CE 408

Risk Analysis in Civil Engineering

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

ABET Course Syllabus

Course Information, Textbook and Supplementary Materials

Course Description: The role of risk and probability in Civil Engineering is described and basic probability concepts are presented. Probability distribution functions commonly used to model and analyze Civil Engineering problems are discussed. Methods for estimating parameters and determining distribution models from observational data are introduced. Monte Carlo simulation methods are practiced. Detailed examples of the application of probabilistic methods to structural, transportation, hydrological, and environmental system design are presented throughout the course.

Required: All Civil and Environmental Engineering undergraduate degree programs

Prerequisites: CE 225 Mechanics of Deformable Bodies; and Math 226

Co-Requisites: None

Required Textbook and Software Requirements:

A.H-S. Ang and W.H. Tang, *Probability Concepts in Engineering*, John Wiley and Sons 2007 Recommended: Matlab Student Version

Reference: None

Topics Covered	Learning Outcomes	
Analyzing the probability of occurrence of events in civil engineering problems	Students will understand the following topics, and be able to analyze, characterize and apply them using statistics to solve engineering problems: 1 Express events in set notation and apply operations from set theory	
	 Understand when events are mutually exclusive, collectively exhaustive, and statistically independent 	
	3. Use conditional probability concepts to compute occurrence probability of correlated events	
	4. Use the <i>Theorem of Total Probability</i> and <i>Bayes Theorem</i> to compute occurrence probability	
Analyzing and applying random variables (RVs) governed by various distributions	5. Understand basic concepts characterizing RVs, such as statistics, density functions, etc.	
	6. Determine probabilities with Normal and Lognormal random variables	
	 Determine probabilities and the relationship between Binomial- and Geometric- distributed RVs 	
	8. Determine probabilities and the relationship between Poisson- and Exponentially- distributed RVs	
	9. Solve problems involving multiple random variables	
	10. Characterize random variables that are functions of other random variable	
Characterizing random variables from sampled data	11. Understand and determine statistics of sampled data	
	12. Estimate the parameters of a distribution from sampled data	
	13. Determine confidence intervals from sampled data	
	14. Test the validity of proposed distribution for a set of sampled data	

Understanding and	15. Understand and compute linear regression from sampled data
applying regression analysis to civil engineering problems	16. Estimate probabilities based on a regression analysis
	17. Determine regression with multiple independent variables and with linear and nonlinear models

CE 408

Risk Analysis in Civil Engineering

3 Units

√ Key

 \checkmark

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Lecture and Lab Schedule

Lecture		L	ab
Sessions per Week	Duration per Session	Sessions per Week	Duration per Session
2	1.5 hours	n/a	

Relation of Course Objectives to Program Outcomes	Course Contribution to Program Outcomes (a-k)
The Civil Engineering program is designed to teach beyond the technical content of the curriculum and prepare the students to utilize what they learn in	f. An understanding of professional and ethical responsibility.
a professional setting. This course contributes to the program outcomes as outlined in the adjacent table.	i. Recognition of the need for, and an ability to engage in life- long learning.

Prepared by: Dr. Roger Ghanem Assoc. Professor of Civil and Environmental Engineering

Date: Fall 2014