CE 358

Theory of Structures I

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

ABET Course Syllabus

Course Information, Textbook and Supplementary Materials

Course Description: Deformations and deflections of elastic systems; statically indeterminate beams, arches, and frames; secondary stresses.

Required for: BSCE, BSCE-Structural, BSCE-Bldg. Science, and BSCE-Environmental

Prerequisite: CE 225 Mechanics of Deformable Bodies

Co-Requisite: None

Required Textbook: Elementary Theory of Structures, Y. Y. Hsieh, Prentice Hall, Englewood Cliffs, New Jersey 07632 (Third or later edition).

Reference: None

Topics Covered	Learning Outcomes				
Stability, determinacy and	Students will be able to do the following:				
constraints of structures	1. Identify static determinacy versus static indeterminacy				
Composite structures	2. Select the required number of unknown (equations) to solve the problem				
	3. Distinguish between internal and external determinacy or indeterminacy of the problem				
Elastic deformations	Compute:				
Beams	4. Deformed shape of beams using the differential equation				
Deflection equations	5. Deflections of a point using unit load method				
Unit load method for beams, frames and trusses	6. Deflections at a point using conjugate beam method				
	7. Deflections using Castigliano's Theorem				
Method of consistent deformations	8. Determine the unknown forces using the method of consistent deformations for beams, frames and trusses				
Frames					
Slope deflection method	9. Compute joint rotations, solve for the moments at all joints				
Method of joints and sections	10. Compute reactions using the slope deflection method				
Shear and Bending Moment					

Moment-distribution method and applications for one and two translations	11.	Determine moments at joints of statically indeterminate structures using the Moment-distribution method.
Conjugate beams		

Theory of Structures I

3 Units

USC | SONNY ASTANI DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Lecture and Lab Schedule							
Lec	Lecture		Lab				
Sessions per Week	Duration per Session	Sessions per Week	Duration per Session				
2	1.5 hours	n/a					

Relation of Course Objectives to Program Outcomes	Course Contribution to Program Outcomes (a-k)	√ Key
The Civil Engineering program is designed to teach beyond the technical content of the curriculum and prepare the students to utilize what they learn in a professional setting.	n/a	
This course does not contribute to the program outcomes.		

Prepared by: Dr. M. Trifunac Professor of Civil Engineering

Date: Fall 2014