

Theory of Structures II

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

ABET Course Syllabus

Course Information, Textbook and Supplementary Materials

Course Description:	Matrix algebra; stiffness method; force method; computer analysis of planar structures.			
Required:	Required for BSCE Structural and Building Science			
Prerequisites:	CE 108 Introduction to Computer Methods in Civil Engineering, and			
	CE 358 Theory of Structures T			
Co-Requisite:	none			
Required Textbooks:	Sack, Ronald L. Matrix Structural Analysis, 1994; and			
Reference:	Przemieniecki, J. S. Theory of Matrix Structural Analysis, 2012.			

Topics Covered	Learning Outcomes
Stiffness and force methods of structural analysis of beams, frames, and trusses; computer implementation, structural dynamics, finite element methods and nonlinear analysis	 Students will have learned: Matrix algebra, matrix statics Energy methods, structural analysis Stiffness matrices-supported, free-free Compatibility methods, direct stiffness Equivalent nodal forces, enforced displacement, thermal analysis Structural dynamics-free vibration, time history, response spectra Finite elements - shear walls Force method, flexibility equations Nonlinear analysis Shear beams Numerical implementation— programming
Structures under static loads	 To define two-dimensional truss and beam stiffness matrices To incorporate rigid offsets, moment releases, rigid diaphragms To include effects of loads between nodes, enforced displacements, and thermal effects To use SAP2000 for two-dimensional static analysis To define three-dimensional beam stiffness matrices To consider arbitrarily oriented three-dimensional beam members To use SAP2000 for three-dimensional static analysis
Structures under dynamic loads	 To define mass matrices for two-dimensional truss and beam members To solve for natural frequencies and vibration modes for two-dimensional structures To perform time history analysis to find displacements due to time-dependent forces To perform response spectrum analysis to find peak structural displacements due to earthquake ground motion To use SAP2000 to do a time history analysis To use SAP2000 to do a response spectrum analysis

Topics Covered	Learning Outcomes
Finite element methods	25. To define shape functions and stiffness matrices for higher order one-dimensional elements
	 To define two-dimensional shape functions, including higher order two-dimensional shape functions
	27. To define stiffness matrices and applied force vectors for two-dimensional shear wall elements
Advanced techniques	28. To use the force method for simple truss problems
	 To derive the stiffness matrices for short deep beams from the unit load method To understand the basic concepts in geometrically nonlinear analysis

CE 458

Theory of Structures II

3 Units

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Lecture and Lab Schedule						
Lecture		Lab				
Sessions per Week	Duration per Session	Sessions per Week	Duration per Session			
2	1.5 hours	1	2 hours			

Relation of Course Objectives to Program Outcomes

The Civil Engineering program is designed to teach beyond the technical content of the curriculum and prepare the students to utilize what they learn in a professional setting.

This course does not contribute to the program outcomes.

Course Contribution to Program Outcomes (a-k)	√ Key
n/a	

Prepared by: Dr. L. C. Wellford Professor of Civil Engineering Revised: Fall 2014