permeable, b) impermeable half-space. The 

input parameters are: porosity ˆ 0.4n = , / 0.1
f

Kµ = , permeability , and 

frequency 

7 2ˆ 10 mk
−=

1f =  Hz. 
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Fig.  3.3.2.6 Same as Fig. 3.3.2.5 but for / 0.01
f

Kµ = . 
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3.4  Foundation Input Motion  

Foundation input motion is, by definition, the response of a massless foundation to 

the incident waves.  The interaction of the incident waves with the massless foundation is 

also referred to as kinematic interaction.  Hence, the foundation input motion is 

essentially the free-field motion plus some perturbation due to scattering of the waves 

from the foundation.  This perturbation is very small for very long incident waves 

compared to the size of the foundation.  While the free-field motion was studied in detail 

in Section 3.3, this section focuses on the effect of the saturation as function of 

dimensionless frequency η , showing results only for one incident angle and for stiff soil. 

Figure 3.4.1 and 3.4.2 show the amplitudes of the vertical displacements V , 

horizontal displacements ∆  and rocking amplitudes aϕ , versus dimensionless 

frequency 
S,dry

a

V

ωη
π

= , respectively for an incident fast P- and an incident SV-wave, 

both at 30  incidence.  The results are for stiff soil, with D / 0fK .1µ = , porosity ˆ 0.4n = , 

and full saturation.  Results for dry soil are also shown.  In part a), the half-space is 

permeable, and in part b) it is impermeable.  In both parts a) and b), the pots on the left 

correspond to permeable soil-foundation interface, and the plots on the right to 

impermeable interface. It can be seen that the nature of the variation of the amplitudes of 

the three components of the foundation input motion with frequency is similar for 

saturated soil as for dry soil, which has been studies previously in detail.  
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Fig. 3.4.1 Foundation input motion amplitudes due to an incident plane fast P-wave at 

 incidence, for 30D / 0fK .1µ = , porosity ˆ 0.4n = .  Part a):  permeable half-space. Part b) 

impermeable half-space.  Left: permeable foundation. Right: impermeable foundation. 
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Fig. 3.4.2 Same as Fig. 3.4.1 but for an incident plane SV-wave at  incidence. 30D
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3.5 Building-Foundation-Soil Response 

 98

.1

This section shows results for the amplitudes of the foundation displacements and 

building relative displacement (due to elastic deformation of the building only), for stiff 

soil with / 0fKµ =  and porosity ˆ 0.4n = , and for a building with height 2H a= , 

width , and mass ratios W a= / 2
b f

m m =  and / 0.2
f s

m m = .  The excitation is an 

incident plane fast P-wave or a plane SV-wave, both at  incidence, and with unit 

displacement of the incident wave.     

30D

3.5.1 Building-Foundation-Soil Response for Incident P-wave 
 

Figures 3.5.1.1 through 3.5.1.4 show results for incident P-wave at 30  incidence. In 

all figures, 

D

V  is the amplitudes of the vertical displacements, ∆  is the amplitudes of the 

horizontal displacements, aϕ  is the rocking angle multiplied by the characteristic length 

a, rel
bu  is the relative building response at the top, and the dimensionless frequency is 

S,dry

a

V

ωη
π

= . In each figure, part a) corresponds to permeable half-space, and part b) to 

impermeable half-space. 

Figures 3.5.1.1 and 3.5.1.2 show the variation of the system response with η  for fully 

saturated soil with different permeability, respectively for permeable and for 

impermeable foundation.  The response for dry soil is also shown.  Figures 3.5.1.3 and 

3.5.1.4 show the variation of the system response with η  for different levels of 

saturation.  These figures show that both the foundation and the building relative 

response exhibit large variations near the building fixed-base frequencies.   The 
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“backbone” curve of the foundation displacement amplitudes is governed by the 

foundation input motion, shown in Section 3.4, which also affects the amplitudes of the 

peaks of the building relative response. The building relative response has peaks at the 

system frequencies.  Due to the interaction with the foil, the first system frequency is 

lower than the fundamental fixed-base frequency, and the amplitude of the peak is 

generally reduced due to the radiation of energy in the soil.  It is well known that the 

amount of the shift and the reduction of amplitude depend on the relative flexibility of the 

soil, which in case of porous soil depends on the water content, soil permeability, and 

also frequency.  The effect of the flexibility of the soil is described through the 

foundation complex stiffness matrix (See Section 3.2).  In the “coarse” resolution plots in 

these figures, no significant shift of the peaks can be seen as function of the water content 

and permeability.  Hence, if there is a change, it is small.  Investigation of such changes 

for one case study building is presented in the following section.   

 

 

 

 

 

 

 

 



 

 

Fig.  3.5.1.1   System response due to an incident plane fast P-wave at 30  incidence, for D

/ 0fK .1µ = , porosity , ˆ 0.4n = 2H a= , width W a= , and mass ratios / 2
b f

m m = , 

, and for a permeable foundation.  Part a):  permeable half-space. Part b) 

impermeable half-space.  The different curves correspond to different soil permeability. 

/ 0
f s

m m = .2
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Fig.  3.5.1.2 Same as Fig. 3.5.1.1, but for impermeable foundation. 
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Fig.  3.5.1.3   Same as Fig. 3.5.1.1, but the different curves correspond to different levels 

of saturation.  
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Fig.  3.5.1.4 Same as Fig. 3.5.1.1, but the different curves correspond to different levels 

of saturation, and the foundation is impermeable.  
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3.5.2 Building-Foundation-Soil Response for Incident SV-wave 
 

Similarly as in Section 3.5.1, Figures 3.5.2.1 through 3.5.2.4 show results for 

incident SV-wave at 30  incidence. In all figures, D
V  is the amplitudes of the vertical 

displacements, ∆  is the amplitudes of the horizontal displacements, aϕ  is the rocking 

angle multiplied by the characteristic length a, rel
bu  is the relative building response at 

the top, and the dimensionless frequency is 
S,dry

a

V

ωη
π

= . In each figure, part a) 

corresponds to permeable half-space, and part b) to impermeable half-space.  The 

observations in these figures are the same as in Section 3.5.1 for incident P-wave.    
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Fig. 3.5.2.1 System response due to an incident plane SV-wave at 30  incidence, for D

/ 0fK .1µ = , porosity , ˆ 0.4n = 2H a= , width W a= , and mass ratios / 2
b f

m m = , 

, and for a permeable foundation.  Part a):  permeable half-space. Part b) 

impermeable half-space.  The different curves correspond to different soil permeability. 

/ 0
f s

m m = .2
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Fig. 3.5.2.2   Same as Fig. 3.5.2.1, but for impermeable foundation. 
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Fig. 3.5.2.3 Same as Fig. 3.5.2.1, but the different curves correspond to different levels of 

saturation.  
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Fig. 3.5.2.4 Same as Fig. 3.5.2.1, but the different curves correspond to different levels of 

saturation, and the foundation is impermeable. 
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3.6 Frequency Shift due to Saturation – Millikan Library Case 

This section shows results for the model response for parameters chosen so that it 

corresponds approximately to the NS response of Millikan Library in Pasadena, 

California.  This building has been chosen because changes of its frequencies of vibration 

have been reported such that can be correlated with heavy rainfall (Clinton et al., 2006).   

Todorovska and Al Rjoub (2006b) attempted to explain these changes as resulting from 

changes in the soil due to saturation.  They used a soil-structure interaction model in 

poroelastic soils, presented in Todorovska and Al Rjoub (2006a), and showed that 

changes in the soil due to saturation produced the same trend and order of magnitude of 

the shift as observed.   The model of Todorovska and Al Rjoub (2006a) is an earlier 

version of the model analyzed in this thesis that did not include the effects of the seepage 

force.  Hence, this section focuses on how different assumptions on the soil permeability 

would affect the frequency shift.  For the purpose of completeness of the analysis in this 

thesis work, a summary of the full-scale observations, as well as of the choice of model 

parameters in Todorovska and Al Rjoub (2006b) is included.  

3.6.1 Full-scale Observations 
 

The frequencies of vibration of Millikan Library have been monitored since 1967 

using different excitations such as ambient noise, forced vibrations, and earthquakes.  

Permanent and temporary changes in its frequencies have been observed, most recently 

summarized in Clinton et al. (2006).  The permanent change is decrease with time, from 

1.45 to 1.19 Hz for EW vibrations, and from 1.9 to 1.72 Hz for NS vibrations, as 

measured during small amplitude vibrations. The lowest measured values occurred 
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during the strong earthquake shaking from the 1971 San Fernando earthquake (Udwadia 

and Trifunac, 1974), and 1994 Northridge earthquake (0.94 Hz for EW vibrations, and 

1.33 Hz for NS vibrations; Cinton et al., 2006).  Since February of 2001, continuous data 

steams of the 9
th

 floor response have been recorded by a tri-axial 24-bit accelerometer, 

which is one of the stations of the California Integrated Seismic Network.  This has 

enabled monitoring of changes of the building apparent frequencies on different time 

scales (Clinton et al., 2006).  Further, weather data from the nearby JPL Weather station, 

located about 8.5 km north of the building, has been available for a period of about 2.5 

years following the installation of this sensor, which enabled to study possible 

correlations of the changes of its frequencies with weather (temperature, wind and rain).    

The reported observation of the changes of the building frequencies with rainfall is 

as follows. The building first and second apparent frequencies for EW and NS motions, 

and the first frequency for torsional motions increase during heavy rainfall (above 40 mm 

per day) in a matter of hours, and recover in about a week following the rain (Clinton, 

2004; Clinton et al., 2006).  For example, in early February of 2003, when over 100 mm 

rain fell over a period of two days, an increase of about 3% was measured for the EW and 

the torsional frequencies, followed by a slow decay over a period of about 10 days (see 

Fig. 9 in Clinton et al., 2006).  The measured change of the NS frequency was smaller 

(slightly less than 1%). Clinton et al. (2006) note that this increase in frequencies 

occurred in spite of the fact that strong winds that often accompany heavy rainfall tend to 

decrease the system frequencies by exciting larger amplitudes of response (by up to 3% 

in dry weather).  Further, they note an increase of the system frequencies with 



 

temperature (about 1−2 % on very hot days with temperature near 40
o
C).  For wind and 

temperature, the recovery is practically instantaneous, while for rainfall it is slow, and 

can take about a week.   

3.6.2 Model Parameters for NS Response 
 

Todorovska and Al Rjoub (2006b) chose the system parameters guided by the 

information provided in Luco et al. (1986), who specified: building weight =  

N, foundation weight = N, building height 44 m, foundation depth 4 m, and 

building in plan dimensions 

81.05 10×

80.14 10×

21 m 23 m× . Further, they classify the local soil as alluvium 

with depth to “bedrock” about 275 m, and mention apparent frequencies of vibration 

measured during forced vibration tests that are about 1 1.8f =  Hz for NS vibrations, and 

 Hz for EW vibrations.   Clinton et al. (2005) provided further history on the 

variations of these frequencies, which shows strong correlation with amplitudes of 

response, and overall trend of decrease with time, from initial values  Hz for NS 

vibrations, and  Hz for EW vibrations during forced vibrations in 1967, to 

 Hz for NS vibrations, and 

1 1.4f =

1 1.9f =

1 1.45f =

1 1.54f = 1 1.19f =  Hz for EW vibrations during ambient 

vibrations.    For the soil in their homogeneous half-space model, Todorovska and Al 

Rjoub (2006b) chose values that would correspond approximately to the soil at Millikan 

Library near the surface.  They use soil porosity  = 0.4, Poisson’s ratio n̂ sν = 0.3, 

 kg/m3
gr 2.7 10ρ = × 3

, and sµ  that correspond to dry shear wave velocity 

,dry grˆ/[(1 ) ]S sV nµ ρ= − = 300 m/s.  For the water,  kg/m310fρ = 3
 and  92.2 10fK = ×
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Pa (which gives bulk wave velocity 1,483 m/s).   For dry soil, they set gr/fρ ρ =0.001, 

and /fK sµ =0.001.  These parameters imply /fK sµ = 15.089.  For the building, they 

assumed fundamental fixed-base frequency 1 2.5f = Hz.  Further, based on the foundation 

plan dimensions of , they chose reference length a = 12 m.  They also 

choose , i.e. a semi-circular.  They noted that a rigid foundation model might be 

acceptable for the NS vibrations, for which experiments have shown that the base moves 

as a rigid body (Foutch et al., 1975), and as much as 30% of the roof response is due to 

rigid body rocking (Luco et al., 1986).  In contrast, in the EW direction, the building 

behaves as one on a flexible foundation with a stiff central core (Foutch et al., 1975).  

23.3 m 25.1 m×

/b a =1

Table 3.6.2.1 shows the model wave velocities for dry and fully saturated soil with no 

seepage force. It can be seen that the saturated soil has slightly smaller shear wave 

velocity than the dry solid and more than 3 times larger velocity of the fast P-wave 

velocity. 

Table 3.6.1 Wave velocities for fully saturated soil for the model of Millikan library 

assuming no seepage force 

 

 /f sK µ   /f grρ ρ  
SV  1PV  2PV  

Dry 0.001 0.001 300 561.3 175.6 

Saturated 15.089 0.371 285.3 1,805.3 331.5 
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The variation of the wave velocities with permeability and degree of saturation is shown 

in Fig. 3.6.1 Part a) shows the variations of the normalized wave velocities versus inverse 

permeability at frequency 1η =  ( 12.5f =  Hz).  As in Section 3.1, the velocities are 

normalized by their values for zero seepage force.  It can be seen that the wave velocities 

decrease for permeability smaller than 710− .    Part b) shows variation of the velocities of 

the fast P-wave (when there is no seepage force) versus the amount fraction of air in the 

pores for different values of the pore pressure.  It can be seen that both velocities 

decrease rapidly with increasing air content, with the velocity of the fast P-wave 

approaching the value for “dry” soil even for very small percentage of air such as 1%.   

This implies that to observe any significant changes in the system response due to 

rainfall, the level of saturation has to be very high.    
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Fig. 3.6.1Wave velocities for the Millikan case. a) Normalized wave velocities for fully 

saturated soil as function of inverse permeability. b) Wave velocities of P-waves as 

function of the air content in the pores. 
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3.6.3 Foundation Complex Stiffness and System Response 
 

Fig. 4.6.2 shows plots of the foundation complex stiffness matrix versus frequency 

between 0 and 60 Hz.   Part a) shows results for a permeable foundation, and part b) 

for an impermeable foundation, and the real parts are shown of the left and the imaginary 

parts are shown on the right.  The different types of lines correspond to dry soil and to 

fully saturated soil with different permeability.   Similarly, Fig. 4.6.3 shows results of the 

system response (foundation translations, foundation rotation, and building relative 

response at the top), for vertically incident SV wave with unit displacement amplitude.     

f =

To help measure and understand the shifts of the first system frequency, enlarged 

plots of the horizontal/vertical stiffness coefficients and of the amplitudes of the first 

peak in the relative response are shown respectively in Figs.  3.6.4 and 3.6.5.  Similarly 

as in the previous two figures, parts a) show results for a permeable foundation, and parts 

b) for an impermeable foundation.   Figs.  3.6.4 shows that for small frequencies (i.e. near 

the frequency of the first mode of vibration of the building), the foundation stiffness is 

larger for saturated soil than for dry soil, and this effect is more significant for 

impermeable foundation.  Also, it is larger for smaller permeability but only up to some 

value beyond which the effect reverses.   

As it can be seen from Fig. 3.6.5, the shift in frequency for a permeable foundation is 

insignificant.  For an impermeable foundation, Todorovska and Al Rjoub (2006b) 

reported increase of about by 2% (from 1.44 to 1.47 Hz) for fully saturated soil relative to 

dry, using their model which neglected the effects of the seepage force, which agreed  
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Fig. 3.6.2 Foundation complex stiffness matrix coefficients for the model corresponding 

to Millikan library. a)  Permeable foundation. b) Impermeable foundation.   
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Fig. 3.6.3 System response for the model corresponding to Millikan library. a) Permeable 

foundation. b) Impermeable foundation.   
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Fig. 3.6.4 Enlarged view of the horizontal/vertical foundation complex stiffness 

coefficients for the model corresponding to Millikan library. a) Permeable foundation. b) 

Impermeable foundation.    
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Fig. 3.6.5 Enlarged view of the first peak in the building relative roof response of the 

model corresponding to Millikan library. a) Permeable foundation. b) Impermeable 

foundation.      
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approximately with the observations.   Fig. 3.6.5 (part b)) shows that this effect is smaller 

for less permeable soils and may reverse for small enough permeability of the soil.   

It is noted here that the observed effect of finite permeability on the shift of frequency 

predicted by the model is due to the strong dependency of the wave velocities in Biot’s 

original theory (Biot, 1956a) on permeability and frequency, i.e. for large enough 
ˆ ˆ1

ˆ

n

k

µ
ω

.  

This dependency is most significant for the shear wave velocity, which can be reduces to 

up to 60-70% of its value for zero seepage force. This reduction is due to increased 

effective mass (due to the seepage force) in the computation of the wave velocities.  It is 

also noted that Biot’s theory does not consider the molecular forces between the different 

phases (solid, water and air in the case of partial saturation).   
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Chapter 4: Summary and Conclusions  

 

This thesis presented an investigation of the effects of water saturation on the 

effective input motion and system response during building-foundation-soil interaction 

using a simple two-dimensional model. In this model, the building is represented as a 

shear wall supported by a semi-cylindrical foundation imbedded in a homogeneous and 

isotropic poroelastic half-space, and the excitation is a plane P, plane SV or a Rayleigh 

wave.  Biot’s theory of wave propagation in fully saturated poroelastic medium was used 

to describe the motion in the soil.  By relaxing the zero stress condition at the free surface 

for the scattered waves, a closed form solution was derived using the wave function 

expansion method. The boundary conditions along the contact surface between the soil 

and the foundation are perfect bond for the skeleton, and either drained or undrained 

hydraulic condition for the fluid (i.e. permeable or impermeable boundary).  The effect of 

partial saturation, versus full saturation for which the Biot’s theory has been derived, is 

accounted for approximately, by changing the effective bulk modulus of the fluid.   

Numerical results are shown for variations of the wave velocities, free-field motion 

amplitudes, foundation input motion amplitudes, foundation complex stiffness, and the 

system response in the frequency domain for different values of the model parameters, 

and for incident plane P- and SV-waves.  Also, the effects of the saturation on the 

building apparent frequency are analyzed for a model that approximately corresponds to 

the NS response Millikan library in Pasadena, California, for which shift in frequency 

and recovery have been observed due to heavy rainfall.  The numerical results were 



 

computed using a computer program written in Fortran. The following summarizes the 

results of the analysis and the conclusions. 

The solution of the problem was expressed entirely in terms of dimensionless 

parameters, which were defined using reference: length  (half with of the foundation), 

material modulus 

a

sµ  (the shear modulus of the skeleton), and mass density grρ  (the 

density of the material of the grains without pores).  The dimensionless parameters that 

control the system response are the following: stiffness of the skeleton relative to the bulk 

modulus of the fluid, through the ratio /s fKµ  and the Poisson’s ratio sν ; mass density 

of the skeleton relative to the fluid, defined through the ratio gr / fρ ρ  and the porosity ; 

mass of the building relative to the mass of the foundation, and mass of the foundation 

relative to the mass of the replaced soil, through the ratios 

n̂

b fnd/m m  and , 

where, 

fnd gr/m m

gr fnd grm A ρ=  is the mass of the excavated soil (per unit length) if there were no 

voids, and  is the area of the foundation; the flexibility of the building relative to that 

of the soil, through the ratio 

fndA

ref ,b( ) /( ) [ ],b ref( ) / / ( ) /SH V a Vω ω⎡ ⎤= ⎣ ⎦SV H V aε =   = ratio of 

the number of wavelength in the shear beam in length H and the number of reference 

wavelengths in the soil in length a; dimensionless frequency ref/( )a Vη ω π= , where 

ref gr/sV µ ρ=  is a reference velocity; foundation shape, through the ratio ; and on 

the type, amplitude and angle of the incident waves.  An additional parameter for viscous 

fluids and finite permeability is the coefficient of dissipation 

/h a

2ˆ ˆˆ ˆ /b n kµ= , were µ̂  is the 

absolute viscosity, and  is the coefficient of permeability. k̂
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The wave velocities in the soil medium are the most fundamental quantities that 

affect the system response.  Therefore, the effects of the model parameters on the wave 

velocities were first analyzed. Biot’s theory predicts the existence of two P-waves (one 

fast and the other one slow) and one S-wave in poroelastic soil medium.  The results 

show that, when the seepage force is considered, the velocities of these waves are 

frequency dependent.  The wave velocities in the soil decrease with increasing seepage 

force, the effects of which are more pronounced for smaller frequency of motion, larger 

fluid viscosity, larger porosity and smaller skeleton permeability, i.e. for larger 
ˆ ˆ1

ˆ

n

k

µ
ω

.  

For large enough 
ˆ ˆ1

ˆ

n

k

µ
ω

, the velocities of the SV and fast P-wave approach their 

asymptotic value, which is real valued, and the velocity of the slow P-wave approaches 

zero.   The variation is very small for the fast P-waves (about 5%), is about up to 40% for 

the S-wave, and is up to 100% for the slow P-wave.  The percentage change depends very 

little on the relative stiffness of the skeleton (i.e. /s fKµ ).  Both P-wave velocities 

decrease with increasing air content in the pores.  The velocity of the fast P-wave 

approaches the P-wave velocity of the dry soil, and that of the slow P-wave approaches 

zero.   

The results show that the amplitudes of the free-field motion, which excites the 

structure, depend strongly on the angle of incidence, and also on the properties of the soil 

model: relative stiffness of the skeleton (i.e. /s fKµ ), porosity and permeability (for 

given viscosity and Poisson’s ratio), and are frequency dependent when 
ˆ ˆ1

ˆ

n

k

µ
ω

 is not 
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small.   The effect of the water is more significant for mixtures with softer skeleton (i.e. 

smaller /s fKµ ), e.g. soft soils, as compared to porous rock.  For incident P-wave, the 

amplitudes of the horizontal motion at the surface are larger for dry soil than for saturated 

soil, but the amplitudes of the vertical motion are larger for saturated soil and 

impermeable boundary.   For incident SV wave, the peak horizontal amplitude is also 

larger for dry soil, and but the vertical amplitudes are smaller regardless of the hydraulic 

boundary condition on the surface.   

The amplitudes of the free-field displacements at the ground surface depend most on 

the incident angle.  For incident P waves, the amplitude of the horizontal displacement is 

zero for vertically and horizontally incident waves, and is the largest near 45 degrees 

incidence. The amplitudes of the vertical displacement is the maximum for vertical 

incidence, and it decreases monotonically to zero for horizontal incidence.  For incident 

SV waves and Poison ratio ν =0.3, the horizontal amplitude equals 2 for vertical 

incidence, is zero at 45 degrees incidence, exhibiting a sharp peak for incidence below 45 

degrees, beyond which it increases a little and decreases again to zero for horizontal 

incidence.  The amplitudes for the vertical motion are zero for vertical and horizontal 

incidence, and exhibit a peak near 30 degrees incidence. The frequency dependence is 

more significant for incident SV waves, but it is still small.  The amplitudes decrease 

with increasing frequency, approaching those for zero seepage force.    

The foundation input motion is the effective input motion exciting the structure.  It is 

defined as the response of a massless foundation, without the structure, to the incident 

waves, and represents the free field motion that has been modified by the scattering of 
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waves from the foundation.  As the dimensionless frequency 0η →  (i.e. for very long 

incident waves compared to the size of the foundation), the horizontal and vertical 

amplitudes of the foundation input motion approach those of the free-field motion, and 

the rotation approaches zero.   For very short incident wavelengths, the amplitudes 

approach zero, due to the ironing effect of the foundation.   

The building response is affected by the dynamic soil-structure interaction through 

the foundation complex stiffness matrix. The real part of this matrix is referred to as 

“foundation stiffness”, and the imaginary part is related to the loss of energy due to 

radiation which effect is related to the “radiation damping”.   The results show that the 

presence of water in the pores affects significantly the foundation impedance matrix for 

soft and stiff soils. The rocking impedance is affected negligibly by the presence of 

water, which can be explained by the fact that the rocking motions produce mostly a 

shearing deformation of the soil near the contact surface.  The conclusion is similar for 

the coupling term.  The horizontal impedance is significantly affected by the hydraulic 

condition along the contact surface, which permits or stops the flow of water through the 

contact surface.  As it can be expected, the foundation stiffness is larger when the pores 

are filled with water and the contact surface is impermeable (sealed contact).  The 

imaginary part, however, i.e. the radiation damping, is larger for permeable foundation. 

For relatively small seepage force, the foundation stiffness increases with increasing 

seepage force, but for large enough seepage force the effect becomes the opposite.  In 

that case, the decreasing foundation stiffness with increasing seepage force can be 

explained by the smaller wave velocities for larger seepage force.    
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For the case corresponding to NS response of Millikan library, the apparent frequency 

increases by about 2% for fully saturated soil, impermeable foundation, and negligible 

seepage force (very high permeability).  For decreasing permeability, however, the 

increase becomes smaller and the trend reverses for small enough permeability. Because 

of this, and the fact that the wave velocities as well as foundation stiffness are strongly 

dependent on frequency, conclusions from analysis of one model or particular 

observation for a specific soil site and structure cannot be automatically generalized to 

any structure and type of soil. 
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