CE 485

Wastewater Treatment Design

3 Units

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

ABET Course Syllabus

Course Information, Textbook and Supplementary Materials	Capstone Course	
--	-----------------	--

Course Description:

Process kinetics, mass balance, reactor design, pretreatment, clarification, chemical treatment, biological treatment (aerobic and anaerobic), disinfection, sludge treatment, nitrogen and phosphorous removal, and carbon adsorption.

Capstone for: Required for:	BSCE and BSCE Environmental BSENE
Prerequisites:	CE 451 Water Resources Engineering CE 463 Water Chemistry and Analysis CE 473 Engineering Law, Finance and Ethics
Co-Requisites:	None
Required Textbook:	Wastewater Engineering: Treatment Disposal and Reuse, Metcalf & Eddy, Inc. Fourth Eidtion, McGraw Hill, 2003.

Reference: None

Topics Covered	Learning Outcomes	
	Students will understand the systems and procedures of water treatment processes:	
Wastewater	Wastewater treatment objectives, the design process and wastewater flows	
	Wastewater Composition and Loadings	
Process Analysis	Physical and Chemical Unit Operations and Processes	
Design and Fundamentals	Physical and Chemical Facilities	
	Biological Processes	
Design	Activated Sludge Process	
	Facilities for Biological Wastewater Treatment	
	Facilities for Biological Wastewater Treatment, and other Biological Processes	
	Aeration System, Sludge Treatment and Disposal	
	Treatment Plant Hydraulics and Site Development	
	Water Reuse and Reclamation	
	Natural Treatment Systems	

CE 485

Wastewater Treatment Design

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Lecture and Lab Schedule						
Lecture		Lab				
Sessions per Week	Duration per Session	Sessions per Week	Duration per Session			
1	3 hours	n/a				

Relation of Course Objectives to Program Outcomes

The Civil Engineering program is designed to teach beyond the technical content of the curriculum and prepare the students to utilize what they learn in a professional setting.

This course contributes to the program outcomes as outlined in the adjacent table.

	Course Contribution to Program Outcomes (a-k)	√ Key
C.	An ability to design a system component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, manufacturability, and sustainability.	
d.	An ability to function on multi-disciplinary teams.	~
f.	An understanding of professional and ethical responsibility.	
g.	An ability to communicate effectively.	✓
h.	The broad education necessary to understand the impact of engineering solutions in a global economic and environmental and societal context.	~
j.	Knowledge of contemporary issues.	✓

Prepared by:Dr. Roger Stephenson, Professor of Civil and Environmental EngineeringDate:Spring 2015