

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

ABET Course Syllabus

Course Information, Textbook and Supplementary Materials	Design Kernel					
Course Description: Strength and deformation of reinforced concrete; beams in flexure and shear; bond and development of bars; deflections; columns; slabs; footings; introduction to pre-stressed concrete.						
Kernel for: BSCE Required for: BSCE Structural and BSCE Building Science						
Prerequisite: CE 225 Mechanics of Deformable Bodies						
Required Textbook: Design of Reinforced Concrete, by Jack C. McCormac and Ru Wiley, 2014, ISBN 978-1-118-12984-5	ssel H. Brown, Ninth Edition,					
Reference Optional: "Building Code Requirements for Reinforced Concrete" (ACL)	318-05) and commentary					

Reference Optional: "Building Code Requirements for Reinforced Concrete," (ACI 318-05), and commentary, American Concrete Institute, Farmington Hills, MI.

Topics Covered	Learning Outcomes		
Analyzing reinforced concrete beams under service loads and ultimate loads.	 Students will be able to understand, analyze and design the following: Material properties Analyze for service loads Deflections; control of cracking Analyze for strength Design for strength Design for shear Anchorage and bond Analyze and design of short columns Understand the characteristics of reinforced concrete materials Evaluate stresses and deflections of beams at service load. Determine the capacity of beam sections at ultimate load. 		
Learning to design beam sections for demanded flexural strength and shear strength.	 Proportion economical beams in reinforced concrete for ultimate loads considering rectangular sections, sections with compression reinforcement and sections with flanges." The concepts of the balanced section and of curvature ductility. Select size and spacing of reinforcement for ultimate shear considering the effect of moments and axial loads acting on the section. Identify regions of beams where the flexural reinforcement and shear reinforcement can be reduced. Determine anchorage lengths required to develop the strength of reinforcing and the use of hooked bars. 		

Analyzing and designing	17.	Select section and reinforcement for columns subjected to axial loads.
short columns	18.	Develop interaction diagrams for columns subjected to axial load and moment
	19.	Design sections for axial load and moment
	20.	Design spiral reinforcement and locate plastic centroid

CE 457

Reinforced Concrete Design

3 Units

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Lecture and Lab Schedule							
Lecture		Lab					
Sessions per Week	Duration per Session	Sessions per Week	Duration per Session				
2	1.5 hours	n/a					

Relation of Course Objectives to Program Outcomes	Course Contribution to Program Outcomes (a-k)	√ Key
The Civil Engineering program is designed to teach beyond the technical content of the curriculum and prepare the students to utilize what they learn in a professional setting.	N/A	
This course does not contributes to the program outcomes.		

 Prepared by:
 Hung Wong Professor of Civil and Environmental Engineering

 Date:
 Fall 2014